TW201329667A - Tracking boost apparauts and mothod for a power factor correction circuit - Google Patents

Tracking boost apparauts and mothod for a power factor correction circuit Download PDF

Info

Publication number
TW201329667A
TW201329667A TW101101146A TW101101146A TW201329667A TW 201329667 A TW201329667 A TW 201329667A TW 101101146 A TW101101146 A TW 101101146A TW 101101146 A TW101101146 A TW 101101146A TW 201329667 A TW201329667 A TW 201329667A
Authority
TW
Taiwan
Prior art keywords
voltage
tracking
current
input
sensing signal
Prior art date
Application number
TW101101146A
Other languages
Chinese (zh)
Other versions
TWI459175B (en
Inventor
Shao-Hung Lu
Isaac Y Chen
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Priority to TW101101146A priority Critical patent/TWI459175B/en
Priority to CN201210024043.4A priority patent/CN103208921B/en
Publication of TW201329667A publication Critical patent/TW201329667A/en
Application granted granted Critical
Publication of TWI459175B publication Critical patent/TWI459175B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A tracking boost apparatus and method for a power factor correction circuit adjust a feedback voltage related to the output voltage of the power factor correction circuit or the offset of an error amplifier in the tracking boost apparatus according to the input voltage of the power factor correction circuit, so that the output voltage will be linearly proportional to the root-mean-square value of the input voltage, and thus the power factor correction circuit will have better efficiency.

Description

用於功率因數修正電路的追蹤升壓裝置及方法Tracking boosting device and method for power factor correction circuit

本發明係有關一種功率因數修正(Power Factor Correction;PFC)電路,特別是關於一種用於功率因數修正電路的追蹤升壓(tracking boost)裝置及方法。The present invention relates to a Power Factor Correction (PFC) circuit, and more particularly to a tracking boosting apparatus and method for a power factor correction circuit.

對許多高端電子產品(例如筆記型電腦)的電源系統而言,效率是很重要的課題。例如參照圖1所示的電源系統,為了高效率,交流電壓VAC經整流器14整流產生的主電源電壓Vin並非直接作為馳返式電壓轉換器12的輸入電壓,而是作為功率因數修正(PFC)電路10的輸入電壓,PFC電路10產生電壓Vout1再提供給馳返式電壓轉換器12作為其輸入電壓。在PFC電路10中,電感L1連接在整流器14及開關M1之間,PFC控制器16切換開關M1以控制電感L1的充放電,電感電流IL經二極體D1對電容C1充電產生電壓Vout1,電阻R1及R2組成分壓器將電壓Vout1分壓產生回授電壓Vfb給PFC控制器16以穩定電壓Vout1。PFC電路10使用升壓電路,因此其輸出電壓Vout1大於交流電壓VAC。電壓Vout1通常設定在較高的準位以使PFC電路10能適用較廣範圍的交流電壓VAC,例如設定電壓Vout1為400V使其應用的交流電壓VAC可從110V至240V。然而電感電流IL的下降斜率約為,因此在輸出電壓Vout1為固定的條件下,使用較小的交流電壓VAC時,電感電流IL的下降速度較快,導致開關M1的切換頻率較高,PFC電路10的切換損失較大,效率較差。Efficiency is an important issue for power systems in many high-end electronic products, such as notebook computers. For example, referring to the power supply system shown in FIG. 1, for high efficiency, the main power supply voltage Vin generated by the rectification of the AC voltage VAC via the rectifier 14 is not directly used as the input voltage of the flyback voltage converter 12, but as a power factor correction (PFC). The input voltage of the circuit 10, the PFC circuit 10 generates a voltage Vout1 and supplies it to the flyback voltage converter 12 as its input voltage. In the PFC circuit 10, the inductor L1 is connected between the rectifier 14 and the switch M1. The PFC controller 16 switches the switch M1 to control the charging and discharging of the inductor L1. The inductor current IL charges the capacitor C1 via the diode D1 to generate a voltage Vout1. The voltage dividers R1 and R2 divide the voltage Vout1 to generate the feedback voltage Vfb to the PFC controller 16 to stabilize the voltage Vout1. The PFC circuit 10 uses a booster circuit, so its output voltage Vout1 is greater than the AC voltage VAC. The voltage Vout1 is usually set at a higher level to enable the PFC circuit 10 to be applied to a wider range of AC voltages VAC, for example, the set voltage Vout1 is 400V so that the applied AC voltage VAC can be from 110V to 240V. However, the falling slope of the inductor current IL is approximately Therefore, under the condition that the output voltage Vout1 is fixed, when the AC voltage VAC is used, the falling speed of the inductor current IL is faster, the switching frequency of the switch M1 is higher, the switching loss of the PFC circuit 10 is larger, and the efficiency is poor. .

事實上,馳返式電壓轉換器原本就能適用廣範圍的輸入電壓,因此圖1中的PFC電路10可以改為根據交流電壓VAC的大小調整電壓Vout1的大小,以降低開關M1的切換頻率及跨壓,進而減少切換損失。此技術稱為追蹤升壓。此外,使用追蹤升壓者,因為可以調低電壓Vout1,所以可以減少電感L1的跨壓,因此可以使用較小的電感L1。In fact, the flyback voltage converter can be applied to a wide range of input voltages. Therefore, the PFC circuit 10 in FIG. 1 can be adjusted to adjust the voltage Vout1 according to the magnitude of the AC voltage VAC to reduce the switching frequency of the switch M1. Cross pressure, which in turn reduces switching losses. This technique is called tracking boost. In addition, by using the tracking booster, since the voltage Vout1 can be lowered, the voltage across the inductor L1 can be reduced, so that the smaller inductor L1 can be used.

傳統的追蹤升壓技術係設定轉態點,例如美國專利號6,686,725及7,501,800,當交流電壓VAC小於轉態點時,PFC電路10提供較小的電壓Vout1,當交流電壓VAC大於轉態點時,PFC電路10提供較大的電壓Vout1。然而此法係非線性控制,在轉態點附近的效率沒有改善。The conventional tracking boosting technique sets a transition point, such as U.S. Patent Nos. 6,686,725 and 7,501,800. When the AC voltage VAC is less than the transition point, the PFC circuit 10 provides a smaller voltage Vout1. When the AC voltage VAC is greater than the transition point, The PFC circuit 10 provides a large voltage Vout1. However, this method is a nonlinear control, and the efficiency near the transition point is not improved.

美國專利號7,239,120從輸出回授端Vfb抽取與主電源電壓Vin具線性相關的電流作為控制參數,因而使電壓Vout1與主電源電壓Vin具線性相關。然而此法造成電壓Vout1較大的變動量,因此電容C1必須承受較高的電壓,此外,該抽取的電流會隨溫度變化,因此電壓Vout1會受到溫度的影響。美國專利號7,675,280則是提供與主電源電壓Vin具反比關係的電流注入輸出回授端Vfb,以使電壓Vout1與主電源電壓Vin具線性相關。此法雖然減少電壓Vout1的變動量,但該施加到輸出回授端Vfb的電流仍受溫度影響,因此電壓Vout1也受溫度影響。U.S. Patent No. 7,239,120 extracts a current linearly related to the main supply voltage Vin from the output feedback terminal Vfb as a control parameter, thereby causing the voltage Vout1 to be linearly related to the main supply voltage Vin. However, this method causes a large fluctuation of the voltage Vout1, so the capacitor C1 must withstand a higher voltage, and in addition, the extracted current will vary with temperature, so the voltage Vout1 will be affected by the temperature. U.S. Patent No. 7,675,280 provides a current injection output feedback terminal Vfb having an inverse relationship with the main power supply voltage Vin such that the voltage Vout1 is linearly related to the main power supply voltage Vin. Although this method reduces the amount of fluctuation of the voltage Vout1, the current applied to the output feedback terminal Vfb is still affected by the temperature, and therefore the voltage Vout1 is also affected by the temperature.

本發明的目的之一,在於提出一種用於功率因數修正電路的追蹤升壓裝置及方法。One of the objects of the present invention is to provide a tracking boosting apparatus and method for a power factor correction circuit.

本發明的目的之一,在於提出一種使功率因數修正電路的輸出電壓與其輸入電壓具線性相關的追蹤升壓裝置及方法。One of the objects of the present invention is to provide a tracking boosting apparatus and method for linearly correlating an output voltage of a power factor correction circuit with its input voltage.

本發明的目的之一,在於提出一種與溫度變化無關的追蹤升壓裝置及方法。One of the objects of the present invention is to provide a tracking boosting device and method that are independent of temperature variations.

根據本發明,一種用於功率因數修正電路的追蹤升壓裝置及方法根據該功率因數修正電路的輸入電壓調整提供予其誤差放大器的回授電壓或該誤差放大器的偏移(offset),以改變該誤差放大器的有效偏移,進而使該功率因數修正電路的輸出電壓線性正比於該輸入電壓的均方根值。由於該輸出電壓線性正比於該輸入電壓的均方根值,因此低輸入電壓會產生低輸出電壓,因而有效改善該功率因數修正電路的效率。此外該追蹤升壓裝置及方法不受溫度影響,因此該輸出電壓不會因溫度變化而產生偏差。According to the present invention, a tracking boosting apparatus and method for a power factor correction circuit adjusts a feedback voltage supplied to an error amplifier thereof or an offset of the error amplifier according to an input voltage of the power factor correction circuit to change The effective offset of the error amplifier, in turn, causes the output voltage of the power factor correction circuit to be linearly proportional to the root mean square value of the input voltage. Since the output voltage is linearly proportional to the rms value of the input voltage, the low input voltage produces a low output voltage, thereby effectively improving the efficiency of the power factor correction circuit. In addition, the tracking boosting device and method are not affected by temperature, and therefore the output voltage does not vary due to temperature changes.

