TW201443215A - Heat-dissipation gel material - Google Patents

Heat-dissipation gel material Download PDF

Info

Publication number
TW201443215A
TW201443215A TW102116934A TW102116934A TW201443215A TW 201443215 A TW201443215 A TW 201443215A TW 102116934 A TW102116934 A TW 102116934A TW 102116934 A TW102116934 A TW 102116934A TW 201443215 A TW201443215 A TW 201443215A
Authority
TW
Taiwan
Prior art keywords
heat
weight
solar cell
organic polymer
dissipating
Prior art date
Application number
TW102116934A
Other languages
Chinese (zh)
Other versions
TWI484025B (en
Inventor
Yu-Shun Chiu
Cheng-Lien Wang
Original Assignee
Advanced Electronic Materials Inc
Win Win Prec Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Electronic Materials Inc, Win Win Prec Technology Co Ltd filed Critical Advanced Electronic Materials Inc
Priority to TW102116934A priority Critical patent/TWI484025B/en
Publication of TW201443215A publication Critical patent/TW201443215A/en
Application granted granted Critical
Publication of TWI484025B publication Critical patent/TWI484025B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A heat-dissipation gel material for a solar cell module is provided. The heat-dissipation gel material includes an organic polymer material solution, a silicon carbide powder and a dispersing agent. The organic polymer material solution includes an organic polymer material and a solvent, wherein the solid content of the organic polymer material solution is 5 wt% to 80 wt%. The dispersing agent is used to disperse the silicon carbide powder in the organic polymer material solution. In the heat-dissipation gel material, the content of the organic polymer material solution is 20 wt% to 80 wt%, the content of the silicon carbide powder is 20 wt% to 80 wt%, and the content of the dispersing agent is 0.1 wt% to 2 wt%.

Description

散熱膠材 Heat sink

本發明是有關於一種散熱膠材,且特別是有關於一種適用於太陽能電池模組的散熱膠材。 The invention relates to a heat dissipating glue material, and in particular to a heat dissipating glue material suitable for a solar cell module.

在石化能源短缺以及能源需求量與日俱增的情況下,再生能源(Renewable energy)的開發成為當今非常重要的課題之一。再生能源泛指永續且無污染的天然能源,例如太陽能、風能、水利能、潮汐能或是生質能等,其中,太陽能的利用更是近幾年來在能源開發的研究上相當重要且受歡迎的一環。 With the shortage of petrochemical energy and increasing energy demand, the development of renewable energy (Renewable energy) has become one of the most important issues today. Renewable energy refers to sustainable and non-polluting natural energy sources such as solar energy, wind energy, hydropower, tidal energy or biomass energy. Among them, the use of solar energy is very important in the research of energy development in recent years. A popular part.

在習知太陽能技術領域中,主要藉由封裝膜將太陽能電池所產生的熱透過傳導的方式導出太陽能電池模組外。然而,封裝膜的絕緣特性,使得其熱傳導率及熱輻射率皆不佳,因而無法有效地將熱導出。一般而言,太陽能電池的發電效率會隨著溫度的增加而降低,因此目前仍存在太陽能電池無法有效地散熱,進而無法有效地提升太陽能電池模組的發電效率的問題。 In the field of conventional solar energy technology, the heat generated by the solar cell is mainly transmitted to the outside of the solar cell module by means of a packaging film. However, the insulating properties of the encapsulating film make the thermal conductivity and the thermal emissivity poor, and thus the heat cannot be efficiently derived. In general, the power generation efficiency of a solar cell decreases as the temperature increases. Therefore, there is still a problem that the solar cell cannot effectively dissipate heat, and thus the power generation efficiency of the solar cell module cannot be effectively improved.

本發明提供一種散熱膠材,該散熱膠材具有熱輻射特性,可使得太陽能電池模組達到良好散熱。 The invention provides a heat dissipating rubber material which has heat radiation characteristics and can achieve good heat dissipation of the solar cell module.

本發明提出一種散熱膠材,其適用於太陽能電池模組。散熱膠材包括有機高分子材料溶液、碳化矽粉體以及分散劑。有機高分子材料溶液包括有機高分子材料及溶劑,其中有機高分子材料溶液的固含量為5重量%至80重量%。分散劑用以使碳化矽粉體分散於有機高分子材料溶液中。在散熱膠材中,有機高分子材料溶液的含量為20重量%至80重量%,碳化矽粉體的含量為20重量%至80重量%,且分散劑的含量為0.1重量%至2重量%。 The invention provides a heat dissipating glue material which is suitable for a solar cell module. The heat-dissipating rubber material includes an organic polymer material solution, a cerium carbide powder, and a dispersing agent. The organic polymer material solution includes an organic polymer material and a solvent, wherein the organic polymer material solution has a solid content of 5 wt% to 80 wt%. The dispersant is used to disperse the niobium carbide powder in the organic polymer material solution. In the heat-dissipating rubber material, the content of the organic polymer material solution is 20% by weight to 80% by weight, the content of the barium carbide powder is 20% by weight to 80% by weight, and the content of the dispersing agent is 0.1% by weight to 2% by weight. .

在本發明的一實施例中,上述的有機高分子材料選自由環氧樹脂、醇酸樹脂、丙稀酸樹脂、聚氨酯樹脂、酚醛樹脂、氯乙烯-醋酸乙烯共聚樹脂及其組合所組成的族群。 In an embodiment of the invention, the organic polymer material is selected from the group consisting of an epoxy resin, an alkyd resin, an acrylic resin, a polyurethane resin, a phenol resin, a vinyl chloride-vinyl acetate copolymer resin, and combinations thereof. .

在本發明的一實施例中,上述的溶劑選自由芳烴類溶劑、醇類溶劑、酮類溶劑、酯類溶劑、醇醚類溶劑及其組合所組成的族群。 In an embodiment of the invention, the solvent is selected from the group consisting of an aromatic hydrocarbon solvent, an alcohol solvent, a ketone solvent, an ester solvent, an alcohol ether solvent, and a combination thereof.

在本發明的一實施例中,上述碳化矽粉體的粒徑為100 nm至50 μm。 In an embodiment of the invention, the niobium carbide powder has a particle diameter of 100 nm to 50 μm.

在本發明的一實施例中,更包括奈米級添加材料,且在上述的散熱膠材中,奈米級添加材料的含量為1重量%至5重量%。 In an embodiment of the invention, a nano-scale additive material is further included, and in the above-mentioned heat-dissipating rubber material, the content of the nano-scale additive material is from 1% by weight to 5% by weight.

在本發明的一實施例中,更包括添加劑,且在上述的散熱膠材中,添加劑的含量為0.1重量%至2重量%。 In an embodiment of the invention, an additive is further included, and in the above heat-dissipating rubber, the content of the additive is from 0.1% by weight to 2% by weight.

基於上述,本發明的實施例所提出的散熱膠材包括具有 熱輻射特性的碳化矽粉體,且透過印刷製程適用於太陽能電池模組中,藉以提升太陽能電池模組的熱輻射率而達到有效散熱。 Based on the above, the heat dissipation adhesive material proposed by the embodiment of the present invention includes The thermal radiation characteristics of the tantalum carbide powder are applied to the solar cell module through a printing process, thereby improving the heat radiation rate of the solar cell module to achieve effective heat dissipation.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧第一電極層 10‧‧‧First electrode layer

12‧‧‧匯流電極 12‧‧‧Concurrent electrode

20‧‧‧光電轉換層 20‧‧‧ photoelectric conversion layer

22‧‧‧P型摻雜層 22‧‧‧P type doping layer

24‧‧‧N型摻雜 24‧‧‧N type doping

30‧‧‧第二電極層 30‧‧‧Second electrode layer

40‧‧‧金屬電極 40‧‧‧Metal electrodes

100‧‧‧太陽能電池模組 100‧‧‧Solar battery module

110‧‧‧太陽能電池元件 110‧‧‧Solar battery components

120‧‧‧第一封裝膜 120‧‧‧First encapsulation film

130‧‧‧蓋板 130‧‧‧ Cover

140‧‧‧散熱材料層 140‧‧‧heating material layer

150‧‧‧第二封裝膜 150‧‧‧Second encapsulation film

160‧‧‧背板 160‧‧‧ Backplane

G‧‧‧空隙 G‧‧‧ gap

S1‧‧‧第一表面 S1‧‧‧ first surface

S2‧‧‧第二表面 S2‧‧‧ second surface

SA‧‧‧受光面 SA‧‧‧Stained surface

SB‧‧‧非受光面 SB‧‧‧ non-lighted surface

S10~S40‧‧‧步驟 S10~S40‧‧‧Steps

圖1是本發明一實施例的太陽能電池模組的製作流程圖。 1 is a flow chart showing the fabrication of a solar cell module in accordance with an embodiment of the present invention.

圖2A至圖2D是本發明一實施例的太陽能電池模組的製作流程剖面示意圖。 2A to 2D are schematic cross-sectional views showing a manufacturing process of a solar cell module according to an embodiment of the present invention.

圖3是圖2D中的太陽能電池模組的剖面示意圖。 3 is a schematic cross-sectional view of the solar cell module of FIG. 2D.

圖4為實驗例及對照例之太陽能電池膜組之溫度對時間的曲線圖。 Fig. 4 is a graph showing the temperature versus time of the solar cell membrane group of the experimental examples and the comparative examples.

首先,說明本發明之散熱膠材,其可應用在太陽能電池模組中,用以有效地將太陽能電池元件所產生的熱從太陽能電池模組中排出。然而,本發明並不限於此。 First, the heat-dissipating adhesive of the present invention can be applied to a solar battery module for effectively discharging heat generated by the solar battery element from the solar battery module. However, the invention is not limited thereto.

本發明提出一種散熱膠材,其包括有機高分子材料溶液、碳化矽粉體以及分散劑。以下將詳細說明散熱膠材的各個成份。 The invention provides a heat dissipating rubber material, which comprises an organic polymer material solution, a niobium carbide powder and a dispersing agent. The individual components of the heat-dissipating adhesive will be described in detail below.

有機高分子材料溶液包括有機高分子材料及溶劑,其中 有機高分子材料溶液的固含量為5重量%至80重量%,且在本發明之散熱膠材中,有機高分子材料溶液的含量為20重量%至80重量%。詳言而言,在使用本發明之散熱膠材的製程(下文中將詳細說明)中,有機高分子材料溶液中的有機高分子材料用以作為載體,以利散熱膠材能夠進行塗佈,且此外,透過有機高分子材料的黏著性,使得散熱膠材能夠有效黏附於太陽能電池元件上。 The organic polymer material solution includes an organic polymer material and a solvent, wherein The solid polymer material solution has a solid content of 5 to 80% by weight, and in the heat-dissipating rubber of the present invention, the content of the organic polymer material solution is 20% by weight to 80% by weight. In particular, in the process of using the heat-dissipating adhesive of the present invention (described in detail below), the organic polymer material in the organic polymer material solution is used as a carrier to facilitate the coating of the heat-dissipating rubber. In addition, through the adhesion of the organic polymer material, the heat-dissipating adhesive can be effectively adhered to the solar cell element.

另外,有機高分子材料例如是選自由環氧樹脂、醇酸樹脂、丙烯酸樹脂、聚氨酯樹脂、酚醛樹脂、氯乙烯-醋酸乙烯共聚樹脂及其組合所組成的族群。溶劑例如是選自由芳烴類溶劑、醇類溶劑、酮類溶劑、酯類溶劑、醇醚類溶劑及其組合所組成的族群。在一實施例中,有機高分子材料例如是丙烯酸樹脂,而溶劑例如是酯類溶劑。 Further, the organic polymer material is, for example, a group selected from the group consisting of an epoxy resin, an alkyd resin, an acrylic resin, a polyurethane resin, a phenol resin, a vinyl chloride-vinyl acetate copolymer resin, and a combination thereof. The solvent is, for example, a group selected from the group consisting of an aromatic hydrocarbon solvent, an alcohol solvent, a ketone solvent, an ester solvent, an alcohol ether solvent, and a combination thereof. In one embodiment, the organic polymer material is, for example, an acrylic resin, and the solvent is, for example, an ester solvent.

在本發明之散熱膠材中,碳化矽粉體的含量為20重量%至80重量%,且碳化矽粉體主要提供散熱的作用。詳細而言,本發明之碳化矽粉體為具有良好熱輻射率的高熱輻射性材料,故可透過熱輻射的方式達到散熱效果。另外一提的是,本發明之碳化矽粉體除了具有良好熱輻射率外,其亦具有良好的熱傳導率。因此,本發明的散熱膠材可透過輻射以及傳導的方式來達到有效地散熱效果。另外,碳化矽粉體的粒徑例如是100 nm至50 μm,且較佳例如是1 μm至15 μm。 In the heat-dissipating rubber of the present invention, the content of the tantalum carbide powder is from 20% by weight to 80% by weight, and the tantalum carbide powder mainly provides heat dissipation. In detail, the tantalum carbide powder of the present invention is a high heat radiation material having a good heat emissivity, so that the heat radiation effect can be achieved by means of heat radiation. It is also noted that the niobium carbide powder of the present invention has good thermal conductivity in addition to good thermal emissivity. Therefore, the heat dissipating adhesive of the present invention can achieve effective heat dissipation through radiation and conduction. Further, the particle size of the niobium carbide powder is, for example, 100 nm to 50 μm, and preferably, for example, 1 μm to 15 μm.

在本發明之散熱膠材中,分散劑的含量為0.1重量%至2重量%,且分散劑用以使碳化矽粉體均勻分散於有機高分子材料溶 液中,以避免碳化矽粉體發生團聚現象而降低散熱效果。 In the heat dissipating adhesive of the present invention, the dispersant is contained in an amount of 0.1% by weight to 2% by weight, and the dispersing agent is used for uniformly dispersing the niobium carbide powder in the organic polymer material. In the liquid, to avoid the agglomeration of the niobium carbide powder and reduce the heat dissipation effect.

另外,分散劑例如是磷酸酯(phosphate ester)、亞麻子油(linseed oil)或辛酸(Octanoic acid),其中較佳為磷酸酯。此外,作為分散劑,亦可使用各種市售產品。適合用作本發明之分散劑的市售產品的特定實例包括:DISPERBYK-101、DISPERBYK-102、DISPERBYK-103、DISPERBYK-106、DISPERBYK-107、DISPERBYK-108、DISPERBYK-109、DISPERBYK-110、DISPERBYK-111、DISPERBYK-112、DISPERBYK-115、DISPERBYK-116、DISPERBYK-130、DISPERBYK-140、DISPERBYK-142、DISPERBYK-145、DISPERBYK-160、DISPERBYK-161、DISPERBYK-162、DISPERBYK-163、DISPERBYK-164、DISPERBYK-166、DISPERBYK-167、DISPERBYK-168、DISPERBYK-169、DISPERBYK-170、DISPERBYK-171、DISPERBYK-174、DISPERBYK-180、DISPERBYK-192(由BYK公司所製造);以及TEGO®Dispers 610、TEGO®Dispers 650、TEGO®Dispers 670、TEGO®Dispers 685、TEGO®Dispers 700、TEGO®Dispers 710、TEGO®Dispers 740W、TEGO®Dispers 750W、TEGO®Dispers 760W(由TEGO公司所製造)等等。 Further, the dispersing agent is, for example, a phosphate ester, a linseed oil or an Octanoic acid, of which a phosphate ester is preferred. Further, as the dispersing agent, various commercially available products can also be used. Specific examples of commercially available products suitable for use as the dispersant of the present invention include: DISPERBYK-101, DISPERBYK-102, DISPERBYK-103, DISPERBYK-106, DISPERBYK-107, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK -111, DISPERBYK-112, DISPERBYK-115, DISPERBYK-116, DISPERBYK-130, DISPERBYK-140, DISPERBYK-142, DISPERBYK-145, DISPERBYK-160, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164 , DISPERBYK-166, DISPERBYK-167, DISPERBYK-168, DISPERBYK-169, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, DISPERBYK-180, DISPERBYK-192 (manufactured by BYK); and TEGO® Dispers 610, TEGO® Dispers 650, TEGO® Dispers 670, TEGO® Dispers 685, TEGO® Dispers 700, TEGO® Dispers 710, TEGO® Dispers 740W, TEGO® Dispers 750W, TEGO® Dispers 760W (manufactured by TEGO) and more.

此外,本發明的散熱膠材必要時可更包括奈米級添加材料,且在散熱膠材中,奈米級添加材料的含量為1重量%至5重量%。詳細而言,本發明的散熱膠材可選擇地使用奈米級添加材料來 調整散熱膠材的黏度,且其詳細作用將於實驗例中舉例說明。如此一來,根據實際上應用的需求,透過奈米級添加材料對散熱膠材的黏度進行調整,將使得本發明的散熱膠材的應用性更廣。奈米級添加材料例如是奈米級碳粉、奈米級石墨稀粉體、奈米級二氧化鈦粉體或矽氧烷(silicone)。 In addition, the heat dissipating adhesive of the present invention may further include a nano-scale additive material, and in the heat-dissipating rubber material, the content of the nano-scale additive material is from 1% by weight to 5% by weight. In detail, the heat dissipating adhesive of the present invention can optionally use a nano-sized additive material. Adjust the viscosity of the heat-dissipating adhesive, and its detailed function will be illustrated in the experimental example. In this way, according to the actual application requirements, the viscosity of the heat-dissipating adhesive material is adjusted through the nano-scale additive material, which will make the heat-dissipating adhesive material of the present invention more widely applicable. The nano-sized additive material is, for example, a nano-sized carbon powder, a nano-sized graphite thin powder, a nano-sized titanium dioxide powder or a silicone.

另外,本發明的散熱膠材必要時可更包括添加劑,且在散熱膠材中,添加劑的含量為0.1重量%至2重量%。也就是說,根據實際上應用的需求,可對本發明的散熱膠材添加各種添加劑,以增加散熱膠材的應用性。添加劑例如是無機填充劑(inorganic filler)、氧化添加劑(oxidizing additive)、共起始劑(synergist)、可塑劑(plasticizer)、增敏劑(sensitizer)、偶合劑(coupling agent)、潤濕劑(wetting agent)、增稠劑(thickening agent)、消泡劑(deformer)、流平劑(levelling agent)、搖變劑(thixotropy additive)或是其它添加劑。上述添加劑根據用途可以單獨使用,或者可將多種組合使用。此外,作為上述任一添加劑,亦可使用各種市售產品。 In addition, the heat dissipating rubber of the present invention may further include an additive if necessary, and in the heat dissipating rubber, the content of the additive is from 0.1% by weight to 2% by weight. That is to say, according to the requirements of the actual application, various additives can be added to the heat-dissipating rubber of the present invention to increase the applicability of the heat-dissipating rubber. The additive is, for example, an inorganic filler, an oxidizing additive, a synergist, a plasticizer, a sensitizer, a coupling agent, a wetting agent ( Wetting agent), a thickening agent, a deformer, a levelling agent, a thixotropy additive, or other additives. The above additives may be used singly or in combination of two or more depending on the use. Further, as any of the above additives, various commercially available products can also be used.

鑒於在網版印刷時具有良好印刷特性,本發明的散熱膠材的黏度在25℃、10 rpm下較佳例如是20000 cps至50000 cps。 The viscosity of the heat-dissipating adhesive of the present invention is preferably, for example, from 20,000 cps to 50,000 cps at 25 ° C and 10 rpm in view of good printing characteristics at the time of screen printing.

以下透過詳細描述本發明之一實施例的散熱膠材的製備方法,將更清楚、完整地揭露本發明的散熱膠材。然而,本發明並不以在此揭露內容為限。 Hereinafter, the heat dissipating rubber material of the present invention will be more clearly and completely disclosed by describing in detail a method for preparing a heat dissipating rubber material according to an embodiment of the present invention. However, the invention is not limited to the disclosure herein.

首先,將作為有機高分子材料的丙烯酸樹脂溶解於作為 溶劑的酯類溶劑中,以形成固含量為40重量%的作為有機高分子材料溶液的丙烯酸樹脂溶液。接著,進行預拌步驟,將碳化矽粉體(粒徑為約10 μm)、作為分散劑的DISPERBYK-101(由BYK公司所製造)、作為奈米級添加材料的奈米級石墨稀粉體、以及作為添加劑的流平劑及消泡劑加入上述丙烯酸樹脂溶液中,經攪拌混合後形成膠態組成物。之後,將上述經預拌後所得的膠態組成物經過三滾筒,並以轉速為500 rpm的條件進行充分地加工分散,以形成散熱膠材1,其中散熱膠材1的黏度為27000 cps。在上述散熱膠材1中,丙烯酸樹脂溶液的含量為42重量%、碳化矽粉體的含量為50重量%、奈米級石墨稀粉體的含量為5重量%、DISPERBYK-101(由BYK公司所製造)的含量為1重量%、流平劑的含量為1重量%以及消泡劑的含量為1重量%。 First, an acrylic resin as an organic polymer material is dissolved in In the ester solvent of the solvent, an acrylic resin solution as a solution of an organic polymer material having a solid content of 40% by weight was formed. Next, a pre-mixing step is carried out, in which a niobium carbide powder (having a particle diameter of about 10 μm), a DISPERBYK-101 (manufactured by BYK Corporation) as a dispersing agent, and a nano-sized graphite thin powder as a nano-scale additive material are prepared. And a leveling agent and an antifoaming agent as an additive are added to the above acrylic resin solution, and are stirred and mixed to form a colloidal composition. Thereafter, the above-mentioned colloidal composition obtained by the pre-mixing was passed through a three-roller and sufficiently processed and dispersed at a rotation speed of 500 rpm to form a heat-dissipating rubber material 1, wherein the heat-dissipating rubber material 1 had a viscosity of 27,000 cps. In the above heat-dissipating rubber material 1, the content of the acrylic resin solution is 42% by weight, the content of the cerium carbide powder is 50% by weight, the content of the nano-sized graphite powder is 5% by weight, and DISPERBYK-101 (by BYK) The content of the product produced was 1% by weight, the content of the leveling agent was 1% by weight, and the content of the antifoaming agent was 1% by weight.

值得說明的是,在上述膠態組成物經過三滾筒再次加工分散的過程中,膠態組成物的黏度是影響對於膠態組成物經三滾筒加工分散時的加工性的重要因素。換言之,若膠態組成物的黏度太低或太高,則皆將使得膠態組成物無法藉由三滾筒進行有效攪拌而得到具有預定黏度的散熱膠材1。在此情況下,於預拌步驟期間,便可透過使用能夠調整黏度的奈米級添加材料來設計預拌後所得之膠態組成物的黏度。 It is worth noting that in the process of re-processing and dispersing the above-mentioned colloidal composition through the three-roller, the viscosity of the colloidal composition is an important factor affecting the processability when the colloidal composition is dispersed by the three-roller process. In other words, if the viscosity of the colloidal composition is too low or too high, the colloidal composition cannot be effectively stirred by the three rollers to obtain the heat-dissipating rubber 1 having a predetermined viscosity. In this case, during the pre-mixing step, the viscosity of the colloidal composition obtained after the pre-mixing can be designed by using a nano-sized additive material capable of adjusting the viscosity.

本發明另提出一種太陽能電池模組的製造方法,其包括使用上述本發明的散熱膠材。 The present invention further provides a method of manufacturing a solar cell module comprising using the above-described heat dissipating gel material of the present invention.

圖1是本發明一實施例的太陽能電池模組的製作流程 圖。圖2A至圖2D是本發明一實施例的太陽能電池模組的製作流程剖面示意圖。 1 is a flow chart of a solar cell module according to an embodiment of the present invention; Figure. 2A to 2D are schematic cross-sectional views showing a manufacturing process of a solar cell module according to an embodiment of the present invention.

以下,將參照圖1及圖2A至圖2D來詳細說明本發明所提出的太陽能電池模組的製造方法。 Hereinafter, a method of manufacturing a solar cell module according to the present invention will be described in detail with reference to FIGS. 1 and 2A to 2D.

請同時參照圖1及圖2A,進行步驟S10,提供太陽能電池元件110,其中太陽能電池元件110具有受光面SA以及與受光面SA相對的非受光面SB。太陽能電池元件110可以是矽質太陽能電池、化合物半導體太陽能電池、染料太陽能電池或薄膜太陽能電池,其中矽質太陽能電池可包括單晶矽、多晶矽以及非晶矽太陽能電池。本文中所使用的「受光面SA」意指太陽能電池元件110中之面向太陽的表面,而「非受光面SB」則意指太陽能電池元件110中相對於受光面SA的表面。另外,雖然圖1中僅繪示一個太陽能電池元件110,但所屬技術領域中具有通常知識者應理解,太陽能電池模組亦可以是由彼此串聯的多個太陽能電池元件所組成。 Referring to FIG. 1 and FIG. 2A simultaneously, step S10 is performed to provide a solar cell element 110 having a light receiving surface SA and a non-light receiving surface SB opposed to the light receiving surface SA. The solar cell element 110 may be a tantalum solar cell, a compound semiconductor solar cell, a dye solar cell, or a thin film solar cell, wherein the tantalum solar cell may include a single crystal germanium, a polycrystalline germanium, and an amorphous germanium solar cell. The "light-receiving surface SA" as used herein means the surface facing the sun in the solar cell element 110, and the "non-light-receiving surface SB" means the surface of the solar cell element 110 with respect to the light-receiving surface SA. In addition, although only one solar cell element 110 is illustrated in FIG. 1, it will be understood by those of ordinary skill in the art that the solar cell module may also be composed of a plurality of solar cell elements connected in series with each other.

請同時參照圖1及圖2B,進行步驟S20,於受光面SA上形成第一封裝膜120以及蓋板130,其中第一封裝膜120位於太陽能電池元件110與蓋板130之間。第一封裝膜120的材料例如是乙烯醋酸乙烯酯(Ethylene Vinyl Acetate,EVA)、聚乙烯醇縮丁醛(Poly Vinyl Butyral,PVB)、聚烯烴(Polyolefin)、聚氨酯(Polyurethane)、矽氧烷或透明高分子絕緣接著膠材。蓋板130可提升太陽能電池模組的可靠度,其中蓋板130可以是具有高透 光率的基板。高透光率的基板例如是低鐵玻璃(low iron glass)基板。 Referring to FIG. 1 and FIG. 2B simultaneously, step S20 is performed to form a first encapsulation film 120 and a cap plate 130 on the light receiving surface SA, wherein the first encapsulation film 120 is located between the solar cell element 110 and the cap plate 130. The material of the first encapsulation film 120 is, for example, Ethylene Vinyl Acetate (EVA), Poly Vinyl Butyral (PVB), Polyolefin, Polyurethane, Oxane or Transparent polymer insulation followed by glue. The cover plate 130 can improve the reliability of the solar cell module, wherein the cover plate 130 can be highly transparent. Light rate substrate. The substrate having a high light transmittance is, for example, a low iron glass substrate.

請同時參照圖1及圖2C,進行步驟S30,於非受光面SB上形成散熱材料層140。散熱材料層140可藉由上文中所描述的本發明的散熱膠材所形成。在一實施例中,散熱材料層140例如是使用前述所提出的散熱膠材1來形成。另外,散熱材料層140的形成方法包括以下步驟。首先,製備散熱膠材,其中所製備的散熱膠材包括有機高分子材料溶液、碳化矽粉體以及分散劑。有機高分子材料溶液包括有機高分子材料及溶劑,其中有機高分子材料溶液的固含量為5重量%至80重量%。分散劑用以使碳化矽粉體分散於有機高分子材料溶液中。在散熱膠材中,有機高分子材料溶液的含量為20重量%至80重量%,碳化矽粉體的含量為20重量%至80重量%,且分散劑的含量為0.1重量%至2重量%。此外,散熱膠材中的各成分的材料與相關描述,以及散熱膠材的特性及製備方法已於上文中進行詳盡地說明,故於此不再贅述。 Referring to FIG. 1 and FIG. 2C simultaneously, step S30 is performed to form the heat dissipation material layer 140 on the non-light-receiving surface SB. The heat dissipating material layer 140 can be formed by the heat dissipating rubber of the present invention as described above. In an embodiment, the heat dissipating material layer 140 is formed, for example, using the heat dissipating rubber 1 proposed above. In addition, the method of forming the heat dissipation material layer 140 includes the following steps. First, a heat-dissipating rubber material is prepared, wherein the heat-dissipating rubber material prepared includes an organic polymer material solution, a cerium carbide powder, and a dispersing agent. The organic polymer material solution includes an organic polymer material and a solvent, wherein the organic polymer material solution has a solid content of 5 wt% to 80 wt%. The dispersant is used to disperse the niobium carbide powder in the organic polymer material solution. In the heat-dissipating rubber material, the content of the organic polymer material solution is 20% by weight to 80% by weight, the content of the barium carbide powder is 20% by weight to 80% by weight, and the content of the dispersing agent is 0.1% by weight to 2% by weight. . In addition, the materials and related descriptions of the components in the heat-dissipating rubber material, as well as the characteristics and preparation methods of the heat-dissipating rubber material have been described in detail above, and thus will not be described herein.

接著,進行印刷製程,使散熱膠材形成於非受光面SB上。在一實施例中,印刷製程例如是網版印刷,且網版印刷例如是使用鋼絲或尼龍來進行。換言之,散熱材料層140可藉由現有製作太陽能電池元件110的機台製作而成,而毋需額外地購置、增設其他機台。但是,本發明並不限於此。在其他實施例中,散熱膠材亦可以是藉由塗佈製程形成於非受光面SB上,其中塗佈製程例如是旋轉塗佈或噴墨塗佈等。 Next, a printing process is performed to form a heat-dissipating gel on the non-light-receiving surface SB. In one embodiment, the printing process is, for example, screen printing, and screen printing is performed using, for example, steel wire or nylon. In other words, the heat dissipating material layer 140 can be fabricated by the existing machine for manufacturing the solar cell element 110, and it is not necessary to additionally purchase or add another machine. However, the invention is not limited thereto. In other embodiments, the heat-dissipating adhesive may be formed on the non-light-receiving surface SB by a coating process, such as spin coating or inkjet coating.

之後,進行乾燥處理,使散熱膠材乾燥,以於非受光面SB上形成散熱材料層140。詳細而言,乾燥處理例如是加熱製程,以使散熱膠材中有機高分子材料溶液的溶劑揮發而乾燥,然而本發明並不限於此。 Thereafter, drying treatment is performed to dry the heat dissipation adhesive to form the heat dissipation material layer 140 on the non-light-receiving surface SB. Specifically, the drying treatment is, for example, a heating process to volatilize and dry the solvent of the organic polymer material solution in the heat-dissipating gel, but the present invention is not limited thereto.

另外,如上文中關於本發明之散熱膠材的描述,散熱材料層140中的碳化矽粉體為具有良好熱輻射率的高熱輻射性材料,且亦具有良好的熱傳導率。因此,本發明的太陽能電池模組可透過散熱材料層140將太陽能電池元件110所產生的熱以熱輻射以及熱傳導的方式導出,以達到有效地散熱,進而使太陽能電池元件110維持良好的發電效率。 Further, as described above with respect to the heat-dissipating rubber of the present invention, the tantalum carbide powder in the heat-dissipating material layer 140 is a high heat-radiating material having a good heat emissivity and also has a good thermal conductivity. Therefore, the solar cell module of the present invention can conduct heat generated by the solar cell element 110 through heat dissipation material layer 140 by heat radiation and heat conduction to achieve effective heat dissipation, thereby maintaining good power generation efficiency of the solar cell element 110. .

另外,散熱材料層140的厚度例如是10 μm至100 μm。詳細而言,當散熱材料層140的厚度小於10 μm時,散熱材料層140的散熱性不佳,而當散熱材料層140的厚度大於100 μm時,容易發生彎曲(bending)變形的現象。 In addition, the thickness of the heat dissipation material layer 140 is, for example, 10 μm to 100 μm. In detail, when the thickness of the heat dissipation material layer 140 is less than 10 μm, the heat dissipation property of the heat dissipation material layer 140 is not good, and when the thickness of the heat dissipation material layer 140 is more than 100 μm, the phenomenon of bending deformation is likely to occur.

值得一提的是,本發明的散熱材料層140是透過印刷製程將散熱膠材形成於非受光面SB上並接著乾燥後而形成,藉此本發明的散熱材料層140除了較不易受到氣泡或異物的滲入而影響太陽能電池模組的良率外,散熱材料層140與太陽能電池元件110之間的密著性還可被提升,因而降低散熱材料層140從太陽能電池元件110剝離的機率。 It is to be noted that the heat dissipation material layer 140 of the present invention is formed by forming a heat dissipation adhesive material on the non-light-receiving surface SB through a printing process and then drying, whereby the heat dissipation material layer 140 of the present invention is less susceptible to bubbles or In addition to the infiltration of foreign matter affecting the yield of the solar cell module, the adhesion between the heat dissipating material layer 140 and the solar cell element 110 can be improved, thereby reducing the probability of the heat dissipating material layer 140 peeling off from the solar cell element 110.

另外,出自圖案調變性的觀點,本發明之透過印刷製程而於非受光面SB上形成的散熱材料層140具有極佳的裕度。具體 而言,本發明的散熱材料層140可以不用全面性覆蓋於太陽能電池元件110的非受光面SB上,而可視實際需求來調變散熱材料層140的圖案。更詳細而言,在網版印刷期間,可視實際需求來改變網版欲形成散熱材料層140所預留的圖案。如此一來,還可減少散熱材料層140所需的材料用量。 Further, from the viewpoint of pattern modulation, the heat dissipation material layer 140 formed on the non-light-receiving surface SB by the printing process of the present invention has an excellent margin. specific In other words, the heat dissipation material layer 140 of the present invention can be used to modulate the pattern of the heat dissipation material layer 140 according to actual needs without covering the non-light-receiving surface SB of the solar cell element 110 in a comprehensive manner. In more detail, during the screen printing, the pattern reserved by the screen to form the heat dissipation material layer 140 may be changed according to actual needs. As a result, the amount of material required for the heat dissipating material layer 140 can also be reduced.

另外,在本實施例的太陽能電池模組的製造方法中,在進行步驟S30後,可選擇性地更包括於非受光面SB上形成第二封裝膜150,其中散熱材料層140位於太陽能電池元件110與第二封裝膜150之間。第二封裝膜150的材料可以與第一封裝膜120的材料相同。簡言之,第二封裝膜150的材料例如是乙烯醋酸乙烯酯、聚乙烯醇縮丁醛、聚烯烴、聚氨酯、矽氧烷或透明高分子絕緣接著膠材。 In addition, in the manufacturing method of the solar cell module of the present embodiment, after performing step S30, the second encapsulation film 150 may be selectively formed on the non-light-receiving surface SB, wherein the heat dissipation material layer 140 is located in the solar cell element. 110 is between the second encapsulation film 150. The material of the second encapsulation film 150 may be the same as the material of the first encapsulation film 120. In short, the material of the second encapsulation film 150 is, for example, ethylene vinyl acetate, polyvinyl butyral, polyolefin, polyurethane, decane or a transparent polymer insulation adhesive.

在此實施例中,第一封裝膜120與第二封裝膜150可將太陽能電池元件110以及散熱材料層140密封於蓋板130與背板160(請參照圖2D)之間,進而降低外在環境對太陽能電池元件110以及散熱材料層140的干擾。但是,本發明並不限於此。在其他實施例中,散熱材料層140亦可具有封裝膜的功用。換言之,在進行步驟S30後,毋需於非受光面SB上形成第二封裝膜150。此時,根據上述關於散熱膠材的製備方法及散熱材料層140的形成方法所揭露的內容,所屬技術領域中具有通常知識者應可理解,具有封裝膜功用的散熱材料層140的形成方式。舉例而言,在製備散熱膠材1時,可更包括將封裝膜的材料(例如上文所列 舉的第一封裝膜120的材料)作為添加劑加入前述的丙烯酸樹脂溶液中。 In this embodiment, the first encapsulation film 120 and the second encapsulation film 150 can seal the solar cell element 110 and the heat dissipation material layer 140 between the cover plate 130 and the back plate 160 (please refer to FIG. 2D ), thereby reducing externality. The environment interferes with the solar cell element 110 and the heat sink layer 140. However, the invention is not limited thereto. In other embodiments, the heat dissipation material layer 140 may also have the function of a package film. In other words, after the step S30 is performed, it is not necessary to form the second encapsulation film 150 on the non-light-receiving surface SB. At this time, according to the above-mentioned disclosure of the method for preparing the heat-dissipating rubber material and the method for forming the heat-dissipating material layer 140, those skilled in the art should understand the manner in which the heat-dissipating material layer 140 having the function of the sealing film is formed. For example, when preparing the heat dissipating rubber material 1, the material of the encapsulating film may be further included (for example, as listed above) The material of the first encapsulating film 120 is added as an additive to the aforementioned acrylic resin solution.

請同時參照圖1及圖2D,進行步驟S40,於非受光面SB上形成背板160,其中第二封裝膜150位於太陽能電池元件110與背板160之間。在本實施例中,第二封裝膜150位於散熱材料層140與背板160之間。背板160的材料例如是玻璃或聚碳酸酯(Polycarbonate,PC)。進一步而言,背板160可以與蓋板130同為低鐵玻璃基板或是為強化玻璃基板。 Referring to FIG. 1 and FIG. 2D simultaneously, step S40 is performed to form a back plate 160 on the non-light-receiving surface SB, wherein the second encapsulation film 150 is located between the solar cell element 110 and the back plate 160. In the embodiment, the second encapsulation film 150 is located between the heat dissipation material layer 140 and the back plate 160. The material of the back sheet 160 is, for example, glass or polycarbonate (PC). Further, the back plate 160 may be a low iron glass substrate or a tempered glass substrate as the cover plate 130.

需說明的是,上述實施例所提出的太陽能電池模組的製造方法僅是舉例說明之用,並非用以限定本發明。任何所屬技術領域中具有通常知識者皆可視實際需求對太陽能電池模組的製造方法進行調整。舉例而言,在其他實施例中,步驟S20、S30的順序可對調。又或者,在另一實施例中,完成步驟S10後,可先進行步驟S30、S40再進行步驟S20。 It should be noted that the manufacturing method of the solar cell module proposed in the above embodiments is for illustrative purposes only and is not intended to limit the present invention. Any person having ordinary knowledge in the technical field can adjust the manufacturing method of the solar cell module according to actual needs. For example, in other embodiments, the order of steps S20, S30 can be reversed. Alternatively, in another embodiment, after step S10 is completed, steps S30 and S40 may be performed first, and then step S20 may be performed.

此外,藉由上述實施例即可完成本發明一實施例所提出的太陽能電池模組100。 In addition, the solar cell module 100 according to an embodiment of the present invention can be completed by the above embodiments.

圖3是圖2D中的太陽能電池模組的剖面示意圖。在下文中,將圖3對本發明一實施例的太陽能電池模組100及太陽能電池元件110做進一步的說明。 3 is a schematic cross-sectional view of the solar cell module of FIG. 2D. Hereinafter, a solar battery module 100 and a solar battery element 110 according to an embodiment of the present invention will be further described with reference to FIG.

請參照圖3,本實施例的太陽能電池模組100包括太陽能電池元件110、第一封裝膜120、蓋板130、散熱材料層140、第二封裝膜150以及背板160。 Referring to FIG. 3 , the solar cell module 100 of the present embodiment includes a solar cell element 110 , a first encapsulation film 120 , a cap plate 130 , a heat dissipation material layer 140 , a second encapsulation film 150 , and a back plate 160 .

太陽能電池元件110包括第一電極層10、光電轉換層20、第二電極層30以及多個金屬電極40。第一電極層10與第二電極層30分別位於光電轉換層20相對的第一表面S1與第二表面S2上。在本實施例中,光電轉換層20例如是由P型摻雜層22及N型摻雜層24堆疊形成的PN接面結構,然而本發明不限於此。在其他未繪示的實施例中,光電轉換層亦可以是由P型摻雜層、本質層、N型摻雜層堆疊形成的PIN接面結構,又或者,光電轉換層可以是由PN接面結構以及PIN接面結構重複排列的串疊結構。 The solar cell element 110 includes a first electrode layer 10, a photoelectric conversion layer 20, a second electrode layer 30, and a plurality of metal electrodes 40. The first electrode layer 10 and the second electrode layer 30 are respectively located on the first surface S1 and the second surface S2 opposite to the photoelectric conversion layer 20. In the present embodiment, the photoelectric conversion layer 20 is, for example, a PN junction structure formed by stacking a P-type doping layer 22 and an N-type doping layer 24, but the present invention is not limited thereto. In other embodiments not shown, the photoelectric conversion layer may also be a PIN junction structure formed by stacking a P-type doped layer, an intrinsic layer, or an N-type doped layer, or the photoelectric conversion layer may be connected by a PN. The surface structure and the PIN junction structure are repeatedly arranged in a tandem structure.

形成第一電極層10、第二電極層30以及金屬電極40的方法例如是網版印刷,而第一電極層10、第二電極層30以及金屬電極40的材質例如是鋁導電膠、鋁膠或銀-鋁膠,但是本發明並以所揭露的內容為限。舉例而言,在其他實施例中,第一電極層10以及第二電極層30的材質亦可為透明導電材質,其中透明導電材質例如為金屬氧化物。 The method of forming the first electrode layer 10, the second electrode layer 30, and the metal electrode 40 is, for example, screen printing, and the materials of the first electrode layer 10, the second electrode layer 30, and the metal electrode 40 are, for example, aluminum conductive paste or aluminum paste. Or silver-aluminum glue, but the invention is limited to what is disclosed. For example, in other embodiments, the material of the first electrode layer 10 and the second electrode layer 30 may also be a transparent conductive material, wherein the transparent conductive material is, for example, a metal oxide.

另外,第一電極層10鄰近設置於前述受光面SA(請參照圖2D)的一側。一般而言,為減少第一電極層10遮蔽入射光的比例,第一電極層10通常是設計成具有特殊圖案的結構,其包括橫貫光電轉換層20的匯流電極12(busbar)以及由匯流電極12延伸出多條很細的指狀(finger)電極(未繪示)。進一步而言,匯流電極12沿第一方向X延伸且沿第二方向Y排列,而指狀電極沿第二方向Y延伸且沿第一方向X排列。另外,本實施例的第 一電極層10可具有所屬技術領域中具有通常知識者所周知的任一電極圖案結構,故本發明的第一電極層10並不以圖3中所繪者及本文中所揭露的內容為限。 Further, the first electrode layer 10 is adjacent to one side of the light receiving surface SA (see FIG. 2D). In general, to reduce the proportion of the first electrode layer 10 that shields incident light, the first electrode layer 10 is generally designed to have a special pattern including a busbar 12 that traverses the photoelectric conversion layer 20 and a bus electrode. 12 extends a number of very fine finger electrodes (not shown). Further, the bus electrodes 12 extend in the first direction X and are arranged in the second direction Y, and the finger electrodes extend in the second direction Y and are arranged in the first direction X. In addition, the first embodiment An electrode layer 10 can have any electrode pattern structure known to those skilled in the art, so that the first electrode layer 10 of the present invention is not limited to the one depicted in FIG. 3 and disclosed herein. .

第二電極層30鄰近設置於前述非受光面SB(請參照圖2D)的一側。第二電極層30例如為一般所謂的後表面電場(Back Surface Field,BSF)金屬層,用以增加載子的收集以及回收未被吸收的光子。此外,金屬電極40位於第二表面S2上且與第二電極層30電性連接,以匯集第二電極層30所收集的電流。 The second electrode layer 30 is adjacent to one side of the non-light-receiving surface SB (refer to FIG. 2D). The second electrode layer 30 is, for example, a so-called back surface field (BSF) metal layer for increasing the collection of carriers and recovering unabsorbed photons. In addition, the metal electrode 40 is located on the second surface S2 and electrically connected to the second electrode layer 30 to collect the current collected by the second electrode layer 30.

散熱材料層140位於第二表面S2上且覆蓋部分的第二電極層30,及至少曝露出金屬電極40。如上文所描述,散熱材料層140包括上文中所描述的本發明的散熱膠材。換言之,散熱材料層140包括有機高分子材料、碳化矽粉體以及分散劑,其中在散熱材料層140中,有機高分子材料的含量為20重量%至80重量%,碳化矽粉體的含量為20重量%至80重量%,且分散劑的含量為0.1重量%至2重量%。然而,散熱材料層140的形成方法,以及散熱膠材中的各成分的材料與相關描述及其特性及製備方法已於上文中進行詳盡地說明,故於此不再贅述。 The heat dissipation material layer 140 is located on the second surface S2 and covers a portion of the second electrode layer 30, and at least exposes the metal electrode 40. As described above, the heat dissipating material layer 140 includes the heat dissipating gel material of the present invention as described above. In other words, the heat dissipation material layer 140 includes an organic polymer material, a tantalum carbide powder, and a dispersant, wherein the content of the organic polymer material in the heat dissipation material layer 140 is 20% by weight to 80% by weight, and the content of the tantalum carbide powder is 20% by weight to 80% by weight, and the content of the dispersing agent is 0.1% by weight to 2% by weight. However, the method of forming the heat dissipating material layer 140, and the materials and related descriptions of the components in the heat dissipating rubber material, as well as the characteristics and the preparation method thereof, have been described in detail above, and thus will not be described herein.

更詳細地說,如圖3所示,本實施例的散熱材料層140僅覆蓋部分的第二電極層30並非全面性覆蓋第二電極層30,且與金屬電極40之間預留有一空隙G。如此一來,當在製作彼此串聯的多個太陽能電池元件的焊接製程期間,可降低破片的問題,並提升太陽能電池模組100的良率。上述可在太陽能電池模組100 中設置空隙G歸因於本發明的散熱材料層140是透過能夠調變圖案的印刷製程(例如網版印刷)而形成。此外,在網版印刷期間,透過空隙G的設置,可提供製作散熱材料層140的網版(未繪示)與金屬電極40對位時的裕度。如此,在對位上若稍有偏差,亦不易影響太陽能電池模組100的良率。 In more detail, as shown in FIG. 3, the second electrode layer 30 covering only part of the heat dissipation material layer 140 of the present embodiment does not cover the second electrode layer 30 in a comprehensive manner, and a gap G is reserved between the metal electrode 40 and the metal electrode 40. . As a result, during the soldering process of fabricating a plurality of solar cell elements connected in series, the problem of the chipping can be reduced and the yield of the solar cell module 100 can be improved. The above may be in the solar cell module 100 The provision of the gap G is due to the fact that the heat dissipating material layer 140 of the present invention is formed by a printing process capable of modulating the pattern (for example, screen printing). In addition, during screen printing, the provision of the gap G can provide a margin when the screen (not shown) of the heat dissipation material layer 140 is aligned with the metal electrode 40. Thus, if there is a slight deviation in the alignment, the yield of the solar cell module 100 is not easily affected.

以下,將針對前述第一封裝膜120、蓋板130、第二封裝膜150以及背板160與太陽能電池元件110以及散熱材料層140之間的配置進行說明。 Hereinafter, the arrangement between the first package film 120, the cap plate 130, the second package film 150, and the back sheet 160 and the solar cell element 110 and the heat dissipation material layer 140 will be described.

請再次參照圖3,第一封裝膜120位於第一表面S1上且覆蓋光電轉換層20,其中第一電極層10位於第一封裝膜120與光電轉換層20之間。蓋板130位於第一封裝膜120上,且第一封裝膜120位於太陽能電池元件110與蓋板130之間。第二封裝膜150覆蓋散熱材料層140以及第二電極層30,且第二封裝膜150位於散熱材料層140與背板160之間。背板160位於第二封裝膜150上,且散熱材料層140位於太陽能電池元件110與背板160之間。然而,第一封裝膜120、蓋板130、第二封裝膜150以及背板160的材料、功用與相關描述已於上文中進行詳盡地說明,故於此不再贅述。 Referring to FIG. 3 again, the first encapsulation film 120 is located on the first surface S1 and covers the photoelectric conversion layer 20 , wherein the first electrode layer 10 is located between the first encapsulation film 120 and the photoelectric conversion layer 20 . The cover plate 130 is located on the first encapsulation film 120, and the first encapsulation film 120 is located between the solar cell element 110 and the cap plate 130. The second encapsulation film 150 covers the heat dissipation material layer 140 and the second electrode layer 30 , and the second encapsulation film 150 is located between the heat dissipation material layer 140 and the back plate 160 . The back plate 160 is located on the second encapsulation film 150, and the heat dissipation material layer 140 is located between the solar cell element 110 and the back plate 160. However, the materials, functions, and related descriptions of the first encapsulation film 120, the cap plate 130, the second encapsulation film 150, and the back plate 160 have been described in detail above, and thus will not be described herein.

接著,為證實使用了本發明的散熱膠材的太陽能電池模組具有上述良好的散熱效果,以下特舉一個實驗例與一個對照例來說明本發明的散熱膠材對太陽能電池模組之散熱效果的影響。然而,下列實驗例並非用以限制本發明。 Next, in order to confirm that the solar cell module using the heat dissipating adhesive material of the present invention has the above-mentioned good heat dissipating effect, the following is an experimental example and a comparative example to illustrate the heat dissipating effect of the heat dissipating adhesive material of the present invention on the solar cell module. Impact. However, the following experimental examples are not intended to limit the invention.

實驗例Experimental example

在此,使用的太陽能電池模組的結構如圖3所示,其中蓋板130為低鐵玻璃基板;第一封裝膜120的材料為乙烯酯酸乙烯酯;太陽能電池元件110為矽質太陽能電池,其中第一電極層10及金屬電極40的材質為銀,第二電極層30的材質為鋁,且光電轉換層20的結構為PN接面結構;散熱材料層140為藉由使用前述散熱膠材1所形成;第二封裝膜150的材料為乙烯酯酸乙烯酯;以及背板160為聚乙烯對苯二甲酸酯(polyethylene terephthalate,PET)膜。 Here, the structure of the solar cell module used is as shown in FIG. 3, wherein the cover plate 130 is a low-iron glass substrate; the material of the first encapsulation film 120 is vinyl vinyl acrylate; and the solar cell element 110 is a enamel solar cell. The material of the first electrode layer 10 and the metal electrode 40 is silver, the material of the second electrode layer 30 is aluminum, and the structure of the photoelectric conversion layer 20 is a PN junction structure; the heat dissipation material layer 140 is formed by using the aforementioned heat dissipation adhesive. The material 1 is formed; the material of the second encapsulation film 150 is vinyl vinyl acetate; and the back sheet 160 is a polyethylene terephthalate (PET) film.

對照例Control case

在此,所使用的太陽能電池模組與實驗例中所使用的太陽能電池模組相似,其中兩者不同處在於:對照例中所使用的太陽能電池模組不具有散熱材料層。 Here, the solar cell module used is similar to the solar cell module used in the experimental example, wherein the difference between the two is that the solar cell module used in the comparative example does not have a heat dissipating material layer.

模組溫度的量測Module temperature measurement

接著,對實驗例與對照例的太陽能電池模組進行戶外實際的模組溫度量測,且量測結果如圖4所示。 Next, the actual outdoor module temperature measurement was performed on the solar cell modules of the experimental example and the comparative example, and the measurement results are shown in FIG. 4 .

在此,所使用的量測系統以及其參數如下:量測系統:IVT501太陽能電池模組電壓電流曲線量測系統(由AllReal公司製造)(依照國際規範IEC 61215-10.4及IEC 61646-10.4)。 Here, the measurement system used and its parameters are as follows: Measurement system: IVT501 solar cell module voltage and current curve measurement system (manufactured by AllReal) (according to international standards IEC 61215-10.4 and IEC 61646-10.4).

量測時間:總量測時間為12.5小時(從05:30至18:00),取樣的時間間隔為2分鐘。 Measurement time: The total measurement time is 12.5 hours (from 05:30 to 18:00), and the sampling interval is 2 minutes.

圖4為實驗例及對照例之太陽能電池膜組之溫度對時間的曲線圖。如圖4所示,在量測時間大約09:00至15:00的範圍內,實驗例之具有散熱材料層的太陽能電池模組的模組溫度明顯低於對照例之不具有散熱材料層的太陽能電池模組的模組溫度,且對照例之不具有散熱材料層的太陽能電池模組的模組溫度與實驗例之具有散熱材料層的太陽能電池模組的模組溫度的平均溫度的差異約為1.9498799℃。換言之,在相同的環境條件下,與對照例之太陽能電池模組的平均模組溫度相比,實驗例之太陽能電池模組的平均模組溫度降低了大約2℃。 Fig. 4 is a graph showing the temperature versus time of the solar cell membrane group of the experimental examples and the comparative examples. As shown in FIG. 4, in the range of the measurement time of about 09:00 to 15:00, the module temperature of the solar cell module having the heat dissipation material layer of the experimental example is significantly lower than that of the control example without the heat dissipation material layer. The module temperature of the solar cell module, and the difference between the module temperature of the solar cell module having no heat dissipating material layer and the average temperature of the module temperature of the solar cell module having the heat dissipating material layer of the experimental example is about It is 1.9498799 °C. In other words, under the same environmental conditions, the average module temperature of the solar cell module of the experimental example was lowered by about 2 ° C compared with the average module temperature of the solar cell module of the comparative example.

另外,一般而言,太陽能電池模組的溫度係數為:溫度上升1℃則發電效率降低0.45%,亦即-0.45%/1℃。因此,在相同的環境條件下,與對照例之太陽能電池模組相比,實驗例之太陽能電池模組提升了發電效率約0.88%。由此可知,於太陽能電池元件的非受光面上,形成有使用本發明的散熱膠材所形成的散熱材料層的太陽能電池模組確實可以降低模組溫度且提升太陽能電池模組的發電效率。 In addition, in general, the temperature coefficient of the solar cell module is such that when the temperature rises by 1 ° C, the power generation efficiency is reduced by 0.45%, that is, -0.45% / 1 ° C. Therefore, under the same environmental conditions, the solar cell module of the experimental example improved the power generation efficiency by about 0.88% as compared with the solar cell module of the comparative example. From this, it is understood that the solar cell module in which the heat dissipating material layer formed using the heat dissipating rubber material of the present invention is formed on the non-light-receiving surface of the solar cell element can reliably reduce the module temperature and improve the power generation efficiency of the solar cell module.

綜上所述,上述實施例所提出的散熱膠材包括具有熱輻射特性的碳化矽粉體,且透過印刷製程適用於太陽能電池模組中。另外,在本發明的實施例所提出的太陽能電池模組及其製造方法中,使用本發明所提出的散熱膠材透過印刷製程於太陽能電池元件與背板之間形成散熱材料層,藉以提升太陽能電池模組的熱輻射率並有效地將太陽能電池元件所產生的熱排出太陽能電池 模組外,進而使太陽能電池模組具有良好的發電效率。此外,透過印刷製程,可視實際需求來調變散熱材料層的圖案且可提升散熱材料層與太陽能電池元件之間的密著性,因而增加本發明的散熱膠材的應用性。 In summary, the heat-dissipating rubber material proposed in the above embodiments includes a cerium carbide powder having heat radiation characteristics, and is suitable for use in a solar battery module through a printing process. In addition, in the solar cell module and the manufacturing method thereof according to the embodiments of the present invention, the heat dissipating adhesive material proposed by the present invention is used to form a heat dissipating material layer between the solar cell element and the back plate through a printing process, thereby improving solar energy. The heat radiation rate of the battery module and effectively discharges the heat generated by the solar battery element to the solar battery In addition to the module, the solar cell module has good power generation efficiency. In addition, through the printing process, the pattern of the heat dissipating material layer can be modulated according to actual needs and the adhesion between the heat dissipating material layer and the solar cell element can be improved, thereby increasing the applicability of the heat dissipating rubber material of the present invention.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

S10~S40‧‧‧步驟 S10~S40‧‧‧Steps

Claims (6)

一種散熱膠材,其適用於太陽能電池模組,該散熱膠材包括:一有機高分子材料溶液,包括一有機高分子材料及一溶劑,其中該有機高分子材料溶液的固含量為5重量%至80重量%;一碳化矽粉體;以及一分散劑,用以使該碳化矽粉體分散於該有機高分子材料溶液中,其中在該散熱膠材中,該有機高分子材料溶液的含量為20重量%至80重量%,該碳化矽粉體的含量為20重量%至80重量%,該分散劑的含量為0.1重量%至2重量%。 A heat dissipating adhesive material, which is suitable for a solar cell module, the heat dissipating adhesive material comprises: an organic polymer material solution, comprising an organic polymer material and a solvent, wherein the solid polymer material solution has a solid content of 5% by weight Up to 80% by weight; a niobium carbide powder; and a dispersing agent for dispersing the niobium carbide powder in the organic polymer material solution, wherein the content of the organic polymer material solution in the heat dissipating rubber material The content of the niobium carbide powder is from 20% by weight to 80% by weight, and the content of the dispersing agent is from 0.1% by weight to 2% by weight, based on 20% by weight to 80% by weight. 如申請專利範圍第1項所述的散熱膠材,其中該有機高分子材料選自由環氧樹脂、醇酸樹脂、丙稀酸樹脂、聚氨酯樹脂、酚醛樹脂、氯乙烯-醋酸乙烯共聚樹脂及其組合所組成的族群。 The heat-dissipating adhesive material according to claim 1, wherein the organic polymer material is selected from the group consisting of an epoxy resin, an alkyd resin, an acrylic resin, a polyurethane resin, a phenol resin, a vinyl chloride-vinyl acetate copolymer resin, and The group consisting of the combinations. 如申請專利範圍第1項所述的散熱膠材,其中該溶劑選自由芳烴類溶劑、醇類溶劑、酮類溶劑、酯類溶劑、醇醚類溶劑及其組合所組成的族群。 The heat-dissipating adhesive material according to claim 1, wherein the solvent is selected from the group consisting of an aromatic hydrocarbon solvent, an alcohol solvent, a ketone solvent, an ester solvent, an alcohol ether solvent, and a combination thereof. 如申請專利範圍第1項所述的散熱膠材,其中該碳化矽粉體的粒徑為100 nm至50 μm。 The heat dissipating rubber material according to claim 1, wherein the niobium carbide powder has a particle diameter of 100 nm to 50 μm. 如申請專利範圍第1項所述的散熱膠材,更包括一奈米級添加材料,且在該散熱膠材中,該奈米級添加材料的含量為1重量%至5重量%。 The heat-dissipating adhesive material according to claim 1, further comprising a nano-scale additive material, wherein the nano-scale additive material is contained in an amount of from 1% by weight to 5% by weight. 如申請專利範圍第1項所述的散熱膠材,更包括一添加劑,且在該散熱膠材中,該添加劑的含量為0.1重量%至2重量%。 The heat-dissipating adhesive material according to claim 1, further comprising an additive, and in the heat-dissipating rubber, the additive is contained in an amount of 0.1% by weight to 2% by weight.
TW102116934A 2013-05-13 2013-05-13 Heat-dissipation gel material TWI484025B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102116934A TWI484025B (en) 2013-05-13 2013-05-13 Heat-dissipation gel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102116934A TWI484025B (en) 2013-05-13 2013-05-13 Heat-dissipation gel material

Publications (2)

Publication Number Publication Date
TW201443215A true TW201443215A (en) 2014-11-16
TWI484025B TWI484025B (en) 2015-05-11

Family

ID=52423244

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102116934A TWI484025B (en) 2013-05-13 2013-05-13 Heat-dissipation gel material

Country Status (1)

Country Link
TW (1) TWI484025B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394000A (en) * 2020-05-07 2020-07-10 东莞市星勤胶粘制品有限公司 Heat dissipation type conductive double-sided adhesive tape and production process thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320024B1 (en) * 2011-05-17 2013-10-22 율촌화학 주식회사 Back sheet for solar cell module and solar cell module comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394000A (en) * 2020-05-07 2020-07-10 东莞市星勤胶粘制品有限公司 Heat dissipation type conductive double-sided adhesive tape and production process thereof

Also Published As

Publication number Publication date
TWI484025B (en) 2015-05-11

Similar Documents

Publication Publication Date Title
US10593438B2 (en) Solar cell front side silver paste doped with modified graphene and preparation method thereof
CN103703567B (en) Solar cell, solar cell manufacturing method, and solar cell module
TWI576861B (en) Conductive aluminum pastes and the fabrication method thereof, the solar cell and the module thereof
JP5695283B1 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
CN106935674B (en) A kind of SiGeSn solar cell photovoltaics component
CN103582916B (en) For silver paste composition forming electrode and preparation method thereof
CN104637568A (en) Aluminum paste for all-aluminum back surface field crystalline silicon solar cell and preparation method thereof
CN206098402U (en) Heterojunction solar cell and module thereof
CN106683744A (en) Low-temperature sintering solar-cell back-electrode silver slurry
CN203423207U (en) Solar cell module
CN102483968A (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
CN101968975B (en) Aluminum paste composition and solar cell module using same
TWI484025B (en) Heat-dissipation gel material
CN111128437B (en) Lead-free aluminum conductive paste for crystalline silicon solar PERC double-sided battery and preparation method thereof
CN103745765A (en) High-adhesion low-warpage crystalline silicon cell back side aluminum slurry
TWM446974U (en) Solar cell module
CN102903418A (en) Conductive composition
CN108285277A (en) A kind of preparation method of solar photovoltaic assembly glass surface laminated film
CN111326273A (en) Low-temperature transparent conductive silver paste for solar cell and application thereof
TWI482305B (en) Solar cell module, manufacturing method thereof, method for enhancing thermal dissipation of solar cell device and thermal enhanced solar cell device
CN206931606U (en) P-type PERC double-sided solar batteries and its component, system
JP2012104802A (en) Solar cell and manufacturing method for the same
CN206628482U (en) P-type PERC double-sided solar batteries and its component, system
KR20210151544A (en) Solar cell with improved stability against moisture and long-term stability
CN103426938B (en) Silicon nano material solar cell of a kind of new structure and preparation method thereof