TW201349586A - Method of forming a light emitting diode module - Google Patents

Method of forming a light emitting diode module Download PDF

Info

Publication number
TW201349586A
TW201349586A TW102110124A TW102110124A TW201349586A TW 201349586 A TW201349586 A TW 201349586A TW 102110124 A TW102110124 A TW 102110124A TW 102110124 A TW102110124 A TW 102110124A TW 201349586 A TW201349586 A TW 201349586A
Authority
TW
Taiwan
Prior art keywords
transparent semiconductor
refractive index
polymer layer
cgc
sic
Prior art date
Application number
TW102110124A
Other languages
Chinese (zh)
Inventor
David Deshazer
Mark J Loboda
Takuya Ogawa
Ludmil Zambov
Original Assignee
Dow Corning
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning, Dow Corning Toray Co Ltd filed Critical Dow Corning
Publication of TW201349586A publication Critical patent/TW201349586A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Abstract

A light emitting diode module includes a transparent semiconductor having a refractive index of 2.7 ± 1.2, a polymer layer disposed on the transparent semiconductor and having a refractive index of 1.5 ± 0.1, and a compositional graded coating (CGC) disposed on the transparent semiconductor and sandwiched between the transparent semiconductor and the polymer layer. The CGC has a thickness and a refractive index varying along the thickness from a first refractive index from (2.2 ± 0.5 to 3.3 ± 0.4) at a first end to a second refractive index of 1.5 ± 0.2 at a second end adjacent to the polymer layer. The CGC also includes a gradient including SiC: H and (SiOCN: H; SiOC: H; and/or Si: H) along the thickness. The module is formed by continuously depositing the CGC on the transparent semiconductor using chemical vapor deposition, and subsequently disposing the polymer layer on the CGC.

Description

形成發光二極體模組之方法 Method of forming a light emitting diode module

本發明係關於一種形成發光二極體模組之方法,該發光二極體模組包括組成梯度塗層,該組成梯度塗層包含沿厚度之包括SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之梯度。 The invention relates to a method for forming a light-emitting diode module, the light-emitting diode module comprising a composition gradient coating comprising SiC:H and (SiOCN:H;SiOC:H along the thickness) And/or the gradient of Si:H).

光電半導體及包括該等半導體之電子物品在此項技術熟知。常見光電半導體包括發光二極體(LED)。LED藉由電致發光過程產生光,一般包括一或多個啟動時發光之二極體,且通常利用與二極體連接之覆晶或線接合晶片提供電力。許多電子物品亦包括連接層、光學層、基板、頂置板及/或提供保護以免受環境因素影響之其他材料。 Optoelectronic semiconductors and electronic articles including such semiconductors are well known in the art. Common optoelectronic semiconductors include light emitting diodes (LEDs). LEDs generate light by an electroluminescent process, typically including one or more diodes that illuminate upon startup, and typically provide power using a flip chip or wire bond wafer coupled to a diode. Many electronic articles also include tie layers, optical layers, substrates, overhead panels, and/or other materials that provide protection from environmental factors.

LED效率與基於某一電輸入而產生及發射之有用光之量有關。未經塗佈之光電子半導體趨向於展現相對於露天而言較高之折射率,由此阻止光子與接觸空氣之光電子半導體之表面成銳角通過。此特性影響LED之光透射效率。除其他因素以外,有用光之透射可受光學干涉、菲涅耳(Fresnel)及全內反射及光學層、連接層、基板及頂置板之光吸收限制。 LED efficiency is related to the amount of useful light generated and emitted based on an electrical input. Uncoated photoelectron semiconductors tend to exhibit a higher refractive index relative to the open air, thereby preventing photons from passing at an acute angle to the surface of the optoelectronic semiconductor that is in contact with the air. This characteristic affects the light transmission efficiency of the LED. The transmission of useful light can be limited, among other things, by optical interference, Fresnel and total internal reflection, and optical absorption of the optical layer, the tie layer, the substrate, and the overhead plate.

已研發不同技術以提高光自LED之透射。此等技術包括將表面刻花、在電子物品中添加具中等折射率之層及在電子物品中包括抗反射塗層。抗反射塗層經由破壞性干擾反射光使界面處之反射達到最小,藉此改良光學性質。通常將抗反射塗層塗覆於刻花表面上以進一步降 低反射。通常,抗反射塗層經設計使吸收達到最小且使光透射達到最大,經設計具有良好黏著性及耐久性,經設計具有鈍化功能且經設計以低成本生產。 Different techniques have been developed to increase the transmission of light from LEDs. Such techniques include engraving the surface, adding a layer having a medium refractive index to the electronic article, and including an anti-reflective coating in the electronic article. The anti-reflective coating minimizes reflection at the interface via destructive interference with reflected light, thereby improving optical properties. The anti-reflective coating is usually applied to the engraved surface to further reduce Low reflection. Typically, anti-reflective coatings are designed to minimize absorption and maximize light transmission, are designed for good adhesion and durability, are designed to passivate and are designed to be produced at low cost.

光反射及折射視光入射角而定。臨界角θc為光入射角,超過該角發生全內反射,即光完全由邊界(界面)反射。臨界角θc愈大,愈多光將逃出LED。一種提高θc之方法為提高周圍介質之折射率n 1 。因為離開LED之光趨向於廣角分佈,故可使用抗反射塗層,但通常需要在寬範圍之光入射角下方有效。然而,單層抗反射塗層在特定波長及角度下提供最小反射,且趨向於僅對小範圍之光入射角有效。此外,包括氧化矽及氮化矽之習知抗反射塗層由於沈積需要高溫或電漿功率而容易在各種界面處形成缺陷。因此,仍存在改良機會。 The light reflects and refracts depending on the angle of incidence of the light. The critical angle θ c is the angle of incidence of the light beyond which total internal reflection occurs, ie the light is completely reflected by the boundary (interface). The larger the critical angle θ c , the more light will escape the LED. One way to increase θ c is to increase the refractive index n 1 of the surrounding medium. Since the light exiting the LED tends to be widely distributed, an anti-reflective coating can be used, but typically needs to be effective over a wide range of light incident angles. However, single-layer anti-reflective coatings provide minimal reflection at specific wavelengths and angles and tend to be effective only for a small range of light incident angles. In addition, conventional anti-reflective coatings comprising yttria and tantalum nitride readily form defects at various interfaces due to the high temperature or plasma power required for deposition. Therefore, there are still opportunities for improvement.

本發明係關於一種發光二極體模組,其包括折射率為2.7±1.2之透明半導體、置於該透明半導體上且折射率為1.5±0.1之聚合物層、及置於該透明半導體上且夾在該透明半導體與該聚合物層之間的組成梯度塗層(CGC)。該CGC具有一定厚度,且折射率由第一末端之第一折射率(2.2±0.5至3.3±0.4)沿厚度變為接近該聚合物層之第二末端之第二折射率1.5±0.2。該CGC亦包括沿厚度之包括SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之梯度。本發明亦提供一種形成模組之方法,其中該方法包括使用化學氣相沈積將該CGC連續沈積於該透明半導體上且隨後將該聚合物層置於該CGC上。 The present invention relates to a light emitting diode module comprising a transparent semiconductor having a refractive index of 2.7±1.2, a polymer layer disposed on the transparent semiconductor and having a refractive index of 1.5±0.1, and being disposed on the transparent semiconductor A composition gradient coating (CGC) sandwiched between the transparent semiconductor and the polymer layer. The CGC has a thickness and the refractive index changes from a first refractive index (2.2 ± 0.5 to 3.3 ± 0.4) at the first end to a second refractive index of 1.5 ± 0.2 near the second end of the polymer layer. The CGC also includes gradients including SiC:H and (SiOCN:H; SiOC:H; and/or Si:H) along the thickness. The present invention also provides a method of forming a module, wherein the method comprises continuously depositing the CGC on the transparent semiconductor using chemical vapor deposition and then placing the polymer layer on the CGC.

圖1A為本發明模組之一個實施例之側視圖,該模組包括置於透明半導體上且與透明半導體隔開之聚合物層、及置於該透明半導體上且與該透明半導體直接接觸且夾在該透明半導體與該聚合物層之間的組成梯度塗層。 1A is a side view of an embodiment of a module of the present invention including a polymer layer disposed on a transparent semiconductor and separated from the transparent semiconductor, and disposed on the transparent semiconductor and in direct contact with the transparent semiconductor A compositional gradient coating sandwiched between the transparent semiconductor and the polymer layer.

圖1B為本發明模組之一個實施例之側視圖,該模組包括置於作為透明半導體之LED上且與作為透明半導體之LED隔開之聚合物層、及置於該LED上且與該LED直接接觸且夾在該LED與該聚合物層之間的組成梯度塗層。 1B is a side view of an embodiment of a module of the present invention including a polymer layer disposed on an LED as a transparent semiconductor and separated from an LED as a transparent semiconductor, and placed on the LED and The LED is in direct contact with the compositional gradient coating sandwiched between the LED and the polymer layer.

圖2為氮及氧含量變化之SiC:H及SiOCN:H薄膜之FT-IR光譜。 Figure 2 shows the FT-IR spectrum of SiC:H and SiOCN:H films with varying nitrogen and oxygen contents.

圖3A為與使用(CH3)3SiH作為Si-C來源所形成之本發明組成梯度塗層之厚度有關之元素濃度的XPS組成分佈。 Figure 3A is an XPS composition distribution of element concentrations associated with the thickness of the composition gradient coating of the present invention formed using (CH 3 ) 3 SiH as the Si-C source.

圖3B為與使用SiH4及C2H4作為Si-C來源所形成之本發明組成梯度塗層之厚度有關之元素濃度的XPS組成分佈。 FIG 3B is a present invention 2 H 4 and C using SiH 4 formed of a Si-C from various sources related to the thickness of the element concentration gradient coating composition distribution of XPS.

圖4為使用(CH3)3SiH之雙頻PECVD反應腔室中與低頻功率有關之塗層之折射率、沈積速率及吸收係數的線圖。 Figure 4 is a line graph of the refractive index, deposition rate, and absorption coefficient of a low frequency power related coating in a dual frequency PECVD reaction chamber using (CH 3 ) 3 SiH.

圖5為使用(CH3)3SiH之雙頻PECVD反應腔室中與氧氣流速有關之塗層之折射率、沈積速率及吸收係數的線圖。 Figure 5 is a line graph of the refractive index, deposition rate, and absorption coefficient of a coating associated with oxygen flow rate in a dual frequency PECVD reaction chamber using (CH 3 ) 3 SiH.

圖6為裸Si基板(BareSi)、包括置於其上之聚合物層的相同基板(SiEnc)、具有聚合物層之單層抗反射塗層(ARC/Enc)及包括置於其上之聚合物層的兩個不同之本發明CGC(CGC1Enc及CGC2Enc)之與波長有關之反射光譜。 6 is a bare Si substrate (BareSi), a same substrate (SiEnc) including a polymer layer disposed thereon, a single-layer anti-reflective coating (ARC/Enc) having a polymer layer, and a polymerization layer disposed thereon Wavelength-dependent reflectance spectra of two different inventive CGCs (CGC1 Enc and CGC2 Enc).

圖7為裸Si基板之反射率(SiRef-R)、包括置於其上之本發明CGC(使用(CH3)3SiH形成)之相同Si基板之反射率(CGC-R)、包括相同CGC及聚合物層之相同Si基板之反射率(CGC.Enc-R)、玻璃參考透射率(Glass Ref-T)及包括本發明CGC之相同玻璃參考透射率(CGC-T)之線圖。 7 is a reflectance (SiRef-R) of a bare Si substrate, including a reflectance (CGC-R) of the same Si substrate of the inventive CGC (formed using (CH 3 ) 3 SiH), including the same CGC A line graph of the reflectance (CGC. Enc-R), glass reference transmittance (Glass Ref-T) of the same Si substrate as the polymer layer, and the same glass reference transmittance (CGC-T) including the CGC of the present invention.

圖8為本發明CGC(使用(CH3)3SiH形成)之與波長有關之光致發光強度(cps)之線圖、及三組分高斯模型擬合及裸Si參考晶圓。 Figure 8 is a line graph of wavelength-dependent photoluminescence intensity (cps) of CGC (formed using (CH 3 ) 3 SiH), a three-component Gaussian model fit, and a bare Si reference wafer.

圖9為置於Si基板上之AlN、置於AlN/Si上之本發明之第一CGC(使用(CH3)3SiH形成)及置於AlN/Si上之本發明之第二基本 CGC(使用(CH3)3SiH形成)之與光波長有關之光反射(%)之線圖。 Figure 9 is an AlN on a Si substrate, a first CGC (formed using (CH 3 ) 3 SiH) of the present invention placed on AlN/Si, and a second basic CGC of the present invention placed on AlN/Si ( A line graph of light reflection (%) related to the wavelength of light using (CH 3 ) 3 SiH).

圖10為置於Si基板上之AlN、置於AlN/Si上之本發明之第一CGC(使用(CH3)3SiH形成)及置於AlN/Si上之本發明之第二CGC(使用(CH3)3SiH形成)之與光波長有關之反射之線圖。 Figure 10 is an AlN on a Si substrate, a first CGC of the present invention placed on AlN/Si (formed using (CH 3 ) 3 SiH), and a second CGC of the present invention placed on AlN/Si (using (CH 3 ) 3 SiH is a line diagram of the reflection of the wavelength of light.

圖11A為Al2O3/GaN參考、置於Al2O3/GaN參考上之本發明之第一CGC(使用(CH3)3SiH形成)、置於Al2O3/GaN參考上之本發明之第二CGC(使用(CH3)3SiH形成)及本發明之第三CGC(使用SiH4形成)之反射光譜。 11A is on the Al 2 O 3 / GaN reference, a first Al 2 O 3 was placed CGC (using (CH 3) 3 SiH is formed) of the present invention / GaN Reference, placed Al 2 O 3 / GaN Reference A reflectance spectrum of the second CGC of the present invention (formed using (CH 3 ) 3 SiH) and the third CGC of the present invention (formed using SiH 4 ).

圖11B為Al2O3/GaN參考、置於Al2O3/GaN參考上之本發明之第一CGC(使用(CH3)3SiH形成)、置於Al2O3/GaN參考上之本發明之第二CGC(使用(CH3)3SiH形成)及本發明之第三CGC(使用SiH4形成)之透射光譜。 11B is on the Al 2 O 3 / GaN reference, a first Al 2 O 3 was placed CGC (using (CH 3) 3 SiH is formed) of the present invention / GaN Reference, placed Al 2 O 3 / GaN Reference The transmission spectrum of the second CGC of the present invention (formed using (CH 3 ) 3 SiH) and the third CGC of the present invention (formed using SiH 4 ).

圖12A為Al2O3/GaN參考、置於Al2O3/GaN參考上之本發明之第一CGC(使用(CH3)3SiH形成)、及置於Al2O3/GaN參考上之本發明之第二CGC(使用(CH3)3SiH形成)以及包括置於該第二CGC上之聚合物層的反射光譜。 12A is an Al 2 O 3 /GaN reference, a first CGC of the present invention placed on an Al 2 O 3 /GaN reference (formed using (CH 3 ) 3 SiH), and placed on an Al 2 O 3 /GaN reference A second CGC of the invention (formed using (CH 3 ) 3 SiH) and a reflection spectrum comprising a polymer layer disposed on the second CGC.

圖12B為Al2O3/GaN參考、置於Al2O3/GaN參考上之本發明之第一CGC(使用(CH3)3SiH形成)、及置於Al2O3/GaN參考上之本發明之第二CGC(使用(CH3)3SiH形成)以及包括置於該第二CGC上之聚合物層的透射光譜。 12B is an Al 2 O 3 /GaN reference, a first CGC of the present invention placed on an Al 2 O 3 /GaN reference (formed using (CH 3 ) 3 SiH), and placed on an Al 2 O 3 /GaN reference A second CGC of the invention (formed using (CH 3 ) 3 SiH) and a transmission spectrum comprising a polymer layer disposed on the second CGC.

圖13A為Al2O3/GaN參考、置於Al2O3/GaN參考上之本發明之第一CGC(使用SiH4形成)、及置於Al2O3/GaN參考上之本發明之第二CGC(使用SiH4形成)以及包括置於該第二CGC上之聚合物層的反射光譜。 13A is Al 2 O 3 / GaN reference, Al 2 O 3 was placed first on the present invention CGC / GaN reference (formed using SiH 4), and the present invention is placed on the Al 2 O 3 / GaN reference A second CGC (formed using SiH 4 ) and a reflection spectrum comprising a polymer layer disposed on the second CGC.

圖13B為Al2O3/GaN參考、置於Al2O3/GaN參考上之本發明之第一CGC(使用SiH4形成)、及置於Al2O3/GaN參考上之本發明之第二 CGC(使用SiH4形成)以及包括置於該第二CGC上之聚合物層的透射光譜。 13B is Al 2 O 3 / GaN reference, the present invention disposed on a first CGC of Al 2 O 3 / GaN reference (formed using SiH 4), and the present invention is placed on the Al 2 O 3 / GaN reference A second CGC (formed using SiH 4 ) and a transmission spectrum comprising a polymer layer disposed on the second CGC.

圖14為置於GaN上之組成梯度塗層之與厚度有關之折射率圖,其包括三階指數模型擬合。 Figure 14 is a thickness-dependent index of refraction of a compositionally graded coating placed on GaN, including a third-order exponential model fit.

圖15為2維梯度之實例。 Figure 15 is an example of a 2-dimensional gradient.

本發明提供一種發光二極體(LED)模組及一種形成該模組之方法。該模組趨向於在施加正向偏壓時發射光譜範圍內之光的固態裝置。發射之光的波長通常取決於裝置作用區中所用之透明半導體之能量帶隙(E g)。在一個實施例中,透明半導體包括具有多量子井作用區及載流子拘限層之p-n接面。在約300至約1700奈米之波長範圍內,該模組之光反射通常小於10、7、5、4、3、2或1%。光反射通常使用分光光度計及/或橢偏儀來量測,諸如可購自Agilent Technologies Inc.(Santa Clara,California)之Cary 5000 UV-Vis NIR分光光度計。 The invention provides a light emitting diode (LED) module and a method of forming the same. The module tends to solid state devices that emit light in the spectral range when a forward bias is applied. Wavelength of light emitted depends on the energy of the apparatus is generally used in the active region of the transparent semiconductor bandgap (E g). In one embodiment, the transparent semiconductor includes a pn junction having a multiple quantum well active region and a carrier trapping layer. The light reflection of the module is typically less than 10, 7, 5, 4, 3, 2 or 1% over a wavelength range of from about 300 to about 1700 nm. Light reflection is typically measured using a spectrophotometer and/or an ellipsometer such as the Cary 5000 UV-Vis NIR spectrophotometer available from Agilent Technologies Inc. (Santa Clara, California).

或者,該模組可描述為固態光(例如包括LED之固態光)或描述為固態照明,且可用於任何應用中,該應用包括(但不限於)儀錶板及開關、踏板照明、轉彎及停止信號、家用電器、VCR/DVD/立體聲/音訊/視訊裝置、玩具/遊戲儀器、保密設備、開關、建築照明、標牌(發光字)、機器視覺、零售展示、事故照明、氖及燈泡更換、手電筒、補強照明全色視訊、單色留言板、交通、鐵道及航空應用、行動電話、PDA、數位照相機、膝上型電腦、醫療儀器、條碼讀取器、顏色及貨幣傳感器、編碼器、光學開關、光纖通信及其組合。 Alternatively, the module can be described as solid state light (eg, solid state light including LEDs) or as solid state lighting, and can be used in any application including, but not limited to, instrument panels and switches, pedal lighting, turning and stopping Signals, home appliances, VCR/DVD/stereo/audio/video devices, toys/games, security devices, switches, architectural lighting, signage (lighting words), machine vision, retail displays, accident lighting, smashing and bulb replacement, flashlights , reinforced lighting full color video, monochrome message board, transportation, railway and aerospace applications, mobile phones, PDAs, digital cameras, laptops, medical instruments, barcode readers, color and currency sensors, encoders, optical switches , fiber optic communications and combinations thereof.

該模組包括透明半導體。透明半導體無特別限制且可進一步描述為半導體LED、有機LED、聚合物LED、量子點LED、紅外LED、可見光LED(包括有色光及白光)、紫外LED及其組合中之一或多者。透明半導體可包括單層或多層。通常使用分光光度計及/或橢偏儀量 測,透明半導體通常透過至少75、80、85、90、95、96、97、98或99%之紫外光(UV)、可見光及/或紅外光(IR)。或者,透明半導體可包括或進一步定義為Al2O3、SiC、選自週期表之第III族及/或第IV族之半導體及/或其組合。在多個實施例中,透明半導體係選自GaN、AlGaN、AlN、GaAs、AlGaAs、InP、InGaAsP及其組合。透明半導體之折射率為(約)1.5至3.9,亦即2.7±1.2、1.1、1、0.75、0.5、0.25或0.1。在多個實施例中,透明半導體之厚度為0.2至2.0、0.4至1.8、0.6至1.6、0.8至1.4或1.0至1.2mm。該模組亦可包括一或多個在此項技術已知通常與該等模組相關之層或組分。舉例而言,該模組可包括一或多個驅動器、光學器件、散熱片、外殼、透鏡、電源、夾具、導線、電極、電路及其類似物。 The module includes a transparent semiconductor. The transparent semiconductor is not particularly limited and may be further described as one or more of a semiconductor LED, an organic LED, a polymer LED, a quantum dot LED, an infrared LED, a visible light LED (including colored light and white light), an ultraviolet LED, and combinations thereof. The transparent semiconductor may include a single layer or multiple layers. Transparent semiconductors typically pass at least 75, 80, 85, 90, 95, 96, 97, 98, or 99% ultraviolet (UV), visible, and/or infrared light, typically measured using a spectrophotometer and/or ellipsometer. (IR). Alternatively, the transparent semiconductor may include or be further defined as Al 2 O 3 , SiC, a semiconductor selected from Group III and/or Group IV of the Periodic Table, and/or combinations thereof. In various embodiments, the transparent semiconductor is selected from the group consisting of GaN, AlGaN, AlN, GaAs, AlGaAs, InP, InGaAsP, and combinations thereof. The refractive index of the transparent semiconductor is (about) 1.5 to 3.9, that is, 2.7 ± 1.2, 1.1, 1, 0.75, 0.5, 0.25 or 0.1. In various embodiments, the transparent semiconductor has a thickness of 0.2 to 2.0, 0.4 to 1.8, 0.6 to 1.6, 0.8 to 1.4, or 1.0 to 1.2 mm. The module may also include one or more layers or components that are generally associated with such modules as are known in the art. For example, the module can include one or more drivers, optics, heat sinks, housings, lenses, power supplies, clamps, wires, electrodes, circuitry, and the like.

該模組可包括兩、三或多個透明半導體(層),該等透明半導體各可獨立地與上文所述相同或不同。通常,使用多個透明半導體層以形成LED。在一個實施例中,進一步將多個層之頂部(例如最外面)透明半導體定義為發光二極體。換言之,可進一步將多個透明半導體層之頂層定義為發光二極體。 The module can include two, three or more transparent semiconductors (layers), each of which can be independently the same or different than described above. Typically, multiple transparent semiconductor layers are used to form the LEDs. In one embodiment, the top (eg, outermost) transparent semiconductor of the plurality of layers is further defined as a light emitting diode. In other words, the top layer of the plurality of transparent semiconductor layers can be further defined as a light emitting diode.

此外,該模組可包括磷光體。磷光體無特別限制且可包括此項技術已知之任何磷光體。在一個實施例中,磷光體由主體材料及活化劑製成,諸如銅活化之硫化鋅及銀活化之硫化鋅。適合但非限制性主體材料包括鋅、鎘、錳、鋁、矽或各種稀土金屬之氧化物、氮化物及氮氧化物、硫化物、硒化物、鹵化物或矽酸鹽。其他適合磷光體包括(但不限於)Zn2SiO4:Mn(矽鋅礦);ZnS:Ag+(Zn,Cd)S:Ag;ZnS:Ag+ZnS:Cu+Y2O2S:Eu;ZnO:Zn;KCl;ZnS:Ag,Cl或ZnS:Zn;(KF,MgF2):Mn;(Zn,Cd)S:Ag或(Zn,Cd)S:Cu;Y2O2S:Eu+Fe2O3、ZnS:Cu,Al;ZnS:Ag+Co/Al2O3;(KF,MgF2):Mn;(Zn,Cd)S:Cu,Cl;ZnS:Cu或ZnS:Cu,Ag;MgF2:Mn;(Zn,Mg)F2:Mn;Zn2SiO4:Mn,As; ZnS:Ag+(Zn,Cd)S:Cu;Gd2O2S:Tb;Y2O2S:Tb;Y3Al5O12:Ce;Y2SiO5:Ce;Y3Al5O12:Tb;ZnS:Ag,Al;ZnS:Ag;ZnS:Cu,Al或ZnS:Cu,Au,Al;(Zn,Cd)S:Cu,Cl+(Zn,Cd)S:Ag,Cl;Y2SiO5:Tb;Y2OS:Tb;Y3(Al,Ga)5O12:Ce;Y3(Al,Ga)5O12:Tb;InBO3:Tb;InBO3:Eu;InBO3:Tb+InBO3:Eu;InBO3:Tb+InBO3:Eu+ZnS:Ag;(Ba,Eu)Mg2Al16O27;(Ce,Tb)MgAl11O19;BaMgAl10O17:Eu,Mn;BaMg2Al16O27:Eu(II);BaMgAl10O17:Eu,Mn;BaMg2Al16O27:Eu(II),Mn(II);Ce0.67Tb0.33MgAl11O19:Ce,Tb;Zn2SiO4:Mn,Sb2O3;CaSiO3:Pb,Mn;CaWO4(白鎢礦);CaWO4:Pb;MgWO4;(Sr,Eu,Ba,Ca)5(PO4)3Cl;Sr5Cl(PO4)3:Eu(II);(Ca,Sr,Ba)3(PO4)2Cl2:Eu;(Sr,Ca,Ba)10(PO4)6Cl2:Eu;Sr2P2O7:Sn(II);Sr6P5BO20:Eu;Ca5F(PO4)3:Sb;(Ba,Ti)2P2O7:Ti;3Sr3(PO4)2.SrF2:Sb,Mn;Sr5F(PO4)3:Sb,Mn;Sr5F(PO4)3:Sb,Mn;LaPO4:Ce,Tb;(La,Ce,Tb)PO4;(La,Ce,Tb)PO4:Ce,Tb;Ca3(PO4)2.CaF2:Ce,Mn;(Ca,Zn,Mg)3(PO4)2:Sn;(Zn,Sr)3(PO4)2:Mn;(Sr,Mg)3(PO4)2:Sn;(Sr,Mg)3(PO4)2:Sn(II);Ca5F(PO4)3:Sb,Mn;Ca5(F,Cl)(PO4)3:Sb,Mn;(Y,Eu)2O3;Y2O3:Eu(III);Mg4(F)GeO6:Mn;Mg4(F)(Ge,Sn)O6:Mn;Y(P,V)O4:Eu;YVO4:Eu;Y2O2S:Eu;3.5 MgO‧0.5 MgF2‧GeO2:Mn;Mg5As2O11:Mn;SrAl2O7:Pb;LaMgAl11O19:Ce;LaPO4:Ce;SrAl12O19:Ce;BaSi2O5:Pb;SrFB2O3:Eu(II);SrB4O7:Eu;Sr2MgSi2O7:Pb;MgGa2O4:Mn(II);Gd2O2S:Tb;Gd2O2S:Eu;Gd2O2S:Pr;Gd2O2S:Pr,Ce,F;Y2O2S:Tb;Y2O2S:Eu;Y2O2S:Pr;Zn(0.5)Cd(0.4)S:Ag;Zn(0.4)Cd(0.6)S:Ag;CdWO4;CaWO4;MgWO4;Y2SiO5:Ce;YAlO3:Ce;Y3Al5O12:Ce;Y3(Al,Ga)5O12:Ce;CdS:In;ZnO:Ga;ZnO:Zn;(Zn,Cd)S:Cu,Al;ZnS:Cu,Al,Au;ZnCdS:Ag,Cu;ZnS:Ag;蒽、EJ-212、Zn2SiO4:Mn; ZnS:Cu;NaI:Tl;CsI:Tl;LiF/ZnS:Ag;LiF/ZnSCu,Al,Au及其組合。 Additionally, the module can include a phosphor. The phosphor is not particularly limited and may include any phosphor known in the art. In one embodiment, the phosphor is made of a host material and an activator such as copper activated zinc sulfide and silver activated zinc sulfide. Suitable but non-limiting host materials include zinc, cadmium, manganese, aluminum, cerium or oxides, nitrides and oxynitrides, sulfides, selenides, halides or cerium salts of various rare earth metals. Other suitable phosphors include, but are not limited to, Zn 2 SiO 4 : Mn (yttrium zinc ore); ZnS: Ag + (Zn, Cd) S: Ag; ZnS: Ag + ZnS: Cu + Y 2 O 2 S: Eu; ZnO: Zn; KCl; ZnS: Ag, Cl or ZnS: Zn; (KF, MgF 2 ): Mn; (Zn, Cd) S: Ag or (Zn, Cd)S: Cu; Y 2 O 2 S: Eu +Fe 2 O 3 , ZnS: Cu, Al; ZnS: Ag + Co / Al 2 O 3 ; (KF, MgF 2 ): Mn; (Zn, Cd) S: Cu, Cl; ZnS: Cu or ZnS: Cu , Ag; MgF 2 : Mn; (Zn, Mg) F 2 : Mn; Zn 2 SiO 4 : Mn, As; ZnS: Ag + (Zn, Cd) S: Cu; Gd 2 O 2 S: Tb; Y 2 O 2 S:Tb; Y 3 Al 5 O 12 :Ce; Y 2 SiO 5 :Ce; Y 3 Al 5 O 12 :Tb; ZnS:Ag,Al;ZnS:Ag;ZnS:Cu,Al or ZnS:Cu, Au, Al; (Zn, Cd) S: Cu, Cl + (Zn, Cd) S: Ag, Cl; Y 2 SiO 5 : Tb; Y 2 OS: Tb; Y 3 (Al, Ga) 5 O 12 : Ce Y 3 (Al,Ga) 5 O 12 :Tb; InBO 3 :Tb; InBO 3 :Eu; InBO 3 :Tb+InBO 3 :Eu; InBO 3 :Tb+InBO 3 :Eu+ZnS:Ag; ,Eu)Mg 2 Al 16 O 27 ;(Ce,Tb)MgAl 11 O 19 ;BaMgAl 10 O 17 :Eu,Mn;BaMg 2 Al 16 O 27 :Eu(II);BaMgAl 10 O 17 :Eu,Mn; BaMg 2 Al 16 O 27 :Eu(II), Mn(II); Ce 0.67 Tb 0.33 MgAl 11 O 19 : Ce, Tb; Zn 2 SiO 4 : Mn, Sb 2 O 3 ; CaSiO 3 : Pb, Mn; CaWO 4 (scheelite); CaWO 4 : Pb; MgWO 4 ; (Sr, Eu, Ba, Ca) 5 (PO4) 3 Cl; Sr 5 Cl(PO 4 ) 3 :Eu(II); (Ca,Sr,Ba) 3 (PO 4 ) 2 Cl 2 :Eu; (Sr,Ca,Ba) 10 (PO 4 ) 6 Cl 2 :Eu;Sr 2 P 2 O 7 :Sn(II);Sr 6 P 5 BO 20 :Eu;Ca 5 F(PO 4 ) 3 :Sb; (Ba,Ti) 2 P 2 O 7 :Ti ; 3Sr 3 (PO 4 ) 2 . SrF 2 : Sb, Mn; Sr 5 F(PO 4 ) 3 : Sb, Mn; Sr 5 F(PO 4 ) 3 : Sb, Mn; LaPO 4 : Ce, Tb; La,Ce,Tb)PO 4 ;(La,Ce,Tb)PO 4 :Ce,Tb;Ca 3 (PO 4 ) 2 .CaF 2 :Ce,Mn;(Ca,Zn,Mg) 3 (PO 4 ) 2 :Sn;(Zn,Sr) 3 (PO 4 ) 2 :Mn; (Sr,Mg) 3 (PO 4 ) 2 :Sn; (Sr,Mg) 3 (PO 4 ) 2 :Sn(II);Ca 5 F(PO 4 ) 3 :Sb,Mn;Ca 5 (F,Cl)(PO 4 ) 3 :Sb,Mn; (Y,Eu) 2 O 3 ;Y 2 O 3 :Eu(III);Mg 4 (F) GeO 6 : Mn; Mg 4 (F) (Ge, Sn)O 6 : Mn; Y(P,V)O 4 :Eu; YVO 4 :Eu; Y 2 O 2 S:Eu;3.5 MgO‧ 0.5 MgF 2 ‧ GeO 2 : Mn; Mg 5 As 2 O 11 : Mn; SrAl 2 O 7 : Pb; LaMgAl 11 O 19 : Ce; LaPO 4 : Ce; SrAl 12 O 19 : Ce; BaSi 2 O 5 : Pb ; SrFB 2 O 3 Eu (II); SrB 4 O 7: Eu; Sr 2 MgSi 2 O 7: Pb; MgGa 2 O 4: Mn (II); Gd 2 O 2 S: Tb; Gd 2 O 2 S: Eu; Gd 2 O 2 S:Pr;Gd 2 O 2 S:Pr,Ce,F;Y 2 O 2 S:Tb;Y 2 O 2 S:Eu;Y 2 O 2 S:Pr;Zn(0.5)Cd(0.4)S : Ag; Zn(0.4)Cd(0.6)S:Ag; CdWO 4 ; CaWO 4 ; MgWO 4 ; Y 2 SiO 5 :Ce; YAlO 3 :Ce; Y 3 Al 5 O 12 :Ce; Y 3 (Al, Ga) 5 O 12 :Ce;CdS:In;ZnO:Ga;ZnO:Zn; (Zn,Cd)S:Cu,Al;ZnS:Cu,Al,Au;ZnCdS:Ag,Cu;ZnS:Ag;蒽, EJ-212, Zn 2 SiO 4 : Mn; ZnS: Cu; NaI: Tl; CsI: Tl; LiF/ZnS: Ag; LiF/ZnSCu, Al, Au, and combinations thereof.

磷光體可存在於模組之任一部分中。磷光體可作為模組中之不連續層或作為獨立組合物之一部分存在。換言之,磷光體可存在於獨立層中或可例如以梯度模式與組合物組合,均勻分散於各處,或以較高濃度存在於組合物之一些區域中及以較低濃度存在於組合物之其他區域中。在另一個實施例中,磷光體存在於模組之透鏡中。 The phosphor can be present in any part of the module. The phosphor may be present as a discontinuous layer in the module or as part of a separate composition. In other words, the phosphor may be present in a separate layer or may be combined, for example, in a gradient mode with the composition, uniformly dispersed throughout, or present in some regions of the composition at a higher concentration and present in the composition at a lower concentration. In other areas. In another embodiment, the phosphor is present in the lens of the module.

該模組亦可包括離型襯墊。離型襯墊可為此項技術已知之任何離型襯墊,諸如矽化PET或氟化襯墊。此等離型襯墊通常平滑,但亦可例如在抗反射表面中刻花或刻花作為抗反射表面。 The module can also include a release liner. The release liner can be any release liner known in the art, such as a deuterated PET or a fluorinated liner. The detachable liner is generally smooth, but can also be engraved or scored as an anti-reflective surface, for example, in an anti-reflective surface.

該模組亦包括置於透明半導體上且如使用光譜橢偏儀折射計所測定折射率為1.3至1.8,亦即1.5±0.05、0.1、0.15、0.2、或+0.2、或0.3之聚合物層。在另一個實施例中,聚合物層之折射率與組成梯度塗層之折射率大致匹配,例如±0.1,其在下文中更詳細描述。如使用分光光度計所測定,聚合物層之透光度通常亦為至少85、90、95、96、97、98、99或99.5%。在一個實施例中,聚合物層之透光度為約100%(-10、5、2、1、0.75、0.5、0.25%)。術語「置於……上」如圖1所述包括聚合物層置於透明半導體上且與透明半導體直接接觸、或置於透明半導體上且與透明半導體隔開但仍置於其上。通常,將聚合物層置於透明半導體上且與透明半導體隔開。 The module also includes a polymer layer disposed on a transparent semiconductor and having a refractive index of 1.3 to 1.8, that is, 1.5 ± 0.05, 0.1, 0.15, 0.2, or +0.2, or 0.3, as measured using a spectroscopic refractometer. . In another embodiment, the refractive index of the polymer layer substantially matches the refractive index of the compositional gradient coating, such as ± 0.1, which is described in more detail below. The transmittance of the polymer layer is typically also at least 85, 90, 95, 96, 97, 98, 99 or 99.5% as determined using a spectrophotometer. In one embodiment, the polymer layer has a transmittance of about 100% (-10, 5, 2, 1, 0.75, 0.5, 0.25%). The term "disposed on" as used in FIG. 1 includes the placement of a polymer layer on a transparent semiconductor and in direct contact with a transparent semiconductor, or on a transparent semiconductor and spaced apart from the transparent semiconductor but still placed thereon. Typically, the polymer layer is placed on a transparent semiconductor and separated from the transparent semiconductor.

聚合物層之厚度可為至少50、55、60、65、70、75、80、85、90、95、100、105、110、115、120或125μm。或者,聚合物層之厚度可為50至150、60至140、70至130、80至120、90至110、50至250、60至350、70至450、80至550、或100至1000μm。在一個實施例中,聚合物層之厚度為約300μm。在多個實施例中,聚合物層之厚度大約等於或長於發射之光(不論可見光、紫外光及紅外光)的相干長度。由於光程長度大於發射之光的相干長度,故此厚度使干涉作用達到最 小。若聚合物層過薄,則可出現干涉增加,由此可產生著色及光譜效應。 The thickness of the polymer layer can be at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120 or 125 μm. Alternatively, the polymer layer may have a thickness of 50 to 150, 60 to 140, 70 to 130, 80 to 120, 90 to 110, 50 to 250, 60 to 350, 70 to 450, 80 to 550, or 100 to 1000 μm. In one embodiment, the polymer layer has a thickness of about 300 [mu]m. In various embodiments, the thickness of the polymer layer is approximately equal to or longer than the coherence length of the emitted light (whether visible, ultraviolet, and infrared). Since the optical path length is greater than the coherence length of the emitted light, this thickness maximizes interference. small. If the polymer layer is too thin, an increase in interference can occur, whereby coloring and spectral effects can be produced.

聚合物層可由無機化合物及有機化合物或有機與無機化合物之混合物形成及/或包括無機化合物及有機化合物或有機與無機化合物之混合物。此等化合物可能需要或可能不需要固化。或者,聚合物層可由以下形成及/或包括以下:金屬、聚合物、塑膠、聚矽氧、玻璃、藍寶石及其類似物,只要折射率如上所述即可。在多個實施例中,聚合物層為乙烯乙酸乙烯酯(ethylene vinyl acetate,EVA)、玻璃、聚矽氧及/或丙烯酸酯。通常,如使用分光光度計所測定,聚合物層透光。聚合物層可由包括矽原子之可固化組合物形成。在一個實施例中,可固化組合物包括矽氫化可固化聚雙甲基矽氧烷(PDMS)。在其他實施例中,聚合物層可如PCT/US09/01623、PCT/US09/01621及/或PCT/US09/62513中之一或多者中所述,各文獻均明確地以引用的方式併入本文中。聚合物層可為模組之內層或最外層。 The polymer layer may be formed from an inorganic compound and an organic compound or a mixture of an organic and inorganic compound and/or include an inorganic compound and an organic compound or a mixture of an organic and inorganic compound. These compounds may or may not require curing. Alternatively, the polymer layer may be formed and/or include the following: metal, polymer, plastic, polyoxyxene, glass, sapphire, and the like, as long as the refractive index is as described above. In various embodiments, the polymer layer is ethylene vinyl acetate (EVA), glass, polyoxymethylene, and/or acrylate. Typically, the polymer layer is light transmissive as measured using a spectrophotometer. The polymer layer can be formed from a curable composition comprising a ruthenium atom. In one embodiment, the curable composition comprises hydrazine hydrogenated curable polybismethyl decane (PDMS). In other embodiments, the polymer layer can be as described in one or more of PCT/US09/01623, PCT/US09/01621, and/or PCT/US09/62513, each of which is expressly incorporated by reference. Into this article. The polymer layer can be the inner or outermost layer of the module.

該模組可包括多個聚合物層,亦即第二及視情況存在之第三聚合物層或更多聚合物層。任何其他聚合物層可與上述聚合物層相同或不同。在一個實施例中,該模組包括上述聚合物層及第二聚合物層。此外,聚合物層可透過紫外光及/或可見光,且第二(或其他)聚合物層可透過紫外及/或可見光。 The module may comprise a plurality of polymer layers, that is, a second and optionally a third polymer layer or more polymer layers. Any other polymer layer may be the same or different than the polymer layer described above. In one embodiment, the module includes the above polymer layer and a second polymer layer. In addition, the polymer layer can transmit ultraviolet light and/or visible light, and the second (or other) polymer layer can transmit ultraviolet and/or visible light.

如圖1所述,該模組亦包括置於透明半導體上且夾在透明半導體與聚合物層之間的組成梯度塗層(CGC)。正如上文所述,術語「置於……上」描述CGC置於透明半導體上且與透明半導體直接接觸。此術語亦描述CGC與透明半導體隔開,但仍置於其上。該模組可包括兩個或兩個以上可彼此相同或不同之CGC,且各CGC可置於模組中之任何位置。 As shown in FIG. 1, the module also includes a composition gradient coating (CGC) disposed on the transparent semiconductor and sandwiched between the transparent semiconductor and the polymer layer. As mentioned above, the term "on" describes the placement of the CGC on a transparent semiconductor and in direct contact with the transparent semiconductor. This term also describes that the CGC is separated from the transparent semiconductor but remains on it. The module can include two or more CGCs that can be the same or different from each other, and each CGC can be placed anywhere in the module.

CGC之厚度通常為50至1000、50至950、100至900、150至850、 200至800、250至750、300至700、350至650、400至600、450至550、50至750、100至500、150至450、200至300、250至450、350至450、約400、約450、或約500nm。在多個實施例中,CGC之厚度為50至400nm,其通常經選擇以減少光吸收。在其他實施例中,CGC之厚度為60至390、70至380、80至370、90至360、100至350、110至340、120至330、120至320、130至310、140至300、150至290、160至280、170至270、180至260、190至250、200至240、或210至230nm。 The thickness of the CGC is usually 50 to 1000, 50 to 950, 100 to 900, 150 to 850, 200 to 800, 250 to 750, 300 to 700, 350 to 650, 400 to 600, 450 to 550, 50 to 750, 100 to 500, 150 to 450, 200 to 300, 250 to 450, 350 to 450, and about 400 , about 450, or about 500 nm. In various embodiments, the CGC has a thickness of 50 to 400 nm, which is typically selected to reduce light absorption. In other embodiments, the thickness of the CGC is 60 to 390, 70 to 380, 80 to 370, 90 to 360, 100 to 350, 110 to 340, 120 to 330, 120 to 320, 130 to 310, 140 to 300, 150 to 290, 160 to 280, 170 to 270, 180 to 260, 190 to 250, 200 to 240, or 210 to 230 nm.

CGC具有一定厚度,且折射率由第一末端之第一折射率(1.7至3.9,亦即2.2±0.5至3.3±0.4)沿厚度變為接近聚合物層之第二末端之第二折射率1.3至1.7,亦即1.5±0.2。或者,第一折射率可描述為2.25至3.15、2.3至3.1、2.35至3.15、2.4至3.1、2.45至3.05、2.5至3、2.55至2.95、2.6至2.9、2.65至2.85、2.7至2.8、或2.75至2.8,各±0.4、0.35、0.3、0.25、0.2、0.15、0.1或0.05。或者,第二折射率可描述為1.45±0.01、0.02、0.03、0.04、0.06、0.07、0.08、0.09或0.1。第一末端可進一步定義為CGC與透明半導體之間的界面。或者,第一末端可進一步定義為CGC與中間層之間的界面,此情況在下文更詳細描述。第二末端可進一步定義為CGC與聚合物層之間的界面。 The CGC has a thickness, and the refractive index changes from a first refractive index (1.7 to 3.9, ie, 2.2 ± 0.5 to 3.3 ± 0.4) at the first end to a second refractive index of 1.3 near the second end of the polymer layer. To 1.7, which is 1.5 ± 0.2. Alternatively, the first refractive index can be described as 2.25 to 3.15, 2.3 to 3.1, 2.35 to 3.15, 2.4 to 3.1, 2.45 to 3.05, 2.5 to 3, 2.55 to 2.95, 2.6 to 2.9, 2.65 to 2.85, 2.7 to 2.8, or 2.75 to 2.8, each ±0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1 or 0.05. Alternatively, the second index of refraction can be described as 1.45 ± 0.01, 0.02, 0.03, 0.04, 0.06, 0.07, 0.08, 0.09 or 0.1. The first end can be further defined as the interface between the CGC and the transparent semiconductor. Alternatively, the first end can be further defined as the interface between the CGC and the intermediate layer, as is described in more detail below. The second end can be further defined as the interface between the CGC and the polymer layer.

CGC之沿厚度之特定點的折射率通常由瞬時沈積條件來測定。此折射率對應於整個塗層厚度使用相同但靜態之沈積條件沈積之均勻塗層的折射率。 The refractive index of a particular point along the thickness of the CGC is typically determined by transient deposition conditions. This refractive index corresponds to the refractive index of the uniform coating deposited using the same but static deposition conditions throughout the thickness of the coating.

在一個實施例中,CGC包括上述折射率之梯度。在另一個實施例中,CGC包括沿厚度之SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之梯度,例如具有不同氫含量及/或Si至C及/或O至Si組成比率。在其他實施例中,CGC包括折射率之梯度及/或SiC:H及SiOCN:H;SiC:H及SiOC:H;或SiC:H及Si:H之梯度。在另一個實施例中,CGC包括折射率之梯度及/或Si:H、SiC:H、SiOCN:H及SiOC:H之梯度。在另一個實 施例中,CGC包括沿厚度之碳化物及碳氧化物之梯度。在一個實施例中,碳化物進一步定義為氫化碳化矽(SiC:H)且碳氧化物進一步定義為氫化碳氧化矽(SiOC:H)。梯度可完全或部分由SiC:H開始至SiOCN:H、由SiC:H至SiOC:H、由SiC:H至Si:H、由SiOCN:H至SiOC:H、由SiOCN:H至Si:H、由SiOC:H至Si:H、由Si:H至SiOC:H、由Si:H至SiOCN:H、由Si:H至SiC:H、其任何相反次序或其任何組合。 In one embodiment, the CGC includes a gradient of the above refractive indices. In another embodiment, the CGC comprises a gradient of SiC:H and (SiOCN:H;SiOC:H; and/or Si:H) along the thickness, for example having a different hydrogen content and/or Si to C and/or O To Si composition ratio. In other embodiments, the CGC includes a gradient of refractive index and/or a gradient of SiC:H and SiOCN:H; SiC:H and SiOC:H; or SiC:H and Si:H. In another embodiment, the CGC includes a gradient of refractive index and/or a gradient of Si:H, SiC:H, SiOCN:H, and SiOC:H. In another reality In the example, the CGC includes a gradient of carbides and carbon oxides along the thickness. In one embodiment, the carbide is further defined as hydrogenated niobium carbide (SiC:H) and the carbon oxide is further defined as hydrogenated niobium oxycarbide (SiOC:H). The gradient may start in whole or in part from SiC:H to SiOCN:H, from SiC:H to SiOC:H, from SiC:H to Si:H, from SiOCN:H to SiOC:H, from SiOCN:H to Si:H From SiOC:H to Si:H, from Si:H to SiOC:H, from Si:H to SiOCN:H, from Si:H to SiC:H, in any reverse order or any combination thereof.

在另一個實施例中,CGC包括折射率與SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之量的梯度。折射率及SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之量的梯度可獨立地為連續的(例如不間斷及/或不斷變化)或階梯式的,例如不連續或以一或多個階梯變化。術語「梯度」通常描述折射率及/或SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之量的量值之梯度變化,例如由較低值至較高值或反之亦然。梯度可進一步定義為指向最大增長率之方向且量值為最大增長率之向量場。梯度可進一步定義為具有藉由橫向及垂直方向之導數表示之分量的CGC上各點之一系列2維矢量。在CGC上之各點處,最大可能強度方向之矢量點增加,且矢量之長度與彼方向之變化率對應。2維梯度之實例陳述於圖15中。 In another embodiment, the CGC includes a gradient of refractive index to the amount of SiC:H and (SiOCN:H;SiOC:H; and/or Si:H). The gradient of the refractive index and the amount of SiC:H and (SiOCN:H;SiOC:H; and/or Si:H) may independently be continuous (eg, uninterrupted and/or constantly changing) or stepwise, such as not Continuous or in one or more steps. The term "gradient" generally describes a gradient change in the magnitude of the refractive index and/or the amount of SiC:H and (SiOCN:H;SiOC:H; and/or Si:H), for example from a lower value to a higher value or vice versa. The gradient can be further defined as a vector field that points in the direction of the maximum growth rate and whose magnitude is the maximum growth rate. The gradient can be further defined as a series of 2-dimensional vectors of points on the CGC having components represented by derivatives in the lateral and vertical directions. At each point on the CGC, the vector point of the largest possible intensity direction increases, and the length of the vector corresponds to the rate of change of the direction. An example of a 2-dimensional gradient is set forth in Figure 15.

在多個實施例中,CGC具有連續梯度,其中梯度之一個極值經選擇以大致匹配透明半導體或中間層之折射率,其在下文中更詳細描述。在一個實施例中,CGC之折射率由大致匹配(例如±0.2)中間層之折射率平滑轉變為大致匹配(例如±0.2)聚合物層之折射率以避免或最小化兩者間界面處光學特徵之明顯不連續性。在另一個實施例中,CGC在與透明半導體之界面處包括氫化矽(Si:H),且隨後連續梯度逐漸轉變為氫化碳化矽(SiC:H),且接著在靠近與聚合物層之界面處轉變為氫化矽氧碳氮化物(SiOCN:H)。或者,CGC可包括氫化碳化矽(SiC:H)(例如在與透明半導體之界面處),且接著在靠近與聚合物層之 界面處逐漸轉變為氫化矽氧碳氮化物(SiOCN:H)。通常,如下文所更詳細描述,在此實施例中,模組包括包括Si:H之中間層。此外,在此實施例中,氫化碳化矽(SiC:H)通常存在於靠近與中間層(例如Si:H)之界面處。 In various embodiments, the CGC has a continuous gradient in which one extreme of the gradient is selected to substantially match the refractive index of the transparent semiconductor or intermediate layer, which is described in more detail below. In one embodiment, the refractive index of the CGC is smoothly converted from a substantially matched (eg, ±0.2) intermediate layer refractive index to a substantially matched (eg, ±0.2) refractive index of the polymer layer to avoid or minimize optical at the interface therebetween. Significant discontinuity of features. In another embodiment, the CGC includes yttrium hydride (Si:H) at the interface with the transparent semiconductor, and then a gradual transition of the continuous gradient to hydrogenated lanthanum carbide (SiC:H), and then near the interface with the polymer layer It is converted to hydrogenated bismuth oxycarbonitride (SiOCN:H). Alternatively, the CGC may comprise hydrogenated niobium carbide (SiC:H) (for example at the interface with a transparent semiconductor) and then in close proximity to the polymer layer The interface gradually changes to hydrogenated bismuth oxycarbonitride (SiOCN:H). Generally, as described in more detail below, in this embodiment, the module includes an intermediate layer comprising Si:H. Further, in this embodiment, hydrogenated niobium carbide (SiC:H) is usually present near the interface with the intermediate layer (for example, Si:H).

改變CGC之組成及/或密度同時將CGC之光學阻抗分級可在透明半導體與聚合物層之間提供平滑過渡,與各者在相應界面處之光學參數(例如±0.2)大致匹配。除上述折射率之外,CGC可具有對模組之效能有益之各種物理特性。在多個實施例中,CGC在用波長為300至450、300至400、310至390、320至380、330至370、340至360、或340至350nm之光激發時發射波長為375至675、400至650、425至625、450至600、475至575、500至550、525至550、450至700、或500至600nm之光。 Varying the composition and/or density of the CGC while grading the optical impedance of the CGC provides a smooth transition between the transparent semiconductor and the polymer layer, roughly matching the optical parameters (e.g., ± 0.2) at the respective interfaces. In addition to the above refractive indices, CGCs can have a variety of physical properties that are beneficial to the performance of the module. In various embodiments, the CGC emits at a wavelength of 375 to 675 when excited with light having a wavelength of 300 to 450, 300 to 400, 310 to 390, 320 to 380, 330 to 370, 340 to 360, or 340 to 350 nm. Light of 400 to 650, 425 to 625, 450 to 600, 475 to 575, 500 to 550, 525 to 550, 450 to 700, or 500 to 600 nm.

該模組亦可包括置於聚合物層與透明半導體之間的Si:H。Si:H可包括於置於CGC與透明半導體之間的中間層中。中間層之折射率可為3至3.3±0.2或3至3.5±0.2。在模組包括中間層之一個實施例中,CGC之折射率由第一末端之第一折射率2.2±0.5、0.45、0.4、0.35、0.3、0.25、0.2、0.15、0.1或0.05沿厚度變為接近聚合物層之第二末端之第二折射率1.45±0.01、0.02、0.03、0.04、0.06、0.07、0.08、0.09或0.1。或者,Si:H可存在於CGC中以便梯度包括Si:H、SiC:H及視情況存在之SiOC:H及/或SiOCN:H。通常,在此實施例中,CGC之折射率由第一末端之第一折射率3.3±0.5、0.4、0.3、0.2或0.1沿厚度變為接近聚合物層之第二末端之第二折射率1.45±0.01、0.02、0.03、0.04、0.06、0.07、0.08、0.09或0.1。Si:H亦可存在於梯度與中間層中。 The module can also include Si:H disposed between the polymer layer and the transparent semiconductor. Si:H may be included in an intermediate layer interposed between the CGC and the transparent semiconductor. The intermediate layer may have a refractive index of 3 to 3.3 ± 0.2 or 3 to 3.5 ± 0.2. In one embodiment of the module including the intermediate layer, the refractive index of the CGC is changed from the first refractive index of the first end by 2.2 ± 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1 or 0.05. The second refractive index near the second end of the polymer layer is 1.45 ± 0.01, 0.02, 0.03, 0.04, 0.06, 0.07, 0.08, 0.09 or 0.1. Alternatively, Si:H may be present in the CGC such that the gradient comprises Si:H, SiC:H and optionally SiOC:H and/or SiOCN:H. Generally, in this embodiment, the refractive index of the CGC is changed from the first refractive index of the first end by 3.3 ± 0.5, 0.4, 0.3, 0.2 or 0.1 to a second refractive index of 1.45 near the second end of the polymer layer. ±0.01, 0.02, 0.03, 0.04, 0.06, 0.07, 0.08, 0.09 or 0.1. Si:H may also be present in the gradient and the intermediate layer.

該模組亦可包括中間層,例如無機層。在一個實施例中,將中間層置於透明半導體上且夾在透明半導體與CGC之間。術語「置於……上」包括將中間層置於透明半導體上且與透明半導體直接接 觸。此術語亦包括與透明半導體隔開但仍置於其上之中間層。 The module may also include an intermediate layer, such as an inorganic layer. In one embodiment, the intermediate layer is placed on a transparent semiconductor and sandwiched between a transparent semiconductor and a CGC. The term "on" includes placing the intermediate layer on a transparent semiconductor and directly connecting it to a transparent semiconductor. touch. This term also includes an intermediate layer that is spaced apart from the transparent semiconductor but still placed thereon.

中間層無特別限制且可包括此項技術已知之任何無機(亦即非有機)元素或化合物。中間層除無機化合物以外可包括有機化合物內含物。在一個實施例中,中間層包括碳化矽。在其他實施例中,中間層包括Si:H。可使用中間層以使CGC及透明半導體相容。中間層之折射率可在CGC之折射率及/或透明半導體之折射率之1、2、3、4、5、10、15、20或25%內。舉例而言,中間層之折射率可為3至3.3±0.2或3至3.5±0.2。 The intermediate layer is not particularly limited and may include any inorganic (i.e., non-organic) element or compound known in the art. The intermediate layer may include an organic compound inclusion in addition to the inorganic compound. In one embodiment, the intermediate layer comprises tantalum carbide. In other embodiments, the intermediate layer comprises Si:H. An intermediate layer can be used to make the CGC and the transparent semiconductor compatible. The refractive index of the intermediate layer may be within 1, 2, 3, 4, 5, 10, 15, 20 or 25% of the refractive index of the CGC and/or the refractive index of the transparent semiconductor. For example, the intermediate layer may have a refractive index of 3 to 3.3 ± 0.2 or 3 to 3.5 ± 0.2.

在模組包括中間層之一個實施例中,CGC之折射率由第一末端之第一折射率2.2±0.5、0.45、0.4、0.35、0.3、0.25、0.2、0.15、0.1或0.05沿厚度變為接近聚合物層之第二末端之第二折射率1.45±0.01、0.02、0.03、0.04、0.06、0.07、0.08、0.09或0.1。或者,Si:H可存在於組成梯度塗層中以便梯度包括Si:H、SiC:H及SiOCN:H。通常,在此實施例中,CGC之折射率由第一末端之第一折射率3.3±0.5、0.4、0.3、0.2或0.1沿厚度變為接近聚合物層之第二末端之第二折射率1.45±0.01、0.02、0.03、0.04、0.06、0.07、0.08、0.09或0.1。Si:H亦可存在於梯度與中間層中。 In one embodiment of the module including the intermediate layer, the refractive index of the CGC is changed from the first refractive index of the first end by 2.2 ± 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1 or 0.05. The second refractive index near the second end of the polymer layer is 1.45 ± 0.01, 0.02, 0.03, 0.04, 0.06, 0.07, 0.08, 0.09 or 0.1. Alternatively, Si:H may be present in the composition gradient coating such that the gradient comprises Si:H, SiC:H, and SiOCN:H. Generally, in this embodiment, the refractive index of the CGC is changed from the first refractive index of the first end by 3.3 ± 0.5, 0.4, 0.3, 0.2 or 0.1 to a second refractive index of 1.45 near the second end of the polymer layer. ±0.01, 0.02, 0.03, 0.04, 0.06, 0.07, 0.08, 0.09 or 0.1. Si:H may also be present in the gradient and the intermediate layer.

該模組亦可包括可獨立地包括此項技術已知之任何物質之頂置板及/或基板。頂置板可使用聚合物層。通常,基板為模組之後表面提供保護且頂置板為模組之前表面提供保護。基板及/或頂置板各可為柔軟且可撓的或剛性且僵硬的。或者,基板及/或頂置板可包括剛性且僵硬之部分,同時包括柔軟且可撓之部分。基板可透光,可不透明或可不透射光。最通常,頂置板允許至少一些光穿透模組。基板及/或頂置板可包括單獨或塗佈有基於矽及氧之物質(SiOx)之玻璃、不鏽鋼、金屬箔、聚醯亞胺、乙烯乙酸乙烯酯共聚物及/或有機含氟聚合物,諸如乙烯四氟乙烯(ethylene tetrafluoroethylene,ETFE)、 Tedlar®(聚氟乙烯,購自DuPont)、聚酯/Tedlar®、Tedlar®/聚酯/Tedlar®、聚對苯二甲酸伸乙酯(polyethylene terephthalate,PET)及其組合。在一個實施例中,基板係選自聚氟乙烯及聚乙烯之群。或者,基板可為PET/SiOx-PET/Al基板,其中x為值為1至4之數字。此外,基板及/或頂置板可包括聚矽氧,基本上可由聚矽氧組成,且不包括或包括小於1wt%之有機單體或有機聚合物,或可由聚矽氧組成。基板及/或頂置板之視情況存在之聚矽氧化學可包括此項技術中已知之任何類型。 The module can also include an overhead plate and/or substrate that can independently comprise any of the materials known in the art. The top layer can use a polymer layer. Typically, the substrate provides protection to the surface behind the module and the overhead plate provides protection to the front surface of the module. The substrate and/or the top plate can each be soft and flexible or rigid and stiff. Alternatively, the substrate and/or the overlying panel may comprise a rigid and stiff portion while including a soft and flexible portion. The substrate can be transparent, opaque or opaque. Most commonly, the overhead plate allows at least some of the light to penetrate the module. The substrate and/or the overhead plate may comprise glass, stainless steel, metal foil, polyimide, ethylene vinyl acetate copolymer and/or organic fluorine-containing polymerization, either alone or coated with a substance based on yttrium and oxygen (SiO x ). Materials such as ethylene tetrafluoroethylene (ETFE), Tedlar ® (polyvinyl fluoride, available from DuPont), polyester/Tedlar ® , Tedlar ® /polyester/Tedlar ® , polyethylene terephthalate ( Polyethylene terephthalate, PET) and combinations thereof. In one embodiment, the substrate is selected from the group of polyvinyl fluoride and polyethylene. Alternatively, the substrate can be a PET/SiO x -PET/Al substrate, where x is a number from 1 to 4. Further, the substrate and/or the overhead plate may comprise polyfluorene oxide, consist essentially of polydecane oxide, and does not include or comprise less than 1% by weight of organic or organic polymers, or may be comprised of polydecane. The polyoxonology of the substrate and/or overhead plate may optionally include any type known in the art.

基板及/或頂置板可承重或無承重。通常,基板承重且頂置板不承重。基板通常為模組之底層及最外層。通常將底層置於透明半導體之後且充當機械支撐。頂置板通常為模組之頂層及最外層且可能面向光源。若使用基板與頂置板,則基板及頂置板通常各充當最外層且模組之所有其他組分夾在兩者中間。 The substrate and/or the top plate can be loaded or unloaded. Typically, the substrate is load bearing and the overhead plate is not loaded. The substrate is usually the bottom layer and the outermost layer of the module. The underlayer is typically placed after the transparent semiconductor and acts as a mechanical support. The top plate is typically the top and outermost layers of the module and may face the light source. If a substrate and a top plate are used, the substrate and the top plate typically each serve as the outermost layer and all other components of the module are sandwiched therebetween.

模組可不含「後罩板」及/或「前玻璃」。術語「後罩板」通常描述如上所述基板。在一個實施例中,後罩板包括單獨或塗佈有基於矽及氧之物質(SiOx)之金屬箔、聚醯亞胺、乙烯乙酸乙烯酯共聚物及/或有機含氟聚合物,諸如乙烯四氟乙烯(ETFE)、Tedlar®(聚氟乙烯)、聚酯/Tedlar®、Tedlar®/聚酯/Tedlar®、聚對苯二甲酸伸乙酯(PET)及其組合。或者,「後罩板」可為PET/SiOx-PET/Al基板。然而,模組可不含「後罩板」且仍包括一或多種上文所述化合物或組分作為基板。模組仍可包括基板且不含「後罩板」。術語「前玻璃」通常描述用作允許光穿過之頂置板。模組可不含「前玻璃」且仍包括一或多種上文所述化合物或組分作為頂置板。模組仍可包括頂置板且不含「前玻璃」。 The module can be free of "back cover" and/or "front glass". The term "back cover" generally describes a substrate as described above. In one embodiment, the back cover comprises a metal foil, a polyimine, an ethylene vinyl acetate copolymer, and/or an organic fluoropolymer, either alone or coated with a substance based on hydrazine and oxygen (SiO x ), such as Ethylene tetrafluoroethylene (ETFE), Tedlar ® (polyvinyl fluoride), polyester / Tedlar ® , Tedlar ® / polyester / Tedlar ® , polyethylene terephthalate (PET) and combinations thereof. Alternatively, the "back cover" may be a PET/SiO x -PET/Al substrate. However, the module may be free of "back cover" and still include one or more of the compounds or components described above as a substrate. The module can still include a substrate and does not include a "back cover". The term "front glass" is generally used as an overhead plate that allows light to pass through. The module may be free of "front glass" and still include one or more of the compounds or components described above as a topsheet. The module can still include a top plate and does not contain a "front glass."

另外,該模組亦可包括一或多個可與一或多個其他層彼此結合之連接層。一或多個連接層可置於基板上以使透明半導體與基板及/或一或多個其他層結合。在多個實施例中,該模組包括多個連接層, 例如第一、第二及/或第三連接層。任何第二、第三或其他連接層可與(第一)連接層相同或不同。由此,任何第二、第三或其他連接層可由與(第一)連接層相同之材料形成或不同之材料形成。第二連接層可置於(第一)連接層上及/或可置於透明半導體上。一或多個連接層通常各自會透過紫外光及/或可見光。在一個實施例中,連接層在可見光波長上具有高透射率、對紫外光長期穩定且為透明半導體提供長期保護。 In addition, the module may also include one or more connection layers that may be combined with one or more other layers. One or more tie layers can be placed on the substrate to bond the transparent semiconductor to the substrate and/or one or more other layers. In various embodiments, the module includes a plurality of connection layers. For example, the first, second and/or third connection layers. Any second, third or other tie layer may be the same or different than the (first) tie layer. Thus, any second, third or other tie layer can be formed from the same material as the (first) tie layer or from a different material. The second tie layer can be placed on the (first) tie layer and/or can be placed on the transparent semiconductor. One or more of the tie layers typically each pass ultraviolet light and/or visible light. In one embodiment, the tie layer has high transmission at visible wavelengths, long-term stability to ultraviolet light, and long-term protection for transparent semiconductors.

連接層之厚度通常為1至50,更通常為3至30,且最通常為4至15密耳。在多個實施例中,連接層之厚度為1至30、1至25、1至20、3至17、5至10、5至25、10至15、10至17、12至15、10至30或5至20密耳。或者,連接層可如PCT/US09/01623、PCT/US09/01621及/或PCT/US09/62513中所述,各文獻均明確地以引用的方式併入本文中。 The thickness of the tie layer is typically from 1 to 50, more typically from 3 to 30, and most typically from 4 to 15 mils. In various embodiments, the thickness of the tie layer is 1 to 30, 1 to 25, 1 to 20, 3 to 17, 5 to 10, 5 to 25, 10 to 15, 10 to 17, 12 to 15, 10 to 30 or 5 to 20 mils. Alternatively, the tie layer can be as described in PCT/US09/01623, PCT/US09/01621, and/or PCT/US09/62513, each of which is expressly incorporated herein by reference.

形成模組之方法包括使用化學氣相沈積(chemical vapor deposition,CVD)將CGC連續沈積於透明半導體上且隨後將聚合物層置於CGC上以形成模組。連續沈積CGC之步驟可使用電漿增強化學氣相沈積(plasma-enhanced chemical vapor deposition,PECVD),例如以反應性離子蝕刻組態、雙頻組態、電子迴旋加速器共振組態或電感耦合電漿方式完成。可使用此項技術已知之任何類型之CVD。 A method of forming a module includes continuously depositing CGC on a transparent semiconductor using chemical vapor deposition (CVD) and then placing the polymer layer on the CGC to form a module. The step of continuously depositing CGC may use plasma-enhanced chemical vapor deposition (PECVD), for example, reactive ion etching configuration, dual-frequency configuration, electron cyclotron resonance configuration, or inductively coupled plasma. The way is done. Any type of CVD known in the art can be used.

術語「連續沈積」通常描述無中斷或具有少數中斷之CVD操作。CVD之連續操作使在CGC中形成其他光學界面之程度最小或消除,由此允許形成反射、吸收及干涉最小之梯度以及允許形成耐久性及可撓性增加且光學特性最佳化之模組。連續沈積步驟可在低於室溫下、在室溫(本文稱作「RT」且為約21至25℃)下或在高於室溫下發生。在多個實施例中,溫度為約50、100、200、300或400℃。 The term "continuous deposition" generally describes a CVD operation that is uninterrupted or has a few interruptions. The continuous operation of CVD minimizes or eliminates the formation of other optical interfaces in the CGC, thereby allowing for the formation of gradients that minimize reflection, absorption, and interference, as well as modules that allow for increased durability and flexibility and optimized optical characteristics. The continuous deposition step can occur below room temperature, at room temperature (referred to herein as "RT" and at about 21 to 25 °C) or above room temperature. In various embodiments, the temperature is about 50, 100, 200, 300 or 400 °C.

通常使用諸如PECVD系統之CVD系統,該PECVD系統將前驅氣 體在真空腔室中混合且用連接於電極之射頻(radio frequency,RF)發生器激發氣體混合物以產生離子化氣體之電漿。電漿與各種基板之間的電位差加速離子接近其進行反應之表面,例如反應以形成CGC。可自定義真空壓力、電極功率、溫度及氣流,參見例如圖式。在一個實施例中,PECVD系統包括動力平行板電極反應器,其中電極由兩個發生器供以動力。一個發生器通常為功率控制範圍為20W至600W之標準RF發生器(亦稱作高頻電源(例如13.56MHz))。第二發生器通常為功率範圍為20W至1000W之中頻至低頻(例如380kHz)電源。PECVD系統亦可包括第三電極,例如腔室壁。 A CVD system such as a PECVD system is commonly used, which will drive the precursor gas The body is mixed in a vacuum chamber and the gas mixture is excited by a radio frequency (RF) generator coupled to the electrodes to produce a plasma of ionized gas. The potential difference between the plasma and the various substrates accelerates the ions near the surface on which they react, such as reacting to form CGC. Vacuum pressure, electrode power, temperature and gas flow can be customized, see for example the schema. In one embodiment, the PECVD system includes a power parallel plate electrode reactor in which the electrodes are powered by two generators. A generator is typically a standard RF generator with a power control range of 20W to 600W (also known as a high frequency power supply (eg 13.56MHz)). The second generator is typically a medium to low frequency (e.g., 380 kHz) power supply having a power range of 20W to 1000W. The PECVD system can also include a third electrode, such as a chamber wall.

CVD系統可以雙頻組態(例如方式)操作。雙頻組態之操作通常包括同時在第一及第二頻率下操作PECVD。第一頻率通常介於50與400kHz之間且可在60至390、70至380、80至370、90至360、100至350、110至340、120至330、130至320、140至310、150至300、200至290、210至280、220至270、230至260、或240至250KHz之範圍內。在一個實施例中,第一頻率在70與400KHz之間的範圍內。在另一個實施例中,第一頻率為約380KHz。第二頻率通常介於10MHz與1GHz或大於1GHz之間。在多個實施例中,第二頻率在10至50、10至40、12至30、13至20、13至15或13至14MHz之範圍內。在一個實施例中,第二頻率為約13.56MHz。 The CVD system can be operated in a dual frequency configuration (eg, mode). The operation of the dual frequency configuration typically involves operating PECVD at both the first and second frequencies. The first frequency is typically between 50 and 400 kHz and can be between 60 and 390, 70 to 380, 80 to 370, 90 to 360, 100 to 350, 110 to 340, 120 to 330, 130 to 320, 140 to 310, 150 to 300, 200 to 290, 210 to 280, 220 to 270, 230 to 260, or 240 to 250 KHz. In one embodiment, the first frequency is in a range between 70 and 400 KHz. In another embodiment, the first frequency is about 380 KHz. The second frequency is typically between 10 MHz and 1 GHz or greater than 1 GHz. In various embodiments, the second frequency is in the range of 10 to 50, 10 to 40, 12 to 30, 13 to 20, 13 to 15, or 13 to 14 MHz. In one embodiment, the second frequency is about 13.56 MHz.

CVD系統中所用之電極之功率可變化。在多個實施例中,使用兩個電極,其中各電極之功率可獨立地變化。第一電極之功率通常在10至1000、10至600、50至200、80至160、90至150、100至140、110至130或約120瓦特之範圍內。第一電極通常與上述第一頻率有關。第二電極之功率通常在10至1000、10至600、200至400、210至390、220至380、230至370、240至360、250至350、260至340、270至330、280至320、290至310、或約300瓦特之範圍內。第二電極通常與上述第二 頻率有關。 The power of the electrodes used in the CVD system can vary. In various embodiments, two electrodes are used, wherein the power of each electrode can vary independently. The power of the first electrode is typically in the range of 10 to 1000, 10 to 600, 50 to 200, 80 to 160, 90 to 150, 100 to 140, 110 to 130, or about 120 watts. The first electrode is typically associated with the first frequency described above. The power of the second electrode is usually 10 to 1000, 10 to 600, 200 to 400, 210 to 390, 220 to 380, 230 to 370, 240 to 360, 250 to 350, 260 to 340, 270 to 330, and 280 to 320. , in the range of 290 to 310, or about 300 watts. The second electrode is usually the same as the second Frequency related.

第二(例如高)頻率由於更有效之位移電流及鞘加熱機制而可影響電漿密度。第一(例如低)頻率可影響峰值離子撞擊能量。因此,可各別調節及自定義離子撞擊能量及電漿密度以影響沈積應力及光學特性之控制。另外,可自定義CGC之晶格間距以及晶體結構中疊差之更佳控制、針孔及填隙原子位置之控制及沈積張力及應力之最小化。 The second (eg, high) frequency can affect the plasma density due to more efficient displacement currents and sheath heating mechanisms. The first (eg, low) frequency can affect the peak ion impact energy. Therefore, ion impact energy and plasma density can be individually adjusted and customized to affect the control of deposition stress and optical properties. In addition, it is possible to customize the lattice spacing of the CGC and the better control of the difference in the crystal structure, the control of the pinhole and interstitial atomic positions, and the minimization of the deposition tension and stress.

連續沈積CGC之步驟可包括一或多個子步驟。在多個實施例中,連續沈積步驟包括將諸如單矽烷(SiH4)或(CH3)3SiH之矽來源引入透明半導體中、將烴氣體(例如甲烷、乙烯、乙炔或此項技術中已知之任何烴氣體)引入透明半導體及將氧化亞氮、氧氣及二氧化碳中之至少一者引入透明半導體中。或者,引入「透明半導體」中之步驟可定義為引入「電漿」中或「CVD腔室」中,其中在CVD腔室中將透明半導體曝露於電漿及/或矽來源、烴氣體或其他氣體。引入矽來源使CVD過程產生模組及/或梯度之Si:H。引入烴氣體使CVD過程產生梯度之SiC:H。引入氧化亞氮、氧氣及二氧化碳中之至少一者使CVD過程產生梯度之SiOCN:H。或者,該方法可包括向透明半導體(例如電漿)中引入氮氣來源(例如氧化亞氮)之步驟及/或引入氧氣來源(例如氧化亞氮及/或氧氣)之步驟。 The step of continuously depositing the CGC can include one or more sub-steps. In various embodiments, the continuous deposition step comprises introducing a source of ruthenium such as monodecane (SiH 4 ) or (CH 3 ) 3 SiH into the transparent semiconductor, such as methane, ethylene, acetylene or the art. Any hydrocarbon gas is known to introduce a transparent semiconductor and to introduce at least one of nitrous oxide, oxygen, and carbon dioxide into the transparent semiconductor. Alternatively, the step of introducing a "transparent semiconductor" can be defined as introduction into "plasma" or "CVD chamber" in which a transparent semiconductor is exposed to a plasma and/or helium source, a hydrocarbon gas or other in a CVD chamber. gas. The introduction of a germanium source causes the CVD process to produce a module and/or a gradient of Si:H. The introduction of a hydrocarbon gas causes the CVD process to produce a gradient of SiC:H. Introduction of at least one of nitrous oxide, oxygen, and carbon dioxide causes the CVD process to produce a gradient of SiOCN:H. Alternatively, the method can include the steps of introducing a source of nitrogen (e.g., nitrous oxide) into a transparent semiconductor (e.g., plasma) and/or introducing a source of oxygen (e.g., nitrous oxide and/or oxygen).

更通常,在高功率下(例如高於300瓦特)引入矽來源。此步驟通常形成具有高折射率(例如約2.7至3.6)之梯度之第一部分。在另一個實施例中,該方法包括增加壓力之步驟(例如由50mTorr增加至500mTorr)。通常,增加壓力會減小所形成之梯度之折射率。在另一個實施例中,該方法包括降低功率及增加壓力以繼續形成CGC之步驟。 More typically, helium sources are introduced at high power (eg, above 300 watts). This step typically forms a first portion having a gradient of high refractive index (e.g., about 2.7 to 3.6). In another embodiment, the method includes the step of increasing the pressure (e.g., increasing from 50 mTorr to 500 mTorr). Generally, increasing the pressure reduces the refractive index of the gradient formed. In another embodiment, the method includes the steps of reducing power and increasing pressure to continue forming the CGC.

在多個實施例中,總氣流可在200至3,000、400至2,000或450至850標準立方公分/分鐘(sccm)之範圍內。溫度可在20至400、30至250或30至80℃之範圍內。壓力可在20至2000、20至1000、80至800、50 至500、或90至200mTorr之範圍內。 In various embodiments, the total gas flow can range from 200 to 3,000, 400 to 2,000, or 450 to 850 standard cubic centimeters per minute (sccm). The temperature can be in the range of 20 to 400, 30 to 250 or 30 to 80 °C. Pressure can be 20 to 2000, 20 to 1000, 80 to 800, 50 Up to 500, or 90 to 200 mTorr.

該方法亦包括將聚合物層置於CGC上之步驟。安置聚合物層之步驟可進一步定義為將可固化組合物置於CGC上且接著使可固化組合物部分或完全固化形成聚合物層。或者,可將聚合物層置於CGC上,不進行任何額外固化。可使用此項技術中已知之任何適合塗覆(分配)方法塗覆聚合物層及/或可固化組合物,該方法包括噴塗、流塗、簾式塗佈、浸塗、擠壓塗佈、刮刀塗佈、篩網塗層、層壓、熔融、澆注及其組合。在一個實施例中,聚合物層由液體形成,且安置聚合物層之步驟進一步定義為將液體置於CGC上且固化CGC上之液體以形成聚合物層。在另一個實施例中,將可固化組合物以例如包括第一及第二部分之多部分系統提供給使用者。第一及第二部分可在即將使用前混合。或者,可將各組分及/或組分之混合物個別地塗覆。 The method also includes the step of placing the polymer layer on the CGC. The step of disposing the polymer layer can be further defined as placing the curable composition on the CGC and then partially or fully curing the curable composition to form a polymer layer. Alternatively, the polymer layer can be placed on the CGC without any additional curing. The polymer layer and/or curable composition can be applied using any suitable coating (distribution) method known in the art, including spray coating, flow coating, curtain coating, dip coating, extrusion coating, Blade coating, screen coating, lamination, melting, casting, and combinations thereof. In one embodiment, the polymer layer is formed from a liquid, and the step of placing the polymer layer is further defined as placing the liquid on the CGC and curing the liquid on the CGC to form a polymer layer. In another embodiment, the curable composition is provided to the user in a multi-part system, for example, including the first and second portions. The first and second parts can be mixed just before use. Alternatively, the components and/or mixtures of the components may be individually coated.

在一個實施例中,聚合物層由可固化組合物形成且該方法進一步包括部分固化(例如「預固化」)可固化組合物形成聚合物層之步驟。在另一個實施例中,該方法進一步包括將可固化組合物塗覆於CGC及固化該可固化組合物以形成聚合物層之步驟。在一個實施例中,可固化組合物在將聚合物層置於基板上之步驟之前固化。可固化組合物在任何溫度,例如25至200℃下均可固化。可固化組合物亦可固化任何時間,例如1至600秒。或者,如熟習此項技術者所確定,可固化組合物可固化大於600秒之時間。 In one embodiment, the polymer layer is formed from a curable composition and the method further includes the step of partially curing (eg, "pre-curing") the curable composition to form a polymer layer. In another embodiment, the method further comprises the steps of applying a curable composition to the CGC and curing the curable composition to form a polymer layer. In one embodiment, the curable composition is cured prior to the step of placing the polymer layer on the substrate. The curable composition can be cured at any temperature, for example from 25 to 200 °C. The curable composition can also be cured for any period of time, for example from 1 to 600 seconds. Alternatively, the curable composition can be cured for greater than 600 seconds as determined by those skilled in the art.

適合可固化聚矽氧組合物之實例包括矽氫化可固化聚矽氧組合物、縮合可固化聚矽氧組合物、輻射可固化聚矽氧組合物及過氧化物可固化聚矽氧組合物。 Examples of suitable curable polydecene oxide compositions include hydrazine hydroformable polydecaneoxy compositions, condensation curable polydecene oxide compositions, radiation curable polydecene oxide compositions, and peroxide curable polydecaneoxy compositions.

矽氫化可固化聚矽氧組合物通常包括每個分子具有平均至少兩個與矽鍵結之烯基或與矽鍵結之氫原子之有機聚矽氧烷;量足以固化該有機聚矽氧烷之有機矽化合物,其中該有機矽化合物每個分子平均 具有至少兩個能夠與該有機聚矽氧烷中之與矽鍵結之烯基或與矽鍵結之氫原子反應的與矽鍵結之氫原子或與矽鍵結之烯基;及催化用量之矽氫化催化劑。 The ruthenium hydrogenated curable polydecaneoxy composition generally comprises an organopolyoxane having an average of at least two fluorene-bonded alkenyl groups or a hydrazine-bonded hydrogen atom per molecule; in an amount sufficient to cure the organopolyoxane An organic cerium compound, wherein the organic cerium compound is averaged per molecule Having at least two hydrogen atoms bonded to a hydrazine-bonded alkenyl group or a hydrogen atom bonded to a hydrazine in the organopolyoxane, or a hydrazine-bonded hydrogen atom; and a catalytic amount The hydrogenation catalyst is then used.

縮合可固化聚矽氧組合物通常包括每個分子平均具有至少兩個與矽鍵結之氫原子、羥基或可水解基團之有機聚矽氧烷,及視情況存在之具有與矽鍵結之可水解基團之交聯劑,及/或縮合催化劑。 The condensation curable polydecaneoxy composition generally comprises an organopolyoxane having an average of at least two hydrogen atoms, a hydroxyl group or a hydrolyzable group bonded to the oxime per molecule, and optionally bonded to the ruthenium. a crosslinker of a hydrolyzable group, and/or a condensation catalyst.

輻射可固化聚矽氧組合物通常包括每個分子平均具有至少兩個與矽鍵結之輻射敏感基團之有機聚矽氧烷,及視有機聚矽氧烷中輻射敏感基團之性質而定,視情況存在之陽離子或自由基光引發劑。 The radiation curable polydecene oxide composition generally comprises an organopolyoxane having an average of at least two radiation-sensitive groups bonded to the oxime per molecule, and depending on the nature of the radiation-sensitive group in the organopolyoxane a cationic or free radical photoinitiator, as the case may be.

過氧化物可固化聚矽氧組合物通常包括具有與矽鍵結之不飽和脂肪烴基及有機過氧化物之有機聚矽氧烷。 The peroxide curable polydecaneoxy composition generally comprises an organopolyoxane having an unsaturated aliphatic hydrocarbon group bonded to a hydrazine and an organic peroxide.

聚矽氧組合物可藉由視可固化聚矽氧組合物之類型而將組合物曝露於環境溫度、高溫、水氣或輻射來固化。 The polyoxygenated composition can be cured by exposing the composition to ambient temperature, elevated temperature, moisture or radiation by the type of curable polyoxynoxy composition.

當可固化聚矽氧組合物為矽氫化可固化聚矽氧組合物時,聚矽氧組合物可藉由在大氣壓力下將組合物曝露於室溫至250℃、或者室溫至150℃、或者室溫至115℃之溫度來固化。一般將聚矽氧組合物加熱一段足以固化(交聯)有機聚矽氧烷之時間。舉例而言,通常在100至150℃之溫度下加熱該薄膜0.1至3h之時間。 When the curable polydecene oxide composition is a hydrazine hydrogenated curable polydecaneoxy composition, the polyoxymethylene composition can be exposed to room temperature to 250 ° C or room temperature to 150 ° C by atmospheric pressure. Or cure at room temperature to 115 ° C. The polyoxymethylene composition is typically heated for a period of time sufficient to cure (crosslink) the organopolyoxane. For example, the film is typically heated at a temperature of from 100 to 150 ° C for a period of from 0.1 to 3 hours.

當可固化聚矽氧組合物為縮合可固化聚矽氧組合物時,固化組合物之條件視有機聚矽氧烷中與矽鍵結之基團的性質而定。舉例而言,當有機聚矽氧烷含有與矽鍵結之羥基時,組合物可藉由加熱該組合物來固化(亦即交聯)。組合物通常可藉由在50至250℃之溫度下加熱1至50h之時間來固化。當縮合可固化聚矽氧組合物包括縮合催化劑時,該組合物通常可在較低溫度(例如室溫至150℃)下固化。 When the curable polydecene oxide composition is a condensation curable polydecane oxide composition, the conditions of the cured composition depend on the nature of the group bonded to the oxime in the organopolyoxane. For example, when the organopolyoxane contains a hydroxyl group bonded to a hydrazine, the composition can be cured (i.e., crosslinked) by heating the composition. The composition can usually be cured by heating at a temperature of from 50 to 250 ° C for a period of from 1 to 50 hours. When the condensation curable polyoxynoxy composition comprises a condensation catalyst, the composition can typically be cured at a lower temperature (e.g., room temperature to 150 ° C).

當可固化聚矽氧組合物為包括具有與矽鍵結之氫原子之有機聚矽氧烷的縮合可固化聚矽氧組合物時,組合物可藉由在100至450℃之 溫度下將組合物曝露於水氣或氧氣0.1至20h之時間來固化。當縮合可固化聚矽氧組合物含有縮合催化劑時,該組合物通常可在較低溫度(例如室溫至400℃)下固化。 When the curable polydecene oxide composition is a condensation curable polydecaneoxy composition comprising an organopolyoxane having a hydrogen atom bonded to a hydrazine, the composition can be at 100 to 450 ° C The composition is exposed to moisture or oxygen for a period of 0.1 to 20 hours at a temperature to cure. When the condensation curable polydecaneoxy composition contains a condensation catalyst, the composition can usually be cured at a lower temperature (e.g., room temperature to 400 ° C).

此外,當可固化聚矽氧組合物為包括具有與矽鍵結之可水解基團之有機聚矽氧烷的縮合可固化聚矽氧組合物時,組合物可藉由在室溫至250℃,或者100至200℃之溫度下將組合物曝露於水氣0.1至100h之時間來固化。舉例而言,聚矽氧組合物通常可藉由在室溫至150℃之溫度下將其曝露於30%之相對濕度0.5至72h之時間來固化。固化可藉由施加熱、曝露於高濕度及/或添加縮合催化劑至組合物中來加速。 Further, when the curable polydecene oxide composition is a condensation curable polydecaneoxy composition comprising an organopolyoxane having a hydrolyzable group bonded to a hydrazine, the composition can be at room temperature to 250 ° C The composition is exposed to moisture for a period of 0.1 to 100 hours to cure at a temperature of 100 to 200 °C. For example, the polyoxymethylene composition can be cured by exposing it to a relative humidity of 30% at a temperature of from room temperature to 150 ° C for a period of from 0.5 to 72 hours. Curing can be accelerated by applying heat, exposure to high humidity, and/or adding a condensation catalyst to the composition.

當可固化聚矽氧組合物為輻射可固化聚矽氧組合物時,組合物可藉由將組合物曝露於電子束來固化。通常,加速電壓為約0.1至100keV,真空為約10至10-3Pa,電子流為約0.0001至1安培,且功率介於約自0.1瓦至1千瓦。劑量通常為約100微庫侖/公分2至100庫侖/公分2,或者自約1至10庫侖/公分2。視電壓而定,曝露時間通常為約10秒至1小時。 When the curable polyoxynoxy composition is a radiation curable polyoxynoxy composition, the composition can be cured by exposing the composition to an electron beam. Typically, the accelerating voltage is from about 0.1 to 100 keV, the vacuum is from about 10 to 10 -3 Pa, the electron flow is from about 0.0001 to 1 amp, and the power is from about 0.1 watt to 1 kW. The dosage is usually from about 100 microcoulombs/cm 2 to 100 coulombs/cm 2 , or from about 1 to 10 coulombs/cm 2 . The exposure time is usually from about 10 seconds to 1 hour, depending on the voltage.

此外,當輻射可固化聚矽氧組合物進一步包括陽離子或自由基光引發劑時,組合物可藉由將其曝露於波長為150至800nm,或者200至400nm,劑量足以固化(交聯)有機聚矽氧烷之輻射來固化。光源通常為中等壓力汞弧燈。輻射劑量通常為30至1000mJ/cm2,或者50至500mJ/cm2。此外,聚矽氧組合物可在曝露於輻射期間或之後自外部加熱以提高固化速率及/或程度。 Further, when the radiation curable polydecene oxide composition further comprises a cationic or free radical photoinitiator, the composition can be cured (crosslinked) organically by exposing it to a wavelength of from 150 to 800 nm, or from 200 to 400 nm. The radiation of polyoxyalkylene is cured. The light source is typically a medium pressure mercury arc lamp. The radiation dose is usually from 30 to 1000 mJ/cm 2 , or from 50 to 500 mJ/cm 2 . Additionally, the polyoxynoxy composition can be externally heated during or after exposure to radiation to increase the rate and/or extent of cure.

當可固化聚矽氧組合物為過氧化物可固化聚矽氧組合物時,組合物可藉由將其曝露於室溫至180℃之溫度0.05至1h之時間來固化。 When the curable polydecene oxide composition is a peroxide curable polyoxynoxy composition, the composition can be cured by exposing it to a temperature of from room temperature to 180 ° C for a period of from 0.05 to 1 h.

該方法亦可包括將透明半導體置於聚合物層、連接層及/或基板上之步驟。在此或此等步驟中,透明半導體亦可包括置於其上之 CGC,以便此步驟可為將聚合物層置於CGC上之步驟的一部分或為該步驟的進一步定義。透明半導體可藉由此項技術中已知之任何適合機制來安置(例如塗覆),但通常使用塗覆器以連續方式塗覆。其他適合塗覆機制包括對透明半導體施加力以使透明半導體與聚合物層、CGC、連接層及/或基板更完全直接或間接接觸。在一個實施例中,該方法包括壓緊透明半導體及聚合物層、CGC、連接層及/或基板之步驟。必要時,壓緊透明半導體及聚合物層、CGC、連接層及/或基板使接觸達最大程度且使封裝最大化。壓緊步驟可進一步定義為對透明半導體及聚合物層、CGC、連接層及/或基板施加真空。或者,可使用機械重量、壓力機或滾筒(例如夾滾筒)進行壓緊。此外,壓緊步驟可進一步定義為層壓。此外,該方法可包括對模組或基板、CGC、透明半導體、聚合物層及/或連接層中之任一者或所有施加熱之步驟。熱可與任何其他步驟組合來施加或可以不連續步驟施加。整個方法可連續或分批或可包括連續及分批步驟之組合。 The method can also include the step of placing a transparent semiconductor on the polymer layer, the tie layer, and/or the substrate. In this or the steps, the transparent semiconductor may also include a semiconductor thereon CGC, so that this step can be part of or a further definition of the step of placing the polymer layer on the CGC. The transparent semiconductor can be placed (e.g., coated) by any suitable mechanism known in the art, but is typically applied in a continuous manner using an applicator. Other suitable coating mechanisms include applying a force to the transparent semiconductor to more completely or indirectly contact the transparent semiconductor with the polymer layer, CGC, tie layer, and/or substrate. In one embodiment, the method includes the steps of compacting the transparent semiconductor and polymer layers, the CGC, the tie layer, and/or the substrate. If necessary, the transparent semiconductor and polymer layers, CGC, tie layer and/or substrate are pressed to maximize contact and maximize packaging. The compacting step can be further defined as applying a vacuum to the transparent semiconductor and polymer layers, the CGC, the tie layer, and/or the substrate. Alternatively, it can be compacted using mechanical weight, a press or a roller such as a pinch roller. Furthermore, the compacting step can be further defined as lamination. Additionally, the method can include the step of applying heat to either or all of the module or substrate, CGC, transparent semiconductor, polymer layer, and/or tie layer. Heat can be applied in combination with any other step or can be applied in discrete steps. The entire process can be continuous or batchwise or can include a combination of continuous and batch steps.

安置聚合物層之步驟可進一步定義為用聚合物層封裝透明半導體及/或CGC之至少一部分。更特定言之,聚合物層可部分或完全封裝透明半導體及/或CGC。或者,聚合物層可能不封裝透明半導體及/或CGC。部分封裝有助於更有效製造。聚合物層可使得生產具有聚矽氧之光學及化學優點之模組。另外,使用聚矽氧可使得形成紫外光透明連接層及/或聚合物層,且可使電池效率增加至少1至5相對百分比。使用如上所述過氧化物催化劑亦可使透明度增加且使固化速度增加。包括聚矽氧之可固化組合物薄片可用於模組之總成。 The step of disposing the polymer layer can be further defined as encapsulating at least a portion of the transparent semiconductor and/or CGC with the polymer layer. More specifically, the polymer layer may partially or completely encapsulate the transparent semiconductor and/or CGC. Alternatively, the polymer layer may not encapsulate a transparent semiconductor and/or CGC. Part of the package helps to make it more efficient to manufacture. The polymer layer allows for the production of modules having the optical and chemical advantages of polyfluorene. Additionally, the use of polyoxymethylene can result in the formation of an ultraviolet light transparent tie layer and/or polymer layer and can increase cell efficiency by at least a relative percentage of from 1 to 5. The use of a peroxide catalyst as described above also increases the transparency and increases the rate of cure. A sheet of curable composition comprising polyoxymethylene can be used in the assembly of the module.

在此方法之另一個實施例中,聚合物層及/或連接層可進一步定義為薄膜,且安置步驟可進一步定義為塗覆薄膜,例如將薄膜塗覆於CGC上。在此實施例中,塗覆薄膜之步驟可進一步定義為熔融該薄膜。或者,可將薄膜層壓於CGC上。 In another embodiment of the method, the polymer layer and/or the tie layer can be further defined as a film, and the step of disposing can be further defined as coating a film, such as applying the film to a CGC. In this embodiment, the step of coating the film can be further defined as melting the film. Alternatively, the film can be laminated to a CGC.

在一個實施例中,該方法包括層壓以熔融連接層及/或聚合物層之步驟。在一個替代性實施例中,該方法包括藉由化學氣相沈積將透明半導體塗覆於基板上之步驟。此步驟可藉由此項技術中已知之任何機制執行。該方法亦可包括塗覆其他連接層、基板及/或頂置板之步驟。 In one embodiment, the method includes the step of laminating to melt the tie layer and/or the polymer layer. In an alternative embodiment, the method includes the step of applying a transparent semiconductor to the substrate by chemical vapor deposition. This step can be performed by any mechanism known in the art. The method can also include the steps of applying other tie layers, substrates, and/or overhead plates.

本發明亦提供與上述方法無關之模組本身之其他實施例。在一個實施例中,該模組包括透明半導體、聚合物層及置於透明半導體上且夾在透明半導體與聚合物層之間的CGC。模組本身之各種實施例不受上述方法步驟限制。因此,相對於模組本身,CGC可由此項技術中已知之任何方法或過程或上述方法形成。在多個實施例中,CGC使用以下方法形成:電加熱、熱燈絲法、紫外光照射、紅外光照射、微波照射、X射線照射、電子束、雷射束、電漿、RF、射頻電漿增強化學氣相沈積(radio frequency plasma enhanced chemical vapor deposition,RF-PECVD)、電子迴旋加速器共振電漿增強化學氣相沈積(electron-cyclotron-resonance plasma-enhanced chemical vapor deposition,ECR-PECVD)、電感耦合電漿增強化學氣相沈積(inductively coupled plasma enhanced chemical vapor deposition,ICP-ECVD)、電漿束源電漿增強化學氣相沈積(plasma beam source plasma enhanced chemical vapor deposition,PBS-PECVD)及/或其組合。 The invention also provides other embodiments of the module itself that are independent of the above methods. In one embodiment, the module includes a transparent semiconductor, a polymer layer, and a CGC disposed between the transparent semiconductor and the polymer layer disposed on the transparent semiconductor. The various embodiments of the module itself are not limited by the method steps described above. Thus, the CGC can be formed by any method or process known in the art or as described above with respect to the module itself. In various embodiments, CGC is formed using electrical heating, hot filament, ultraviolet, infrared, microwave, X-ray, electron beam, laser beam, plasma, RF, radio frequency plasma. Radio frequency plasma enhanced chemical vapor deposition (RF-PECVD), electron cyclotron-resonance plasma-enhanced chemical vapor deposition (ECR-PECVD), inductive coupling Inductively coupled plasma enhanced chemical vapor deposition (ICP-ECVD), plasma beam source plasma enhanced chemical vapor deposition (PBS-PECVD) and/or combination.

實例1:Example 1:

在第一實例中,CGC在50℃下以雙頻或反應性離子蝕刻(RIE)組態操作之平行板電容型電漿反應器中沈積於玻璃載片、單晶矽晶圓、單晶Si/AlN結構及藍寶石/GaN結構上。沈積過程藉由在沈積腔室中引入反應性氣體混合物進行。反應性氣體混合物最初包括諸如三甲基矽烷((CH3)3SiH)的含有矽及碳之前驅體及諸如氬氣(Ar)的惰性氣體以沈積CGC結構之非晶氫化碳化矽部分。此外,在沈積腔室中將諸如氧氣 (O2)之氧化劑添加至反應性氣體混合物中,以沈積CGC之非晶氫化碳氧化矽(SiOC:H)部分。以此方式,CGC之組成由與聚合物層之界面處的氫化富氧SiOC:H在遠離聚合物層之方向逐漸變為氫化缺氧SiOC:H,且進一步變為富氫非晶SiC,且在相反的與透明半導體之界面處進一步變為氫含量較少之非晶SiC。 In a first example, a CGC is deposited on a glass slide, a single crystal germanium wafer, a single crystal Si in a parallel plate capacitive plasma reactor operating at 50 ° C in a dual frequency or reactive ion etching (RIE) configuration. /AlN structure and sapphire/GaN structure. The deposition process is carried out by introducing a reactive gas mixture into the deposition chamber. The reactive gas mixture initially includes an inert gas containing a ruthenium and carbon precursor such as trimethyl decane ((CH 3 ) 3 SiH) and an inert gas such as argon (Ar) to deposit a CGC structure. Further, an oxidizing agent such as oxygen (O 2 ) is added to the reactive gas mixture in the deposition chamber to deposit a portion of the amorphous hydrogenated carbon cerium oxide (SiOC:H) portion of the CGC. In this way, the composition of the CGC is gradually changed from hydrogenated oxygen-enriched SiOC:H at the interface with the polymer layer to hydrogenated anoxic SiOC:H in the direction away from the polymer layer, and further becomes hydrogen-rich amorphous SiC, and Further, at the interface with the opposite transparent semiconductor, it becomes amorphous SiC having a small hydrogen content.

實例2:Example 2:

在第二實例中,反應性氣體混合物最初包括諸如單矽烷(SiH4)之含矽前驅體、諸如乙烯(C2H4)之含碳前驅體、氫氣(H2)及諸如氬氣(Ar)之惰性氣體以沈積CGC結構之非晶氫化碳化矽部分。此外,在沈積腔室中將諸如氧化亞氮(N2O)及氧氣(O2)之氧化劑添加至反應性氣體混合物中,以沈積CGC結構之非晶氫化氧碳氮化矽(SiOCN:H)部分。以此方式,CGC由與聚合物層之界面處的氫化富氧及氮之SiOCN:H在遠離聚合物層之方向逐漸變為氫化缺氧及氮之SiOCN:H,且進一步變為富氫SiC,且在相對的與透明半導體之界面處進一步變為氫含量較小之SiC。 In a second example, the first reactive gas mixture comprising silicon such as single alkyl (SiH 4) The silicon-containing precursor, such as ethylene (C 2 H 4) of the carbon-containing precursor, hydrogen (H 2) and such as argon (Ar An inert gas to deposit an amorphous hydrogenated niobium carbide portion of the CGC structure. Further, an oxidizing agent such as nitrous oxide (N 2 O) and oxygen (O 2 ) is added to the reactive gas mixture in the deposition chamber to deposit a CGC structure of amorphous hydrogen oxycarbonitride (SiOCN:H). )section. In this way, CGC is gradually hydrogenated to oxygen-deficient and nitrogen-free SiOCN:H in the direction away from the polymer layer from the hydrogenated oxygen-rich and nitrogen-rich SiOCN:H at the interface with the polymer layer, and further becomes hydrogen-rich SiC. And further becomes SiC having a small hydrogen content at the interface with the opposite transparent semiconductor.

CGC之組成及光學特性在單一過程運作內變化且不會中斷該電漿過程。在圖2中比較CGC之不同部分之傅立葉變換紅外(Fourier-transformed infrared,FTIR)光譜。更特定言之,使用FTIR以確定CGC之梯度如何由氫化碳化矽(SiC:H)變為氫化氧碳氮化矽(SiOCN:H)。FT-IR光譜儀可以商標名Nexus購自例如Thermo Fisher Scientific Inc.(Waltham,MA)。CGC在深度上之組成變化亦藉由X射線光電子光譜學(X-ray photoelectron spectroscopy,XPS)來分析且顯示於圖3A/B中。更特定言之,XPS光譜藉由使用來自Kratos Analytical Ltd.(Chestnut Ridge,NY)之儀器獲得。 The composition and optical properties of the CGC vary within a single process operation without interrupting the plasma process. Fourier-transformed infrared (FTIR) spectra of different parts of the CGC are compared in FIG. More specifically, FTIR was used to determine how the gradient of CGC changed from hydrogenated niobium carbide (SiC:H) to hydrogenated hafnium carbonitride (SiOCN:H). FT-IR spectrometers are commercially available from, for example, Thermo Fisher Scientific Inc. (Waltham, MA) under the trade name Nexus. The compositional change of CGC in depth is also analyzed by X-ray photoelectron spectroscopy (XPS) and is shown in Figure 3A/B. More specifically, XPS spectra were obtained by using an instrument from Kratos Analytical Ltd. (Chestnut Ridge, NY).

形成之後,使用光譜橢偏儀分析實例以確定折射率及沈積速率。橢偏儀可購自J.A. Wollam Co.Inc(Lincoln,NE)。CGC之組成、 密度及光學特性藉由改變低頻(low frequency,LF)功率而變化,同時以雙頻PECVD反應器組態沈積。較高LF功率使影響離子撞擊強度之離子能量增加。因此,如圖4中可見,具有較高折射率及吸收係數(通過最大值)之較緻密塗層藉由增加LF功率較慢地沈積。 After formation, an analytical example was analyzed using a spectroscopic ellipsometer to determine the refractive index and deposition rate. The ellipsometer is commercially available from J.A. Wollam Co. Inc (Lincoln, NE). The composition of the CGC, Density and optical properties are varied by varying the low frequency (LF) power while depositing in a dual frequency PECVD reactor configuration. Higher LF power increases the ion energy that affects the ion impact strength. Thus, as can be seen in Figure 4, a denser coating having a higher refractive index and absorption coefficient (through the maximum) is deposited more slowly by increasing the LF power.

實例3:Example 3:

在第三實例中,各種SiOC:H塗層之組成及光學特性藉由改變氧氣流速而變化。對於(CH3)3SiH-O2-Ar化學,O2流速通常改變CGC之光學特性及沈積速率。在圖11中,可見較高O2流速產生較高沈積速率(通過最大值),較低吸收係數及折射率值。此係因為如圖2中之光譜可見由FTIR Si-C、Si-O及Si-N伸展振盪之變化表現之由氫化SiC至氫化SiOC或SiOCN的逐漸轉變之故。所述梯度層中所實現之折射率變化範圍為1.45至3.2。 In a third example, the composition and optical properties of various SiOC:H coatings are varied by varying the oxygen flow rate. For (CH 3 ) 3 SiH-O 2 -Ar chemistry, the O 2 flow rate typically changes the optical properties and deposition rate of the CGC. In Figure 11, it can be seen that a higher O 2 flow rate results in a higher deposition rate (through the maximum), a lower absorption coefficient, and a lower refractive index value. This is because the gradual transition from hydrogenated SiC to hydrogenated SiOC or SiOCN is manifested by the change of FTIR Si-C, Si-O and Si-N stretching oscillations as shown in the spectrum of FIG. The refractive index variation achieved in the graded layer ranges from 1.45 to 3.2.

實例4:Example 4:

在第四實例中,將PDMS溶液作為聚合物層置於CGC上,隨後固化。聚合物層之折射率及厚度相應地為1.41及0.5mm。在圖6中,陳述藉由來自單矽烷化學之此結構獲得之最小反射率,且與未經塗佈之Si晶圓、僅塗佈有PDMS密封材料之類似晶圓及置於類似晶圓上之單一抗反射塗層進行比較。在圖7中,對由三甲基矽烷化學形成之CGC進行類似比較。 In a fourth example, a PDMS solution was placed as a polymer layer on a CGC and subsequently cured. The refractive index and thickness of the polymer layer are correspondingly 1.41 and 0.5 mm. In Figure 6, the minimum reflectivity obtained by this structure from monodecane chemistry is stated, and on uncoated Si wafers, similar wafers coated with only PDMS sealing materials, and placed on similar wafers. A single anti-reflective coating is compared. In Figure 7, a similar comparison was made to the CGC formed by the trimethyl decane chemistry.

通常使用諸如可購自Agilent Technologies,Inc.之具有積分球之Cary 5000 UV-Vis-NIR分光光度計的分光光度計來量測光反射及透射。在圖6及圖7中,與裸Si晶圓及單一抗反射塗層相比,本發明CGC之光反射損失之減少較大。圖7亦顯示,除由於吸光度所致之波長範圍低於400nm之外,CGC之光透射光譜大致等於參考玻璃。由圖8中所述之CGC光譜可見,一部分此光吸收會引起具有375至675nm之寬發射頻帶的發光。寬發射頻帶主要來源於Si-O-C-H非晶複合物之缺 陷。 Light reflection and transmission are typically measured using a spectrophotometer such as the Cary 5000 UV-Vis-NIR spectrophotometer with an integrating sphere available from Agilent Technologies, Inc. In Figures 6 and 7, the reduction in light reflection loss of the CGC of the present invention is greater than that of a bare Si wafer and a single anti-reflective coating. Figure 7 also shows that the light transmission spectrum of the CGC is approximately equal to the reference glass except that the wavelength range due to absorbance is below 400 nm. As can be seen from the CGC spectrum described in Figure 8, a portion of this light absorption causes luminescence with a broad emission band of 375 to 675 nm. The wide emission band is mainly derived from the deficiency of Si-O-C-H amorphous composites. trap.

圖9包括顯示作為LED之包括本發明CGC之Si/AlN結構之菲涅耳反射損耗(Fresnel reflection loss)降低的資料。此等相同結構在特定波長範圍420至480nm之最小光反射示於圖10中。 Figure 9 includes data showing the reduction in Fresnel reflection loss of the Si/AlN structure including the CGC of the present invention as an LED. The minimum light reflection of such identical structures over a particular wavelength range of 420 to 480 nm is shown in FIG.

相較於未經塗佈之Al2O3/GaN結構,塗佈CGC之Al2O3/GaN結構的光反射降低及光透射增強示於圖11A/B中。在圖12A/B及13A/B中,展示Al2O3/GaN基板(作為透明半導體)上之CGC及雙層CGC聚合物抗反射結構之光反射降低及光透射改良,其中CGC分別由三甲基矽烷(圖12A/B)及單矽烷(圖13A/B)沈積。 The light reflection reduction and light transmission enhancement of the CGC-coated Al 2 O 3 /GaN structure are shown in Fig. 11A/B compared to the uncoated Al 2 O 3 /GaN structure. 12A/B and 13A/B, the light reflection reduction and light transmission improvement of the CGC and double-layer CGC polymer anti-reflection structures on the Al 2 O 3 /GaN substrate (as a transparent semiconductor) are shown, wherein the CGC is respectively composed of three Methyl decane (Fig. 12A/B) and monodecane (Fig. 13A/B) were deposited.

圖14顯示與折射率及厚度有關之雙層CGC聚合物抗反射結構設計,其包括二階指數模型擬合。 Figure 14 shows a two-layer CGC polymer anti-reflective structure design relating to refractive index and thickness, including a second order exponential model fit.

一或多個上述值可變化±5%、±10%、±15%、±20%、±25%等,只要方差保持在本發明之範疇內即可。自獨立於所有其他成員的馬庫西(Markush)組中之各成員可獲得出人意料之結果。各成員可個別地及/或以組合形式信賴且對特定實施例在隨附申請專利範圍之範疇內提供足夠支撐。在本文中明確涵蓋獨立及附屬請求項(單一及多重附屬)之所有組合的主題。本發明為說明性的,包括描述性措辭而非限制性措辭。根據上述教示,本發明之許多修改及改變為可能的,且可以與如在本文中具體描述所不同的方式實施本發明。在多個非限制性實施例中,一或多種如明確以全文引用的方式併入本文中之PCT/US2010/049829所述化合物、組分、方法步驟等可整個或部分用於本發明之任何一或多個部分。本文所用之符號「±」描述值可改變「+」或「-」之「±」符號後所述之數值。 One or more of the above values may vary by ±5%, ±10%, ±15%, ±20%, ±25%, etc., as long as the variance remains within the scope of the present invention. Each member of the Markush group, independent of all other members, has an unexpected result. Each member may rely on individual and/or in combination to provide sufficient support for a particular embodiment within the scope of the appended claims. The subject matter of all combinations of independent and subsidiary claims (single and multiple affiliates) is expressly covered herein. The present invention is intended to be illustrative, and not restrictive. Numerous modifications and variations of the present invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described herein. In various non-limiting embodiments, one or more of the compounds, components, method steps, and the like, as described in PCT/US2010/049829, which is hereby incorporated by reference in its entirety herein in its entirety, One or more parts. The symbol "±" used in this document may change the value described after the "±" sign of "+" or "-".

Claims (20)

一種形成發光二極體模組之方法,該發光二極體模組包含:折射率為2.7±1.2之透明半導體;置於該透明半導體上且折射率為1.5±0.1之聚合物層;置於該透明半導體上且夾在該透明半導體與該聚合物層之間的組成梯度塗層,該組成梯度塗層具有一定厚度,且折射率由第一末端之第一折射率(2.2±0.5至3.3±0.4)沿厚度變為接近該聚合物層之第二末端之第二折射率1.5±0.2,且包含沿厚度之包含SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之梯度,該方法包含:A.使用化學氣相沈積將該組成梯度塗層連續沈積於該透明半導體上,且隨後B.將該聚合物層置於該組成梯度塗層上以形成該發光二極體。 A method for forming a light emitting diode module, the light emitting diode module comprising: a transparent semiconductor having a refractive index of 2.7±1.2; a polymer layer disposed on the transparent semiconductor and having a refractive index of 1.5±0.1; a composition gradient coating on the transparent semiconductor and sandwiched between the transparent semiconductor and the polymer layer, the composition gradient coating having a thickness and a refractive index from the first end of the first refractive index (2.2±0.5 to 3.3) ±0.4) along the thickness to a second refractive index of 1.5 ± 0.2 near the second end of the polymer layer, and comprising SiC:H and (SiOCN:H;SiOC:H; and/or Si:H along the thickness) a gradient comprising: A. continuously depositing a composition gradient coating onto the transparent semiconductor using chemical vapor deposition, and then B. placing the polymer layer on the composition gradient coating to form the luminescence Diode. 如請求項1之方法,其中該透明半導體為發光二極體之上表面。 The method of claim 1, wherein the transparent semiconductor is an upper surface of the light emitting diode. 如請求項1之方法,其中該透明半導體係選自Al2O3、GaN及AlN。 The method of claim 1, wherein the transparent semiconductor is selected from the group consisting of Al 2 O 3 , GaN, and AlN. 如請求項1之方法,其中該發光二極體包含置於該聚合物層與該透明半導體之間的Si:H。 The method of claim 1, wherein the light emitting diode comprises Si:H disposed between the polymer layer and the transparent semiconductor. 如請求項1之方法,其中該化學氣相沈積為電漿增強化學氣相沈積且視情況以反應性離子蝕刻方式或雙頻方式操作。 The method of claim 1, wherein the chemical vapor deposition is plasma enhanced chemical vapor deposition and optionally operated in a reactive ion etching mode or a dual frequency mode. 如請求項1至5中任一項之方法,其進一步包含如下步驟:沈積該Si:H作為置於該組成梯度塗層與該透明半導體之間的中間層,以便該組成梯度塗層之折射率由第一末端之第一折射率2.2±0.5沿厚度變為接近該聚合物層之第二末端之第二折射率 1.45±0.05。 The method of any one of claims 1 to 5, further comprising the step of depositing the Si:H as an intermediate layer disposed between the composition gradient coating and the transparent semiconductor such that the composition gradient coating is refracted The rate is changed from a first refractive index of the first end of 2.2±0.5 to a second refractive index close to the second end of the polymer layer. 1.45 ± 0.05. 如請求項6之方法,其中該中間層之折射率為3.2±0.4。 The method of claim 6, wherein the intermediate layer has a refractive index of 3.2 ± 0.4. 如請求項1至5中任一項之方法,其中該Si:H存在於該組成梯度塗層中,以便該梯度包含Si:H、SiC:H及SiOCN:H且該組成梯度塗層之折射率由第一末端之第一折射率3.3±0.4沿厚度變為接近該聚合物層之第二末端之第二折射率1.45±0.05。 The method of any one of claims 1 to 5, wherein the Si:H is present in the composition gradient coating such that the gradient comprises Si:H, SiC:H, and SiOCN:H and the refractive gradient of the composition gradient coating The rate changes from a first index of the first end of the index of 3.3 ± 0.4 to a second index of refraction of 1.45 ± 0.05 near the second end of the polymer layer. 如請求項1至5中任一項之方法,其中該連續沈積步驟包含將單矽烷氣體引入該透明半導體中、將烴氣體引入該透明半導體中及將氧化亞氮、氧氣及二氧化碳中之至少一者引入該透明半導體中。 The method of any one of claims 1 to 5, wherein the continuous deposition step comprises introducing a monodecane gas into the transparent semiconductor, introducing a hydrocarbon gas into the transparent semiconductor, and introducing at least one of nitrous oxide, oxygen, and carbon dioxide. Introduced into the transparent semiconductor. 如請求項9之方法,其中該烴氣體包含甲烷、乙烯及乙炔中之至少一者。 The method of claim 9, wherein the hydrocarbon gas comprises at least one of methane, ethylene, and acetylene. 如請求項1至5中任一項之方法,其中該連續沈積步驟在室溫下發生或在高於室溫之溫度或在約50℃下以反應性離子蝕刻或雙頻電漿方式發生。 The method of any one of claims 1 to 5, wherein the continuous deposition step occurs at room temperature or at a temperature above room temperature or at about 50 ° C in reactive ion etching or dual frequency plasma. 如請求項1至5中任一項之方法,其中該梯度包含:SiC:H及SiOCN:H;SiC:H及SiOC:H;SiC:H及Si:H;或Si:H、SiC:H、SiOCN:H及SiOC:H。 The method of any one of claims 1 to 5, wherein the gradient comprises: SiC:H and SiOCN:H; SiC:H and SiOC:H; SiC:H and Si:H; or Si:H, SiC:H , SiOCN: H and SiOC: H. 如請求項1至5中任一項之方法,其中該聚合物層包含聚矽氧。 The method of any one of claims 1 to 5, wherein the polymer layer comprises polyfluorene oxide. 如請求項1至5中任一項之方法,其中該組成梯度塗層之厚度為50至1000nm且該聚合物層之厚度為至少50μm。 The method of any one of claims 1 to 5, wherein the composition gradient coating has a thickness of 50 to 1000 nm and the polymer layer has a thickness of at least 50 μm. 一種發光二極體模組,其由請求項1至5中任一項之方法形成。 A light-emitting diode module formed by the method of any one of claims 1 to 5. 一種發光二極體模組,其包含:折射率為2.7±1.2之透明半導體; 置於該透明半導體上且折射率為1.5±0.1之聚合物層;及置於該透明半導體上且夾在該透明半導體與該聚合物層之間的組成梯度塗層,該組成梯度塗層具有一定厚度,且折射率由第一末端之第一折射率(2.2±0.5至3.3±0.4)沿厚度變為接近該聚合物層之第二末端之第二折射率1.5±0.2,且包含沿厚度之包含SiC:H及(SiOCN:H;SiOC:H;及/或Si:H)之梯度。 A light emitting diode module comprising: a transparent semiconductor having a refractive index of 2.7±1.2; a polymer layer disposed on the transparent semiconductor and having a refractive index of 1.5±0.1; and a composition gradient coating disposed on the transparent semiconductor and sandwiched between the transparent semiconductor and the polymer layer, the composition gradient coating layer having a certain thickness, and the refractive index is changed from a first refractive index (2.2±0.5 to 3.3±0.4) of the first end to a second refractive index of 1.5±0.2 near the second end of the polymer layer, and includes a thickness along the thickness It comprises a gradient of SiC:H and (SiOCN:H; SiOC:H; and/or Si:H). 如請求項16之模組,其中該透明半導體為發光二極體或該透明半導體係選自Al2O3、GaN及AlN。 The module of claim 16, wherein the transparent semiconductor is a light emitting diode or the transparent semiconductor is selected from the group consisting of Al 2 O 3 , GaN, and AlN. 如請求項16或17之模組,其中該Si:H存在於折射率為3.2±0.4且置於該組成梯度塗層與該透明半導體之間的中間層中,以便該組成梯度塗層之折射率由第一末端之第一折射率2.2±0.5沿厚度變為接近該聚合物層之第二末端之第二折射率1.45±0.05。 The module of claim 16 or 17, wherein the Si:H is present in an intermediate layer between the composition gradient coating and the transparent semiconductor having a refractive index of 3.2 ± 0.4, so that the refractive index of the composition gradient coating The rate changes from a first index of 2.2 ± 0.5 at the first end to a second index of refraction of 1.45 ± 0.05 near the second end of the polymer layer. 如請求項16或17之模組,其中該Si:H存在於該組成梯度塗層中,以便該梯度包含Si:H、SiC:H及SiOCN:H且該組成梯度塗層之折射率由第一末端之第一折射率3.3±0.4沿厚度變為接近該聚合物層之第二末端之第二折射率1.45±0.05。 The module of claim 16 or 17, wherein the Si:H is present in the composition gradient coating such that the gradient comprises Si:H, SiC:H, and SiOCN:H and the refractive index of the composition gradient coating is The first index of refraction 3.3 ± 0.4 at one end becomes a second refractive index of 1.45 ± 0.05 near the second end of the polymer layer. 如請求項16或17之模組,其中該梯度包含:SiC:H及SiOCN:H;SiC:H及SiOC:H;SiC:H及Si:H;或Si:H、SiC:H、SiOCN:H及SiOC:H。 The module of claim 16 or 17, wherein the gradient comprises: SiC:H and SiOCN:H; SiC:H and SiOC:H; SiC:H and Si:H; or Si:H, SiC:H, SiOCN: H and SiOC: H.
TW102110124A 2012-03-21 2013-03-21 Method of forming a light emitting diode module TW201349586A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261685670P 2012-03-21 2012-03-21

Publications (1)

Publication Number Publication Date
TW201349586A true TW201349586A (en) 2013-12-01

Family

ID=49510483

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102110124A TW201349586A (en) 2012-03-21 2013-03-21 Method of forming a light emitting diode module

Country Status (2)

Country Link
TW (1) TW201349586A (en)
WO (1) WO2014018122A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235684A (en) * 1994-02-23 1995-09-05 Hitachi Cable Ltd Solar cell
US7087936B2 (en) * 2003-04-30 2006-08-08 Cree, Inc. Methods of forming light-emitting devices having an antireflective layer that has a graded index of refraction
US20070215998A1 (en) * 2006-03-20 2007-09-20 Chi Lin Technology Co., Ltd. LED package structure and method for manufacturing the same
JP2009193975A (en) * 2006-05-22 2009-08-27 Alps Electric Co Ltd Light emitting device, and method for manufacturing the same
TW200812113A (en) * 2006-05-23 2008-03-01 Alps Electric Co Ltd Semiconductor light emitting element and method for manufacturing the same
TW200842950A (en) * 2007-02-27 2008-11-01 Sixtron Advanced Materials Inc Method for forming a film on a substrate
US7638811B2 (en) * 2007-03-13 2009-12-29 Cree, Inc. Graded dielectric layer
CN102171384B (en) * 2008-05-28 2013-12-25 乔治洛德方法研究和开发液化空气有限公司 Silicon carbide-based antireflective coating
JP2013539225A (en) * 2010-09-22 2013-10-17 ダウ コーニング コーポレーション Electronic article and method of forming the same

Also Published As

Publication number Publication date
WO2014018122A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
US8383214B2 (en) Diffusion barrier coatings having graded compositions and devices incorporating the same
KR101575143B1 (en) Optical sheet and backlight unit having the optical sheet
US20060208634A1 (en) Diffusion barrier coatings having graded compositions and devices incorporating the same
KR101366449B1 (en) Optical semiconductor device and manufaturing method thereof
US20170207415A1 (en) Gas barrier film and organic electroluminescent element
CN105451984A (en) Gas-barrier film and method for producing same, and electronic device using same
WO2009061704A2 (en) Atomic layer deposition encapsulation
TW200531588A (en) Composite articles having diffusion barriers and devices incorporating the same
JPWO2016043141A1 (en) Gas barrier film
US20140264293A1 (en) Coated article and/or device with optical out-coupling layer stack (ocls) including vacuum deposited index match layer over scattering matrix, and/or associated methods
KR102287519B1 (en) Electronic devices and organic electroluminescent devices
TW201349586A (en) Method of forming a light emitting diode module
JP6812429B2 (en) Light extraction film and organic electroluminescence light emitting device
JP6295865B2 (en) Gas barrier film
CN110911586B (en) OLED panel, preparation method of OLED panel and display device
WO2013142585A1 (en) Method of forming a photovoltaic cell module
JP2015047790A (en) Gas barrier film and electronic device including the same
WO2012009061A1 (en) Multilayer construction
TWM341940U (en) Light emitting diode device