參照圖2,功率因數修正電路包括根據本發明的追蹤升壓裝置20提供與其輸入電壓Vin相關的誤差信號Vea,鋸齒波產生器36根據開關M1的驅動信號Vpfc產生鋸齒波信號Vramp,比較器34比較誤差信號Vea及鋸齒波信號Vramp產生關閉信號Voff,輔助線圈L2感應電感L1的電流IL產生感測信號Vzcd,正反器32根據感測信號Vzcd及關閉信號Voff產生驅動信號Vpfc切換開關M1而將輸入電壓Vin轉換為輸出電壓Vout1,以及電阻R1及R2組成分壓器將輸出電壓Vout1分壓以在輸出回授端22產生回授電壓Vfb給追蹤升壓裝置20。由於誤差信號Vea與輸入電壓Vin相關,因此輸出電壓Vout1將隨輸入電壓Vin變化。在追蹤升壓裝置20中,電阻R3及R4組成分壓器將輸入電壓Vin分壓產生與其相關的感測信號Vsense,電壓萃取器24根據感測信號Vsense產生隨輸入電壓Vin變化的控制信號Vtb,可變電壓源26連接在輸出回授端22及誤差放大器28的反相輸入端30之間,提供可變電壓ΔV偏移回授電壓Vfb而產生偏移的回授電壓Vfbo,誤差放大器28根據偏移的回授電壓Vfbo與參考電壓Vref之間的差值產生誤差信號Vea以調節輸出電壓Vout1。控制信號Vtb使可變電壓ΔV隨輸入電壓Vin變化,進而使輸出電壓Vout1與輸入電壓Vin的均方根值具線性相關。電壓萃取器24的實現方式有很多種,在某些實施例中,只要是能使控制信號Vtb與感測信號Vsense具線性相關的電路皆可,例如乘法器或除法器。Referring to FIG. 2, the power factor correction circuit includes the tracking boosting device 20 according to the present invention to provide an error signal Vea related to its input voltage Vin, and the sawtooth wave generator 36 generates a sawtooth wave signal Vramp based on the driving signal Vpfc of the switch M1, and the comparator 34 The comparison error signal Vea and the sawtooth wave signal Vramp generate the off signal Voff, the auxiliary coil L2 induces the current IL of the inductor L1 to generate the sensing signal Vzcd, and the flip-flop 32 generates the driving signal Vpfc according to the sensing signal Vzcd and the closing signal Voff to switch the switch M1. The input voltage Vin is converted into an output voltage Vout1, and the resistors R1 and R2 form a voltage divider to divide the output voltage Vout1 to generate a feedback voltage Vfb at the output feedback terminal 22 to the tracking boosting device 20. Since the error signal Vea is related to the input voltage Vin, the output voltage Vout1 will vary with the input voltage Vin. In the tracking boosting device 20, the resistors R3 and R4 form a voltage divider to divide the input voltage Vin to generate a sensing signal Vsense associated therewith, and the voltage extractor 24 generates a control signal Vtb that varies with the input voltage Vin according to the sensing signal Vsense. The variable voltage source 26 is connected between the output feedback terminal 22 and the inverting input terminal 30 of the error amplifier 28 to provide a variable voltage ΔV offset feedback voltage Vfb to generate an offset feedback voltage Vfbo, the error amplifier 28 The error signal Vea is generated according to the difference between the offset feedback voltage Vfbo and the reference voltage Vref to adjust the output voltage Vout1. The control signal Vtb varies the variable voltage ΔV with the input voltage Vin, thereby linearly correlating the output voltage Vout1 with the rms value of the input voltage Vin. The voltage extractor 24 can be implemented in a variety of ways. In some embodiments, any circuit that can linearly correlate the control signal Vtb with the sense signal Vsense can be used, such as a multiplier or divider.

圖3係圖2中的可變電壓源26的第一實施例,包括電阻Ros連接在可變電流源40及42之間。在此實施例中,控制信號Vtb=,其中m為常數。電阻Ros連接在輸出回授端22及誤差放大器28的反相輸入端30之間,可變電流源40連接誤差放大器28的反相輸入端30,根據控制信號Vtb提供與輸入電壓Vin成反比的電流I1()給電阻Ros,可變電流源42連接輸出回授端22,根據控制信號Vtb從電阻Ros抽取電流I1(),電阻Ros根據其上的電流I1()產生可變電壓ΔV,因此回授電壓Vfb被偏移成Vfbo。電流I1()的負溫度係數與電阻Ros的正溫度係數彼此抵消,使得可變電壓ΔV無關溫度變化。從圖2及圖3的電路可得到偏移的回授電壓3 is a first embodiment of the variable voltage source 26 of FIG. 2 including a resistor Ros coupled between variable current sources 40 and 42. In this embodiment, the control signal Vtb= Where m is a constant. The resistor Ros is connected between the output feedback terminal 22 and the inverting input terminal 30 of the error amplifier 28. The variable current source 40 is connected to the inverting input terminal 30 of the error amplifier 28 and is inversely proportional to the input voltage Vin according to the control signal Vtb. Current I1 ( To the resistor Ros, the variable current source 42 is connected to the output feedback terminal 22, and the current I1 is extracted from the resistor Ros according to the control signal Vtb ( ), the resistance Ros is based on the current I1 ( The variable voltage ΔV is generated, so the feedback voltage Vfb is shifted to Vfbo. Current I1 ( The negative temperature coefficient of the ) and the positive temperature coefficient of the resistance Ros cancel each other such that the variable voltage ΔV is independent of the temperature change. Offset feedback voltage can be obtained from the circuits of Figures 2 and 3.

從公式1可推得Can be derived from formula 1

由於參考電壓Vref及電阻R1、R2及Ros皆為定值,因此輸出電壓Vout1與輸入電壓Vin的均方根值具線性正比關係。Since the reference voltage Vref and the resistors R1, R2 and Ros are constant values, the output voltage Vout1 has a linear proportional relationship with the root mean square value of the input voltage Vin.

圖4係圖2中的可變電壓源26的第二實施例,同樣包括電阻Ros連接在可變電流源40及42之間,但是可變電流源40係連接輸出回授端22,提供正比於輸入電壓Vin的電流I1(Vin)給電阻Ros,可變電流源42連接誤差放大器28的反相輸入端30,從電阻Ros抽取電流I1(Vin)。在此實施例中,控制信號Vtb=K×Vin,其中K為常數。從圖2及圖4的電路可知偏移的回授電壓4 is a second embodiment of the variable voltage source 26 of FIG. 2, also including a resistor Ros coupled between the variable current sources 40 and 42, but the variable current source 40 is coupled to the output feedback terminal 22 to provide a proportional ratio. The current I1 (Vin) of the input voltage Vin is applied to the resistor Ros, the variable current source 42 is connected to the inverting input terminal 30 of the error amplifier 28, and the current I1 (Vin) is extracted from the resistor Ros. In this embodiment, the control signal Vtb = K x Vin, where K is a constant. The offset feedback voltage can be seen from the circuits of Figures 2 and 4.

從公式3可推得Can be derived from formula 3

由公式4可知,輸出電壓Vout1與輸入電壓Vin的均方根值具線性正比關係。電流I1(Vin)的負溫度係數與電阻Ros的正溫度係數彼此抵消,使得可變電壓ΔV無關溫度變化。It can be seen from Equation 4 that the output voltage Vout1 has a linear proportional relationship with the root mean square value of the input voltage Vin. The negative temperature coefficient of the current I1 (Vin) and the positive temperature coefficient of the resistance Ros cancel each other such that the variable voltage ΔV is independent of the temperature change.

在圖2的電路中,追蹤升壓裝置20係藉電阻R3及R4分壓輸入電壓Vin來取得與輸入電壓Vin相關的感測信號Vsense,在其他實施例中,也可以使用其他方式取得與輸入電壓Vin相關的感測信號。例如在圖5的實施例中,輔助線圈L2感應電感L1的電流IL產生與輸入電壓Vin相關的感測信號Vzcd,電壓萃取器24根據感測信號Vzcd產生隨輸入電壓Vin變化的控制信號Vtb。在圖6的實施例中,電阻Rcs與開關M1串聯,根據開關M1的電流產生感測信號Vsense,電壓萃取器24根據感測信號Vsense產生控制信號Vtb。由於開關M1的電流與輸入電壓Vin相關,因此感測信號Vsense與輸入電壓Vin相關,控制信號Vtb隨輸入電壓Vin變化。在圖7的實施例中,電壓萃取器24係在PFC電路的啟動操作期間從回授電壓Vfb取得感測信號以產生控制信號Vtb。本領域之技術人員已經知道的,PFC電路在啟動操作期間,PFC控制器16不切換開關M1,因此輸出電壓Vout1幾乎等於輸入電壓Vin。以此為基礎,可利用電壓萃取器24在啟動操作期間從回授電壓Vfb取得與輸入電壓Vin相關的感測信號,產生隨輸入電壓Vin變化的控制信號Vtb。在結束啟動操作以後,PFC控制器16開始切換開關M1,電壓萃取器24不再偵測回授電壓Vfb,並儲存及維持已經產生的控制信號Vtb。In the circuit of FIG. 2, the tracking boosting device 20 obtains the sensing signal Vsense related to the input voltage Vin by dividing the input voltage Vin by the resistors R3 and R4. In other embodiments, other methods of obtaining and inputting may be used. The voltage Vin is related to the sensing signal. For example, in the embodiment of FIG. 5, the auxiliary winding L2 senses the current IL of the inductor L1 to generate a sensing signal Vzcd associated with the input voltage Vin, and the voltage extractor 24 generates a control signal Vtb that varies with the input voltage Vin according to the sensing signal Vzcd. In the embodiment of FIG. 6, the resistor Rcs is connected in series with the switch M1, and the sensing signal Vsense is generated according to the current of the switch M1, and the voltage extractor 24 generates the control signal Vtb according to the sensing signal Vsense. Since the current of the switch M1 is related to the input voltage Vin, the sensing signal Vsense is related to the input voltage Vin, and the control signal Vtb varies with the input voltage Vin. In the embodiment of FIG. 7, voltage extractor 24 takes the sensed signal from feedback voltage Vfb during the startup operation of the PFC circuit to generate control signal Vtb. As is known to those skilled in the art, during the startup operation of the PFC circuit, the PFC controller 16 does not switch the switch M1, so the output voltage Vout1 is almost equal to the input voltage Vin. Based on this, the voltage extractor 24 can be used to obtain a sensing signal related to the input voltage Vin from the feedback voltage Vfb during the startup operation, and generate a control signal Vtb that varies with the input voltage Vin. After the start-up operation is completed, the PFC controller 16 starts switching the switch M1, the voltage extractor 24 no longer detects the feedback voltage Vfb, and stores and maintains the generated control signal Vtb.

圖8係追蹤升壓裝置20的第五實施例,電壓萃取器24係提供控制信號Vtb給誤差放大器28,以調整其偏移,該偏移隨輸入電壓Vin變化,因此輸出電壓Vout1與輸入電壓Vin的均方根值具線性相關。圖8的追蹤升壓裝置20也可以使用圖5、圖6或圖7所示的方式來取得與輸入電壓Vin相關的感測信號給電壓萃取器24。8 is a fifth embodiment of the tracking boosting device 20. The voltage extractor 24 provides a control signal Vtb to the error amplifier 28 to adjust its offset, which varies with the input voltage Vin, and thus the output voltage Vout1 and the input voltage. The root mean square value of Vin is linearly related. The tracking boosting device 20 of FIG. 8 can also obtain a sensing signal related to the input voltage Vin to the voltage extractor 24 using the method shown in FIG. 5, FIG. 6, or FIG.

圖9係圖8中的誤差放大器28的第一實施例,包括組成差動輸入對的電晶體M3及M4、可變電流源44及連接在電晶體M3的輸入端及可變電流源44之間的電阻Ros。在此實施例中,控制信號Vtb=K×Vin,可變電流源44根據控制信號Vtb提供與輸入電壓Vin成正比的電流I1(Vin),電晶體M3及M4的控制端分別接收回授電壓Vfb及參考電壓Vref,據以分流電流I1(Vin)為電流I2(Vin)及I3(Vin)。當電流I1(Vin)增加時,電晶體M3及M4的電流I2(Vin)及I3(Vin)也跟著增加,電阻Ros產生的可變電壓ΔV隨電流I2(Vin)變化,以調整誤差放大器28的偏移。根據圖8及圖9的電路可知9 is a first embodiment of the error amplifier 28 of FIG. 8, including transistors M3 and M4 constituting a differential input pair, a variable current source 44, and an input terminal connected to the transistor M3 and a variable current source 44. Resistance Ros between. In this embodiment, the control signal Vtb=K×Vin, the variable current source 44 provides a current I1 (Vin) proportional to the input voltage Vin according to the control signal Vtb, and the control terminals of the transistors M3 and M4 respectively receive the feedback voltage. Vfb and the reference voltage Vref are divided into currents I1(Vin) and I3(Vin). When the current I1(Vin) increases, the currents I2(Vin) and I3(Vin) of the transistors M3 and M4 also increase, and the variable voltage ΔV generated by the resistor Ros changes with the current I2(Vin) to adjust the error amplifier 28. Offset. According to the circuits of FIGS. 8 and 9,

Vfb-ΔV=Vref, 公式5Vfb-ΔV=Vref, Equation 5

進而推得輸出電壓Push the output voltage

由於電流I2(Vin)正比於輸入電壓Vin,因此從公式6可知,輸出電壓Vout1線性正比於輸入電壓Vin的均方根值。電流I1(Vin)的負溫度係數與電阻Ros的正溫度係數彼此抵消,使得可變電壓ΔV無關溫度變化。Since the current I2(Vin) is proportional to the input voltage Vin, it can be seen from Equation 6 that the output voltage Vout1 is linearly proportional to the root mean square value of the input voltage Vin. The negative temperature coefficient of the current I1 (Vin) and the positive temperature coefficient of the resistance Ros cancel each other such that the variable voltage ΔV is independent of the temperature change.

圖10係圖8中的誤差放大器28的第二實施例,電阻Ros改為連接在電晶體M4的輸入端及可變電流源44之間,而且控制信號Vtb=,可變電流源44根據控制信號Vtb提供與輸入電壓Vin成反比的電流I1()。電晶體M3及M4根據回授電壓Vfb及參考電壓Vref分流電流I1()為電流I2()及I3()。當輸入電壓Vin較大時,電流I1()較小,因此電流I3()較小,可變電壓ΔV較小,誤差放大器28的偏移較小。從圖8及圖10的電路可知Vfb=Vref-△V, 公式7因此可推得10 is a second embodiment of the error amplifier 28 of FIG. 8. The resistor Ros is instead connected between the input terminal of the transistor M4 and the variable current source 44, and the control signal Vtb= The variable current source 44 provides a current I1 that is inversely proportional to the input voltage Vin according to the control signal Vtb ( ). The transistors M3 and M4 shunt the current I1 according to the feedback voltage Vfb and the reference voltage Vref ( ) is the current I2 ( ) and I3 ( ). When the input voltage Vin is large, the current I1 ( ) is small, so current I3 ( Smaller, the variable voltage ΔV is smaller, and the offset of the error amplifier 28 is smaller. It can be seen from the circuits of Figs. 8 and 10 that Vfb = Vref - ΔV, and Equation 7 can be derived.

由於電流I3()反比於輸入電壓Vin,因此從公式8可知,輸出電壓Vout1線性正比於輸入電壓Vin的均方根值。電流I1()的負溫度係數與電阻Ros的正溫度係數彼此抵消,使得可變電壓ΔV無關溫度變化。Due to current I3 ( It is inversely proportional to the input voltage Vin, so from Equation 8, the output voltage Vout1 is linearly proportional to the root mean square value of the input voltage Vin. Current I1 ( The negative temperature coefficient of the ) and the positive temperature coefficient of the resistance Ros cancel each other such that the variable voltage ΔV is independent of the temperature change.

以上對於本發明之較佳實施例所作的敘述係為闡明之目的,而無意限定本發明精確地為所揭露的形式,基於以上的教導或從本發明的實施例學習而作修改或變化是可能的,實施例係為解說本發明的原理以及讓熟習該項技術者以各種實施例利用本發明在實際應用上而選擇及敘述,本發明的技術思想企圖由以下的申請專利範圍及其均等來決定。The above description of the preferred embodiments of the present invention is intended to be illustrative, and is not intended to limit the scope of the invention to the disclosed embodiments. It is possible to make modifications or variations based on the above teachings or learning from the embodiments of the present invention. The embodiments are described and illustrated in the practical application of the present invention in various embodiments, and the technical idea of the present invention is intended to be equivalent to the scope of the following claims. Decide.

10...功率因數修正電路10. . . Power factor correction circuit

12...馳返式電壓轉換器12. . . Reciprocating voltage converter

14...整流器14. . . Rectifier

16...PFC控制器16. . . PFC controller

20...追蹤升壓裝置20. . . Tracking booster

22...輸出回授端twenty two. . . Output feedback

24...電壓萃取器twenty four. . . Voltage extractor

26...可變電壓源26. . . Variable voltage source

28...誤差放大器28. . . Error amplifier

30...誤差放大器28的反相輸入端30. . . Inverting input of error amplifier 28

32...正反器32. . . Positive and negative

34...比較器34. . . Comparators

36...鋸齒波產生器36. . . Sawtooth generator

40...可變電流源40. . . Variable current source

42...可變電流源42. . . Variable current source

44...可變電流源44. . . Variable current source

圖1係傳統的電源系統;Figure 1 is a conventional power supply system;

圖2係追蹤升壓裝置的第一實施例;Figure 2 is a first embodiment of a tracking boosting device;

圖3係圖2中的可變電壓源的第一實施例;Figure 3 is a first embodiment of the variable voltage source of Figure 2;

圖4係圖2中的可變電壓源的第二實施例;Figure 4 is a second embodiment of the variable voltage source of Figure 2;

圖5係追蹤升壓裝置的第二實施例;Figure 5 is a second embodiment of a tracking boosting device;

圖6係追蹤升壓裝置的第三實施例;Figure 6 is a third embodiment of a tracking boosting device;

圖7係追蹤升壓裝置的第四實施例;Figure 7 is a fourth embodiment of the tracking boosting device;

圖8係追蹤升壓裝置的第五實施例;Figure 8 is a fifth embodiment of the tracking boosting device;

圖10係圖8中的誤差放大器的第一實施例;以及Figure 10 is a first embodiment of the error amplifier of Figure 8;

圖11係圖8中的誤差放大器的第二實施例。Figure 11 is a second embodiment of the error amplifier of Figure 8.

14...整流器14. . . Rectifier

16...PFC控制器16. . . PFC controller

20...追蹤升壓裝置20. . . Tracking booster

22...輸出回授端twenty two. . . Output feedback

24...電壓萃取器twenty four. . . Voltage extractor

26...可變電壓源26. . . Variable voltage source

28...誤差放大器28. . . Error amplifier

30...誤差放大器的反相輸入端30. . . Inverting input of the error amplifier

32...正反器32. . . Positive and negative

34...比較器34. . . Comparators

36...鋸齒波產生器36. . . Sawtooth generator

Claims (24)

一種用於功率因數修正電路的追蹤升壓裝置,該功率因數修正電路含有串聯的電感及開關,並切換該開關而將輸入電壓升壓為輸出電壓,該追蹤升壓裝置包括:電壓萃取器,根據與該輸入電壓相關的感測信號產生隨該輸入電壓變化的控制信號;誤差放大器,根據與該輸出電壓相關的回授電壓和參考電壓之間的差值產生誤差信號以調節該輸出電壓;以及可變電壓源,連接該電壓萃取器及誤差放大器,因應該控制信號提供隨該輸入電壓變化的可變電壓偏移該回授電壓,使該輸出電壓與該輸入電壓的均方根值具線性相關。A tracking boosting device for a power factor correction circuit, the power factor correction circuit comprising a series connected inductor and a switch, and switching the switch to boost an input voltage to an output voltage, the tracking boosting device comprising: a voltage extractor, Generating a control signal that varies with the input voltage according to a sensing signal associated with the input voltage; an error amplifier that generates an error signal to adjust the output voltage based on a difference between a feedback voltage and a reference voltage associated with the output voltage; And a variable voltage source connected to the voltage extractor and the error amplifier, wherein the control signal provides a variable voltage offset with the input voltage to offset the feedback voltage, and the output voltage and the rms value of the input voltage are Linear correlation. 如請求項1之追蹤升壓裝置,其中該可變電壓源包括:電阻,具有第一端連接該誤差放大器的非反相輸入端及第二端接收該回授電壓;第一可變電流源,連接該電阻的第一端,根據該控制信號提供電流到該電阻的第一端;以及第二可變電流源,連接該電阻的第二端,根據該控制信號從該電阻的第二端抽取該電流;其中,該電流流過該電阻產生該可變電壓。The tracking boosting device of claim 1, wherein the variable voltage source comprises: a resistor having a first end connected to the non-inverting input terminal of the error amplifier and a second end receiving the feedback voltage; the first variable current source Connecting the first end of the resistor, supplying a current to the first end of the resistor according to the control signal; and connecting a second variable current source to the second end of the resistor, according to the control signal from the second end of the resistor The current is drawn; wherein the current flows through the resistor to generate the variable voltage. 如請求項1之追蹤升壓裝置,其中該可變電壓源包括:電阻,具有第一端連接該誤差放大器的非反相輸入端及第二端接收該回授電壓;第一可變電流源,連接該電阻的第二端,根據該控制信號提供電流到該電阻的第二端;以及第二可變電流源,連接該電阻的第一端,根據該控制信號從該電阻的第一端抽取該電流;其中,該電流流過該電阻產生該可變電壓。The tracking boosting device of claim 1, wherein the variable voltage source comprises: a resistor having a first end connected to the non-inverting input terminal of the error amplifier and a second end receiving the feedback voltage; the first variable current source a second end connected to the resistor, supplying a current to the second end of the resistor according to the control signal; and a second variable current source connected to the first end of the resistor, according to the control signal from the first end of the resistor The current is drawn; wherein the current flows through the resistor to generate the variable voltage. 如請求項1之追蹤升壓裝置,更包括串聯的二電阻分壓該輸入電壓產生該感測信號。The tracking boosting device of claim 1, further comprising dividing the input voltage by the two resistors in series to generate the sensing signal. 如請求項1之追蹤升壓裝置,更包括輔助線圈感應該電感的電流產生該感測信號。The tracking boosting device of claim 1, further comprising the auxiliary coil inducing the current of the inductor to generate the sensing signal. 如請求項1之追蹤升壓裝置,更包括電阻與該開關串聯,根據該開關的電流產生該感測信號。The tracking boosting device of claim 1, further comprising a resistor connected in series with the switch, the sensing signal being generated according to the current of the switch. 如請求項1之追蹤升壓裝置,其中該電壓萃取器在該功率因數修正電路的啟動操作期間從該回授電壓取得該感測信號。The tracking boosting device of claim 1, wherein the voltage extractor obtains the sensing signal from the feedback voltage during a startup operation of the power factor correction circuit. 一種用於功率因數修正電路的追蹤升壓裝置,該功率因數修正電路含有串聯的電感及開關,並切換該開關而將輸入電壓升壓為輸出電壓,該追蹤升壓裝置包括:誤差放大器,根據與該輸出電壓相關的回授電壓和參考電壓之間的差值產生誤差信號以調節該輸出電壓;以及電壓萃取器,連接該誤差放大器,根據與該輸入電壓相關的感測信號產生隨該輸入電壓變化的控制信號調整該誤差放大器的偏移,以使該輸出電壓與該輸入電壓的均方根值具線性相關。A tracking boosting device for a power factor correction circuit, the power factor correction circuit comprising an inductor and a switch connected in series, and switching the switch to boost an input voltage to an output voltage, the tracking boosting device comprising: an error amplifier, according to A difference between the feedback voltage and the reference voltage associated with the output voltage produces an error signal to adjust the output voltage; and a voltage extractor coupled to the error amplifier for generating an input signal associated with the input voltage The voltage change control signal adjusts the offset of the error amplifier such that the output voltage is linearly related to the rms value of the input voltage. 如請求項8之追蹤升壓裝置,其中該誤差放大器包括:組成差動對的第一電晶體及第二電晶體,各具有控制端,分別接收該回授電壓及參考電壓;可變電流源,連接該第二電晶體的輸入端,根據該控制信號提供電流;以及電阻,連接在該第一電晶體的輸入端及該可變電流源之間,提供隨該電流變化的可變電壓以調整該誤差放大器的偏移。The tracking boosting device of claim 8, wherein the error amplifier comprises: a first transistor and a second transistor constituting a differential pair, each having a control terminal, respectively receiving the feedback voltage and a reference voltage; and a variable current source Connecting the input end of the second transistor to supply a current according to the control signal; and a resistor connected between the input end of the first transistor and the variable current source to provide a variable voltage that varies with the current Adjust the offset of the error amplifier. 如請求項8之追蹤升壓裝置,其中該誤差放大器包括:組成差動對的第一電晶體及第二電晶體,各具有控制端,分別接收該回授電壓及參考電壓;可變電流源,連接該第一電晶體的輸入端,根據該控制信號提供電流;以及電阻,連接在該第二電晶體的輸入端及該可變電流源之間,提供隨該電流變化的可變電壓以調整該誤差放大器的偏移。The tracking boosting device of claim 8, wherein the error amplifier comprises: a first transistor and a second transistor constituting a differential pair, each having a control terminal, respectively receiving the feedback voltage and a reference voltage; and a variable current source Connecting the input end of the first transistor to supply a current according to the control signal; and a resistor connected between the input end of the second transistor and the variable current source to provide a variable voltage that varies with the current Adjust the offset of the error amplifier. 如請求項8之追蹤升壓裝置,更包括串聯的二電阻分壓該輸入電壓產生該感測信號。The tracking boosting device of claim 8, further comprising dividing the input voltage by the two resistors in series to generate the sensing signal. 如請求項8之追蹤升壓裝置,更包括輔助線圈感應該電感的電流產生該感測信號。The tracking boosting device of claim 8, further comprising the auxiliary coil inducing the current of the inductor to generate the sensing signal. 如請求項8之追蹤升壓裝置,更包括電阻與該開關串聯,根據該開關的電流產生該感測信號。The tracking boosting device of claim 8, further comprising a resistor connected in series with the switch, the sensing signal being generated according to the current of the switch. 如請求項8之追蹤升壓裝置,其中該電壓萃取器在該功率因數修正電路的啟動操作期間從該回授電壓取得該感測信號。The tracking boosting device of claim 8, wherein the voltage extractor obtains the sensing signal from the feedback voltage during a startup operation of the power factor correction circuit. 一種用於功率因數修正電路的追蹤升壓方法,該功率因數修正電路含有串聯的電感及開關,並切換該開關而將輸入電壓升壓為輸出電壓,該追蹤升壓方法包括下列步驟:(A)感測該輸入電壓產生感測信號;(B)取得與該輸出電壓相關的回授電壓;(C)根據該感測信號產生隨該輸入電壓變化的控制信號;(D)根據該控制信號決定隨該輸入電壓變化的可變電壓偏移該回授電壓;以及(E)根據該偏移的回授電壓及參考電壓產生誤差信號供調節該輸出電壓,以使該輸出電壓與該輸入電壓的均方根值具線性相關。A tracking boosting method for a power factor correction circuit, the power factor correction circuit comprising a series connected inductor and a switch, and switching the switch to boost an input voltage to an output voltage, the tracking boosting method comprising the following steps: (A Sensing the input voltage to generate a sensing signal; (B) obtaining a feedback voltage associated with the output voltage; (C) generating a control signal that varies with the input voltage according to the sensing signal; (D) according to the control signal Determining a variable voltage that varies with the input voltage to offset the feedback voltage; and (E) generating an error signal based on the offset feedback voltage and the reference voltage to adjust the output voltage to cause the output voltage and the input voltage The root mean square value is linearly related. 如請求項15之追蹤升壓方法,其中該步驟A包括分壓該輸入電壓產生該感測信號。The tracking boosting method of claim 15, wherein the step A comprises dividing the input voltage to generate the sensing signal. 如請求項15之追蹤升壓方法,其中該步驟A包括感測該電感的電流產生該感測信號。The tracking boosting method of claim 15, wherein the step A comprises sensing a current of the inductor to generate the sensing signal. 如請求項15之追蹤升壓方法,其中該步驟A包括感測該開關的電流產生該感測信號。The tracking boosting method of claim 15, wherein the step A comprises sensing a current of the switch to generate the sensing signal. 如請求項15之追蹤升壓方法,其中該步驟A包括在該功率因數修正電路的啟動操作期間從該回授電壓取得該感測信號。The tracking boosting method of claim 15, wherein the step A comprises obtaining the sensing signal from the feedback voltage during a startup operation of the power factor correction circuit. 一種用於功率因數修正電路的追蹤升壓方法,該功率因數修正電路含有串聯的電感及開關,並切換該開關而將輸入電壓升壓為輸出電壓,該追蹤升壓方法包括下列步驟:(A)感測該輸入電壓產生感測信號;(B)取得與該輸出電壓相關的回授電壓;(C)根據該感測信號產生隨該輸入電壓變化的控制信號;(D)利用誤差放大器放大該回授電壓及參考電壓之間的差值產生誤差信號供調節該輸出電壓;以及(E)根據該控制信號調整該誤差放大器的偏移,以使該輸出電壓與該輸入電壓的均方根值具線性相關。A tracking boosting method for a power factor correction circuit, the power factor correction circuit comprising a series connected inductor and a switch, and switching the switch to boost an input voltage to an output voltage, the tracking boosting method comprising the following steps: (A Sensing the input voltage to generate a sensing signal; (B) obtaining a feedback voltage associated with the output voltage; (C) generating a control signal that varies with the input voltage based on the sensing signal; (D) amplifying with an error amplifier The difference between the feedback voltage and the reference voltage generates an error signal for adjusting the output voltage; and (E) adjusting the offset of the error amplifier according to the control signal such that the output voltage and the root mean square of the input voltage Values are linearly related. 如請求項20之追蹤升壓方法,其中該步驟A包括分壓該輸入電壓產生該感測信號。The tracking boosting method of claim 20, wherein the step A comprises dividing the input voltage to generate the sensing signal. 如請求項20之追蹤升壓方法,其中該步驟A包括感測該電感的電流產生該感測信號。The tracking boosting method of claim 20, wherein the step A includes sensing a current of the inductor to generate the sensing signal. 如請求項20之追蹤升壓方法,其中該步驟A包括感測該開關的電流產生該感測信號。The tracking boosting method of claim 20, wherein the step A includes sensing a current of the switch to generate the sensing signal. 如請求項20之追蹤升壓方法,其中該步驟A包括在該功率因數修正電路的啟動操作期間從該回授電壓取得該感測信號。The tracking boosting method of claim 20, wherein the step A comprises obtaining the sensing signal from the feedback voltage during a startup operation of the power factor correction circuit.
TW101101146A 2012-01-11 2012-01-11 Tracking boost apparauts and mothod for a power factor correction circuit TWI459175B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101101146A TWI459175B (en) 2012-01-11 2012-01-11 Tracking boost apparauts and mothod for a power factor correction circuit
CN201210024043.4A CN103208921B (en) 2012-01-11 2012-02-03 Tracking boosting device and method for power factor correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101101146A TWI459175B (en) 2012-01-11 2012-01-11 Tracking boost apparauts and mothod for a power factor correction circuit

Publications (2)

Publication Number Publication Date
TW201329667A true TW201329667A (en) 2013-07-16
TWI459175B TWI459175B (en) 2014-11-01

Family

ID=48756033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101146A TWI459175B (en) 2012-01-11 2012-01-11 Tracking boost apparauts and mothod for a power factor correction circuit

Country Status (2)

Country Link
CN (1) CN103208921B (en)
TW (1) TWI459175B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477841A4 (en) * 2016-06-28 2019-07-24 Shindengen Electric Manufacturing Co., Ltd. Power supply device, and method for controlling power supply device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702092B (en) * 2013-12-09 2017-06-09 立锜科技股份有限公司 The circuit of power factor correction of power supply changeover device
US9698694B2 (en) 2014-01-10 2017-07-04 Astec International Limited Control circuits and methods for regulating output voltages based on adjustable references voltages
TWI548194B (en) * 2015-01-22 2016-09-01 Richtek Technology Corp A control circuit and a method for programming the output voltage of the power converter
US10330767B2 (en) * 2015-11-25 2019-06-25 Texas Instruments Incorporated Calibrated measurement system and method
CN108880223A (en) * 2018-06-28 2018-11-23 杭州益川电子有限公司 A kind of PFC voltage follower circuit
US11223289B2 (en) 2020-01-17 2022-01-11 Astec International Limited Regulated switched mode power supplies having adjustable output voltages
TWI722900B (en) * 2020-05-14 2021-03-21 絡達科技股份有限公司 Power switch control circuit
TWI777313B (en) * 2020-11-27 2022-09-11 台達電子工業股份有限公司 Power device and operation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531854B2 (en) * 2001-03-30 2003-03-11 Champion Microelectronic Corp. Power factor correction circuit arrangement
KR101026248B1 (en) * 2004-09-21 2011-03-31 페어차일드코리아반도체 주식회사 Power Factor Correction Circuit
TWI328149B (en) * 2006-01-09 2010-08-01 System General Corp A power converter for activating a pfc circuit with feed-forward voltage compensation
WO2009025517A2 (en) * 2007-08-22 2009-02-26 Silicon Mitus, Inc. Power factor correction circuit
TW201125271A (en) * 2010-01-14 2011-07-16 Novatek Microelectronics Corp Power factor correction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477841A4 (en) * 2016-06-28 2019-07-24 Shindengen Electric Manufacturing Co., Ltd. Power supply device, and method for controlling power supply device

Also Published As

Publication number Publication date
CN103208921B (en) 2016-01-06
TWI459175B (en) 2014-11-01
CN103208921A (en) 2013-07-17

Similar Documents

Publication Publication Date Title
TWI459175B (en) Tracking boost apparauts and mothod for a power factor correction circuit
US9716426B2 (en) Switching power supply circuit
CN101795073B (en) Method for controlling output current of flyback converter and its relative power inverter
JP5649158B2 (en) Controller used in power factor correction (PFC) converter and method for controlling power factor correction (PFC) circuit
US9343953B2 (en) Pre-distortion of sensed current in a power factor correction circuit
TWI405066B (en) Power factor correction circuit and method therefor
CN104022627B (en) Control circuit and supply convertor
US20120201065A1 (en) Power factor correction circuit
Cheng et al. Small-signal model of flyback converter in continuous-conduction mode with peak-current control at variable switching frequency
WO2009025517A2 (en) Power factor correction circuit
CN110401349A (en) Power supply control semiconductor device and switching power unit and its design method
TW201703415A (en) Systems and methods for regulating output currents of power conversion systems
TWI363946B (en) Power supplies, power supply controllers, and power supply controlling methods
KR20120030025A (en) Sampled charge control for resonant converter
US9960675B2 (en) Feed-forward control system with current estimator
TW200533048A (en) Control circuit and method for sectionwise adjusting conduction rate applicable in a power factor correction device
CN110719020B (en) Control circuit and control method
TWI489760B (en) Voltage converter controller and voltage converter circuit with voltage drops compensation
US7352161B2 (en) Burst-mode switching voltage regulator with ESR compensation
CN105356729A (en) Control circuit and control method used in switch power supply
Chang et al. Design of a highly accuracy PSR CC/CV AC–DC converter based on a cable compensation scheme without an external capacitor
CN115940944A (en) Current signal sampling method, sampling circuit and switching power supply
CN208723805U (en) A kind of powersupply system
JP2019062665A (en) AC-DC converter
JP6815495B2 (en) Ripple injection circuit and electronic equipment equipped with it