TW201327869A - Tandem thin-film solar cell and manufacturing method thereof - Google Patents

Tandem thin-film solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201327869A
TW201327869A TW100150074A TW100150074A TW201327869A TW 201327869 A TW201327869 A TW 201327869A TW 100150074 A TW100150074 A TW 100150074A TW 100150074 A TW100150074 A TW 100150074A TW 201327869 A TW201327869 A TW 201327869A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
type
film solar
thin film
Prior art date
Application number
TW100150074A
Other languages
Chinese (zh)
Inventor
Chen-Wei Peng
Wei-Yen Lin
Yao-Chung Tsao
Yuan-Ta Hung
Original Assignee
Nexpower Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexpower Technology Corp filed Critical Nexpower Technology Corp
Priority to TW100150074A priority Critical patent/TW201327869A/en
Publication of TW201327869A publication Critical patent/TW201327869A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention discloses a tandem thin-film solar cell and a manufacturing method thereof. A tandem thin-film solar cell structure comprises a substrate and an amorphous thin-film solar cell structure. The amorphous thin-film solar cell comprises a P-type amorphous silicon layer, an I-type amorphous semiconductor layer, and a N-type amorphous silicon layer. Therein, the I-type amorphous semiconductor comprises an I-type amorphous silicon layer and an I-type amorphous silicon germanium layer. The P-type amorphous silicon layer is disposed on the substrate. The I-type amorphous semiconductor layer is disposed on the P-type amorphous silicon layer. The N-type amorphous silicon layer is disposed on the I-type amorphous semiconductor layer. Wherein, by changing the structure of the I-type amorphous semiconductor to such that the I-type amorphous semiconductor layer comprises an I-type amorphous silicon layer and an I-type amorphous silicon germanium layer, the absorption of wavelengths of the amorphous silicon thin-film solar cell may be increased to complement the loss of wavelengths which reduce by the additional reflection layer and the photoelectric conversion efficiency of the tandem thin-film solar cell may be improved.

Description

堆疊型薄膜太陽能電池及其製造方法Stacked thin film solar cell and method of manufacturing same

本發明是有關於一種堆疊型薄膜太陽能電池及其製造方法,特別是有關一種改變I型非晶半導體層之結構,以增加非晶矽薄膜太陽能電池結構吸收之光波長波段,提升堆疊型薄膜太陽能電池之光電轉換效率的堆疊型薄膜太陽能電池及其製造方法。

The present invention relates to a stacked thin film solar cell and a method of fabricating the same, and more particularly to a structure for changing an amorphous semiconductor layer to increase the wavelength band of light absorbed by an amorphous germanium thin film solar cell structure, and to improve stacked thin film solar energy. A stacked thin film solar cell having photoelectric conversion efficiency of a battery and a method of manufacturing the same.

近來由於環保議題和資源耗竭的問題,加強開發再生能源與綠色能源已成為全球共同追求的趨勢。值得注意的是,太陽能是取之不盡、用之不竭的天然資源,除了沒有能源耗盡的問題之外,也具有資源分配平均的優點,另外太陽能電池具有無污染、安全性高、使用壽命長等特性,使太陽能光電產業備受市場的關注。Recently, due to environmental issues and resource depletion, strengthening the development of renewable energy and green energy has become a common trend in the world. It is worth noting that solar energy is an inexhaustible natural resource. In addition to the problem of no energy exhaustion, it also has the advantage of average resource allocation. In addition, solar cells are non-polluting, safe, and use. The long life and other characteristics make the solar photovoltaic industry highly concerned by the market.

目前一般常用的太陽能電池包含矽晶太陽能電池及薄膜太陽能電池,其中又以薄膜太陽能電池具有成本較低、厚度較薄和電能功率耗損較少等優點。但現有之薄膜太陽能電池常有轉換效率低的問題,故一般係藉由改變半導體之材質結構或以堆疊串聯的方式提升薄膜太陽能電池之轉換效率。At present, the commonly used solar cells include twinned solar cells and thin film solar cells, among which thin film solar cells have the advantages of lower cost, thinner thickness and less power consumption. However, the existing thin film solar cells often have the problem of low conversion efficiency, so the conversion efficiency of the thin film solar cells is generally improved by changing the material structure of the semiconductor or stacking in series.

習知之堆疊型薄膜太陽能電池之基本結構,如第1圖所示,主要係以非晶矽薄膜太陽能電池結構11、光反射層12及微晶矽薄膜太陽能電池結構13所組成。太陽光10自非晶矽薄膜太陽能電池結構11射入,使非晶矽薄膜太陽能電池結構11吸收波長350~750奈米之光波段,微晶矽薄膜太陽能電池結構13吸收波長350~1100奈米之光波段,但由於非晶矽薄膜太陽能電池結構11有光照衰退因素(Stabler-Wronski effect) ,因此只能使用較薄厚度(150~250奈米)之非晶矽薄膜太陽能電池結構11 ,但也因為非晶矽薄膜太陽能電池結構11的厚度無法增厚,而導致光波段吸收性不足。因此,為達成光匹配性,需藉由光反射層12增加非晶矽薄膜太陽能電池結構11之光吸收度,光反射層12可反射波長350~1100奈米之光波段,以提升堆疊型薄膜太陽能電池1之光電轉換效率。The basic structure of the conventional stacked thin film solar cell, as shown in Fig. 1, is mainly composed of an amorphous germanium thin film solar cell structure 11, a light reflecting layer 12, and a microcrystalline germanium thin film solar cell structure 13. The sunlight 10 is incident from the amorphous germanium thin film solar cell structure 11, so that the amorphous germanium thin film solar cell structure 11 absorbs the optical band of wavelengths of 350 to 750 nm, and the microcrystalline germanium thin film solar cell structure 13 absorbs the wavelength of 350 to 1100 nm. The optical band, but since the amorphous germanium thin film solar cell structure 11 has a Stabler-Wronski effect, only a thinner thickness (150-250 nm) amorphous germanium thin film solar cell structure 11 can be used, but Also, since the thickness of the amorphous germanium thin film solar cell structure 11 cannot be increased, the absorption in the optical band is insufficient. Therefore, in order to achieve light matching, the light absorption of the amorphous germanium thin film solar cell structure 11 is increased by the light reflecting layer 12, and the light reflecting layer 12 can reflect the optical wavelength band of 350 to 1100 nm to enhance the stacked film. Photoelectric conversion efficiency of solar cell 1.

又,習知之非晶矽薄膜太陽能電池結構,如第2圖所示,係藉由P-I-N半導體層22設置於基板21上構成,該半導體層22係以P型層221、I型層222與N型層223組成,且以P型層221、I型層222、N型層223之順序排列,其中半導體層22之材質為非晶矽,並且加入20~70個鍺原子於I型層222進行混層,可使I型層222之能隙降低,以提高非晶矽薄膜太陽能電池2之轉換效率。Further, a conventional amorphous germanium thin film solar cell structure is constructed by arranging a PIN semiconductor layer 22 on a substrate 21 as shown in FIG. 2, the semiconductor layer 22 being a P-type layer 221, an I-type layer 222 and N. The layer 223 is composed of a P-type layer 221, an I-type layer 222, and an N-type layer 223. The material of the semiconductor layer 22 is amorphous, and 20 to 70 germanium atoms are added to the I-type layer 222. The mixed layer can reduce the energy gap of the I-type layer 222 to improve the conversion efficiency of the amorphous germanium thin film solar cell 2.

然而,薄膜太陽能電池發展至今,技術雖漸趨成熟,但仍然有許多尚待改進之處。以上述習知技術之堆疊型薄膜太陽能電池之結構來說,其非晶矽薄膜太陽能電池僅能吸收波長350~750奈米之光波段,而光反射層反射波長350~1100奈米之光波段,波長750~1100奈米的光會因為非晶矽薄膜太陽能電池結構11不吸收而反射出去空氣中,無法提升太多光電轉換效率。而添加鍺原子之I型層222,雖可降低能隙,但無法將所吸收之光波段波長延伸。因此,為改善上述問題,必須進一步對薄膜太陽能電池進行改良,以提高光電轉換效率。

However, since the development of thin-film solar cells, the technology has matured, but there are still many areas for improvement. According to the structure of the stacked thin film solar cell of the above-mentioned prior art, the amorphous germanium thin film solar cell can only absorb the optical band of wavelengths of 350 to 750 nm, and the light reflecting layer reflects the optical band of wavelength of 350 to 1100 nm. The light of wavelength 750~1100 nm will be reflected out of the air because the amorphous germanium thin film solar cell structure 11 does not absorb, and the photoelectric conversion efficiency cannot be improved too much. The I-type layer 222 to which the germanium atom is added can reduce the energy gap, but cannot extend the wavelength of the absorbed light band. Therefore, in order to improve the above problems, it is necessary to further improve the thin film solar cell to improve the photoelectric conversion efficiency.

有鑑於上述習知技術之問題,本發明之目的就是在提供一種堆疊型薄膜太陽能電池及其製造方法,以解決習知技術之堆疊型薄膜太陽能電池的光電轉換效率較差之問題。In view of the above problems in the prior art, an object of the present invention is to provide a stacked thin film solar cell and a method of fabricating the same to solve the problem of poor photoelectric conversion efficiency of a stacked thin film solar cell of the prior art.

根據本發明之目的,提出一種堆疊型薄膜太陽能電池,其包含基板、P型非晶矽層、I型非晶半導體層、以及N型非晶矽層。其中,I型非晶半導體層又包含I型非晶矽層及I型非晶鍺化矽層。P型非晶矽層係設置於基板上;I型非晶半導體層係設置於P型非晶矽層上;以及N型非晶矽層係設置於I型非晶半導體層上。In accordance with an object of the present invention, a stacked thin film solar cell comprising a substrate, a P-type amorphous germanium layer, an I-type amorphous semiconductor layer, and an N-type amorphous germanium layer is provided. The I-type amorphous semiconductor layer further includes a type I amorphous germanium layer and a type I amorphous germanium germanium layer. The P-type amorphous germanium layer is disposed on the substrate; the I-type amorphous semiconductor layer is disposed on the P-type amorphous germanium layer; and the N-type amorphous germanium layer is disposed on the I-type amorphous semiconductor layer.

其中,基板之材質為透明導電玻璃。The material of the substrate is transparent conductive glass.

其中,透明導電玻璃之一側設置摻雜氟之二氧化錫薄膜。Wherein, one side of the transparent conductive glass is provided with a fluorine-doped tin dioxide film.

其中,I型非晶鍺化矽層係用來降低該I型非晶半導體層之能隙。Among them, the type I amorphous germanium telluride layer is used to reduce the energy gap of the type I amorphous semiconductor layer.

其中,I型非晶鍺化矽層之厚度小於200埃。Wherein, the thickness of the type I amorphous germanium telluride layer is less than 200 angstroms.

其中,I型非晶鍺化矽層係吸收波長350~900奈米之光波段。Among them, the type I amorphous germanium telluride layer absorbs light in the wavelength range of 350 to 900 nm.

其中,本發明所述之串聯式薄膜太陽能電池更包含一光反射層,係設置於N型非晶矽層之上。The tandem thin film solar cell of the present invention further comprises a light reflecting layer disposed on the N-type amorphous germanium layer.

其中,光反射層係反射波長350~1100奈米之光波段。The light reflecting layer reflects the optical wavelength band of 350 to 1100 nm.

其中,本發明所述之堆疊型薄膜太陽能電池更包含一微晶矽半導體層,其中包含P型微晶矽層、I型微晶矽層及N型微晶矽層,設置於光反射層之上。The stacked thin film solar cell of the present invention further comprises a microcrystalline germanium semiconductor layer comprising a P-type microcrystalline germanium layer, a type I microcrystalline germanium layer and an N-type microcrystalline germanium layer, which are disposed on the light reflecting layer. on.

其中,發明所述之堆疊型薄膜太陽能電池更包含一電極層,設置於微晶矽半導體層之上。The stacked thin film solar cell of the invention further comprises an electrode layer disposed on the microcrystalline germanium semiconductor layer.

其中,電極層材質為具導電性之金屬。The electrode layer is made of a conductive metal.

其中,電極層之材質為銀。The material of the electrode layer is silver.

根據本發明之另一目的,更提出一種堆疊型薄膜太陽能電池之製造方法,用於製造堆疊型薄膜太陽能電池,其步驟包含提供一基板;形成一P型非晶矽層於該基板上;形成一I型非晶半導體層於該P型非晶矽層上,其中該I型非晶半導體層包含一I型非晶矽層以及一I型非晶鍺化矽層;以及形成一N型非晶矽層於該I型非晶半導體層之上。According to another object of the present invention, a method for fabricating a stacked thin film solar cell for manufacturing a stacked thin film solar cell, the method comprising: providing a substrate; forming a P-type amorphous germanium layer on the substrate; forming An I-type amorphous semiconductor layer on the P-type amorphous germanium layer, wherein the I-type amorphous semiconductor layer comprises a type I amorphous germanium layer and a type I amorphous germanium germanium layer; and forming an N-type non- A germanium layer is over the I-type amorphous semiconductor layer.

其中,本方法更包含設置一光反射層於該N型非晶矽層之上方。Wherein, the method further comprises disposing a light reflecting layer above the N-type amorphous germanium layer.

其中,本方法更包含設置一微晶矽半導體層於該光反射層之上方。其中,更包含設置一P型微晶矽層於該光反射層之上;設置一I型微晶矽層於該P型微晶矽層之上;以及設置一N型微晶矽層於該I型微晶矽層之上。Wherein, the method further comprises disposing a microcrystalline germanium semiconductor layer above the light reflective layer. Wherein, further comprising: providing a P-type microcrystalline germanium layer on the light reflecting layer; providing a type I microcrystalline germanium layer on the P-type microcrystalline germanium layer; and providing an N-type microcrystalline germanium layer thereon Above the type I microcrystalline layer.

其中,本方法更包含設置一電極層於該微晶矽半導體層之上方。Wherein, the method further comprises disposing an electrode layer above the microcrystalline semiconductor layer.

承上所述,本發明之堆疊型薄膜太陽能電池及其製造方法,主要係改變在堆疊型薄膜太陽能電池中非晶矽薄膜太陽能電池之I型層結構,使之包含一I型非晶矽層及一I型非晶鍺化矽層,以降低I型非晶半導體層之能隙,將非晶矽薄膜太陽電池吸收之光波段,從原先的350~750奈米延伸至350~900奈米,並增加波長400至750奈米的吸收能力,吸收I型非晶矽層無法吸收因反射層反射出太陽能電池的光線,藉此提升堆疊型薄膜太陽能電池之光電轉換效率。As described above, the stacked thin film solar cell of the present invention and the method of manufacturing the same thereof mainly change the I-type layer structure of the amorphous germanium thin film solar cell in the stacked thin film solar cell to include a type I amorphous germanium layer. And a type I amorphous germanium germanium layer to reduce the energy gap of the type I amorphous semiconductor layer, and the optical band absorbed by the amorphous germanium thin film solar cell extends from 350 to 750 nm to 350 to 900 nm. And increasing the absorption capacity of the wavelength of 400 to 750 nm, the absorption type I amorphous germanium layer can not absorb the light reflected by the reflective layer from the solar cell, thereby improving the photoelectric conversion efficiency of the stacked thin film solar cell.

茲為使貴審查委員對本發明之技術特徵及所達到之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明如後。
For a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiments and the detailed description are as follows.

為利貴審查員瞭解本發明之發明特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。The present invention will be described in conjunction with the accompanying drawings in the accompanying drawings, and the drawings The subject matter is only for the purpose of illustration and description. It is not intended to be a true proportion and precise configuration after the implementation of the present invention. Therefore, the scope and configuration relationship of the attached drawings should not be interpreted or limited. First described.

以下將參照相關圖式,說明依本發明之堆疊型薄膜太陽能電池之製造方法之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。The embodiments of the method for fabricating a stacked thin-film solar cell according to the present invention will be described below with reference to the accompanying drawings. For the sake of understanding, the same components in the following embodiments are denoted by the same reference numerals.

請參閱第3圖,其係為本發明之堆疊型薄膜太陽能電池之第一實施例示意圖。圖中堆疊型薄膜太陽能電池3可包含基板300、P型非晶矽層310、I型非晶矽層320、I型非晶鍺化矽層330、N型非晶矽層340、光反射層350、P型微晶矽層360、I型微晶矽層370、N型微晶矽層380以及電極層390。基板300可為玻璃或其他透明板材,且基板300上之薄膜可為摻雜氟之二氧化錫或其他具導電性之氧化物。P型非晶矽層310設置於基板300上。I型非晶矽層320設置於P型非晶矽層310上。I型非晶鍺化矽層330設置於I型非晶矽層320上,且I型非晶鍺化矽層330之厚度小於200埃。N型非晶矽層340設置於I型非晶鍺化矽層330上。光反射層350設置於N型非晶矽層340上,且光反射層350材質可為玻璃或其他板材濺鍍含銀或鋁之氧化鋅薄膜。P型微晶矽層360設置於光反射層350上。I型微晶矽層370設置於P型微晶矽層360上。N型微晶矽層380設置於I型微晶矽層370上。電極層390設置於N型微晶矽層380上,可由透明導電膜或具有導電性之金屬構成。Please refer to FIG. 3, which is a schematic view of a first embodiment of a stacked thin film solar cell of the present invention. The stacked thin film solar cell 3 in the figure may include a substrate 300, a P-type amorphous germanium layer 310, an I-type amorphous germanium layer 320, an I-type amorphous germanium germanium layer 330, an N-type amorphous germanium layer 340, and a light reflecting layer. 350, a P-type microcrystalline germanium layer 360, a type I microcrystalline germanium layer 370, an N-type microcrystalline germanium layer 380, and an electrode layer 390. The substrate 300 can be glass or other transparent sheet, and the film on the substrate 300 can be fluorine doped tin dioxide or other conductive oxide. The P-type amorphous germanium layer 310 is disposed on the substrate 300. The I-type amorphous germanium layer 320 is disposed on the P-type amorphous germanium layer 310. The I-type amorphous germanium germanium layer 330 is disposed on the I-type amorphous germanium layer 320, and the type I amorphous germanium germanium layer 330 has a thickness of less than 200 angstroms. The N-type amorphous germanium layer 340 is disposed on the I-type amorphous germanium germanium layer 330. The light reflecting layer 350 is disposed on the N-type amorphous germanium layer 340, and the light reflecting layer 350 is made of glass or other plate sputtered with a zinc oxide film containing silver or aluminum. The P-type microcrystalline germanium layer 360 is disposed on the light reflecting layer 350. A type I microcrystalline germanium layer 370 is disposed on the p-type microcrystalline germanium layer 360. The N-type microcrystalline germanium layer 380 is disposed on the I-type microcrystalline germanium layer 370. The electrode layer 390 is disposed on the N-type microcrystalline germanium layer 380 and may be composed of a transparent conductive film or a conductive metal.

在本實施例中,堆疊型薄膜太陽能電池3中之非晶矽薄膜太陽能電池結構310~340與習知技術(第2圖)之非晶矽薄膜太陽能電池2相比較,主要係改變習知非晶矽薄膜太陽能電池三層結構P-I-N半導體層22中I型層222之結構,使I型層包含一I型非晶矽層320及一I型非晶鍺化矽層330。I型非晶鍺化矽層330之能隙較小,可吸收相對於I型非晶矽層320波長較長之光波段。In the present embodiment, the amorphous germanium thin film solar cell structures 310-340 in the stacked thin film solar cell 3 are compared with the amorphous germanium thin film solar cell 2 of the prior art (Fig. 2). The structure of the I-type layer 222 in the PIN semiconductor layer 22 of the three-layer structure of the wafer solar cell is such that the I-type layer comprises a type I amorphous germanium layer 320 and a type I amorphous germanium germanium layer 330. The type I amorphous germanium germanium layer 330 has a small energy gap and can absorb a longer wavelength band than the type I amorphous germanium layer 320.

請參閱第4圖,其係為本發明之堆疊型薄膜太陽能電池之第二實施例示意圖。圖中堆疊型薄膜太陽能電池4可包含基板400、非晶矽薄膜太陽能電池結構410、光反射層420、微晶矽薄膜太陽能電池結構430以及電極層440,且依照上述順序排列。其中,基板400可為玻璃或其他透明板材,且基板400上之薄膜可為摻雜氟之二氧化錫或其他具導電性之氧化物。非晶矽薄膜太陽能電池結構410包含P型非晶矽層411、I型非晶矽層412、I型非晶鍺化矽層413及N型非晶矽層414,且I型非晶鍺化矽層413之厚度小於200埃。光反射層420材質可為玻璃或其他板材濺鍍含銀或鋁之氧化鋅薄膜。微晶矽薄膜太陽能結構430包含P型微晶矽層431、I型微晶矽層432及N型微晶矽層433。電極層440可由透明導電膜或具有導電性之金屬構成。Please refer to FIG. 4, which is a schematic view of a second embodiment of the stacked thin film solar cell of the present invention. The stacked thin film solar cell 4 in the figure may include a substrate 400, an amorphous germanium thin film solar cell structure 410, a light reflecting layer 420, a microcrystalline thin film solar cell structure 430, and an electrode layer 440, and are arranged in the above order. The substrate 400 can be glass or other transparent plate, and the film on the substrate 400 can be fluorine-doped tin dioxide or other conductive oxide. The amorphous germanium thin film solar cell structure 410 includes a P-type amorphous germanium layer 411, a type I amorphous germanium layer 412, a type I amorphous germanium germanium layer 413, and an n-type amorphous germanium layer 414, and the type I amorphous germanium is formed. The thickness of the germanium layer 413 is less than 200 angstroms. The light reflecting layer 420 may be made of glass or other plate sputtered with a zinc oxide film containing silver or aluminum. The microcrystalline germanium thin film solar structure 430 includes a P-type microcrystalline germanium layer 431, a type I microcrystalline germanium layer 432, and an N-type microcrystalline germanium layer 433. The electrode layer 440 may be composed of a transparent conductive film or a metal having conductivity.

與微晶矽薄膜太陽能電池結構430相比,非晶矽薄膜太陽能電池結構410之能隙較高,所能吸收之光波段波長相對於微晶矽薄膜太陽能電池結構430之波長較短,因此,一般將非晶矽薄膜太陽能電池結構410設置於接近太陽光40之外側。在本發明中,增加一層I型非晶鍺化矽層413於非晶矽薄膜太陽能電池結構410中,其I型非晶鍺化矽層413可降低能隙,使非晶矽薄膜太陽能電池結構410之吸收波長可延伸至750~900奈米,以提高串聯式薄膜太陽能電池4之光電轉換效率。Compared with the microcrystalline germanium thin film solar cell structure 430, the amorphous germanium thin film solar cell structure 410 has a higher energy gap, and the wavelength of the light band that can be absorbed is shorter than the wavelength of the microcrystalline germanium thin film solar cell structure 430. The amorphous germanium thin film solar cell structure 410 is typically disposed near the outside of the sunlight 40. In the present invention, a layer of I-type amorphous germanium germanium layer 413 is added to the amorphous germanium thin film solar cell structure 410, and the type I amorphous germanium germanium layer 413 can reduce the energy gap and make the amorphous germanium thin film solar cell structure. The absorption wavelength of 410 can be extended to 750-900 nm to improve the photoelectric conversion efficiency of the tandem thin film solar cell 4.

太陽光40自基板400之一側照入堆疊型薄膜太陽能電池4,先經由非晶矽薄膜太陽能電池結構410吸收較短波長之光波段,太陽光40通過非晶矽薄膜太陽能電池結構410後到達光反射層420。設置於光反射層420之薄膜可將波長350~1100奈米之光波段反射回非晶矽薄膜太陽能電池結構410,使非晶矽薄膜太陽能電池結構410可以再吸收反射光41之短波長,可降低非晶矽薄膜太陽能電池結構410厚度,減少光照衰退因素(Stabler-Wronski effect)。其餘光波段的太陽光則繼續穿透向下,穿透光42之長波長光波段到達微晶矽薄膜太陽能電池結構430,可被能隙較小之微晶矽薄膜太陽能電池結構430吸收。The sunlight 40 is incident on the stacked thin film solar cell 4 from one side of the substrate 400, and first absorbs a shorter wavelength optical band through the amorphous germanium thin film solar cell structure 410, and the sunlight 40 reaches through the amorphous germanium thin film solar cell structure 410. Light reflecting layer 420. The film disposed on the light reflecting layer 420 can reflect the optical band of the wavelength of 350 to 1100 nm back to the amorphous germanium thin film solar cell structure 410, so that the amorphous germanium thin film solar cell structure 410 can absorb the short wavelength of the reflected light 41. The thickness of the amorphous germanium thin film solar cell structure 410 is reduced, and the Stabler-Wronski effect is reduced. The sunlight in the remaining optical bands continues to penetrate downward, and the long-wavelength optical band that penetrates the light 42 reaches the microcrystalline thin film solar cell structure 430, which can be absorbed by the microcrystalline germanium thin film solar cell structure 430 having a smaller energy gap.

續言之,一般在量測光電轉換效率(Eff)時,會參考三個數值,分別為:填充因子(FF)、開路電壓(Voc)、短路電流密度(Jsc),其中此三項數值與光電轉換效率有正相關。因此,以習知技術與本發明之堆疊型薄膜太陽能電池4相比,來證明本發明之堆疊型薄膜太陽能電池較一般習知的堆疊型薄膜太陽能電池1之光電轉換效率高,請參閱第5圖及第6圖。In other words, when measuring the photoelectric conversion efficiency (Eff), three values are referred to: fill factor (FF), open circuit voltage (Voc), short circuit current density (Jsc), and the three values are There is a positive correlation between photoelectric conversion efficiency. Therefore, it is proved that the stacked type thin film solar cell of the present invention has higher photoelectric conversion efficiency than the conventional stacked thin film solar cell 1 according to the conventional technique and the stacked thin film solar cell 4 of the present invention. Figure and Figure 6.

請參閱第5圖,係為本發明之堆疊型薄膜太陽能電池與習知技術之電流密度比較之數據圖。當本發明之堆疊型薄膜太陽電池4中之非晶矽薄膜太陽能電池結構410增設一厚度小於200埃之I型非晶鍺化矽層413,其I型非晶鍺化矽層413和I型非晶矽層412之總成厚度與習知技術堆疊型薄膜太陽能電池1之I型層厚度同為1500埃時,頂層電流密度由10.84mA/cm2提升至11.34mA/cm2,而底層電流密度由12.65mA/cm2提升至12.7mA/cm2,由此可證明增設I型非晶鍺化矽層413對於提升堆疊型薄膜太陽能電池之光電轉換效率確實有助益。Please refer to FIG. 5, which is a data diagram of current density comparison between the stacked thin film solar cells of the present invention and the prior art. When the amorphous germanium thin film solar cell structure 410 in the stacked thin film solar cell 4 of the present invention is further provided with a type I amorphous germanium germanium layer 413 having a thickness of less than 200 angstroms, the type I amorphous germanium germanium layer 413 and the type I when the thickness of the amorphous silicon layer assembly 412 to the prior art stack-type I-type thin film solar cell with a layer thickness of 1500 angstroms, the current density of the top layer 10.84mA / cm 2 to lift 11.34mA / cm 2, and the bottom current the density 12.65mA / cm 2 to upgrade 12.7mA / cm 2, whereby an additional proof of the type I amorphous silicon germanium layer 413 for enhancing the photoelectric conversion efficiency of a stacked-type thin film solar cells is indeed helpful.

請參閱第6圖,係為本發明之堆疊型薄膜太陽能電池與習知技術之堆疊型薄膜太陽能電池之總電流密度比較之數據圖,當本發明之堆疊型薄膜太陽電池4中之非晶矽薄膜太陽能電池結構410增設一厚度小於200埃之I型非晶鍺化矽層413,其I型非晶鍺化矽層413和I型非晶矽層412之總成厚度與習知技術堆疊型薄膜太陽能電池1之I型層厚度同為1500埃時,總電流密度從23.5mA/cm2上升至24.0mA/cm2,可知總電流密度增加了2.1%,藉此可證明本發明之堆疊型薄膜太陽能電池4確實可以增加光電轉換效率。Please refer to FIG. 6 , which is a data diagram of the total current density comparison between the stacked thin film solar cell of the present invention and the stacked thin film solar cell of the prior art, and the amorphous germanium in the stacked thin film solar cell 4 of the present invention. The thin film solar cell structure 410 is further provided with a type I amorphous germanium germanium layer 413 having a thickness of less than 200 angstroms, and the total thickness of the type I amorphous germanium germanium layer 413 and the type I amorphous germanium layer 412 is different from the conventional stacked type. When the thickness of the I-type layer of the thin film solar cell 1 is 1500 angstroms, the total current density is increased from 23.5 mA/cm 2 to 24.0 mA/cm 2 , and the total current density is increased by 2.1%, thereby demonstrating the stacked type of the present invention. The thin film solar cell 4 can indeed increase the photoelectric conversion efficiency.

請參閱第7圖,其係為本發明之實施例之堆疊型薄膜太陽能電池之製造方法之流程圖。在圖中,本發明之薄膜太陽能電池製造方法之步驟S600係提供一基板,此基板之材質可以是玻璃或其他透明基板,且基板上之薄膜可為摻雜氟之二氧化錫或其他具導電性之氧化物。步驟S610係形成P型非晶矽層在基板上。接著步驟S620係形成I型非晶矽層在P型非晶矽層上。接著步驟S630係形成I型非晶鍺化矽層在I型非晶矽層上,且I型非晶鍺化矽層之厚度小於200埃。步驟S640係形成N型非晶矽層在I型非晶鍺化矽層上。步驟S650係形成一光反射層在N型非晶矽層上,此光反射層之材質可為玻璃或其他板材濺鍍含銀或鋁之氧化鋅薄膜。步驟S660係形成一微晶矽薄膜太陽能電池結構在光反射層上。最後,步驟S670係形成電極層在微晶矽薄膜太陽能電池結構上,且其電極層材質可由透明導電膜或具有導電性之金屬構成。Please refer to FIG. 7, which is a flow chart of a method for manufacturing a stacked thin film solar cell according to an embodiment of the present invention. In the figure, the step S600 of the method for manufacturing a thin film solar cell of the present invention provides a substrate, the material of the substrate may be glass or other transparent substrate, and the film on the substrate may be fluorine doped tin dioxide or other conductive Oxide oxide. Step S610 forms a P-type amorphous germanium layer on the substrate. Next, in step S620, an I-type amorphous germanium layer is formed on the P-type amorphous germanium layer. Next, in step S630, an I-type amorphous germanium telluride layer is formed on the I-type amorphous germanium layer, and the thickness of the type I amorphous germanium telluride layer is less than 200 angstroms. Step S640 forms an N-type amorphous germanium layer on the I-type amorphous germanium telluride layer. Step S650 is to form a light reflecting layer on the N-type amorphous germanium layer. The material of the light reflecting layer may be a glass or other plate sputtered with a zinc oxide film containing silver or aluminum. Step S660 forms a microcrystalline germanium thin film solar cell structure on the light reflecting layer. Finally, step S670 forms an electrode layer on the microcrystalline germanium thin film solar cell structure, and the electrode layer material thereof may be composed of a transparent conductive film or a metal having conductivity.

綜合上述,在本發明之堆疊型薄膜太陽能電池及其製造方法中,係改良傳統習知技術之堆疊型薄膜太陽能電池之P-I-N半導體層之結構,使習知之I型層包含一I型非晶矽層以及一I型非晶鍺化矽層。由於非晶鍺化矽層之能隙相對於非晶矽層之能隙來得小,可吸收波長較大之光波段,藉此提升堆疊型薄膜太陽能電池的光電轉換效率。In summary, in the stacked thin film solar cell of the present invention and the method of manufacturing the same, the structure of the PIN semiconductor layer of the conventional thin film solar cell is improved, and the conventional I type layer comprises a type I amorphous germanium. The layer and a type I amorphous germanium layer. Since the energy gap of the amorphous germanium germanium layer is small relative to the energy gap of the amorphous germanium layer, the wavelength band of the larger wavelength can be absorbed, thereby improving the photoelectric conversion efficiency of the stacked thin film solar cell.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

1、3、4...堆疊型薄膜太陽能電池1, 3, 4. . . Stacked thin film solar cell

2、11、410...非晶矽薄膜太陽能電池結構2, 11, 410. . . Amorphous germanium thin film solar cell structure

13、430...微晶矽薄膜太陽能電池結構13,430. . . Microcrystalline germanium thin film solar cell structure

21、300、400...基板21, 300, 400. . . Substrate

22...半導體層twenty two. . . Semiconductor layer

221...P型層221. . . P-type layer

222...I型層222. . . Type I layer

223...N型層223. . . N-type layer

310、411...P型非晶矽層310, 411. . . P-type amorphous germanium layer

320、412...I型非晶矽層320, 412. . . Type I amorphous germanium layer

330、413...I型非晶鍺化矽層330, 413. . . Type I amorphous germanium layer

340、414...N型非晶矽層340, 414. . . N-type amorphous germanium layer

12、350、420...光反射層12, 350, 420. . . Light reflection layer

360、431...P型微晶矽層360, 431. . . P-type microcrystalline layer

370、432...I型微晶矽層370, 432. . . Type I microcrystalline layer

380、433...N型微晶矽層380, 433. . . N-type microcrystalline layer

390、440...電極層390, 440. . . Electrode layer

S600~S670...步驟S600~S670. . . step

10、40...太陽光10, 40. . . sunshine

41...反射光41. . . reflected light

42...穿透光42. . . Penetrating light

第1圖 係為習知技術之堆疊型薄膜太陽能電池之示意圖。
第2圖 係為習知技術之非晶矽薄膜太陽能電池結構之示意圖。
第3圖 係為本發明之堆疊型薄膜太陽能電池之第一實施例之示意圖。
第4圖 係為本發明之堆疊型薄膜太陽能電池之第二實施例之示意圖。
第5圖 係為本發明之堆疊型薄膜太陽能電池與習知技術之電流密度比較之數據圖。
第6圖 係為本發明之堆疊型薄膜太陽能電池與習知技術之總電流密度比較之數據圖。
第7圖 係為本發明之實施例之堆疊型薄膜太陽能電池之製造方法之流程圖。

Figure 1 is a schematic view of a stacked thin film solar cell of the prior art.
Fig. 2 is a schematic view showing the structure of an amorphous germanium thin film solar cell of the prior art.
Fig. 3 is a schematic view showing a first embodiment of the stacked thin film solar cell of the present invention.
Fig. 4 is a schematic view showing a second embodiment of the stacked thin film solar cell of the present invention.
Fig. 5 is a graph showing the comparison of the current density of the stacked thin film solar cell of the present invention with the prior art.
Figure 6 is a graph showing the comparison of the total current density of the stacked thin film solar cells of the present invention with the prior art.
Fig. 7 is a flow chart showing a method of manufacturing a stacked thin film solar cell according to an embodiment of the present invention.

3...堆疊型薄膜太陽能電池3. . . Stacked thin film solar cell

300...基板300. . . Substrate

310...P型非晶矽層310. . . P-type amorphous germanium layer

320...I型非晶矽層320. . . Type I amorphous germanium layer

330...I型非晶鍺化矽層330. . . Type I amorphous germanium layer

340...N型非晶矽層340. . . N-type amorphous germanium layer

350...光反射層350. . . Light reflection layer

360...P型微晶矽層360. . . P-type microcrystalline layer

370...I型微晶矽層370. . . Type I microcrystalline layer

380...N型微晶矽層380. . . N-type microcrystalline layer

390...電極層390. . . Electrode layer

Claims (26)

一種堆疊型薄膜太陽能電池,其包含:
一基板;
一P型非晶矽層,係設置於該基板上方;
一I型非晶半導體層,係設置於該P型非晶矽層之上方,且該I型非晶半導體層包含一I型非晶矽層以及一I型非晶鍺化矽層;以及
一N型非晶矽層,係位於該I型非晶半導體層之上方。
A stacked thin film solar cell comprising:
a substrate;
a P-type amorphous germanium layer is disposed above the substrate;
An I-type amorphous semiconductor layer is disposed over the P-type amorphous germanium layer, and the I-type amorphous semiconductor layer comprises an I-type amorphous germanium layer and an I-type amorphous germanium germanium layer; An N-type amorphous germanium layer is located above the I-type amorphous semiconductor layer.
如申請專利範圍第1項所述之堆疊型薄膜太陽能電池,其中該基板之材質係為一透明導電玻璃。The stacked thin film solar cell according to claim 1, wherein the material of the substrate is a transparent conductive glass. 如申請專利範圍第2項所述之堆疊型薄膜太陽能電池,其中該透明導電玻璃之一側係設置一摻雜氟之二氧化錫薄膜。The stacked thin film solar cell of claim 2, wherein one side of the transparent conductive glass is provided with a fluorine doped tin dioxide film. 如申請專利範圍第1項所述之堆疊型薄膜太陽能電池,其中該I型非晶鍺化矽層係降低該I型非晶半導體層之能隙。The stacked thin film solar cell of claim 1, wherein the type I amorphous germanium telluride layer reduces an energy gap of the type I amorphous semiconductor layer. 如申請專利範圍第1項所述之堆疊型薄膜太陽能電池,其中該I型非晶鍺化矽層之厚度係小於200埃。The stacked thin film solar cell of claim 1, wherein the thickness of the type I amorphous germanium telluride layer is less than 200 angstroms. 如申請專利範圍第1項所述之堆疊型薄膜太陽能電池,其中該I型非晶鍺化矽層係吸收波長350~900奈米之光波段。The stacked thin film solar cell according to claim 1, wherein the type I amorphous germanium telluride layer absorbs an optical band having a wavelength of 350 to 900 nm. 如申請專利範圍第1項所述之堆疊型薄膜太陽能電池,更包含一光反射層,該光反射層係設置於該N型非晶矽層之上方。The stacked thin film solar cell of claim 1, further comprising a light reflecting layer disposed above the N-type amorphous germanium layer. 如申請專利範圍第7項所述之堆疊型薄膜太陽能電池,其中該光反射層係反射波長350~1100奈米之光波段。The stacked thin film solar cell of claim 7, wherein the light reflecting layer reflects an optical band having a wavelength of 350 to 1100 nm. 如申請專利範圍第7項所述之堆疊型薄膜太陽能電池,更包含一微晶矽半導體層,該微晶矽半導體層係設置於該光反射層之上方。The stacked thin film solar cell of claim 7, further comprising a microcrystalline germanium semiconductor layer disposed above the light reflective layer. 如申請專利範圍第9項所述之堆疊型薄膜太陽能電池,其中該微晶矽半導體層更包含:
一P型微晶矽層,係設置於該光反射層之上方;
一I型微晶矽層,係設置於該P型微晶矽層之上方;以及
一N型微晶矽層,係設置於該I型微晶矽層之上方。
The stacked thin film solar cell of claim 9, wherein the microcrystalline germanium semiconductor layer further comprises:
a P-type microcrystalline layer is disposed above the light reflecting layer;
An I-type microcrystalline germanium layer is disposed above the P-type microcrystalline germanium layer; and an N-type microcrystalline germanium layer is disposed above the I-type microcrystalline germanium layer.
如申請專利範圍第9項所述之堆疊型薄膜太陽能電池,更包含一電極層,係設置於該微晶矽半導體層之上方。The stacked thin film solar cell of claim 9, further comprising an electrode layer disposed above the microcrystalline semiconductor layer. 如申請專利範圍第11項所述之堆疊型薄膜太陽能電池,其中該電極層材質係為具導電性之金屬。The stacked thin film solar cell of claim 11, wherein the electrode layer is made of a conductive metal. 如申請專利範圍第11項所述之堆疊型薄膜太陽能電池,其中該電極層之材質係為銀。The stacked thin film solar cell of claim 11, wherein the electrode layer is made of silver. 一種堆疊型薄膜太陽能電池之製造方法,係用於製造一堆疊型薄膜太陽能電池,其包含下列步驟:
提供一基板;
形成一P型非晶矽層於該基板上;
形成一I型非晶半導體層於該P型非晶矽層上,其中該I型非晶半導體層包含一I型非晶矽層以及一I型非晶鍺化矽層;以及
形成一N型非晶矽層於該I型非晶半導體層之上。
A method of manufacturing a stacked thin film solar cell for manufacturing a stacked thin film solar cell comprising the following steps:
Providing a substrate;
Forming a P-type amorphous germanium layer on the substrate;
Forming an I-type amorphous semiconductor layer on the P-type amorphous germanium layer, wherein the I-type amorphous semiconductor layer comprises a type I amorphous germanium layer and an I-type amorphous germanium germanium layer; and forming an N-type An amorphous germanium layer is over the I-type amorphous semiconductor layer.
如申請專利範圍第14項所述之堆疊型薄膜太陽能電池之製造方法,其中該基板之材質係為一透明導電玻璃。The method for manufacturing a stacked thin film solar cell according to claim 14, wherein the material of the substrate is a transparent conductive glass. 如申請專利範圍第15項所述之堆疊型薄膜太陽能電池之製造方法,更包含下列步驟:
設置一摻雜氟之二氧化錫薄膜於該透明導電玻璃之一側。
The method for manufacturing a stacked thin film solar cell according to claim 15 further comprises the following steps:
A fluorine-doped tin dioxide film is disposed on one side of the transparent conductive glass.
如申請專利範圍第14項所述之堆疊型薄膜太陽能電池之製造方法,其中該I型非晶鍺化矽層係降低該I型非晶半導體層之能隙。The method of manufacturing a stacked thin film solar cell according to claim 14, wherein the type I amorphous germanium telluride layer reduces an energy gap of the type I amorphous semiconductor layer. 如申請專利範圍第14項所述之堆疊型薄膜太陽能電池之製造方法,其中該I型非晶鍺化矽層之厚度係小於200埃。The method for manufacturing a stacked thin film solar cell according to claim 14, wherein the thickness of the type I amorphous germanium telluride layer is less than 200 angstroms. 如申請專利範圍第14項所述之堆疊型薄膜太陽能電池之製造方法,該I型非晶鍺化矽層係吸收波長350~900奈米之光波段。The method for manufacturing a stacked thin film solar cell according to claim 14, wherein the type I amorphous germanium telluride layer absorbs an optical band having a wavelength of from 350 to 900 nm. 如申請專利範圍第14項所述之堆疊型薄膜太陽能電池之製造方法,更包含下列步驟:
設置一光反射層於該N型非晶矽層之上方。
The method for manufacturing a stacked thin film solar cell according to claim 14, further comprising the following steps:
A light reflecting layer is disposed above the N-type amorphous germanium layer.
如申請專利範圍第20項所述之堆疊型薄膜太陽能電池之製造方法,其中該光反射層可反射波長350~1100奈米之光波段。The method for manufacturing a stacked thin film solar cell according to claim 20, wherein the light reflecting layer reflects an optical band having a wavelength of 350 to 1100 nm. 如申請專利範圍第20項所述之堆疊型薄膜太陽能電池之製造方法,更包含下列步驟:
設置一微晶矽半導體層於該光反射層之上方。
The method for manufacturing a stacked thin film solar cell according to claim 20, further comprising the following steps:
A microcrystalline germanium semiconductor layer is disposed over the light reflective layer.
如申請專利範圍第22項所述之堆疊型薄膜太陽能電池之製造方法,其中設置該微晶矽半導體層包含下列步驟:
設置一P型微晶矽層於該光反射層之上;
設置一I型微晶矽層於該P型微晶矽層之上;以及
設置一N型微晶矽層於該I型微晶矽層之上。
The method for manufacturing a stacked thin film solar cell according to claim 22, wherein the setting the microcrystalline germanium semiconductor layer comprises the following steps:
Forming a P-type microcrystalline germanium layer on the light reflecting layer;
An I-type microcrystalline germanium layer is disposed on the P-type microcrystalline germanium layer; and an N-type microcrystalline germanium layer is disposed on the I-type microcrystalline germanium layer.
如申請專利範圍第22項所述之堆疊型薄膜太陽能電池之製造方法,更包含下列步驟:
設置一電極層於該微晶矽半導體層之上方。
The method for manufacturing a stacked thin film solar cell according to claim 22, further comprising the following steps:
An electrode layer is disposed above the microcrystalline semiconductor layer.
如申請專利範圍第24項所述之堆疊型薄膜太陽能電池之製造方法,其中該電極層材質係為具導電性之金屬。The method for manufacturing a stacked thin film solar cell according to claim 24, wherein the electrode layer is made of a conductive metal. 如申請專利範圍第24項所述之堆疊型薄膜太陽能電池之製造方法,其中該電極層之材質係為銀。The method for manufacturing a stacked thin film solar cell according to claim 24, wherein the electrode layer is made of silver.
TW100150074A 2011-12-30 2011-12-30 Tandem thin-film solar cell and manufacturing method thereof TW201327869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100150074A TW201327869A (en) 2011-12-30 2011-12-30 Tandem thin-film solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100150074A TW201327869A (en) 2011-12-30 2011-12-30 Tandem thin-film solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201327869A true TW201327869A (en) 2013-07-01

Family

ID=49225231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100150074A TW201327869A (en) 2011-12-30 2011-12-30 Tandem thin-film solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201327869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530921B2 (en) 2014-10-02 2016-12-27 International Business Machines Corporation Multi-junction solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530921B2 (en) 2014-10-02 2016-12-27 International Business Machines Corporation Multi-junction solar cell
US10312400B2 (en) 2014-10-02 2019-06-04 International Business Machines Corporation Multi-junction solar cell
US10580926B2 (en) 2014-10-02 2020-03-03 International Business Machines Corporation Multi-junction solar cell

Similar Documents

Publication Publication Date Title
JP4456107B2 (en) Photoelectric conversion device and substrate for photoelectric conversion device
KR101292061B1 (en) Thin film solar cell
US20080156372A1 (en) Thin film solar cell module of see-through type and method of fabricating the same
US20080236661A1 (en) Solar cell
CN102854553B (en) Multiple reflection structure and photoelectric element
JP2017535975A (en) High efficiency N-type double-sided solar cell
US20100126579A1 (en) Solar cell having reflective structure
KR20120063324A (en) Bifacial solar cell
CN102013447A (en) Photovoltaic device and method for manufacturing the same
US20100154881A1 (en) Transparent solar cell module and method of fabricating the same
TWI483406B (en) Photovoltaic cell
KR101584376B1 (en) Silicon thin film solar cell
TW201327869A (en) Tandem thin-film solar cell and manufacturing method thereof
TWI470814B (en) Solar cell
CN101866969A (en) Solar cell
JP2010272651A (en) Thin-film solar cell and method of manufacturing the same
TWI445193B (en) Thin-film solar cell and manufacturing method thereof
TWI475704B (en) Thin film solar cell and manufacturing method thereof
CN219419049U (en) Photovoltaic cell component with double glass surfaces
TWI435464B (en) Thin-film solar cell and manufacturing method thereof
CN220796756U (en) Silicon heterojunction solar cell, solar photovoltaic module and photovoltaic system
TWI513022B (en) Thin-film solar cell and manufacturing method thereof
CN106910792A (en) A kind of multi-crystal silicon film solar battery
JP2012124386A (en) Thin film solar cell, manufacturing method therefor, and thin film solar cell module
TWI493735B (en) Thin-film solar cell and manufacturing method thereof