TW201300810A - Method and system for a self-calibrated multi-magnetometer platform - Google Patents

Method and system for a self-calibrated multi-magnetometer platform Download PDF

Info

Publication number
TW201300810A
TW201300810A TW101106958A TW101106958A TW201300810A TW 201300810 A TW201300810 A TW 201300810A TW 101106958 A TW101106958 A TW 101106958A TW 101106958 A TW101106958 A TW 101106958A TW 201300810 A TW201300810 A TW 201300810A
Authority
TW
Taiwan
Prior art keywords
magnetic field
magnetic
magnetometers
magnetometer
measurements
Prior art date
Application number
TW101106958A
Other languages
Chinese (zh)
Other versions
TWI559020B (en
Inventor
Castillo Manuel Del
Steve Malkos
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW201300810A publication Critical patent/TW201300810A/en
Application granted granted Critical
Publication of TWI559020B publication Critical patent/TWI559020B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/40Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

A multi-magnetometer device comprises at least two z-axis aligned and physically rotated magnetometer triads utilized for measuring corresponding earth's magnetic field. The magnetic field measurements are utilized to measure rotation measurements of a single orthogonal axis along the 360 degrees of the complete circle without user's assistance and/or magnetometer movement for magnetometer calibration. The multi-magnetometer device may compute its magnetic heading utilizing the magnetic field measurements if no magnetic perturbations are detected. When magnetic perturbations are detected, a perturbation mitigation process may be performed. The rotation measurements may be generated by selectively combining the magnetic field measurements. Hard-iron components are determined utilizing the rotation measurements, and are removed from the magnetic field measurements. Soft-iron components are determined utilizing the hard-iron free magnetic field measurements, and are removed from the hard-iron free magnetic field measurements. The resulting perturbation free magnetic field measurements are utilized to compute magnetic heading.

Description

通訊方法及其系統 Communication method and system thereof

本發明涉及通訊系統,更具體地說,涉及一種自校正多磁力計平臺(multi-magnetometer platform)的方法和系統。 This invention relates to communication systems and, more particularly, to a method and system for a self-calibrating multi-magnetometer platform.

磁力計是用於測量各種磁場(如地球磁場)的強度和方向的儀器。例如,地磁場可用來確定移動中的車輛或行人的方向。例如,移動中行人的方向定義為行人的縱軸和磁北之間形成的角度。磁力計以多種不同形式出現。三軸磁力計(magnetometer triad)是能夠測量磁場所有三個正交分量的磁力計。三軸磁力計提供的地磁場讀數可用於計算運動中的車輛或行人的方向。在如室外的乾淨磁場環境中磁力計可非常好地運行。然而例如,它們可能受到室內人造基礎設施產生的磁擾的嚴重影響。這些磁擾可能會影響從磁力計的磁場測量值所得的方向。 A magnetometer is an instrument used to measure the strength and direction of various magnetic fields, such as the Earth's magnetic field. For example, the geomagnetic field can be used to determine the direction of a moving vehicle or pedestrian. For example, the direction of a pedestrian in motion is defined as the angle formed between the vertical axis of the pedestrian and the magnetic north. Magnetometers come in many different forms. A magnetometer triad is a magnetometer capable of measuring all three orthogonal components of a magnetic field. The geomagnetic field readings provided by the three-axis magnetometer can be used to calculate the direction of the vehicle or pedestrian in motion. The magnetometer can operate very well in a clean magnetic field such as outdoors. However, for example, they may be severely affected by the magnetic disturbances generated by indoor man-made infrastructure. These magnetic disturbances may affect the direction resulting from the magnetic field measurements of the magnetometer.

比較本發明後續將要結合附圖介紹的系統,現有技術的其它局限性和弊端對於本領域的普通技術人員來說是顯而易見的。 Other limitations and disadvantages of the prior art will be apparent to those of ordinary skill in the art in view of the present invention.

本發明提供一種自校正多磁力計平臺的方法和/或系統,並結合至少一幅附圖進行展示和/或描述,且在申請專利範圍中對其作出更加完整的闡明。 The present invention provides a method and/or system for a self-calibrating multi-magnetometer platform, which is shown and/or described in conjunction with at least one of the drawings and is more fully described in the claims.

根據本發明的一個方面,提供一種通訊方法,所述方法包括如下步驟:在包括至少兩個磁力計的多磁力計設備中,其中所述 至少兩個磁力計沿XYZ坐標系的z軸對齊,並在所述XYZ坐標系的xy-平面內物理增量旋轉(physically incrementally rotate):利用所述至少兩個磁力計測量相應地磁場;在無用戶協助和/或磁力計運動的情況下利用所述地磁場測量值測量單個正交軸沿360度完整圓的旋轉;以及利用所述旋轉測量值校正所述至少兩個磁力計。 According to an aspect of the present invention, a communication method is provided, the method comprising the steps of: in a multi-magnet device comprising at least two magnetometers, wherein Aligning at least two magnetometers along the z-axis of the XYZ coordinate system and physically incrementally rotating in the xy-plane of the XYZ coordinate system: measuring the corresponding magnetic field using the at least two magnetometers; The rotation of a single orthogonal axis along a 360 degree full circle is measured using the geomagnetic field measurements without user assistance and/or magnetometer motion; and the at least two magnetometers are corrected using the rotation measurements.

較佳地,所述方法還包括相對於所述至少兩個磁力計的其中一個將所述相應地磁場測量值合併以形成合成測量值。 Preferably, the method further comprises combining the respective geomagnetic field measurements with respect to one of the at least two magnetometers to form a composite measurement.

較佳地,所述方法還包括將所述合成測量值的量值(magnitude)與擾動閾值進行比較。 Preferably, the method further comprises comparing the magnitude of the composite measurement to a disturbance threshold.

較佳地,所述方法還包括基於所述比較結果檢測所述相應地磁場測量值的磁擾。 Preferably, the method further comprises detecting a magnetic disturbance of the corresponding geomagnetic field measurement based on the comparison result.

較佳地,所述方法還包括如果沒有檢測到所述磁擾,則利用所述合成磁場測量值確定所述多磁力計設備的磁航向。 Preferably, the method further comprises determining the magnetic heading of the multi-magnetometer device using the resultant magnetic field measurement if the magnetic disturbance is not detected.

較佳地,所述方法還包括如果檢測到所述磁擾,則觸發所述多磁力計設備內的擾動緩解流程(perturbation mitigation process)。 Preferably, the method further comprises triggering a perturbation mitigation process within the multi-magnetometer device if the magnetic disturbance is detected.

較佳地,所述方法還包括通過選擇性地合併所述相應地磁場測量值生成所述旋轉測量值。 Preferably, the method further comprises generating the rotation measurement by selectively combining the respective magnetic field measurements.

較佳地,所述方法還包括:利用所述旋轉測量值確定所述檢測到的磁擾的硬鐵分量(hard-iron component);以及從所述相應地磁場測量值移除所述確定的硬鐵分量, 以形成無硬鐵的磁場測量值。 Preferably, the method further comprises: determining, by the rotation measurement, a hard-iron component of the detected magnetic disturbance; and removing the determined from the corresponding magnetic field measurement Hard iron component, To form a magnetic field measurement without hard iron.

較佳地,所述方法還包括:利用所述無硬鐵的相應地磁場測量值確定所述檢測到的磁擾的軟鐵分量(soft-iron component);以及從所述無硬鐵的磁場測量值移除所述確定的軟鐵分量,以形成無擾動的相應地磁場測量值。 Preferably, the method further comprises: determining a soft-iron component of the detected magnetic interference using the corresponding magnetic field measurement of the hard iron; and a magnetic field from the hard iron The measured value removes the determined soft iron component to form an undisturbed corresponding geomagnetic field measurement.

較佳地,所述方法還包括利用所述無擾動的相應地球磁場測量值計算所述多磁力計設備的磁航向。 Preferably, the method further comprises calculating a magnetic heading of the multi-magnet device using the undisturbed respective earth magnetic field measurements.

根據本發明的另一個方面,提供一種通訊系統,所述系統包括:在包括至少兩個磁力計的多磁力計設備內使用的一個或多個處理器和/或電路,其中所述至少兩個磁力計沿XYZ坐標系的z軸對齊,並在所述XYZ坐標系的xy-平面內物理增量旋轉;所述一個或多個處理器和/或電路用於:利用所述至少兩個磁力計測量相應地磁場;在無用戶協助和/或磁力計運動的情況下利用所述地磁場測量值測量單個正交軸沿360度完整圓的旋轉;以及利用所述旋轉測量值校正所述至少兩個磁力計。 According to another aspect of the present invention, a communication system is provided, the system comprising: one or more processors and/or circuits for use in a multi-magnet device comprising at least two magnetometers, wherein the at least two The magnetometer is aligned along the z-axis of the XYZ coordinate system and is physically incrementally rotated within the xy-plane of the XYZ coordinate system; the one or more processors and/or circuits are configured to: utilize the at least two magnetic forces Measuring a corresponding magnetic field; measuring the rotation of a single orthogonal axis along a 360 degree complete circle using the geomagnetic field measurement without user assistance and/or magnetometer motion; and correcting the at least with the rotational measurement Two magnetometers.

較佳地,所述一個或多個處理器和/或電路用於相對於所述至少兩個磁力計的其中一個將所述相應地磁場測量值合併以形成合成測量值。 Advantageously, said one or more processors and/or circuits are operative to combine said respective magnetic field measurements with respect to one of said at least two magnetometers to form a composite measurement.

較佳地,所述一個或多個處理器和/或電路用於將所述合成測量值的量值與擾動閾值進行比較。 Preferably, the one or more processors and/or circuits are operable to compare the magnitude of the composite measurement to a disturbance threshold.

較佳地,所述一個或多個處理器和/或電路用於基於所述比較結果檢測所述相應地磁場測量值的磁擾。 Preferably, the one or more processors and/or circuits are configured to detect a magnetic disturbance of the respective geomagnetic field measurement based on the comparison.

較佳地,所述一個或多個處理器和/或電路用於如果沒 有檢測到所述磁擾,則利用所述合成磁場測量值確定所述多磁力計設備的磁航向。 Preferably, the one or more processors and/or circuits are used if not When the magnetic disturbance is detected, the magnetic heading of the multi-magnetometer device is determined using the synthetic magnetic field measurement.

較佳地,所述一個或多個處理器和/或電路用於如果檢測到所述磁擾,則觸發所述多磁力計設備內的擾動緩解流程。 Preferably, the one or more processors and/or circuits are configured to trigger a disturbance mitigation process within the multi-magnet device if the magnetic disturbance is detected.

較佳地,所述一個或多個處理器和/或電路用於通過選擇性地合併所述相應地磁場測量值生成所述旋轉測量值。 Advantageously, said one or more processors and/or circuits are operative to generate said rotation measurements by selectively combining said respective magnetic field measurements.

較佳地,所述一個或多個處理器和/或電路用於利用所述旋轉測量值確定所述檢測到的磁擾的硬鐵分量;以及從所述相應地磁場測量值移除所述確定的硬鐵分量,以形成無硬鐵的磁場測量值。 Advantageously, said one or more processors and/or circuits are operative to determine a hard iron component of said detected magnetic disturbance using said rotational measurement; and removing said said magnetic field measurement from said corresponding magnetic field measurement Determine the hard iron component to form a magnetic field measurement without hard iron.

較佳地,所述一個或多個處理器和/或電路用於利用所述無硬鐵的相應地磁場測量值確定所述檢測到的磁擾的軟鐵分量;以及從所述無硬鐵的磁場測量值移除所述確定的軟鐵分量,以形成無擾動的相應地磁場測量值。 Preferably, the one or more processors and/or circuits are configured to determine a soft iron component of the detected magnetic interference using the corresponding magnetic field measurement of the hard iron; and from the hard iron The measured magnetic field value removes the determined soft iron component to form an undisturbed corresponding geomagnetic field measurement.

較佳地,所述一個或多個處理器和/或電路用於利用所述無擾動的相應地球磁場測量值計算所述多磁力計設備的磁航向。 Advantageously, said one or more processors and/or circuits are operable to calculate a magnetic heading of said multi-magnet device using said undisturbed respective earth magnetic field measurements.

本發明的各種優點、各個方面和創新特徵以及具體實施例的細節,將在以下的說明書和附圖中進行詳細介紹。 The various advantages, aspects, and features of the invention, as well as the details of the specific embodiments, are described in the following description and drawings.

本發明的一些實施例涉及自校正多磁力計平臺的方法和系統。在本發明的不同實施例中,多磁力計設備或多磁力計平臺包括至少兩個三軸磁力計,所述至少兩個三軸磁力計沿XYZ坐標系的z軸對齊,並在XYZ坐標系的xy-平面內物理增量旋轉。至少兩個物理旋轉的三軸磁力計可 用於測量相應地磁場。在無用戶協助和/或磁力計運動的情況下,利用物理旋轉的磁力計的磁場測量值可獲得單個正交軸沿360度完整圓的旋轉測量值。利用旋轉測量值可自動校正物理旋轉的磁力計。多磁力計設備可將物理旋轉的磁力計的磁場測量值合併,將其用於磁擾檢測。如果沒有檢測到磁擾,合成磁場測量值可用於計算多磁力計設備的磁航向。一旦檢測到磁擾,多磁力計設備可自動開始對磁場測量值的擾動緩解流程。可通過選擇性地合併物理旋轉的磁力計的磁場測量值來生成旋轉測量值。擾動緩解流程可用旋轉測量值確定檢測到的磁擾的硬鐵分量。可從物理旋轉的磁力計的磁場測量值移除確定的硬鐵分量,從而形成無硬鐵的磁場測量值,所述無硬鐵的磁場測量值可用於確定檢測到的磁擾的軟鐵分量。多磁力計設備可從無硬鐵的磁場測量值移除確定的軟鐵分量,從而形成無擾動的磁場測量值。所述無擾動的磁場測量值可用於計算多磁力計設備的磁航向。 Some embodiments of the invention relate to methods and systems for self-correcting multi-magnetometer platforms. In various embodiments of the invention, the multi-magnet device or multi-magnet platform includes at least two three-axis magnetometers aligned along the z-axis of the XYZ coordinate system and in the XYZ coordinate system The xy-plane physical incremental rotation. At least two physically rotating three-axis magnetometers are available Used to measure the corresponding geomagnetic field. In the absence of user assistance and/or magnetometer motion, a magnetic measurement of a physically rotating magnetometer can be used to obtain a rotational measurement of a single orthogonal axis along a 360 degree full circle. A magnetometer that physically rotates is automatically corrected using a rotation measurement. Multi-magnetometer devices combine magnetic field measurements of physically rotating magnetometers for magnetic disturbance detection. If no magnetic disturbances are detected, the synthetic magnetic field measurements can be used to calculate the magnetic heading of the multi-magnetometer device. Once the magnetic disturbance is detected, the multi-magnet device can automatically initiate a disturbance mitigation process for the magnetic field measurements. Rotational measurements can be generated by selectively combining magnetic field measurements of a physically rotating magnetometer. The disturbance mitigation process can use the rotational measurements to determine the hard iron component of the detected magnetic disturbance. The determined hard iron component can be removed from the magnetic field measurements of the physically rotating magnetometer to form a magnetic field measurement without hard iron that can be used to determine the soft iron component of the detected magnetic disturbance. . The multi-magnetometer device removes the determined soft iron component from magnetic field measurements without hard iron to form an undisturbed magnetic field measurement. The undisturbed magnetic field measurements can be used to calculate the magnetic heading of a multi-magnet device.

圖1是依照本發明實施例的示例性多磁力計設備的示意圖,其中在多磁力計設備沒有物理移動的磁力計的情況下該多磁力計設備用於自校正磁場測量值。如圖1所示,多磁力計設備100包括主處理器110、多個磁力計112-116和記憶體130。多磁力計設備100可位於手持設備中,例如手機或其它無線通訊設備(如多媒體播放機)。 1 is a schematic illustration of an exemplary multi-magnetometer device for self-correcting magnetic field measurements in the case where a multi-magnetometer device does not have a physically moving magnetometer, in accordance with an embodiment of the present invention. As shown in FIG. 1, the multi-magnet device 100 includes a main processor 110, a plurality of magnetometers 112-116, and a memory 130. The multi-magnet device 100 can be located in a handheld device, such as a cell phone or other wireless communication device (such as a multimedia player).

磁力計(例如磁力計112)包括合適的邏輯、電路和/或代碼,其可用於測量各種磁場(如地磁場)的量值。磁場測量值是標量測量而磁場本身是向量。基於實施方式,磁力計112可安裝於多磁力計設備100外,或集成在多磁 力計設備100內。磁力計112可提供磁場測量值給處理器120,從而計算多磁力計設備100的磁航向(也稱為磁方位)。磁力計112可能以各種方式實施或配置。例如,磁力計112可利用三維(tri-axis)(三軸)(如XYZ坐標系的x、y和z軸)來測量磁場的三個正交分量。帶有三軸實施(triad implementation)的磁力計112是指三軸磁力計。在本發明的示例性實施例中,三軸磁力計112-116可沿z-軸對齊,並可能以預設增量(例如30度)在xy-平面內相互間物理旋轉。就這一點而言,一個磁力計軸可能以預設增量(例如30度)沿整個360度方位定位。在本發明的示例性實施例中,在無用戶協助和/或單個磁力計無物理移動的情況下,物理旋轉的三軸磁力計112-116的磁場測量值可用於模擬單個磁力計的旋轉測量值。 A magnetometer (e.g., magnetometer 112) includes suitable logic, circuitry, and/or code that can be used to measure the magnitude of various magnetic fields, such as the earth's magnetic field. The magnetic field measurement is a scalar measurement and the magnetic field itself is a vector. Based on the embodiment, the magnetometer 112 can be mounted outside of the multi-magnet device 100 or integrated in multiple magnets Within the force meter device 100. The magnetometer 112 can provide magnetic field measurements to the processor 120 to calculate the magnetic heading (also referred to as magnetic orientation) of the multi-magnet device 100. Magnetometer 112 may be implemented or configured in a variety of ways. For example, the magnetometer 112 can measure three orthogonal components of the magnetic field using tri-axis (three-axis) (such as the x, y, and z axes of the XYZ coordinate system). A magnetometer 112 with a triad implementation refers to a three-axis magnetometer. In an exemplary embodiment of the invention, the triaxial magnetometers 112-116 may be aligned along the z-axis and may be physically rotated relative to each other in a xy-plane in a predetermined increment (eg, 30 degrees). In this regard, a magnetometer axis may be positioned along the entire 360 degree orientation in a predetermined increment (eg, 30 degrees). In an exemplary embodiment of the invention, the magnetic field measurements of the physically rotating triaxial magnetometers 112-116 can be used to simulate the rotation measurement of a single magnetometer without user assistance and/or without physical movement of a single magnetometer. value.

主處理器120可包括合適的邏輯、電路和/或代碼,其可用於處理從三軸磁力計112-116接收的信號。所述接收的信號可包括如地磁場測量值的各種磁場測量值。在本發明的示例性實施例中,在三軸磁力計112-116沿z-軸對齊、並在xy-平面內以一增量相互間物理旋轉的情況下,主處理器120可合併物理旋轉的三軸磁力計112-116的磁場測量值,從而執行磁擾檢測。就這一點而言,主處理器120可用於將合成磁場測量值的量值與擾動閥值進行比較。如果合成磁場測量值的量值都不比擾動閥值大,主處理器120可確定沒有磁擾。如果合成磁場測量值的量值的一個或多個比擾動閥值大,主處理器120可聲明檢測到了磁擾。在本發明的示例性實施例中,主處理器120可自動用信號通知校正單元122或觸發校正單元122、以啟動對物理旋轉的三軸 磁力計112-116的磁場測量值的擾動緩解流程。通過擾動緩解流程可從磁場測量值中移除檢測到的磁擾的磁擾分量,以提供無擾動的磁場測量值。主處理器120可用磁航向濾波器124處理無擾動的磁場測量值,從而計算或估計多磁力計設備100的磁航向(磁方位)。 Main processor 120 may include suitable logic, circuitry, and/or code that can be used to process signals received from three-axis magnetometers 112-116. The received signal may include various magnetic field measurements such as geomagnetic field measurements. In an exemplary embodiment of the invention, the main processor 120 may incorporate physical rotation with the three-axis magnetometers 112-116 aligned along the z-axis and physically rotated in increments of one another in the xy-plane. The magnetic field measurements of the three-axis magnetometers 112-116 perform magnetic disturbance detection. In this regard, main processor 120 can be used to compare the magnitude of the resultant magnetic field measurement to the disturbance threshold. If the magnitude of the resultant magnetic field measurement is not greater than the disturbance threshold, the main processor 120 can determine that there is no magnetic interference. If one or more of the magnitudes of the resultant magnetic field measurements are greater than the disturbance threshold, the main processor 120 can assert that the magnetic disturbances are detected. In an exemplary embodiment of the invention, main processor 120 may automatically signal correction unit 122 or trigger correction unit 122 to initiate three axes of physical rotation. The disturbance mitigation process for the magnetic field measurements of magnetometers 112-116. The perturbation mitigation process removes the magnetic disturbance component of the detected magnetic disturbance from the magnetic field measurements to provide an undisturbed magnetic field measurement. The main processor 120 can process the undisturbed magnetic field measurements with the magnetic heading filter 124 to calculate or estimate the magnetic heading (magnetic orientation) of the multi-magnet device 100.

校正單元122可包括合適的邏輯、電路和/或代碼,其用於對三軸磁力計112-116的磁場測量值進行自動擾動緩解流程。在本發明的各個示例性實施例中,校正單元122可利用物理旋轉的三軸磁力計112-116的磁場測量值來模擬或形成單個正交軸沿360度完整圓的旋轉測量值,就這一點而言,通過選擇不同的物理旋轉的三軸磁力計112-116在不同時刻獲得的磁場測量值,可模擬單個正交軸沿360度完整圓的旋轉測量值(例如30度的旋轉測量值)。例如,可能選擇物理旋轉的三軸磁力計112在當前時刻t當前獲得的磁場測量值、選擇物理旋轉的三軸磁力計114在時刻t當前+△t(△t>0)獲得的磁場測量值、以及選擇物理旋轉的三軸磁力計114在時刻t當前+2△t獲得磁場測量值來模擬或形成單個正交軸沿360度完整圓在時刻t當前、t當前+△t和t當前+2△t的旋轉測量值。在本發明的示例性實施例中,校正單元122可用類比的旋轉測量值來確定或計算檢測到的磁擾的硬鐵分量。校正單元122可從合成磁場測量值移除確定的硬鐵分量以形成無硬鐵的磁場測量值。校正單元122可用無硬鐵的磁場測量值來確定或計算檢測到的磁擾的軟鐵分量。校正單元122可從無硬鐵的磁場測量值移除確定的軟鐵分量以形成無擾動的磁場測量值。校正單元122可提供無擾動的磁場給磁航向濾波器124。 Correction unit 122 may include suitable logic, circuitry, and/or code for automatically perturbing the magnetic field measurements of triaxial magnetometers 112-116. In various exemplary embodiments of the present invention, the correction unit 122 may utilize magnetic field measurements of the physically rotated three-axis magnetometers 112-116 to simulate or form a rotational measurement of a single orthogonal axis along a 360 degree full circle, as such In one point, by selecting magnetic field measurements obtained at different times by different physically rotating triaxial magnetometers 112-116, a rotational measurement of a single orthogonal axis along a 360 degree full circle can be simulated (eg, a 30 degree rotation measurement) ). For example, the physical rotation of the triaxial magnetometer may select count at 112 the current time t obtained by the current magnetic field measurements, selecting a physical three-axis magnetometer rotating magnetic field measurements of the current 114 at time t + △ t (△ t> 0 ) is obtained And the three-axis magnetometer 114 that selects the physical rotation obtains the magnetic field measurement at the current time +2 Δt at time t to simulate or form a single orthogonal axis along the 360-degree complete circle at time t current , t current + Δt and t current + 2 Δt rotation measurement. In an exemplary embodiment of the invention, correction unit 122 may use analog analog rotation measurements to determine or calculate a hard iron component of the detected magnetic disturbance. Correction unit 122 may remove the determined hard iron component from the resultant magnetic field measurements to form a magnetic field measurement without hard iron. The correcting unit 122 may determine or calculate the soft iron component of the detected magnetic disturbance using the magnetic field measurement without hard iron. Correction unit 122 may remove the determined soft iron component from the magnetic field measurement without hard iron to form an undisturbed magnetic field measurement. Correction unit 122 may provide a non-disturbed magnetic field to magnetic heading filter 124.

磁航向濾波器124可包括合適的邏輯、電路和/或代碼,其可用於計算或估計多磁力計設備100的磁航向(磁方位)。就這一點而言,如果沒有檢測到磁擾,磁航向濾波器124可直接用物理旋轉的三軸磁力計112-116的磁場測量值來計算或估計多磁力計設備100的磁航向。如果檢測到磁擾,磁航向濾波器124可利用校正單元122提供的無擾動的磁場測量值來計算或估計多磁力計設備100的磁航向。磁航向濾波器124可用各種演算法(如卡爾曼濾波等)計算或估計磁航向。 Magnetic heading filter 124 may include suitable logic, circuitry, and/or code that may be used to calculate or estimate the magnetic heading (magnetic orientation) of multi-magnetometer device 100. In this regard, if no magnetic disturbance is detected, the magnetic heading filter 124 can directly calculate or estimate the magnetic heading of the multi-magnetometer device 100 using the magnetic field measurements of the physically rotating triaxial magnetometers 112-116. If a magnetic disturbance is detected, the magnetic heading filter 124 can utilize the undisturbed magnetic field measurements provided by the correction unit 122 to calculate or estimate the magnetic heading of the multi-magnet device 100. The magnetic heading filter 124 can calculate or estimate the magnetic heading using various algorithms such as Kalman filtering.

記憶體130可包括合適的邏輯、電路、介面和/或代碼,其用於儲存處理器120和/或其他相關元件單元(例如,校正單元11和磁航向濾波器124)可利用的資訊,如可執行指令和資料等。記憶體130可包括RAM、ROM、低延遲非易失性記憶體(如快閃記憶體記憶體)和/或其它合適的電子資料記憶體等。 Memory 130 may include suitable logic, circuitry, interfaces, and/or code for storing information available to processor 120 and/or other associated component units (e.g., correction unit 11 and magnetic heading filter 124), such as Executable instructions and materials. The memory 130 can include RAM, ROM, low latency non-volatile memory (such as flash memory) and/or other suitable electronic data storage and the like.

在示例性運行中,多磁力計設備100可用於利用磁力計112-116收集各種磁場測量值,如地磁場測量值;所述磁力計可安裝於多磁力計設備100上或內嵌於多磁力計設備100。就XYZ坐標系而言,三軸磁力計112-116可沿z-軸對齊,並在xy-平面內以30度增量相互間物理旋轉。主處理器120可使用物理旋轉的三軸磁力計112-116的磁場測量值來計算多磁力計設備100的磁航向。就這一點而言,多磁力計設備100可用於將物理旋轉的磁力計112-116的磁場測量值合併以執行磁擾檢測。合成磁場測量值的量值可用於檢測磁擾。如果沒有檢測到磁擾,物理旋轉的磁力計112-116的磁場測量值可直接轉發給磁航向濾波器124,以 便估計或計算多磁力計設備100的磁航向。如果檢測到磁擾,校正單元122可自動觸發來啟動對物理旋轉的磁力計112-116的磁場測量值的擾動緩解流程。就這一點而言,校正單元122可選擇物理旋轉的三軸磁力計112-116的磁場測量值來模擬或形成單個正交軸沿360度完整圓的旋轉測量值。校正單元122可利用類比的旋轉測量值來確定檢測到的磁擾的硬鐵分量。通過從物理旋轉的磁力計112-116的磁場測量值移除確定的硬鐵分量,校正單元122可生成無硬鐵的磁場測量值。可用無硬鐵的磁場測量值來確定檢測到的磁擾的軟鐵分量。校正單元122可從無硬鐵的磁場測量值移除確定的軟鐵分量。校正單元122可提供產生的無擾動的磁場測量值至磁航向濾波器124。磁航向濾波器124可用無擾動的磁場測量值估計多磁力計設備100的磁航向。 In an exemplary operation, the multi-magnet device 100 can be used to collect various magnetic field measurements, such as geomagnetic measurements, using magnetometers 112-116; the magnetometer can be mounted on multi-magnet device 100 or embedded in multiple magnetic fields Meter device 100. In the case of the XYZ coordinate system, the three-axis magnetometers 112-116 can be aligned along the z-axis and physically rotate with each other in 30-degree increments in the xy-plane. The main processor 120 can calculate the magnetic heading of the multi-magnet device 100 using the magnetic field measurements of the physically rotating three-axis magnetometers 112-116. In this regard, the multi-magnet device 100 can be used to combine magnetic field measurements of the physically rotating magnetometers 112-116 to perform magnetic disturbance detection. The magnitude of the measured value of the synthetic magnetic field can be used to detect magnetic disturbances. If no magnetic disturbance is detected, the magnetic field measurements of the physically rotating magnetometers 112-116 can be forwarded directly to the magnetic heading filter 124 to The magnetic heading of the multi-magnet device 100 is estimated or calculated. If a magnetic disturbance is detected, the correction unit 122 can automatically trigger to initiate a disturbance mitigation process for the magnetic field measurements of the physically rotating magnetometers 112-116. In this regard, the correction unit 122 may select the magnetic field measurements of the physically rotating triaxial magnetometers 112-116 to simulate or form a rotational measurement of a single orthogonal axis along a 360 degree full circle. Correction unit 122 may utilize the analog rotation measurements to determine the hard iron component of the detected magnetic disturbance. By removing the determined hard iron component from the magnetic field measurements of the physically rotating magnetometers 112-116, the correction unit 122 can generate a magnetic field measurement without hard iron. The soft iron component of the detected magnetic disturbance can be determined using magnetic field measurements without hard iron. Correction unit 122 may remove the determined soft iron component from the magnetic field measurement without hard iron. Correction unit 122 may provide the resulting undisturbed magnetic field measurements to magnetic heading filter 124. The magnetic heading filter 124 can estimate the magnetic heading of the multi-magnetometer device 100 with undisturbed magnetic field measurements.

圖2是依照本發明實施例的、在多磁力計設備沒有物理移動的磁力計的情況下在用於自校正磁場測量值的多磁力計平臺內實現的示例性信號流的框圖。如圖2所示,顯示自校正多磁力計平臺(如多磁力計設備100)內的信號流200。三軸磁力計112-116可沿z-軸對齊,並在xy-平面內以預設增量(例如30度)相互間物理旋轉。物理旋轉的三軸磁力計112-116可用於測量多磁力計設備100的地磁場。可使能或利用物理旋轉的三軸磁力計112-116的至少兩個來獲得多磁力計設備100的地磁場測量值。在步驟210中啟動自校正流程,所述自校正流程可用於校正物理旋轉的三軸磁力計112-116的磁場測量值,其中物理旋轉的三軸磁力計112-116可用於提供相應地磁場測量值至主處理器120。主處理器120可將從物理旋轉的三軸磁力計112-116 接收到的磁場測量值合併以形成多磁力計設備100的合成磁場測量值。在步驟220中,通過將合成磁場測量值的量值與擾動閥值進行比較,主處理器120可執行磁擾檢測。一旦檢測到磁擾,主處理器120可自動觸發或發信號至校正單元122啟動磁擾緩解流程。在步驟230中,例如,校正單元122可利用或執行擾動緩解軟體或應用程式,從而啟動物理旋轉的三軸磁力計112-116的磁場測量值的校正。就這一點而言,校正單元122可使用物理旋轉的三軸磁力計112-116的磁場測量值首先生成單個正交軸沿360度完整圓的旋轉測量值。校正單元122可選擇物理旋轉的三軸磁力計112-116的單個軸的所有可能的正交對(orthogonal pair),以便覆蓋整個360度方位。就這一點而言,校正單元122可選擇不同的物理旋轉的三軸磁力計112-116在不同時刻獲得的磁場測量值,以便模擬單個正交軸沿360度完整圓的旋轉測量值。校正單元122可用類比的旋轉測量值來確定檢測到的磁擾的硬鐵分量。可從物理旋轉的三軸磁力計112-116的合成磁場測量值移除確定的硬鐵分量。校正單元122可利用產生的無硬鐵的磁場測量值來確定檢測到的磁擾的軟鐵分量。校正單元122可從無硬鐵的磁場測量值移除確定的軟鐵分量,以形成多磁力計設備100的無擾動或乾淨的磁場測量值。校正單元122可提供無擾動的磁場測量值至磁航向濾波器124。在步驟240中,磁航向濾波器124可用無擾動的磁場測量值來計算或估計多磁力計設備100的磁航向。 2 is a block diagram of an exemplary signal flow implemented within a multi-magnetometer platform for self-correcting magnetic field measurements in the case of a magnetometer with no physical movement of the multi-magnet device, in accordance with an embodiment of the present invention. As shown in FIG. 2, a signal stream 200 within a self-calibrating multi-magnetometer platform, such as multi-magnet device 100, is shown. The triaxial magnetometers 112-116 are alignable along the z-axis and physically rotate relative to one another in a predetermined increment (eg, 30 degrees) in the xy-plane. The physically rotating triaxial magnetometers 112-116 can be used to measure the geomagnetic field of the multi-magnet device 100. The geomagnetic field measurements of the multi-magnet device 100 can be obtained or utilized with at least two of the physically rotating triaxial magnetometers 112-116. A self-correction flow is initiated in step 210, which can be used to correct magnetic field measurements of the physically rotated three-axis magnetometers 112-116, wherein the physically rotated three-axis magnetometers 112-116 can be used to provide corresponding magnetic field measurements The value is to the main processor 120. The main processor 120 can be rotated from a physical three-axis magnetometer 112-116 The received magnetic field measurements are combined to form a composite magnetic field measurement of the multi-magnet device 100. In step 220, main processor 120 may perform magnetic disturbance detection by comparing the magnitude of the resultant magnetic field measurement to the disturbance threshold. Once the magnetic disturbance is detected, the main processor 120 can automatically trigger or signal to the correction unit 122 to initiate the magnetic interference mitigation process. In step 230, for example, the correction unit 122 may utilize or execute a disturbance mitigation software or application to initiate correction of the magnetic field measurements of the physically rotated three-axis magnetometers 112-116. In this regard, the correction unit 122 may first generate a rotational measurement of a single orthogonal axis along a 360 degree full circle using the magnetic field measurements of the physically rotated three-axis magnetometers 112-116. Correction unit 122 may select all possible orthogonal pairs of a single axis of physically rotating triaxial magnetometers 112-116 to cover the entire 360 degree orientation. In this regard, the correction unit 122 may select magnetic field measurements obtained at different times by different physically rotating triaxial magnetometers 112-116 to simulate a rotational measurement of a single orthogonal axis along a 360 degree full circle. Correction unit 122 may use analog analog rotation measurements to determine the hard iron component of the detected magnetic disturbance. The determined hard iron component can be removed from the resultant magnetic field measurements of the physically rotating triaxial magnetometers 112-116. The correcting unit 122 can utilize the generated magnetic field measurement without hard iron to determine the soft iron component of the detected magnetic disturbance. Correction unit 122 may remove the determined soft iron component from the magnetic field measurement without hard iron to form an undisturbed or clean magnetic field measurement of multi-magnet device 100. Correction unit 122 may provide undisturbed magnetic field measurements to magnetic heading filter 124. In step 240, the magnetic heading filter 124 may calculate or estimate the magnetic heading of the multi-magnetometer device 100 using the undisturbed magnetic field measurements.

在步驟220中,如果沒有檢測到磁擾,則示例性過程跳轉至步驟250,其中主處理器120可將物理旋轉的三軸磁 力計112-116的合成磁場測量值直接轉發至磁航向濾波器124。示例性步驟可前進至步驟240,從而計算多磁力計設備100的磁航向。 In step 220, if no magnetic disturbance is detected, the exemplary process jumps to step 250 where the main processor 120 can physically rotate the three-axis magnetic The resultant magnetic field measurements of the force gauges 112-116 are forwarded directly to the magnetic heading filter 124. The exemplary steps may proceed to step 240 to calculate the magnetic heading of the multi-magnet device 100.

圖3是依照本發明實施例的、在無用戶協助和/或磁力計運動的情況下可在多磁力計平臺內生成旋轉測量值的示例性步驟的框圖。如圖3所示,假定多個三軸磁力計112-116安裝於單個多磁力計設備100上。例如,三軸磁力計112-116可沿z-軸對齊,並在xy-平面內以預設增量(例如30度)相互間物理旋轉。在步驟302中,多個物理旋轉的磁力計112-116的至少兩個可用於測量地磁場。在步驟304中,通過選擇旋轉的三軸磁力計的單個軸的所有可能的正交對,主處理器120可將多個物理旋轉的三軸磁力計112-116的磁場測量值選擇性合併,從而覆蓋整個360度。在步驟306中,主處理器120可利用選擇性合併的磁場測量值來生成或模擬旋轉測量值。在步驟308中,主處理器120可為校正單元122內執行的擾動緩解演算法輸入或提供旋轉測量值。 3 is a block diagram of exemplary steps that may generate rotational measurements within a multi-magnetometer platform without user assistance and/or magnetometer motion, in accordance with an embodiment of the present invention. As shown in FIG. 3, a plurality of three-axis magnetometers 112-116 are assumed to be mounted on a single multi-magnet device 100. For example, the three-axis magnetometers 112-116 can be aligned along the z-axis and physically rotated relative to one another in a predetermined increment (eg, 30 degrees) in the xy-plane. In step 302, at least two of the plurality of physically rotating magnetometers 112-116 can be used to measure the earth's magnetic field. In step 304, by selecting all possible orthogonal pairs of a single axis of the rotating three-axis magnetometer, the main processor 120 can selectively combine the magnetic field measurements of the plurality of physically rotated three-axis magnetometers 112-116, Thereby covering the entire 360 degrees. In step 306, main processor 120 may utilize the selectively combined magnetic field measurements to generate or simulate a rotational measurement. In step 308, main processor 120 may input or provide a rotation measurement for the disturbance mitigation algorithm performed within correction unit 122.

圖4是依照本發明實施例的、可在多磁力計平臺內實現的利用旋轉測量值檢測磁擾的示例性步驟的框圖,其中在無用戶協助和/或磁力計運動的情況下確定所述旋轉測量值。如圖4所示,假定多個三軸磁力計112-116安裝於單個多磁力計設備100上。例如,三軸磁力計112-116可沿z-軸對齊,並在xy-平面內以預設增量(例如30度)相互間物理旋轉。可利用多個物理旋轉的磁力計112-116的至少兩個來測量地磁場。在步驟402中,主處理器120可用於選擇或確定擾動檢測的擾動閥值。 4 is a block diagram of exemplary steps for detecting magnetic disturbances using rotational measurements in a multi-magnetometer platform, wherein the determination is made without user assistance and/or magnetometer motion, in accordance with an embodiment of the present invention. Rotate the measured value. As shown in FIG. 4, a plurality of three-axis magnetometers 112-116 are assumed to be mounted on a single multi-magnet device 100. For example, the three-axis magnetometers 112-116 can be aligned along the z-axis and physically rotated relative to one another in a predetermined increment (eg, 30 degrees) in the xy-plane. The geomagnetic field can be measured using at least two of a plurality of physically rotating magnetometers 112-116. In step 402, main processor 120 can be used to select or determine a disturbance threshold for the disturbance detection.

在步驟404中,主處理器120可用於將旋轉測量值的量值與選擇的擾動閥值進行比較。在無用戶協助和/或磁力計運動的情況下,旋轉測量值可來自於多個物理旋轉的磁力計112-116的至少兩個所提供的磁場測量值。在步驟406中,如果旋轉測量值的一個或多個量值比選擇的擾動閥值大,則跳轉步驟408,其中主處理器120可聲明相對於選擇的擾動閾值檢測到磁擾。在步驟410中,主處理器120可自動觸發校正單元122來啟動擾動緩解流程,以便校正多個物理旋轉的磁力計112-116的至少兩個的磁場測量值。在步驟406中,如果旋轉測量值的量值均不比選擇的擾動閥值大,則跳轉步驟412,其中主處理器120可聲明多個物理旋轉的磁力計112-116的至少兩個的磁場測量值是無擾動的。 In step 404, main processor 120 can be used to compare the magnitude of the rotational measurement to the selected disturbance threshold. In the absence of user assistance and/or magnetometer motion, the rotational measurements may be derived from at least two of the provided magnetic field measurements of the plurality of physically rotating magnetometers 112-116. In step 406, if one or more magnitudes of the rotational measurements are greater than the selected disturbance threshold, then step 408 is jumped to where the main processor 120 can assert that magnetic disturbances are detected relative to the selected disturbance threshold. In step 410, main processor 120 may automatically trigger correction unit 122 to initiate a disturbance mitigation process to correct magnetic field measurements of at least two of the plurality of physically rotating magnetometers 112-116. In step 406, if the magnitude of the rotational measurement is no greater than the selected disturbance threshold, then step 412 is reached where the main processor 120 can declare magnetic field measurements of at least two of the plurality of physically rotated magnetometers 112-116. The value is undisturbed.

圖5是依照本發明實施例的、在多磁力計平臺內在無用戶協助和/或磁力計運動的情況下可實現的自動校正磁場測量值的示例性步驟的框圖。如圖5所示,假定多個三軸磁力計112-116安裝於單個多磁力計設備100上。例如,三軸磁力計112-116可沿z-軸對齊,並在xy-平面內以預設增量(例如30度)相互間物理旋轉。多個物理旋轉的磁力計112-116的至少兩個可用於測量地磁場。在步驟502中,一旦檢測到磁擾,校正單元122可接收物理旋轉的磁力計112-116的磁場測量值的擾動緩解流程的觸發或啟動信號。在步驟503中,通過將多個物理旋轉的三軸磁力計的磁場測量值選擇性合併,校正單元122可生成或類比單個正交軸沿360度完整圓的旋轉測量值。例如,校正單元122可合併物理旋轉的三軸磁力計112在當前時刻t當前獲得的磁 場測量值、合併物理旋轉的三軸磁力計114在時刻t當前+△t(△t>0)獲得的磁場測量值、以及合併物理旋轉的三軸磁力計114在時刻t當前+2△t(△t>0)獲得的磁場測量值;可選擇校正單元122去類比或形成單個正交軸在時刻t當前、t當前+△t和t當前+2△t沿360度完整圓的旋轉測量值。在步驟504中,校正單元122可用於利用旋轉測量值確定檢測到的磁擾的硬鐵分量。在步驟506中,校正單元122可從物理旋轉的磁力計112-116的磁場測量值移除確定的硬鐵分量,以形成無硬鐵的磁場測量值。在步驟508中,校正單元122可用於利用無硬鐵的磁場測量值確定檢測的磁擾的軟鐵分量。在步驟510中,校正單元122可用於從無硬鐵的磁場測量值移除確定的軟鐵分量,以形成多磁力計設備100的無擾動的磁場測量值。在步驟512中,磁航向濾波器124可用無擾動的磁場測量值來確定或估計多磁力計設備100的磁航向。 5 is a block diagram of exemplary steps of automatically correcting magnetic field measurements that may be implemented in a multi-magnetometer platform without user assistance and/or magnetometer motion, in accordance with an embodiment of the present invention. As shown in FIG. 5, a plurality of three-axis magnetometers 112-116 are assumed to be mounted on a single multi-magnet device 100. For example, the three-axis magnetometers 112-116 can be aligned along the z-axis and physically rotated relative to one another in a predetermined increment (eg, 30 degrees) in the xy-plane. At least two of the plurality of physically rotating magnetometers 112-116 can be used to measure the earth's magnetic field. In step 502, upon detecting a magnetic disturbance, the correction unit 122 may receive a trigger or enable signal for the disturbance mitigation process of the magnetic field measurements of the physically rotating magnetometers 112-116. In step 503, by selectively combining the magnetic field measurements of the plurality of physically rotated three-axis magnetometers, the correction unit 122 may generate or analogize rotational measurements along a 360 degree complete circle of a single orthogonal axis. For example, the correction unit 122 may combine the magnetic field measurement values currently obtained by the physical rotation of the three-axis magnetometer 112 at the current time t, and the three-axis magnetometer 114 incorporating the physical rotation at the time t current + Δt (Δt>0). The magnetic field measurement, and the magnetic field measurement obtained by the three-axis magnetometer 114 incorporating physical rotation at the current time +2 Δt (Δt>0); the optional correction unit 122 de-classifies or forms a single orthogonal axis at time t Current , t current + Δt and t current +2 Δt rotation measurement value along a 360-degree complete circle. In step 504, the correction unit 122 is operable to determine a hard iron component of the detected magnetic disturbance using the rotational measurement. In step 506, the correction unit 122 may remove the determined hard iron component from the magnetic field measurements of the physically rotating magnetometers 112-116 to form a magnetic field measurement without hard iron. In step 508, the correction unit 122 can be configured to determine the soft iron component of the detected magnetic disturbance using the magnetic field measurement without hard iron. In step 510, the correction unit 122 can be configured to remove the determined soft iron component from the magnetic field measurement without hard iron to form an undisturbed magnetic field measurement of the multi-magnet device 100. In step 512, the magnetic heading filter 124 may use the undisturbed magnetic field measurements to determine or estimate the magnetic heading of the multi-magnet device 100.

在自校正多磁力計平臺的方法和系統的多個具體實施例中,多磁力計設備(例如多磁力計設備100)包括至少兩個三軸磁力計,例如三軸磁力計112-116。三軸磁力計112-116可沿XYZ坐標系的z-軸對齊,並在xy-平面以預設增量或動態改變的增量(例如30度)物理旋轉。物理旋轉的三軸磁力計112-116的至少兩個可用於測量相應地磁場。在無用戶協助和/或磁力計運動的情況下,主處理器120可用於利用物理旋轉的磁力計112-116收集的相應地磁場測量值來測量或形成單個正交軸沿360度完整圓的旋轉測量值。主處理器120可用於用旋轉測量值校正物理旋轉的三軸磁力計112-116。在本發明的實施例中,主處理器120 可用於將物理旋轉的三軸磁力計112-116的磁場測量值合併,以形成多磁力計設備100的合成測量值。如最小二乘法(Least-Square Combining)、最大比合併說法(Maximal or Maximum Ratio Combining,MRC)和/或算術平均法(Arithmetic Average Combining)等多種演算法可用於合併磁場測量值。磁場測量值的量值可用於和擾動閥值進行比較,以便檢測物理旋轉的三軸磁力計112-116的磁場測量值的磁擾。如果合成測量值的一個或多個量值均不比擾動閥值大,主處理器120可聲明磁場測量值是無擾動的。主處理器120可直接將物理旋轉的三軸磁力計112-116的合成磁場測量值轉發至磁航向濾波器124,以便計算多磁力計設備100的磁航向。如果合成測量值的一個或多個量值比擾動閥值大,主處理器120可聲明檢測到磁擾。就這一點而言,主處理器120可觸發或發信號至校正單元122以啟動對物理旋轉的三軸磁力計112-116的磁場測量值的擾動緩解流程。校正單元122可通過將物理旋轉的三軸磁力計112-116的磁場測量值選擇性合併來啟動擾動緩解流程,以便生成或類比旋轉測量值。就這一點而言,可選擇不同的物理旋轉的三軸磁力計112-116在不同時刻獲得的磁場測量值來合併,以形成旋轉測量值。例如,可能選擇物理旋轉的三軸磁力計112在當前時刻t當前獲得的磁場測量值、選擇物理旋轉的三軸磁力計114在時刻t當前+△t(△t>0)獲得的磁場測量值、以及選擇物理旋轉的三軸磁力計114在時刻t當前+2△t獲得磁場測量值來模擬或形成單個正交軸沿360度完整圓在時刻t當前、t當前+△t和t當前+2△t的旋轉測量值。校正單元122可用旋轉測量值來確定檢測到的磁擾的硬鐵 分量。可從物理旋轉的三軸磁力計112-116的磁場測量值移除確定的硬鐵分量以形成無硬鐵的磁場測量值。主處理器120可用無硬鐵的磁場測量值來確定檢測的磁擾的軟鐵分量。可從無硬鐵的磁場測量值移除確定的軟鐵分量以形成無擾動的磁場測量值。校正單元122可提供無擾動的磁場測量值至磁航向濾波器124,以便計算多磁力計設備100的磁航向。 In various embodiments of the method and system of self-calibrating multi-magnetometer platform, the multi-magnet device (eg, multi-magnet device 100) includes at least two three-axis magnetometers, such as three-axis magnetometers 112-116. The triaxial magnetometers 112-116 can be aligned along the z-axis of the XYZ coordinate system and physically rotated in a predetermined increment or dynamically varying increment (eg, 30 degrees) in the xy-plane. At least two of the physically rotating triaxial magnetometers 112-116 can be used to measure the corresponding magnetic field. In the absence of user assistance and/or magnetometer motion, the main processor 120 can be used to measure or form a single orthogonal axis along a 360 degree full circle using corresponding geomagnetic measurements collected by the physically rotating magnetometers 112-116. Rotate the measured value. The main processor 120 can be used to correct the physically rotated triaxial magnetometers 112-116 with rotational measurements. In an embodiment of the invention, main processor 120 may be used to combine the magnetic field measurements of physically rotating three-axis magnetometers 112-116 to form a composite measurement of multi-magnet device 100. Various algorithms such as Least-Square Combining, Maximum or Maximum Ratio Combining (MRC), and/or Arithmetic Average Combining can be used to combine magnetic field measurements. The magnitude of the magnetic field measurements can be used to compare with the disturbance threshold to detect the magnetic disturbance of the magnetic field measurements of the physically rotating triaxial magnetometers 112-116. If one or more magnitudes of the composite measurements are not greater than the disturbance threshold, the main processor 120 can declare that the magnetic field measurements are undisturbed. The main processor 120 can directly forward the resultant magnetic field measurements of the physically rotated three-axis magnetometers 112-116 to the magnetic heading filter 124 to calculate the magnetic heading of the multi-magnet device 100. If one or more magnitudes of the composite measurements are greater than the disturbance threshold, the main processor 120 can assert that the magnetic disturbances are detected. In this regard, main processor 120 can trigger or signal to correction unit 122 to initiate a disturbance mitigation process for magnetic field measurements of physically rotating three-axis magnetometers 112-116. Correction unit 122 may initiate a disturbance mitigation process by selectively combining magnetic field measurements of physically rotating three-axis magnetometers 112-116 to generate or analogize rotational measurements. In this regard, the magnetic field measurements obtained at different times by the different physically rotating triaxial magnetometers 112-116 can be combined to form a rotational measurement. For example, possible to select the physical triaxial magnetometer 112 rotates counter current time t at the current magnetic field measurements obtained by selecting a physical three-axis magnetometer rotating magnetic field measurements of the current 114 at time t + △ t (△ t> 0 ) obtained And the three-axis magnetometer 114 that selects the physical rotation obtains the magnetic field measurement at the current time +2 Δt at time t to simulate or form a single orthogonal axis along the 360-degree complete circle at time t current , t current + Δt and t current + 2 Δt rotation measurement. Correction unit 122 may use the rotational measurements to determine the hard iron component of the detected magnetic disturbance. The determined hard iron component can be removed from the magnetic field measurements of the physically rotating triaxial magnetometers 112-116 to form a magnetic field measurement without hard iron. The main processor 120 can determine the soft iron component of the detected magnetic disturbance with a magnetic field measurement without hard iron. The determined soft iron component can be removed from the magnetic field measurement without hard iron to form an undisturbed magnetic field measurement. Correction unit 122 may provide undisturbed magnetic field measurements to magnetic heading filter 124 to calculate the magnetic heading of multi-magnet device 100.

本發明的其他實施例提供一種機器和/或電腦可讀記憶體和/或介質,其上儲存的機器代碼和/或電腦程式具有至少一個可由機器和/或電腦執行的程式碼片段,使得機器和/或電腦能夠實現本文所描述的自校正多磁力計平臺的步驟。 Other embodiments of the present invention provide a machine and/or computer readable memory and/or medium having machine code and/or computer program stored thereon having at least one code segment executable by a machine and/or a computer such that the machine And/or a computer can implement the steps of the self-calibrating multi-magnetometer platform described herein.

本發明可以通過硬體、軟體,或者軟硬體結合來實現。本發明可以在至少一個電腦系統中以集中方式實現,或者由分佈在幾個互連的電腦系統中的不同部分以分散方式實現。任何可以實現所述方法的電腦系統或其它設備都是可適用的。常用軟硬體的結合可以是安裝有電腦程式的通用電腦系統,通過安裝和執行所述程式控制電腦系統,使其按所述方法運行。在電腦系統中,利用處理器和儲存單元來實現所述方法。 The invention can be implemented by a combination of hardware, software, or combination of hardware and software. The invention can be implemented in a centralized fashion in at least one computer system or in a decentralized manner by different portions of the computer system distributed across several interconnects. Any computer system or other device that can implement the method is applicable. A combination of commonly used hardware and software may be a general-purpose computer system with a computer program installed to control the computer system by installing and executing the program to operate as described. In a computer system, the method is implemented using a processor and a storage unit.

本發明還可以通過電腦程式產品進行實施,所述套裝程式含能夠實現本發明方法的全部特徵,當其安裝到電腦系統中時,通過運行,可以實現本發明的方法。本申請文件中的電腦程式所指的是:可以採用任何程式語言、代碼或符號編寫的一組指令的任何運算式,該指令組使系統具有資訊處理能力,以直接實現特定功能,或在進行下述一 個或兩個步驟之後,a)轉換成其它語言、代碼或符號;b)以不同的格式再現,實現特定功能。 The present invention can also be implemented by a computer program product containing all of the features of the method of the present invention which, when installed in a computer system, can be implemented by operation. The computer program in this document refers to any expression of a set of instructions that can be written in any programming language, code, or symbol. The instruction set enables the system to have information processing capabilities to directly implement a particular function, or to perform One of the following After two or two steps, a) is converted into other languages, codes or symbols; b) is reproduced in a different format to achieve a specific function.

本發明是通過幾個具體實施例進行說明的,本領域技術人員應當理解,在不脫離本發明範圍的情況下,還可以對本發明進行各種變換及等同替代。另外,針對特定情形或具體情況,可以對本發明做各種修改,而不脫離本發明的範圍。因此,本發明不局限於所公開的具體實施例,而應當包括落入本發明申請專利範圍範圍內的全部實施方式。 The present invention has been described in terms of several specific embodiments, and it will be understood by those skilled in the art that In addition, various modifications may be made to the invention without departing from the scope of the invention. Therefore, the invention is not limited to the specific embodiments disclosed, but should include all embodiments falling within the scope of the invention.

100‧‧‧多磁力計設備 100‧‧‧Multiple magnetometer equipment

110‧‧‧主處理器 110‧‧‧Main processor

112-116‧‧‧多個磁力計 112-116‧‧‧Multiple magnetometers

120‧‧‧主處理器 120‧‧‧Main processor

122‧‧‧校正單元 122‧‧‧Correction unit

124‧‧‧磁航向濾波器 124‧‧‧Magnetic heading filter

130‧‧‧儲存器 130‧‧‧Storage

200‧‧‧信號流 200‧‧‧Signal flow

圖1是依照本發明實施例的示例性多磁力計設備的示意圖,其中在多磁力計設備沒有物理移動的磁力計的情況下該多磁力計設備用於自校正磁場測量值。 1 is a schematic illustration of an exemplary multi-magnetometer device for self-correcting magnetic field measurements in the case where a multi-magnetometer device does not have a physically moving magnetometer, in accordance with an embodiment of the present invention.

圖2是依照本發明實施例的、在多磁力計設備沒有物理移動的磁力計的情況下在用於自校正磁場測量值的多磁力計平臺內實現的示例性信號流的框圖。 2 is a block diagram of an exemplary signal flow implemented within a multi-magnetometer platform for self-correcting magnetic field measurements in the case of a magnetometer with no physical movement of the multi-magnet device, in accordance with an embodiment of the present invention.

圖3是依照本發明實施例的、在無用戶協助和/或磁力計運動的情況下可在多磁力計平臺內實現的生成旋轉測量值的示例性步驟的框圖。 3 is a block diagram of exemplary steps for generating rotational measurements that may be implemented within a multi-magnetometer platform without user assistance and/or magnetometer motion, in accordance with an embodiment of the present invention.

圖4是依照本發明實施例的、可在多磁力計平臺內實現的利用旋轉測量值檢測磁擾的示例性步驟的框圖,其中在無用戶協助和/或磁力計運動的情況下確定所述旋轉測量值。 4 is a block diagram of exemplary steps for detecting magnetic disturbances using rotational measurements in a multi-magnetometer platform, wherein the determination is made without user assistance and/or magnetometer motion, in accordance with an embodiment of the present invention. Rotate the measured value.

圖5是依照本發明實施例的、在多磁力計平臺內在無用戶協助和/或磁力計運動的情況下可實現的自動校正磁場測量值的示例性步驟的框圖。 5 is a block diagram of exemplary steps of automatically correcting magnetic field measurements that may be implemented in a multi-magnetometer platform without user assistance and/or magnetometer motion, in accordance with an embodiment of the present invention.

Claims (10)

一種通訊方法,所述方法包括如下步驟:在包括至少兩個磁力計的多磁力計設備中,其中所述至少兩個磁力計沿XYZ坐標系的z軸對齊,並在所述XYZ坐標系的xy-平面內物理增量旋轉:利用所述至少兩個磁力計測量相應地磁場;在無用戶協助和/或磁力計運動的情況下利用所述地磁場測量值測量單個正交軸沿360度完整圓的旋轉;以及利用所述旋轉測量值校正所述至少兩個磁力計。 A communication method, the method comprising the steps of: in a multi-magnet device comprising at least two magnetometers, wherein the at least two magnetometers are aligned along a z-axis of an XYZ coordinate system and in the XYZ coordinate system Xy-in-plane physical incremental rotation: measuring a corresponding magnetic field using the at least two magnetometers; measuring a single orthogonal axis along the 360 degrees using the geomagnetic field measurements without user assistance and/or magnetometer motion Rotation of a complete circle; and correcting the at least two magnetometers with the rotation measurements. 如申請專利範圍第1項所述之方法,其中所述方法包括相對於所述至少兩個磁力計的其中一個將所述相應地磁場測量值合併以形成合成測量值。 The method of claim 1, wherein the method comprises combining the respective geomagnetic field measurements with respect to one of the at least two magnetometers to form a composite measurement. 如申請專利範圍第1項所述之方法,其中所述方法包括將所述合成測量值的量值與擾動閾值進行比較。 The method of claim 1, wherein the method comprises comparing the magnitude of the composite measurement to a disturbance threshold. 如申請專利範圍第3項所述之方法,其中所述方法包括基於所述比較結果檢測所述相應地磁場測量值的磁擾。 The method of claim 3, wherein the method comprises detecting a magnetic disturbance of the corresponding geomagnetic field measurement based on the comparison. 如申請專利範圍第4項所述之方法,其中所述方法包括如果沒有檢測到所述磁擾,則利用所述合成磁場測量值確定所述多磁力計設備的磁航向。 The method of claim 4, wherein the method comprises determining a magnetic heading of the multi-magnetometer device using the synthetic magnetic field measurement if the magnetic disturbance is not detected. 如申請專利範圍第4項所述之方法,其中所述方法包括如果檢測到所述磁擾,則觸發所述多磁力計設備內的擾動緩解流程。 The method of claim 4, wherein the method comprises triggering a disturbance mitigation process within the multi-magnetometer device if the magnetic disturbance is detected. 如申請專利範圍第6項所述之方法,其中所述方法包括通過選擇性地合併所述相應地磁場測量值生成旋轉測量值。 The method of claim 6, wherein the method comprises generating a rotation measurement by selectively combining the respective magnetic field measurements. 如申請專利範圍第7項所述之方法,其中所述方法包括:利用所述旋轉測量值確定所述檢測到的磁擾的硬鐵分 量;以及從所述相應地磁場測量值移除所述確定的硬鐵分量,以形成無硬鐵的磁場測量值。 The method of claim 7, wherein the method comprises: determining, by the rotation measurement, the hard iron of the detected magnetic disturbance And removing the determined hard iron component from the respective measured magnetic field measurements to form a magnetic field measurement without hard iron. 如申請專利範圍第8項所述之方法,其中所述方法包括:利用所述無硬鐵的相應地磁場測量值確定所述檢測到的磁擾的軟鐵分量;以及從所述無硬鐵的磁場測量值移除所述確定的軟鐵分量,以形成無擾動的相應地磁場測量值。 The method of claim 8, wherein the method comprises: determining a soft iron component of the detected magnetic interference using the corresponding magnetic field measurement of the hard iron; and from the hard iron The measured magnetic field value removes the determined soft iron component to form an undisturbed corresponding geomagnetic field measurement. 一種通訊系統,所述系統包括:在包括至少兩個磁力計的多磁力計設備內使用的一個或多個處理器和/或電路,其中所述至少兩個磁力計沿XYZ坐標系的z軸對齊,並在所述XYZ坐標系的xy-平面內物理增量旋轉;所述一個或多個處理器和/或電路用於:利用所述至少兩個磁力計測量相應地磁場;在無用戶協助和/或磁力計運動的情況下利用所述地磁場測量值測量單個正交軸沿360度完整圓的旋轉;以及利用所述旋轉測量值校正所述至少兩個磁力計。 A communication system, the system comprising: one or more processors and/or circuits for use in a multi-magnet device comprising at least two magnetometers, wherein the at least two magnetometers are along a z-axis of an XYZ coordinate system Aligned and physically incrementally rotated within the xy-plane of the XYZ coordinate system; the one or more processors and/or circuits are configured to: measure a corresponding magnetic field using the at least two magnetometers; Using the geomagnetic field measurements to measure the rotation of a single orthogonal axis along a 360 degree full circle with assistance and/or magnetometer motion; and correcting the at least two magnetometers with the rotational measurements.
TW101106958A 2011-03-21 2012-03-02 Method for removing magnetic disturbances from magnetic field measurements and multi - magnetometer devices TWI559020B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/053,126 US8838403B2 (en) 2011-03-21 2011-03-21 Method and system for a self-calibrated multi-magnetometer platform

Publications (2)

Publication Number Publication Date
TW201300810A true TW201300810A (en) 2013-01-01
TWI559020B TWI559020B (en) 2016-11-21

Family

ID=45655092

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101106958A TWI559020B (en) 2011-03-21 2012-03-02 Method for removing magnetic disturbances from magnetic field measurements and multi - magnetometer devices

Country Status (5)

Country Link
US (1) US8838403B2 (en)
EP (1) EP2503285A3 (en)
KR (1) KR101485142B1 (en)
CN (1) CN102879010B (en)
TW (1) TWI559020B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567367B (en) * 2014-06-25 2017-01-21 英特爾股份有限公司 Magnetometer unit for electronic devices
CN113109751A (en) * 2021-04-15 2021-07-13 中国科学院地质与地球物理研究所 System and method for on-orbit real-time calibration of vector magnetometer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2959598A4 (en) * 2013-02-20 2016-12-14 Nokia Technologies Oy Accessory detection
CN103278860B (en) * 2013-05-06 2015-10-28 国家***第二海洋研究所 A kind of on-the-spot automatic correcting method of deep-sea three-component magnetometer
GB2524802B (en) * 2014-04-03 2018-11-07 Nokia Technologies Oy A magnetometer apparatus and associated methods
US9804288B2 (en) 2014-05-16 2017-10-31 Baker Hughes, A Ge Company, Llc Real-time, limited orientation sensor auto-calibration
US9683845B2 (en) * 2014-09-26 2017-06-20 Intel Corporation Virtual gyroscope using dual magnetometers for electronic devices
US10747236B2 (en) * 2015-02-19 2020-08-18 Flir Unmanned Aerial Systems Ulc Systems and processes for calibrating unmanned aerial vehicles
US10352725B2 (en) 2015-06-18 2019-07-16 Sharp Laboratories Of America, Inc. Sensor calibration method and system
WO2017084073A1 (en) * 2015-11-19 2017-05-26 深圳市大疆创新科技有限公司 Method, device and system for detecting magnetic-field interference
CN107728629B (en) * 2017-09-19 2021-06-29 富平县韦加无人机科技有限公司 Unmanned aerial vehicle magnetic anomaly detection system and method
CN110986923B (en) * 2019-11-28 2023-06-13 北京自动化控制设备研究所 Geomagnetic course error correction method
KR20230069775A (en) 2021-11-12 2023-05-19 삼성전자주식회사 Method of calibrating magnetometer and magnetometer calibration device performing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885302B2 (en) * 2002-07-31 2005-04-26 Itron Electricity Metering, Inc. Magnetic field sensing for tamper identification
EP1605232A3 (en) * 2004-06-11 2010-12-29 Yamaha Corporation Method and apparatus for measuring magnetic offset of geomagnetic sensor and portable electronic apparatus
WO2006035505A1 (en) * 2004-09-29 2006-04-06 C & N Inc Magnetic sensor control method, magnetic sensor controller and portable terminal device
CN1303501C (en) * 2004-09-30 2007-03-07 清华大学 Interdynamic information perception method and smart game platform embedded in cell phone
KR101060773B1 (en) * 2006-03-30 2011-08-30 교세라 가부시키가이샤 How to Calibrate Portable Electronic Devices and Geomagnetic Sensors
EP2031349A4 (en) * 2006-05-09 2012-10-03 Alps Electric Co Ltd Calibration program and electronic compass
JP5012252B2 (en) * 2007-06-25 2012-08-29 ヤマハ株式会社 Magnetic data processing apparatus, method and program
WO2012068359A2 (en) * 2010-11-17 2012-05-24 Hillcrest Laboratories, Inc. Apparatuses and methods for magnetometer alignment calibration without prior knowledge of the local magnetic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567367B (en) * 2014-06-25 2017-01-21 英特爾股份有限公司 Magnetometer unit for electronic devices
US9816814B2 (en) 2014-06-25 2017-11-14 Intel Corporation Magnetometer unit for electronic devices
CN113109751A (en) * 2021-04-15 2021-07-13 中国科学院地质与地球物理研究所 System and method for on-orbit real-time calibration of vector magnetometer
CN113109751B (en) * 2021-04-15 2021-11-30 中国科学院地质与地球物理研究所 System and method for on-orbit real-time calibration of vector magnetometer

Also Published As

Publication number Publication date
US20120245875A1 (en) 2012-09-27
KR20120107439A (en) 2012-10-02
TWI559020B (en) 2016-11-21
EP2503285A2 (en) 2012-09-26
CN102879010B (en) 2016-12-07
EP2503285A3 (en) 2015-05-06
CN102879010A (en) 2013-01-16
US8838403B2 (en) 2014-09-16
KR101485142B1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
TWI559020B (en) Method for removing magnetic disturbances from magnetic field measurements and multi - magnetometer devices
JP6359067B2 (en) System and method for improving orientation data
US10288431B2 (en) Device for estimating moving object travel direction and method for estimating travel direction
CN103941309B (en) Geomagnetic sensor calibrator (-ter) unit and its method
JP5469670B2 (en) Geomagnetic detector
CN103299247B (en) For the dynamic tracing in magnetic near field and the equipment of compensation and method
TW201428297A (en) Angular velocity estimation using a magnetometer and accelerometer
EP2798357A1 (en) Determining a speed of a multidimensional motion in a global coordinate system
JP5706576B2 (en) Offset estimation apparatus, offset estimation method, offset estimation program, and information processing apparatus
JP2012503194A (en) How to process measurements from accelerometers
JP2016061766A5 (en) Electronic device, offset value acquisition method, and offset value acquisition program
CN102331873A (en) Touch-point tracking, positioning and correcting method and system
KR101503046B1 (en) inertial measurement unit and method for calibrating the same
KR101297317B1 (en) Calibration Method of Motion Sensor for Motion Tracking
JP5374422B2 (en) Magnetic field detector
JP6485195B2 (en) Inclination measuring method and apparatus, electronic apparatus and program
CN109186635A (en) The zero point correction method and system of three-axis gyroscope
JP2016109609A (en) Posture estimation device and control program for posture estimation device
JP2013088162A (en) State estimation apparatus
JP6477214B2 (en) Method and apparatus for measuring inclination, electronic device and program
TWI491902B (en) Heading calibration method and compass sensor using the same
JP2011185867A (en) Magnetic field detector
CN106574837A (en) Generation of estimation for earth's gravity
JP2011169657A (en) Magnetic field detector
KR20160002103A (en) Automatic calibration method for geomagnetic sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees