TW201436513A - Precoding for multicarrier modulation systems - Google Patents

Precoding for multicarrier modulation systems Download PDF

Info

Publication number
TW201436513A
TW201436513A TW103101984A TW103101984A TW201436513A TW 201436513 A TW201436513 A TW 201436513A TW 103101984 A TW103101984 A TW 103101984A TW 103101984 A TW103101984 A TW 103101984A TW 201436513 A TW201436513 A TW 201436513A
Authority
TW
Taiwan
Prior art keywords
precoding
precoding matrix
bandwidth
determining
wtru
Prior art date
Application number
TW103101984A
Other languages
Chinese (zh)
Inventor
Juan Fang
I-Tai Lu
Jia-Ling Li
Rui Yang
Zi-Hao You
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201436513A publication Critical patent/TW201436513A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Systems, methods, and instrumentalities are disclosed for selecting a precoding matrix for orthogonal frequency division multiplexing (OFDM) transmission. A wireless transmit/receive unit (WTRU) may determine a precoding matrix. The precoding matrix may be determined for a frequency band associated with a plurality of devices. A portion of the frequency band allocated to a device of the plurality of devices may be determined. A portion of the precoding matrix associated with the portion of the frequency band may be determined. Data maybe sent using the portion of the precoding matrix. For example, the portion of the frequency band allocated to the given transmitter may be a plurality of OFDM subcarriers. The precoding matrix may be determined as a function of a number of devices and/or an available bandwidth of the frequency band.

Description

多載波調變系統預編碼Multi-carrier modulation system precoding

相關申请的交叉引用Cross-reference to related applications

本申請要求2013年1月18日遞交的美國臨時專利申請第61/754,164號和2013年1月18日遞交的美國臨時專利申請第 61/754,282號的權益。This application claims the benefit of U.S. Provisional Patent Application No. 61/754,164, filed on Jan. 18, 2013, and U.S. Provisional Patent Application No. 61/754,282, filed on Jan.

[01][01]

多載波調變(MCM )技術可使能一組資料在多個窄頻寬子載波上同時傳輸。隨著高級寬頻調變和編碼方案,有MCM的系統與使用單載波調變技術的那些系統相比可在頻率選擇性通道上達到更高的頻譜效率。將總頻寬劃分為頻率重疊的幾個正交子頻寬的正交分頻多工(OFDM )技術,是MCM的示例。Multi-Carrier Modulation (MCM) technology enables a set of data to be transmitted simultaneously over multiple narrow-bandwidth subcarriers. With advanced wideband modulation and coding schemes, systems with MCM achieve higher spectral efficiency on frequency selective channels than those using single carrier modulation techniques. An orthogonal frequency division multiplexing (OFDM) technique that divides the total bandwidth into several orthogonal sub-bandwidths of frequency overlap is an example of MCM.

OFDM具有例如高頻譜效率、對於通道衰落的強健性、多路徑時延擴展容忍、高效數位訊號處理器(DSP )實施、和細微性資源配置(granular resource allocation )等一些良好特性。OFDM可能有缺陷,該缺陷可包括例如高峰均功率比(PAPR )和對載波頻率偏移的高敏感度。OFDM信號可在其子載波中有高旁瓣(sidelobe )並且可產生相對較大的頻寬外發射(OOBE )。因此,對於例如認知無線電(CR )的一些無線通訊系統和應用來說OFDM可能不理想。CR系統可通過利用許可用戶(LU )頻寬的空閒部分來運行在指派給LU的頻寬上,並且可減少其對LU的干擾或者使干擾最小化。在基於IEEE 802.22標準的第一認知無線電中,OFDM已被認為是CR的候選。基於OFDM的CR系統可能遭受較大OOB輻射,該OOB輻射可干擾由LU佔用的其他頻寬。OFDM has some good features such as high spectral efficiency, robustness for channel fading, multipath delay spread tolerance, efficient digital signal processor (DSP) implementation, and granular resource allocation. OFDM may be defective, which may include, for example, peak-to-average power ratio (PAPR) and high sensitivity to carrier frequency offset. An OFDM signal may have a high sidelobe in its subcarriers and may generate a relatively large Outer Bandwidth Out (OOBE). Thus, OFDM may not be ideal for some wireless communication systems and applications such as cognitive radio (CR). The CR system can operate on the bandwidth assigned to the LU by utilizing the free portion of the licensed user (LU) bandwidth and can reduce its interference to the LU or minimize interference. In the first cognitive radio based on the IEEE 802.22 standard, OFDM has been considered as a candidate for CR. OFDM-based CR systems may suffer from large OOB radiation that may interfere with other bandwidths occupied by the LU.

[02][02]

公開了針對正交分頻多工(OFDM )傳輸選擇預編碼矩陣的系統、方法、和手段。無線發射/接收單元(WTRU )可確定預編碼矩陣。可針對與多個裝置關聯的頻寬確定預編碼矩陣。可確定被分配給多個裝置中的一個裝置的頻寬的部分。可確定與頻寬的部分關聯的預編碼矩陣的部分。可使用預編碼矩陣的部分來發送資料。舉例來說,被分配給給定發射機的頻寬的部分可以為多個OFDM子載波。預編碼矩陣可根據裝置數量和/或頻寬的可用頻寬來確定。[03] Systems, methods, and means for selecting a precoding matrix for orthogonal frequency division multiplexing (OFDM) transmission are disclosed. A wireless transmit/receive unit (WTRU) may determine a precoding matrix. The precoding matrix can be determined for the bandwidth associated with multiple devices. A portion of the bandwidth that is assigned to one of the plurality of devices can be determined. A portion of the precoding matrix associated with the portion of the bandwidth can be determined. The data can be sent using portions of the precoding matrix. For example, the portion of the bandwidth allocated to a given transmitter can be multiple OFDM subcarriers. The precoding matrix can be determined based on the available bandwidth of the number of devices and/or the bandwidth. [03]

確定根據分配給給定發射機的頻寬的身份被發送的預編碼矩陣的部分和第一預編碼矩陣可包括根據給定的多個OFDM子載波來選擇預編碼矩陣中的一行或多行。WTRU可被配置為根據矩陣的奇異值分解來確定預編碼矩陣,矩陣的奇異值分解指示或者表示跨越例如所選陷波頻率的頻率範圍的頻譜洩露。例如,表示跨越陷波頻率的頻譜洩露的矩陣的奇異值分解產生多個預編碼向量,該多個預編碼向量在被應用於傳送資料時,移除跨越該陷波頻率的頻譜洩露中的至少部分和/或大部分。為確保適當地聚集多個發射機中的每一者所傳送的信號,多個發射機中的每一者可彼此同步。[04] Determining the portion of the precoding matrix and the first precoding matrix that are transmitted according to the identity of the bandwidth allocated to the given transmitter may include selecting one or more rows in the precoding matrix based on a given plurality of OFDM subcarriers. The WTRU may be configured to determine a precoding matrix from the singular value decomposition of the matrix, the singular value decomposition of the matrix indicating or representing a spectral leak across a frequency range, such as a selected notch frequency. For example, a singular value decomposition of a matrix representing spectral leakage across a notch frequency produces a plurality of precoding vectors that, when applied to transmit data, remove at least a portion of the spectral leakage across the notch frequency Part and / or most. To ensure that the signals transmitted by each of the plurality of transmitters are properly aggregated, each of the plurality of transmitters can be synchronized with each other. [04]

可針對整個頻寬的虛擬用戶獲得預編碼矩陣。多個發射機中的每一者可獨立地確定預編碼矩陣,並且可根據各自的分配和該預編碼矩陣來選擇該預編碼矩陣的各個部分。多個發射機中的每一者可確定預編碼矩陣和預編碼矩陣的各個部分,而無需接收指示預編碼矩陣的各個部分或者預編碼矩陣的值的信令。除了濾波和/或加窗(windowing )的方法外可使用預編碼矩陣的部分。[05] A precoding matrix can be obtained for virtual users of the entire bandwidth. Each of the plurality of transmitters can independently determine a precoding matrix and can select portions of the precoding matrix according to respective allocations and the precoding matrix. Each of the plurality of transmitters may determine respective portions of the precoding matrix and the precoding matrix without receiving signaling indicating values of respective portions of the precoding matrix or precoding matrices. A portion of the precoding matrix can be used in addition to filtering and/or windowing methods. [05]

預編碼技術可合併在多載波調變系統中。預編碼器可被用於使用第一預編碼技術來對符號串流預編碼以生成第一預編碼符號串流。然後預編碼器可被用於使用第二預編碼技術對第一預編碼符號串流預編碼以生成第二預編碼符號串流。Precoding techniques can be combined in a multi-carrier modulation system. A precoder may be used to precode the symbol stream using a first precoding technique to generate a first precoded symbol stream. The precoder can then be used to precode the first precoded symbol stream using a second precoding technique to generate a second precoded symbol stream.

第一預編碼技術可與第一預編碼矩陣關聯。第二預編碼技術可與第二預編碼矩陣關聯。第三預編碼矩陣可被定義為第一預編碼矩陣和第二預編碼矩陣的矩陣積(matrix product )。The first precoding technique can be associated with the first precoding matrix. The second precoding technique can be associated with the second precoding matrix. The third precoding matrix may be defined as a matrix product of the first precoding matrix and the second precoding matrix.

現在將參照各種圖描述用作說明的實施方式的詳細說明。雖然該說明提供了可能的實施方式的詳細示例,但應該理解的是,這些細節是的目的是示例性的,並不以任何方式限制本申請的範圍。[26] A detailed description of the embodiments used as the description will now be described with reference to the various figures. While the description provides a detailed example of possible embodiments, it should be understood that the details are not intended to limit the scope of the application. [26]

第1A圖是在其中可以實施一個或多個實施方式的示例通訊系統100的圖。通訊系統100可以是向多個無線用戶提供例如語音、資料、視訊、訊息發送、廣播等內容的多存取系統。通訊系統100可以使多個無線用戶通過系統資源分享(包括無線頻寬 )存取這些內容。例如,通訊系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA ),分時多重存取(TDMA ),分頻多重存取(FDMA ),正交FDMA(OFDMA ),單載波FMDA(SC-FDMA )等.[27] FIG. 1A is a diagram of an example communication system 100 in which one or more embodiments may be implemented. The communication system 100 can be a multiple access system that provides content, such as voice, data, video, messaging, broadcast, etc., to multiple wireless users. The communication system 100 can enable multiple wireless users to access such content through system resource sharing, including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA), Single carrier FMDA (SC-FDMA), etc. [27]

如第1A圖所示,通訊系統100可以包括無線發射/接收單元(WTRU ) 102a、102b、102c、和/或102d(其通常或者全體被稱為WTRU 102 )、無線電存取網路(RAN )103/104/105、核心網路106/107/109、公共交換電話網(PSTN )108、網際網路110和其他網路112。應當理解的是,公開的實施方式考慮到了任何數量的WTRU、基地台、網路、和/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是配置為在無線環境中進行操作和/或通訊的任何類型的裝置。作為示例,可以將WTRU 102a、102b、102c、102d配置為傳送和/或接收無線信號,並可以包括使用者設備(UE )、移動站、固定或者移動訂戶單元、傳呼器、行動電話、個人數位助理(PDA )、智慧型電話、筆記型電腦、隨身型易網機、個人電腦、無線感測器、消費電子產品等等。[28] As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, and/or 102d (which are generally or collectively referred to as WTRUs 102), a radio access network (RAN). 103/104/105, core network 106/107/109, public switched telephone network (PSTN) 108, internet 110 and other networks 112. It should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, mobile phones, personal digits Assistants (PDAs), smart phones, notebook computers, portable Internet devices, personal computers, wireless sensors, consumer electronics, and more. [28]

通訊系統100還可以包括基地台114a和基地台114b。基地台114a、114b的每一個都可以是配置為與WTRU 102a、102b、102c、102d中的至少一者無線對接以便於存取一個或者多個通訊網路,例如核心網路106/107/109、網際網路110、和/或網路112的任何裝置類型。作為示例,基地台114a、114b可以是基地台收發台(BTS )、節點B、e節點B、家庭節點B、家庭e節點B、網站控制器、存取點(AP )、無線路由器等等。雖然基地台114a、114b的每一個被描述為單獨的元件,但應當理解的是,基地台114a、114b可以包括任何數量互連的基地台和/或網路元件。[29] The communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b can be configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks, such as the core network 106/107/109, Any type of device of the Internet 110, and/or the network 112. By way of example, base stations 114a, 114b may be base station transceiver stations (BTS), node B, eNodeB, home node B, home eNodeB, website controller, access point (AP), wireless router, and the like. While each of the base stations 114a, 114b is depicted as a separate component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements. [29]

基地台114a可以是RAN 103/104/105的一部分,RAN 103/104/105還可以包括其他基地台和/或網路元件(未示出 ),例如基地台控制器(BSC )、無線電網路控制器(RNC )、中繼節點等。可以將基地台114a和/或基地台114b配置為在特定地理區域之內傳送和/或接收無線信號,該區域可以被稱為胞元(未示出 )。胞元還可以被劃分為胞元扇區。例如,與基地台114a關聯的胞元可以劃分為三個扇區。因此,在一種實施方式中,基地台114a可以包括三個收發器,例如每一個用於胞元的一個扇區。在另一種實施方式中,基地台114a可以使用多輸入多輸出(MIMO )技術,因此可以將多個收發器用於胞元的每一個扇區。[30] The base station 114a may be part of the RAN 103/104/105, and the RAN 103/104/105 may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), radio network Controller (RNC), relay node, etc. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which may be referred to as a cell (not shown). Cells can also be divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, such as one sector for each cell. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology, so multiple transceivers may be used for each sector of the cell. [30]

基地台114a、114b可以通過空中介面115/116/117與WTRU 102a、102b、102c、102d中的一個或者多個通訊,空中介面115/116/117可以是任何合適的無線通訊鏈路(例如,射頻(RF )、微波、紅外(IR )、紫外線(UV )、可見光等 )。可以使用任何合適的無線電存取技術(RAT )來建立空中介面115/116/117。[31] The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via the null planes 115/116/117, and the null planes 115/116/117 may be any suitable wireless communication link (eg, Radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc. The null interfacing surface 115/116/117 can be established using any suitable radio access technology (RAT). [31]

更具體地,如上所述,通訊系統100可以是多存取系統,並可以使用一種或者多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。例如,RAN 103/104/105中的基地台114a和WTRU 102a、102b、102c可以使用例如通用移動電信系統(UMTS )陸地無線電存取(UTRA )的無線電技術,其可以使用寬頻CDMA(WCDMA )來建立空中介面115/116/117。WCDMA可以包括例如高速封包存取(HSPA )和/或演進型HSPA(HSPA+ )的通訊協定。HSPA可以包括高速下行鏈路封包存取(HSDPA )和/或高速上行鏈路封包存取(HSUPA )。[32] More specifically, as noted above, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 103/104/105 may use a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use Wideband CDMA (WCDMA) Establish an empty intermediary plane 115/116/117. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA). [32]

在另一種實施方式中,基地台114a和WTRU 102a、102b、102c可以使用例如演進型UMTS陸地無線電存取(E-UTRA )等的無線電技術,其可以使用長期演進(LTE )和/或高級LTE(LTE-A )來建立空中介面115/116/117。[33] In another embodiment, base station 114a and WTRUs 102a, 102b, 102c may use radio technologies such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or LTE-Advanced. (LTE-A) to establish an empty intermediate plane 115/116/117. [33]

在其他實施方式中,基地台114a和WTRU 102a、102b、102c可以使用例如IEEE802.16(例如,全球微波存取互通性(WiMAX ) )、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準 2000(IS-2000 )、暫行標準95(IS-95 )、暫行標準856(IS-856 )、全球移動通訊系統(GSM )、GSM演進的增強型資料速率(EDGE )、GSM EDGE(GERAN )等等的無線電技術。[34] In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may use, for example, IEEE 802.16 (eg, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Interim Standard 2000 ( IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), GSM EDGE (GERAN), etc. Radio technology. [34]

第1A圖中的基地台114b可以例如是無線路由器、家庭節點B、家庭e節點B、或者存取點,並且可以使用任何適當的RAT以方便局部區域中的無線連接,例如商業場所、住宅、車輛、校園等等。在一種實施方式中,基地台114b和WTRU 102c、102d可以實施例如IEEE 802.11的無線電技術來建立無線局域網(WLAN )。在另一種實施方式中,基地台114b和WTRU 102c、102d可以使用例如IEEE 802.15的無線電技術來建立無線個人區域網路(WPAN )。在另一種實施方式中,基地台114b和WTRU 102c、102d可以使用基於胞元的RAT(例如,WCDMA,CDMA2000,GSM,LTE,LTE-A等 )來建立微微胞元(picocell )或毫微微胞元(femtocell )。如第1A圖所示,基地台114b可以具有到網際網路110的直接連接。因此,基地台114b可以不需要經由核心網路106/107/109而存取到網際網路110。[35] The base station 114b in FIG. 1A may be, for example, a wireless router, a home Node B, a home eNodeB, or an access point, and any suitable RAT may be used to facilitate wireless connections in a local area, such as a commercial location, a residence, Vehicles, campuses, etc. In one embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless personal area network (WPAN) using a radio technology such as IEEE 802.15. In another embodiment, base station 114b and WTRUs 102c, 102d may use cell-based RATs (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish picocells or femtocells. Yuan (femtocell). As shown in FIG. 1A, the base station 114b can have a direct connection to the Internet 110. Thus, base station 114b may not need to access Internet 110 via core network 106/107/109. [35]

RAN 103/104/105可以與核心網路106/107/109通訊,該核心網路106可以是被配置為向WTRU 102a、102b、102c、102d中的一個或多個提供語音、資料、應用、和/或基於網際網路協定的語音(VoIP )服務的任何類型的網路。例如,核心網路106/107/109可以提供呼叫控制、計費服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分配等、和/或執行高級安全功能,例如用戶認證。雖然第1A圖中未示出,但應當理解的是,RAN 103/104/105和/或核心網路106/107/109可以與使用和RAN 103/104/105相同的RAT或不同RAT的其他RAN進行直接或間接的通訊。例如,除了連接到正在使用E-UTRA無線電技術的RAN 103/104/105之外,核心網路106/107/109還可以與使用GSM無線電技術的另一個RAN(未示出 )通訊。[36] The RAN 103/104/105 may be in communication with a core network 106/107/109, which may be configured to provide voice, data, applications, to one or more of the WTRUs 102a, 102b, 102c, 102d, And/or any type of network based on Voice over Internet Protocol (VoIP) services. For example, the core network 106/107/109 can provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, etc., and/or perform advanced security functions such as user authentication. Although not shown in FIG. 1A, it should be understood that the RAN 103/104/105 and/or the core network 106/107/109 may be the same RAT as the RAN 103/104/105 or other different RATs. The RAN performs direct or indirect communication. For example, in addition to being connected to the RAN 103/104/105 that is using the E-UTRA radio technology, the core network 106/107/109 can also communicate with another RAN (not shown) that uses the GSM radio technology. [36]

核心網路106/107/109還可以充當WTRU 102a、102b、102c、102d存取到PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS )的電路交換電話網絡。網際網路110可以包括使用公共通訊協定的互聯電腦網路和裝置的全球系統,該協定例如有傳輸控制協定(TCP )/網際網路協定(IP )網際網路協定套件中的TCP、用戶資料包通訊協定(UDP )和IP。網路112可以包括被其他服務提供者擁有和/或營運的有線或無線的通訊網路。例如,網路112可以包括連接到一個或多個RAN的另一個核心網路,該RAN可以使用與RAN 103/104/105相同的RAT或不同的RAT。[37] The core network 106/107/109 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use public communication protocols, such as TCP in the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol Suite, user profiles. Packet Protocol (UDP) and IP. Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT as RAN 103/104/105 or a different RAT. [37]

通訊系統100中的WTRU 102a、102b、102c、102d的某些或全部可以包括多模式能力,例如WTRU 102a、102b、102c、102d可以包括用於在不同無線鏈路上與不同無線網路進行通訊的多個收發器。例如,第1A圖中示出的WTRU 102c可被配置為與基地台114a通訊,該基地台114a可以使用基於胞元的無線電技術,以及與基地台114b通訊,該基地台114b可以使用IEEE 802無線電技術。[38] Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, for example, the WTRUs 102a, 102b, 102c, 102d may include communications for communicating with different wireless networks over different wireless links. Multiple transceivers. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that can communicate with a base station 114b using a cell-based radio technology, and the base station 114b can use an IEEE 802 radio. technology. [38]

第1B圖是可在第1A圖中所示的通訊系統100中使用的示例WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、發射/接收元件122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸控板128、不可移除記憶體130、可移除記憶體132、電源134、全球定位系統(GPS )晶片組136、和其他週邊設備138。應當理解的是,WTRU 102可以在保持與實施方式一致時,包括前述元件的任何子組合。同樣,實施方式考慮了基地台114a和114b、和/或基地台114a和114b可表示的節點(例如但不限於收發台(BTS )、節點B、網站控制器、存取點(AP )、家庭節點B、演進型家庭節點B(e節點B )、家庭演進型節點B(HeNB或者HeNodeB )、家庭演進型節點B閘道以及代理節點 )可包括第1B圖中和在此描述的元件中的一些或者全部。[39] FIG. 1B is a system diagram of an example WTRU 102 that may be used in the communication system 100 shown in FIG. 1A. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a numeric keypad 126, a display/touchpad 128, a non-removable memory 130, and a removable In addition to memory 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be understood that the WTRU 102 may include any sub-combination of the aforementioned elements while remaining consistent with the embodiments. Likewise, embodiments contemplate the base stations 114a and 114b, and/or the nodes that the base stations 114a and 114b can represent (such as, but not limited to, a transceiver station (BTS), a Node B, a website controller, an access point (AP), a home. Node B, evolved Home Node B (eNode B), Home Evolved Node B (HeNB or HeNodeB), Home Evolved Node B Gateway, and Proxy Node may include the elements in Figure 1B and described herein. Some or all. [39]

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP )、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC )、場可程式設計閘陣列(FPGA )電路、積體電路(IC )、狀態機等等。處理器118可執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或使WTRU 102運行於無線環境中的任何其他功能。處理器118可以耦合到收發器120,該收發器120可耦合到發射/接收元件122。雖然第1B圖描述了處理器118和收發器120是分別的部件,但可以理解的是處理器118和收發器120可以一起整合在電子封裝或晶片中。[40] The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, integrated circuit (IC), state machine, and so on. The processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that causes the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B depicts processor 118 and transceiver 120 as separate components, it will be understood that processor 118 and transceiver 120 can be integrated together in an electronic package or wafer. [40]

發射/接收元件122可以被配置為通過空中介面115/116/117將信號傳送到基地台(例如,基地台114a ),或從基地台(例如,基地台114a )接收信號。例如,在一種實施方式中,發射/接收元件122可以是被配置為傳送和/或接收RF信號的天線。在另一種實施方式中,發射/接收元件122可以是被配置為傳送和/或接收例如IR、UV或可見光信號的發射機/檢測器。在另一種實施方式中,發射/接收元件122可以被配置為傳送和接收RF和光信號兩者。應當理解的是,發射/接收元件122可以被配置為傳送和/或接收無線信號的任何組合。[41] The transmit/receive element 122 can be configured to transmit signals to or from the base station (e.g., base station 114a) via the null planes 115/116/117. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 can be a transmitter/detector configured to transmit and/or receive, for example, IR, UV, or visible light signals. In another embodiment, the transmit/receive element 122 can be configured to transmit and receive both RF and optical signals. It should be understood that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals. [41]

另外,雖然發射/接收元件122在第1B圖中描述為單獨的元件,但是WTRU 102可以包括任意數量的發射/接收元件122。更具體的,WTRU 102可以使用MIMO技術。因此,在一種實施方式中,WTRU 102可以包括用於通過空中介面115/116/117傳送和接收無線信號的兩個或多個發射/接收元件122(例如,多個天線 )。[42] Additionally, although the transmit/receive element 122 is depicted as a separate element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals over the null intermediaries 115/116/117. [42]

收發器120可以被配置為調變將由發射/接收元件122傳送的信號和/或解調由發射/接收元件122接收的信號。如上所述,WTRU 102可以具有多模式能力。因此收發器120可以包括使WTRU 102經由多個例如UTRA和IEEE 802.11的RAT通訊的多個收發器。[43] The transceiver 120 can be configured to modulate signals transmitted by the transmit/receive element 122 and/or demodulate signals received by the transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, transceiver 120 may include multiple transceivers that cause WTRU 102 to communicate via a plurality of RATs, such as UTRA and IEEE 802.11. [43]

WTRU 102的處理器118可以耦合到下述設備,並且可以從下述設備中接收用戶輸入資料:揚聲器/麥克風124、數字鍵盤126、和/或顯示器/觸控板128(例如,液晶顯示器(LCD )顯示單元或有機發光二極體(OLED )顯示單元 )。處理器118還可以輸出用戶資料到揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128。另外,處理器118可以從任何類型的適當的記憶體存取資訊,並且可以儲存資料到任何類型的適當的記憶體中,例如不可移除記憶體130和/或可移除記憶體132。不可移除記憶體130可以包括隨機存取記憶體(RAM )、唯讀記憶體(ROM )、硬碟或任何其他類型的記憶體裝置。可移除記憶體132可以包括用戶身份模組(SIM )卡、記憶棒、安全數位(SD )記憶卡等等。在其他實施方式中,處理器118可以從在物理位置上沒有位於WTRU 102上(例如位於伺服器或家用電腦(未示出 )上 )的記憶體存取資訊,並且可以將資料儲存在該記憶體中。[44] The processor 118 of the WTRU 102 may be coupled to a device and may receive user input data from a speaker/microphone 124, a numeric keypad 126, and/or a display/trackpad 128 (eg, a liquid crystal display (LCD) a display unit or an organic light emitting diode (OLED) display unit). The processor 118 can also output user data to the speaker/microphone 124, the numeric keypad 126, and/or the display/trackpad 128. Additionally, processor 118 can access information from any type of suitable memory and can store the data into any type of suitable memory, such as non-removable memory 130 and/or removable memory 132. Non-removable memory 130 may include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from memory that is not physically located on the WTRU 102 (e.g., on a server or a home computer (not shown), and may store data in the memory. In the body. [44]

處理器118可以從電源134接收電能,並且可以被配置為分配和/或控制到WTRU 102中的其他部件的電能。電源134可以是給WTRU 102供電的任何適當的裝置。例如,電源134可以包括一個或多個乾電池(例如,鎳鎘(NiCd )、鎳鋅(NiZn )、鎳氫(NiMH )、鋰離子(Li-ion )等等 ),太陽能電池,燃料電池等等。[45] The processor 118 can receive power from the power source 134 and can be configured to allocate and/or control power to other components in the WTRU 102. Power source 134 can be any suitable device that powers WTRU 102. For example, the power source 134 can include one or more dry cells (eg, nickel cadmium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc., solar cells, fuel cells, etc. . [45]

處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置為提供關於WTRU 102當前位置的位置資訊(例如,經度和緯度 )。WTRU 102可以通過空中介面115/116/117從基地台(例如,基地台114a、114b )接收加上或取代GPS晶片組136資訊之位置資訊,和/或基於從兩個或更多個鄰近基地台接收的信號的定時來確定其位置。應當理解的是,WTRU 102在保持實施方式的一致性的同時,可以通過任何適當的位置確定實現獲得位置資訊。[46] The processor 118 may also be coupled to a GPS chipset 136 that may be configured to provide location information (eg, longitude and latitude) regarding the current location of the WTRU 102. The WTRU 102 may receive location information from or to the base station (e.g., base station 114a, 114b) plus or in place of the GPS chipset 136 information via the nulling plane 115/116/117, and/or based on two or more neighboring bases. The timing of the signal received by the station determines its position. It should be understood that the WTRU 102 may obtain location information by any suitable location determination while maintaining consistency of implementation. [46]

處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包括一個或多個提供附加特性、功能、和/或有線或無線連接的軟體和/或硬體模組。例如,週邊設備138可以包括加速計、電子羅盤、衛星收發器、數位相機(用於照片或視訊 )、通用序列匯流排(USB )埠、振動裝置、電視收發器、免持耳機、藍芽(BluetoothR )模組、調頻(FM )無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器等等。[47] The processor 118 can also be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, hands-free headset, Bluetooth ( BluetoothR) modules, FM radio units, digital music players, media players, video game console modules, Internet browsers, and more. [47]

第1C圖是根據實施方式的RAN 103和核心網路106的系統圖。如上面提到的,RAN 103可使用UTRA無線電技術通過空中介面115與WTRU 102a、102b和102c通訊。RAN 103還可以與核心網路106通訊。如第1C圖所示,RAN 103可以包括節點B 140a、140b、140c,節點B 140a、140b、140c的每一個包括一個或更多個用於通過空中介面115與WTRU 102a、102b、102c通訊的收發器。節點B 140a、140b、140c的每一個可以與RAN 103內的特定胞元(未顯示 )關聯。RAN 103還可以包括RNC 142a、142b。應當理解的是,RAN 103在保持實施方式的一致性時,可以包括任意數量的節點B和RNC。[48] 1C is a system diagram of RAN 103 and core network 106, in accordance with an embodiment. As mentioned above, the RAN 103 can communicate with the WTRUs 102a, 102b, and 102c over the null plane 115 using UTRA radio technology. The RAN 103 can also communicate with the core network 106. As shown in FIG. 1C, RAN 103 may include Node Bs 140a, 140b, 140c, each of Node Bs 140a, 140b, 140c including one or more communications for communicating with WTRUs 102a, 102b, 102c over null intermediaries 115. transceiver. Each of Node Bs 140a, 140b, 140c can be associated with a particular cell (not shown) within RAN 103. The RAN 103 may also include RNCs 142a, 142b. It should be understood that the RAN 103 may include any number of Node Bs and RNCs while maintaining consistency of implementation. [48]

如第1C圖所示,節點B 140a、140b可以與RNC 142a通訊。此外,節點B 140c可以與RNC 142b通訊。節點B 140a、140b、140c可以通過Iub介面分別與RNC 142a、142b通訊。RNC 142a、142b可以通過Iur介面相互通訊。RNC 142a、142b的每一個可以被配置以控制其連接的各個節點B 140a、140b、140c。另外,RNC 142a、142b的每一個可以被配置以執行或支援其他功能,例如外環功率控制、負載控制、准入控制、封包排程、切換控制、巨集分集、安全功能、資料加密等等。[49] As shown in FIG. 1C, Node Bs 140a, 140b can communicate with RNC 142a. Additionally, Node B 140c can communicate with RNC 142b. Node Bs 140a, 140b, 140c can communicate with RNCs 142a, 142b via Iub interfaces, respectively. The RNCs 142a, 142b can communicate with one another via the Iur interface. Each of the RNCs 142a, 142b can be configured to control the respective Node Bs 140a, 140b, 140c to which it is connected. Additionally, each of the RNCs 142a, 142b can be configured to perform or support other functions, such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like. . [49]

第1C圖中所示的核心網路106可以包括媒體閘道(MGW )144、移動交換中心(MSC )146、服務GPRS支援節點(SGSN )148、和/或閘道GPRS支持節點(GGSN )150。儘管前述元件的每一個被描述為核心網路106的部分,應當理解的是,這些元件中的任何一個可以被除了核心網路營運商外的實體擁有或營運。[50] The core network 106 shown in FIG. 1C may include a media gateway (MGW) 144, a mobile switching center (MSC) 146, a Serving GPRS Support Node (SGSN) 148, and/or a Gateway GPRS Support Node (GGSN) 150. . While each of the foregoing elements is described as being part of core network 106, it should be understood that any of these elements may be owned or operated by entities other than the core network operator. [50]

RAN 103中的RNC 142a可以通過IuCS介面連接至核心網路106中的MSC 146。MSC 146可以連接至MGW 144。MSC 146和MGW 144可以向WTRU 102a、102b、102c提供到電路切換式網路(例如PSTN 108 )的存取,以便於WTRU 102a、102b、102c和傳統陸地線路通訊裝置之間的通訊。[51] The RNC 142a in the RAN 103 can be connected to the MSC 146 in the core network 106 via an IuCS interface. The MSC 146 can be connected to the MGW 144. MSC 146 and MGW 144 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communications between WTRUs 102a, 102b, 102c and conventional landline communications devices. [51]

RAN 103中RNC 142a還可以通過IuPS介面連接至核心網路106中的SGSN 148。SGSN 148可以連接至GGSN 150。SGSN 148和GGSN 150可以向WTRU 102a、102b、102c提供到封包交換網路(例如網際網路110 )的存取,以便於WTRU 102a、102b、102c和IP賦能裝置之間的通訊。[52] The RNC 142a in the RAN 103 can also be connected to the SGSN 148 in the core network 106 via an IuPS interface. The SGSN 148 can be connected to the GGSN 150. The SGSN 148 and GGSN 150 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., the Internet 110) to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices. [52]

如上所述,核心網路106還可以連接至網路112,網路112可以包括由其他服務提供者擁有或營運的其他有線或無線網路。[53] As noted above, the core network 106 can also be connected to the network 112, which can include other wired or wireless networks owned or operated by other service providers. [53]

第1D圖是根據實施方式的RAN 104和核心網路107的系統圖。如上所述,RAN 104可使用E-UTRA無線電技術通過空中介面116與WTRU 102a、102b、和102c通訊。RAN 104還可以與核心網路107通訊。[54] FIG. 1D is a system diagram of the RAN 104 and the core network 107 in accordance with an embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, and 102c over the null plane 116 using E-UTRA radio technology. The RAN 104 can also communicate with the core network 107. [54]

RAN 104可包括e節點B 160a、160b、160c,但可以理解的是,RAN 104可以包括任意數量的e節點B而保持與各種實施方式的一致性。e節點B 160a、160b、160c的每一個可包括一個或更多個用於通過空中介面116與WTRU 102a、102b、102c通訊的收發器。在一種實施方式中,e節點B 160a、160b、160c可以使用MIMO技術。因此,e節點B 160a例如可以使用多個天線來向WTRU 102a發送無線信號和/或從其接收無線信號。[55] The RAN 104 may include eNodeBs 160a, 160b, 160c, although it will be appreciated that the RAN 104 may include any number of eNodeBs to maintain consistency with various embodiments. Each of the eNodeBs 160a, 160b, 160c may include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the null plane 116. In one embodiment, the eNodeBs 160a, 160b, 160c may use MIMO technology. Thus, eNodeB 160a, for example, may use multiple antennas to transmit and/or receive wireless signals to and from WTRU 102a. [55]

e節點B 160a、160b、160c的每一個可以與特定胞元關聯(未顯示 ),並可以被配置為處理無線資源管理決策、切換決策、在上行鏈路和/或下行鏈路中的用戶排程等等。如第1D圖所示,e節點B 160a、160b、160c可以通過X2介面相互通訊。[56] Each of the eNodeBs 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, subscriber ranks in the uplink and/or downlink Cheng and so on. As shown in FIG. 1D, the eNodeBs 160a, 160b, 160c can communicate with each other through the X2 interface. [56]

第1D圖中所示的核心網路107可以包括移動性管理實體(MME )162、服務閘道164和/或封包資料網路(PDN )閘道166。雖然前述單元的每一個被描述為核心網路107的一部分,應當理解的是,這些單元中的任意一個可以由除了核心網路營運商之外的實體擁有和/或營運。[57] The core network 107 shown in FIG. 1D may include a Mobility Management Entity (MME) 162, a Serving Gateway 164, and/or a Packet Data Network (PDN) gateway 166. While each of the aforementioned units is described as being part of core network 107, it should be understood that any of these units may be owned and/or operated by entities other than the core network operator. [57]

MME 162可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一個,並可以作為控制節點。例如,MME 162可以負責WTRU 102a、102b、102c的用戶認證、承載啟動/解除啟動、在WTRU 102a、102b、102c的初始附著期間選擇特定服務閘道等等。MME 162還可以提供控制平面功能,以用於在RAN 104和使用例如GSM或者WCDMA的其他無線電技術的其他RAN(未示出 )之間切換。[58] The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may serve as a control node. For example, the MME 162 may be responsible for user authentication of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selection of a particular service gateway during initial attachment of the WTRUs 102a, 102b, 102c, and the like. The MME 162 may also provide control plane functionality for switching between the RAN 104 and other RANs (not shown) using other radio technologies such as GSM or WCDMA. [58]

服務閘道164可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一個。服務閘道164通常可以向/從WTRU 102a、102b、102c路由和轉發用戶資料封包。服務閘道164還可以執行其他功能,例如在e節點B間切換期間錨定用戶平面、當下行鏈路資料對於WTRU 102a、102b、102c可用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文(context )等等。[59] Service gateway 164 may be connected to each of eNodeBs 160a, 160b, 160c in RAN 104 via an S1 interface. The service gateway 164 can typically route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The service gateway 164 may also perform other functions, such as anchoring the user plane during inter-eNode B handover, triggering paging, managing and storing the WTRUs 102a, 102b, 102c when downlink information is available to the WTRUs 102a, 102b, 102c. Context and so on. [59]

服務閘道164還可以連接到PDN閘道166,PDN閘道166可以向WTRU 102a、102b、102c提供到封包交換網路(例如網際網路110 )的存取,以便於WTRU 102a、102b、102c與IP賦能裝置之間的通訊。[60] The service gateway 164 can also be coupled to a PDN gateway 166 that can provide the WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., the Internet 110) to facilitate the WTRUs 102a, 102b, 102c. Communication with IP-enabled devices. [60]

核心網路107可以便於與其他網路的通訊。例如,核心網路107可以向WTRU 102a、102b、102c提供到電路切換式網路(例如PSTN 108 )的存取, 以便於WTRU 102a、102b、102c與傳統陸地線路通訊裝置之間的通訊。例如,核心網路107可以包括IP閘道(例如IP多媒體子系統(IMS )伺服器 ),或者與之通訊,該IP閘道作為核心網路107與PSTN 108之間的介面。另外,核心網路107可以向WTRU 102a、102b、102c提供到網路112的存取,該網路112可以包括被其他服務提供者擁有和/或營運的其他有線或無線網路。[61] The core network 107 can facilitate communication with other networks. For example, core network 107 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. For example, core network 107 may include or be in communication with an IP gateway (e.g., an IP Multimedia Subsystem (IMS) server) that serves as an interface between core network 107 and PSTN 108. In addition, core network 107 can provide WTRUs 102a, 102b, 102c with access to network 112, which can include other wired or wireless networks that are owned and/or operated by other service providers. [61]

第1E圖是根據實施方式的RAN 105和核心網路109的系統圖。RAN 105可以是使用IEEE 802.16無線電技術通過空中介面117與WTRU 102a、102b、102c進行通訊的存取服務網路(ASN )。如下面進一步討論的,WTRU 102a、102b、102c,RAN 105和核心網路109的不同功能實體之間的鏈路可以被定義為參考點。[62] FIG. 1E is a system diagram of the RAN 105 and the core network 109 in accordance with an embodiment. The RAN 105 may be an Access Service Network (ASN) that communicates with the WTRUs 102a, 102b, 102c over the null plane 117 using IEEE 802.16 radio technology. As discussed further below, the links between the different functional entities of the WTRUs 102a, 102b, 102c, RAN 105, and core network 109 may be defined as reference points. [62]

如第1E圖所示,RAN 105可以包括基地台180a、180b、180c和ASN閘道182,但應當理解的是,RAN 105可以包括任意數量的基地台和ASN閘道而與實施方式保持一致。基地台180a、180b、180c的每一個可以與RAN 105中特定胞元(未示出 )關聯並可以包括一個或更多個通過空中介面117與WTRU 102a、102b、102c通訊的收發器。在一個實施方式中,基地台180a、180b、180c可以使用MIMO技術。因此,例如,基地台180a可使用多個天線來向WTRU 102a發送無線信號,或從其接收無線信號。基地台180a、180b、180c可以提供移動性管理功能,例如交遞切換觸發、隧道建立、無線電資源管理,訊務分類、服務品質(QoS )策略執行等等。ASN閘道182可以充當訊務聚集點,並且負責傳呼、快取用戶簡檔(profile )、路由到核心網路109等等。[63] As shown in FIG. 1E, the RAN 105 can include base stations 180a, 180b, 180c and ASN gateway 182, although it should be understood that the RAN 105 can include any number of base stations and ASN gateways consistent with the embodiment. Each of the base stations 180a, 180b, 180c may be associated with a particular cell (not shown) in the RAN 105 and may include one or more transceivers that communicate with the WTRUs 102a, 102b, 102c over the null plane 117. In one embodiment, base stations 180a, 180b, 180c may use MIMO technology. Thus, for example, base station 180a can use multiple antennas to transmit wireless signals to, or receive wireless signals from, WTRU 102a. Base stations 180a, 180b, 180c may provide mobility management functions such as handover handover triggering, tunnel establishment, radio resource management, traffic classification, quality of service (QoS) policy enforcement, and the like. The ASN gateway 182 can act as a traffic aggregation point and is responsible for paging, caching user profiles, routing to the core network 109, and the like. [63]

WTRU 102a、102b、102c和RAN 105之間的空中介面117可以被定義為使用IEEE 802.16規範的R1參考點。另外,WTRU 102a、102b、102c的每一個可以與核心網路109建立邏輯介面(未示出 )。WTRU 102a、102b、102c和核心網路 109之間的邏輯介面可以定義為R2參考點,其可以用於認證、授權、IP主機(host )配置管理和/或移動性管理。[64] The null interfacing plane 117 between the WTRUs 102a, 102b, 102c and the RAN 105 may be defined as an Rl reference point using the IEEE 802.16 specification. Additionally, each of the WTRUs 102a, 102b, 102c can establish a logical interface (not shown) with the core network 109. The logical interface between the WTRUs 102a, 102b, 102c and the core network 109 can be defined as an R2 reference point that can be used for authentication, authorization, IP host configuration management, and/or mobility management. [64]

基地台180a、180b、180c的每一個之間的通訊鏈路可以定義為包括便於WTRU切換和基地台間轉移資料的協定的R8參考點。基地台180a、180b、180c和ASN閘道182之間的通訊鏈路可以定義為R6參考點。R6參考點可以包括用於促進基於與WTRU 102a、102b、102c的每一個關聯的移動性事件的移動性管理的協定。[65] The communication link between each of the base stations 180a, 180b, 180c may be defined as an R8 reference point that includes a protocol that facilitates WTRU handover and transfer of data between base stations. The communication link between base stations 180a, 180b, 180c and ASN gateway 182 may be defined as an R6 reference point. The R6 reference point may include an agreement to facilitate mobility management based on mobility events associated with each of the WTRUs 102a, 102b, 102c. [65]

如第1E圖所示,RAN 105可以連接至核心網路109。RAN 105和核心網路109之間的通訊鏈路可以定義為包括例如便於資料轉移和移動性管理能力的協定的R3參考點。核心網路109可以包括移動IP本地代理(MIP-HA )184,認證、授權、計費(AAA )伺服器186和閘道188。儘管前述的每個元件被描述為核心網路109的部分,應當理解的是,這些元件中的任意一個可以由除核心網路營運商外的實體擁有或營運。[66] As shown in FIG. 1E, the RAN 105 can be connected to the core network 109. The communication link between the RAN 105 and the core network 109 can be defined as an R3 reference point that includes, for example, protocols that facilitate data transfer and mobility management capabilities. The core network 109 may include a Mobile IP Home Agent (MIP-HA) 184, an Authentication, Authorization, Accounting (AAA) server 186, and a gateway 188. While each of the foregoing elements is described as being part of core network 109, it should be understood that any of these elements may be owned or operated by entities other than the core network operator. [66]

MIP-HA可以負責IP位址管理,並可以使WTRU 102a、102b、102c在不同ASN和/或不同核心網路之間漫遊。MIP-HA 184可以向WTRU 102a、102b、102c提供封包交換網路(例如網際網路110 )的存取,以促進WTRU 102a、102b、102c和IP賦能裝置之間的通訊。AAA伺服器186可以負責用戶認證和支援用戶服務。閘道188可促進與其他網路交互工作。例如,閘道可以向WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108 )的存取,以促進WTRU 102a、102b、102c和傳統陸地線路通訊裝置之間的通訊。此外,閘道188可以向WTRU 102a、102b、102c提供網路112,其可以包括由其他服務提供者擁有或營運的其他有線或無線網路。[67] The MIP-HA may be responsible for IP address management and may cause the WTRUs 102a, 102b, 102c to roam between different ASNs and/or different core networks. The MIP-HA 184 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., the Internet 110) to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices. The AAA server 186 can be responsible for user authentication and support for user services. Gateway 188 facilitates interworking with other networks. For example, the gateway may provide access to the circuit switched network (e.g., PSTN 108) to the WTRUs 102a, 102b, 102c to facilitate communication between the WTRUs 102a, 102b, 102c and conventional landline communication devices. In addition, gateway 188 can provide network 112 to WTRUs 102a, 102b, 102c, which can include other wired or wireless networks that are owned or operated by other service providers. [67]

儘管未在第1E圖中顯示,應當理解的是,RAN 105可以連接至其他ASN,並且核心網路109可以連接至其他核心網路。RAN 105和其他ASN之間的通訊鏈路可以定義為R4參考點,其可以包括協調RAN 105和其他ASN之間的WTRU 102a、102b、102c的移動性的協定。核心網路109和其他核心網路之間的通訊鏈路可以定義為R5參考點,其可以包括促進本地核心網路和被訪問核心網路之間的互通的協定。[68] Although not shown in Figure 1E, it should be understood that the RAN 105 can be connected to other ASNs and the core network 109 can be connected to other core networks. The communication link between the RAN 105 and other ASNs may be defined as an R4 reference point, which may include a protocol that coordinates the mobility of the WTRUs 102a, 102b, 102c between the RAN 105 and other ASNs. The communication link between core network 109 and other core networks may be defined as an R5 reference point, which may include an agreement to facilitate interworking between the local core network and the visited core network. [68]

一些方案可減少基於正交分頻多工(OFDM )的認知無線電(CR )系統的OOB輻射。可應用下列中的一者或多者。濾波或者加窗可被使用。這將引入長延遲和位元誤碼率(BER )的退化。CR子載波中的一些可被禁用以在CR頻寬和LU頻寬間產生一些保護頻寬。即使損失了頻譜效率,這可能仍不足以將干擾減少至實際中可接受的水準。取消載波(Cancellation Carrier )可被使用。這些子載波的輸入可被設計,而非只是禁用子載波,以使在通常被指派給LU的特定頻率上的輻射最小化。輸入設計依賴於剩餘資料子載波的輸入,其計算複雜。子載波加權(SW )可被使用。SW可被視為用實對角矩陣的預編碼方法,其不會降低頻譜效率。子載波加權可涉及設計子載波輸入以最小化在特定頻率上的輻射,並且可能是計算複雜的。Beek的奇異值分解(SVD )預編碼可被使用,其可降低頻譜效率。在Beek的奇異值分解(SVD )預編碼中,低於1(less-than-one )編碼速率的預編碼矩陣可被設計,以減小OOB輻射。換言之,不同於子載波加權,用在該預編碼中的矩陣可以不是方陣(square matrix )。該矩陣設計可不依賴於輸入資料,並且複雜度可減少。Chung的頻譜預編碼可被使用。Chung的頻譜預編碼可獨立於輸入資料。Chung的頻譜預編碼可使用新的正交基(orthogonal basis )集合而取代了可在特定頻率上最小化系統能量的SVD預編碼,以代替針對每個常規OFDM符號的矩形脈衝,以使新的旁瓣比正弦函數的旁瓣更快下降(fall off )。當帶內範圍固定時,由於可用基集合的有限數量,頻譜效率可被降低。當頻譜效率從1減小至(N-1 )/N和從(N-1 )/N減小至(N-2 )/N時,可發生顯著的OOB功率抑制改善,N是子載波數量。隨著頻譜效率持續降低,改善變得沒有之前的顯著。如果總的頻譜效率損失中的部分被從頻譜預編碼重新分配至例如SVD預編碼的一些其他的預編碼,產生的組合方案可優於分別使用的預編碼中的任一個。[69] Some schemes can reduce the OOB radiation of an Orthogonal Frequency Division Multiplexing (OFDM) based cognitive radio (CR) system. One or more of the following may be applied. Filtering or windowing can be used. This will introduce degradation of long delay and bit error rate (BER). Some of the CR subcarriers may be disabled to create some guard bandwidth between the CR bandwidth and the LU bandwidth. Even if spectral efficiency is lost, this may not be sufficient to reduce interference to a practically acceptable level. Cancellation Carrier can be used. The inputs to these subcarriers can be designed, rather than just disabling subcarriers, to minimize radiation at a particular frequency that is typically assigned to the LU. The input design relies on the input of the remaining data subcarriers, which is computationally complex. Subcarrier weighting (SW) can be used. SW can be viewed as a precoding method with a real diagonal matrix that does not degrade spectral efficiency. Subcarrier weighting may involve designing subcarrier inputs to minimize radiation at a particular frequency, and may be computationally complex. Beek's Singular Value Decomposition (SVD) precoding can be used, which reduces spectral efficiency. In Beek's Singular Value Decomposition (SVD) precoding, precoding matrices below the 1 (less-than-one) encoding rate can be designed to reduce OOB radiation. In other words, unlike subcarrier weighting, the matrix used in the precoding may not be a square matrix. The matrix design can be independent of the input data and the complexity can be reduced. Chung's spectrum precoding can be used. Chung's spectrum precoding can be independent of the input data. Chung's spectral precoding can replace the SVD precoding, which minimizes system energy at a particular frequency, with a new set of orthogonal basis instead of rectangular pulses for each regular OFDM symbol to make new The side lobes fall faster than the side lobes of the sinusoidal function. When the in-band range is fixed, the spectral efficiency can be reduced due to the limited number of available base sets. Significant OOB power suppression improvement can occur when spectral efficiency decreases from 1 to (N-1)/N and from (N-1)/N to (N-2)/N, where N is the number of subcarriers . As spectral efficiency continues to decrease, the improvement has not become significant before. If a portion of the total spectral efficiency loss is reallocated from spectral precoding to some other precoding such as SVD precoding, the resulting combined scheme may be superior to either of the precodings used separately. [69]

正交分頻多工(OFDM )可具有可導致系統的低功率效率的高峰均功率比(PARP )。許多MCM系統可遭受PARP問題。PARP減小方法能大致歸類為兩組。第一組涉及信號加擾技術,信號加擾技術包括對碼加擾以減少PARA的各種技術,例如選擇性等級映射(SLM )和部分傳送序列(PTS )。邊資訊可用於信號加擾技術,通過信號加擾技術可引入冗餘並且可減小有效輸送量。預編碼技術也可以是通過引入一些冗餘在維持合適的誤差性能的同時減少PARP的有效方法。PARP減小技術中的第二組可涉及信號失真,信號失真可通過直接使信號變形來減少高峰。壓縮擴展(companding )和限幅(clipping )以及濾波技術可在這一類別中。雖然這些技術在減小PARP方面有效,其可使誤差性能顯著降低。[70] Orthogonal Frequency Division Multiplexing (OFDM) may have a Peak Average Power Ratio (PARP) that can result in low power efficiency of the system. Many MCM systems can suffer from PARP issues. The PARP reduction method can be roughly classified into two groups. The first group relates to signal scrambling techniques, which include various techniques for scrambling codes to reduce PARA, such as Selective Level Mapping (SLM) and Partial Transfer Sequence (PTS). Side information can be used for signal scrambling techniques, and signal scrambling techniques can introduce redundancy and reduce the amount of effective delivery. Precoding techniques can also be an effective way to reduce PARP while introducing some redundancy while maintaining proper error performance. The second set of PARP reduction techniques can involve signal distortion, which can be reduced by directly damaging the signal. Compression and clipping and filtering techniques are available in this category. While these techniques are effective in reducing PARP, they can significantly reduce error performance. [70]

預編碼技術可為例如OFDM系統的MCM系統的弊端提供補救措施。在MCM波形設計中有不同的預編碼技術來實現不同的目標。組合預編碼技術可實現上述提到的不同預編碼技術中的一些技術的優點,以在MCM波形設計中達到一個或者多個設計目標。這些設計目標可包括,但不限於,最小化OOB功率洩露,減小PAPR,最小化BER等。[71] Precoding techniques can provide remedies for the drawbacks of MCM systems such as OFDM systems. There are different precoding techniques in MCM waveform design to achieve different goals. The combined precoding technique can achieve the advantages of some of the different precoding techniques mentioned above to achieve one or more design goals in the MCM waveform design. These design goals may include, but are not limited to, minimizing OOB power leakage, reducing PAPR, minimizing BER, and the like. [71]

一些抑制OFDM信號的OOBE的方法可包括時域方法和頻域方法。示例時域方法可包括加窗和濾波,以便經由時域處理減少OOBE(例如,在逆離散傅利葉變換(IDFT )操作之後 )。示例頻域方法可包括子載波加權、載波取消、預編碼等。對於頻域方法,可通過在IDFT操作之前執行處理來在頻域中執行OOBE減少。[72] Some methods of suppressing OOBE of an OFDM signal may include a time domain method and a frequency domain method. An example time domain method can include windowing and filtering to reduce OOBE via time domain processing (eg, after an inverse discrete Fourier transform (IDFT) operation). Example frequency domain methods may include subcarrier weighting, carrier cancellation, precoding, and the like. For the frequency domain approach, OOBE reduction can be performed in the frequency domain by performing processing prior to the IDFT operation. [72]

為了使用時域方法和/或頻域方法抑制OOBE,可進行涉及其他OFDM傳輸特性的權衡。例如,一些OOBE減少方法可導致頻譜效率損失。其他權衡可包括系統性能的退化(例如,如區塊誤差率(BER )和/或PARP的增加 )、系統複雜度的增加(例如,如在處理期間的計算工作量的增加和/或信令負擔的增加 )等。為達到足夠的OOBE抑制,一些方法可導致頻譜效率的損失和/或一些重要性能的退化。[73] In order to suppress OOBE using a time domain method and/or a frequency domain method, tradeoffs involving other OFDM transmission characteristics may be made. For example, some OOBE reduction methods can result in loss of spectral efficiency. Other trade-offs may include degradation of system performance (eg, such as increased block error rate (BER) and/or PARP), increased system complexity (eg, increased computational effort and/or signaling as during processing) Increase in burden) and so on. To achieve adequate OOBE rejection, some methods can result in loss of spectral efficiency and/or degradation of some important performance. [73]

預編碼可能能夠用相對較小的頻譜效率損失來達到滿意的頻譜控制(containment )。預編碼可避免增加重要信令的負擔,並且可用機乎沒有的BER性能損失和可以忽略的PARP退化來達到OOBE抑制。此外,預編碼可以不依賴於輸入資料內容。[74] Precoding may be able to achieve satisfactory spectral containment with relatively small loss of spectral efficiency. Precoding avoids the burden of adding significant signaling and can achieve OOBE rejection with BER performance loss and negligible PARP degradation. In addition, precoding can be independent of the input material content. [74]

多用戶預編碼方法可抑制OFDM傳輸的OOBE,而不導致其他OOBE抑制技術適用的顯著負面權衡。例如,連續頻譜可由K個基於OFDM的認知無線電(CR )用戶共用。為了保護許可的用戶,共用頻譜外的CR用戶譜洩露可在特定臨界值之下。此外,當CR用戶不能同步時,每個CR用戶至其他CR用戶的頻譜洩露可被保持在臨界值之下。由OOBE抑制導致的頻譜損失可由CR用戶數量K調整。然而,當CR用戶能同步時(例如,理想的完全同步 ),在CR用戶間有極少或者沒有載波間干擾,並且頻譜內的來自CR用戶的頻譜洩露可不再考慮。基於適用於同步CR用戶的該特性,有效的多用戶預編碼方法可被實施以減少頻譜效率損失。例如,通過針對不同CR用戶選擇不同的陷波頻率,頻譜效率損失可能不與K比例或者不與K成線性正比,但是隨著K增加,其仍會增加。[75] The multi-user precoding method can suppress the OOBE of OFDM transmission without causing significant negative tradeoffs applicable to other OOBE suppression techniques. For example, the continuous spectrum can be shared by K OFDM-based cognitive radio (CR) users. To protect licensed users, CR user spectrum leaks outside the shared spectrum can be below a certain threshold. In addition, when CR users cannot synchronize, the spectrum leakage from each CR user to other CR users can be kept below the threshold. The spectral loss caused by OOBE suppression can be adjusted by the number of CR users K. However, when CR users can synchronize (eg, ideal full synchronization), there is little or no inter-carrier interference between CR users, and spectrum leakage from CR users within the spectrum can no longer be considered. Based on this feature for synchronous CR users, an efficient multi-user precoding method can be implemented to reduce spectral efficiency losses. For example, by selecting different notch frequencies for different CR users, the spectral efficiency loss may not be proportional to K or not linearly proportional to K , but it will still increase as K increases. [75]

在多對一和多對多的通訊場景中,當傳送被多個傳送用戶共用的頻寬時,不同用戶間的通帶外(out-of-passband )洩露可通過在每一個用戶中個別地使用預編碼方法來減少。因為單獨預編碼可由於特定子載波的冗餘導致更低的頻譜效率,在多用戶情況下,頻譜效率的損失可由用戶數量調整。如果用戶數量大,頻譜效率的損失可較大。[76] In a many-to-one and many-to-many communication scenario, when transmitting a bandwidth shared by multiple transmitting users, an out-of-passband leak between different users can be individually made in each user. Use precoding methods to reduce. Since separate precoding can result in lower spectral efficiency due to redundancy of specific subcarriers, in the case of multiple users, the loss of spectral efficiency can be adjusted by the number of users. If the number of users is large, the loss of spectral efficiency can be large. [76]

K個認知無線電(CR )用戶可以是同步的並且可被當做使用全部檢測的頻譜的虛擬單用戶。多用戶預編碼方法還可減小由OOBE抑制導致的頻譜效率損失。作為示例,每個CR用戶可確定或者可被配置為具有虛擬預編碼器,猶如其是虛擬單用戶。CR用戶可根據其分配的子載波通過選擇虛擬預編碼器中的行來確定其自身的預編碼器。以這種方式,頻譜效率損失還可被降低並且獨立於CR用戶數量K。此外,CR用戶可使用非連續的頻譜而無頻譜效率的附加損耗。通過允許CR用戶使用非連續的頻譜而無頻譜效率的附加損耗,可促進細微性資源配置。模擬和數值結果證明提議的同步多用戶預編碼方法與單獨預編碼方法相比,可實現較低的OOBE和較高的頻譜效率。此外,與未編碼的OFDM相比,提議的同步多用戶預編碼方法可導致極小或者沒有BER性能退化及極小或者可以忽略的PARP增加。[77] K cognitive radio (CR) users may be synchronized and may be treated as virtual single users using all detected spectrum. The multi-user precoding method can also reduce spectral efficiency loss caused by OOBE suppression. As an example, each CR user may determine or may be configured to have a virtual precoder as if it were a virtual single user. The CR user can determine its own precoder by selecting a row in the virtual precoder based on its assigned subcarriers. In this way, the spectral efficiency loss can also be reduced and is independent of the number of CR users K. In addition, CR users can use non-contiguous spectrum without additional loss of spectral efficiency. Fine resource allocation can be facilitated by allowing CR users to use non-contiguous spectrum without additional loss of spectral efficiency. The simulation and numerical results demonstrate that the proposed synchronous multi-user precoding method can achieve lower OOBE and higher spectral efficiency than the separate precoding method. Furthermore, the proposed synchronous multi-user precoding method can result in minimal or no BER performance degradation and minimal or negligible increase in PARP compared to uncoded OFDM. [77]

作為示例,N個連續的子載波的集合可被K個同步的基於OFDM的CR用戶使用。對於第k個用戶,時域OFDM傳送信號可被表示為:(1 ) 其中,並且T可為信號持續時間,可為有效信號持續時間,以及可為循環前置持續時間。可為第k個用戶使用的子載波數目。對於第i個子載波,可為資料並且可為加窗的子載波波形。可被表示為:(2 ) 其中可為脈衝形式函數,其可被表示為:(3 ) 等式(2 )中的值可為子載波索引並且可被表示為:(4 )[78] As an example, a set of N consecutive subcarriers may be used by K synchronized OFDM based CR users. For the kth user, the time domain OFDM transmits signals Can be expressed as: (1) where And T can be the signal duration, Can be a valid signal duration, and Can be a loop pre-set duration. The number of subcarriers that can be used for the kth user. For the ith subcarrier, Can be information and Can be a windowed subcarrier waveform. Can be expressed as: (2) where Can be a pulse form function, which can be expressed as: (3) Value in equation (2) Can be indexed for subcarriers and can be expressed as: (4) [78]

為了增大或者最大化頻譜效率,第k個用戶的最後一個載波可被設置為與第(k+1 )個用戶的第一個載波相鄰。該關係可被表示為:(5 )(6 ) 其中等式(6 )可被設計為跳過零頻率。因此,在使用中的子載波的總數量與可用的子載波的數量相同(除DC子載波外 )。該關係可被表示為:(7 )[79] In order to increase or maximize spectral efficiency, the last carrier of the kth user may be set to be adjacent to the first carrier of the (k+1)th user. This relationship can be expressed as: (5) (6) where Equation (6) can be designed to skip zero frequency. Therefore, the total number of subcarriers in use is the same as the number of available subcarriers (except DC subcarriers). This relationship can be expressed as: (7) [79]

頻譜預編碼可用於抑制在例如特定頻率上的傳送信號,例如,以頻譜效率的損失為代價。舉例來說,等式(1 )中描述的傳送信號的頻域信號表示可被表示為:(8 ) 其中:(9 )(10 ) 其中可為OFDM信號持續時間。為抑制第k個用戶的,預編碼過程{}可被施加在資料上,並且則可被表示為:(11 ) 其中傳送的資料的數量可從減少到,其中。以矩陣形式,等式(8 )則可被表示為:(12 ) 其中:其中可為預編碼資料,可為預編碼矩陣,可為用戶資料信號,可為指示頻譜洩露或者信號洩露(例如,在頻率上 )的矩陣,並且可為在頻率上的信號洩露。[80] Spectral precoding can be used to suppress transmitted signals on, for example, a particular frequency, for example, at the expense of spectral efficiency. For example, the frequency domain signal representation of the transmitted signal described in equation (1) can be expressed as: (8) where: (9 ) (10) where Can be the duration of the OFDM signal. To suppress the kth user , , precoding process { } can be applied to the data, and It can be expressed as: (11) The amount of information transmitted therein can be Reduce to ,among them . In matrix form, equation (8) can be expressed as: (12) where: among them Can be precoded data, Can be a precoding matrix, Can be a user profile signal, Can indicate spectrum leakage or signal leakage (for example, at frequency Matrix), and Can be at frequency The signal on the leak. [80]

為減小或者最小化,可執行的奇異值分解。的奇異值分解的結果可為:                                                                                        (13 ) 其中可為的單位矩陣,可為的對角矩陣,該矩陣可包括在其對角線上非增加順序的的奇異值,以及V k可為行可為的單位矩陣。在一個示例中,預編碼矩陣則可被選為:(14 )[81] To reduce or minimize Executable The singular value decomposition. The result of the singular value decomposition can be: (13) where Can be Unit matrix, Can be Diagonal matrix, which may include non-increasing order on its diagonal Singular value, and V k can be a line of Unit matrix. In one example, the precoding matrix can be selected as: (14) [81]

編碼速率可被定義為,並且編碼冗餘可被定義為。如果,由於s k可在P k的零空間(null space )中,對任何的任意資料向量(arbitrary data vector )。可選擇值以使。因此,具有可作為陷波頻率。[82] Coding rate Can be defined as And coding redundancy Can be defined as . in case Since s k can be in the null space of P k , for any arbitrary data vector (arbitrary data vector ) Have . Choice of values to make . Therefore, having of Can be used as the notch frequency. [82]

如果CR用戶中的每一者被通過該方法個別地預編碼,全部K個用戶的總編碼速率可被表示為:(15 )  從上述一個或者多個等式中,可注意到的是,系統頻譜效率可隨著CR用戶數量和/或編碼冗餘(例如,本文中的陷波頻率的數量 )的增加而被減小。第2圖是示出第k個預編碼的基於OFDM的CR用戶的示例收發器200的方框圖。[83] If each of the CR users is individually precoded by this method, the total coding rate for all K users can be expressed as: (15) From one or more of the above equations, it may be noted that the spectral efficiency of the system may be increased as the number of CR users and/or coding redundancy (eg, the number of notch frequencies herein) increases. Reduced. 2 is a block diagram showing an example transceiver 200 of a kth precoded OFDM based CR user. [83]

對於給定的通帶,距離通帶的兩個邊緣遠的子載波與距離邊緣近的子載波相比,可與更少的OOBE關聯。因此,使用距離邊緣遠的子載波的CR用戶可以被以與距離邊緣近的CR用戶不同的方式預編碼。基於這一觀察,可根據適當地選擇陷波頻率來使用每個CR用戶的陷波頻率減小數目,以改善頻譜效率。[84] For a given passband, subcarriers that are farther away from the two edges of the passband can be associated with fewer OOBEs than subcarriers that are closer to the edge. Thus, CR users using subcarriers that are farther from the edge can be precoded in a different way than CR users that are close to the edge. Based on this observation, the number of notch frequency reductions per CR user can be used according to the appropriate selection of the notch frequency to improve spectral efficiency. [84]

具體而言,用戶1(例如,k=1 )可使用的子載波,其中可為頻寬內最低的子載波索引。因此,用戶1可與可用通帶的低邊緣鄰近。為給該用戶設計預編碼器,收發器可被設計以使陷波頻率位於左(例如,低頻 )阻帶而非位於右(例如,高頻 )阻帶。[85] Specifically, User 1 (for example, k =1 ) can be used. To Subcarriers, where It can be the lowest subcarrier index within the bandwidth. Thus, User 1 can be adjacent to the lower edge of the available passband. To design a precoder for the user, the transceiver can be designed such that the notch frequency is at the left (eg, low frequency) stop band rather than at the right (eg, high frequency) stop band. [85]

類似地,用戶K(例如,k=K )可使用從的子載波,其中可為最高的子載波索引。因此,用戶K可與可用通帶的右/高邊緣鄰近。為給該用戶K設計預編碼器,收發器可被設計以使陷波頻率位於右(例如,高頻 )阻帶而非左(例如,低頻 )阻帶。對於K>k>1的一個或者多個用戶k,因為這些中頻寬用戶可使用頻寬中的內部,兩側陷波頻率的數目可例如通過根據其自有頻寬的兩個邊緣和整個可用通帶的兩個邊緣間的距離所確定的一個或者多個量來被減少。因此,第k個子載波的編碼速率可減少至:(16 ) 其中,並且總編碼速率可被表示為:(17 ) 對於,當[86] Similarly, user K (for example, k=K) can be used from To Subcarriers, where Can be the highest subcarrier index. Thus, user K can be adjacent to the right/high edge of the available passband. To design the precoder for the user K , the transceiver can be designed such that the notch frequency is at the right (eg, high frequency) stop band rather than the left (eg, low frequency) stop band. For one or more users k with K > k > 1, since these mid-bandwidth users can use the interior of the bandwidth, the number of notch frequencies on both sides can be, for example, by two edges and the entire according to their own bandwidth One or more quantities determined by the distance between the two edges of the passband are reduced. Therefore, the coding rate of the kth subcarrier can be reduced to: (16) where And the total coding rate can be expressed as: (17) For , when Time . [86]

在同步CR用戶間,有極小或者沒有胞元間干擾。如果每個CR用戶確定或者設計其自身的預編碼器,該設計可能未利用CR用戶間的同步以及為不同CR用戶共同設計預編碼器的能力。頻譜預編碼方法可將被指派連續頻寬的多個用戶當做虛擬單用戶。例如,對於用戶(例如,每一個用戶 ),CR收發器可確定整個分配通帶的虛擬預編碼矩陣G。用戶可選擇對應於其分配子載波的G中的合適的行,以在傳輸期間對其資料預編碼。如果每個用戶在對應於虛擬用戶的頻寬內的分配子載波上使用該方法,每個用戶可獲得相同的G,而這可減少複雜度(因為其可被執行而無需附加信令 )。多用戶系統可像虛擬單用戶系統一樣操作。頻譜預編碼方法可改善總的頻譜效率。[87] There is little or no inter-cell interference between synchronous CR users. If each CR user determines or designs its own precoder, the design may not utilize synchronization between CR users and the ability to design precoders for different CR users. The spectrum precoding method can treat multiple users assigned consecutive bandwidths as virtual single users. For example, for a user (eg, each user), the CR transceiver can determine the virtual precoding matrix G for the entire assigned passband. The user can select the appropriate row in the G corresponding to its assigned subcarrier to precode its data during transmission. If each user uses this method on the assigned subcarriers within the bandwidth corresponding to the virtual user, each user can get the same G, and this can reduce complexity (because it can be performed without additional signaling). Multi-user systems can operate like virtual single-user systems. The spectral precoding method improves overall spectral efficiency. [87]

舉例來說,可表示虛擬單用戶的陷波頻率。如在此描述的,虛擬用戶的洩露的傳送信號的頻域表示可被表示為:(18 ) 其中NM並且(19 ) 以矩陣形式,等式(18 )可被表示為:(20 ) 其中:,為減小或者最小化,可執行的奇異值分解。奇異值分解可將因式分解為:(21 ) 其中U可為的單位矩陣,可為在其對角線上包括非增加順序的的奇異值的的對角矩陣,並且V可為行為的單位矩陣。預編碼矩陣可被表示為:(22 ) 其中V的最後行可被選作使用的向量,以消除頻譜洩露。這些行可表示對應於個最小奇異值的右奇異向量。例如,這些值可與V中的其他行正交(例如,可對應於個最大奇異值的右奇異向量 )。預編碼矩陣可將信號洩露中的至少一部分空出(null out )或者移到陷波頻率。[88] for example, It can represent the notch frequency of a virtual single user. As described herein, the frequency domain representation of the virtual user's leaked transmitted signal can be expressed as: (18) where N £ M and (19) In matrix form, equation (18) can be expressed as: (20) where: , To reduce or minimize Executable The singular value decomposition. Singular value decomposition can Factorization is: (21) where U can be Unit matrix, Can include non-increasing order on its diagonal Singular value Diagonal matrix, and V can be a behavior of Unit matrix. The precoding matrix can be expressed as: (22) where the last of V Lines can be selected as vectors to eliminate spectral leaks. These lines can be represented as corresponding to of The right singular vector of the smallest singular value. For example, these values can be orthogonal to other rows in V (eg, can correspond to of The right singular vector of the largest singular value). Precoding matrix At least a portion of the signal leakage may be null out or moved to the notch frequency. [88]

CR用戶裝置可根據K個用戶的資料長度將資料向量d劃分為K個資料子塊。CR用戶裝置可將預編碼矩陣劃分為對應於K個資料子塊的K個預編碼子矩陣。例如,對應於K個資料子塊的子矩陣可被表示為:(23 ) 其中可為預編碼器,並且d k可為第k個用戶的資料向量。[89] The CR user device can divide the data vector d into K data sub-blocks according to the data length of the K users. CR user equipment can precode matrix It is divided into K precoding sub-matrices corresponding to K data sub-blocks. For example, a submatrix corresponding to K data sub-blocks can be represented as: (23) where It can be a precoder, and d k can be the data vector of the kth user. [89]

在等式(23 )中,第k個用戶的預編碼資料s k =G k d k 可由可用的N個子載波來調變。例如,在其他方法中,第k個用戶的預編碼資料s k可由Nk 個子載波(例如,僅Nk個子載波 )來調變,而非跨越與虛擬用戶關聯的子載波中的每一者。G k 的構建可被應用於非連續頻譜。例如,在此描述的連續頻寬的標號(notation )可與非連續頻寬的那些標號類似,等式(23 )中的參數s k ,G k ,d k 和等式(12 )中的s k ,G k ,d k 可分別具有不同維度。[90] In equation (23), the k- th pre-coded data s k = G k d k can be modulated by the available N sub-carriers. For example, in other methods, the k-th pre-coded data s k may be modulated by N k sub-carriers (eg, only N k sub-carriers) instead of each of the sub-carriers associated with the virtual user. . The construction of G k can be applied to non-contiguous spectrum. For example, the notation of the continuous bandwidth described herein may be similar to those of the discontinuous bandwidth, the parameters s k , G k , d k in equation (23 ) and s in equation (12 ) k , G k , d k may have different dimensions, respectively. [90]

在接收機側,在離散傅利葉變換(DFT )和頻域均衡後,第k個用戶的用表示的所接收的預編碼資料可由來解碼,因為。估計的資料向量可被表示為:(24 )[91] On the receiver side, after discrete Fourier transform (DFT) and frequency domain equalization, the kth user The received precoding data represented by To decode because . The estimated data vector can be expressed as: (24) [91]

雖然K個用戶可使用相同的虛擬單用戶預編碼器G,K個用戶的預編碼過程(和/或解碼過程 )可被獨立執行並且該方法和系統可被執行而無需在K個用戶中引入附加信令負載。[92] Although K users can use the same virtual single-user precoder G, the pre-coding process (and/or decoding process) of K users can be performed independently and the method and system can be executed without introducing in K users Additional signaling load. [92]

如在此公開的多用戶預編碼可利用用戶間同步的優勢;另外,用戶間的干擾可以是顯著的。如第3圖所示(其為使用在此描述的“單個虛擬預編碼器”的功率譜密度(PSD )性能的示例 ),頻寬內的功率可非常高。為了能可能緩解這種情況,用戶(例如,每個個別用戶 )可以使用濾波和加窗以移除干擾。如果用戶佔用的頻譜是連續的,濾波和加窗都可以是有效的干擾減少技術。如果頻譜是不連續的,加窗可以是有效的,但濾波較不有效。[93] Multi-user precoding as disclosed herein may take advantage of inter-user synchronization; in addition, interference between users may be significant. As shown in FIG. 3, which is an example of power spectral density (PSD) performance using the "single virtual precoder" described herein, the power within the bandwidth can be very high. In order to be able to alleviate this situation, users (eg, each individual user) can use filtering and windowing to remove interference. If the spectrum occupied by the user is continuous, both filtering and windowing can be effective interference reduction techniques. If the spectrum is discontinuous, windowing can be effective, but filtering is less effective. [93]

第4圖繪出了具有濾波和/或加窗的示例預編碼OFDM收發器400。長濾波器可被使用,和/或長保護間隔可用於加窗,其可實現低OOB洩露。如果預編碼能將OOB洩露降低到例如鄰近通帶的特定水準,濾波器的長度或者加窗的保護間隔可減少至在大部分實際場景中可實施的水準。[94] FIG. 4 depicts an example pre-coded OFDM transceiver 400 with filtering and/or windowing. Long filters can be used, and/or long guard intervals can be used for windowing, which can achieve low OOB leaks. If the precoding can reduce the OOB leak to, for example, a particular level of proximity to the passband, the length of the filter or the windowed guard interval can be reduced to a level that can be implemented in most practical scenarios. [94]

模擬結果可證明預編碼方法的有效性,在該預編碼方法中,CR用戶可根據總的、單個用戶虛擬預編碼矩陣和在單個用戶頻寬內其各自的資源配置來確定其個別的預編碼矩陣。為了說明提議的多用戶預編碼方法的性能,可執行模擬,在模擬中,,每個符號持續時間的採樣數為1024,並且CR用戶的通帶是-3600kHz至3600kHz之間。通帶可包括480個子載波(例如,跳過零頻率 )。用於模擬的調變類型是正交相移鍵控(QPSK )。[95] The simulation results demonstrate the validity of the precoding method in which CR users can determine their individual precoding based on the total, single user virtual precoding matrix and their respective resource configurations within a single user bandwidth. matrix. To illustrate the performance of the proposed multi-user precoding method, the simulation can be performed, in the simulation, , , The number of samples per symbol duration is 1024, and the CR user's passband is between -3600 kHz and 3600 kHz. The passband can include 480 subcarriers (eg, skip zero frequency). The type of modulation used for the simulation is Quadrature Phase Shift Keying (QPSK). [95]

第5圖示出了每個用戶被單獨預編碼的多用戶預編碼方法(例如,可使用多用戶預編碼方法,但CR用戶的單獨預編碼矩陣不是基於跨越整個頻寬的虛擬單用戶來選擇的 )的OOBE性能。作為示例,在該示例模擬中有四個用戶(例如,用戶1,用戶2,用戶3和用戶4 ),並且每個用戶可被指派通帶的相等的分割部分(例如,頻寬的四分之一 )。例如,用戶1可在-3600kHz和-1800kHz之間的頻寬上傳送。因為其傳輸頻寬遠離整個通帶的右/上邊緣(例如,3600kHz ),預編碼器可被選擇以使陷波頻率位於左/低阻帶(例如,低於-3600kHz ),同時可不考慮右/低阻帶。因此,用戶1的CR可選擇四個陷波頻率,例如在[-6101, -6099, -4101, -4099]處用於用戶1。[96] Figure 5 shows a multi-user precoding method in which each user is separately precoded (e.g., a multi-user precoding method can be used, but the CR user's individual precoding matrix is not selected based on a virtual single user spanning the entire bandwidth. OOBE performance. As an example, there are four users (eg, User 1, User 2, User 3, and User 4) in this example simulation, and each user can be assigned an equal split portion of the passband (eg, a quarter of the bandwidth) one). For example, User 1 can transmit over a bandwidth between -3600 kHz and -1800 kHz. Because its transmission bandwidth is far from the right/upper edge of the entire passband (for example, 3600 kHz), the precoder can be selected such that the notch frequency is at the left/low stopband (eg, below -3600 kHz), regardless of the right / low resistance band. Therefore, User 1's CR can select four notch frequencies, for example for User 1 at [-6101, -6099, -4101, -4099]. [96]

類似的,用戶4可在1800kHz和3600kHz之間的頻寬上傳送,該頻寬可遠離整個通帶的左/低邊緣(例如,-3600kHz )。對於用戶4,由於陷波頻率可被包括在右/上側,但不可在左/下側,裝置可選擇位於右/上頻寬的陷波頻率(例如,大於3600kHz ),例如[4099, 4101, 6099, 6101] kHz。[97] Similarly, user 4 can transmit over a bandwidth between 1800 kHz and 3600 kHz, which can be away from the left/lower edge of the entire passband (eg, -3600 kHz). For User 4, since the notch frequency can be included on the right/upper side, but not on the left/lower side, the device can select the notch frequency at the right/up bandwidth (eg, greater than 3600 kHz), such as [4099, 4101, 6099, 6101] kHz. [97]

對於用戶2,分配的頻寬部分可在-1800kHz和0Hz之間,其與整個通帶的兩個邊緣都相對較近。對於用戶3,頻寬可在0Hz和1800kHz之間,其與整個通帶的兩個邊緣也相對較近。因此,用戶2和用戶3都可在整個通帶的兩側選擇陷波頻率。由此,用戶2和用戶3都可在整個通帶的兩側選擇陷波頻率。例如,[-4101, -4099, 4099, 4101] kHz可被選擇作為用戶2和用戶3的四個陷波頻率。在第5圖中,示出了四個用戶的個別預編碼OFDM信號的PSD曲線和總的預編碼OFDM信號的PSD曲線。[98] For User 2, the allocated bandwidth portion can be between -1800 kHz and 0 Hz, which is relatively close to both edges of the entire passband. For User 3, the bandwidth can be between 0 Hz and 1800 kHz, which is also relatively close to both edges of the entire passband. Therefore, both user 2 and user 3 can select the notch frequency on both sides of the entire pass band. Thus, both user 2 and user 3 can select the notch frequency across the entire pass band. For example, [-4101, -4099, 4099, 4101] kHz can be selected as the four notch frequencies for User 2 and User 3. In Figure 5, the PSD curves for the individual precoded OFDM signals for the four users and the PSD curve for the total precoded OFDM signals are shown. [98]

第3圖示出了當基於單個虛擬用戶的預編碼矩陣和頻寬內的個別分配的身份來選擇個別預編碼矩陣時四個用戶的預編碼OFDM信號的示例PSD曲線。例如,若使用提議的基於單個虛擬用戶預編碼器的有效多用戶預編碼方法,[-6101, -6099, -4101, -4099, 4099, 4101, 6099, 6101]kHz可被選擇作為虛擬單用戶的8個陷波頻率。第3圖示出了四個用戶的四個預編碼OFDM信號的PSD曲線和總預編碼OFDM信號的PSD曲線。如第3圖所示,四個用戶的四個PSD曲線中的每一者展開至其他用戶的頻寬,但PSD曲線和總信號(例如,四個信號的和 )的PSD曲線可在整個通帶的兩邊示出良好的OOBE抑制。[99] Figure 3 shows an example PSD curve for four users of precoded OFDM signals when an individual precoding matrix is selected based on a precoding matrix of a single virtual user and an individually assigned identity within the bandwidth. For example, if the proposed effective multi-user precoding method based on a single virtual user precoder is used, [-6101, -6099, -4101, -4099, 4099, 4101, 6099, 6101] kHz can be selected as a virtual single user. 8 notch frequencies. Figure 3 shows the PSD curve of the four precoded OFDM signals for four users and the PSD curve for the total precoded OFDM signal. As shown in Figure 3, each of the four PSD curves of the four users is expanded to the bandwidth of other users, but the PSD curve of the PSD curve and the total signal (eg, the sum of the four signals) can be passed throughout Both sides of the strip show good OOBE inhibition. [99]

當比較根據單個虛擬用戶預編碼器和對頻寬內的各個分配的知識來選擇個別前置處理器的技術(例如,第3圖所示 )和多用戶預編碼被使用但是個別預編碼器由個別用戶來確定和選擇(例如,第5圖所示 )的方法的性能,第3圖的示例中的OOBE抑制比第5圖的示例中的更好。此外,可有16個陷波頻率被與第5圖關聯的預編碼方法使用,但有8個陷波頻率可被用於第3圖中示出的虛擬單用戶。虛擬單用戶方法與預編碼器被個別確定的多用戶預編碼方法相比,可實現59/60的更高頻譜效率(例如,從1 – 8/480獲得 )和更好(例如,更大 )的OOBE抑制。例如,在第5圖示出的模擬中的頻譜效率可為29/30(例如,從1 – 16/480獲得 )。[100] Techniques for selecting individual pre-processors based on a single virtual user precoder and knowledge of individual assignments within the bandwidth (eg, as shown in FIG. 3) and multi-user precoding are used but individual precoders are used by The performance of the method by which individual users determine and select (e.g., as shown in FIG. 5), the OOBE suppression in the example of FIG. 3 is better than in the example of FIG. In addition, there may be 16 notch frequencies used by the precoding method associated with Figure 5, but there are 8 notch frequencies that can be used for the virtual single user shown in Figure 3. The virtual single-user approach achieves a higher spectral efficiency of 59/60 (eg, from 1 – 8/480) and better (eg, larger) than a multi-user precoding method in which the precoder is individually determined. OOBE suppression. For example, the spectral efficiency in the simulation shown in Figure 5 can be 29/30 (eg, obtained from 1 - 16/480). [100]

第6圖示出了此處公開的預編碼方法的位元誤差率(BER )性能的示例比較。兩種預編碼方法的BER性能可與未編碼的OFDM的BER性能相對一致。第7圖示出了第3圖和第5圖示出的預編碼方法的峰均功率比(PAPR )性能的示例比較。PAPR性能退化可與編碼速率有關。更低的編碼速率可與更差的PAPR性能有關。在第7圖中,因為這兩種方法的編碼速率是較大的(例如,接近於1 ),兩種預編碼方法的PAPR性能與未編碼OFDM類似。因此,基於對整個頻寬所確定的虛擬預編碼器和對整個頻寬內的個別分配的知識的預編碼器選擇可實現在不犧牲BER或者PAPR性能的同時增加頻譜效率。[101] Figure 6 shows an example comparison of the bit error rate (BER) performance of the precoding method disclosed herein. The BER performance of the two precoding methods can be relatively consistent with the BER performance of uncoded OFDM. Fig. 7 shows an example comparison of the peak-to-average power ratio (PAPR) performance of the precoding method shown in Figs. 3 and 5. PAPR performance degradation can be related to the coding rate. Lower coding rates can be associated with worse PAPR performance. In Figure 7, because the coding rates of the two methods are large (e.g., close to 1), the PAPR performance of the two precoding methods is similar to uncoded OFDM. Thus, precoder selection based on the virtual precoder determined for the entire bandwidth and knowledge of the individual allocations over the entire bandwidth can achieve increased spectral efficiency without sacrificing BER or PAPR performance. [101]

如第8圖所示,組合預編碼技術可用於組合多個個別的預編碼技術,例如,(25 ) 其中Gi 是第i個組成預編碼器(例如,資料串流實質上要通過的第i個預編碼器 )並且表示一個預編碼技術的預編碼矩陣。第8圖概念性地將組合預編碼器800中的每一個組成預編碼器展示為預編碼塊802。每一個個別的組成預編碼器可對例如最小化OOB功率洩露、減小PAPR、和/或最小化BER的一個或者多個設計目標有貢獻。維的第i個預編碼矩陣Gi 可滿足匹配的編碼速率(例如,維度 )約束,以使(26 ) 預編碼技術的組合可以不禁用組成預編碼技術中的每一者的功能。[102] As shown in Figure 8, a combined precoding technique can be used to combine multiple individual precoding techniques, for example, (25) where G i is the ith component precoder (eg, the ith precoder through which the data stream is substantially passed) and represents a precoding matrix of a precoding technique. FIG. 8 conceptually illustrates each of the constituent precoders in the combined precoder 800 as a precoding block 802. Each individual component precoder may contribute to, for example, one or more design goals that minimize OOB power leakage, reduce PAPR, and/or minimize BER. The i- th precoding matrix G i of the dimension can satisfy the matching coding rate (eg, dimension) constraint, so that (26) The combination of precoding techniques may not disable the functionality that makes up each of the precoding techniques. [102]

第9圖示出了正交分頻多工(OFDM )系統的示例性發射機900。第10圖示出了OFDM系統的示例性接收機1000。第9圖和第10圖示出了具有任意連續或者非連續可用頻譜的預編碼OFDM(P-OFDM )系統的通用情況。[103] Figure 9 shows an exemplary transmitter 900 of an orthogonal frequency division multiplexing (OFDM) system. Figure 10 shows an exemplary receiver 1000 of an OFDM system. Figures 9 and 10 illustrate the general case of a precoding OFDM (P-OFDM) system with any contiguous or non-continuously available spectrum. [103]

當可用頻譜是非連續時,為了減小帶外(OOB )功率洩露,組成預編碼矩陣中的一者可被設計為將帶外頻率向下陷(notch down )。[104] To reduce out-of-band (OOB) power leakage when the available spectrum is discontinuous, one of the constituent precoding matrices can be designed to notch down the out-of-band frequencies. [104]

作為組合預編碼技術的示例,組成預編碼器可用於減小在OFDM系統中的OOB功率洩露。例如,Beek的SVD預編碼在位於通帶外的特定頻率上向下陷功率,以減小帶外功率發射。Chung的頻譜預編碼用跨越子載波的頻譜預編碼代替了OFDM中的矩形脈衝整形,以實現位於通帶外側的功率頻譜密度中的更快滾降(roll off )。這些預編碼被用作組合預編碼器的組成預編碼器,例如一般地在第8圖中所示。通過例如經過合理地指派匹配的編碼速率來調整預編碼矩陣的維度,組合預編碼器與兩個組成預編碼器中個別任一個相比,可具有更好的OOB功率抑制效果。[105] As an example of a combined precoding technique, a component precoder can be used to reduce OOB power leakage in an OFDM system. For example, Beek's SVD precoding dips power at a particular frequency outside the passband to reduce out-of-band power emissions. Chung's spectral precoding replaces the rectangular pulse shaping in OFDM with spectral precoding across subcarriers to achieve faster roll off in the power spectral density outside the passband. These precodings are used as component precoders for the combined precoder, such as generally shown in FIG. By adjusting the dimensions of the precoding matrix, for example by reasonably assigning matching coding rates, the combined precoder can have a better OOB power rejection effect than any of the two component precoders. [105]

第11圖示出了可使用預編碼的示例OFDM系統1100。如第11圖所示,源位元串流可被PSK/QAM調變塊1102映射到符號串流。符號串流可通過串列至並行(S/P )轉換塊1104。如果表示第l個資料向量,其中l是時域索引並且K是每個向量的長度,則在預編碼塊1106處,每個向量可被的預編碼矩陣G左乘,例如,,其中可表示第l個預編碼向量。編碼速率可被定義為,其可不大於1。在逆快速傅利葉變換(IFFT )塊1108處,可以是的逆IFFT輸出。在區塊1110,循環前置(CP )或零填充(ZP )可被添加至,以抵消通道效果。在區塊1112,符號串流可經由通道被傳送。在接收機處,在區塊1114,CP或者ZP可被從接收到的向量中移除。符號串流可通過FFT塊1116並且可在解碼塊1118通過被的解碼矩陣左乘來被解碼,即。如果通道是理想的,如果則資料可被正確地解碼。解碼符號串流可經過並行至串列(P/S )轉換塊1120的處理並且可被PSK/QAM解調塊1122映射至位元串流。[106] An eleventh diagram illustrates an example OFDM system 1100 in which precoding may be used. As shown in FIG. 11, the source bit stream can be mapped to the symbol stream by the PSK/QAM modulation block 1102. The symbol stream can be serialized to parallel (S/P) conversion block 1104. in case Representing the lth data vector, where l is the time domain index and K is the length of each vector, then at precoding block 1106, each vector can be The precoding matrix G is multiplied by, for example, ,among them It may represent the l-th precoding vector. The coding rate can be defined as , it can be no more than 1. At the inverse fast Fourier transform (IFFT) block 1108, Can be The inverse of the IFFT output. At block 1110, a loop preamble (CP) or zero padding (ZP) can be added to To offset the channel effect. At block 1112, the symbol stream can be transmitted via the channel. At the receiver, at block 1114, the CP or ZP can be received from the vector Removed. The symbol stream can pass through FFT block 1116 and can be passed at decoding block 1118 Decoding matrix Left multiplied to be decoded, ie . If the channel is ideal, if Then the data can be decoded correctly. The decoded symbol stream may pass through the processing of the parallel to serial (P/S) conversion block 1120 and may be mapped to the bit stream by the PSK/QAM demodulation block 1122. [106]

在Beek的SVD預編碼中,給定的連續時域傳送信號可被表示為,其中是具有脈衝形式函數的加窗的子載波波形。在該脈衝形式函數中,是有效信號持續時間,並且是循環前置持續時間。的頻域為,其中:,其中是整個符號的持續時間。為了通過設計預編碼矩陣來最小化在頻率上的輻射功率,如果矩陣,則。為不論而減小或者最小化的SVD可被執行以將因式分解為,其中的單位矩陣,是包含非增加順序的的奇異值的的對角矩陣,並且是行為的單位矩陣。預編碼矩陣可被選為可被定義為編碼冗餘。如果,則對於任何任意,因為b l可以在P的零空間中。[107] In Beek's SVD precoding, given Continuous time domain transmission signal Can be expressed as ,among them Is a pulse form function Windowed subcarrier waveform . In the pulse form function, Is the effective signal duration, and Is the loop pre-set duration. Frequency domain is ,among them: ,among them Is the duration of the entire symbol. In order to pass the precoding matrix To minimize the frequency Radiant power on, if matrix ,then . Regardless of Decrease or minimize , SVD can be executed to Factorization into ,among them Yes Unit matrix, Is included in a non-increasing order Singular value Diagonal matrix, and Is behavior of Unit matrix. The precoding matrix can be selected as . Can be defined as code redundancy. in case , for any arbitrary Have Because b l can be in the zero space of P. [107]

矩形脈衝OFDM可處理不連續脈衝邊緣並且可顯示相對大的可下降為的功率頻譜旁瓣。對比之下,Chung的頻譜預編碼中,連續相位OFDM信號可顯示相對小的可下降為的功率頻譜旁瓣,並且可提供比矩形脈衝OFDM信號更高的頻譜效率。在Chung的頻譜預編碼中,可引入滿足連續相位需求的新的基集的兩個族(family ),其分別命名為族W和族V[108] Rectangular pulse OFDM can process discontinuous pulse edges and can display a relatively large drop to Power spectrum side lobes. In contrast, in Chung's spectrum precoding, the continuous phase OFDM signal can show a relatively small drop to The power spectrum is side lobed and provides higher spectral efficiency than rectangular pulsed OFDM signals. In Chung's spectral precoding, two families of new base sets satisfying the continuous phase requirement can be introduced, which are named family W and family V , respectively. [108]

對應的預編碼OFDM結構可用於與任意輸入資料一起使用基集來構建OFDM信號。基於族WL的預編碼矩陣的項(entry )可被定義為(27 ) 對於。在該公式中,可以是的模數-值的以二進位表示(以位元方式 )的最高有效和最低有效位元的和,預設情況下並且。所有項 可等於0。[109] A corresponding precoded OFDM structure can be used to construct an OFDM signal using a base set with any input data. Precoding matrix based on family W L Item (entry) can be defined as (27) For . In the formula, Can be Modulus - The sum of the most significant and least significant bits of the value in binary terms (in bits), by default and . All items can be equal to zero. [109]

基於族VL 的預編碼矩陣的項可被定義為:(28 ) 對於。在該公式中,如果,否則,其中可表示的以二進位表示的最低有效位元。所有其他項可等於0。[110] Family V L based precoding matrix The item can be defined as: (28) For . In the formula, if then ,otherwise ,among them Representable The least significant bit expressed in binary. All other items can be equal to zero. [110]

在Chung的頻譜預編碼方法中,L可以是確定編碼速率的參數,其可等於。因為可以是包括正交行的左單位矩陣,解碼矩陣可以是它們的共軛轉置。[111] In Chung's spectral precoding method, L may be a parameter that determines the encoding rate, which may be equal to . because , with It may be a left unit matrix comprising orthogonal rows, which may be their conjugate transposes. [111]

例如的頻譜預編碼矩陣和SVD預編碼矩陣可通過定義或者被合併。定義G的前一種方式的缺點是在其被左乘後,的連續相位特性(property )不被保持。通過選擇定義G的後一種方式,作為SVD預編碼的優點,的連續相位特性可被保持。可首先通過使用下列公式設計來合併預編碼器,而不考慮。可通過用來替代公式中的P和用公式確定來執行的SVD。接下來,令。在公式中傳送的頻譜預編碼的信號xl可以是在第11圖中的IFFT塊1108的IFFT輸出的實數部分,同時IFFT輸出的複數部分可用於SVD預編碼。在第11圖的系統中,複數輸出可被使用。[112] E.g Spectrum precoding matrix and SVD precoding matrix can be defined or Being merged. The disadvantage of the former way of defining G is that it is After the left multiplication, The continuous phase property is not maintained. By choosing the latter way of defining G, as an advantage of SVD precoding, The continuous phase characteristics can be maintained. Can be designed first by using the following formula To merge the precoders, Without consideration . Can be used To replace the formula P and formula determine To execute SVD. Next, order with . In the formula Precoded transmission spectrum signal x l may be the view of the real part 11 of the output from the IFFT IFFT block 1108, while the output of the IFFT part of the complex SVD precoding may be used. In the system of Figure 11, the complex output can be used. [112]

的匹配維度可被分配以達到期望的OOB功率抑制效果。第12圖是示出在對無任意CP或者ZP(NG )使用QPSK調變和256大小的FFT的64子載波OFDM系統應用Chung的頻譜預編碼後的PSD的圖1200。例如對於NG、ZP和CP,模擬結果可示出基於WL的系統的PSD可勝過相同L的基於VL 的系統的PSD。編碼速率是。第12圖中的五條曲線1202、1204、1206、1208和1210示出當編碼速率從1(未編碼 )下降到63/64(L=6 )是可出現最大OOB功率衰減。曲線1202示出未編碼系統的PSD。曲線1204、1206、1208和1210分別示出L值為6、5、4和3的PSD。隨著L進一步線性減小,因為編碼速率呈指數下降,累積的抑制影響可變得不太有效。[113] with The matching dimensions can be assigned to achieve the desired OOB power suppression effect. Figure 12 is a diagram 1200 showing the PSD after spectral precoding of Chung is applied to a 64 subcarrier OFDM system using QPSK modulation and 256 size FFT without any CP or ZP (NG). For example NG, ZP and CP, based on simulation results illustrating the PSD L system may be better than the same L W L of the System V-based PSD. The encoding rate is . The five curves 1202, 1204, 1206, 1208, and 1210 in Fig. 12 show that the maximum OOB power attenuation can occur when the encoding rate drops from 1 (uncoded) to 63/64 (L=6). Curve 1202 shows the PSD of the uncoded system. Curves 1204, 1206, 1208, and 1210 show PSDs with L values of 6, 5, 4, and 3, respectively. As L further decreases linearly, the cumulative suppression effect can become less effective as the coding rate decreases exponentially. [113]

第13圖是示出在應用Beek的SVD預編碼方法後的PSD的圖1300。曲線1302示出未編碼系統的PSD。兩組陷波頻率被用於模擬,也就是包括近陷波頻率的組1,及包括遠陷波頻率的組2。曲線1304和1306分別示出了組1和2的PSD,其中R=2。曲線1308和1310分別示出了組1和2的PSD,其中R=4。曲線1312和1314分別示出了組1和2的PSD,其中R=6。曲線1316和1318分別示出了組1和2的PSD,其中R=8。[114] Figure 13 is a diagram 1300 showing the PSD after applying the SVD precoding method of Beek. Curve 1302 shows the PSD of the uncoded system. The two sets of notch frequencies are used for simulation, that is, including near notch frequencies Group 1, and including far trap frequency Group 2. Curves 1304 and 1306 show the PSD for groups 1 and 2, respectively, where R=2. Curves 1308 and 1310 show the PSD for groups 1 and 2, respectively, where R=4. Curves 1312 and 1314 show the PSD for groups 1 and 2, respectively, where R=6. Curves 1316 and 1318 show the PSD for groups 1 and 2, respectively, where R=8. [114]

在該模擬中用0-63的活動子載波索引和256的FFT大小,組1可以是距離帶內近的並且組2是遠的。第13圖示出了選擇的陷波頻率的分配可提供OOB功率和衰減速率間的權衡。每1/64編碼衰減的功率衰減可實質上沒有變化並且當編碼速率小於62/64時其可以大於頻譜預編碼的功率衰減。當總體速率被固定為,OOB功率抑制效果可通過採用編碼率對來實現,例如指派為SVD預編碼速率以及為頻譜預編碼速率。[115] In this simulation, with a moving subcarrier index of 0-63 and an FFT size of 256, group 1 can be close in-band and group 2 is far. Figure 13 shows that the allocation of the selected notch frequency provides a trade-off between OOB power and attenuation rate. The power attenuation per 1/64 code attenuation may be substantially unchanged and may be greater than the spectral precoding power attenuation when the coding rate is less than 62/64. When the overall rate is fixed to , OOB power suppression effect can be adopted Encoding rate pair implementation, such as assignment Precoding rate for SVD and Precoding rate for the spectrum. [115]

第14圖和第15圖是分別示出組1(近陷波 )和組2(遠陷波 )的陷波頻率的基於SVD的和組合NG-OFDM的比較的圖1400以及圖1500。第14圖是基於在Beek的SVD預編碼和組合方案中的組1的陷波頻率。第15圖是基於在Beek的SVD預編碼和組合方案中的組2的陷波頻率。在第14圖和第15圖中,曲線1402和1502示出了未編碼系統的PSD。曲線1404和1504示出了R=4的編碼速率的PSD。曲線1406和1506示出了R=3,L=6的編碼速率的PSD。曲線1408和1508示出了R=6的編碼速率的PSD。曲線1410和1510示出了R=5,L=6的編碼速率的PSD。曲線1412和1512示出了R=8的編碼速率的PSD。曲線1414和1514示出了R=7,L=6的編碼速率的PSD。第14圖示出了,對於三種編碼速率,組合方案以稍微更寬的過渡帶為代價給出了比Beek的SVD預編碼方案低15dB的總OOB功率。此處公開的第15圖中的Beek的SVD預編碼方法和組合方案間的過渡帶的差異比第14圖中的大,但使用組合方案可看到相對顯著的OOB功率衰減。[116] 14 and 15 are a graph 1400 and a graph 1500 showing a comparison of SVD-based and combined NG-OFDM of notch frequencies of group 1 (near notch) and group 2 (far trap), respectively. Figure 14 is based on the notch frequency of Group 1 in Beek's SVD precoding and combining scheme. Figure 15 is based on the notch frequency of Group 2 in Beek's SVD precoding and combining scheme. In Figures 14 and 15, curves 1402 and 1502 show the PSD of the uncoded system. Curves 1404 and 1504 show the PSD of the encoding rate of R=4. Curves 1406 and 1506 show the PSD of the encoding rate for R=3, L=6. Curves 1408 and 1508 show the PSD of the encoding rate of R=6. Curves 1410 and 1510 show the PSD of the encoding rate of R=5, L=6. Curves 1412 and 1512 show the PSD of the encoding rate of R=8. Curves 1414 and 1514 show the PSD of the encoding rate for R = 7, L = 6. Figure 14 shows that for the three encoding rates, the combining scheme gives a total OOB power 15 dB lower than Beek's SVD precoding scheme at the expense of a slightly wider transition band. The difference between the transition bands between Beek's SVD precoding method and the combination scheme disclosed in Fig. 15 disclosed herein is larger than that in Fig. 14, but a relatively significant OOB power attenuation can be seen using the combination scheme. [116]

第16圖和第17圖是分別示出組1(近陷波 )和組2(遠陷波 )的陷波頻率的基於SVD的和組合ZP-OFDM的比較的圖1600和圖1700。第16圖是基於Beek的SVD預編碼和組合方案中的組1的陷波頻率。第17圖是基於Beek的SVD預編碼和組合方案中的組2的陷波頻率。在第16圖和第17圖中,曲線1602和1702示出了未編碼系統的PSD。曲線1604和1704示出了R=4的編碼速率的PSD。曲線1606和1706示出了R=3,L=6的編碼速率的PSD。曲線1608和1708示出了R=6的編碼速率的PSD。曲線1610和1710示出了R=5,L=6的編碼速率的PSD。曲線1612和1712示出了R=8的編碼速率的PSD。曲線1614和1714示出了R=7,L=6的編碼速率的PSD。第16圖和第17圖可看起來與第14圖和第15圖類似,因為頻譜預編碼的連續相位特性可被保持,因為在ZP前每個資料塊的兩個邊緣上的值也為零,並且因為在添加ZP後公式中P和V值可示出極小變化。[117] Figures 16 and 17 are graphs 1600 and 1700 showing a comparison of SVD-based and combined ZP-OFDM for the notch frequencies of group 1 (near notch) and group 2 (far trap), respectively. Figure 16 is a notch frequency for Group 1 in Beek based SVD precoding and combining scheme. Figure 17 is a notch frequency for Group 2 in Beek based SVD precoding and combining scheme. In Figures 16 and 17, curves 1602 and 1702 show the PSD of the uncoded system. Curves 1604 and 1704 show the PSD of the encoding rate of R=4. Curves 1606 and 1706 show the PSD of the encoding rate for R=3, L=6. Curves 1608 and 1708 show the PSD of the encoding rate of R=6. Curves 1610 and 1710 show the PSD of the encoding rate for R=5, L=6. Curves 1612 and 1712 show the PSD of the encoding rate of R=8. Curves 1614 and 1714 show the PSD of the encoding rate for R=7, L=6. Figures 16 and 17 may look similar to Figures 14 and 15, because the continuous phase characteristics of the spectral precoding can be maintained because the values on both edges of each data block before the ZP are also zero. And because the formula after adding ZP The middle P and V values can show very small changes. [117]

第18圖和第19圖是分別示出組1(近陷波 )和組2(遠陷波 )的陷波頻率的基於SVD的和組合CP-OFDM的比較的圖1800和圖1900。第18圖是基於Beek的SVD預編碼和組合方案中的組1的陷波頻率。第19圖是基於Beek的SVD預編碼和組合方案中的組2的陷波頻率。在該示例中,CP的長度可以為。因為可添加CP並且CP的起始邊緣通常不為零,則頻譜預編碼方案可能不能構建具有CP的連續信號。因此,將總頻譜效率損失的指派給頻譜預編碼並且將剩餘的指派給SVD預編碼可能不比將所有頻譜效率損失僅指派給SVD預編碼好。[118] Figures 18 and 19 are graphs 1800 and 1900 showing a comparison of SVD-based and combined CP-OFDM for the notch frequencies of group 1 (near notch) and group 2 (far trap), respectively. Figure 18 is a notch frequency for Group 1 in Beek based SVD precoding and combining scheme. Figure 19 is a notch frequency for Group 2 in Beek based SVD precoding and combining scheme. In this example, the length of the CP can be . Since the CP can be added and the starting edge of the CP is typically not zero, the spectral precoding scheme may not be able to construct a continuous signal with CP. Therefore, the total spectrum efficiency is lost Assigned to spectrum precoding and will be left over Assigning to SVD precoding may not be better than assigning all spectral efficiency losses only to SVD precoding. [118]

在第18圖和第19圖中,曲線1802和1902示出了未編碼系統的PSD。曲線1804和1904示出了R=4的編碼速率的PSD。曲線1806和1906示出了R=3,L=6的編碼速率的PSD。曲線1808和1908示出了R=6的編碼速率的PSD。曲線1810和1910示出了R=5,L=6的編碼速率的PSD。曲線1812和1912示出了R=8的編碼速率的PSD。曲線1814和1914示出了R=7,L=6的編碼速率的PSD。[119] In Figures 18 and 19, curves 1802 and 1902 show the PSD of the uncoded system. Curves 1804 and 1904 show the PSD of the encoding rate of R=4. Curves 1806 and 1906 show the PSD of the encoding rate for R=3, L=6. Curves 1808 and 1908 show the PSD of the encoding rate of R=6. Curves 1810 and 1910 show the PSD of the encoding rate for R=5, L=6. Curves 1812 and 1912 show the PSD of the encoding rate of R=8. Curves 1814 and 1914 show the PSD of the encoding rate for R=7, L=6. [119]

CP-OFDM的所有三種編碼速率的OOB功率抑制效果可能比NG-OFDM和ZP-OFDM的差。在NG-OFDM和ZP-OFDM中,旁瓣的寬度可等於鄰近子載波的頻率間隔。一個子載波的每一個旁瓣可與其他子載波的一些旁瓣重疊。公式中P的奇異值可迅速下降。然而,當CP被添加並且符號持續時間增加時,旁瓣的寬度可變更窄。因此,P的奇異值可緩慢下降。如果是在所選的陷波頻率進行預編後的平均功率洩露,則可以被表示為,其中的平均功率,以及的第i個最大奇異值。在這個意義上,對於相同的R值,CP-OFDM的功率洩露大於NG-OFDM或ZP-OFDM的[120] The OOB power suppression effect of all three coding rates of CP-OFDM may be worse than that of NG-OFDM and ZP-OFDM. In NG-OFDM and ZP-OFDM, the width of the side lobes may be equal to the frequency spacing of adjacent subcarriers. Each side lob of one subcarrier may overlap with some side lobes of other subcarriers. formula The singular value of P can drop rapidly. However, when the CP is added and the symbol duration is increased, the width of the side lobes can be narrowed. Therefore, the singular value of P can slowly decrease. in case Is at the selected notch frequency After pre-programmed average power leakage, then Can be expressed as ,among them Yes Average power, and Yes The ith maximum singular value. In this sense, CP-OFDM power leakage for the same R value Greater than NG-OFDM or ZP-OFDM . [120]

第20圖示出了在使用QPSK調變的示例NG-OFDM系統中三種方案的IFFT輸出的位元誤差率(BER )。子載波的數目是64,並且FFT大小是256。在該示例中,通道可假設為AVGN通道,例如,其中可表示雜訊向量。SNR(dB )可被定義為。曲線2002示出了未編碼系統的BER。曲線2004示出了R=4的編碼速率的BER。圖2006示出了R=3,L=6的編碼速率的BER。圖2008示出了R=6的編碼速率的BER。曲線2010示出了R=5,L=6的編碼速率的BER。曲線2012示出了R=8的編碼速率的BER。曲線2014示出了R=7,L=6的編碼速率的BER。[121] Figure 20 shows the bit error rate (BER) of the IFFT output for the three schemes in an example NG-OFDM system using QPSK modulation. The number of subcarriers is 64 and the FFT size is 256. In this example, the channel can be assumed to be an AVGN channel, for example ,among them Can represent the noise vector. SNR(dB) can be defined as . Curve 2002 shows the BER of the uncoded system. Curve 2004 shows the BER of the encoding rate of R=4. Figure 2006 shows the BER of the encoding rate for R = 3, L = 6. Figure 2008 shows the BER of the encoding rate of R = 6. Curve 2010 shows the BER of the encoding rate for R=5, L=6. Curve 2012 shows the BER of the encoding rate of R=8. Curve 2014 shows the BER of the encoding rate for R=7, L=6. [121]

如第20圖所示,可使用遠陷波頻率的組合方案在其具有相同編碼速率時,可具有和Beek的SVD預編碼或者頻譜預編碼幾乎相同的BER曲線。進一步地,隨著編碼速率下降,BER可稍微變好(例如,變小 ),因為當預編碼矩陣的列大小不變時,可在接收機中被估計的d l 的長度可減小。相應地,更低的編碼速率可提供稍微更高的分集增益。[122] As shown in Fig. 20, a combination scheme using far notch frequencies may have almost the same BER curve as Beek's SVD precoding or spectral precoding when it has the same coding rate. Further, as the coding rate decreases, the BER may be slightly changed for the better (e.g., smaller), since the length of the column of the precoding matrix when the same size, can be estimated in the receiver can be reduced d l. Accordingly, a lower encoding rate can provide a slightly higher diversity gain. [122]

此處描述的過程和手段可以以任意組合形式應用,可應用於其他無線技術和其他裝置。[123] The processes and means described herein can be applied in any combination and can be applied to other wireless technologies and other devices. [123]

WTRU可指物理裝置的身份,或者例如與如MSISDN、SIP URI等身份有關的訂閱的用戶的身份。WTRU可指例如可用於每個應用的用戶名的基於應用的身份。WTRU或者裝置可指用戶。用戶可指WTRU或者裝置。A WTRU may refer to the identity of a physical device, or the identity of a subscriber, for example, related to an identity such as an MSISDN, SIP URI, or the like. A WTRU may refer to, for example, an application-based identity of a username that is available for each application. A WTRU or device may refer to a user. A user may refer to a WTRU or device.

以上描述的過程可以在引入到電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。電腦可讀媒體的示例包括但不限於電子信號(通過有線或無線連接傳送 )和電腦可讀儲存媒體。電腦可讀儲存媒體的示例包括但不限於唯讀記憶體(ROM )、隨機存取記憶體(RAM )、暫存器、快取記憶體、半導體記憶體裝置、磁性媒體,例如但不限於內部硬碟和抽取式磁碟、磁光媒體、和/或例如CD-ROM光碟的光媒體、和/或數位通用碟片(DVD )。與軟體關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC、和/或任何主機電腦中使用的射頻收發器。The processes described above can be implemented in a computer program, software or firmware incorporated into a computer readable medium for use by a computer or processor. Examples of computer readable media include, but are not limited to, electronic signals (transmitted over a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory device, magnetic media, such as but not limited to internal Hard disk and removable disk, magneto-optical media, and/or optical media such as CD-ROM discs, and/or digital versatile discs (DVD). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, and/or any host computer.

100...通訊系統100. . . Communication system

102、102a、102b、102c、102d...無線發射/接收單元(WTRU)102, 102a, 102b, 102c, 102d. . . Wireless transmit/receive unit (WTRU)

103/104/105...無線電存取網路(RAN)103/104/105. . . Radio access network (RAN)

106/107/109...核心網路106/107/109. . . Core network

108...公共交換電話網(PSTN)108. . . Public Switched Telephone Network (PSTN)

110...網際網路110. . . Internet

112...其他網路112. . . Other network

114a、114b、180a、180b、180c...基地台114a, 114b, 180a, 180b, 180c. . . Base station

115/116/117...空中介面115/116/117. . . Empty intermediary

118...處理器118. . . processor

120...收發器120. . . transceiver

122...發射/接收元件122. . . Transmitting/receiving element

124...揚聲器/麥克風124. . . Speaker/microphone

126...數字鍵盤126. . . Numeric keypad

128...顯示器/觸控板128. . . Display/trackpad

130...不可移除記憶體130. . . Non-removable memory

132...可移除記憶體132. . . Removable memory

134...電源134. . . power supply

136...全球定位系統(GPS)晶片組136. . . Global Positioning System (GPS) chipset

138...週邊設備138. . . Peripherals

140a、140b、140c...節點B140a, 140b, 140c. . . Node B

142a、142b...無線電網路控制器(RNC)142a, 142b. . . Radio Network Controller (RNC)

144...媒體閘道(MGW)144. . . Media Gateway (MGW)

146...移動交換中心(MSC)146. . . Mobile switching center (MSC)

148...服務GPRS支援節點(SGSN)148. . . Serving GPRS Support Node (SGSN)

150...閘道GPRS支持節點(GGSN)150. . . Gateway GPRS Support Node (GGSN)

160a、160b、160c...e節點B160a, 160b, 160c. . . eNodeB

162...移動性管理實體(MME)162. . . Mobility Management Entity (MME)

164...服務閘道164. . . Service gateway

166...封包資料網路(PDN)閘道166. . . Packet Data Network (PDN) gateway

182...ASN閘道182. . . ASN gateway

184...移動IP本地代理(MIP-HA)184. . . Mobile IP Local Agent (MIP-HA)

186...認證、授權、計費(AAA)伺服器186. . . Authentication, Authorization, and Accounting (AAA) Server

188...閘道188. . . Gateway

200...示例收發器200. . . Example transceiver

400...示例預編碼正交分頻多工(OFDM)收發器400. . . Example Precoding Orthogonal Frequency Division Multiplexing (OFDM) Transceiver

800...組合預編碼器800. . . Combined precoder

802、1106...預編碼塊802, 1106. . . Precoding block

900...示例性發射機900. . . Exemplary transmitter

1000...示例性接收機1000. . . Exemplary receiver

1100...示例OFDM系統1100. . . Example OFDM system

1102...PSK/QAM調變塊1102. . . PSK/QAM modulation block

1104...並行(S/P)1104. . . Parallel (S/P)

1108...逆快速傅利葉變換(IFFT)1108. . . Inverse Fast Fourier Transform (IFFT)

1110、1112、1114...區塊1110, 1112, 1114. . . Block

1116...FFT塊1116. . . FFT block

1118...解碼塊1118. . . Decoding block

1120...串列(P/S)轉換塊1120. . . Serial (P/S) conversion block

1122...PSK/QAM解調塊1122. . . PSK/QAM demodulation block

1200、1300、1400、1500、1600、1700、1800、1900、2000、2006、2008...圖1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2006, 2008. . . Figure

1202、1204、1206、1208、1210、1302、1304、1306、1308、1310、1312、1314、1316、1318、1402、1404、1406、1408、1410、1412、1414、1502、1504、1506、1508、1510、1512、1514、1602、1604、1606、1608、1610、1612、1614、1702、1704、1706、1708、1710、1712、1714、1802、1804、1806、1808、1810、1812、1814、1902、1904、1906、1908、1910、1912、1914、2002、2004、2010、2012、2014...曲線1202, 1204, 1206, 1208, 1210, 1302, 1304, 1306, 1308, 1310, 1312, 1314, 1316, 1318, 1402, 1404, 1406, 1408, 1410, 1412, 1414, 1502, 1504, 1506, 1508, 1510, 1512, 1514, 1602, 1604, 1606, 1608, 1610, 1612, 1614, 1702, 1704, 1706, 1708, 1710, 1712, 1714, 1802, 1804, 1806, 1808, 1810, 1812, 1814, 1902 1904, 1906, 1908, 1910, 1912, 1914, 2002, 2004, 2010, 2012, 2014. . . curve

BER...位元誤碼率BER. . . Bit error rate

CP...循環前置CP. . . Loop front

DFT...離散傅利葉變換DFT. . . Discrete Fourier transform

dk、Gk、Sk...參數d k , G k , S k . . . parameter

IDFT...逆離散傅利葉變換IDFT. . . Inverse discrete Fourier transform

IP...網際網路協定IP. . . Internet protocol

Iub、IuCS、IuPS、iur、S1、X2...介面Iub, IuCS, IuPS, iur, S1, X2. . . interface

PSD...示例功率譜密度PSD. . . Example power spectral density

R、L...編碼速率R, L. . . Coding rate

R1、R3、R6、R8...參考點R1, R3, R6, R8. . . Reference point

ZP...零填充ZP. . . Zero padding

[06][06]

第1A圖是可以在其中實施一個或多個公開的實施方式的示例通訊系統的系統圖。[07]第1B圖是可以在第1A圖所示的通訊系統中使用的示例無線發射/接收單元(WTRU )的系統圖。[08]第1C圖是可以在第1A圖所示的通訊系統中使用的示例無線電存取網路和示例核心網路的系統圖。[09]第1D圖是可以在第1A圖所示的通訊系統中使用的另一示例無線電存取網路和另一示例核心網路的系統圖。[10]第1E圖是可以在第1A圖所示的通訊系統中使用的另一示例無線電存取網路和另一示例核心網路的系統圖。[11]第2圖是示出了預編碼的基於OFDM的CR用戶的示例收發器的方框圖。[12]第3圖示出了使用預編碼的示例功率譜密度(PSD )性能圖。[13]第4圖是示出了使用濾波或者加窗的示例預編碼的OFDM收發器的方框圖。[14]第5圖示出了使用多用戶預編碼的示例PSD性能圖。[15]第6圖示出了預編碼的OFDM的示例位元誤碼率(BER )性能圖。[16]第7圖示出了預編碼的OFDM的示例峰均功率比(PAPR )性能圖。[17]第8圖是示出了組合預編碼器的方框圖。[18]第9圖是示出了正交分頻多工(OFDM )系統的示例發射機的方框圖。[19]第10圖是示出了OFDM系統的示例接收機的方框圖。[20]第11圖是示出了示例OFDM系統的方框圖。[21]第12圖是示出了對64子載波OFDM系統應用Chung的頻譜預編碼後的示例PSD的圖。[22]第13圖是示出了具有近陷波頻率的基於SVD系統的示例PSD的圖。[23]第14圖和第15圖是示出了對近陷波頻率和遠陷波頻率的在基於SVD和組合NG-OFDM中的PSD的示例比較的圖。[24]第16圖和第17圖是示出了對近陷波頻率和遠陷波頻率的在基於SVD和組合ZP-OFDM中的PSD的示例比較的圖。[25]第18圖和第19圖是示出了對近陷波頻率和遠陷波頻率的在基於SVD和組合CP-OFDM中的PSD的示例比較的圖。 第20圖是示出了在使用QPSK調變的示例NG-OFDM系統中的IFFT輸出的示例位元誤碼率(BER )的圖。FIG. 1A is a system diagram of an example communication system in which one or more disclosed embodiments may be implemented. [07] FIG. 1B is a system diagram of an example wireless transmit/receive unit (WTRU) that can be used in the communication system shown in FIG. 1A. [0] Figure 1C is a system diagram of an example radio access network and an example core network that can be used in the communication system shown in Figure 1A. [09] FIG. 1D is a system diagram of another example radio access network and another example core network that may be used in the communication system shown in FIG. 1A. [10] FIG. 1E is a system diagram of another example radio access network and another example core network that can be used in the communication system shown in FIG. 1A. [11] Figure 2 is a block diagram showing an example transceiver of a precoded OFDM based CR user. [12] Figure 3 shows an example power spectral density (PSD) performance map using precoding. [13] Figure 4 is a block diagram showing an example precoded OFDM transceiver using filtering or windowing. [14] Figure 5 shows an example PSD performance graph using multi-user precoding. [15] Figure 6 shows an example bit error rate (BER) performance plot for precoded OFDM. [16] Figure 7 shows an example peak-to-average power ratio (PAPR) performance plot for precoded OFDM. [17] FIG. 8 is a block diagram illustrating a precoder composition. [18] FIG. 9 is a block diagram illustrating an example orthogonal frequency division multiplexing (OFDM) system transmitter. [19] FIG. 10 is a block diagram illustrating an example of an OFDM system receiver. [20] Figure 11 is a block diagram illustrating an example OFDM system. [21] FIG. 12 is a diagram showing an example of the application system 64 OFDM subcarriers Chung precoding PSD spectrum of FIG. [22] FIG. 13 is a diagram illustrating a near notch frequency exemplary PSD SVD based system. [23] Figures 14 and 15 are graphs showing an example comparison of PSDs in SVD-based and combined NG-OFDM for near notch frequencies and far notch frequencies. [24] Figures 16 and 17 are graphs showing an example comparison of PSDs in SVD-based and combined ZP-OFDM for near notch frequencies and far notch frequencies. [25] Figures 18 and 19 are diagrams showing an example comparison of PSDs in SVD-based and combined CP-OFDM for near notch frequencies and far notch frequencies. Figure 20 is a graph showing an example bit error rate (BER) of an IFFT output in an example NG-OFDM system using QPSK modulation.

200...示例收發器200. . . Example transceiver

CP...循環前置CP. . . Loop front

DFT...離散傅利葉變換DFT. . . Discrete Fourier transform

dk、Gk、Sk...參數d k , G k , S k . . . parameter

IDFT...逆離散傅利葉變換IDFT. . . Inverse discrete Fourier transform

P/S...串列P/S. . . Serial

S/P...並行S/P. . . parallel

Claims (20)

一種與正交分頻多工(OFDM)傳輸關聯的方法,該方法包括:確定一預編碼矩陣,其中針對與多個裝置關聯的一頻寬來確定所述預編碼矩陣;確定分配給一裝置的所述頻寬的一部分,其中所述裝置是所述多個裝置中的一者;確定與所述頻寬的所述部分關聯的所述預編碼矩陣的一部分;以及使用所述預編碼矩陣的所述部分發送資料。A method associated with orthogonal frequency division multiplexing (OFDM) transmission, the method comprising: determining a precoding matrix, wherein the precoding matrix is determined for a bandwidth associated with a plurality of devices; determining to assign to a device Part of the bandwidth, wherein the device is one of the plurality of devices; determining a portion of the precoding matrix associated with the portion of the bandwidth; and using the precoding matrix The part of the information is sent. 如申請專利範圍第1項所述的方法,其中確定所述預編碼矩陣包括根據裝置數量和所述頻寬的可用頻寬中的至少一者確定所述預編碼矩陣。The method of claim 1, wherein determining the precoding matrix comprises determining the precoding matrix based on at least one of a number of devices and an available bandwidth of the bandwidth. 如申請專利範圍第1項所述的方法,其中分配給所述裝置的所述頻寬的所述部分包括多個OFDM子載波。The method of claim 1, wherein the portion of the bandwidth allocated to the device comprises a plurality of OFDM subcarriers. 如申請專利範圍第3項所述的方法,其中確定所述預編碼矩陣的所述部分包括基於所述多個OFDM子載波選擇所述預編碼矩陣的一行或多行。The method of claim 3, wherein the determining the portion of the precoding matrix comprises selecting one or more rows of the precoding matrix based on the plurality of OFDM subcarriers. 如申請專利範圍第1項所述的方法,其中確定所述預編碼矩陣包括基於表示跨越多個陷波頻率的一頻譜洩露的矩陣的一奇異值分解來確定所述預編碼矩陣。The method of claim 1, wherein determining the precoding matrix comprises determining the precoding matrix based on a singular value decomposition of a matrix representing a spectral leak across a plurality of notch frequencies. 如申請專利範圍第5項所述的方法,其中表示跨越所述陷波頻率的該頻譜洩露的所述矩陣的所述奇異值分解產生多個預編碼向量,所述多個預編碼向量在被應用於傳送資料時移除跨越所述陷波頻率的所述頻譜洩露的至少一部分。The method of claim 5, wherein the singular value decomposition of the matrix representing the spectral leakage across the notch frequency produces a plurality of precoding vectors, the plurality of precoding vectors being At least a portion of the spectral leak across the notch frequency is removed when applied to transmit data. 如申請專利範圍第1項所述的方法,其中所述多個裝置是同步的。The method of claim 1, wherein the plurality of devices are synchronized. 如申請專利範圍第1項所述的方法,其中針對所述頻寬的一虛擬用戶獲得所述預編碼矩陣。The method of claim 1, wherein the precoding matrix is obtained for a virtual user of the bandwidth. 如申請專利範圍第1項所述的方法,其中確定所述預編碼矩陣包括確定所述預編碼矩陣為至少兩個預編碼矩陣的矩陣積。The method of claim 1, wherein determining the precoding matrix comprises determining that the precoding matrix is a matrix product of at least two precoding matrices. 如申請專利範圍第9項所述的方法,其中所述預編碼矩陣保持連續相位特性。The method of claim 9, wherein the precoding matrix maintains a continuous phase characteristic. 一種包括一處理器的無線發射/接收單元(WTRU),所述處理器被配置為通過下列步驟針對正交分頻多工(OFDM)傳輸選擇一預編碼矩陣:確定一第一預編碼矩陣,其中針對被多個裝置用於傳輸的一頻寬來確定所述第一預編碼矩陣;確定分配給一裝置的所述頻寬的一部分,其中所述裝置是所述多個裝置中的一者;確定與所述頻寬的所述部分關聯的預編碼矩陣的一部分;以及使用所述預編碼矩陣的所述部分發送資料。A wireless transmit/receive unit (WTRU) including a processor configured to select a precoding matrix for orthogonal frequency division multiplexing (OFDM) transmission by determining a first precoding matrix, Wherein the first precoding matrix is determined for a bandwidth used by a plurality of devices for transmission; determining a portion of the bandwidth allocated to a device, wherein the device is one of the plurality of devices Determining a portion of a precoding matrix associated with the portion of the bandwidth; and transmitting the data using the portion of the precoding matrix. 如申請專利範圍第11項所述的WTRU,其中確定所述預編碼矩陣包括根據裝置數量和所述頻寬的一可用頻寬中的至少一者確定所述預編碼矩陣。The WTRU of claim 11, wherein determining the precoding matrix comprises determining the precoding matrix based on at least one of a number of devices and an available bandwidth of the bandwidth. 如申請專利範圍第11項所述的WTRU,其中分配給所述裝置的所述頻寬的所述部分包括多個OFDM子載波。A WTRU as claimed in claim 11, wherein the portion of the bandwidth allocated to the apparatus comprises a plurality of OFDM subcarriers. 如申請專利範圍第13項所述的WTRU,其中所述處理器還被配置為通過基於所述多個OFDM子載波選擇所述預編碼矩陣中的一行或多行來確定所述預編碼矩陣的所述部分。A WTRU as claimed in claim 13 wherein the processor is further configured to determine the precoding matrix by selecting one or more of the precoding matrices based on the plurality of OFDM subcarriers The part. 如申請專利範圍第11項所述的WTRU,其中確定所述預編碼矩陣包括基於表示跨越多個陷波頻率的一頻譜洩露的一矩陣的一奇異值分解來確定所述預編碼矩陣。The WTRU of claim 11, wherein determining the precoding matrix comprises determining the precoding matrix based on a singular value decomposition of a matrix representing a spectral leakage across a plurality of notch frequencies. 如申請專利範圍第15項所述的WTRU,其中表示跨越所述陷波頻率的該頻譜洩露的所述矩陣的所述奇異值分解產生多個預編碼向量,所述預編碼向量在被應用於傳送資料時移除跨越所述陷波頻率的所述頻譜洩露的至少一部分。A WTRU as claimed in claim 15 wherein said singular value decomposition of said matrix representing said spectral leakage across said notch frequency produces a plurality of precoding vectors, said precoding vectors being applied At least a portion of the spectral leak across the notch frequency is removed as the data is transmitted. 如申請專利範圍第11項所述的WTRU,其中所述多個裝置是同步的。The WTRU of claim 11, wherein the plurality of devices are synchronized. 如申請專利範圍第11項所述的WTRU,其中所述處理器被配置為針對所述頻寬的一虛擬用戶獲得所述預編碼矩陣。The WTRU of claim 11, wherein the processor is configured to obtain the precoding matrix for a virtual user of the bandwidth. 如申請專利範圍第11項所述的WTRU,其中確定所述預編碼矩陣包括確定所述預編碼矩陣為至少兩個預編碼矩陣的一矩陣積。The WTRU as claimed in claim 11, wherein determining the precoding matrix comprises determining that the precoding matrix is a matrix product of at least two precoding matrices. 如申請專利範圍第19項所述的WTRU,其中所述預編碼矩陣保持一連續相位特性。The WTRU as claimed in claim 19, wherein the precoding matrix maintains a continuous phase characteristic.
TW103101984A 2013-01-18 2014-01-20 Precoding for multicarrier modulation systems TW201436513A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361754164P 2013-01-18 2013-01-18
US201361754282P 2013-01-18 2013-01-18

Publications (1)

Publication Number Publication Date
TW201436513A true TW201436513A (en) 2014-09-16

Family

ID=50073486

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103101984A TW201436513A (en) 2013-01-18 2014-01-20 Precoding for multicarrier modulation systems

Country Status (2)

Country Link
TW (1) TW201436513A (en)
WO (1) WO2014113754A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3529958B1 (en) * 2016-11-16 2021-01-20 Huawei Technologies Duesseldorf GmbH Techniques for pre- and decoding a multicarrier signal based on a mapping function with respect to inband and out-of-band subcarriers

Also Published As

Publication number Publication date
WO2014113754A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
TWI698110B (en) Method and apparatus for phase tracking reference signal transmission
JP6122154B2 (en) Pulse shaping orthogonal frequency division multiplexing
JP6732046B2 (en) Uplink asynchronous non-orthogonal multiple access
US11765012B2 (en) Methods for flexible reference signal transmission with single carrier frequency domain multiple access (SC-FDMA) and OFDMA
JP2017204873A (en) Reduction of spectral leakage in OFDM system
CN117221061A (en) Method and apparatus for reference signal of next generation wireless communication system
TW201803322A (en) Methods, apparatuses and systems directed to unique word discrete fourier transform spread and shaped orthogonal frequency division multiplexing based transmissions
EP3039836A1 (en) Methods and apparatus for faster than nyquist rate multi-carrier modulation
GB2459504A (en) Wireless communication unit and method for dc offset estimation and compensation
TW201735575A (en) Methods, apparatuses and systems directed to adaptation of cyclic prefix duration to delay spread
JP2019501560A (en) Multi-length ZT DFT-S-OFDM transmission
WO2018085561A1 (en) Dtf-s-ofdm and ofdm with frequency domain cyclic prefix and cyclic suffix
TW201436513A (en) Precoding for multicarrier modulation systems
Wu et al. On the information rate of single-carrier FDMA using linear frequency domain equalization and its application for 3GPP-LTE uplink
TW201505402A (en) Combination of multiple precoding techniques for multicarrier modulation systems
WO2023230340A1 (en) Cyclic partitioning methods and procedures for phase noise compensation in cp-ofdm