TW201401601A - Inverted bilayer organic solar cell device - Google Patents

Inverted bilayer organic solar cell device Download PDF

Info

Publication number
TW201401601A
TW201401601A TW101122881A TW101122881A TW201401601A TW 201401601 A TW201401601 A TW 201401601A TW 101122881 A TW101122881 A TW 101122881A TW 101122881 A TW101122881 A TW 101122881A TW 201401601 A TW201401601 A TW 201401601A
Authority
TW
Taiwan
Prior art keywords
layer
organic solar
solar cell
active layer
electrode
Prior art date
Application number
TW101122881A
Other languages
Chinese (zh)
Inventor
Yu-Shun Cheng
Chie Gau
Huang-Teng Chen
Chih-Hung Chuang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW101122881A priority Critical patent/TW201401601A/en
Publication of TW201401601A publication Critical patent/TW201401601A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

An inverted bilayer organic solar cell device includes a substrate, a first electrode, an electron transport layer, a first active layer, a second active layer, a hole transport layer, and a second electrode. The first electrode is disposed on the substrate. The electron transport layer is disposed on the first electrode. The first active layer is disposed on the electron transport layer and serves as a donor. The second active layer is disposed on the first active layer and serves as an acceptor. The hole transport layer is disposed on the second active layer. The second electrode is disposed on the hole transport layer.

Description

反向雙層有機太陽能電池元件 Reverse double layer organic solar cell element

本發明係關於一種有機太陽能電池元件,特別關於一種反向雙層有機太陽能電池元件。 The present invention relates to an organic solar cell element, and more particularly to a reverse bilayer organic solar cell element.

有機太陽能電池最早發展是以單層主動層為結構,也是結構最簡單的型式。然而單層有機太陽能電池效率並不好,所以進而發展出雙層(bilayer)及混掺(blend)型式之結構,在雙層(bilayer)太陽能電池方面目前多是利用共軛高分子P3HT(poly(3-hexylthiophene-2,5-diyl))及奈米碳材PCBM([6,6]-penyl-C61-butyric-acid-methyl-ester)分開的兩層材料來構成雙層(bilayer)有機太陽能電池。其中P3HT當施體(Donor)、PCBM當做授體(Acceptor)。但因雙層的施體及授體所形成的接面較少,以至於效率沒辦法更加提升,所以開始發展以施體及授體做掺混(blend)的製程。而在現有技術中,絕大部份有機太陽能電池就是以掺混製程的塊材異質接面(bulk heterojunction,BHJ)來製作,其中大多是用P3HT當施體跟PCBM當授體所掺混(blend)的溶液來做光吸收的主動層(Active layer),利用施體跟授體掺混來增加主動層的接面,以期能分離出更多的電子及電洞。由於掺混型式的光電轉換效率優於雙層,所以雙層有機太陽能電池也漸漸被人所忽視。 The earliest development of organic solar cells was based on a single-layer active layer, and it was also the simplest type of structure. However, the efficiency of single-layer organic solar cells is not good, so the structure of bilayer and blend is developed. In the case of bilayer solar cells, conjugated polymer P3HT (poly) is currently used. (3-hexylthiophene-2,5-diyl)) and nanocarbon material PCBM ([6,6]-penyl-C61-butyric-acid-methyl-ester) separate two layers of material to form a bilayer organic Solar battery. Among them, P3HT is Donor and PCBM is used as an acceptor. However, because the double-layered donor body and the donor body formed fewer joints, so that the efficiency could not be improved, so the process of blending the donor and the donor was started. In the prior art, most of the organic solar cells are made by bulk heterojunction (BHJ) of the blending process, and most of them are P3HT when the donor and PCBM are blended as a donor ( The blend) is used as the active layer for light absorption. The donor and donor blends are used to increase the junction of the active layer, in order to separate more electrons and holes. Since the photoelectric conversion efficiency of the blended type is superior to that of the double layer, the double-layer organic solar battery is gradually neglected.

因此,如何提供一種雙層有機太陽能電池元件,能進 一步提升光電轉換效率,進而促進雙層有機太陽能電池元件的競爭力及發展,實為當前重要課題之一。 Therefore, how to provide a two-layer organic solar cell component that can enter It is one of the most important issues to improve the photoelectric conversion efficiency and promote the competitiveness and development of the two-layer organic solar cell components.

有鑑於上述課題,本發明之目的為提供一種能夠進一步提升光電轉換效率,進而促進雙層有機太陽能電池元件的競爭力及發展之反向雙層有機太陽能電池元件。 In view of the above problems, an object of the present invention is to provide a reverse double-layer organic solar cell element which can further improve photoelectric conversion efficiency and further promote the competitiveness and development of a two-layer organic solar cell element.

為達上述目的,依據本發明之一種反向雙層有機太陽能電池元件包含一基板、一第一電極、一電子傳輸層、一第一主動層、一第二主動層、一電洞傳輸層以及一第二電極。第一電極設置於基板上。電子傳輸層設置於第一電極上。第一主動層設置於電子傳輸層上並作為施體。第二主動層設置於第一主動層上並作為授體。電洞傳輸層設置於第二主動層上。第二電極設置於電洞傳輸層上。 To achieve the above object, a reverse bilayer organic solar cell device according to the present invention comprises a substrate, a first electrode, an electron transport layer, a first active layer, a second active layer, a hole transport layer, and a second electrode. The first electrode is disposed on the substrate. The electron transport layer is disposed on the first electrode. The first active layer is disposed on the electron transport layer and serves as a donor. The second active layer is disposed on the first active layer and serves as a donor. The hole transport layer is disposed on the second active layer. The second electrode is disposed on the hole transport layer.

在一實施例中,基板之材質包含塑膠或玻璃。 In one embodiment, the material of the substrate comprises plastic or glass.

在一實施例中,第一電極之材質包含一透明導電氧化物。 In one embodiment, the material of the first electrode comprises a transparent conductive oxide.

在一實施例中,電子傳輸層之材質包含碳酸銫(Cs2CO3)、氧化鋅(ZnO)、氧化鈦(TiOx)、鈣(Ca)、或三氧化二鋁(Al2O3)。 In one embodiment, the material of the electron transport layer comprises cesium carbonate (Cs 2 CO 3 ), zinc oxide (ZnO), titanium oxide (TiOx), calcium (Ca), or aluminum oxide (Al 2 O 3 ).

在一實施例中,第一主動層之材質包含P3HT、MDMO-PPV、PCDTBT、PBTTPD、PCBTDPP或PCPDTBT。 In an embodiment, the material of the first active layer comprises P3HT, MDMO-PPV, PCDTBT, PBTTPD, PCBTDPP or PCPDTBT.

在一實施例中,第二主動層之材質包含PCBM、ICMA、或ICBA。 In an embodiment, the material of the second active layer comprises PCBM, ICMA, or ICBA.

在一實施例中,電洞傳輸層之材質包含PEDOT:PSS、三氧化鉬、五氧化二釩、石墨烯氧化物或氧化鎳。 In one embodiment, the material of the hole transport layer comprises PEDOT:PSS, molybdenum trioxide, vanadium pentoxide, graphene oxide or nickel oxide.

在一實施例中,第二電極之材質包含銀、金、銀膠(silver glue)、奈米銀粒子(AgNPs)、奈米金粒子(AuNPs)、或高導電之PEDOT:PSS(PH1000)。 In one embodiment, the material of the second electrode comprises silver, gold, silver glue, nano silver particles (AgNPs), nano gold particles (AuNPs), or highly conductive PEDOT:PSS (PH1000).

在一實施例中,第一主動層之厚度係介於第二主動層之厚度的二倍至六倍之間。 In one embodiment, the thickness of the first active layer is between two and six times the thickness of the second active layer.

承上所述,在本發明之反向雙層有機太陽能電池元件中,與習知技術不同的是,作為施體之第一主動層位於電子傳輸層與第二主動層之間,作為授體之第二主動層係位於電洞傳輸層與第一主動層之間。在經過多次驗證之後,發現相較於習知之雙層有機太陽能電池元件以及摻混製程得到之有機太陽能電池元件,本發明之反向雙層有機太陽能電池元件具有更高的光電轉換效率。此外,本發明之第二電極係使用較高功函數之材料,例如金或銀,因此本發明之反向雙層有機太陽能電池元件可藉由第二電極抵抗大氣中氧和水對有機主動層的侵襲,而能達到對大氣環境的抵抗能力。據此,本發明之反向雙層有機太陽能電池元件能夠促進相關產品的競爭力及發展。 As described above, in the reverse double-layer organic solar cell element of the present invention, unlike the prior art, the first active layer as the donor is located between the electron transport layer and the second active layer as a donor. The second active layer is between the hole transport layer and the first active layer. After many verifications, it was found that the reverse two-layer organic solar cell element of the present invention has higher photoelectric conversion efficiency than the conventional two-layer organic solar cell element and the organic solar cell element obtained by the blending process. In addition, the second electrode of the present invention uses a material having a higher work function, such as gold or silver, so that the reverse double-layer organic solar cell element of the present invention can resist atmospheric oxygen and water to the organic active layer by the second electrode. Invasion, and can achieve resistance to the atmospheric environment. Accordingly, the reverse double-layer organic solar cell element of the present invention can promote the competitiveness and development of related products.

以下將參照相關圖式,說明依本發明較佳實施例之一種反向雙層有機太陽能電池元件,其中相同的元件將以相同的參照符號加以說明。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a reverse two-layer organic solar cell element according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein like elements will be described with the same reference numerals.

圖1為本發明較佳實施例之一種反向雙層有機太陽能電池元件1的示意圖。請參照圖1所示,反向雙層有機太陽能電池元件1包含一基板11、一第一電極12、一電子傳輸層13、一第一主動層14、一第二主動層15、一電洞傳輸層16以及一第二電極17。需注意者,圖1所示之反向雙層有機太陽能電池元件1僅為最基本的結構,而在其他實施例中,反向雙層有機太陽能電池元件1可依據需求而加入一些習知的功能層,例如歐姆接觸層、奈米微結構層、自組層、光學間隙層等等。 1 is a schematic view of a reverse double layer organic solar cell element 1 in accordance with a preferred embodiment of the present invention. Referring to FIG. 1 , the reverse double-layer organic solar cell component 1 includes a substrate 11 , a first electrode 12 , an electron transport layer 13 , a first active layer 14 , a second active layer 15 , and a hole . The transport layer 16 and a second electrode 17. It should be noted that the reverse double-layer organic solar cell element 1 shown in FIG. 1 is only the most basic structure, and in other embodiments, the reverse double-layer organic solar cell element 1 may be added to some conventional requirements according to requirements. Functional layers, such as ohmic contact layers, nano microstructure layers, self-assembled layers, optical gap layers, and the like.

本實施例不特別限制基板11之形狀及材質,其材質例如包含玻璃或塑膠。基板11可例如為玻璃基板、塑膠基板、或塑膠軟板。 In this embodiment, the shape and material of the substrate 11 are not particularly limited, and the material thereof includes, for example, glass or plastic. The substrate 11 can be, for example, a glass substrate, a plastic substrate, or a plastic flexible board.

第一電極12設置於基板11上,其材質例如包含一透明導電氧化物(transparent conductive oxide,TCO),例如銦錫氧化物(indium tin oxide,ITO)、銦鋅氧化物(indium zinc oxide,IZO)、鋁摻雜氧化鋅(ZnO:Al,AZO)。由於本實施例之反向雙層有機太陽能電池元件1為反向結構,故第一電極12為陰極。 The first electrode 12 is disposed on the substrate 11, and the material thereof includes, for example, a transparent conductive oxide (TCO), such as indium tin oxide (ITO), indium zinc oxide (IZO). ), aluminum-doped zinc oxide (ZnO: Al, AZO). Since the reverse double-layer organic solar cell element 1 of the present embodiment has a reverse structure, the first electrode 12 is a cathode.

電子傳輸層13設置於第一電極12上。需注意者,電子傳輸層13可能又稱為電子注入層、電洞阻擋層或修飾層。電子傳輸層之材質例如包含碳酸銫(Cs2CO3)、氧化鋅(ZnO)、氧化鈦(TiOx)、鈣(Ca)、或三氧化二鋁(Al2O3)。 The electron transport layer 13 is disposed on the first electrode 12. It should be noted that the electron transport layer 13 may also be referred to as an electron injection layer, a hole barrier layer or a modification layer. The material of the electron transport layer includes, for example, cesium carbonate (Cs 2 CO 3 ), zinc oxide (ZnO), titanium oxide (TiOx), calcium (Ca), or aluminum oxide (Al 2 O 3 ).

第一主動層14設置於電子傳輸層13上並作為施體(donor)。第一主動層之材質例如包含P3HT(聚3-己烷 基噻吩(poly(3-hexylthiophene),P3HT))、MDMO-PPV(聚[2-甲氧基-5-(3',7'二甲基-辛氧基)]1,4-對苯乙炔(poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene])、PCDTBT(聚[N-9'-heptadecanyl-2,7-咔唑-ALT-5,5-(4',7'-DI-2-噻吩-2',1',3'-苯并噻二唑Poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole))、PBTTPD((poly-{bi(dodecyl)thiophene-thieno[3,4-c]pyrrole-4,6-dione}))、PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole-1,4-dione])、或PCPDTBT(Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])。 The first active layer 14 is disposed on the electron transport layer 13 and serves as a donor. The material of the first active layer includes, for example, P3HT (poly 3-hexane) Poly(3-hexylthiophene, P3HT), MDMO-PPV (poly[2-methoxy-5-(3',7' dimethyl-octyloxy)]1,4-p-phenylacetylene (poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-ALT-5,5-( 4',7'-DI-2-thiophene-2',1',3'-benzothiadiazole Poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4' ,7'-di-2-thienyl-2',1',3'-benzothiadiazole)), PBTTPD((poly-{bi(dodecyl)thiophene-thieno[3,4-c]pyrrole-4,6-dione })), PCBTDPP(Poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo[3,4]pyrrole -1,4-dione]), or PCPDTBT (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene) -alt-4,7(2,1,3-benzothiadiazole)]).

第二主動層15設置於第一主動層14上並作為授體(acceptor)。第二主動層之材質例如包含PCBM((6,6)-苯基C61丁酸甲酯((6,6)-phenyl C61-butyric acid methyl ester)、ICMA(C60 derivative,indene-C60 monoadduct)、或ICBA(C60 derivative,indene-C60 bisadduct)。於此,第一主動層14之厚度D1係介於第二主動層15之厚度D2的二倍至六倍之間。在上述厚度的條件下,可得到較佳的電流密度,且在分離電子及電洞後,有更佳的路徑將電子及電洞不損耗地傳導至陰極及陽極。 The second active layer 15 is disposed on the first active layer 14 and serves as an acceptor. The material of the second active layer includes, for example, PCBM ((6,6)-phenyl C61-butyric acid methyl ester), ICMA (C60 derivative, indene-C60 monoadduct), Or ICBA (C60 derivative, indene-C60 bisadduct). Here, the thickness D1 of the first active layer 14 is between two and six times the thickness D2 of the second active layer 15. Under the above thickness conditions, A better current density is obtained, and after separating the electrons and holes, a better path conducts electrons and holes to the cathode and anode without loss.

電洞傳輸層16設置於第二主動層15上。需注意者,電洞傳輸層16可能又稱為電洞注入層、電子阻擋層或緩 衝層。電洞傳輸層16之材質例如包含PEDOT:PSS(聚乙烯二羥基噻吩:聚苯乙烯磺酸鹽(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))、三氧化鉬(MoO3)、五氧化二釩(V2O5)、石墨烯氧化物(graphene oxide,GO)或氧化鎳(NiO)。 The hole transport layer 16 is disposed on the second active layer 15. It should be noted that the hole transport layer 16 may also be referred to as a hole injection layer, an electron blocking layer or a buffer layer. The material of the hole transport layer 16 includes, for example, PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), molybdenum trioxide (MoO 3 ), five Vanadium oxide (V 2 O 5 ), graphene oxide (GO) or nickel oxide (NiO).

第二電極17設置於電洞傳輸層16上。第二電極17之材質例如包含銀、金、銀膠(silver glue)、奈米銀粒子(AgNPs)、奈米金粒子(AuNPs)、或高導電之PEDOT:PSS(PH1000)。於本實施例之反向雙層有機太陽能電池元件1為反向結構,故第二電極17為陽極。 The second electrode 17 is disposed on the hole transport layer 16. The material of the second electrode 17 includes, for example, silver, gold, silver glue, nano silver particles (AgNPs), nano gold particles (AuNPs), or highly conductive PEDOT:PSS (PH1000). The reverse double-layer organic solar cell element 1 of the present embodiment has a reverse structure, so that the second electrode 17 is an anode.

上述各元件之材質僅為舉例說明,並非用以限制本發明,凡可達到相同功能或類似功效之材質皆可應用於本發明。以下為本發明較佳實施例之一具體實施的結構及其光電轉換效率(請參照圖2之電流-電壓特性曲線圖)的說明。 The materials of the above various elements are merely illustrative and are not intended to limit the present invention, and any material that can achieve the same function or similar effects can be applied to the present invention. The following is a description of the structure and photoelectric conversion efficiency (refer to the current-voltage characteristic diagram of FIG. 2) of one embodiment of the preferred embodiment of the present invention.

在本實施例中,第一電極12為銦錫氧化物(ITO),電子傳輸層13為氧化鋅(ZnO),第一主動層14為P3HT,第二主動層15為PCBM,電洞傳輸層16為PEDOT:PSS,第二電極17為銀。其中,第一主動層14與第二主動層15依序以旋轉塗佈(spin coating)形成,並且P3HT膜厚約170nm,而PCBM之膜厚約40~60nm,所以P3HT厚度約介於PCBM厚度2~6倍。在此條件下,可得到比掺混(blend)所構成的有機太陽能電池更佳的效率,以此實施例結構所製作之反向雙層有機太陽能電池元件最終可達到4.3%以上的光電效率,電流密度可達10.1 mA/cm2,開 路電壓為0.59V,填充係數(fill factor,FF)可達到73.2%,並得到並聯電阻Rsh=29.867Ω、串聯電阻Rs=0.122Ω。 In this embodiment, the first electrode 12 is indium tin oxide (ITO), the electron transport layer 13 is zinc oxide (ZnO), the first active layer 14 is P3HT, and the second active layer 15 is PCBM, and the hole transport layer 16 is PEDOT:PSS, and the second electrode 17 is silver. The first active layer 14 and the second active layer 15 are sequentially formed by spin coating, and the P3HT film is about 170 nm thick, and the film thickness of the PCBM is about 40-60 nm, so the thickness of the P3HT is about 200 mm thick. 2 to 6 times. Under these conditions, a better efficiency than that of the organic solar cell constructed by blending can be obtained, and the reverse double-layer organic solar cell element fabricated by the structure of the embodiment can finally achieve a photoelectric efficiency of 4.3% or more. The current density can reach 10.1 mA/cm 2 , the open circuit voltage is 0.59V, the fill factor (FF) can reach 73.2%, and the parallel resistance Rsh=29.867Ω and the series resistance Rs=0.122Ω are obtained.

在本實施例中,當施體厚度為授體厚度之數倍時,可得到較佳的電流密度,且在分離電子及電洞後,有更佳的路徑將電子及電洞不損耗地傳導至陰極及陽極,能達到比掺混型式得到更佳的FF值,進而能提升雙層(bilayer)有機太陽能電池的未來發展性。 In this embodiment, when the thickness of the donor body is several times the thickness of the donor body, a better current density can be obtained, and after separating the electrons and the holes, there is a better path for conducting electrons and holes without loss. To the cathode and the anode, a better FF value can be obtained than the blended type, thereby improving the future development of the bilayer organic solar cell.

綜上所述,在本發明之反向雙層有機太陽能電池元件中,與習知技術不同的是,作為施體之第一主動層位於電子傳輸層與第二主動層之間,作為授體之第二主動層係位於電洞傳輸層與第一主動層之間。在經過多次驗證之後,發現相較於習知之雙層有機太陽能電池元件以及摻混製程得到之有機太陽能電池元件,本發明之反向雙層有機太陽能電池元件具有更高的光電轉換效率。此外,本發明之第二電極係使用較高功函數之材料,例如金或銀,因此本發明之反向雙層有機太陽能電池元件可藉由第二電極抵抗大氣中氧和水對有機主動層的侵襲,而能達到對大氣環境的抵抗能力。據此,本發明之反向雙層有機太陽能電池元件能夠促進相關產品的競爭力及發展。 In summary, in the reverse double-layer organic solar cell element of the present invention, unlike the prior art, the first active layer as the donor is located between the electron transport layer and the second active layer as a donor. The second active layer is between the hole transport layer and the first active layer. After many verifications, it was found that the reverse two-layer organic solar cell element of the present invention has higher photoelectric conversion efficiency than the conventional two-layer organic solar cell element and the organic solar cell element obtained by the blending process. In addition, the second electrode of the present invention uses a material having a higher work function, such as gold or silver, so that the reverse double-layer organic solar cell element of the present invention can resist atmospheric oxygen and water to the organic active layer by the second electrode. Invasion, and can achieve resistance to the atmospheric environment. Accordingly, the reverse double-layer organic solar cell element of the present invention can promote the competitiveness and development of related products.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

1‧‧‧反向雙層有機太陽能電池元件 1‧‧‧Reverse double layer organic solar cell components

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧第一電極 12‧‧‧First electrode

13‧‧‧電子傳輸層 13‧‧‧Electronic transport layer

14‧‧‧第一主動層 14‧‧‧First active layer

15‧‧‧第二主動層 15‧‧‧Second active layer

16‧‧‧電洞傳輸層 16‧‧‧ hole transport layer

17‧‧‧第二電極 17‧‧‧second electrode

D1、D2‧‧‧厚度 D1, D2‧‧‧ thickness

圖1為本發明較佳實施例之一種反向雙層有機太陽能電池元件的示意圖;以及圖2為本發明較佳實施例之一種反向雙層有機太陽能電池元件的電流-電壓特性曲線圖。 1 is a schematic view of a reverse double-layer organic solar cell component according to a preferred embodiment of the present invention; and FIG. 2 is a graph showing current-voltage characteristics of a reverse double-layer organic solar cell component according to a preferred embodiment of the present invention.

1‧‧‧反向雙層有機太陽能電池元件 1‧‧‧Reverse double layer organic solar cell components

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧第一電極 12‧‧‧First electrode

13‧‧‧電子傳輸層 13‧‧‧Electronic transport layer

14‧‧‧第一主動層 14‧‧‧First active layer

15‧‧‧第二主動層 15‧‧‧Second active layer

16‧‧‧電洞傳輸層 16‧‧‧ hole transport layer

17‧‧‧第二電極 17‧‧‧second electrode

D1、D2‧‧‧厚度 D1, D2‧‧‧ thickness

Claims (9)

一種反向雙層有機太陽能電池元件,包含:一基板;一第一電極,設置於該基板上;一電子傳輸層,設置於該第一電極上;一第一主動層,設置於該電子傳輸層上並作為施體;一第二主動層,設置於該第一主動層上並作為授體;一電洞傳輸層,設置於該第二主動層上;以及一第二電極,設置於該電洞傳輸層上。 A reverse double-layer organic solar cell component, comprising: a substrate; a first electrode disposed on the substrate; an electron transport layer disposed on the first electrode; and a first active layer disposed on the electron transport a second active layer disposed on the first active layer and serving as a donor; a hole transport layer disposed on the second active layer; and a second electrode disposed on the layer On the hole transport layer. 如申請專利範圍第1項所述之反向雙層有機太陽能電池元件,其中該基板之材質包含塑膠或玻璃。 The reverse double-layer organic solar cell component according to claim 1, wherein the material of the substrate comprises plastic or glass. 如申請專利範圍第1項所述之反向雙層有機太陽能電池元件,第一電極之材質包含一透明導電氧化物。 The reverse double-layer organic solar cell element according to claim 1, wherein the material of the first electrode comprises a transparent conductive oxide. 如申請專利範圍第1項所述之反向雙層有機太陽能電池元件,其中該電子傳輸層之材質包含碳酸銫、氧化鋅、氧化鈦、鈣、或三氧化二鋁。 The reverse double-layer organic solar cell element according to claim 1, wherein the material of the electron transport layer comprises barium carbonate, zinc oxide, titanium oxide, calcium, or aluminum oxide. 如申請專利範圍第1項所述之反向雙層有機太陽能電池元件,其中該第一主動層之材質包含P3HT、MDMO-PPV、PCDTBT、PBTTPD、PCBTDPP或PCPDTBT。 The reverse double-layer organic solar cell component according to claim 1, wherein the material of the first active layer comprises P3HT, MDMO-PPV, PCDTBT, PBTTPD, PCBTDPP or PCPDTBT. 如申請專利範圍第1項所述之反向雙層有機太陽能電池元件,其中該第二主動層之材質包含PCBM、ICMA、或ICBA。 The reverse double-layer organic solar cell component according to claim 1, wherein the material of the second active layer comprises PCBM, ICMA, or ICBA. 如申請專利範圍第1項所述之反向雙層有機太陽能電 池元件,其中該電洞傳輸層之材質包含PEDOT:PSS、三氧化鉬、五氧化二釩、石墨烯氧化物或氧化鎳。 Reverse double-layer organic solar power as described in claim 1 a cell component, wherein the material of the hole transport layer comprises PEDOT:PSS, molybdenum trioxide, vanadium pentoxide, graphene oxide or nickel oxide. 如申請專利範圍第1項所述之反向雙層有機太陽能電池元件,其中該第二電極之材質包含銀、金、銀膠、奈米銀粒子、奈米金粒子、或高導電之PEDOT:PSS(PH1000)。 The reverse double-layer organic solar cell component according to claim 1, wherein the material of the second electrode comprises silver, gold, silver paste, nano silver particles, nano gold particles, or highly conductive PEDOT: PSS (PH1000). 如申請專利範圍第1項所述之反向雙層有機太陽能電池元件,其中該第一主動層之厚度係介於該第二主動層之厚度的二倍至六倍之間。 The reverse double-layer organic solar cell element according to claim 1, wherein the thickness of the first active layer is between two and six times the thickness of the second active layer.
TW101122881A 2012-06-26 2012-06-26 Inverted bilayer organic solar cell device TW201401601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101122881A TW201401601A (en) 2012-06-26 2012-06-26 Inverted bilayer organic solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101122881A TW201401601A (en) 2012-06-26 2012-06-26 Inverted bilayer organic solar cell device

Publications (1)

Publication Number Publication Date
TW201401601A true TW201401601A (en) 2014-01-01

Family

ID=50345186

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101122881A TW201401601A (en) 2012-06-26 2012-06-26 Inverted bilayer organic solar cell device

Country Status (1)

Country Link
TW (1) TW201401601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370581A (en) * 2019-11-25 2020-07-03 财团法人交大思源基金会 Positive structure organic solar cell
TWI817705B (en) * 2022-09-06 2023-10-01 行政院原子能委員會核能研究所 Organic solar module and manufacturing method thereof
TWI829288B (en) * 2021-08-24 2024-01-11 日商杰富意鋼鐵股份有限公司 Laminate, organic thin-film solar cell, method for producing laminate, and method for producing organic thin-film solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370581A (en) * 2019-11-25 2020-07-03 财团法人交大思源基金会 Positive structure organic solar cell
CN111370581B (en) * 2019-11-25 2023-05-12 财团法人交大思源基金会 Positive structure organic solar cell
TWI829288B (en) * 2021-08-24 2024-01-11 日商杰富意鋼鐵股份有限公司 Laminate, organic thin-film solar cell, method for producing laminate, and method for producing organic thin-film solar cell
TWI817705B (en) * 2022-09-06 2023-10-01 行政院原子能委員會核能研究所 Organic solar module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Kim et al. The effect of molybdenum oxide interlayer on organic photovoltaic cells
US10553807B2 (en) Functional layer for organic electron device containing non-conjugated polymer having amine group, and organic electron device containing same
US8044389B2 (en) Polymer electronic devices by all-solution process
Pan et al. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells
CN102396072B (en) Multilayer organic solar cell using a polyelectrolyte layer, and method for manufacturing same
KR101012203B1 (en) Tandem parallel organic solar cell
CN103000810B (en) photodiode
KR20110133717A (en) Organic solar cell and method of manufacturing the same
US10468546B2 (en) Solar cell module and method for manufacturing the same
Gupta et al. Impedance spectroscopy on degradation analysis of polymer/fullerene solar cells
KR101087911B1 (en) Organic-inorganic hybrid solar cell and method for fabricating the same
EP2814077A1 (en) Organic thin film solar cell
Aslan et al. Sol–gel derived In2S3 buffer layers for inverted organic photovoltaic cells
KR100927721B1 (en) Photoelectric conversion device and manufacturing method thereof
JP2017506815A (en) Organic electronic devices
Chae et al. Silver-nanowire-based lamination electrode for a fully vacuum-free and solution-processed organic photovoltaic cell
KR102032012B1 (en) Organic electronic device, photovoltaics and manufaction method therof
TW201401601A (en) Inverted bilayer organic solar cell device
KR20150121673A (en) Stacked type organic solar cell
CN102280587B (en) Stacked solar cell module
WO2012160911A1 (en) Organic photoelectric conversion element
KR101364460B1 (en) Organic electronic device comprising metal oxide functional layer doped organic acids and method the same
KR101648760B1 (en) Polymer electron transporting buffer material and organo-electronic devices using the same
US20120167964A1 (en) Stacked photovoltaic cell module
US20160365403A1 (en) Electronic device including an organic optoelectronic component and an organic transistor