TW201441744A - Method of improving blur displayed by liquid crystal display and liquid crystal device thereof and liquid crystal composition - Google Patents

Method of improving blur displayed by liquid crystal display and liquid crystal device thereof and liquid crystal composition Download PDF

Info

Publication number
TW201441744A
TW201441744A TW102113506A TW102113506A TW201441744A TW 201441744 A TW201441744 A TW 201441744A TW 102113506 A TW102113506 A TW 102113506A TW 102113506 A TW102113506 A TW 102113506A TW 201441744 A TW201441744 A TW 201441744A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
cerium oxide
substrate
formulation
nanoparticles
Prior art date
Application number
TW102113506A
Other languages
Chinese (zh)
Other versions
TWI525374B (en
Inventor
Chi-Yen Huang
Chia-Ting Hsieh
shu-wei Liao
Original Assignee
Univ Nat Changhua Education
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Changhua Education filed Critical Univ Nat Changhua Education
Priority to TW102113506A priority Critical patent/TWI525374B/en
Publication of TW201441744A publication Critical patent/TW201441744A/en
Application granted granted Critical
Publication of TWI525374B publication Critical patent/TWI525374B/en

Links

Abstract

A method of improving blur displayed by liquid crystal display and its liquid crystal device and liquid crystal composition is disclosed. The liquid crystal composition comprises a liquid crystal composition taken as the host and silicon dioxide nanometer particles taken as the dopant, wherein the average diameter of the silicon dioxide nanometer particles is smaller than or equals to 100nm. By utilizing the liquid crystal device made of the foregoing liquid crystal compound, this invention significantly reduces ionic charges within the liquid crystal composition after processing with alternating current high voltage, thereby improves the problem of blur displayed by the liquid crystal display.

Description

改善液晶顯示器顯示殘影之方法及其液晶裝置與液晶複 合物 Method for improving residual image of liquid crystal display and liquid crystal device and liquid crystal complex Compound

本發明係與液晶顯示方法有關,尤指一種改善液晶顯示器顯示殘影之方法及其液晶裝置與液晶複合物。 The invention relates to a liquid crystal display method, in particular to a method for improving the residual image of a liquid crystal display, and a liquid crystal device and a liquid crystal composite.

按,薄膜電晶體液晶顯示器(TFT-LCD)目前在顯示器應用中,不論是尺寸、解析度、使用壽命、對比度、視角、響應時間及耗電量,已達到符合一般大眾之需求,故TFT-LCD成為目前顯示器市場之主流。有鑑於此,現今對於液晶顯示器之研究與開發,研發具備更佳的顯示品質之液晶顯示器為重要的議題。其中,為克服液晶材料之離子效應所導致之畫面殘影及烙印問題,設法降低液晶材料之離子濃度乃極為重要的研究。 According to the thin film transistor liquid crystal display (TFT-LCD), in the display application, regardless of size, resolution, service life, contrast, viewing angle, response time and power consumption, has reached the needs of the general public, so TFT- LCD has become the mainstream of the current display market. In view of this, it is an important issue for the research and development of liquid crystal displays to develop liquid crystal displays with better display quality. Among them, in order to overcome the image sticking and branding problems caused by the ion effect of the liquid crystal material, it is extremely important to try to reduce the ion concentration of the liquid crystal material.

液晶顯示器中顯示殘影主要形成原因乃在於液晶面板中帶有 目前解決顯示殘影之技術主要採驅動電路控制方式[3],或採取改善配向膜對離子電荷之吸附及脫離特性[4]來達到。惟,前述兩種技術雖可達到降低顯示殘影,但仍無法針對問題根源著手,即對存在於液晶層之離子電荷進行改善。 中原大學李偉教授提出利用摻有短碳奈米管之液晶主體(Host),可降低液晶主體中離子電荷[5]。但碳奈米管之長成困難,且需藉由強烈的剪應力(Shear Stress)攪拌以縮短碳奈米管長度,導致原料製成不易。 The main reason for the display of the afterimage in the liquid crystal display is that it is provided in the liquid crystal panel. At present, the technology for displaying image sticking is mainly adopted by the driving circuit control method [3], or by improving the adsorption and detachment characteristics of the aligning film to the ion charge [4]. However, although the above two techniques can achieve the reduction of display afterimage, it is still unable to address the root cause of the problem, that is, to improve the ionic charge existing in the liquid crystal layer. Professor Li Wei of Zhongyuan University proposed to reduce the ionic charge in the liquid crystal body by using a liquid crystal host (Host) doped with a short carbon nanotube [5]. However, the length of the carbon nanotubes is difficult, and it is necessary to shorten the length of the carbon nanotubes by a strong Shear Stress, which makes the raw materials difficult to manufacture.

相關先前技術: Related prior art:

K.H.Yang,Kenichi Tajima,Atsushi Takenaka and Hideo Takano,“Charge Trapping Properties of uv-Exposed Polyimide Films for the Alignment of Liquid Crystals.”Jpn.J.Appl.Phys.35,L561-L563(1996).Yasuharu Tanaka,Yoko Goto and Yasufumi Iimura,“Mechanism of DC Offset Voltage Generation in Hybrid-Aligned Nematic Liquid Crystal Displays.”Jpn.J.Appl.Phys.38,L1115-L1117(1999).廖培鈞,張庭瑞,劉品妙,廖乾煌,陳予潔,“改善液晶顯示器線性殘影之方法”,ROC Patent No.I382391(September 1,2009).張立心,林冠銘,賴銘智,“液晶配向劑”,ROC Patent No.201241088(October 16,2012).李偉,陳惠玉,克拉克 諾葳爾 安東尼,“具有快速光電反應特性之液晶複合物與裝置”,ROC Patent No.200838991(October 1,2008).O.Pishnyak,S.Tang,J.Kelly,S.Shiyanovskii,and O.Lavrentovich,Phys.Rev.Lett.99,127802(2007). KHYang, Kenichi Tajima, Atsushi Takenaka and Hideo Takano, "Charge Trapping Properties of uv-Exposed Polyimide Films for the Alignment of Liquid Crystals." Jpn. J. Appl. Phys. 35, L561-L563 (1996). Yasuharu Tanaka, Yoko Goto and Yasufumi Iimura, "Mechanism of DC Offset Voltage Generation in Hybrid-Aligned Nematic Liquid Crystal Displays." Jpn. J. Appl. Phys. 38, L1115-L1117 (1999). Liao Peiyu, Zhang Tingrui, Liu Pinmiao, Liao Ganhuang, Chen Yujie, “Methods for Improving Linear Image Residual of Liquid Crystal Display”, ROC Patent No. I382391 (September 1, 2009). Zhang Lixin, Lin Guanming, Lai Mingzhi, “Liquid Crystal Alignment Agent”, ROC Patent No. 201241088 (October 16, 2012). Li Wei, Chen Huiyu, Clarke Muir Anthony, "Liquid Crystal Composites and Devices with Fast Photoelectric Response Characteristics", ROC Patent No. 200838991 (October 1, 2008). O. Pishnyak, S. Tang, J. Kelly, S .Shiyanovskii, and O. Lavrentovich, Phys. Rev. Lett. 99, 127802 (2007).

本發明之主要目的,在於提供一種改善液晶顯示器顯示殘影之方法及其液晶裝置與液晶複合物,其具有可有效改善液晶顯示器顯示殘影之功效。 The main object of the present invention is to provide a method for improving the residual image of a liquid crystal display, and a liquid crystal device and a liquid crystal composite thereof, which have the effects of effectively improving the residual image of the liquid crystal display.

為達前述目的,本發明提供一種改善液晶顯示器顯示殘影之方法及其液晶裝置與液晶複合物,包含有:一液晶配方(composition),該液晶配方係做為主體(host);以及複數個二氧化矽奈米粒子,該二氧化矽奈米粒子分散摻雜於該液晶配方中,其中該二氧化矽奈米粒子之摻雜濃度係介於0.01-0.9wt%之間,且該二氧化矽奈米粒子之平均長度係小於或等於100奈米。 In order to achieve the foregoing object, the present invention provides a method for improving the display of residual image of a liquid crystal display, and a liquid crystal device and a liquid crystal composite thereof, comprising: a liquid crystal formulation which is used as a host; and a plurality of a cerium oxide nanoparticle dispersed in the liquid crystal formulation, wherein the cerium oxide nanoparticle has a doping concentration of between 0.01 and 0.9 wt%, and the oxidizing The average length of the nanoparticles is less than or equal to 100 nanometers.

較佳地,該液晶配方主體為向列相液晶E7,而該二氧化矽奈米粒子係為AEROSIL R812。 Preferably, the liquid crystal formulation body is a nematic liquid crystal E7, and the cerium oxide nanoparticle system is AEROSIL R812.

再者,本發明亦提供一種液晶裝置,其包含有:由一第一基板、一第二基板、一第一電極、一第二電極、一第一配向膜、一第二配向膜所組成之液晶盒,及一注入於該液晶盒中以形成液晶層之液晶複合物,而該液晶複合物包含有一液晶配方做為主體,以及複數個分散摻雜於該液晶配方中之二氧化矽奈米粒子,其中該二氧化矽奈米粒子之摻雜濃度係介於0.01-0.9wt%之間,且該二氧化矽奈米粒子之平均長度係小於或等於100奈米。 Furthermore, the present invention also provides a liquid crystal device comprising: a first substrate, a second substrate, a first electrode, a second electrode, a first alignment film, and a second alignment film. a liquid crystal cell, and a liquid crystal composite injected into the liquid crystal cell to form a liquid crystal layer, wherein the liquid crystal composite comprises a liquid crystal formulation as a main body, and a plurality of cerium oxide nanoparticles dispersed in the liquid crystal formulation The particles, wherein the doping concentration of the cerium oxide nanoparticles is between 0.01 and 0.9 wt%, and the average length of the cerium dioxide nanoparticles is less than or equal to 100 nm.

另,本發明依據上述所之液晶裝置更提供亦一種改善液 晶顯示器顯示殘影之方法,該方法為:對該液晶層施予一介於20~50V,60Hz~1kHz間之交流高壓,令該第一基板、第二基板附近的液晶導軸分佈畸變,以將該二氧化矽奈米粒子推向該第一基板與該第二基板,且該二氧化矽奈米粒子移動過程中,可吸附該液晶層中之雜質離子。 In addition, the present invention further provides an improvement liquid according to the above liquid crystal device. The method for displaying a residual image by a crystal display is: applying an alternating high voltage between 20~50V and 60Hz~1kHz to the liquid crystal layer, so that the distribution of the liquid crystal guide axis near the first substrate and the second substrate is distorted, The cerium oxide nanoparticle is pushed toward the first substrate and the second substrate, and during the movement of the cerium oxide nanoparticle, impurity ions in the liquid crystal layer can be adsorbed.

而本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入了解。 The above objects and advantages of the present invention will be readily understood from the following detailed description of the embodiments of the invention.

111‧‧‧第一基板 111‧‧‧First substrate

112‧‧‧第二基板 112‧‧‧second substrate

121‧‧‧第一電極 121‧‧‧First electrode

122‧‧‧第二電極 122‧‧‧second electrode

131‧‧‧第一配向膜 131‧‧‧First alignment film

132‧‧‧第二配向膜 132‧‧‧Second alignment film

1‧‧‧液晶分子 1‧‧‧liquid crystal molecules

2‧‧‧離子電荷 2‧‧‧Ion charge

3‧‧‧二氧化矽奈米粒子 3‧‧‧2O2 nanoparticles

5‧‧‧交流高壓 5‧‧‧AC high voltage

第1圖係本發明之液晶材料配置示意圖。 Fig. 1 is a schematic view showing the configuration of a liquid crystal material of the present invention.

第2圖係本發明之二氧化矽奈米粒子的摻雜濃度與離子電荷密度關係圖。 Fig. 2 is a graph showing the relationship between the doping concentration and the ion charge density of the cerium oxide nanoparticles of the present invention.

第3圖係本發明針對未摻雜(pure E7)與摻雜0.3wt%二氧化矽奈米粒子液晶盒之光電特性比較圖。 Figure 3 is a graph comparing the photoelectric characteristics of the undoped (pure E7) and doped 0.3 wt% cerium oxide nanoparticle liquid crystal cell.

第4圖係本發明針對摻雜0.3wt%二氧化矽奈米粒子液晶盒進行未以交流高壓處理及經交流高壓處理之光電特性比較圖。 Fig. 4 is a comparison diagram of photoelectric characteristics of the present invention for the doping of a 0.3 wt% cerium oxide nanoparticle liquid crystal cell without AC high pressure treatment and alternating high voltage treatment.

本發明提供一種改善液晶顯示器顯示殘影之方法,主要係利用添加有適量的二氧化矽(Silica)奈米粒子(Nanoparticle)之液晶複合物於液晶中,並藉由施予一交流高壓(ACHV),將二氧化矽奈米粒子推向兩側基板,以吸附液晶中多數離子雜質,而液晶中的離子雜質經二氧化矽奈米 粒子吸附後,並隨二氧化矽奈米粒子固定於兩側基板,成為非自由離子,即無法於面板中產生離子效應,而可有效解決液晶顯示器中顯示殘影問題。 The invention provides a method for improving the residual image of a liquid crystal display, mainly by using a liquid crystal composite with an appropriate amount of silica (Silica) nanoparticles in a liquid crystal, and by applying an alternating high voltage (ACHV). ), the cerium oxide nano particles are pushed to the two sides of the substrate to adsorb most of the ionic impurities in the liquid crystal, and the ionic impurities in the liquid crystal are passed through the cerium oxide nanometer After the particles are adsorbed, and the ruthenium dioxide nanoparticles are fixed on the two sides of the substrate, they become non-free ions, that is, the ion effect cannot be generated in the panel, and the residual image problem in the liquid crystal display can be effectively solved.

而本發明上述之液晶複合物,主要包含有:一液晶配方(composition),該液晶配方係做為主體(host);以及複數個二氧化矽奈米粒子,該二氧化矽奈米粒子分散摻雜於該液晶配方中,其中該二氧化矽奈米粒子之摻雜濃度係介於0.01-0.9wt%之間,且該二氧化矽奈米粒子之平均長度係小於或等於100奈米。 The liquid crystal composite of the present invention mainly comprises: a liquid crystal formulation, the liquid crystal formulation is used as a host; and a plurality of cerium oxide nanoparticles, the cerium dioxide nanoparticles are dispersed and mixed. The liquid crystal formulation is mixed, wherein the doping concentration of the cerium oxide nano particles is between 0.01 and 0.9 wt%, and the average length of the cerium dioxide nanoparticles is less than or equal to 100 nm.

請參照第1圖,第1圖為本發明所提出之改善液晶顯示器顯示殘影之液晶材料的配置方法。 Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a method for arranging liquid crystal materials for improving the residual image of a liquid crystal display according to the present invention.

傳統液晶盒主要由第一基板111與第二基板112對組而成。兩基板內側皆鍍有銦錫氧化物(Indium Tin Oxide,ITO)作為透明電極,分別為第一電極121及第二電極122。為控制液晶盒內液晶分子1初始排列狀態,亦會在液晶層與基板間鍍上配向膜,分別為第一配向膜131及第二配向膜132。液晶盒之第一基板111與第二基板112為保持相等間距,通常會使用固定大小之間隙子(Spacer)撐開兩基板,加以框膠固定後,形成液晶空盒,即可待注入液晶材料。 The conventional liquid crystal cell is mainly composed of a pair of the first substrate 111 and the second substrate 112. The inside of both substrates is plated with Indium Tin Oxide (ITO) as a transparent electrode, and is a first electrode 121 and a second electrode 122, respectively. In order to control the initial alignment state of the liquid crystal molecules 1 in the liquid crystal cell, an alignment film is also plated between the liquid crystal layer and the substrate, which are the first alignment film 131 and the second alignment film 132, respectively. The first substrate 111 and the second substrate 112 of the liquid crystal cell are kept at equal intervals. Usually, a fixed size spacer is used to open the two substrates, and after the frame glue is fixed, a liquid crystal empty box is formed, and the liquid crystal material can be injected. .

本發明則是於液晶材料注入液晶空盒前先摻雜特定濃度之二氧化矽奈米粒子(約0.01wt%~0.9wt%),並加以混和,使其均勻散佈於液晶材料中以構成本發明之液晶複合物。 完成摻雜後,即可將摻有二氧化矽奈米粒子之液晶複合物注入液晶空盒中,形成液晶層。 In the invention, the liquid crystal material is doped with a specific concentration of cerium oxide nano particles (about 0.01% by weight to 0.9% by weight) before being injected into the liquid crystal empty box, and is mixed and uniformly dispersed in the liquid crystal material to constitute the present invention. Inventive liquid crystal composite. After the doping is completed, the liquid crystal composite doped with the cerium oxide nano particles can be injected into the liquid crystal empty box to form a liquid crystal layer.

傳統液晶盒常有離子電荷污染的情形,這些離子電荷主要來自於液晶材料或配向膜材料本身。而對配向膜進行摩擦配向的過程中,亦容易因摩擦產生離子電荷(雜質離子)。液晶材料注入液晶盒後,離子電荷通常會被釋放至液晶層中,並在顯示器操作過程中,受外加電場驅使而自由移動,並導致場屏蔽效應(filed-screening effect),而影響液晶層實際感受之電場大小,造成顯示器中顯示的問題。 Conventional liquid crystal cells often have ionic charge contamination, and these ionic charges are mainly derived from the liquid crystal material or the alignment film material itself. In the process of frictionally aligning the alignment film, it is also easy to generate ionic charges (impurity ions) due to friction. After the liquid crystal material is injected into the liquid crystal cell, the ion charge is usually released into the liquid crystal layer, and is freely moved by the applied electric field during the operation of the display, and causes a filed-screening effect, which affects the actual liquid crystal layer. Feel the size of the electric field, causing problems in the display.

而本發明將二氧化矽奈米粒子3摻雜於液晶配方主體中,二氧化矽奈米粒子3即可局部吸附(local adsorption)周邊離子電荷2,如圖1(a)所示。再藉由對該液晶層施予交流高壓5(Alternating Current High Voltage,ACHV),令該第一、第二基板111、112附近的液晶導軸分佈畸變(Distortion),產生前揭相關先前技術[6]之抬生作用力(Lifting Force),而可將二氧化矽奈米粒子3推向兩側之第一、第二基板111、112。且在二氧化矽奈米粒子3往兩側之第一、第二基板111、112移動過程中,將更有效吸附液晶材料中多數雜質離子,如圖1(b)所示。 In the present invention, the cerium oxide nanoparticle 3 is doped into the liquid crystal formulation body, and the cerium oxide nanoparticle 3 can locally adsorb the peripheral ionic charge 2, as shown in FIG. 1(a). Further, by applying an alternating current high voltage (ACHV) to the liquid crystal layer, the distribution of the liquid crystal guide axis in the vicinity of the first and second substrates 111 and 112 is distorted, resulting in the related prior art [ 6] Lifting Force, and the cerium oxide nanoparticle 3 can be pushed to the first and second substrates 111, 112 on both sides. Moreover, during the movement of the first and second substrates 111 and 112 on both sides of the cerium oxide nanoparticle 3, most impurity ions in the liquid crystal material are more effectively adsorbed, as shown in FIG. 1(b).

以下,茲以一較佳實施例詳細說明本發明,但並不以該實施例而限定地解釋本發明。 In the following, the invention will be described in detail with reference to a preferred embodiment, but the invention is not limited by this embodiment.

本發明實施例使用粒徑大小為7nm之二氧化矽奈米粒子 (AEROSIL R812),摻雜濃度分別為0.1wt%、0.2wt%、0.3wt%、0.6wt%及0.9wt%,並將其摻雜於液晶配方主體中。本實施例使用之液晶配方主體為常見之向列相液晶E7(△n=0.2255,△ε=+14.1),液晶盒間隙為5.7μm。 In the embodiment of the present invention, cerium oxide nanoparticles (AEROSIL R812) having a particle size of 7 nm are used, and the doping concentrations are 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.6 wt%, and 0.9 wt%, respectively. Doped in the liquid crystal formulation body. The liquid crystal formulation body used in this embodiment is a common nematic liquid crystal E7 (Δn = 0.2255, Δ ε = +14.1), and the cell gap is 5.7 μm.

液晶複合物注入液晶盒後,進一步以本發明所提出之交流高壓(ACHV)處理,使二氧化矽奈米粒子受液晶導軸分佈畸變所產生之抬生作用力而往兩側基板移動,並藉以吸附液晶材料中多數雜質離子。其中,該交流高壓(ACHV)處理之交流電壓可為20~50V,60Hz~1kHz,而本實施例中,交流高壓處理為施予40V,1kHz之方波,施予時間為90秒。 After the liquid crystal composite is injected into the liquid crystal cell, the alternating high pressure (ACHV) treatment proposed by the present invention further moves the cerium oxide nano particles to the substrate on both sides by the lifting force generated by the distortion of the liquid crystal guide axis distribution, and Thereby adsorbing most impurity ions in the liquid crystal material. The AC voltage of the AC high voltage (ACHV) process may be 20 to 50 V, 60 Hz to 1 kHz. In the embodiment, the AC high voltage process is a square wave of 40 V, 1 kHz, and the application time is 90 seconds.

本實施例使用Uemura等人所發展之介電頻譜法來量測液晶盒中的離子電荷密度。在分析離子對高分子材料的影響時,離子電荷對高分子材料之介電常數實部及介電常數虛部的關係為: This example uses the dielectric spectrum method developed by Uemura et al. to measure the ionic charge density in a liquid crystal cell. When analyzing the influence of ions on polymer materials, the relationship between the ionic charge and the real part of the dielectric constant of the polymer material and the imaginary part of the dielectric constant are:

其中,ε’為介電常數實部,ε’’為介電常數虛部,ε 0為真空中介電常數,n為離子濃度,D為離子的擴散常數,q為基本電荷量,k為波茲曼常數,d為液晶層厚度,T為絕對溫度,f為電場頻率。 Where ε ' is the real part of the dielectric constant, ε '' is the imaginary part of the dielectric constant, ε 0 is the vacuum dielectric constant, n is the ion concentration, D is the diffusion constant of the ion, q is the basic charge, and k is the wave The Zimmer constant, d is the thickness of the liquid crystal layer, T is the absolute temperature, and f is the electric field frequency.

根據上述理論模型,可藉由量測液晶盒中液晶複合物之 介電常數實部及虛部,進一步計算而得液晶複合物所含之離子電荷密度。 According to the above theoretical model, the liquid crystal composite in the liquid crystal cell can be measured The real and imaginary parts of the dielectric constant are further calculated to obtain the ionic charge density of the liquid crystal composite.

第2圖為本實施例所量測之二氧化矽奈米粒子的摻雜濃度與離子電荷密度關係圖。其中,空心圖標◇為僅摻雜二氧化矽奈米粒子但未以交流高壓(ACHV)處理之液晶盒離子電荷密度。由圖中可以發現,離子電荷密度已明顯因摻雜二氧化矽奈米粒子而下降,此乃因二氧化矽奈米粒子局部吸附周邊離子電荷所致。圖中亦可發現,未以交流高壓處理之離子電荷密度會在摻雜濃度高於0.3wt%後上升,此乃二氧化矽奈米粒子之摻雜過程中,因摻雜濃度較高而發生粒子群聚之現象,較無法均勻分布於液晶主體中,導致局部吸附周邊離子電荷能力受限。第2圖中實心圖標■為摻雜二氧化矽奈米粒子並以交流高壓(ACHV)處理之液晶盒離子電荷密度。由圖中可以明顯注意到經交流高壓處理之離子電荷密度可大幅降低,其離子電荷密度約僅有未摻雜二氧化矽奈米粒子之2%。於實施例中,0.3wt%則被選為於E7液晶中二氧化矽奈米粒子的最佳摻雜濃度。 Fig. 2 is a graph showing the relationship between the doping concentration and the ion charge density of the cerium oxide nanoparticles measured in the present example. Among them, the hollow icon ◇ is a liquid crystal cell ionic charge density which is only doped with cerium oxide nanoparticles but not treated with alternating high voltage (ACHV). It can be seen from the figure that the ionic charge density has been significantly decreased by doping the cerium oxide nanoparticle, which is caused by the local adsorption of the peripheral ionic charge by the cerium oxide nanoparticle. It can also be seen that the ionic charge density which is not treated by AC high pressure will increase after the doping concentration is higher than 0.3wt%, which is caused by the higher doping concentration in the doping process of cerium oxide nanoparticles. The phenomenon of particle clustering is less able to be evenly distributed in the liquid crystal host, resulting in limited local adsorption of peripheral ion charge. The solid icon in Figure 2 is the ionic charge density of the liquid crystal cell doped with cerium oxide nanoparticles and treated with alternating high voltage (ACHV). It can be clearly seen from the figure that the ionic charge density of the AC high pressure treatment can be greatly reduced, and the ionic charge density is about 2% of that of the undoped cerium oxide nanoparticles. In the examples, 0.3 wt% was selected as the optimum doping concentration of the cerium oxide nanoparticles in the E7 liquid crystal.

為證實摻雜二氧化矽奈米粒子並局部吸附周邊離子電荷,可降低離子電荷密度,並影響其光電特性之表現。首先針對未摻雜(pure E7)與摻雜0.3wt%二氧化矽奈米粒子(僅摻雜,未以交流高壓處理)之液晶盒進行光電量測。光電量測方式為對液晶盒施予直流(DC)電壓,量測液晶盒前後貼附穿透軸相互正交之偏振片(Polarizer)下之穿透率,並觀察穿 透率隨時間變化之情況,其結果如第3圖所示。由第3圖可以發現,摻雜0.3wt%二氧化矽奈米粒子之液晶盒的穿透率隨時間變化較為平緩,此乃因其離子電荷密度降低,所產生的場遮蔽現象較為輕微所致。 In order to confirm the doping of cerium oxide nanoparticles and locally adsorb the peripheral ionic charge, the ionic charge density can be reduced and the photoelectric properties can be affected. Photoelectric measurements were first performed on liquid crystal cells that were undoped (pure E7) and doped with 0.3 wt% cerium oxide nanoparticles (doped only, not treated with alternating high voltage). The photo-electricity measurement method is to apply a direct current (DC) voltage to the liquid crystal cell, and measure the transmittance of the liquid crystal cell before and after the polarizer (Polarizer) perpendicular to the transmission axis, and observe the wear. The transmittance changes with time, and the result is shown in Fig. 3. It can be found from Fig. 3 that the transmittance of the liquid crystal cell doped with 0.3 wt% of cerium oxide nanoparticles is relatively gentle with time, because the ionic charge density is lowered, and the field occlusion phenomenon is relatively slight. .

再來為證實已摻雜二氧化矽奈米粒子之液晶盒,經交流高壓(ACHV)處理後,可大幅降低離子電荷密度,並得到良好的光電特性表現。針對摻雜0.3wt%二氧化矽奈米粒子液晶盒進行未以交流高壓處理及經交流高壓處理之光電特性比較,量測方式與前述量測方式相同,其結果如第4圖所示。由第4圖可以發現,摻雜二氧化矽奈米粒子並經交流高壓處理後,其穿透率幾乎不隨時間改變,代表其中未被二氧化矽奈米粒子吸附之殘餘的離子電荷,所產生的輕微的場遮蔽效應已無法影響液晶盒之光電特性。由此,亦證實本發明所提出之液晶複合物與改善液晶顯示器顯示殘影之方法,確實可有效改善液晶顯示器顯示殘影問題。 In order to confirm the liquid crystal cell doped with cerium oxide nanoparticles, the ionic charge density can be greatly reduced after AC high pressure (ACHV) treatment, and good photoelectric characteristics are obtained. The photoelectric properties of the doped 0.3 wt% cerium oxide nanoparticle liquid crystal cell were not compared with the AC high voltage treatment and the AC high voltage treatment. The measurement method was the same as the above measurement method, and the results are shown in Fig. 4. It can be found from Fig. 4 that after the doped cerium oxide nanoparticles are treated by alternating high pressure, the penetration rate hardly changes with time, representing the residual ionic charge which is not adsorbed by the cerium oxide nanoparticles. The slight field shadowing effect produced has not affected the photoelectric characteristics of the liquid crystal cell. Therefore, it has also been confirmed that the liquid crystal composite proposed by the present invention and the method for improving the residual image of the liquid crystal display can effectively improve the image sticking problem of the liquid crystal display.

再者,本發明於上揭實施例中所使用之二氧化矽奈米粒子係以AEROSIL R812為例,此材料目前已廣泛運用工業界(油漆、密封劑、塗料、化妝品…等),因此更可具有原料成本便宜之優點,而可大幅提升本發明之市場競爭性。 Furthermore, the cerium oxide nanoparticle used in the above embodiments of the present invention is exemplified by AEROSIL R812, which has been widely used in the industry (paints, sealants, coatings, cosmetics, etc.), and thus It can have the advantage that the raw material cost is cheap, and the market competitiveness of the present invention can be greatly improved.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been described above with reference to the preferred embodiments thereof, and is not intended to limit the scope of the present invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

111‧‧‧第一基板 111‧‧‧First substrate

112‧‧‧第二基板 112‧‧‧second substrate

121‧‧‧第一電極 121‧‧‧First electrode

122‧‧‧第二電極 122‧‧‧second electrode

131‧‧‧第一配向膜 131‧‧‧First alignment film

132‧‧‧第二配向膜 132‧‧‧Second alignment film

1‧‧‧液晶分子 1‧‧‧liquid crystal molecules

2‧‧‧離子電荷 2‧‧‧Ion charge

3‧‧‧二氧化矽奈米粒子 3‧‧‧2O2 nanoparticles

5‧‧‧交流高壓 5‧‧‧AC high voltage

Claims (10)

一種液晶複合物,其包含有:一液晶配方(composition),該液晶配方係做為主體(host);以及複數個二氧化矽奈米粒子,該二氧化矽奈米粒子分散摻雜於該液晶配方中,其中該二氧化矽奈米粒子之摻雜濃度係介於0.01-0.9wt%之間,且該二氧化矽奈米粒子之平均長度係小於或等於100奈米。 A liquid crystal composite comprising: a liquid crystal formulation as a host; and a plurality of cerium oxide nanoparticles, the cerium dioxide nanoparticles being dispersedly doped in the liquid crystal In the formulation, the doping concentration of the cerium oxide nanoparticles is between 0.01 and 0.9 wt%, and the average length of the cerium oxide nanoparticles is less than or equal to 100 nm. 如申請專利範圍第1項所述之液晶複合物,其中,該液晶配方主體係為E7。 The liquid crystal composite according to claim 1, wherein the liquid crystal formulation main system is E7. 如申請專利範圍第2項所述之液晶複合物,其中,該二氧化矽奈米粒子係為AEROSIL R812。 The liquid crystal composite according to claim 2, wherein the cerium oxide nanoparticle is AEROSIL R812. 如申請專利範圍第1項所述之液晶複合物,其中,該液晶配方係包含向列相液晶(nematic liquid crystal)。 The liquid crystal composite according to claim 1, wherein the liquid crystal formulation comprises a nematic liquid crystal. 一種液晶裝置,包含有:由一第一基板、一第二基板、一第一電極、一第二電極、一第一配向膜、一第二配向膜所組成之液晶盒,及一注入於該液晶盒中以形成液晶層之液晶複合物,而該液晶複合物包含有一液晶配方做為主體,以及複數個分散摻雜於該液晶配方中之二氧化矽奈米粒子,其中該二氧化矽奈米粒子之摻雜濃度係介於0.01-0.9wt%之間,且該二氧化矽奈米粒子之平均長度係小於或等於100奈米。 A liquid crystal device comprising: a liquid crystal cell composed of a first substrate, a second substrate, a first electrode, a second electrode, a first alignment film, and a second alignment film, and a liquid crystal cell a liquid crystal composite formed in a liquid crystal cell, wherein the liquid crystal composite comprises a liquid crystal formulation as a main body, and a plurality of cerium oxide nanoparticles dispersed in the liquid crystal formulation, wherein the cerium oxide nanoparticle The doping concentration of the rice particles is between 0.01 and 0.9 wt%, and the average length of the ceria nanoparticles is less than or equal to 100 nm. 如申請專利範圍第5項所述之液晶裝置,其中,該液晶配方 主體係為E7。 The liquid crystal device according to claim 5, wherein the liquid crystal formulation The main system is E7. 如申請專利範圍第6項所述之液晶裝置,其中,該二氧化矽奈米粒子係為AEROSIL R812。 The liquid crystal device according to claim 6, wherein the cerium oxide nanoparticle is AEROSIL R812. 如申請專利範圍第5項所述之液晶裝置,其中,該液晶配方係包含向列相液晶(nematic liquid crystal)。 The liquid crystal device according to claim 5, wherein the liquid crystal formulation comprises a nematic liquid crystal. 一種如申請專利範圍第5項所述之液晶裝置之改善液晶顯示器顯示殘影之方法,該方法為:對該液晶層施予一介於20~50V,60Hz~1kHz間之交流高壓,令該第一基板、第二基板附近的液晶導軸分佈畸變,以將該二氧化矽奈米粒子推向該第一基板與該第二基板。 A method for improving the display of image sticking of a liquid crystal display device according to the liquid crystal device of claim 5, wherein the liquid crystal layer is subjected to an alternating current voltage between 20 and 50 V and 60 Hz to 1 kHz, so that the first The liquid crystal guide shafts in the vicinity of the substrate and the second substrate are distributed and distorted to push the cerium oxide nanoparticles to the first substrate and the second substrate. 如申請專利範圍第9項所述之改善液晶顯示器顯示殘影之方法,其中,該二氧化矽奈米粒子移動過程中,可吸附該液晶層中之雜質離子。 The method for improving the residual image of a liquid crystal display according to the invention of claim 9, wherein the impurity ions in the liquid crystal layer are adsorbed during movement of the cerium oxide nanoparticle.
TW102113506A 2013-04-16 2013-04-16 A method for improving the display of a bluetooth of a liquid crystal display and a liquid crystal device TWI525374B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102113506A TWI525374B (en) 2013-04-16 2013-04-16 A method for improving the display of a bluetooth of a liquid crystal display and a liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102113506A TWI525374B (en) 2013-04-16 2013-04-16 A method for improving the display of a bluetooth of a liquid crystal display and a liquid crystal device

Publications (2)

Publication Number Publication Date
TW201441744A true TW201441744A (en) 2014-11-01
TWI525374B TWI525374B (en) 2016-03-11

Family

ID=52422899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102113506A TWI525374B (en) 2013-04-16 2013-04-16 A method for improving the display of a bluetooth of a liquid crystal display and a liquid crystal device

Country Status (1)

Country Link
TW (1) TWI525374B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207171A (en) * 2018-08-24 2019-01-15 华南师范大学 A kind of application of liquid crystal device and metal oxide nanoparticles in the liquid crystal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207171A (en) * 2018-08-24 2019-01-15 华南师范大学 A kind of application of liquid crystal device and metal oxide nanoparticles in the liquid crystal device

Also Published As

Publication number Publication date
TWI525374B (en) 2016-03-11

Similar Documents

Publication Publication Date Title
Shiraishi et al. Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles
JP4504626B2 (en) Liquid crystal display device and manufacturing method thereof
Xu et al. Image sticking in liquid crystal displays with lateral electric fields
Zhang et al. CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage
Yadav et al. Applicability of TiO2 nanoparticle towards suppression of screening effect in nematic liquid crystal
WO2011004519A1 (en) Liquid crystal display panel and process for production thereof
Liao et al. Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions
JP5113869B2 (en) Liquid crystal display device and manufacturing method thereof
Park et al. Electro-optical properties of liquid crystal displays based on the transparent zinc oxide films treated by using a rubbing method
Oh et al. Enhanced electro-optical properties in titanium silicon oxide nanoparticle doped nematic liquid crystal system
Mizusaki et al. Analysis of ion behavior affecting voltage holding property of liquid crystal displays
US10053626B2 (en) Methods of fabricating PDLC thin films
Dai et al. Improvement of the dynamic responses of liquid crystal mixtures through γ-Fe2O3 nanoparticle doping and driving mode adjustment
Lim et al. Effects of carbon nanotubes on electro-optic characteristics in vertically aligned liquid crystal display
TWI525374B (en) A method for improving the display of a bluetooth of a liquid crystal display and a liquid crystal device
JP2012113215A (en) Liquid crystal element
WO2011102892A1 (en) Fast-switching surface-stabilized liquid crystal cells
Liu et al. Homogeneous liquid crystal alignment on ion beam-induced Y 2 Sn 2 O 7 layers
Chen et al. 49.1: Invited Paper: n‐FFS vs. p‐FFS: Who wins?
Park et al. Electro-optical characteristics of ZrO2 nanoparticle doped liquid crystal on ion-beam irradiated polyimide layer
Lee et al. Hysteresis-free liquid crystal devices based on solution-derived oxide compound films treated by ion beam irradiation
Kundu et al. Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display
TW317571B (en)
Park et al. Preparation of PS/TiO2 as a white pigment for electrophoretic displays
Wu et al. Low temperature nanocomposite alignment films for optically compensated bend liquid crystal displays

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees