TW201334636A - Electron beam plasma source with profiled chamber wall for uniform plasma generation - Google Patents

Electron beam plasma source with profiled chamber wall for uniform plasma generation Download PDF

Info

Publication number
TW201334636A
TW201334636A TW101138297A TW101138297A TW201334636A TW 201334636 A TW201334636 A TW 201334636A TW 101138297 A TW101138297 A TW 101138297A TW 101138297 A TW101138297 A TW 101138297A TW 201334636 A TW201334636 A TW 201334636A
Authority
TW
Taiwan
Prior art keywords
electron beam
distribution
plasma reactor
chamber
along
Prior art date
Application number
TW101138297A
Other languages
Chinese (zh)
Inventor
Kallol Bera
Kenneth S Collins
Shahid Rauf
Leonid Dorf
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201334636A publication Critical patent/TW201334636A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32321Discharge generated by other radiation
    • H01J37/3233Discharge generated by other radiation using charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06366Gas discharge electron sources

Abstract

A plasma reactor that generates plasma in a workpiece processing chamber by an electron beam, has an electron beam source chamber with a wall opposite to the electron beam propagation direction, the wall being profiled to compensate for a non-uniformity in electron beam density distribution.

Description

用於產生均勻電漿之具有輪廓的腔室壁之電子束電漿源 Electron beam plasma source for contoured chamber walls for producing uniform plasma

本發明之實施例係關於用於產生均勻電漿之具有輪廓的腔室壁之電子束電漿源。 Embodiments of the invention relate to an electron beam plasma source for a contoured chamber wall for producing a uniform plasma.

用於處理工件的電漿反應器可利用電子束作為電漿源。歸因於電子束的非均勻密度分佈,此電漿反應器可能展現非均勻分佈的處理結果(例如,橫跨工件表面之蝕刻率的分佈)。此非均勻性可分佈在對波束傳播方向橫向的方向上。 A plasma reactor for treating a workpiece can utilize an electron beam as a plasma source. Due to the non-uniform density distribution of the electron beam, this plasma reactor may exhibit a non-uniform distribution of processing results (eg, a distribution of etch rates across the surface of the workpiece). This non-uniformity can be distributed in a direction transverse to the beam propagation direction.

用於處理工件的電漿反應器,包括:一工件處理腔室,該工件處理腔室具有一處理腔室及一電子束開口,該處理腔室包含一腔室頂壁及一腔室側壁,且該電子束開口在該腔室側壁中,在該處理腔室中的一工件支撐台座,該工件支撐台座具有面向該腔室頂壁的一工件支撐表面,且在該工件支撐表面及該腔室頂壁之間界定一工件處理區域,該電子束開口面向該工件處理區域。此電漿反應器進一步包括:一電子束源腔室,該電子束源腔室包含一源包體,該源包體具有對著該工件處理腔室的該電子束開口開啟的一電子束發射窗,且界定沿著一縱向 方向的一電子束傳播路徑,該縱向方向延伸通過該電子束發射窗且通過該電子束開口,且延伸至該工件處理區域中,該源包體進一步包含一背壁,該背壁在沿著該縱向方向上與該電子束發射窗以一間隙隔開,該電子束發射窗大致沿著橫向於該縱向方向之一方向而延伸。一電子束汲取柵格橫跨於該電子束發射窗延伸。一汲取電壓源係耦合至該電子束汲取柵格,且電漿源電源之一供應器係耦合至該電子束源腔室。該背壁具有一輪廓,該輪廓對應至沿著該橫向方向的該間隙之一變化。在一個實施例中,該輪廓係經選擇以補償電子束密度中沿著橫向方向的變化。在相關實施例中,狹縫的變化相對應於電子束密度分佈中沿著橫向方向的量測變化。該輪廓可為主動可配置。舉例而言,背壁可由複數個板條組成,該等板條透過各種狹縫的特定選擇而可移除地***源包體中。各個輪廓相對應於狹縫的不同選擇。如另一範例,背壁可為彈性片,該彈性片可變形成不同曲率。 A plasma reactor for processing a workpiece, comprising: a workpiece processing chamber having a processing chamber and an electron beam opening, the processing chamber including a chamber top wall and a chamber sidewall And the electron beam is opened in the sidewall of the chamber, a workpiece supporting pedestal in the processing chamber, the workpiece supporting pedestal has a workpiece supporting surface facing the top wall of the chamber, and the workpiece supporting surface and the cavity A workpiece processing area is defined between the top walls of the chamber, the electron beam opening facing the workpiece processing area. The plasma reactor further includes: an electron beam source chamber, the electron beam source chamber including a source package having an electron beam emission opening toward the electron beam opening of the workpiece processing chamber Window and defined along a longitudinal An electron beam propagation path of the direction extending through the electron beam emission window and through the electron beam opening and extending into the workpiece processing region, the source package further comprising a back wall along the back wall The longitudinal direction is spaced apart from the electron beam emission window by a gap extending substantially in a direction transverse to one of the longitudinal directions. An electron beam extraction grid extends across the electron beam emission window. A draw voltage source is coupled to the electron beam extraction grid, and one of the plasma source power supplies is coupled to the electron beam source chamber. The back wall has a contour that corresponds to one of the gaps along the lateral direction. In one embodiment, the profile is selected to compensate for variations in the transverse direction of the electron beam density. In a related embodiment, the change in the slit corresponds to a change in the lateral direction of the electron beam density distribution. This profile can be actively configurable. For example, the back wall can be comprised of a plurality of slats that are removably inserted into the source enclosure through a particular selection of various slits. Each contour corresponds to a different choice of slit. As another example, the back wall can be an elastic sheet that can be deformed to form different curvatures.

參照第1A、1B及1C圖,電漿反應器具有電子束電漿源。反應器包括處理腔室100,該處理腔室100藉由圓柱形側壁102、底壁104及頂壁106包覆。工件支撐台座108支撐例如半導體晶圓的工件110,該台座108可在軸向(例如,垂直)的方向上移動。氣體分配板112 係與頂壁106整合或固定在頂壁106上,且從處理氣體供應器114接收處理氣體。真空幫浦116透過底壁104來排空腔室。處理區域118係界定於工件110及氣體分配板112之間。在處理區域118之中,處理氣體被離子化,以生成用於處理工件110的電漿。 Referring to Figures 1A, 1B and 1C, the plasma reactor has an electron beam plasma source. The reactor includes a processing chamber 100 that is covered by a cylindrical sidewall 102, a bottom wall 104, and a top wall 106. The workpiece support pedestal 108 supports a workpiece 110, such as a semiconductor wafer, which is movable in an axial (eg, vertical) direction. Gas distribution plate 112 The system is integrated with or secured to the top wall 106 and receives process gas from the process gas supply 114. The vacuum pump 116 evacuates the chamber through the bottom wall 104. Processing region 118 is defined between workpiece 110 and gas distribution plate 112. Within the processing region 118, the process gas is ionized to generate a plasma for processing the workpiece 110.

電漿係藉由來自電子束源120的電子束而產生於處理區域118中。電子束源120包括在處理腔室100外部的電漿產生腔室122,且具有導電包體124。導電包體124包括側壁124b、頂壁124c、底壁124d及背壁124e。導電包體124具有頸部或氣體入口125。電子束源氣體供應器127係耦合至氣體入口125。導電包體124具有開口124a,該開口124a透過處理腔室100之側壁102中的開口102a而面向處理區域118。 The plasma is generated in the processing region 118 by an electron beam from the electron beam source 120. Electron beam source 120 includes a plasma generation chamber 122 external to processing chamber 100 and having a conductive enclosure 124. The conductive package 124 includes a sidewall 124b, a top wall 124c, a bottom wall 124d, and a back wall 124e. The electrically conductive enclosure 124 has a neck or gas inlet 125. Electron beam source gas supply 127 is coupled to gas inlet 125. The conductive body 124 has an opening 124a that faces the processing region 118 through an opening 102a in the sidewall 102 of the processing chamber 100.

電子束源120包括介於開口124a及電漿產生腔室122之間的汲取柵格126,及介於汲取柵格126及處理區域118之間的加速柵格128,此等可最佳地見於第1B圖的放大視圖。舉例而言,汲取柵格126及加速柵格128可以分開的導電網格形成。汲取柵格126及加速柵格128分別以絕緣器130、132固定,使得彼此電氣隔絕,且形成導電包體124。然而,加速柵格128係與腔室100的側壁102電接觸。一般而言,開口124a及102a、汲取柵格126及加速柵格128可相互等同,且界定薄且寬的電子流路徑,使得電子束進入腔室區域118。電子流路徑的寬度係大約為工件110的直徑(例如,100-500 mm), 而電子流路徑的高度係大約小於兩英吋。 The electron beam source 120 includes a capture grid 126 between the opening 124a and the plasma generation chamber 122, and an acceleration grid 128 between the extraction grid 126 and the processing region 118, which is best seen in An enlarged view of Fig. 1B. For example, the capture grid 126 and the acceleration grid 128 can be formed from separate conductive meshes. The extraction grid 126 and the acceleration grid 128 are respectively secured by insulators 130, 132 to be electrically isolated from one another and form a conductive envelope 124. However, the acceleration grid 128 is in electrical contact with the sidewalls 102 of the chamber 100. In general, openings 124a and 102a, extraction grid 126, and acceleration grid 128 may be identical to one another and define a thin and wide electron flow path such that the electron beam enters chamber region 118. The width of the electron flow path is approximately the diameter of the workpiece 110 (eg, 100-500 mm), The height of the electron flow path is less than two inches.

電子束源120進一步包括鄰接於腔室100的相對側之一對電磁鐵134-1及134-2,電磁鐵134-1環繞電子束源120。電磁鐵134-1及134-2沿著電子束路徑平行於電子束的方向生成磁場。電子束在工件110上流動橫跨處理區域118,且在處理區域118的相對側上藉由束集區136吸收。束集區136係導電體,該導電體具有形狀適於捕獲寬且薄的電子束。 The electron beam source 120 further includes an electromagnet 134-1 and 134-2 adjacent one of the opposite sides of the chamber 100, and the electromagnet 134-1 surrounds the electron beam source 120. The electromagnets 134-1 and 134-2 generate a magnetic field in a direction parallel to the electron beam along the electron beam path. The electron beam flows across the processing region 118 on the workpiece 110 and is absorbed by the beam collection region 136 on the opposite side of the processing region 118. The bundle 136 is an electrical conductor having a shape suitable for capturing a wide and thin electron beam.

電漿D.C.放電電壓供應器140係耦合至可包含陰極的導電包體124,且在導電包體124(例如,陰極)及汲取柵格126之間提供汲取電壓。電子束加速電壓供應器142的一個終端係連接至汲取柵格126,且另一終端係透過處理腔室100的側壁102之接地電位連接至加速柵格128。線圈電流供應器146係耦合至電磁鐵134-1及134-2。電漿係藉由D.C.氣體放電而在電子束源120的腔室122之中產生,該D.C.氣體放電藉由電壓供應器140供電,以在整個腔室122中生成電漿。此D.C.氣體放電係電子束源120的電漿源。從腔室122的電漿透過汲取柵格126汲取電子,且歸因於加速柵格及汲取柵格之間的電壓差,透過加速柵格加速電子,以生成流動至處理腔室100中的電子束。 The plasma D.C. discharge voltage supply 140 is coupled to a conductive package 124 that can include a cathode and provides a draw voltage between the conductive package 124 (eg, the cathode) and the extraction grid 126. One terminal of the electron beam acceleration voltage supply 142 is connected to the extraction grid 126, and the other terminal is connected to the acceleration grid 128 through the ground potential of the side wall 102 of the processing chamber 100. Coil current supply 146 is coupled to electromagnets 134-1 and 134-2. The plasma is generated in the chamber 122 of the electron beam source 120 by D.C. gas discharge, which is powered by the voltage supply 140 to generate plasma throughout the chamber 122. This D.C. gas discharge is the plasma source of the electron beam source 120. The plasma from the chamber 122 is drawn through the extraction grid 126, and due to the voltage difference between the acceleration grid and the extraction grid, the electrons are accelerated through the acceleration grid to generate electrons flowing into the processing chamber 100. bundle.

橫跨電子束之寬度的電子密度的分佈(沿著X軸或橫向於電子束行進的方向)在處理區域118中影響電漿密度分佈的均勻性。在沒有修正此非均勻性的特徵之情況 下,電子束可具有量測的非均勻分佈,該等特徵於以下說明。此非均勻性可在上述之反應器腔室中的工件或晶圓處理上從蝕刻深度分佈量測。因偏壓電場與磁場的互動之電子漂移,因自身電場之電子束分歧,及/或在處理腔室中電子與中性氣體的碰撞,可造成此量測的非均勻性。亦可藉由於電子束邊緣處的電場之邊緣效應,而造成此非均勻性。因為上述之原因,橫跨電子束之寬度的電子密度分佈(橫跨X軸或橫向於電子束行進的方向)易於展現非均勻性。舉例而言,此非均勻性可以1%至20%的範圍橫跨電子束的寬度對應於在電子束中電漿電子密度分佈的變化。因為可由上述之測試晶圓中的蝕刻深度分佈之量測得知此變化,所以可量測此變化。 The distribution of electron density across the width of the electron beam (either along the X-axis or transverse to the direction of travel of the electron beam) affects the uniformity of the plasma density distribution in the processing region 118. In the case where the feature of this non-uniformity is not corrected The electron beam can have a non-uniform distribution of measurements, which are described below. This non-uniformity can be measured from the etch depth profile on the workpiece or wafer processing in the reactor chamber described above. The electronic drift of the interaction between the bias electric field and the magnetic field, the electron beam divergence of the electric field, and/or the collision of electrons with neutral gases in the processing chamber can cause non-uniformity in this measurement. This non-uniformity can also be caused by the edge effect of the electric field at the edge of the electron beam. For the above reasons, the electron density distribution across the width of the electron beam (a direction across the X-axis or transverse to the direction of travel of the electron beam) tends to exhibit non-uniformity. For example, this non-uniformity may range from 1% to 20% across the width of the electron beam corresponding to a change in the plasma electron density distribution in the electron beam. This change can be measured because the change can be known from the measurement of the etch depth profile in the test wafer described above.

導電包體124的背壁124e具有沿著橫向方向(X軸)的輪廓。此輪廓經選擇以補償沿著電子束之電子密度分佈的橫向方向中所量測的非均勻性。舉例而言,在第1C圖的實施例中,背壁124e係具有內部凸出形狀之輪廓,其中在腔室122的容積中,背壁124e於靠近中央之處向內彎曲,且朝向側壁124b向外彎曲。背壁124e及開口214a平行於電子束方向或Y軸界定間隙G,根據背壁124e的輪廓,間隙G具有沿著橫向方向或X軸的變化。 The back wall 124e of the conductive envelope 124 has a profile along the lateral direction (X-axis). This profile is selected to compensate for the non-uniformity measured in the lateral direction along the electron density distribution of the electron beam. For example, in the embodiment of Figure 1C, the back wall 124e has a contour of an inner convex shape, wherein in the volume of the chamber 122, the back wall 124e is curved inwardly toward the center and toward the side wall 124b Bend outward. The back wall 124e and the opening 214a define a gap G parallel to the electron beam direction or the Y axis, and the gap G has a change along the lateral direction or the X axis according to the contour of the back wall 124e.

在第1D圖的實施例中,背壁124e係具有內部凹陷形狀的輪廓,其中相對於腔室122的容積,背壁124e於靠近中央之處向外彎曲,且朝向側壁124b向內彎曲。 In the embodiment of FIG. 1D, the back wall 124e has a contour of an inner concave shape in which the back wall 124e is outwardly curved near the center with respect to the volume of the chamber 122, and is curved inward toward the side wall 124b.

相信此等輪廓改變沿著橫向方向的有效陰極面積,而 改變沿著橫向方向之離子電流對陰極(亦即,導電包體124)的分佈。此舉建立沿著電子流通過汲取柵格126的橫向方向之分佈的相對應改變。舉例而言,容積的壓縮減少電漿電子密度。因此,在第1C圖的實施例中,背壁124e的凸出形狀傾向使得沿著橫向方向的電漿電子分佈在中央低且於邊緣高,且因此適用於當未修正分佈時中央的電漿電子分佈為高之狀況。在第1D圖的實施例中,背壁124e的凹陷形狀傾向使得沿著橫向方向的電漿電子分佈在中央高且於邊緣低,且因此適用於當未修正分佈時中央的電漿電子分佈為低之狀況。間隙G的變化經選擇以匹配沿著橫向方向之電漿電子密度分佈的變化。舉例而言,若電漿電子分佈具有中央高的非均勻性,或具有特殊值(例如,5%)之變化,則利用第1C圖的凸出形狀,且在此情況中的背壁124e之輪廓係經配置使得間隙G具有類似值(例如,5%)之變化。類似地,若電漿電子分佈具有中央低的非均勻性,或具有特殊值(例如,5%)之變化,則利用第1D圖的凹陷形狀,且在此情況中的背壁124e之輪廓係經配置使得間隙G具有類似值(例如,5%)之變化。舉例而言,電子密度分佈可具有從1%至20%之範圍的變化,且間隙G的變化可選擇為在此範圍之中。 It is believed that these contours change the effective cathode area along the lateral direction, and The distribution of the ion current in the lateral direction to the cathode (i.e., the conductive inclusion 124) is varied. This establishes a corresponding change in the distribution of the electron flow through the lateral direction of the extraction grid 126. For example, volumetric compression reduces plasma electron density. Therefore, in the embodiment of Fig. 1C, the convex shape of the back wall 124e tends to be such that the plasma electron distribution in the lateral direction is low in the center and high in the edge, and thus is suitable for the central plasma when the distribution is not corrected. The electronic distribution is high. In the embodiment of Fig. 1D, the concave shape of the back wall 124e tends to be such that the plasma electron distribution in the lateral direction is high in the center and low in the edge, and thus is suitable for the distribution of the plasma electrons in the center when the distribution is uncorrected. Low condition. The change in gap G is selected to match the change in the plasma electron density distribution along the lateral direction. For example, if the plasma electron distribution has a centrally high non-uniformity, or has a variation of a particular value (eg, 5%), the convex shape of FIG. 1C is utilized, and in this case the back wall 124e The profile is configured such that the gap G has a similar value (eg, 5%) change. Similarly, if the plasma electron distribution has a centrally low non-uniformity, or has a variation of a particular value (eg, 5%), the concave shape of Figure 1D is utilized, and in this case the contour of the back wall 124e is The gap G is configured to have a similar value (eg, 5%) change. For example, the electron density distribution may have a variation ranging from 1% to 20%, and the variation of the gap G may be selected to be within this range.

第2A圖及第2B圖描繪如第1C及第1D圖的輪廓分別使用階梯狀方式的實施例。 FIGS. 2A and 2B depict an embodiment in which the contours of the 1C and 1D are respectively used in a stepped manner.

第3圖描繪可在不同階梯狀配置之間轉換的實施例, 包括第2A圖及第2B圖之階梯狀配置。在第3A圖中,於頂壁124c中的細長狹縫200沿著分別的方向延伸。個別的板條或平的部位210可***分別的狹縫200中。個別部位210可滑動進出個別狹縫200,直到此等部位210的底部邊緣接觸底壁124d,且可因此個別***導電包體124或從導電包體124移除。個別部位210***經選擇的各個狹縫200,以形成由***的部位210所組成的連續導電屏障。舉例而言,此屏障可與第2A圖或第2B圖的凸出或凹陷階梯狀輪廓之任一者一致,或可為任何其他適合輪廓。對於各個階梯狀配置,某些狹縫200並無任何部位***,且因此為空的。各個空的狹縫200可以如第3D圖中所描繪的狹縫蓋230密封。 Figure 3 depicts an embodiment that can be switched between different stepped configurations, Includes a stepped configuration of Figures 2A and 2B. In Figure 3A, the elongated slits 200 in the top wall 124c extend in respective directions. Individual slats or flat portions 210 can be inserted into the respective slits 200. The individual portions 210 can slide into and out of the individual slits 200 until the bottom edge of the portions 210 contacts the bottom wall 124d and can thus be individually inserted into or removed from the conductive enclosure 124. Individual portions 210 are inserted into each of the selected slits 200 to form a continuous conductive barrier comprised of the inserted portions 210. For example, the barrier may conform to either the convex or concave stepped profile of FIG. 2A or 2B, or may be any other suitable contour. For each stepped configuration, some of the slits 200 are not inserted at any location and are therefore empty. Each of the empty slits 200 can be sealed as the slit cover 230 depicted in FIG. 3D.

第3A至3C圖描繪第3圖的部位210之不同配置。部位210係藉由交叉細線表明,以將部位與空的狹縫200區隔。第3A圖及第3B圖描繪分別對應於凸出及凹陷輪廓之配置。第3C圖描繪具有幾乎平的輪廓之配置。第3D圖係放大的視圖,圖示根據相關實施例之某些細節。具體而言,第3D圖圖示個別狹縫蓋230可如何用以關閉未使用的狹縫200。狹縫蓋230的數量可供於搭載許多可能的配置。在第3D圖中,於底壁124d的表面提供淺槽124f,各個淺槽124f與頂壁124c中的相對應狹縫200配合,且能夠引導且把持各個部位210的底部邊緣***狹縫200至適當位置。為了提供密封的包體,各個部位210的頂部及各個狹縫蓋230提供如第3D圖中所描繪的 唇部225,且在唇部下方提供可變形環密封。 Figures 3A through 3C depict different configurations of the portion 210 of Figure 3. The portion 210 is indicated by intersecting thin lines to separate the portion from the empty slit 200. Figures 3A and 3B depict configurations corresponding to the convex and concave profiles, respectively. Figure 3C depicts a configuration with an almost flat profile. Figure 3D is an enlarged view illustrating certain details in accordance with related embodiments. In particular, Figure 3D illustrates how individual slit covers 230 can be used to close unused slits 200. The number of slit covers 230 is available to carry many possible configurations. In FIG. 3D, shallow grooves 124f are provided on the surface of the bottom wall 124d, and each shallow groove 124f is engaged with the corresponding slit 200 in the top wall 124c, and can guide and hold the bottom edge of each portion 210 into the slit 200 to The right place. In order to provide a sealed enclosure, the top of each portion 210 and each slit cover 230 are provided as depicted in Figure 3D. The lip 225 provides a deformable ring seal below the lip.

第4圖描繪一實施例,其中背壁124e係彈性金屬片,該彈性金屬片於側邊源124e-1、124e-2處緊固至側壁124b。背壁124e之頂部及底部邊緣係自由以相對於頂壁124c及底壁124d滑動。因此,背壁124e可自由屈曲於第1C圖的凸出彎曲形狀及第1D圖的凹陷彎曲形狀之間。致動器250藉由臂255鏈結至背壁124e,且因此在使用者控制之下,屈曲背壁124e至凸出或凹陷的輪廓。 Figure 4 depicts an embodiment in which the back wall 124e is an elastic metal sheet that is fastened to the side wall 124b at the side sources 124e-1, 124e-2. The top and bottom edges of the back wall 124e are free to slide relative to the top wall 124c and the bottom wall 124d. Therefore, the back wall 124e can freely flex between the convex curved shape of the 1Cth view and the concave curved shape of the 1Dth drawing. The actuator 250 is coupled to the back wall 124e by the arms 255 and thus flexes the back wall 124e to a convex or concave profile under user control.

儘管在電子束源120中的主要電漿源為由電壓供應器140所生成的D.C.氣體放電,但可利用任何其他適合的電漿源而取代作為主要電漿源。舉例而言,電子束源120的主要電漿源可為環狀RF電漿源、電容耦合RF電漿源、或電感耦合RF電漿源。 Although the primary source of plasma in the electron beam source 120 is a D.C. gas discharge generated by the voltage supply 140, any other suitable source of plasma may be utilized instead of being the primary source of plasma. For example, the primary plasma source of electron beam source 120 can be a ring RF plasma source, a capacitively coupled RF plasma source, or an inductively coupled RF plasma source.

儘管以上導向本發明的實施例,可設計本發明的其他及進一步實施例,而不悖離本發明之基本範疇,且本發明之範疇係由以下申請專利範圍決定。 While the above is directed to the embodiments of the present invention, other and further embodiments of the present invention may be devised without departing from the scope of the invention, and the scope of the invention is determined by the scope of the following claims.

100‧‧‧處理腔室 100‧‧‧Processing chamber

102‧‧‧側壁 102‧‧‧ side wall

102a‧‧‧開口 102a‧‧‧ Opening

104‧‧‧底壁 104‧‧‧ bottom wall

106‧‧‧頂壁 106‧‧‧ top wall

108‧‧‧台座 108‧‧‧ pedestal

110‧‧‧工件 110‧‧‧Workpiece

112‧‧‧氣體分配板 112‧‧‧ gas distribution board

114‧‧‧處理氣體供應器 114‧‧‧Processing gas supply

116‧‧‧真空幫浦 116‧‧‧vacuum pump

118‧‧‧處理區域 118‧‧‧Processing area

120‧‧‧電子束源 120‧‧‧Electronic beam source

122‧‧‧腔室 122‧‧‧ chamber

124‧‧‧導電包體 124‧‧‧Electrical inclusions

124a‧‧‧開口 124a‧‧‧ openings

124b‧‧‧側壁 124b‧‧‧ side wall

124c‧‧‧頂壁 124c‧‧‧ top wall

124d‧‧‧底壁 124d‧‧‧ bottom wall

124e‧‧‧背壁 124e‧‧‧Back wall

124e-1‧‧‧側邊緣 124e-1‧‧‧ side edge

124e-2‧‧‧側邊緣 124e-2‧‧‧ side edge

124f‧‧‧淺槽 124f‧‧‧ shallow trough

125‧‧‧氣體入口 125‧‧‧ gas inlet

126‧‧‧汲取柵格 126‧‧‧Select grid

127‧‧‧電子束源氣體供應器 127‧‧‧Electron beam source gas supply

128‧‧‧加速柵格 128‧‧‧Accelerated Grid

130‧‧‧絕緣器 130‧‧‧Insulator

132‧‧‧絕緣器 132‧‧‧Insulator

134-1‧‧‧電磁鐵 134-1‧‧‧Electromagnet

134-2‧‧‧電磁鐵 134-2‧‧‧Electromagnet

136‧‧‧束集區 136‧‧‧ Bunching area

140‧‧‧電壓供應器 140‧‧‧Voltage supply

142‧‧‧電子束加速電壓供應器 142‧‧‧Electron beam accelerating voltage supply

146‧‧‧線圈電流供應器 146‧‧‧ coil current supply

200‧‧‧狹縫 200‧‧‧ slit

210‧‧‧部位 210‧‧‧ parts

225‧‧‧唇部 225‧‧‧Lip

230‧‧‧狹縫蓋 230‧‧‧ slit cover

250‧‧‧致動器 250‧‧‧Actuator

255‧‧‧臂 255‧‧‧arm

為了使得本發明的範例實施例達到且可被詳細瞭解,以上簡要概述之本發明更加具體之說明,可參考隨附圖式所圖示之實施例而理解。應瞭解某些已知程序在此並無討論,以便不混淆本發明。 The present invention has been described in detail with reference to the embodiments illustrated in the drawings It should be understood that certain known procedures are not discussed herein so as not to obscure the invention.

第1A圖係電漿反應器的側視圖,具有作為電漿源之電 子束產生器,且具有電氣或結構輪廓之束集區。 Figure 1A is a side view of a plasma reactor with electricity as a plasma source A beamlet generator with a bundle of electrical or structural contours.

第1B圖係第1A圖之部分的放大視圖。 Fig. 1B is an enlarged view of a portion of Fig. 1A.

第1C圖係第1A圖之電漿反應器的頂部視圖,其中電漿源腔室壁具有凸出輪廓。 Figure 1C is a top view of the plasma reactor of Figure 1A with the plasma source chamber wall having a convex profile.

第1D圖係第1A圖之電漿反應器的頂部視圖,其中電漿源腔室壁具有凹陷輪廓。 Figure 1D is a top view of the plasma reactor of Figure 1A with the plasma source chamber wall having a concave profile.

第2A圖及第2B圖描繪實施例的不同態樣,其中輪廓係使用階梯狀配置。 Figures 2A and 2B depict different aspects of the embodiment in which the profile is configured in a stepped configuration.

第3圖描繪使用可***部位而可於不同輪廓之間變形的實施例。 Figure 3 depicts an embodiment that can be deformed between different profiles using an insertable portion.

第3A、3B及3C圖描繪第3圖之實施例的不同配置。 Figures 3A, 3B and 3C depict different configurations of the embodiment of Figure 3.

第3D圖係第3圖之實施例一部分的詳細視圖。 Figure 3D is a detailed view of a portion of the embodiment of Figure 3.

第4圖描繪使用彈性腔室壁而可於不同輪廓之間變形的實施例。 Figure 4 depicts an embodiment that can be deformed between different profiles using an elastic chamber wall.

為了幫助理解,盡可能地使用相同的元件符號,以標明共同圖式的相同元件。應考慮一個實施例的元件及特徵可有益地併入其他實施例而無須進一步敘明。然而,應瞭解隨附圖式僅圖示本發明的範例實施例,且因此並非考慮為限制本發明的範疇,因為本發明可承認其他均等效果之實施例。 To help understand, use the same component symbols as much as possible to identify the same components of the common pattern. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation. However, it is to be understood that the exemplary embodiments of the present invention are illustrated by the accompanying drawings, and are not intended to limit the scope of the invention.

100‧‧‧處理腔室 100‧‧‧Processing chamber

102a‧‧‧開口 102a‧‧‧ Opening

110‧‧‧工件 110‧‧‧Workpiece

120‧‧‧電子束源 120‧‧‧Electronic beam source

122‧‧‧腔室 122‧‧‧ chamber

124a‧‧‧開口 124a‧‧‧ openings

124b‧‧‧側壁 124b‧‧‧ side wall

124e‧‧‧背壁 124e‧‧‧Back wall

126‧‧‧汲取柵格 126‧‧‧Select grid

128‧‧‧加速柵格 128‧‧‧Accelerated Grid

134-1‧‧‧電磁鐵 134-1‧‧‧Electromagnet

134-2‧‧‧電磁鐵 134-2‧‧‧Electromagnet

136‧‧‧束集區 136‧‧‧ Bunching area

146‧‧‧線圈電流供應器 146‧‧‧ coil current supply

Claims (18)

一種用於處理一工件的電漿反應器,包含:一工件處理腔室,該工件處理腔室具有一處理腔室及一電子束開口,該處理腔室包含一腔室頂壁及一腔室側壁,且該電子束開口在該腔室側壁中,在該處理腔室中的一工件支撐台座,該工件支撐台座具有面向該腔室頂壁的一工件支撐表面,且在該工件支撐表面及該腔室頂壁之間界定一工件處理區域,該電子束開口面向該工件處理區域;一電子束源腔室,該電子束源腔室包含一源包體,該源包體具有對著該工件處理腔室的該電子束開口開啟的一電子束發射窗,且界定沿著一縱向方向的一電子束傳播路徑,該縱向方向延伸通過該電子束發射窗且通過該電子束開口,且延伸至該工件處理區域中,該源包體進一步包含一背壁,該背壁在沿著該縱向方向上與該電子束發射窗以一間隙隔開,該電子束發射窗大致沿著橫向於該縱向方向之一方向而延伸;橫跨於該電子束發射窗的一電子束汲取柵格,耦合至該電子束汲取柵格及該電子束源腔室的一汲取電壓源;及該背壁具有一輪廓,該輪廓對應至沿著該橫向方向的該間隙之一分佈。 A plasma reactor for processing a workpiece, comprising: a workpiece processing chamber having a processing chamber and an electron beam opening, the processing chamber including a chamber top wall and a chamber a sidewall, and the electron beam is opened in the sidewall of the chamber, a workpiece supporting pedestal in the processing chamber, the workpiece supporting pedestal having a workpiece supporting surface facing the top wall of the chamber, and the workpiece supporting surface and A workpiece processing area is defined between the top walls of the chamber, the electron beam opening faces the workpiece processing area; an electron beam source chamber, the electron beam source chamber includes a source package, the source package having the opposite An electron beam emission window of the electron beam opening of the workpiece processing chamber, and defining an electron beam propagation path along a longitudinal direction extending through the electron beam emission window and through the electron beam opening and extending In the workpiece processing region, the source package further includes a back wall spaced apart from the electron beam emission window by a gap along the longitudinal direction, the electron beam emission window being substantially along the horizontal Extending in one of the longitudinal directions; an electron beam extraction grid spanning the electron beam emission window, coupled to the electron beam extraction grid and a source of voltage drawn from the electron beam source chamber; and the back The wall has a contour that corresponds to one of the gaps along the transverse direction. 如請求項第1項所述之電漿反應器,其中該間隙的該分佈對應至沿著該橫向方向的電子束密度之一分佈。 The plasma reactor of claim 1, wherein the distribution of the gap corresponds to one of electron beam densities along the transverse direction. 如請求項第1項所述之電漿反應器,其中沿著該橫向方向的該間隙之該分佈對應至沿著該橫向方向的電子束密度分佈之一量測分佈。 The plasma reactor of claim 1, wherein the distribution of the gap along the lateral direction corresponds to one of the electron beam density distributions along the lateral direction. 如請求項第1項所述之電漿反應器,其中沿著該橫向方向的該間隙之該分佈為中央低的,其中該間隙沿著該橫向方向於該背壁的一中央位置處具有一最小值。 The plasma reactor of claim 1 wherein the distribution of the gap along the transverse direction is centrally low, wherein the gap has a central location along the lateral direction at the central portion of the back wall. Minimum value. 如請求項第4項所述之電漿反應器,其中沿著該電子束源腔室之該橫向方向的該間隙之該分佈補償電漿密度之一量測分佈,該量測分佈沿著該橫向方向為中央高的。 The plasma reactor of claim 4, wherein the distribution of the gap along the transverse direction of the electron beam source chamber compensates for one of the plasma densities, the measured distribution along the The lateral direction is center high. 如請求項第1項所述之電漿反應器,其中沿著該橫向方向的該間隙之該分佈為中央高的,其中該間隙沿著該橫向方向於該背壁的一中央位置處具有一最大值。 The slurry reactor of claim 1, wherein the distribution of the gap along the lateral direction is centrally high, wherein the gap has a central location along the lateral direction at the central portion of the back wall. Maximum value. 如請求項第6項所述之電漿反應器,其中沿著該電子束源腔室之該橫向方向的該間隙之該分佈補償電漿密度分佈之一量測分佈,該量測分佈沿著該橫向方向為中央低的。 The plasma reactor of claim 6, wherein the distribution of the gap along the transverse direction of the electron beam source chamber compensates for a measurement distribution of the plasma density distribution, the measurement distribution along The lateral direction is centrally low. 如請求項第1項所述之電漿反應器,其中沿著該橫向方向的該間隙之該分佈具有最小1%的一變化。 The plasma reactor of claim 1 wherein the distribution of the gap along the transverse direction has a minimum of 1% change. 如請求項第1項所述之電漿反應器,其中沿著該橫向方向的該間隙之該分佈具有至少5%的一變化。 The plasma reactor of claim 1 wherein the distribution of the gap along the transverse direction has a variation of at least 5%. 如請求項第1項所述之電漿反應器,其中該背壁可配置用於改變該輪廓。 The plasma reactor of claim 1, wherein the back wall is configurable to change the profile. 如請求項第1項所述之電漿反應器,其中該背壁包含一彈性部件及一致動器,該彈性部件能夠在不同曲率之間變形,且該致動器耦合至該彈性部件。 The plasma reactor of claim 1, wherein the back wall comprises an elastic member and an actuator, the elastic member being deformable between different curvatures, and the actuator being coupled to the elastic member. 如請求項第11項所述之電漿反應器,其中該等不同曲率包含相對應於一凹陷輪廓之一曲率,或相對應於一凸出輪廓之一曲率。 The plasma reactor of claim 11, wherein the different curvatures comprise a curvature corresponding to a concave profile or a curvature corresponding to a convex profile. 如請求項第1項所述之電漿反應器,其中該源包體進一步包含一頂壁、面對該頂壁之一底壁、在該底壁及該頂壁之一者中的複數個細長狹縫,該等狹縫彼此間隔開,且該等狹縫之至少某些相對於該橫向方向及該縱向方向以不同的方向延伸,及複數個板條,該等板條可移除地***該等狹縫之經選擇的一者中,以形成從該底壁延伸至該頂壁且穿過該等經選擇的狹縫之分別的屏障, 該背壁包含***穿過該等狹縫的該等板條。 The plasma reactor of claim 1, wherein the source package further comprises a top wall, a bottom wall facing the top wall, and a plurality of the bottom wall and the top wall An elongated slit, the slits being spaced apart from each other, and at least some of the slits extending in different directions relative to the lateral direction and the longitudinal direction, and a plurality of slats, the slats being removably Inserting into a selected one of the slits to form respective barriers extending from the bottom wall to the top wall and through the selected slits, The back wall includes the slats inserted through the slits. 如請求項第13項所述之電漿反應器,其中該等經選擇的狹縫包含相對應於複數個輪廓之一者的一組複數個狹縫。 The plasma reactor of claim 13 wherein the selected slits comprise a plurality of slits corresponding to one of the plurality of contours. 如請求項第14項所述之電漿反應器,其中該複數個輪廓包含一凸出輪廓或一凹陷輪廓。 The plasma reactor of claim 14, wherein the plurality of contours comprise a convex contour or a concave contour. 如請求項第14項所述之電漿反應器,其中該複數個輪廓相對應於在電子束密度分佈中沿著該橫向方向的一量測分佈。 The plasma reactor of claim 14, wherein the plurality of contours correspond to a measured distribution along the transverse direction in the electron beam density distribution. 如請求項第11項所述之電漿反應器,其中該等不同的曲率包含相對應於在電子束密度分佈中沿著該橫向方向的一量測分佈。 The plasma reactor of claim 11, wherein the different curvatures comprise a measured distribution corresponding to the transverse direction in the electron beam density distribution. 如請求項第1項所述之電漿反應器,進一步包含:由一介電質從該電子束汲取柵格分開的一電子束加速柵格或狹縫、耦合至該電子束加速柵格或狹縫的一加速電壓源、及該汲取柵格。 The plasma reactor of claim 1, further comprising: an electron beam acceleration grid or slit separated from the electron beam extraction grid by a dielectric, coupled to the electron beam acceleration grid or An accelerating voltage source of the slit, and the extraction grid.
TW101138297A 2011-10-20 2012-10-17 Electron beam plasma source with profiled chamber wall for uniform plasma generation TW201334636A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161549355P 2011-10-20 2011-10-20
US13/595,351 US20130098553A1 (en) 2011-10-20 2012-08-27 Electron beam plasma source with profiled chamber wall for uniform plasma generation

Publications (1)

Publication Number Publication Date
TW201334636A true TW201334636A (en) 2013-08-16

Family

ID=48135004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101138297A TW201334636A (en) 2011-10-20 2012-10-17 Electron beam plasma source with profiled chamber wall for uniform plasma generation

Country Status (3)

Country Link
US (1) US20130098553A1 (en)
TW (1) TW201334636A (en)
WO (1) WO2013059101A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443700B2 (en) * 2013-03-12 2016-09-13 Applied Materials, Inc. Electron beam plasma source with segmented suppression electrode for uniform plasma generation
US20140356768A1 (en) * 2013-05-29 2014-12-04 Banqiu Wu Charged beam plasma apparatus for photomask manufacture applications
FR3136104A1 (en) * 2022-05-30 2023-12-01 Polygon Physics Electron beam device for surface treatment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803355A1 (en) * 1988-02-05 1989-08-17 Leybold Ag PARTICLE SOURCE FOR A REACTIVE ION BEAM OR PLASMA POSITIONING PLANT
US5003178A (en) * 1988-11-14 1991-03-26 Electron Vision Corporation Large-area uniform electron source
JPH07122142B2 (en) * 1990-12-25 1995-12-25 中外炉工業株式会社 Sheet plasma CVD equipment
JP3246800B2 (en) * 1993-05-31 2002-01-15 株式会社東芝 Plasma equipment
JP2970654B1 (en) * 1998-05-22 1999-11-02 日新電機株式会社 Thin film forming equipment
JP2001085414A (en) * 1999-09-17 2001-03-30 Matsushita Electric Ind Co Ltd Device and method for plasma treatment
US6407399B1 (en) * 1999-09-30 2002-06-18 Electron Vision Corporation Uniformity correction for large area electron source
US6804327B2 (en) * 2001-04-03 2004-10-12 Lambda Physik Ag Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays
US7183716B2 (en) * 2003-02-04 2007-02-27 Veeco Instruments, Inc. Charged particle source and operation thereof
US8158016B2 (en) * 2004-02-04 2012-04-17 Veeco Instruments, Inc. Methods of operating an electromagnet of an ion source
US8835869B2 (en) * 2003-02-04 2014-09-16 Veeco Instruments, Inc. Ion sources and methods for generating an ion beam with controllable ion current density distribution
US7557362B2 (en) * 2004-02-04 2009-07-07 Veeco Instruments Inc. Ion sources and methods for generating an ion beam with a controllable ion current density distribution
WO2004107825A1 (en) * 2003-05-30 2004-12-09 Tokyo Electron Limited Plasma source and plasma processing apparatus
US20050011447A1 (en) * 2003-07-14 2005-01-20 Tokyo Electron Limited Method and apparatus for delivering process gas to a process chamber
KR20050008065A (en) * 2003-07-14 2005-01-21 삼성전자주식회사 High density plasma source
KR101358779B1 (en) * 2007-07-19 2014-02-04 주식회사 뉴파워 프라즈마 Plasma reactor having multi-core plasma generation plate
US9997325B2 (en) * 2008-07-17 2018-06-12 Verity Instruments, Inc. Electron beam exciter for use in chemical analysis in processing systems

Also Published As

Publication number Publication date
US20130098553A1 (en) 2013-04-25
WO2013059101A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
US9129777B2 (en) Electron beam plasma source with arrayed plasma sources for uniform plasma generation
TWI489515B (en) Ion beam line
US9443700B2 (en) Electron beam plasma source with segmented suppression electrode for uniform plasma generation
KR20170130467A (en) Ion-Ion Plasma Atomic Layer Etching Process and Reactor
KR20080063988A (en) Etching apparatus using neutral beam
US20090114815A1 (en) Plasma electron flood for ion beam implanter
JP7330361B2 (en) Devices and systems with extraction assemblies for wide-angle ion beams
US20130098873A1 (en) Overhead electron beam source for plasma ion generation in a workpiece processing region
TW201334636A (en) Electron beam plasma source with profiled chamber wall for uniform plasma generation
US20130098555A1 (en) Electron beam plasma source with profiled conductive fins for uniform plasma generation
TW202036638A (en) Ion source with tailored extraction aperture
JP4533112B2 (en) Wafer electrification suppression apparatus and ion implantation apparatus equipped with the same
TWI623016B (en) Plasma flood gun and plasma loop assembly
TW201320145A (en) E-beam plasma source with profiled e-beam extraction grid for uniform plasma generation
KR101441191B1 (en) System and method of ion neutralization with multiple-zoned plasma flood gun
US8894805B2 (en) Electron beam plasma source with profiled magnet shield for uniform plasma generation
CN106505010A (en) Substrate-treating apparatus
US11791126B2 (en) Apparatus for directional processing
KR101784387B1 (en) Plasma chamber being capable of controlling the homogenization of plasma potential distribution for a charged particle beam output apparatus