TW201250881A - Apparatus and method for controlling movement of die bonding head - Google Patents

Apparatus and method for controlling movement of die bonding head Download PDF

Info

Publication number
TW201250881A
TW201250881A TW100135494A TW100135494A TW201250881A TW 201250881 A TW201250881 A TW 201250881A TW 100135494 A TW100135494 A TW 100135494A TW 100135494 A TW100135494 A TW 100135494A TW 201250881 A TW201250881 A TW 201250881A
Authority
TW
Taiwan
Prior art keywords
die
ball screw
unit
temperature
axis
Prior art date
Application number
TW100135494A
Other languages
Chinese (zh)
Other versions
TWI529828B (en
Inventor
Yun-Gi Kim
Seung-Jin Roh
Original Assignee
Top Eng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Top Eng Co Ltd filed Critical Top Eng Co Ltd
Publication of TW201250881A publication Critical patent/TW201250881A/en
Application granted granted Critical
Publication of TWI529828B publication Critical patent/TWI529828B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/64Manufacture or treatment of solid state devices other than semiconductor devices, or of parts thereof, not peculiar to a single device provided for in groups H01L31/00 - H10K99/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Disclosed herein is an apparatus and method for controlling movement of a die bonding head of a die bonding machine. The apparatus includes at least one temperature sensing unit, a compensation unit and a transport-unit-drive-control unit. The temperature sensing unit measures temperatures of transports units that respectively move the die bonding head in different axial directions. The compensation unit compensates for displacement of the die bonding head in accordance with the temperatures measured by the temperature sensing units. The transport-unit-drive-control unit controls the transport units in response to a compensation value calculated by the compensation unit to move the die bonding head to a correct pick-up or bonding position.

Description

201250881 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種晶粒黏接機,特別係關於一種用於 調控一種晶粒黏接機之一晶粒黏接頭之裝置及方法。 【先前技術】 一般而言,半導體之封裝製程如下:將一晶圓切割成 數片半導體晶片;黏接半導體晶片(或稱晶粒)於一玻璃 面板;藉由一導線將晶粒打線接合於玻璃基板的連接墊 (connection pads);將晶粒本身及晶粒周圍以熱固性樹脂 (thermosetting resin)進行封裝;在封裝用的熱塑性樹脂 表面蓋印預期之字樣及圖案;分割玻璃基板以形成多個半 導體封裝體。 在上述半導體封裝製程之晶粒黏接操作中,晶圓在半 導體製程會先經過幾種檢測裝置的精密檢測,晶圓上的晶 粒中,只有符合標準的晶粒會被頂取(picked up )並承載 到一輸送軌道(transport rail)上。輸送軌道是用以將玻璃 面板(glass panels)移動至一晶粒黏接位置。因此,當每 個晶粒要對應黏接到位於晶粒黏接位置上的玻璃基板 時,晶粒黏接頭單元會將晶粒壓到玻璃面板上。201250881 VI. Description of the Invention: [Technical Field] The present invention relates to a die bonding machine, and more particularly to an apparatus and method for regulating a die bond joint of a die bonding machine. [Prior Art] Generally, a semiconductor packaging process is as follows: a wafer is cut into a plurality of semiconductor wafers; a semiconductor wafer (or a die) is bonded to a glass panel; and a die is bonded to the glass by a wire. a connection pad of the substrate; encapsulating the die itself and the periphery of the die with a thermosetting resin; stamping the desired typeface and pattern on the surface of the thermoplastic resin for packaging; and dividing the glass substrate to form a plurality of semiconductors Package. In the die attach operation of the above semiconductor packaging process, the wafer is firstly subjected to precise detection by several detecting devices in the semiconductor process, and only the crystal grains conforming to the standard are picked up in the die on the wafer (picked up) And carried to a transport rail. The conveyor track is used to move the glass panels to a die attach position. Therefore, when each of the dies is bonded to the glass substrate at the die bonding position, the die bonding unit presses the dies onto the glass panel.

關於進行晶粒黏接之晶粒黏接機的相關作動方式’將 另外於說明書中參照圖1描述。圖1係為一標準的晶粒黏 接機之部分示意圖。如圖1所示,X軸方向係定義為一玻 璃面板沿一輸送執道輸送至一晶粒黏接位置的一方向,ZThe relevant operation mode of the die bonding machine for performing die bonding will be described with reference to Fig. 1 in the specification. Figure 1 is a partial schematic view of a standard die attach machine. As shown in Fig. 1, the X-axis direction is defined as a direction in which a glass panel is transported along a transport path to a die bonding position, Z.

4 S 201250881 轴係定義為一晶粒黏接頭110上下移動之一垂直方向,以 及Y軸係定義為晶粒黏接頭110介於輸送軌道及在另一位 置上的一晶圓平台之間。 請參照圖1所示’晶粒黏接機100係用以將單一個晶 粒黏接於相對應之一玻璃基板上。晶粒黏接機100係包括 晶粒黏接頭(die bonding head) 110,以及第一至第三輸 送單元120、130及140,第一至第三輸送單元12〇、13〇 及140係用以分別將晶粒黏接頭11〇沿X軸、γ軸及乙軸 方向輸送。 晶粒黏接頭110自位於晶圓平台的一晶圓上頂取一晶 粒,輸送所頂取之晶粒至位於輸送軌道上的晶粒黏接位 置’接著將晶粒黏接到由輸送軌道輸送的玻璃面板上。例 如,晶粒黏接頭110包含一吸取單元(suctionunit),以將 晶粒自晶圓平台上吸取。吸取單元内具有一真空管線 (vacuum line) ’藉由外界提供之真空力道吸住晶粒。然 而’吸取單元並非本發明所要強調之技術特徵,因此,關 於吸取單元的詳細說明及作動方式在此便不多做贅述。 同時,晶粒黏接頭110必須能在晶圓平台上方沿垂直 方向(Z軸)移動’以頂取晶圓上的晶粒,其亦能在輸送 軌道上方沿垂:|:方向(z軸)移動,以便將晶粒黏接於破 璃面板上。第一輸送單元12〇控制晶粒黏接頭11〇沿著垂 直方向(z轴)移動的作動。第一輸送單元12〇可透過一 馬達150及一滾珠螺桿16〇的結合來實施。 此外’晶粒點接頭11〇必須能在晶圓平台及輸送軌道 5 201250881 之間來回移動以導引晶粒黏接之作動。針對這點,第二輸 送單7L 130用以將晶粒黏接頭11〇自晶圓平台移動至輸送 軌道或自輪送軌道移動至晶圓平台。第二輸送單元130可 透過一馬達150及一滾珠螺桿160的結合來實施。第三輸 ,單兀140用以在輸送轨道所處方向(X軸方向)上輸送 日曰粒黏接頭110 °第三輪送單元140可透過-馬達150及 一滾珠螺桿160的結合來實施。 在具有如上所述之晶粒黏接機100中,晶粒黏接頭110 透過馬達15G及滾珠螺捍⑽在乂軸、γ轴及2轴方向上 2主導接之作動。然而,馬達在高速驅動及經 二,ΤΙ1作動的情;兄下,滾珠螺桿160會有變形的問題。 ^ 說田日日粒黏接頭110在X軸、Y軸及z軸方向 上移動的一段時間徭,> 高而㈣t溫。珠螺桿160的溫度會逐漸升 160的祕,因增加的溫度會引起滾珠螺桿 變。根據職結果,粒頂取位置及晶粒雜位置的改 粒黏接頭110在x、珠螺桿160作動一段時間後,晶 偏離20 μηι i 50 座標上距正確的頂取或黏接位置係 膨脹,而使得晶粒勒接^一來’若因滾珠螺桿160的熱 2〇 μιη至1〇 μιη,則1〇偏離正確的頂取或黏接位置 因此’必須提供-種:正吊地①成頂取絲接的作動。 熱膨脹所造成的誤差。法係用以補償因滾珠螺桿160發生 【發明内容】 6 1 201250881 有鑑於上述習知技術中的問題,本發明之一目的係提 供一裝置用以調控晶粒黏接機之晶粒黏接頭的移動,此晶 粒黏接機中用以移動晶粒黏接頭之輸送單元因熱膨脹所 造成頂取位置或黏接位置的偏離’經補償後可正確地完成 頂取或黏接一晶粒之作動,同時也提供一方法搭配該裝置 用以s周控晶粒黏接頭的移動。 本發明之另一目的係提供一裝置用以調控晶粒黏接 頭’該裝置係能針對用以移動晶粒黏接頭的輸送單元因發 生熱膨脹,而造成頂取位置或黏接位置的偏離立即進行補 償,同時提供一方法係搭配該裝置調控晶粒黏接頭之移 動。 為達成上述目的,在本發明一實施例中’提供一裝置 係用以調控一晶粒黏接頭包括:至少一溫度感測單元,偵 測複數輸送單元之複數溫度,複數輸送單元係分別在不同 軸向上移動晶粒黏接頭,·一補償單元,依溫度感測單元偵 測到的溫度補償晶粒黏接頭之一位移;以及一輸送單元之 驅動調控單元,係依補償單元計算的補償數值,調控輸送 單元移動晶粒黏接頭至一正確的頂取位置或一黏接位置。 在本發明另一實施例中,提供〆裝置係用以調控晶粒 黏接頭移動,包括:一晶圓平台,待頂取之一晶粒係置於 晶圓平台上;一輸送執道,其係於V軸方向上與晶圓平台 分別設置,其中輸送軌道係沿一 X軸方向輸送晶粒至對應 黏接之一玻璃面板,晶粒黏接頭自晶圓平台頂取晶粒,輸 送被頂取之晶粒至位於輸送軌道上的/晶粒黏接位置,並 201250881 將晶粒黏接至由輸送軌道輸送之玻璃面板上;一 χ轴滾珠 螺桿,其在一方向上水平方向移動晶粒黏接頭,此方向係 與輸送軌道之輸送玻璃面板之一輸送方向相同;一 Y軸滚 珠螺桿,其在一方向上水平方向移動晶粒黏接頭,且此方 向係介於晶粒之一頂取位置及輸送執道之間;一 z軸滾珠 螺桿,其係垂直移動晶粒黏接頭;至少一溫度感測單元, 偵測X軸滚珠螺桿、Y軸滾珠螺桿及Z轴滾珠螺桿至少其 中之一之一溫度;一補償單元,依溫度感測單元測得之溫 度,補償X軸滾珠螺桿、Y軸滚珠螺桿及Z軸滾珠螺桿至 少其中之一之位移;一輸送單元之驅動調控單元,依補償 單元計算之一補償數值調控X軸滾珠螺桿、Y軸滾珠螺桿 及Z軸滾珠螺桿至少其中之一,以移動晶粒黏接單元至正 確的一頂取位置或一黏接位置。 在一實施例中,本發明係更提供一種用以控制一晶粒 黏接機之晶粒黏接頭移動的方法’其中晶粒黏接機具有複 數輸送單元用以沿一個以上的方向移動晶粒黏接頭,方法 步驟係包括:即時偵測輸送單元之溫度;依所偵測之溫度 決定一補償數值用以補償晶粒黏接頭之位移,以將晶粒黏 接頭設置於正確的一頂取位置或一黏接位置;以及依據所 決定之補償數值調控輸送單元之作動。 如上所述,在本發明用以調控一晶粒黏接頭的一裝置 中,用以移動晶粒黏接頭之輸送單元的溫度能即時被偵 測。當測得之溫度係介於使輸送單元熱膨脹之一範圍時, 裝置將補償因熱膨脹所造成晶粒頂取或晶粒黏接位置的 .201250881 偏移。因此,可提升晶粒頂取及晶粒黏接作動的準確度。 再者,本發明中,針對熱膨脹造成晶粒黏接頭之晶粒 頂取位置或晶粒黏接位置的偏移所提供的補償作動,係可 藉由讀取㈣數值即可達成,其中,補舰值係依所測得 之溫度變換而來。如此,可快速補償晶粒頂取位置或晶粒 黏接位置之偏移。 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之一 種調控晶粒黏接頭移動之裝置及方法,其中相同的元件將 以相同的參照符號加以說明。其中,關於晶粒黏接頭之已 知功能或結構之詳細說明並非本發明欲強調者,則將其省 略。 圖2為依據本發明之一實施例中’一種用以調控晶粒 黏接頭(diebondinghead)移動之裝置(以下,將簡稱為 「黏接頭移動調控裝置(head movement control apparatus)」)之系統方塊圖。勘接頭移動調控裝置之機械 結構係如圖1所示。 請參照如圖2所示,本發明之實施例中,黏接頭移動 調控裝置係包括一晶粒黏接頭110以及第一至第三輸送單 元120、130及140’第一至第三輸送單元12〇、13〇及14〇 係用以沿X袖、Y轴及Z轴輪送晶粒黏接頭。 晶粒黏接頭110從放置在晶圓平台170上的晶圓中頂 取一晶粒。隨後,晶粒黏接頭110再將頂取的晶粒輸送至 201250881 位於一輸送軌道180的一 頭110再把晶粒黏接至一 190 上。 晶粒黏接位置。然後,晶粒黏接 鉍輪送軌道180輸送之破璃面板 舉例來說,晶圓^ ---- 一 /IXL,儿目。 平口 170與黏接頭移動調控裝置整合 \r At t ^ 上具有待頂取的晶粒。放置的位置’晶圓 且其位置係不同㈣日千。17G較佳地位於Υ軸上, 實施财,晶圓^!!?動調控裝置之主體位置。在一 送軌道180也位於Y軸上異整合。輸 送軌道_用以在x轴 ' 曰::位置。輸 板19〇。 π上翰达日日粒所黏接的玻璃面 以頂取::外再;粒!必須在垂直方向上被輸送 輸送,晶二:::接:::=直方向上被 第一輪送i-^向)輸送晶粒黏接頭削。如圖1所示, 咖;!、61之Γ0係藉由一馬達150及一滾珠螺桿(_ screw) 160之結合據以實施。 送執=二Γ接頭11G必須能夠在晶圓平台170及輸 二多動以導引晶粒點接之作動。對此,第 :圓::二二用以在γ軸方向上,將晶粒黏接頭㈣ ί至曰LΑ送至輸送執道180’或自輸送軌道180輸 ⑽ΓΓΓί單元13G也可藉由—馬達i5G及—滾珠螺桿 據以實施。.當然’第三輪送單元刚也可藉由 ‘…達及-錢螺桿之結合據以實施。第三輸送單元⑽The 4 S 201250881 shafting is defined as one of the vertical movement of a die bond 110 moving up and down, and the Y-axis is defined as a die bond 110 between the transfer track and a wafer platform at another location. Referring to Fig. 1, the die bonding machine 100 is used to bond a single crystal grain to a corresponding one of the glass substrates. The die bonding machine 100 includes a die bonding head 110, and first to third conveying units 120, 130 and 140, and the first to third conveying units 12, 13 and 140 are used for The die bonding joints 11〇 are respectively transported along the X-axis, the γ-axis, and the E-axis. The die bond 110 pulls a die from a wafer on the wafer platform, transports the topped die to a die bond position on the transport track, and then bonds the die to the transport track. Conveyed on the glass panel. For example, die bond joint 110 includes a suction unit to draw the die from the wafer platform. The suction unit has a vacuum line that sucks the die by a vacuum force provided by the outside. However, the 'absorption unit is not a technical feature to be emphasized by the present invention. Therefore, the detailed description and operation mode of the suction unit will not be repeated here. At the same time, the die bond 110 must be able to move in the vertical direction (Z-axis) above the wafer platform to pick up the die on the wafer, which can also hang above the transport track: |: direction (z-axis) Move to bond the die to the glass panel. The first conveying unit 12 〇 controls the movement of the die attaching joint 11 〇 in the vertical direction (z axis). The first transport unit 12A can be implemented by a combination of a motor 150 and a ball screw 16A. In addition, the 'die-point connector 11' must be able to move back and forth between the wafer platform and the transport track 5 201250881 to guide the die bond. In response to this, the second transport unit 7L 130 is used to move the die attach tab 11 from the wafer platform to the transport track or from the transfer track to the wafer platform. The second transport unit 130 can be implemented by a combination of a motor 150 and a ball screw 160. The third transmission, the single crucible 140 is used to transport the crucible bonding joint 110° in the direction in which the conveying rail is located (X-axis direction). The third troughing unit 140 can be implemented by a combination of the motor 150 and a ball screw 160. In the die bonding machine 100 as described above, the die attaching joint 110 is mainly driven by the motor 15G and the ball screw (10) in the x-axis, the γ-axis, and the 2-axis direction. However, the motor is driven at a high speed and the second, ΤΙ1 action; under the brother, the ball screw 160 may have a problem of deformation. ^ It is said that the granule bond joint 110 moves in the X-axis, Y-axis and z-axis directions for a while, > high and (iv) t temperature. The temperature of the bead screw 160 will gradually increase by 160, and the increased temperature will cause the ball screw to change. According to the result of the job, after the x-bead screw 160 is actuated for a period of time after the x-bead screw 160 is actuated for a period of time, the crystal is deviated from the 20 μηι i 50 coordinate to expand from the correct topping or bonding position. If the heat of the ball screw 160 is 2〇μιη to 1〇μιη, then 1〇 deviates from the correct topping or bonding position. Therefore, it must be provided. Take the wire to move. The error caused by thermal expansion. The system is used to compensate for the occurrence of the ball screw 160. [Invention] 6 1 201250881 In view of the above problems in the prior art, it is an object of the present invention to provide a device for regulating the die bond joint of a die bonding machine. Movement, the deviation of the pick-up position or the bonding position caused by thermal expansion of the conveying unit for moving the die-bonding joint in the die bonding machine can be correctly completed by picking up or bonding a die after compensation At the same time, a method is provided for the device to control the movement of the die bond joint. Another object of the present invention is to provide a device for regulating the die bond joints. The device can directly deviate from the pick-up position or the adhesive position due to thermal expansion of the transport unit for moving the die bond joint. Compensation, while providing a method to adjust the movement of the die bond joint with the device. In order to achieve the above object, in an embodiment of the invention, a device is provided for regulating a die bond joint, comprising: at least one temperature sensing unit, detecting a plurality of temperature of the plurality of transport units, and the plurality of transport units are different Moving the die bond joint in the axial direction, a compensation unit, and one of the temperature compensation of the die bond joint detected by the temperature sensing unit; and a drive control unit of the transport unit, the compensation value calculated by the compensation unit, The regulating conveying unit moves the die bonding joint to a correct picking position or a bonding position. In another embodiment of the present invention, a germanium device is provided for regulating die bond joint movement, comprising: a wafer platform, one of which is to be topped on a wafer platform; It is disposed separately from the wafer platform in the direction of the V-axis, wherein the transport track transports the die along an X-axis direction to a glass panel correspondingly bonded, and the die bond joint picks up the die from the wafer platform, and the transport is topped. Take the die to the / die bonding position on the conveyor track, and 201250881 glue the die to the glass panel conveyed by the conveyor track; a shaft ball screw that moves the die bond horizontally in one direction The joint is in the same direction as one of the conveying glass panels of the conveying track; a Y-axis ball screw moves the die bonding joint horizontally in one direction, and the direction is in a top picking position of the die and Between the conveyors; a z-axis ball screw that moves the die bond joint vertically; at least one temperature sensing unit that detects at least one of the X-axis ball screw, the Y-axis ball screw, and the Z-axis ball screw temperature a compensation unit that compensates for the displacement of at least one of the X-axis ball screw, the Y-axis ball screw, and the Z-axis ball screw according to the temperature measured by the temperature sensing unit; the driving control unit of the conveying unit is calculated according to the compensation unit A compensation numerical control at least one of the X-axis ball screw, the Y-axis ball screw and the Z-axis ball screw to move the die bonding unit to the correct one of the picking position or the bonding position. In one embodiment, the present invention further provides a method for controlling the movement of a die bond joint of a die bonder. The die bonder has a plurality of transfer units for moving the die in more than one direction. The adhesive joint method includes: instantly detecting the temperature of the conveying unit; determining a compensation value according to the detected temperature to compensate the displacement of the die bonding joint to set the die bonding joint to the correct one of the topping positions Or a bonding position; and controlling the operation of the conveying unit according to the determined compensation value. As described above, in a device for regulating a die bond joint of the present invention, the temperature of the transport unit for moving the die bond joint can be immediately detected. When the measured temperature is within a range of thermal expansion of the transport unit, the device will compensate for the 201250881 offset of the grain lift or die bond position due to thermal expansion. Therefore, the accuracy of the die picking and die bonding operation can be improved. Furthermore, in the present invention, the compensation operation provided by the offset of the crystal pick-up position or the die-bonding position of the die-bonding joint caused by thermal expansion can be achieved by reading the (four) value, wherein The ship value is derived from the measured temperature. In this way, the offset of the die pick-up position or the die bond position can be quickly compensated. [Embodiment] Hereinafter, a device and a method for controlling the movement of a die-bonding joint according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals. Here, a detailed description of the known function or structure of the die-bonded joint is not intended to be emphasized by the present invention, and will be omitted. 2 is a block diagram of a system for regulating the movement of a die bonding head (hereinafter, simply referred to as a "head movement control apparatus") according to an embodiment of the present invention. . The mechanical structure of the joint movement control device is shown in Figure 1. Referring to FIG. 2, in the embodiment of the present invention, the adhesive joint movement regulating device includes a die bonding joint 110 and first to third conveying units 120, 130 and 140' first to third conveying units 12 〇, 13〇 and 14〇 are used to rotate the die bond joint along the X sleeve, Y axis and Z axis. The die attach tab 110 takes a die from a wafer placed on the wafer platform 170. Subsequently, the die attach joint 110 transports the topped die to a head 110 of a conveyor track 180 at 201250881 and bonds the die to a 190. Die bonding position. Then, the die attaches the glazing panel of the 铋 wheel to the track 180. For example, the wafer ^ ---- one / IXL, the eye. The flat mouth 170 is integrated with the adhesive joint movement control device \r At t ^ with the crystal grains to be taken up. Place the location 'wafer and its location is different (four) days. The 17G is preferably located on the x-axis, and implements the main body position of the financial control device. The one-pass rail 180 is also hetero-aligned on the Y-axis. The transport track _ is used on the x-axis '曰:: position. The board is 19〇. The glass surface to which the granules are bonded on the πHadaday granules is topped:: outside again; the granules must be conveyed in the vertical direction, and the crystal two::: 接:::= is sent in the first direction by the first round. -^)) Transfer the die bond joints. As shown in Figure 1, coffee;! The difference between 61 and 61 is implemented by a combination of a motor 150 and a ball screw (_ screw) 160. The transfer = two-pin connector 11G must be able to act on the wafer platform 170 and the transfer two to guide the die point connection. In this regard, the first: circle:: 22 is used to send the die bond (4) to the transport channel 180' or the self-transport track 180 (10) in the γ-axis direction. The unit 13G can also be driven by the motor. The i5G and the ball screw are implemented accordingly. Of course, the 'third round delivery unit can also be implemented by the combination of ‘...and the money screw. Third conveying unit (10)

S 10 201250881 用以在輸送軌道180所在之方向上(X軸方向)輸送晶粒 黏接頭110。 在本發明之一實施例中,如上所述之黏接頭移動調控 裝置之結構更包含一個以上溫度感測單元200及210、一 補償單元220及一輸送單元驅動調控單元 (transport-unit-drive-control unit) 230。溫度感測單元 200 及210係分別用以偵測第二及第三輸送單元no及140之 溫度’而其中第二及第三輸送單元130及140係用以沿不 同軸向(X轴及Y軸)上輸送晶粒黏接頭11〇。依據溫度 感測單元200及210測得第二及第三輸送單元130及140 之溫度’補償單元220補償晶粒黏接頭11〇之位移。輸送 單元驅動調控單元230依據補償單元220所計算出來的補 償數值’調控第一、第二及第三輸送單元12〇、130及140, 以及移動晶粒黏接頭110至正確的一頂取位置或一黏接位 置。 詳細地說’溫度感測單元200及210係分別進行即時 偵測第二及第三輸送單元130及140之滚珠螺桿160之溫 度。每個溫度感測單元200及210可藉由一紅外線溫度感 測器據以實施,紅外線溫度感測器以非接觸的方式偵測所 對應的滾珠螺桿160 ’或是,以熱電偶(thermocouple )透 過接觸的方式偵測滾珠螺桿160的溫度》另外,由於每個 輸送單元130及140之滾珠螺桿16〇係套設於一安裝單元 (mounting unit)’因此溫度感測單元2〇〇及2丨〇之配置能 偵測到安裝單元的溫度,以補償晶粒黏接頭11〇的位移。 201250881 如圖2所示,雖然說明兩個溫度感測單元200及210 係用以僅偵測第二及第三輸送單元130及140之滾珠螺桿 160之溫度,但是,也可額外再設置一溫度感測單元,用 以偵測第一輸送單元120之溫度。 除此之外’補償單元220包括記憶體(memory ),當 中儲存了用以轉換成位置補償數值,隨溫度感測單元200 及210偵測的溫度,晶粒黏接頭n〇係基於補償數值在X 軸及Y軸方向上移動。在一實施例之變化態樣中,補償單 元220透過计舁一參考溫度(reference temperature)(例 如’室溫27°C )與溫度感測單元200及210測得之溫度間 的差值’求得補償常數(compensati〇n eonstants),補償常 數再與基礎座標數據(base coordinatedata) (x,y)相乘, 最後得到補償數值(compensati〇n values)。 舉例來說’儲存於記憶體的位置補償數值係如下表所 列0 27〇C 28〇C 29〇C 30°C 31°C • · · 頂取座標x/y ------ 0/0 -5/-10 -10/-20 -15/-30 -20/-40 · · 黏接座標χ/y ------ 0/0 -2/-10 -4/-20 -6/-30 -8/-40 • · · 如上表列,可知,當測得滾珠螺桿為27〇c時,不須對 頂取位置及黏接位置進行補償。若測得滾珠螺桿為3〇〇c 時針姆頂取位置,將對應參考位置(x,y座標為(〇,〇)), 在X軸上移動-15μ„!,而在γ軸座標上移動_3〇μπ^如此 來,對應測得的溫度,就頂取位置及黏接位置所需抵銷S 10 201250881 is used to transport the die bond 110 in the direction in which the transport track 180 is located (X-axis direction). In an embodiment of the invention, the structure of the adhesive joint movement control device as described above further comprises more than one temperature sensing unit 200 and 210, a compensation unit 220 and a transport unit drive control unit (transport-unit-drive- Control unit) 230. The temperature sensing units 200 and 210 are respectively configured to detect the temperatures of the second and third conveying units no and 140, and wherein the second and third conveying units 130 and 140 are used along different axial directions (X-axis and Y) The die bond joint 11〇 is transported on the shaft. The temperature 'compensation unit 220 of the second and third transport units 130 and 140 is compensated for the displacement of the die attach joint 11 by the temperature sensing units 200 and 210. The conveying unit driving control unit 230 adjusts the first, second and third conveying units 12〇, 130 and 140 according to the compensation value calculated by the compensation unit 220, and moves the die bonding joint 110 to the correct one of the topping positions or A bonding position. In detail, the temperature sensing units 200 and 210 respectively detect the temperature of the ball screw 160 of the second and third conveying units 130 and 140, respectively. Each of the temperature sensing units 200 and 210 can be implemented by an infrared temperature sensor that detects the corresponding ball screw 160 ' in a non-contact manner or by a thermocouple (thermocouple) In addition, since the ball screw 16 of each of the conveying units 130 and 140 is sleeved on a mounting unit, the temperature sensing unit 2 and 2 The configuration of the crucible can detect the temperature of the mounting unit to compensate for the displacement of the die bond joint 11〇. 201250881 As shown in FIG. 2, although the two temperature sensing units 200 and 210 are used to detect only the temperature of the ball screw 160 of the second and third conveying units 130 and 140, an additional temperature may be set. The sensing unit is configured to detect the temperature of the first conveying unit 120. In addition, the 'compensation unit 220 includes a memory in which the value for converting to the position compensation value is stored, and the temperature of the temperature sensing unit 200 and 210 is detected, and the die bond is based on the compensation value. Move in the X and Y directions. In a variation of an embodiment, the compensation unit 220 transmits a difference between a reference temperature (eg, 'room temperature 27 ° C) and the temperature measured by the temperature sensing units 200 and 210'. The compensation constant (compensati〇n eonstants) is obtained, and the compensation constant is multiplied by the base coordinate data (x, y), and finally the compensation values (compensati〇n values) are obtained. For example, the position compensation value stored in the memory is as follows: 0 27〇C 28〇C 29〇C 30°C 31°C • · · Top coordinates x/y ------ 0/ 0 -5/-10 -10/-20 -15/-30 -20/-40 · · Bonding coordinates y /y ------ 0/0 -2/-10 -4/-20 -6 /-30 -8/-40 • · · As shown in the above table, it can be seen that when the ball screw is 27 〇c, it is not necessary to compensate for the pick-up position and the bonding position. If the ball screw is measured at 3〇〇c, the position will be corresponding to the reference position (x, y coordinates (〇, 〇)), -15μ„! on the X axis, and move on the γ axis coordinates. _3〇μπ^ So, corresponding to the measured temperature, the offset position and the bonding position need to be offset.

S 12 201250881 的補償數值係被列表並儲存於記憶體中,藉由讀取對應所 測溫度的補彳員數值並依據補償數值移動晶粒黏接頭11〇, 可快速補償晶粒頂取位置及晶粒黏接位置的位移。 另一方面,補償數值之計算,係對應參考溫度(例如, 室溫27°C )與由溫度感測單元2〇〇及21〇測得之溫度間的 差值求得一補償常數,當補償常數係與基礎座標數據(x,y) 相乘,能減少儲存之數據量,但必須分別將補償常數加至 基礎座標數據,如此便增加了補償單元22〇之負荷。 請再參照上表,將其結論作圖後,頂取位置及黏接位 置的X、y座標係隨每1°C做規律地變化。對此,頂取位置 的基礎座標數據(x,y)係設定為(_5,_1〇),而黏接位置的 基礎座標數據(x,y)係設定為(_2,-10)。接下來,參考溫 度與溫度感測單元200及210測得的溫度之間的差值,對 應為補償常數,補償常數再乘以預設的基礎座標數據,而 得到欲抵銷的補償數值。 具有上述結構之黏接頭移動調控裝置之相關作動將 進一步參照圖3來說明。 圖3為本發明一實施例之補償一晶粒黏接頭11〇之頂 取位置及黏接位置之方法流程圖。 請參照圖3,假設黏接頭移動調控裝置在正常作動的 情況下,晶圓平台170相對於晶粒黏接頭110係位於Y軸 方向上,而藉由第二輸送單元130,晶粒黏接頭110係被 移動至晶圓平台170上的頂取位置。頂取位置係為被儲存 於輸送單元驅動調控單元230中之一預設值。當晶粒黏接 13 201250881 頭110成功地移動至頂取位置後,晶粒黏接頭11〇 晶粒 輸送單元120沿Z軸方向移動,亦即向下 -…如步驟S10。 h向下移動’然後頂取 頂取晶粒的晶粒黏接頭110係再由第二輸送 t至輸送軌道刚上的黏接位置,輸送_⑽㈣於 日曰粒黏接頭110大致上係設置在γ 道18。上方的晶粒黏接頭11〇係與位於輸送軌 ===一預設距離。當晶粒黏接頭110完全移 送轨道m墙接位置後,晶粒黏接頭11〇係再 透過第-輸送單元12G向下移動—預設距離。如此,备晶 =接頭no向下移動一預設距離之後,即能透過一: 、堅力,將晶粒黏接至玻璃面板190上。 完成黏接作動的晶粒黏接頭⑽,之後再藉由第一輸 二兀120及第二輸送單元130重複讓晶粒黏接頭在 直方向(z軸方向)及水平方向(χ軸方向及γ轴方向) 上移動,重複進行相同的頂取及黏接作動。 在連續的將晶粒頂取及黏接之作動期間,第一、第二 及第三輪送單元12〇、13〇及14〇會因熱膨脹而變形。 為解決滾珠螺桿的變形問題,在本發明一實施例中, 步驟S14,溫度感測單元2〇〇及21〇即時偵測所對應的 穿珠螺桿160。在晶粒頂取及黏接的作動期間,經由溫度 感、】單元200及210即時偵測得到滾珠螺桿16〇的溫度並 將數據傳輸到補償單元220。如步驟S16,依據溫度感測 70 2〇〇及21〇偵測滚珠螺桿16〇的溫度,使補償單元22〇 201250881 決定一補償數值’以將晶粒黏接頭110定位在一正確的頂 取位置或黏接位置,接著,將決定的補償數值傳輸到輪送 單元驅動調控單元230。舉例來說,若溫度感測單元200 測得第二輸送單元130的滾珠螺桿160溫度為30°C,則如 表中所列,補償單元220讀取之頂取位置及黏接位置的補 償數值為(-15/30)及(-6/30),並將這些補償數值傳送至 輸送單元驅動調控單元230。 接著,如步驟S18,輸送單元驅動調控單元230決定 晶粒黏接頭110當下係執行晶粒頂取作動或晶粒黏接作 動’依據決定結果選擇補償數值為(-15/30)或(-6/-30), 再根據所選擇的補償數值來補償晶粒黏接頭110的位置。 舉例來說’若晶粒黏接頭11 〇要執行的是晶粒頂取作 動,則輸送單元驅動調控單元230自所接收的補償數值 中’選擇用於補償頂取位置的補償數值(_15厂3〇)。之後, 輸送單元驅動調控單元230調控第二輸送單元13〇及第三 輸送單元140,使得晶粒黏接頭no自預設的頂取點(〇,〇) 抵銷補償數值(-15/-30)後移動到另一點。 如此一來,當補償了晶粒頂取位置或晶粒黏接位置 後,由第二及第三輸送單元130及140之滚珠螺桿16〇因 熱膨脹所造成的問題’也就是,晶粒頂取或黏接作動發生 誤差的問題’能夠獲得顯著地改善。例如’當本發明之實 施例中之裝置運作時’晶粒頂取步驟S10、晶教黏接步驟 S12、即時偵測溫度步驟S14、決定位置補償數值步驟S16 以及位置補償步驟S18係反覆地被執行。The compensation values of S 12 201250881 are listed and stored in the memory. By reading the complement value corresponding to the measured temperature and moving the die bond joint 11〇 according to the compensation value, the die pick-up position can be quickly compensated. The displacement of the die bond position. On the other hand, the calculation of the compensation value is to obtain a compensation constant corresponding to the difference between the reference temperature (for example, room temperature 27 ° C) and the temperature measured by the temperature sensing unit 2 〇〇 and 21 ,, when compensating The constant is multiplied by the base coordinate data (x, y) to reduce the amount of data stored, but the compensation constant must be added to the base coordinate data separately, thus increasing the load on the compensation unit 22. Please refer to the above table again. After drawing the conclusions, the X and y coordinates of the topping position and the bonding position will change regularly with every 1 °C. For this, the base coordinate data (x, y) of the pick-up position is set to (_5, _1 〇), and the base coordinate data (x, y) of the glue position is set to (_2, -10). Next, referring to the difference between the temperatures measured by the temperature and temperature sensing units 200 and 210, the compensation constant is multiplied by the preset base coordinate data to obtain the compensation value to be offset. The related operation of the adhesive joint movement control device having the above structure will be further described with reference to Fig. 3. FIG. 3 is a flow chart of a method for compensating the top picking position and the bonding position of a die bond joint 11〇 according to an embodiment of the invention. Referring to FIG. 3, assuming that the adhesive joint movement regulating device is normally operated, the wafer platform 170 is located in the Y-axis direction with respect to the die bonding joint 110, and by the second conveying unit 130, the die bonding joint 110 The system is moved to a pick-up position on the wafer platform 170. The jacking position is a preset value stored in the transport unit drive control unit 230. When the die bond 13 201250881 head 110 is successfully moved to the top take-up position, the die bond joint 11 晶粒 die transfer unit 120 moves in the Z-axis direction, that is, downward - ... as in step S10. h moves down' and then picks up the die-bonding die 110 of the top picking die and then passes the second transport t to the bonding position just above the conveying track, and the conveying _(10)(4) is substantially disposed on the sun-grain bonded joint 110 γ channel 18. The upper die bond joint 11 is at a predetermined distance from the transport rail ===. After the die bond joint 110 is completely transferred to the rail m wall joint position, the die bond joint 11 is further moved downward through the first transport unit 12G by a predetermined distance. In this way, after the crystal = joint no is moved downward by a predetermined distance, the die can be bonded to the glass panel 190 through a:: firmness. After the adhesion of the die bond joint (10) is completed, the die bond joint is repeated in the straight direction (z-axis direction) and the horizontal direction (the z-axis direction and γ) by the first transfer port 120 and the second transfer unit 130. Move in the direction of the axis. Repeat the same topping and bonding action. During successive actuations of the die and bonding, the first, second and third wheel transfer units 12, 13 and 14 are deformed by thermal expansion. In order to solve the problem of the deformation of the ball screw, in an embodiment of the invention, in step S14, the temperature sensing unit 2 and 21〇 instantly detect the corresponding beading screw 160. During the operation of the die topping and bonding, the temperature of the ball screw 16 turns is detected by the temperature sensing unit 200 and 210 and the data is transmitted to the compensation unit 220. In step S16, the temperature of the ball screw 16〇 is detected according to the temperature sensing 70 2〇〇 and 21〇, so that the compensation unit 22〇201250881 determines a compensation value 'to position the die bonding joint 110 at a correct topping position. Or the bonding position, and then the determined compensation value is transmitted to the routing unit drive regulation unit 230. For example, if the temperature sensing unit 200 measures that the temperature of the ball screw 160 of the second conveying unit 130 is 30 ° C, as shown in the table, the compensating value read by the compensating unit 220 and the compensation position of the bonding position These are (-15/30) and (-6/30), and these compensation values are transmitted to the transport unit drive regulation unit 230. Next, in step S18, the transport unit driving control unit 230 determines that the die-bonding joint 110 performs the die-carrying action or the die-bonding action of the die-attachment according to the decision result, and selects the compensation value as (-15/30) or (-6). /-30), and then compensate the position of the die bond joint 110 according to the selected compensation value. For example, if the die attaching block 11 is to perform the die topping operation, the conveying unit drive regulating unit 230 selects the compensation value for compensating the picking position from the received compensation value (_15 Factory 3) 〇). After that, the conveying unit driving control unit 230 regulates the second conveying unit 13 and the third conveying unit 140, so that the die bonding joint no offsets the compensation value from the preset topping point (〇, 〇) (-15/-30) ) Move to another point later. In this way, when the die pick-up position or the die bonding position is compensated, the ball screw 16 of the second and third conveying units 130 and 140 is caused by thermal expansion, that is, the die picking Or the problem of the error of the glue actuation can be significantly improved. For example, when the device in the embodiment of the present invention operates, the die topping step S10, the crystallizing bonding step S12, the instant detecting temperature step S14, the determining position compensation value step S16, and the position compensating step S18 are repeatedly carried out.

S 15 201250881 承上所述,在本發明之一種用以調控晶粒黏接頭移動 之裝置中,即時偵測負責移動晶粒黏接頭之輸送單元的溫 度。當測得之溫度介於使輸送單元熱膨脹之範圍内,黏接 頭移動調控裝置會補償由熱膨脹所造成的晶粒頂取位置 及晶粒黏接位置的偏移。因此,能增進晶粒頂取作動及晶 粒黏接作動之準碎度。 除此之外’在本發明中,補償由熱膨服造成晶粒黏接 頭的晶粒頂取位置或晶粒黏接位置的偏移,可以透過讀取 對應測得溫度轉變而來之補償數值來據以實施1此,晶 粒頂取位置或晶_接位置可以快速地獲得補償。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範而對其進行之等效修改或變更,均 應包含於後附之申請專利範園中。 【圖式簡單說明】 圖1為-標準的晶粒龜接機之部分示意圖; 種調控晶粒黏接頭之裝置 圖2為本發明一實施例之一 的系統方塊圖;以及 圖3為本發明之一實雜☆, 她例之一種用以補償晶粒黏接頭 之頂取位置及黏接位置之方 乃决的一實施例之流程圖。 【主要元件符號說明】 10 0 ·晶粒黏接機 16 s 201250881 110 : 晶粒黏接頭 120 : 第一輸送單元 130 : 第二輸送單元 140 : 第三輸送單元 150 : 馬達 160 : 滾珠螺桿 170 : 晶圓平台 180 : 輸送軌道 190 : 玻璃面板 200、 210 :溫度感測單元 220 : 補償單元 230 : 輸送單元驅動調控單元 S10〜S20 :步驟 17S 15 201250881 As described above, in the apparatus for regulating the movement of the die bond joint of the present invention, the temperature of the transport unit responsible for moving the die bond joint is instantly detected. When the measured temperature is within the range of thermal expansion of the transport unit, the stick movement control device compensates for the offset of the crystal pick-up position and the die bond position caused by thermal expansion. Therefore, the quasi-fragmentation of the crystal pick-up operation and the grain bonding operation can be improved. In addition, in the present invention, compensation for the offset of the crystal topping position or the grain bonding position of the die-bonded joint caused by the thermal expansion can be compensated by reading the corresponding measured temperature transition. According to this implementation, the die pick-up position or the crystal-bonding position can be quickly compensated. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the present invention will be included in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial schematic view of a standard die-bonding machine; a device for regulating a die-bonding joint; FIG. 2 is a block diagram of a system according to an embodiment of the present invention; One of the examples is a flow chart of an embodiment of the method for compensating for the pick-up position and the bonding position of the die-bonded joint. [Main component symbol description] 10 0 · Die bonding machine 16 s 201250881 110 : Die bonding joint 120 : First conveying unit 130 : Second conveying unit 140 : Third conveying unit 150 : Motor 160 : Ball screw 170 : Wafer platform 180: transport rail 190: glass panel 200, 210: temperature sensing unit 220: compensation unit 230: transport unit drive control unit S10~S20: step 17

Claims (1)

201250881 七、申請專利範圍: 1、一種用於調控一晶粒黏接頭移動之裝置’包括: 至少一溫度感測單元,偵測複數輸送單元之複數溫 度’該等輸送單元係相對於該晶粒黏接頭在不同軸 向上移動; 一補償單元,依該溫度感測單元偵測的該等溫度’該 補償單元補償該晶粒黏接頭之一位移;以及 一輸送單元驅動調控單元,依該補償單元計算之一補 償數值調控該輸送單元移動該晶粒黏接頭至正確的 一頂取位置或一黏接位置。 2、 如申請專利範圍第1項所述之裝置,其中該等輸送單 元係分別包括一馬達及一滾珠螺桿’且該溫度感測單 元偵測該滾珠螺桿之一溫度,該滚珠螺桿沿一 X軸、γ 軸及Z軸其中之一方向上移動該晶粒黏接頭。 3、 如申請專利範圍第2項所述之裝置,其中該晶粒黏接 頭係設置於一晶粒黏接機’ 5亥晶粒黏接機係頂取一晶 粒並將該晶粒安裝於位於一輸送執道之一玻螭面板, 該裝置係更包括: 一 X軸滚珠螺桿,其在一方向上水平方向移動該晶板 黏接頭,該方向係與該玻璃面板沿該輸送軌道之— 輸送方向相同; 一 γ軸滚珠螺桿,其在一方向上水平方向移動該晶板 黏接頭,該方向係介於該晶粒之一頂取位置及該輪 送軌道之間; 201250881 一 z軸滾珠螺桿,其係垂直移動該晶粒黏接頭;以及 該溫度感測單元係偵測該Y轴滚珠螺桿之一溫度。 4、 如申請專利範圍第2項所述之裝置,其中該補償單元 包括一記憶體,該記憶體中之複數補償數值係對應測 得之複數溫度,該等補償數值係依該等溫度轉換,使 該晶粒黏接頭沿該X軸方向及該Y軸方向移動。 5、 一種用於調控一晶粒黏接頭移動之裝置,包括: 一晶圓平台,待頂取之一晶粒係置於該晶圓平台; 一輸送軌道,其係於一 Y轴方向上與該晶圓平台分開 設置,該輸送軌道沿一 X軸方向輸送該晶粒所黏接 之一玻璃面板,該晶粒黏接頭自該晶圓平台頂取該 ' 晶粒,輸送被頂取之該晶粒至位於該輸送軌道之一 晶粒黏接位置,且該晶粒黏接至由該輸送軌道輸送 之該玻璃面板; 一 X軸滾珠螺桿,其在一方向上水平方向移動該晶粒 黏接頭,該方向係與該玻璃面板沿該輸送執道之一 輸送方向相同; 一 Y轴滾珠螺桿,其在該晶圓平台及該輸送軌道之間 水平移動該晶粒黏接頭, 一 Z轴滾珠螺桿,其係垂直移動該晶粒黏接頭; 至少一溫度感測單元,偵測該X軸滚珠螺桿、該Y軸 滚珠螺桿及該z轴滚珠螺桿至少其中之一之一溫度; 一補償單元,依該溫度感測單元測得之該溫度,該補 償單元補償該X軸滾珠螺桿、該γ轴滾珠螺桿及該 201250881 z軸滾珠螺桿至少其中之一之一位移;以及 一輸送單元之驅動調控單元,依該補償單元計算之一 補償數值調控該X軸滾珠螺桿、該Y軸滚珠螺桿及 該Z軸滚珠螺桿至少其中之一,以移動該晶粒黏接 單元至正確的一頂取位置或一黏接位置。 6、 如申請專利範圍第5項所述之裝置,其中該溫度感測 單元偵測該Y軸滾珠螺桿之一溫度。 7、 如申請專利範圍第6項所述之裝置,其中該Y轴滾珠 螺桿係藉由一安裝單元設置於該裝置之一主體,以及 該溫度感測單元偵測該安裝單元之一溫度。 8、 一種用於控制一晶粒黏接機之一晶粒黏接頭之方法, 其中該晶粒黏接機具有複數輸送單元用以沿一個方向 以上移動該晶粒黏接頭5該方法包括. 即時偵測該等輸送單元之複數溫度; 依所偵測之該等溫度決定一補償數值用以補償該晶粒 黏接頭之一位置,以將該晶粒黏接頭設置於正確的 一頂取位置或一黏接位置;以及 依據所決定之該補償數值調控該輸送單元之作動。 9、 如申請專利範圍第8項所述之方法,其中該決定該補 償數值係包括讀取一記憶體中對應測得之該等溫度之 該補償數值,該記憶體中之該補償數值係對應該等溫 度轉換,使該晶粒黏接頭沿一 X轴及一 Y軸方向移動。 10、 如申請專利範圍第8項所述之方法,其中該決定該補 償數值係包括計算該補償數值,其係一參考溫度及該 20 S .201250881 等溫度間的複數差值對應複數補償常數,將該等補償 常數乘以基礎座標數據(x,y)。 21201250881 VII. Patent application scope: 1. A device for regulating the movement of a die bond joint' includes: at least one temperature sensing unit detecting a plurality of temperature of the plurality of transport units, wherein the transport units are relative to the die The adhesive joint moves in different axial directions; a compensation unit that compensates for the displacement of the die bond joint according to the temperature detected by the temperature sensing unit; and a transport unit drive control unit according to the compensation unit Calculating one of the compensation values adjusts the transport unit to move the die bond to the correct pick-up position or a bond position. 2. The device of claim 1, wherein the transport unit comprises a motor and a ball screw respectively, and the temperature sensing unit detects a temperature of the ball screw, the ball screw is along an X The die bond is moved in one of the axis, the gamma axis, and the Z axis. 3. The device of claim 2, wherein the die bond is disposed on a die bonding machine, and the die is mounted on the die. The device is located in a glass plate of a conveyor, and the device further comprises: an X-axis ball screw, which moves the plate joint in a horizontal direction in a direction, and the direction is along with the glass plate along the conveying track The same direction; a γ-axis ball screw, which moves the plate joint in a horizontal direction in a direction, the direction is between a picking position of the die and the wheel track; 201250881 a z-axis ball screw, The system moves the die bond joint vertically; and the temperature sensing unit detects a temperature of the Y-axis ball screw. 4. The device of claim 2, wherein the compensation unit comprises a memory, and the complex compensation value in the memory corresponds to the measured complex temperature, and the compensation values are converted according to the temperature. The die bonding joint is moved in the X-axis direction and the Y-axis direction. 5. A device for regulating the movement of a die bond joint, comprising: a wafer platform on which one of the die is to be placed on the wafer platform; and a transport track that is coupled in a Y-axis direction The wafer platform is separately disposed, and the transport track transports a glass panel bonded to the die along an X-axis direction. The die bond joint picks up the 'die from the wafer platform, and the transport is topped. a die to a die bonding position of the transport track, and the die is bonded to the glass panel conveyed by the transport track; an X-axis ball screw that moves the die bond in a horizontal direction in one direction The direction is the same as the direction in which the glass panel is transported along one of the transport lanes; a Y-axis ball screw that horizontally moves the die bond joint between the wafer platform and the transport track, a Z-axis ball screw Removing the die bond joint vertically; at least one temperature sensing unit detecting a temperature of at least one of the X-axis ball screw, the Y-axis ball screw, and the z-axis ball screw; Temperature sensing list Measured at the temperature, the compensation unit compensates for displacement of at least one of the X-axis ball screw, the γ-axis ball screw, and the 201250881 z-axis ball screw; and a driving unit of the transport unit, calculated according to the compensation unit One of the compensation values adjusts at least one of the X-axis ball screw, the Y-axis ball screw, and the Z-axis ball screw to move the die attach unit to a correct pick-up position or a bonding position. 6. The device of claim 5, wherein the temperature sensing unit detects a temperature of the Y-axis ball screw. 7. The device of claim 6, wherein the Y-axis ball screw is disposed on a body of the device by a mounting unit, and the temperature sensing unit detects a temperature of the mounting unit. 8. A method for controlling a die bond joint of a die bonder, wherein the die bonder has a plurality of transfer units for moving the die bond joint 5 in more than one direction. The method includes: Detecting a plurality of temperatures of the transport units; determining a compensation value according to the detected temperatures to compensate a position of the die bond joint to set the die bond joint to a correct jacking position or a bonding position; and adjusting the operation of the conveying unit according to the determined compensation value. 9. The method of claim 8, wherein the determining the compensation value comprises reading the compensation value corresponding to the measured temperature in a memory, the compensation value in the memory is The temperature conversion should be waited for the die bond joint to move along an X-axis and a Y-axis direction. 10. The method of claim 8, wherein the determining the compensation value comprises calculating the compensation value, which is a reference compensation temperature and a complex difference between the temperature of the 20 S.201250881 and the like, corresponding to a complex compensation constant, These compensation constants are multiplied by the base coordinate data (x, y). twenty one
TW100135494A 2010-12-06 2011-09-30 Apparatus and method for controlling movement of die bonding head TWI529828B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100123196A KR101741769B1 (en) 2010-12-06 2010-12-06 Apparatus for controlling movement of die bonding head

Publications (2)

Publication Number Publication Date
TW201250881A true TW201250881A (en) 2012-12-16
TWI529828B TWI529828B (en) 2016-04-11

Family

ID=46152502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100135494A TWI529828B (en) 2010-12-06 2011-09-30 Apparatus and method for controlling movement of die bonding head

Country Status (3)

Country Link
KR (1) KR101741769B1 (en)
CN (1) CN102487028A (en)
TW (1) TWI529828B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990822B1 (en) * 2017-06-09 2019-06-19 스테코 주식회사 Apparatus for bonding chip
TWI834007B (en) * 2019-11-19 2024-03-01 日商新川股份有限公司 Semiconductor device manufacturing apparatus and manufacturing method
KR102635492B1 (en) * 2020-08-10 2024-02-07 세메스 주식회사 Bonding apparatus and bonding method
KR102598578B1 (en) * 2020-08-10 2023-11-03 세메스 주식회사 Bonding apparatus and bonding method
JP2022145332A (en) * 2021-03-19 2022-10-04 ファスフォードテクノロジ株式会社 Die bonding device and method for manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003212A3 (en) * 1998-11-18 2003-11-19 Fuji Photo Film Co., Ltd. Method of and apparatus for bonding light-emitting element
JP4234300B2 (en) * 2000-05-09 2009-03-04 ヤマハ発動機株式会社 Chip transfer device
JP2002361541A (en) * 2001-06-07 2002-12-18 Okuma Corp Movable shaft control device, and thermal displacement amount correcting method in the movable shaft control device
KR100487581B1 (en) 2002-09-30 2005-05-03 에스이디스플레이 주식회사 Bonding device of surface mounting equipment
JP2010082724A (en) 2008-09-30 2010-04-15 Brother Ind Ltd Thermal displacement correction device and thermal displacement correction method for machine tool
CN101740355B (en) * 2009-12-23 2012-04-25 广东志成华科光电设备有限公司 Transfer device of chip sorting equipment

Also Published As

Publication number Publication date
TWI529828B (en) 2016-04-11
CN102487028A (en) 2012-06-06
KR20120062097A (en) 2012-06-14
KR101741769B1 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
TW201250881A (en) Apparatus and method for controlling movement of die bonding head
JP5277266B2 (en) Die bonder and semiconductor manufacturing method
TW567574B (en) Apparatus for mounting semiconductor chips
JP5427507B2 (en) Lifting device for suction nozzle and load control method thereof
CN110190005B (en) Semiconductor eutectic and dispensing integrated chip mounter
JP4482598B2 (en) BONDING DEVICE, BONDING DEVICE CORRECTION AMOUNT CALCULATION METHOD, AND BONDING METHOD
JP5309503B2 (en) POSITIONING DEVICE, POSITIONING METHOD, AND SEMICONDUCTOR MANUFACTURING DEVICE HAVING THEM
KR20200084174A (en) Laser Bonding Apparatus for Semi-conductor Chip
JP5865639B2 (en) Die bonder and bonding method
US20110174442A1 (en) Bonding apparatus
JP2016139629A (en) Bonding device and bonding method
JP5690535B2 (en) Die bonder and semiconductor manufacturing method
US20200006283A1 (en) Methods for improved die bonding
JP5191753B2 (en) Die bonder and die bonding method
TW201304025A (en) Bond line thickness control for die attachment
CN107452641B (en) Method for picking up bare chip from wafer
CN105329642A (en) Base plate position deviation detecting and correcting method and control method for base plate carrying system
WO2009125520A1 (en) Bonding device, method for recognizing position of bonding object used in bonding device, and recording medium on which program for recognizing position of bonding object is recorded
JP5168074B2 (en) Semiconductor module manufacturing apparatus, manufacturing apparatus system, manufacturing direction, and manufacturing processing program
KR20220131174A (en) Die bonding apparatus and method of manufacturing semiconductor device
JP5317753B2 (en) Bonder device
CN114823414A (en) Chip mounting device and method for manufacturing semiconductor device
CN110176411B (en) Mounting apparatus and method for manufacturing semiconductor device
JP2010093168A5 (en)
JP2015195261A (en) Die bonder and semiconductor manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees