TW201249535A - Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same - Google Patents

Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same Download PDF

Info

Publication number
TW201249535A
TW201249535A TW100115025A TW100115025A TW201249535A TW 201249535 A TW201249535 A TW 201249535A TW 100115025 A TW100115025 A TW 100115025A TW 100115025 A TW100115025 A TW 100115025A TW 201249535 A TW201249535 A TW 201249535A
Authority
TW
Taiwan
Prior art keywords
composite oxide
metal
nano
solution
nano metal
Prior art date
Application number
TW100115025A
Other languages
Chinese (zh)
Other versions
TWI430837B (en
Inventor
Te-Wei Chiu
Chung-Kuang Yang
Chao-Chin Su
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW100115025A priority Critical patent/TWI430837B/en
Publication of TW201249535A publication Critical patent/TW201249535A/en
Application granted granted Critical
Publication of TWI430837B publication Critical patent/TWI430837B/en

Links

Abstract

A catalyst, which is nano-metal particles dispersed in composite oxide, and the synthesizing method of the same are disclosed. The nano-matal particles with size smaller than 10 nm are selected from the group consisting of Au, Pt, Pd, Ru, and Rh. The composite oxide having a meshed structure, represented as a general formula, AxByOz, is derafossite and a p-type semiconductor. The method for producing the nano-metal particles comprises: providing a composite oxide dispersion and a metal salt solution; mixing the composite oxide dispersion and the metal salt solution to form a mixture; and employing light beams irradiation the mixture to reduce the metal ion to nano-metal particles dispersed in the composite oxide.

Description

201249535 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種奈米金屬觸媒及其合成方法, 特別是指將金的奈米粒子分散於多孔網狀結構的複合 氧化物擔體上,以及其合成方法。 【先前技術】 過去金粒子一直被認為不具有像鋼或白金一般的 觸媒活性,但1987年’日本的春田正毅博士發現,以 奈米金粒子所製得的觸媒,在攝氏零下73度可以催化 一氧化碳的氧化反應,打破以往認為金不具有活性的印 象。 近年來,研究發現金粒子的粉末粒徑小於5 nm以 下’特別是3 nm,對一氧化碳反應的催化效果最好, 適合應用於口罩、熱水器排氣管或汽機車排氣管等含有 水氣及二氧化碳的環境中。目前製備奈米金觸媒的方式 包括含浸法、離子交換法、共沈澱法、析出沈澱法、氣 相沈積法、接枝法等。 、 然而’粒徑3〜5 nm的金粒子,無法在分散狀態維 持穩定。金奈米粒子在室溫下,會自動聚集成塊狀金, 而再度失去觸媒活性。為了讓金奈米粒子維持分散狀 悲,習知的技術疋在金奈米粒子的外層包覆一層具有官 能基的介面活性劑,比如:擰檬酸鈉等等,防止金奈米 粒子再度黏結。但是,金奈米粒子被包覆於介面活性劑 中,並沒有辦法發揮觸媒的效果。 月 '後來又發展4將奈米絲子承載於單元氧化物擔 201249535 體I其中的單元氧化物可以是二氧化欽(τ 二鐵(FesO3)等,且目前已在市面上銷售。但 媒價格非常昂貴,每公克可達上萬& 县#触m 、 且一氣化鈦雖然 ,媒材料’是汽機車的排氣管等無光照射的 ,並無法發揮其觸媒功效,使整體的催化效果增加。 一目前汽機車排氣管常用的觸媒材料為鉑、姥θ、釕 三疋觸媒,係將氧化鋁陶瓷製備成多孔結構,再採用含 =使鈾、铑及釕分散黏附於氧化虹。但三元觸媒: l〇c以上的溫度,才能產生催化活性,也就是說,在 八機車剛發動時,三元觸媒無法有效催化一氧化碳或氮 化物等有毒氣體的氧化反應,當汽機車停放於地下室停 車場等密閉空間時,經由排氣管所排出的廢氣還是會造 成空氣汙染,並危害人體健康。況且,三元觸媒價二也 非常昂責。 因此,本發明欲開發一種奈米金屬/氧化物複合觸 媒’以達成下列三個訴求,包括:(1)降低觸媒成本;(2) 奈米金屬粒子和承載的擔體同時具有催化活性,以提高 整體的催化效果;(3)在室溫下仍可催化一氧化碳氧化 反應’以取代目前的三元觸媒使用於汽機車排氣管。 【發明内容】 — 有鑑於上述課題,本發明提供一種奈米金屬/複合 氧化物觸媒,包括多個奈米金屬粒子’分散於一具有多 孔網狀結構的複合氧化物擔體,所述奈米金屬粒子選自 金(Au)、鉑(Pt)、鈀(Pd)、鍺(RU)、釕(Rh)及其任意組 合所組成的群組其中之一種,所述的複合氧化物為赤銅 鐵礦型’以通式AxByOz表示。 201249535 本發明並提供前述奈米金屬/複合氧化物觸媒的合 成方法,包括:提供-複合氧化物粉末,其中複合氧化 物私末具有夕孔網狀結構’表面積至少大於1 , ,且複合氧化物以通式AxBy〇z代表;製備複合氧化物 =液及一金屬鹽溶液;將複合氧化物溶液與金屬鹽溶液 犯合,將混合溶液放入光還原槽中,以一光源照射約5 至^15分鐘,使金屬鹽還原成奈米金屬粒子,分佈於複 合氧化物粉末的多孔網狀結構中,形成奈米金屬/複合 氧化物觸媒;以離心分離技術將該奈米金屬/複合氧化 物觸媒與該溶液分離;及蒸發混合溶液中多餘水分,以 得到最終產物。 本發明實施例中’並以此方式將粒徑3〜5 nm奈米 的金粒子分散於氧化鉻銅(CuCr〇2)的擔體。奈米金屬粒 子和作為擔體的複合氧化物皆具有催化活性,在室溫下 也能催化一氧化碳的氧化反應。此外,製作方法簡單, 成本低,可應用於口罩、汽機車的排氣管、防毒面具或 一氧化碳偵測等領域中,具有應用潛力。 【實施方式】 為使本發明之上述目的、特徵和優點能更明顯易 懂’下文依本發明之奈米金屬/氧化物複合觸媒其合成 方法’特舉較佳實施例,並配合所附相關圖式,作詳 細說明如下。 本發明提供一種奈米金屬/氧化物複合觸媒及其合 成方法,其中,奈米金屬粒子分散於一具有多孔網狀 結構複合氧化物的擔體上,且奈米金屬粒子及擔體本 身都具有很好的催化活性。 201249535 依據本發明的一實施例,奈米金屬粒子可以選自由 金(Au)、鉑(Pt)、鈀(pd)、铑(Ru)、釕(Rh)及其任意組 合所組成的群組其中之一種,其中,奈米粒子的粒徑 ,20 nm以下較佳,以1〇 nm以下更佳。更佳實施例 是選擇金(Au)或鉑(Pt)。研究顯示,當奈米粒子為金 (Au),粒子的粒徑以3〜5 nm為最佳。 本發明實施例中,具有多孔網狀結構的複合氧化物 發現2結晶粒徑約在1〇〇 nm以下,而表面積超過 1〇m2/g。此種複合氧化物的多孔網狀結構及大表面 積,可以黏附更多奈米金屬粒子,而使觸媒整體的催 化活性大幅提高。 本實施例中’複合氧化物可以選自尖晶石型、赤銅 鐵礦型及其組合所組成的群組其中一種,以通式 AxByOz表示。又其中,A係表示選自由銀(Ag)、銅 (Cu)、鈀(pd)、鉑(Pt)及其任意組合所組成之群組其中 之一種’ B係表示選自鋁(AI)、銃(Sc)、鉻(cr)、紀(γ)、 鐵(Fe)、錮(In)、鎵(Ga)、鈷(Co)、錳(Mn)、铑(Rh)、 鎳(Ni)、鑭(La)、鈥(Nd)、釤(Sm)、銪(Eu)、鈦(丁丨)及 其任意組合所組成之群組其中之一種。其中,B位金 屬離子也可以用二價陽離子進行摻雜。 本發明並提供前述奈米金屬觸媒的合成方法,請灸 …、圖1 ’為本發明實施例之流程圖,包括:提供一複 合氧化物(AxByOz)粉末,如步驟S100,在本發明實 施例中’所選擇的複合氧化物為多孔網狀結構^氧化 鉻銅(CuCr〇2),此種複合氧化物本身即可作為催化劑 使用’並且在室溫下就具備催化活性。 7 201249535 接著,製備複合氧化物溶液及金屬鹽溶液,如步驟 S105:本發明的一實施例中,複合氡化物溶液係將 〇-5g氧化鉻銅粉末及25毫升的去離子水混合,金屬 鹽溶液是將1.68毫升(0.85 mM)的四氣金酸,配以75 毫升的去離子水混合攪拌。 之後,將複合氧化物溶液與金屬鹽溶液直接混合, 如步驟S110。在另一較佳實施例中是以弱驗溶液調配 可使得複合氧化物擔體上產生氫氧根,而使金屬鹽溶 液和擔體的接觸部分更大,例如以氨水等調整混合溶 液的pH值,在6至12範圍内。 將混合後的溶液放入光還原槽中,以一光源照射一 預定時間,使金屬鹽還原成奈米金屬粒子,分佈於該 複合氧化物粉末的多孔網狀結構中,形成奈米金屬/氧 化物複合觸媒,如步驟S115。其中,照光時間的長短 將影響奈米金屬粒子的粒徑大小,因此,照光時間依 所要的奈米金屬粒子粒徑而定。在一實施例中,照光 時間大約1至30分鐘。 因為赤銅鐵礦型複合氧化物具有光觸媒的效果,照 光之後會產生電子-電洞對,以氧化鉻銅CuCr〇2為 例’電洞與固態晶格中的Cu+離子作用形成cu2+,電 子則將溶液中的金屬離子M2+還原為金屬Μ,其中Μ 包括金(Au)、鉑(Pt)、鈀(Pd)、铑(RU)、釕(Rh)等。照 射光源所發出的光子能量(hv),需大於該複合氧化物 的能隙寬度(Eg)。氧化鉻銅的能隙寬度大約1.28 eV, 所以在本實施例中,將溶液放入光還原槽後,以6〇〇 rpm的轉速’在UV燈下照射30分鐘,即可於氧化鉻 201249535 銅中形成粒徑約3〜5 nm的奈米金粒子。 接著,如步驟S120所示,以離心分離技術自溶液 中分離出”奈米金屬/複合氧化物觸媒’’。本實施例中, 將混合溶液倒入離心管中’以低轉速20 rpm及高轉速 70 rpm各1〇分鐘為一循環’共作三次循環。 離心分離後,可選擇性地包括一烘乾步驟,例如以 烘箱或加熱盤’將”奈米金屬/複合氧化物觸媒,,水分蒸 發,以得到最後產物,如步驟S125。 請參照圖2,為本發明實施例之奈米金屬/氧化物複 合觸媒之穿透式電子顯微鏡照片。照片中可明顯看 出’以本發明所提供之合成方法’確實可以讓粒徑僅 有大約3〜5 nm奈米金粒子11分散於氧化鉻銅 10(CuCr〇2)擔體中。 在本發明實施例中,製備具有多孔網狀結構的複合 氧化物(AxByOz)粉末的方法,請參考發明人之一台灣 專利申請案,申請案號為099140875發明名稱為奈米 赤桐鐵礦型氧化物粉末及其製造方法。略述如下: 首先’將含有A離子及B離子的金屬鹽或有機金 屬化合物’混合後作為金屬前驅物,並將金屬前驅物 溶解於一溶劑中,形成一金屬前驅物溶液。接著,將 一燃料,如:胺基酸類燃料、草酸或硼烷,加入金屬 洳驅物溶液中混合,並將金屬前驅物溶液中的多餘水 分蒸發(不需要完全乾燥),以形成膠體。 最後,只要加熱膠體,直至其產生自燃反應,即可 在反應完畢後’得到製備前述複合觸媒的複合氧化物 粉末。本發明實施例所製備的氧化物粉末平均粒徑大 201249535 約10〜300nm。其中,將膠體加熱到產生自燃反應的 溫度大約150至250°C。 本發明實施例所製備的赤銅鐵礦型複合氧化物 (CuCr02)粉末之掃描式電子顯微鏡照片,如圖3所 示,由圖中可以看出,複合氧化物粉末10本身確實具 有多孔網狀結構,並且,以氮氣的吸附曲線測定氧化 鉻銅(CuCr〇2)粉末表面積,大約30.4 m2/g,以同樣方 式製備氧化鐵銅(CuFe02)及氧化鋁銅(CuAI02)皆可 以得到相同的結構,且表面積大約30〜35 m2/g。 在較佳實施例中,A離子及B離子的金屬鹽可以選 擇金屬鹵化物、硝酸鹽、醋酸鹽、草酸鹽、硫酸鹽、 碳酸鹽、有機酸鹽及其任意組合之群組其中之一種。 其中,硝酸鹽或醋酸鹽成本較低,因此較佳。 而用來溶解金屬前驅物的溶劑,只要可將之均勻溶 解者皆可使用,並無特別限定。可以選自水、醇類(如: 曱醇、乙醇、丙醇、異丙醇、乙二醇等)、或醚類(如: 甲***、乙二醇甲醚、乙二醇丁醚等)及其任意組合所 組成的群組其中之一種。 燃料則可以選自甘胺酸、肌胺酸、吡啶、苯胺、草 酸、聯胺、硼烷其中一種。由於胺基酸類燃料具有羧 基及胺基,可供與金屬陽離子配位而在之後形成穩定 的膠體,在本發明之較佳實施例中,係使用胺基酸類 燃料,例如甘胺酸、肌胺酸、啦π定、苯胺、聯胺等。 要注意的是,燃料之使用量,相對於總金屬離子的莫 耳數比,範圍大約0.5至3倍。其中以1至2倍為佳, 以1.3〜1.7倍更佳,因為,在此範圍内,可以省卻燃 201249535 燒反應後,再次進行熱處理的步驟。 在自燃反應結束後,可以對反應後的產物進行純 化,來減少雜質,或進行一分散步驟’以提高赤銅鐵 礦型氧化物粉末的分散度’也可以選擇性的進行一分 離步驟,以減少粉末粒徑分布的範圍。 藉由本發明實施例的合成方法所製備的奈米金屬/ 氧化物複合觸媒,可使粒徑大小僅有10 nm的奈米金 屬粒子穩定的分散於複合氧化物擔體中,達到其作為 觸媒之功效。其中,奈米金屬粒子和作為擔體的複合 氧化物皆具有催化活性’不論是在室溫或高溫,皆能 發揮觸媒的功效。 此外,複合氧化物本身的製作 既不需要使用昂貴的真*# 一 1早成本低, 體氣氛及危險的氫氣氣;:又I向壓反應器、惰性氣 高溫爐。未來要應用於》過3GG°C以上的 :具或-氧化碳偵測等領域:== = 本發明精彳’然其並_以限定 生相同的功效。是以f並用其它元件或方式來產 内所-修改,均應包=== 201249535 【圖式簡單說明】 圖1本發明實施例的奈米金屬/氧化物複合觸媒的製造流程 圖; 圖2顯示本發明實施例所製備之奈米金粒子/複合氧化 物(CuCr〇2)粉末之穿透式電子顯微鏡照片;及 圖3顯示本發明實施例之赤銅鐵礦型複合氧化物 (CuCr〇2)粉末之掃描式電子顯微鏡照片。 【主要元件符號說明】 S100、S105、S110、S115、S120、S125 :合成方 法流程步驟 10 :複合氧化物 11 :奈米金粒子 12201249535 VI. Description of the Invention: [Technical Field] The present invention relates to a nano metal catalyst and a synthesis method thereof, and particularly to dispersing gold nanoparticles on a composite oxide support having a porous network structure And its synthesis method. [Prior Art] In the past, gold particles have been considered to have no catalytic activity like steel or platinum, but in 1987, Dr. Masaaki Harada discovered that the catalyst produced by nano-gold particles was at 73 degrees Celsius. It can catalyze the oxidation reaction of carbon monoxide and break the impression that gold is not active in the past. In recent years, it has been found that the particle size of gold particles is less than 5 nm, especially 3 nm, which has the best catalytic effect on carbon monoxide reaction. It is suitable for use in masks, water heater exhaust pipes or steam locomotive exhaust pipes. In the environment of carbon dioxide. At present, the methods for preparing the nano gold catalyst include an impregnation method, an ion exchange method, a coprecipitation method, a precipitation precipitation method, a gas phase deposition method, a graft method, and the like. However, gold particles having a particle size of 3 to 5 nm cannot be stabilized in a dispersed state. At room temperature, the gold nanoparticles automatically aggregate into bulk gold and lose catalyst activity again. In order to maintain the dispersion of the gold nanoparticles, the conventional technique is to coat the outer layer of the gold nanoparticles with a functional surfactant such as sodium citrate to prevent the gold nanoparticles from re-bonding. . However, the gold nanoparticles are coated in the surfactant and there is no way to exert the effect of the catalyst. Month's later developed 4 to carry nanowires on the unit oxides 201249535. The unit oxides in the body I can be dioxide (FesO3), etc., and are currently on the market. Very expensive, every gram can reach 10,000 & county # touch m, and a vaporized titanium, although the medium material is the exhaust pipe of the steam locomotive, etc., and can not exert its catalytic effect, so that the overall catalysis The effect is increased. A commonly used catalytic material for the exhaust pipe of a steam locomotive is platinum, 姥θ, and yttrium tritium. The alumina ceramic is prepared into a porous structure, and then the uranium, lanthanum and cerium are dispersed and adhered by using Oxidized rainbow. But the ternary catalyst: the temperature above l〇c can produce catalytic activity. That is to say, when the eight locomotive is just started, the ternary catalyst can not effectively catalyze the oxidation reaction of toxic gases such as carbon monoxide or nitride. When the steam locomotive is parked in a confined space such as a basement parking lot, the exhaust gas discharged through the exhaust pipe may cause air pollution and endanger human health. Moreover, the ternary catalyst price II is also very high. Therefore, the present invention Develop a nano metal/oxide composite catalyst to achieve the following three requirements, including: (1) reducing the cost of the catalyst; and (2) simultaneously carrying the catalytic activity of the nano metal particles and the supported support to enhance the overall Catalytic effect; (3) oxidizing carbon monoxide oxidation reaction at room temperature to replace the current three-way catalyst for use in a steam locomotive exhaust pipe. SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a nano metal. / composite oxide catalyst comprising a plurality of nano metal particles 'dispersed in a composite oxide support having a porous network structure selected from the group consisting of gold (Au), platinum (Pt), and palladium ( One of a group consisting of Pd), ruthenium (RU), rhodium (Rh), and any combination thereof, wherein the composite oxide is a cuprite type, represented by the formula AxByOz. 201249535 The present invention provides the aforementioned naphthalene A method for synthesizing a rice metal/composite oxide catalyst, comprising: providing a composite oxide powder, wherein the composite oxide has a smectite network structure having a surface area of at least greater than 1, and the composite oxide has the general formula AxBy〇z Representative; preparing composite oxide=liquid and a metal salt solution; combining the composite oxide solution with the metal salt solution, placing the mixed solution into the photoreduction tank, and irradiating with a light source for about 5 to 15 minutes to make the metal salt Reducing to nano metal particles, distributed in the porous network structure of the composite oxide powder to form a nano metal/composite oxide catalyst; separating the nano metal/composite oxide catalyst from the solution by centrifugal separation technique And evaporating excess water in the mixed solution to obtain a final product. In the present embodiment, 'the gold particles having a particle diameter of 3 to 5 nm are dispersed in a support of chromium chromium copper (CuCr 2 ) in this manner. Both the nano metal particles and the composite oxide as a support have catalytic activity and can catalyze the oxidation reaction of carbon monoxide at room temperature. In addition, the production method is simple, the cost is low, and it can be applied to the fields of masks, exhaust pipes of steam locomotives, gas masks or carbon monoxide detection, and has application potential. [Embodiment] The above objects, features and advantages of the present invention will become more apparent and understood. The following is a preferred embodiment of the method for synthesizing a nano metal/oxide composite catalyst according to the present invention. The relevant drawings are described in detail below. The invention provides a nano metal/oxide composite catalyst and a synthesis method thereof, wherein the nano metal particles are dispersed on a support having a porous network structure composite oxide, and the nano metal particles and the support itself are Has a good catalytic activity. 201249535 According to an embodiment of the present invention, the nano metal particles may be selected from the group consisting of gold (Au), platinum (Pt), palladium (pd), ruthenium (Ru), rhodium (Rh), and any combination thereof. In one type, the particle diameter of the nanoparticles is preferably 20 nm or less, more preferably 1 nm or less. A more preferred embodiment is the choice of gold (Au) or platinum (Pt). Studies have shown that when the nanoparticles are gold (Au), the particle size is preferably 3 to 5 nm. In the embodiment of the present invention, the composite oxide having a porous network structure was found to have a crystal grain size of about 1 〇〇 nm or less and a surface area of more than 1 〇 m 2 /g. The porous network structure and large surface area of the composite oxide can adhere to more nano metal particles, and the catalytic activity of the catalyst as a whole is greatly improved. In the present embodiment, the composite oxide may be selected from the group consisting of a spinel type, a erythrite type, and a combination thereof, and is represented by the formula AxByOz. Further, the A system represents a group selected from the group consisting of silver (Ag), copper (Cu), palladium (pd), platinum (Pt), and any combination thereof, and the 'B series means selected from aluminum (AI),铳(Sc), chromium (cr), gamma (γ), iron (Fe), strontium (In), gallium (Ga), cobalt (Co), manganese (Mn), rhenium (Rh), nickel (Ni), One of a group consisting of lanthanum (La), yttrium (Nd), strontium (Sm), europium (Eu), titanium (butadiene), and any combination thereof. Among them, the B-site metal ions can also be doped with divalent cations. The present invention also provides a method for synthesizing the above-mentioned nano metal catalyst, and the present invention is a flowchart of an embodiment of the present invention, comprising: providing a composite oxide (AxByOz) powder, as in step S100, implemented in the present invention. In the example, the selected composite oxide is a porous network structure (CuCr〇2), which can be used as a catalyst itself and has catalytic activity at room temperature. 7 201249535 Next, preparing a composite oxide solution and a metal salt solution, in step S105: In an embodiment of the invention, the composite telluride solution is mixed with 〇-5g chromium oxide copper powder and 25 ml of deionized water, metal salt The solution was mixed with 1.68 ml (0.85 mM) of tetra-gastric acid with 75 ml of deionized water. Thereafter, the composite oxide solution is directly mixed with the metal salt solution, as by step S110. In another preferred embodiment, the formulation of the weak test solution is such that the hydroxide is produced on the composite oxide support, and the contact portion of the metal salt solution and the support is made larger, for example, the pH of the mixed solution is adjusted with ammonia or the like. Value, in the range of 6 to 12. The mixed solution is placed in a photoreduction tank, and irradiated with a light source for a predetermined time to reduce the metal salt to nano metal particles, which are distributed in the porous network structure of the composite oxide powder to form a nano metal/oxidation. The composite catalyst is as in step S115. Among them, the length of the illumination time will affect the particle size of the nano metal particles, and therefore, the illumination time depends on the desired particle size of the nano metal particles. In one embodiment, the illumination time is about 1 to 30 minutes. Because the cuprous iron-type composite oxide has the effect of photocatalyst, an electron-hole pair will be generated after illumination, taking chromium oxide copper CuCr〇2 as an example. The hole and the Cu+ ion in the solid lattice form cu2+, and the electron will The metal ion M2+ in the solution is reduced to metal ruthenium, wherein ruthenium includes gold (Au), platinum (Pt), palladium (Pd), ruthenium (RU), rhodium (Rh) and the like. The photon energy (hv) emitted by the illumination source is greater than the energy gap width (Eg) of the composite oxide. The energy gap width of the chromium oxide copper is about 1.28 eV, so in this embodiment, after the solution is placed in the photoreduction tank, it is irradiated under UV light for 30 minutes at 6 rpm, and then the chromium oxide 201249535 copper can be used. Nano gold particles having a particle diameter of about 3 to 5 nm are formed. Next, as shown in step S120, the "nano metal/composite oxide catalyst" is separated from the solution by a centrifugal separation technique. In this embodiment, the mixed solution is poured into a centrifuge tube at a low rotation speed of 20 rpm and The high-speed 70 rpm is 1 cycle for one cycle of 'three cycles in total. After centrifugation, it may optionally include a drying step, such as oven/heating plate 'willing" nano metal/composite oxide catalyst, The water is evaporated to obtain the final product, as in step S125. Referring to Figure 2, there is shown a transmission electron micrograph of a nano metal/oxide composite catalyst in accordance with an embodiment of the present invention. It is apparent from the photograph that the "synthesis method provided by the present invention" can surely disperse the nano gold particles 11 having a particle diameter of only about 3 to 5 nm in the chromium chromium copper 10 (CuCr 2 ) support. In the embodiment of the present invention, a method for preparing a composite oxide (AxByOz) powder having a porous network structure, please refer to one of the inventors' Taiwan patent applications, the application number is 099140875, and the invention name is nano-chietan iron ore type oxidation. Powder and its method of manufacture. The following is a brief description: First, a metal salt containing an A ion and a B ion or an organic metal compound ' is mixed and used as a metal precursor, and the metal precursor is dissolved in a solvent to form a metal precursor solution. Next, a fuel such as an amino acid fuel, oxalic acid or borane is added to the metal ruthenium drive solution to be mixed, and excess water in the metal precursor solution is evaporated (not completely dried) to form a colloid. Finally, as long as the colloid is heated until it spontaneously reacts, the composite oxide powder for preparing the above composite catalyst can be obtained after completion of the reaction. The average particle diameter of the oxide powder prepared in the examples of the present invention is 2012-0535, which is about 10 to 300 nm. Among them, the colloid is heated to a temperature at which the autoignition reaction is generated by about 150 to 250 °C. A scanning electron micrograph of a copper-copper-iron composite oxide (CuCrO 2 ) powder prepared in an embodiment of the present invention is shown in FIG. 3, and it can be seen from the figure that the composite oxide powder 10 itself has a porous network structure. And measuring the surface area of the chromium oxide copper (CuCr〇2) powder by a nitrogen adsorption curve of about 30.4 m 2 /g, and preparing the same structure by preparing iron oxide copper (CuFe 2 ) and aluminum oxide copper (CuAI 02 ) in the same manner. And the surface area is about 30~35 m2/g. In a preferred embodiment, the metal salt of the A ion and the B ion may be selected from the group consisting of a metal halide, a nitrate, an acetate, an oxalate, a sulfate, a carbonate, an organic acid salt, and any combination thereof. . Among them, nitrate or acetate is preferred because it is relatively low in cost. The solvent for dissolving the metal precursor can be used as long as it can be uniformly dissolved, and is not particularly limited. It may be selected from water, alcohols (eg, sterol, ethanol, propanol, isopropanol, ethylene glycol, etc.), or ethers (eg, methyl ethyl ether, ethylene glycol methyl ether, ethylene glycol butyl ether, etc.) And one of the groups consisting of any combination thereof. The fuel may be selected from the group consisting of glycine, sarcosine, pyridine, aniline, oxalic acid, hydrazine, and borane. Since the amino acid fuel has a carboxyl group and an amine group and is capable of coordinating with a metal cation to form a stable colloid, in the preferred embodiment of the present invention, an amino acid fuel such as glycine or myoamine is used. Acid, π ding, aniline, hydrazine and the like. It is to be noted that the amount of fuel used is in the range of about 0.5 to 3 times the molar ratio of total metal ions. It is preferably 1 to 2 times, more preferably 1.3 to 1.7 times, because in this range, the step of heat-treating after the burning reaction of 201249535 can be omitted. After the end of the autoignition reaction, the product after the reaction may be purified to reduce impurities, or a dispersion step 'to increase the dispersion of the cuprite type oxide powder' may also be selectively performed to reduce the separation step to reduce The range of powder particle size distribution. The nano metal/oxide composite catalyst prepared by the synthesis method of the embodiment of the invention can stably disperse the nano metal particles having a particle size of only 10 nm in the composite oxide carrier, thereby achieving the touch. The effect of the media. Among them, both the nano metal particles and the composite oxide as a support have catalytic activity, and the catalyst can be exerted at room temperature or high temperature. In addition, the composite oxide itself is produced without the use of expensive real-time, low-cost, body atmosphere and dangerous hydrogen gas; and I-pressure reactor, inert gas high-temperature furnace. In the future, it should be applied to areas above 3GG °C: with or - carbon oxide detection, etc.: == = The present invention is succinct and suffices to define the same effect. In the case of f and using other components or methods to produce the same - the modification should be packaged === 201249535 [Simplified description of the drawings] Figure 1 is a flow chart of the manufacture of the nano metal/oxide composite catalyst of the embodiment of the invention; 2 shows a transmission electron micrograph of a nano gold particle/composite oxide (CuCr〇2) powder prepared in the examples of the present invention; and FIG. 3 shows a cuprorite type composite oxide (CuCr〇) according to an embodiment of the present invention. 2) Scanning electron micrograph of the powder. [Explanation of main component symbols] S100, S105, S110, S115, S120, S125: Synthetic method Flow step 10: Composite oxide 11 : Nano gold particles 12

Claims (1)

201249535 七、申請專利範圍: 1. -種奈米金屬/複合氧化物觸媒,包括多個奈米金屬粒子分散 於-複合氧化物擔體,該奈米金屬粒子選自金(Au)、始(pt)、把 (Pd)、姥_、釕(Rh)及其任意組合所組成的群組其中之一種, 雜合氧化物擔體具有多孔網狀結構,並且,結晶粒徑在1〇〇 nm以下,表面積為10m2/g以上,以通式細你表示。 2. 如申請專概圍第1項所述的奈米金屬/複合氧化物觸媒,該 奈米金屬粒子之粒徑在2〇 nm以下。 3_如申請專利範圍第彳項所述的奈米金屬績合氧化物觸媒,該 奈米金屬粒子為金(AU)或鉑(Pt)。 4.如申請專利範圍第1項所述_媒,其巾,複合氧化物擔體 AxByOz中的a係表示選自由銀(Ag)、銅(Cu)、鈀(pd)、鉑(pt) 及其任意組合所組成之群組其中之一種,B係表示選自鋁(A丨)、 筑(Sc)、鉻(Cr)、紀(丫)、鐵(Fe)、銦⑽、鎵(Ga)、钻(c〇)、猛 (Μη)、姥㈣)、鎳(Ni)、鑭(La)、鈥陶、彭(Sm)、銪(Eu)、鈦 (Τι)及其任意組合所組成之群組其中之一種。 5·如申請專概圍第1項所述的麟,其巾該複合氧化物擔體 選自尖晶石型、赤銅鐵礦型及其組合所組成的群組其中一種。 6·一種奈米金屬/複合氧化物觸媒的合成方法,該奈米金屬/複合 氧化物觸媒包括多個奈米金屬粒子分散於複合氧化物擔體,包 括: 提供一複合氧化物粉末,其中該複合氧化物粉末具有 13 201249535 多孔網狀結構,表面積至少大於1 〇m2/g,並且該複合氧 化物以通式AxByOz代表; 製備該複合氧化物溶液及一金屬鹽溶液; 將該複合氧化物溶液與該金屬鹽溶液混合; 將混合溶液放入光還原槽中,以一光源照射—預定時間,依 所要的奈米金屬粒子粒徑而定,使該金屬鹽還原成奈米金 屬粒子,分佈於該複合氧化物粉末的多孔網狀結構中,形成奈 米金屬/複合氧化物觸媒;及 以離心分離技術自該溶液分離出該奈米金屬/複合氧 化物觸媒。 7·如申"請專利範圍第6項所述的合成方法,其中,將該 =合乳化物溶液及該金屬鹽溶液混合後,更包括調整混 合溶液的pH值在6至12的範圍内。 項所述的合成方法,其中,將該混合溶 用來照射該溶㈣辆所發出的光子能量 ’大於賴合氧絲的祕:寬度(Eg)。 如申請專利範圍第6項所述的 氧化物粉末AxByOz的方法包括: 〜中’扼縣複合 提供分別含有A離子及 化合物,混合後作為金屬的金屬鹽或有機金屬 溶液將該金屬前驅物溶解於—溶射,形成—金屬前驅物 :燃料加入該金屬前驅物溶液中混合,其中,該燃 201249535 料選自胺基酸類燃料、草酸或硼烷; 蒸發該金屬前驅物溶液中的多餘水分,形成膠體;及 加熱該膠體,使該膠體產生自燃反應,以在反應完畢 後,得到該氧化物AxByOz粉末,其中將該膠體加熱到使 該膠體產生自燃反應的溫度大約150至250°C。 10_如申請專利範圍第9項所述的合成方法,其中該金屬 前驅物溶液與該燃料混合時,該燃料相對於總金屬離子 的莫耳數比範圍大約0.5至3倍。 15201249535 VII. Patent application scope: 1. - A nano metal/composite oxide catalyst comprising a plurality of nano metal particles dispersed in a composite oxide support, the nano metal particles being selected from gold (Au), (pt), one of a group consisting of (Pd), 姥_, 钌 (Rh) and any combination thereof, the hybrid oxide support has a porous network structure, and the crystal grain size is 1〇〇 Below nm, the surface area is 10m2/g or more, which is expressed by the formula. 2. For the nano metal/composite oxide catalyst described in item 1 of the application, the particle size of the nano metal particles is 2 〇 nm or less. 3_ The nano-metal oxide oxide catalyst according to the invention of claim 2, wherein the nano metal particles are gold (AU) or platinum (Pt). 4. The a-line in the composite oxide support AxByOz, as described in the first paragraph of the patent application, is selected from the group consisting of silver (Ag), copper (Cu), palladium (pd), platinum (pt) and One of the groups consisting of any combination thereof, the B series is selected from the group consisting of aluminum (A 丨), SiC (Sc), chromium (Cr), 丫 (丫), iron (Fe), indium (10), gallium (Ga). , (c〇), 猛 (Μη), 姥 (4), nickel (Ni), 镧 (La), 鈥 Tao, Peng (Sm), 铕 (Eu), titanium (Τι) and any combination thereof One of the groups. 5. If the application is as disclosed in item 1, the composite oxide support is selected from the group consisting of a spinel type, a cuprite type, and a combination thereof. 6. A method for synthesizing a nano metal/composite oxide catalyst, wherein the nano metal/composite oxide catalyst comprises a plurality of nano metal particles dispersed in a composite oxide support, comprising: providing a composite oxide powder, Wherein the composite oxide powder has a porous network structure of 13 201249535, a surface area of at least greater than 1 〇m 2 /g, and the composite oxide is represented by the general formula AxByOz; preparing the composite oxide solution and a metal salt solution; The solution is mixed with the metal salt solution; the mixed solution is placed in a photoreduction tank and irradiated with a light source for a predetermined time, and the metal salt is reduced to a nano metal particle according to the desired particle size of the nano metal particles. The nano metal/composite oxide catalyst is formed in the porous network structure of the composite oxide powder; and the nano metal/composite oxide catalyst is separated from the solution by a centrifugal separation technique. 7. The method of claim 6, wherein the mixing of the emulsion solution and the metal salt solution further comprises adjusting the pH of the mixed solution to be in the range of 6 to 12. . The method of synthesizing, wherein the mixing of the mixture to illuminate the photon energy emitted by the (four) vehicle is greater than the viscous oxygen: the width (Eg). The method for applying the oxide powder AxByOz according to item 6 of the patent application includes: ~中扼扼 composite provides a metal salt or an organometallic solution containing a metal ion or a metal compound which is mixed as a metal, and the metal precursor is dissolved in the metal precursor or the organic metal solution - Solventing, forming - metal precursor: fuel is added to the metal precursor solution, wherein the fuel 201249535 is selected from the group consisting of amino acid fuels, oxalic acid or borane; evaporating excess water in the metal precursor solution to form a colloid And heating the colloid to cause the colloid to generate a self-ignition reaction to obtain the oxide AxByOz powder after the reaction is completed, wherein the colloid is heated to a temperature of about 150 to 250 ° C which causes the colloid to generate a self-ignition reaction. The synthesis method according to claim 9, wherein the metal precursor solution is mixed with the fuel, and the molar ratio of the fuel to the total metal ion ranges from about 0.5 to 3 times. 15
TW100115025A 2011-04-28 2011-04-28 Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same TWI430837B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100115025A TWI430837B (en) 2011-04-28 2011-04-28 Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100115025A TWI430837B (en) 2011-04-28 2011-04-28 Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same

Publications (2)

Publication Number Publication Date
TW201249535A true TW201249535A (en) 2012-12-16
TWI430837B TWI430837B (en) 2014-03-21

Family

ID=48139047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115025A TWI430837B (en) 2011-04-28 2011-04-28 Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same

Country Status (1)

Country Link
TW (1) TWI430837B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757715B2 (en) 2015-11-20 2017-09-12 National Tsing Hua University Composite photocatalyst, manufacturing method thereof, kits containing composite photocatalyst, and bactericide photocatalyst
TWI738300B (en) * 2020-04-20 2021-09-01 蕭建興 Method of manufacturing catalyst reactant with high-efficiency thermal reaction catalysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI606864B (en) 2016-04-22 2017-12-01 國立清華大學 Paste for manufacturing photocatalyst and manufacturing method of photocatalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757715B2 (en) 2015-11-20 2017-09-12 National Tsing Hua University Composite photocatalyst, manufacturing method thereof, kits containing composite photocatalyst, and bactericide photocatalyst
TWI738300B (en) * 2020-04-20 2021-09-01 蕭建興 Method of manufacturing catalyst reactant with high-efficiency thermal reaction catalysis

Also Published As

Publication number Publication date
TWI430837B (en) 2014-03-21

Similar Documents

Publication Publication Date Title
Zhao et al. The synthesis and electrochemical applications of core–shell MOFs and their derivatives
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
JP5360211B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4265561B2 (en) Automobile exhaust gas purification catalyst body
JP2005185956A (en) Powdered catalyst, exhausted gas purification catalyst, and production method of powdered catalyst
Ouyang et al. Large-scale synthesis of sub-micro sized halloysite-composed CZA with enhanced catalysis performances
JP2011089143A (en) Method for producing mono-component system and bi-component system cubic type metal nanoparticle
US10537881B2 (en) Methods of making supported Ni/Pt bimetallic nanoparticles and Ni/Pt multilayer core-shell structures and their uses for CO2 reforming
Lee et al. Mechanistic study of gas-phase controlled synthesis of copper oxide-based hybrid nanoparticle for CO oxidation
EP2918342A1 (en) Exhaust gas purification catalyst and production method thereof
Yang et al. High-performance and long-term stability of mesoporous Cu-doped TiO2 microsphere for catalytic CO oxidation
JP5531212B2 (en) Low temperature oxidation catalyst, method for producing the same, and oxidation method using the catalyst
JP2011137216A (en) Metal particle and method for manufacturing the same
WO2016039361A1 (en) Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same
TW201249535A (en) Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same
JP2011016090A (en) Exhaust gas cleaning catalyst and method of manufacturing the same
Ghosh et al. Solvent-mediated synthesis, characterization and electrocatalytic activity of hydrophilic and dispersive Au–Mn3O4 nanocomposites
US9358527B2 (en) Exhaust gas purification catalyst and production method thereof
TW201041217A (en) Hybrid catalyst, method of fabricating the same, and fuel cell comprising the same
CN114471587A (en) Catalyst containing perovskite-like sub-monolayer oxide catalytic active structure and preparation method and application thereof
Chen et al. Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts
JP6909405B2 (en) Methaneization catalyst, its production method, and methane production method using it
CN109589975A (en) A kind of rhodium nanocatalyst and its preparation method and application of molybdenum oxide modification
Li et al. Rattle-structured CuO/Co3O4@ C microspheres, a potent bifunctional catalyst for hydrogen production from ammonia borane hydrolysis and methanolysis
JP2006021144A (en) Catalyst for cleaning exhaust gas and preparing method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees