TW201247784A - Sealing agent for optical semiconductor device, and optical semiconductor device - Google Patents

Sealing agent for optical semiconductor device, and optical semiconductor device Download PDF

Info

Publication number
TW201247784A
TW201247784A TW101113658A TW101113658A TW201247784A TW 201247784 A TW201247784 A TW 201247784A TW 101113658 A TW101113658 A TW 101113658A TW 101113658 A TW101113658 A TW 101113658A TW 201247784 A TW201247784 A TW 201247784A
Authority
TW
Taiwan
Prior art keywords
optical semiconductor
group
semiconductor device
atom
represented
Prior art date
Application number
TW101113658A
Other languages
Chinese (zh)
Inventor
Mitsuru Tanikawa
Ryosuke Yamazaki
Takashi Watanabe
Osamu Inui
Yoshitaka Kunihiro
Yasuyuki Ieda
Chizuru Kimu
Tasuku Yamada
Yusuke Kobayashi
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of TW201247784A publication Critical patent/TW201247784A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a sealing agent for optical semiconductor devices exhibiting excellent curability and storage stability, as well as high heat resistance in a cured state. The sealing agent for optical semiconductor devices according to the present invention includes: a first organopolysiloxane represented by formula (1A) and having an aryl group and an alkenyl group; a second organopolysiloxane represented by formula (51) and having an aryl group and a hydrogen atom bonded to a silicon atom; and a catalyst for a hydrosilylation reaction. The content ratio of aryl groups in each of the first organopolysiloxane and second organopolysiloxane is 30 mol%-70 mol% inclusive.

Description

201247784 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種於光半導體裝置中用於密封光半導體 元件之光半導體裝置用密封劑。又,本發明係關於一種使 . 用該光半導體裝置用密封劑之光半導體裝置。 【先前技術】 發光二極體(LED ’ Light Emitting Diode)裝置等光半導 體裝置之消耗電力較低且壽命較長。又,光半導體裝置即 便於嚴酷之環境下亦可使用。因此,光半導體裝置可用於 行動電話用背光裝置、液晶電視用背光裝置、汽車用燈、 照明器具及招牌等廣泛之用途中。 若作為光半導體裝置所使用之發光元件的光半導體元件 (例如LED)與大氣直接接觸’則由大氣中之水分或懸浮之 灰塵等而引起光半導體元件之發光特性急速降低。因此, 上述光半導體元件通常藉由光半導體裝置用密封劑而密 封。 於下述專利文獻1中揭示有含有氫化雙酚A縮水甘油醚、 月曰環式環氧單體及潛伏性觸媒之環氧樹脂材料作為光半導 體裝置用密封劑。該環氧樹脂材料係藉由熱陽離子聚合而 • 硬化。 又,除了含有環氧樹脂之光半導體裝置用密封劑以外, 亦廣泛使用含有聚矽氧樹脂之光半導體裝置用密封劑。上 $聚夕氧樹I對自藍色至紫外區域之短波長之光之穿透性 較高’且耐熱性及耐光性優異。 163225.doc 201247784 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2003-73452號公報 [專利文獻2]曰本專利特開2002-3 14142號公報 【發明内容】 [發明所欲解決之問題] 關於如專利文獻1、2所記載之先前之光半導體裝置用密 封劑,該密封劑之保存穩定性較低或硬化性較低。即,若 於長期保管後使密封劑硬化,則存在硬化速度變慢之情 况。進而,即便為保管前之密封劑,亦存在硬化時密封劑 無法迅速硬化之情況。 進而,於使先前之光半導體裝置用密封劑硬化時,存在 若硬化之密封劑曝露於高溫下則變色之情況。例如,存在 密封劑黃變之情況。 本發明之目的在於提供一種硬化性優異且保存穩定性優 異,進而硬化之密封劑之耐熱性較高的光半導體裝置用密 封劑,以及使用該光半導體裝置用密封劑之光半導體裝 置。 [解決問題之技術手段] 根據本發明較廣之態樣,可提供一種光半導體裝置用密 封劑’其含有:由下述式(1A)所表示且具有芳基及稀基之 、有機聚♦氧烧’由下述式(51)所表示且具有芳基及鍵結 於石夕原子上之氫原子的第2有機聚錢燒,切氫化反應 用觸媒’並且上述第i有機聚石夕氧烷及上述第2有機聚矽氧 163225.doc 201247784 焼•中之藉由下述式(X)而求得之芳基之含有比率分別為3〇 莫耳%以上、70莫耳%以下; [:化 1] (R1 R2R3Si01/2 )a (R4R5Si02/2 )b …式(Ί a) • 上述式(1 A)中,3及 b 滿足 a/(a+b)=0.〇5〜0.30及 b/(a+b)= - 0·70〜0·95,R1〜R5中,至少1個表示芳基,至少1個表示烯 基,芳基及烯基以外之R1〜R5表示碳數為^8之烴基; [化2] (Rbl R52R53Si01/2 )p (R54R55Si02/2 )q (R56Si03/2 )r ...式(51) ii式(51)中,p、q及r滿足p/(p+q+r)=〇.〇5〜〇·5〇、q/(p+q+r)= 〇 〜〇·15 及 r/(p+q+r)=〇.2〇 〜〇.8〇, R51 〜R56中,至少 i個表示 方基,至少1個表示鍵結於矽原子上之氩原子,芳基及鍵 結於矽原子上之氫原子以外之R51〜R56表示碳數為卜8之 烴基; 方基之含有比率(莫耳%)=:(上述第丨有機聚矽氧烷或上述 第2有機聚矽氧烷之每丨分子所含有之芳基之平均個數X芳 基之分子量/上述第1有機聚矽氧烷或上述第2有機聚矽氧 烧之數平均分子量)χ 100 式(X)。 於本發明之光半導體裝置用密封劑之某特定之態樣中, 上述第1有機聚矽氡烷包含於丨個矽原子上鍵結有2個苯基 之二苯基發氧院結構單元。 於本發明之光半導體裝置用密封劑之其他特定之態樣 中,上述第1有機聚矽氧烷之總矽氧烷結構單元1〇〇莫耳% 中,於1個矽原子上鍵結有2個苯基之上述二苯基矽氧烷結 163225.doc 201247784 構單元之比例為20莫耳%以上。 於本發明之光半導體裝置用密封劑之另一特定之態樣 中,上述式(51)中之(R51R52R53Si〇i/2)所表示之結構單元 包含R51表示鍵結於矽原子上之氫原子且R52及R53表示鍵 結於矽原子上之氫原子、芳基或碳數為id之烴基的結構 P3 一 單7L。 於本發明之光半導體裝置用密封劑之又一特定之態樣 中,上述式(51)所表示之第2有機聚矽氧烷係下述式(51A) 所表示之第2有機聚矽氧烷。於本發明之光半導體裝置用 密封劑之進而另一特定之態樣中,上述式(51A)中之 (R5 1R52R53 SiOm)所表示之結構單元包含R5丨表示鍵結於 石夕原子上之氫原子且R52及RS3表示鍵結於矽原子上之氫 原子、芳基或碳數為1〜8之烴基的結構單元。 [化3] (R51R52R53Si01/2)p(R56Si03/2)r ...式(51A) 上述式(51A)中,P&r滿足 p/(p+r)=〇 2〇〜〇 5〇&r/(p+r)= 0.50〜0.80 ’ R51〜R53、R56中’至少!個表示芳基至w 個表示鍵結於矽原子上之氫原子,芳基及鍵結於矽原子上 之氫原子以外之R51〜R53、R56表示碳數為1〜8之烴基。 本發明之光半導體裝置具備光半導體元件及以密封該光 半導體元件之方式而設置之上述光半導體裝置用密封劑。 [發明之效果] 本發明之光半導體裝置用密封劑含有由式(1A)所表示且 具有芳基及烯基之第1有機聚矽氧烷、由式(51)所表示且具 163225.doc 201247784 有芳基及鍵結於石夕原子上之氫原子的第2有機聚石夕氧院、 及矽氫化反應用觸媒,故而可提高密封劑之硬化性,並且 可提同保存穩定性。進而,於使本發明之光半導體裝置用 密封劑硬化時,可提高密封劑之耐熱性。 【實施方式】 以下說明本發明之詳情。 本發明之光半導體裝置用密封劑含有第丨有機聚矽氧 烷、第2有機聚矽氧烷、及矽氫化反應用觸媒。 上述第1有機聚矽氧烷由式(1A)所表示,且具有芳基及 烯基。上述第2有機聚矽氧烷由式(51)所表示,且具有芳基 及鍵結於矽原子上之氫原子。 上述第1有機聚矽氧烷及上述第2有機聚矽氧烷中之藉由 下述式(X)而求得之芳基之含有比率分別為3〇莫耳%以上、 7〇莫耳%以下。 芳基之含有比率(莫耳%)=(上述第丨有機聚矽氧烷或上述 第2有機聚矽氧烷之每丨分子所含有之芳基之平均個數X芳 基之分子量/上述第1有機聚矽氧烷或上述第2有機聚矽氧 炫之數平均分子量)Χ 100 式(X) 藉由採用本發明之光半導體裝置用密封劑中之上述組 成,可提高硬化性而加快密封劑之硬化速度,並且可提高 密封劑之保存穩定性。進而,於使本發明之光半導體裝置 用密封劑硬化時,可提高密封劑之耐熱性,並且可抑制密 封劑之變色。硬化之密封劑即便曝露於高溫下亦不易立 變。 汽 163225.doc 201247784 就獲得硬化性及保存穩定性更高且耐純更高之密封劑 之觀點而言’上述式(51)所表示之第2有機⑭氧院較佳為 式(51A)所表示之第2有機聚矽氧烷。 密封劑所含有之各成分 以下對本發明之光半導體裝置用 之詳情進行說明。 (第1有機聚矽氧烷) 本發明之光半導體裝置用密封劑所含有之P有機聚石夕 氧烷係由下述式(1八)所表示,且具有芳基及烯基。 上述第1有機聚矽氧烷較佳為不具有鍵結於矽原子上之 氫原子而具有芳基及烯基者。即,上述第!有機聚石夕氧院 較佳為第丨有機聚矽氧烷(其中,具有鍵結於矽原子上之氫 原子的有機㈣氧烧除外)。上述第i有機聚魏烧較佳為 具有2個以上之蝉基。芳基及烯基較佳為分別直接鍵結於 石夕原作為上述芳基’可列舉未經取代之苯基及經取 代之本基再者,可使上述烯基之碳-碳雙鍵中之碳原子 鍵結於#原子上,亦可使上料^與碳.碳魏中之碳 原子不同之碳原子鍵結於矽原子上。上述第丨有機聚矽氧 烧可僅使用一種’亦可併用兩種以上。 [化4] (R1R2R3S.O1/2)a(R4R5Si02/2)b ...^(1A) 上述式(1A)中 ’ a及 b 滿足 a/(a+b)=〇 〇5〜〇 3〇 及 b/(a+b)= 〇_70〜0.95 ’ R1〜R5中’至少丨個表示芳基至少丨個表示烯 基,芳基及烯基以外之R1〜R5表示碳數為卜8之烴基。再 者,上述式(1A)中,(R4R5Si〇2/2)所表示之結構單元可具 163225.doc 201247784 有烷氧基’亦可具有羥基。 上述式(1A)表示平均組成式。上述式(1A)中之烴基可為 直鍵狀’亦可為分支狀。上述式(1A)中之R1〜R5各自可相 同,亦可不同。 上述式(1A)中之(R4R5Si〇2/2)所表示之結構單元中之氧 原子部分表示形成矽氧烷鍵之氧原子部分、烷氧基之氧原 子部分或羥基之氧原子部分。 再者,通常於上述式(1A)之各結構單元中,烷氧基之含 量較少,進而羥基之含量亦較少。其原因在於:通常若為 了獲得第1有機聚矽氧烷而使烷氧基矽烷化合物等有機矽 化合物水解並聚縮合,則大多數烷氧基及羥基轉變為矽氧 烷鍵之部分骨架。即,大多數烷氧基之氧原子及羥基之氧 原子轉變為形成矽氧烷鍵之氧原子。於上述式(1A)之各結 構單元具有烷氧基或羥基之情形時,表示殘留少量未轉變 為矽氧烷鍵之部分骨架的未反應之烷氧基或羥基。關於下 述式(51)及式(51A)之各結構單元具有烷氧基或羥基之情 形’亦為相同之情況。 上述式(1A)中,作為烯基,可列舉:乙烯基、烯丙基、 丁烯基、戊烯基及己烯基等。就進一步提高阻氣性之觀點 而言,上述式(1A)中之烯基較佳為乙烯基或烯丙基,更佳 為乙稀基。 作為上述式(1A)中之碳數為卜8之烴基,並無特別限 定,例如可列舉:甲基、乙基、正丙基、正丁基 '正^ 基、正己基、正庚基、正辛基、異丙基、異丁基、第二 163225.doc 201247784 基、第二丁基、異戊基、新戊基、第三戊基、異己基及環 就獲得硬化性及保存穩定性更高且耐熱性更高之密封劑 之觀點而言,上述第1有機聚矽氧烷較佳為包含於丨個矽原 子上鍵結有2個苯基之二苯基矽氧烷結構單元。進而,就 獲得硬化性及保存穩定性進而更高且耐熱性進而更高之密 封劑之觀點而言,上述第1有機聚矽氧烷之總矽氧烷結構 單兀100莫耳%中,於1個矽原子上鍵結有2個苯基之二笨 基矽氧烷結構單元之比例較佳為2〇莫耳%以上,更佳為3〇 莫耳%以上。 上述二苯基矽氧烷結構單元較佳為下述式(丨_b〖)所表示 之結構單元。又,於下述式(丨-bi)所表示之結構單元中, 末端之氧原子通常與鄰接之矽原子形成矽氧烷鍵,並與鄰 接之結構單元共用氧原子。因此,將末端之丨個氧原子設[Technical Field] The present invention relates to a sealant for an optical semiconductor device for sealing an optical semiconductor element in an optical semiconductor device. Further, the present invention relates to an optical semiconductor device using the sealing agent for an optical semiconductor device. [Prior Art] An optical semiconductor device such as an LED (Light Emitting Diode) device has low power consumption and long life. Further, the optical semiconductor device can be used in a harsh environment. Therefore, the optical semiconductor device can be used in a wide range of applications such as a backlight for a mobile phone, a backlight for a liquid crystal television, an automobile lamp, a lighting fixture, and a signboard. When an optical semiconductor element (for example, an LED) which is a light-emitting element used in an optical semiconductor device is in direct contact with the atmosphere, the light-emitting characteristics of the optical semiconductor element are rapidly lowered by moisture in the atmosphere or suspended dust. Therefore, the above optical semiconductor element is usually sealed by a sealing agent for an optical semiconductor device. Patent Document 1 listed below discloses an epoxy resin material containing a hydrogenated bisphenol A glycidyl ether, a lunar ring epoxy monomer, and a latent catalyst as a sealing agent for a photo-semiconductor device. The epoxy resin material is cured by thermal cationic polymerization. Further, in addition to the sealing agent for an optical semiconductor device containing an epoxy resin, a sealing agent for an optical semiconductor device containing a polyoxyxylene resin is widely used. The upper polyoxygen tree I has a high transmittance for light of a short wavelength from the blue to the ultraviolet region, and is excellent in heat resistance and light resistance. [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2003-73452 (Patent Document 2) Japanese Patent Laid-Open No. Hei. [Problem to be Solved] The sealing agent for a photo-semiconductor device described in Patent Documents 1 and 2 has low storage stability and low curability. That is, if the sealant is cured after long-term storage, the curing rate may be slow. Further, even in the case of the sealant before storage, the sealant may not be rapidly hardened during curing. Further, when the sealing agent for a conventional optical semiconductor device is cured, there is a case where the cured sealing agent is discolored when exposed to a high temperature. For example, there is a case where the sealant is yellowed. An object of the present invention is to provide a sealing agent for an optical semiconductor device which is excellent in curability and excellent in storage stability, and which has high heat resistance of a sealing agent which is cured, and an optical semiconductor device using the sealing agent for an optical semiconductor device. [Means for Solving the Problems] According to a broader aspect of the present invention, there is provided a sealant for an optical semiconductor device which contains: an organic group which is represented by the following formula (1A) and which has an aryl group and a rare group. Oxygen-burning is represented by the following formula (51) and has an aryl group and a second organic polyglycol which is bonded to a hydrogen atom on the celestial atom, a catalyst for the hydrogenation reaction, and the above-mentioned i-th organic concentrating stone The content ratio of the aryl group obtained by the following formula (X) in the oxane and the second organic polyoxane 163225.doc 201247784 为• is 3 〇 mol% or more and 70 mol% or less, respectively; [:1] (R1 R2R3Si01/2 )a (R4R5Si02/2 )b (Formula a) • In the above formula (1 A), 3 and b satisfy a/(a+b)=0.〇5~ 0.30 and b/(a+b)= - 0·70~0·95, at least one of R1 to R5 represents an aryl group, and at least one represents an alkenyl group, and R1 to R5 other than an aryl group and an alkenyl group represent carbon. a hydrocarbon group of the number ^8; [Chemical 2] (Rbl R52R53Si01/2 )p (R54R55Si02/2 )q (R56Si03/2 )r (Formula (51) ii In the formula (51), p, q and r satisfy p/(p+q+r)=〇.〇5~〇·5〇, q/(p+q+r)= 〇~〇·15 and r/(p+q+r)=〇.2 〇.8〇, R51 ~R56, at least i represents a square group, at least one represents an argon atom bonded to a ruthenium atom, and an aryl group and a hydrogen atom bonded to a ruthenium atom are represented by R51 to R56. The hydrocarbon number of the carbon number is 8; the content ratio of the square group (% by mole) =: (the average number of aryl groups per molecule of the above-mentioned second organic polyoxane or the above second organic polyoxyalkylene) The molecular weight of the number X aryl group / the number average molecular weight of the above first organopolyoxane or the above second organopolyoxy oxymethane) χ 100 Formula (X). In a specific aspect of the sealing agent for an optical semiconductor device of the present invention, the first organopolydecane comprises a diphenyloxyne structure unit in which two phenyl groups are bonded to one of the fluorene atoms. In another specific aspect of the sealing agent for an optical semiconductor device of the present invention, the total oxime structural unit of the first organopolyoxane is bonded to one of the ruthenium atoms. The proportion of the above-mentioned diphenyloxane group of phenyl group 163225.doc 201247784 is 20 mol% or more. In another specific aspect of the sealing agent for an optical semiconductor device of the present invention, the structural unit represented by (R51R52R53Si〇i/2) in the above formula (51) contains R51 and represents a hydrogen atom bonded to a ruthenium atom. Further, R52 and R53 represent a structure P3 which is bonded to a hydrogen atom, an aryl group or a hydrocarbon group having a carbon number of id, a single 7L. In still another specific aspect of the sealing agent for an optical semiconductor device of the present invention, the second organopolyoxane represented by the formula (51) is a second organopolyoxygen represented by the following formula (51A). alkyl. In still another specific aspect of the sealing agent for an optical semiconductor device of the present invention, the structural unit represented by (R5 1R52R53 SiOm) in the above formula (51A) contains R 5 丨 represents hydrogen bonded to the lithium atom. The atom and R52 and RS3 represent a structural unit bonded to a hydrogen atom, an aryl group or a hydrocarbon group having 1 to 8 carbon atoms bonded to a halogen atom. (R51R52R53Si01/2)p(R56Si03/2)r (51A) In the above formula (51A), P&r satisfies p/(p+r)=〇2〇~〇5〇&;r/(p+r)= 0.50~0.80 'R51~R53, R56' at least! The aryl group to w represents a hydrogen atom bonded to a ruthenium atom, and the aryl group and the hydrogen atom bonded to the ruthenium atom are R51 to R53 and R56 represent a hydrocarbon group having 1 to 8 carbon atoms. The optical semiconductor device of the present invention includes an optical semiconductor element and the above-mentioned sealing agent for an optical semiconductor device provided to seal the optical semiconductor element. [Effects of the Invention] The sealing agent for an optical semiconductor device of the present invention contains the first organopolyoxane represented by the formula (1A) and having an aryl group and an alkenyl group, and is represented by the formula (51) and has 163225.doc 201247784 The second organic polyoxo compound having an aryl group and a hydrogen atom bonded to the Shixia atom, and a catalyst for hydrogenation reaction, can improve the hardenability of the sealant and can provide storage stability. Further, when the sealing agent for an optical semiconductor device of the present invention is cured, the heat resistance of the sealing agent can be improved. [Embodiment] Hereinafter, the details of the present invention will be described. The sealing agent for an optical semiconductor device of the present invention contains a terpene organopolyoxane, a second organopolyoxane, and a catalyst for hydrogenation reaction. The above first organopolyoxyalkylene is represented by the formula (1A) and has an aryl group and an alkenyl group. The second organopolyoxane is represented by the formula (51) and has an aryl group and a hydrogen atom bonded to the ruthenium atom. The content ratio of the aryl group obtained by the following formula (X) in the first organopolyoxane and the second organopolyoxane is 3 〇 mol% or more and 7 〇 mol %, respectively. the following. The content ratio of the aryl group (% by mole) = (the average number of aryl groups per molecule of the above-mentioned second organic polyoxane or the above second organic polyoxane) X molecular weight of the aryl group / the above (1) The number average molecular weight of the organic polyoxane or the second organic polyoxane Χ 100 Formula (X) By using the above composition in the sealant for an optical semiconductor device of the present invention, the hardenability can be improved and the sealing can be accelerated. The hardening speed of the agent and the storage stability of the sealant can be improved. Further, when the sealing agent for an optical semiconductor device of the present invention is cured, the heat resistance of the sealing agent can be improved, and discoloration of the sealing agent can be suppressed. The hardened sealant does not easily change even when exposed to high temperatures. 163225.doc 201247784 From the viewpoint of obtaining a sealant having higher hardenability, higher storage stability and higher purity resistance, the second organic 14-oxo represented by the above formula (51) is preferably the formula (51A). The second organopolyoxane is represented. Each component contained in the sealant Hereinafter, the details of the optical semiconductor device of the present invention will be described. (First organopolyoxane) The P organopolyoxane contained in the sealing agent for an optical semiconductor device of the present invention is represented by the following formula (18) and has an aryl group and an alkenyl group. The first organopolysiloxane is preferably one having an aryl group and an alkenyl group without a hydrogen atom bonded to a ruthenium atom. That is, the above-mentioned organopolycarbocene is preferably a terpene organopolyoxane (except for organic (tetra)oxygen having a hydrogen atom bonded to a ruthenium atom). The above i-organic poly-weiwei preferably has two or more mercapto groups. The aryl group and the alkenyl group are preferably directly bonded to Shih-Yuan as the above-mentioned aryl group, and the unsubstituted phenyl group and the substituted group may be exemplified, and the carbon-carbon double bond of the above alkenyl group may be The carbon atom is bonded to the # atom, and the carbon atom different from the carbon atom in the carbon and carbon is bonded to the germanium atom. The above-mentioned second organic polyoxygen oxide may be used alone or in combination of two or more. (R1R2R3S.O1/2)a(R4R5Si02/2)b (1A) In the above formula (1A), 'a and b satisfy a/(a+b)=〇〇5~〇3 〇 and b/(a+b)= 〇_70~0.95 'In R1 to R5, at least one of aryl represents at least one aryl group, and R1 to R5 other than aryl and alkenyl group means carbon number is 8 Hydrocarbyl group. Further, in the above formula (1A), the structural unit represented by (R4R5Si〇2/2) may have 163225.doc 201247784, and the alkoxy group may have a hydroxyl group. The above formula (1A) represents an average composition formula. The hydrocarbon group in the above formula (1A) may be a straight bond or may be branched. R1 to R5 in the above formula (1A) may be the same or different. The oxygen atom moiety in the structural unit represented by (R4R5Si〇2/2) in the above formula (1A) represents an oxygen atom moiety forming a siloxane chain, an oxygen atom moiety of an alkoxy group or an oxygen atom moiety of a hydroxyl group. Further, in the structural units of the above formula (1A), the content of the alkoxy group is usually small, and the content of the hydroxyl group is also small. The reason for this is that, in general, when the first organopolyoxyalkylene is obtained and an organic hydrazine compound such as an alkoxydecane compound is hydrolyzed and polycondensed, most of the alkoxy group and the hydroxy group are converted into a partial skeleton of a siloxane bond. That is, most of the oxygen atom of the alkoxy group and the oxygen atom of the hydroxyl group are converted into an oxygen atom forming a siloxane chain. In the case where each structural unit of the above formula (1A) has an alkoxy group or a hydroxyl group, it means that a small amount of unreacted alkoxy group or hydroxyl group which is not converted into a partial skeleton of a decane bond is left. The same applies to the case where each structural unit of the following formula (51) and formula (51A) has an alkoxy group or a hydroxyl group. In the above formula (1A), examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group. The alkenyl group in the above formula (1A) is preferably a vinyl group or an allyl group, and more preferably an ethylene group, from the viewpoint of further improving gas barrier properties. The hydrocarbon group having a carbon number of 8 in the above formula (1A) is not particularly limited, and examples thereof include a methyl group, an ethyl group, a n-propyl group, a n-butyl 'n-yl group, a n-hexyl group, and an n-heptyl group. N-octyl, isopropyl, isobutyl, second 163225.doc 201247784, t-butyl, isopentyl, neopentyl, third amyl, isohexyl and ring to obtain hardenability and storage stability In view of the sealant having a higher heat resistance and higher heat resistance, the first organopolysiloxane is preferably a structural unit containing a diphenyl siloxane having two phenyl groups bonded to one ruthenium atom. Further, from the viewpoint of obtaining a sealant having higher curability and storage stability and further higher heat resistance, the total organoaluminoxane structure of the first organopolyoxane is 100% by mole per mole. The ratio of the structural unit of the two phenyl bis(nonyl) oxyalkylene groups bonded to one ruthenium atom is preferably 2 〇 mol% or more, more preferably 3 〇 mol% or more. The above diphenyloxane structural unit is preferably a structural unit represented by the following formula (丨_b). Further, in the structural unit represented by the following formula (丨-bi), the terminal oxygen atom usually forms a decane bond with the adjacent ruthenium atom, and shares an oxygen atom with the adjacent structural unit. Therefore, set the oxygen atom at the end

上述第1有機聚矽氧烷中之藉由下述式(Χ1)而求得之芳 基之含有比率為30莫耳%以上、70莫耳%以下。若該芳基 163225.doc -10- 201247784 ,:有比率為30莫耳%以上、7〇莫耳%以下 耐熱性變高,並且自井车 丨密封劑之 高。又,若关 裝置所提取之光之亮度變 方基之含有比率為3〇莫 阻氣性變高。若芳某之人古μ 耳以上,則密封劑之 芳基之3有比率為7〇莫耳%以下,則不易 產生密封劑之剝離。就獲得 ^ 』热往更尚 '自光半導體裝置 所、取之光之亮度更高之密封劑之觀點而言,芳基之含有 比率更佳為35莫耳%以上,更佳為“莫耳%以下。 芳基^有比率(莫耳%)=(平均組成式由上述式⑽所 表'之第1有機聚石夕氧院之每1分子所含有之芳基之平均個The content ratio of the aryl group obtained by the following formula (Χ1) in the above first organopolyoxane is 30 mol% or more and 70 mol% or less. If the aryl group 163225.doc -10- 201247784, the ratio is 30 mol% or more, 7 〇 mol% or less, the heat resistance is high, and the sealant is high. Further, if the ratio of the luminance variogram of the light extracted by the off device is 3 〇, the gas barrier property becomes high. If the ratio of the aryl group of the sealant is 7 〇 mol% or less, the peeling of the sealant is less likely to occur. The content ratio of the aryl group is more preferably 35 mol% or more, more preferably "mole", from the viewpoint of obtaining a sealant having a higher brightness from the light semiconductor device. % or less. The aryl group has a ratio (mol%) = (the average composition formula is the average of the aryl groups contained in each molecule of the first organic polysulfide compound represented by the above formula (10)

數X力基之分子量/平约細杰痄I 勺、,成式由上述式(1A)所表示之第j 有機聚矽氧烷之數平均分子量)χΐ〇〇式 於上述式(1Α)所表示之第1有機聚石夕氧烧中, (謹5S丨02/2)所表示之結構單元(以τ亦稱作:官能結構單 70亦可包含下述式(1·2)所表示之結構,即二官能結構單 疋中之一個鍵結於梦原子上之氧原子構成經基或炫氧基之 結構。 (R4R5SiX〇1/2)式(1_2) (R4R5Si02/2)所表示之結構單元包含下述式(叫所表示 之結構單元之由虛線所包圍之部分,進而亦可包含下述式 (l-2-b)所表示之結構單元之由虛線所包圍之部分。即具 有R4及R5所表示之基且於末端殘留烷氧基或羥基之結構 單元亦包含於(R4R5Si〇2/2)所表示之結構單元中。具體而 言,於烷氧基轉變為矽氧烷鍵之部分骨架之情形時, (RARSSiO2,2)所表示之結構單元表示下述式(丨儿)所表示之 163225.doc 201247784 結構單元之由虛線所包圍之部分。於殘留未反應之烷氧基 之情形或烷氧基轉變為羥基之情形時,具有殘留之烷氧基 或經基的(R4R5Si〇2/2)所表示之結構單元表示下述式 所表示之結構單元之由虛線所包圍之部分。又,於下述式 (Ι-b)所表示之結構單元中,si-0_Si鍵中之氧原子與鄰接之 石夕原子形成矽氧烷鍵’並與鄰接之結構單元共用氧原子。 因此’將Si-0-Si鍵中之1個氧原子設為「〇丨/2」。 [化6] R4 R4The molecular weight of the number X force base / the average number of the fine particles of the j-organic polyoxane represented by the above formula (1A), and the formula (1Α) The structural unit represented by the first organic polysulfide (hereinafter referred to as 5S丨02/2) (also referred to as τ: the functional structure single 70 may be represented by the following formula (1·2) The structure, that is, one of the difunctional structure monoterpenes, which is bonded to the oxygen atom of the dream atom, constitutes a structure of a trans- or decyloxy group. (R4R5SiX〇1/2) Structure represented by the formula (1_2) (R4R5Si02/2) The unit includes a portion surrounded by a broken line of the structural unit represented, and may further include a portion surrounded by a broken line of the structural unit represented by the following formula (1-2-b). And a structural unit represented by R5 and having an alkoxy group or a hydroxyl group at the terminal is also contained in the structural unit represented by (R4R5Si〇2/2). Specifically, the alkoxy group is converted into a decane bond. In the case of a partial skeleton, the structural unit represented by (RARSSiO2, 2) represents the 163225.doc 201247784 knot represented by the following formula (丨儿) a portion of a unit surrounded by a broken line, in the case of residual unreacted alkoxy group or in the case where an alkoxy group is converted into a hydroxyl group, having a residual alkoxy group or a transradical represented by (R4R5Si〇2/2) The structural unit represents a portion surrounded by a broken line of the structural unit represented by the following formula. Further, in the structural unit represented by the following formula (Ι-b), the oxygen atom in the si-0_Si bond and the adjacent stone eve The atom forms a decane bond 'and shares an oxygen atom with an adjacent structural unit. Therefore, 'one oxygen atom of the Si-0-Si bond is set to "〇丨/2". [Chem. 6] R4 R4

Si—Ο—Si—Q—Si— R5 式(1 一 b)Si—Ο—Si—Q—Si— R5 (1–b)

Si——0—Si——XSi——0—Si——X

__ I '! R5 式(1 一 2 —b) 上述式(1-2)及(l-2-b)中,X表示〇H或〇R,〇R表示直鏈 狀或分支狀之碳數為1〜4之烷氧基。上述式(1斗)、(12)及 (l-2-b)中之R4及R5係與上述式(1A)中之R4AR5相同之 基》 於上述式(Ι-b)、式(1-2)以及式(1_2_b)t,作為直鏈狀或 分支狀之碳數為1〜4之烷氧基,並無特別限定,例如可列 舉:甲氧基、乙氧基、正丙氧基、正丁氧基、#丙氧基、 異丁氧基、第二丁氧基及第三丁氧基。 於上述式(1A)中,a/(a+b)之下限為〇.G5,上限為〇3〇。 若a/(a+b)為上述下限以上及上述上限以下,則密封劑之硬 化性及保存穩定性'以及硬化之密封劑之耐熱性進一步變 I63225.doc •12· 201247784 高。 上述式(1A)中,b/(a+b)之下限為0.70,上限為〇 95。若 b/(a+l:〇為上述下限以上及上述上限以下,則密封劑之硬化 性及保存穩定性、以及硬化之密封劑之耐熱性進一步變 高。 於對上述第1有機聚矽氧统以四曱基矽烧(以下稱為 TMS(tetramethylsilane))為基準進行29Si-核磁共振分析(以 下稱為NMR(Nuclear Magnetic Resonance))時,雖然根據取 代基之種類不同而可見若干變動,但相當於上述式(丨A)中 之(RlR2R3Si〇1/2)所表示之結構單元的波峰出現於+ 1〇〜·5 ppm附近,相當於上述式(1Α)中之(R4R5Si〇2/2)及上述式 (1-2)之二官能結構單元的各波峰出現於_1〇〜_5〇 附 近。 因此 精由測定〇Si-NMR並比較各訊號之波峰面積,1 測定上述式(1A)中之各結構單元之比率。 其中,於無法利用上述以TMS為基準之29si_NMR測定逢 別上述式(1A)中之結構單元之情形時,可藉由除了 Ml NMR之敎結果以外視需要使用1H-NMR之敎結果而丧 別上述式(1A)中之各結構單元之比率。 (第2有機聚矽氧烷) 本發明之光半導體裝置用密封劑所含有之第2有機聚句 氧炫由下述式(51)所表示,且具有芳基及鍵結於石夕原子上 之氫原子。上述第2有機聚石夕氧院較佳為具有兩個以上之 鍵、’°於發原子上之氫原子。芳基較佳為直接鍵結於石夕原子 163225.doc -13- 201247784 上°氫原子直接鍵結於矽原子上。上述第2有機聚矽氧烷 可僅使用一種,亦可併用兩種以上。 [化7] (R51R52R53Si01/2 )p (R54R55Si02/2 )q (R56SiO3/2 )r (51) 上述式(51)中 ’ P、q及r滿足p/(p+q+r)=0.05〜0·50、q/(p+q+r)= 0 〜0,15 及 r/(P+q+r) = 0.20 〜0.80,R51 〜R56中,至少 1個表示 芳基’至少1個表示鍵結於矽原子上之氫原子,芳基及鍵 結於碎原子上之氫原子以外之R5丨〜R56表示碳數為1〜8之 煙基。再者’上述式(51)中,(R54R55Si〇2/2)所表示之結構 單元及(R56Si〇3/2)所表示之結構單元分別可具有烧氧基, 亦可具有經基。 就獲得硬化性及保存穩定性進而更高且耐熱性進而更高 之密封劑之觀點而言,上述第2有機聚石夕氧烧較佳為下述 式(51A)所表示之第2有機聚矽氧烷。 [化8] (R51R52R53Si〇i/2)p (R56Si〇3/2)r …式(51A) 上述式(51A)中 ’ p及 r 滿足 p/(p+r)=0.20〜0.50及 r/(p+r)= 0.50〜0·80 ’ R51〜R53、R56中,至少1個表示芳基,至少i 個表示鍵結於矽原子上之氫原子,芳基及鍵結於矽原子上 之氫原子以外之R5 1〜R53、R56表示碳數為1〜8之烴基。再 者,上述式(51A)中’(RSSSiO3/2)所表示之結構單元可具 有烷氧基,亦可具有羥基》 上述式(51)及上述式(51A)表示平均組成式。上述式(5 j) 及上述式(51 A)中之烴基可為直鏈狀亦可為分支狀。上述 163225.doc •14· 201247784 式(51)中之R51〜R56及上述式(51A)中之R51〜R54、R56各 自可相同,亦可不同。 上述式(51)中(R54R55Si〇2/2)所表示之結構單元中之氧 原子部分、上述式(51)及上述式(51A)t(R56Si〇3/2)所表示 之°構單元中之氧原子部分分別表示形成矽氧烷鍵之氧原 子部分、烷氧基之氧原子部分或羥基之氧原子部分。 作為上述式(51)及上述式(5 1A)中之碳數為1〜8之烴基, 並無特別限定,例如可列舉:甲基、乙基、正丙基、正丁 基、正戊基、正己基、正庚基、正辛基、異丙基、異丁 基、第二丁基、第三丁基、異戊基、新戊基、第三戊基、 異己基、環己基、乙烯基及烯丙基。 就提高密封劑之硬化性’進而進一步提高硬化之密封劑 之耐熱性之觀點而言’上述式(51)及上述式(51 a)中之 (115111521153 81(^/2)所表示之結構單元較佳為包含R51表示 鍵結於矽原子上之氫原子且r52及r53表示鍵結於矽原子 上之氫原子、芳基或碳數為之烴基的結構單元。於該 情形時,於光半導體裝置中,亦可抑制熱循環時之龜裂及 剝離。上述式(5.1)及上述式(51A)中之(R51R52R53Si01/2) 所表示之結構單元更佳為包含R5 1表示鍵結於矽原子上之 氫原子且R52及R5 3表示芳基或破數為1〜8之烴基的結構单 元。 即,上述式(51)及上述式(51a)中,(R51R52R53SiCh/2) 所表示之結構單元較佳為包含下述式(5 1 -a)所表示之結構 單元。(R51R52R53SiOW2)所表示之結構單元可僅包含下述 163225.doc -15- 201247784 式(51-a)所表示之結構單元,亦可包含下述式(51-a)所表示 之結構單元及下述式(5 1 -a)所表示之結構單元以外之結構 單元。 [化9] R52 …式(51 — a) I ^ Η—Si——φ__ I '! R5 Formula (1 - 2 - b) In the above formulas (1-2) and (l-2-b), X represents 〇H or 〇R, and 〇R represents a linear or branched carbon number. It is an alkoxy group of 1 to 4. In the above formulas (1), (12) and (l-2-b), R4 and R5 are the same as those of R4AR5 in the above formula (1A), and are represented by the above formula (Ι-b), formula (1- 2) and the formula (1_2_b)t, which is a linear or branched alkoxy group having 1 to 4 carbon atoms, and is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, and a n-propoxy group. N-butoxy, #propoxy, isobutoxy, second butoxy and tert-butoxy. In the above formula (1A), the lower limit of a/(a+b) is 〇.G5, and the upper limit is 〇3〇. When a/(a+b) is at least the above lower limit and not more than the above upper limit, the hardenability and storage stability of the sealant and the heat resistance of the cured sealant are further increased. I63225.doc •12·201247784 is high. In the above formula (1A), the lower limit of b/(a+b) is 0.70, and the upper limit is 〇95. When b/(a+l: 〇 is at least the above lower limit and not more than the above upper limit, the curing property and storage stability of the sealant and the heat resistance of the cured sealant are further increased. When 29Si-nuclear magnetic resonance analysis (hereinafter referred to as NMR (Nuclear Magnetic Resonance)) is carried out based on tetrakisole-based calcination (hereinafter referred to as TMS (tetramethylsilane)), although some changes are observed depending on the type of the substituent, The peak corresponding to the structural unit represented by (RlR2R3Si〇1/2) in the above formula (丨A) appears in the vicinity of +1〇~·5 ppm, which corresponds to (R4R5Si〇2/2 in the above formula (1Α) And the peaks of the difunctional structural unit of the above formula (1-2) appear in the vicinity of _1 〇 to _5 。. Therefore, the 〇Si-NMR is measured and the peak area of each signal is compared, and the above formula (1A) is determined. The ratio of each structural unit in the case where the structural unit in the above formula (1A) cannot be determined by the above-mentioned TMS-based 29si_NMR measurement, the 1H can be used as needed by the result of the Ml NMR. - NMR results and discard the above formula (1A) The ratio of each structural unit (second organic polyoxane) The second organic polyoxohalene contained in the sealing agent for an optical semiconductor device of the present invention is represented by the following formula (51) and has an aryl group and The hydrogen atom bonded to the Shi Xi atom. The second organic polyoxo is preferably a hydrogen atom having two or more bonds and '° on the atom. The aryl group is preferably directly bonded to the stone.夕原子163225.doc -13- 201247784 The upper hydrogen atom is directly bonded to the ruthenium atom. The above second organopolyoxane may be used alone or in combination of two or more. [Chem. 7] (R51R52R53Si01/2) p (R54R55Si02/2 )q (R56SiO3/2 )r (51) In the above formula (51), 'P, q and r satisfy p/(p+q+r)=0.05~0·50, q/(p+ q+r)= 0 〜0,15 and r/(P+q+r) = 0.20 to 0.80, at least one of R51 to R56 represents an aryl group, and at least one represents a hydrogen atom bonded to a ruthenium atom. R5丨~R56 other than a hydrogen atom bonded to a broken atom, and an aryl group and a hydrogen atom bonded to a broken atom, represent a sulphur group having a carbon number of 1 to 8. Further, in the above formula (51), (R54R55Si〇2/2) Structural unit and structural unit represented by (R56Si〇3/2) The second organic polyoxo-oxygenation is preferably obtained from the viewpoint of obtaining a curing agent and a sealing agent having higher curing property and higher heat resistance and higher heat resistance. The second organopolyoxane represented by the following formula (51A). (R51R52R53Si〇i/2)p (R56Si〇3/2)r (51A) In the above formula (51A), 'p and r satisfy p/(p+r)=0.20~0.50 and r/ (p+r)= 0.50~0·80 'At least one of R51~R53 and R56 represents an aryl group, at least i represents a hydrogen atom bonded to a ruthenium atom, an aryl group and a bond to a ruthenium atom R5 1 to R53 and R56 other than a hydrogen atom represent a hydrocarbon group having 1 to 8 carbon atoms. Further, in the above formula (51A), the structural unit represented by 'RSSSiO3/2) may have an alkoxy group or a hydroxyl group. The above formula (51) and the above formula (51A) represent an average composition formula. The hydrocarbon group in the above formula (5j) and the above formula (51A) may be linear or branched. The above-mentioned 163225.doc •14·201247784 R51 to R56 in the formula (51) and R51 to R54 and R56 in the above formula (51A) may be the same or different. The oxygen atom moiety in the structural unit represented by the formula (51) (R54R55Si〇2/2), the above formula (51), and the above formula (51A) t (R56Si〇3/2) The oxygen atom portion respectively represents an oxygen atom portion forming a heptane bond, an oxygen atom portion of an alkoxy group or an oxygen atom portion of a hydroxyl group. The hydrocarbon group having 1 to 8 carbon atoms in the above formula (51) and the above formula (5 1A) is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, n-butyl group and n-pentyl group. , n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, t-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, cyclohexyl, ethylene Base and allyl group. In terms of improving the hardenability of the sealant and further improving the heat resistance of the cured sealant, the structural unit represented by the above formula (51) and the above formula (51 a) (115111521153 81 (^/2) Preferably, R51 represents a hydrogen atom bonded to a ruthenium atom and r52 and r53 represent a hydrogen atom bonded to a ruthenium atom, an aryl group or a hydrocarbon group having a carbon number. In this case, the photo-semiconductor In the apparatus, it is also possible to suppress cracking and peeling during thermal cycling. The structural unit represented by the formula (5.1) and the above formula (51A) (R51R52R53Si01/2) preferably contains R5 and represents a bond to a ruthenium atom. The hydrogen atom and R52 and R5 3 represent a structural unit of an aryl group or a hydrocarbon group having a number of 1 to 8. That is, a structural unit represented by the above formula (51) and the above formula (51a), (R51R52R53SiCh/2) Preferably, the structural unit represented by the following formula (5 1 - a) is contained. The structural unit represented by (R51R52R53SiOW2) may include only the structural unit represented by the following formula 163225.doc -15-201247784 (51-a) And may also include a structural unit represented by the following formula (51-a) and the following formula Structural units other than the structural units 5 1 -a) represented by the [Formula 9] R52 ... of formula (51 - a) I ^ Η-Si - φ

I R53 上述式(5 1-a)中,R52及R53分別表示鍵結於矽原子上之 氫原子、芳基或碳數為i〜8之烴基。R52及R53分別較佳為 表示芳基或碳數為1〜8之烴基。 就提高密封劑之硬化性,進而進一步提高硬化之密封劑 之耐熱性之觀點而言,上述式(51)及上述式(51A)中之總結 構單70 100莫耳〇/〇中,由(R51R52R53SiO丨/2)所表示並且R51 表示鍵結於矽原子上之氫原子且R52及R53表示鍵結於矽 原子上之氫原子、芳基或碳數為1〜8之烴基的結構單元(上 述式(51-a)所表示之結構單元)之比例較佳為5莫耳%以上, 更佳為1。莫耳%以上,較佳為5G莫耳%以下,更佳為^莫 耳%以下。 、 上述第2有機聚矽氧烷中之藉由下述式(χ5ι)而求得之芳 基之含有比率為30莫耳%以上、7〇莫耳%以下。若該芳其 之含有比率為30莫耳%以上、70莫耳%以下,則密;;劑: 耐熱性變高,且自光半導體裝置所提取之光之亮度變高。 又,若芳基之含有比率為30莫耳%以上,則密封劑之2氣 163225.doc 201247784 性變高。若芳基之含有比率為7〇莫耳%以下,則不易產生 密封劑之剝離。就獲得耐熱性更高,自光半導體裝置提取 之光之亮度更高之密封劑之觀點而言,芳基之含有比率更 佳為35莫耳%以上’更佳為65莫耳%以下。 芳基之含有此率(莫耳%)=(平均組成式由上述式(51)或上 述式(51A)所表示之第2有機聚矽氧烷之每丨分子所含有之 芳基之平均個數X芳基之分子量/平均組成式由上述式(5 〇 或上述式(51A)所表示之第2有機聚矽氧烷之數平均分子 量)χ1〇〇 式(Χ51) 於上述式(51)所表示之第2有機聚矽氧烷中, (R54R55Si〇2/2)所表示之結構單元(以下亦稱作二官能結構 單元)亦可包含下述式(5 1-2)所表示之結構,即二官能結構 單元中之一個鍵結於矽原子上之氧原子構成羥基或烷氧基 的結構。 (R54R55SiX01/2) 式(51-2) (115411558丨〇2/2)所表示之結構單元包含下述式(51_^))所表 示之結構單元之由虛線所包圍之部分,進而亦可包含下述 式(5 1 -2-b)所表示之結構單元之由虛線所包圍之部分。 即’具有R5 4及R5 5所表示之基且於末端殘留炫氧基或羥 基之結構單元亦包含於(R54R55Si〇2,2)所表示之結構單元 中。 [化 10] 163225.doc -17- 201247784 54.l55 R——s丨R I…T·: 11 Is---I R53 In the above formula (5 1-a), R 52 and R 53 each represent a hydrogen atom bonded to a ruthenium atom, an aryl group or a hydrocarbon group having a carbon number of i 8 . R52 and R53 each preferably represent an aryl group or a hydrocarbon group having 1 to 8 carbon atoms. From the viewpoint of improving the hardenability of the sealant and further improving the heat resistance of the cured sealant, the total structure of the above formula (51) and the above formula (51A) is 70 100 莫 〇 / 〇 R51R52R53SiO丨/2) is represented and R51 represents a hydrogen atom bonded to a ruthenium atom and R52 and R53 represent a hydrogen atom bonded to a ruthenium atom, an aryl group or a hydrocarbon group having a carbon number of 1 to 8 (the above) The proportion of the structural unit represented by the formula (51-a) is preferably 5 mol% or more, more preferably 1. More than or equal to 5% by mole, preferably 5 MPa% or less, more preferably 5% by mole. The content ratio of the aryl group obtained by the following formula (χ5ι) in the above second organopolyoxane is 30 mol% or more and 7 mol% or less. When the content ratio of the aryl is 30 mol% or more and 70 mol% or less, it is dense; the agent: heat resistance becomes high, and the brightness of light extracted from the optical semiconductor device becomes high. Further, when the content ratio of the aryl group is 30 mol% or more, the properties of the sealant 2 gas 163225.doc 201247784 become high. When the content ratio of the aryl group is 7 〇 mol% or less, peeling of the sealant is less likely to occur. The content ratio of the aryl group is preferably 35 mol% or more and more preferably 65 mol% or less from the viewpoint of obtaining a sealant having a higher heat resistance and higher brightness of light extracted from the optical semiconductor device. The content ratio of the aryl group (% by mole) = (the average composition formula of the aryl group contained in each molecule of the second organopolyoxane represented by the above formula (51) or the above formula (51A) The molecular weight/average composition formula of the number X aryl group is represented by the above formula (5 〇 or the number average molecular weight of the second organopolyoxane represented by the above formula (51A)) χ1〇〇 (Χ51) in the above formula (51) In the second organopolyoxane shown, the structural unit represented by (R54R55Si〇2/2) (hereinafter also referred to as a difunctional structural unit) may further include a structure represented by the following formula (51-2). , that is, a structure in which one of the difunctional structural units bonded to the halogen atom constitutes a hydroxyl group or an alkoxy group. (R54R55SiX01/2) The structure represented by the formula (51-2) (115411558丨〇2/2) The unit includes a portion surrounded by a broken line of the structural unit represented by the following formula (51_^)), and may further include a portion surrounded by a broken line of the structural unit represented by the following formula (5 1 -2-b) . Namely, a structural unit having a group represented by R5 4 and R5 5 and having a methoxy group or a hydroxyl group at the terminal is also contained in the structural unit represented by (R54R55Si〇2, 2). [Chem. 10] 163225.doc -17- 201247784 54.l55 R——s丨R I...T·: 11 Is---

I I I ——s--- I I I 1 ---SI 11I I I ——s--- I I I 1 ---SI 11

X 4 j 5 s'-ls R——SIR ···式(51 — b) _·式(51 — 2—b) 上述式(51-2)及(51-2-b)中,X表示OH或OR,〇R表示直 鏈狀或分支狀之碳數為1〜4之烧氧基。上述式(5 i_b)、(5 1-2) 及(51-2-b)中之R54及R55係與上述式(51)中之R54及R55相 同之基。 於上述式(51)及上述式(51A)所表示之第2有機聚矽氧烧 中’(R56Si〇3/;〇所表示之結構單元(以下亦稱作三官能結構 單元)亦可包含下述式(5 1-3)或(5 1-4)所表示之結構,即三 官能結構單元中之兩個鍵結於矽原子上之氧原子分別構成 經基或烷氧基之結構、或三官能結構單元中之一個鍵結於 石夕原子上之氧原子構成羥基或烷氧基之結構。 (R56SiX2〇 1/2) 式(51-3) (R56SiX〇2,2) 式(51-4) (R56Si〇3/2)所表示之結構單元包含下述式(51c)所表示 之結構單元之由虛線所包圍之部分,進而亦可包含下述式 (5 1 -3-c)或(5 l-4-c)所表示之結構單元之由虛線所包園之部 分。即,具有R5 6所表示之基且於末端殘留烷氧基或羥基 之結構單元亦包含於(R56Si〇3/2)所表示之結構單元中。 [化 11] I63225.doc •18- 201247784 ~Si— I ο I — I- I · — · -Si—〇_Si—〇—Sj_.. R56 •式(51—c) ,;X -Si—0—Si—x I · | 1 _5·6 …式(51 -3-c) -:-x ·-二56 silo——siIR:I -· , · , · 一 11 …式(51 —4 一c) 上迤式(51-3)、(51 c; ㈠及(51-4-c)中,χ表示 〇H 或OR,OR表示直鍵狀或分支狀之碳數為M之院氧基。上 述式⑴-0、(51-3)、(51_3_c)、(51_4)及(514〇 中之咖係 與上述式(51)及上述式(51A)中之R56相同之基。 於上述式(5i-b)及(5i-c)、式(51_2卜(51-4)以及式(mb)、 (51-3-c)、(51〜)中,作為直鏈狀或分支狀之碳數為μ 之坑氧基’並無特別限定,例如可列舉:甲氧基、乙氧 基、正丙氧基、正丁氧基、異丙氧基、異丁氧基、第二丁 氧基及第三丁氧基。 务上述式(51)中,p/(p+q+r)之下限為〇.〇5,上限為〇5〇。 若P/(P+㈣滿足上述上p艮,則可進一步提高密封劑之耐熱 性,並且可進—步抑制密封劑之剝離。上述式⑼中, P/(P+㈣之較佳之下限為0·10,更佳之下限為〇15,更佳 之上限為0.45。 上述式(51)中’ q/(p+q+r)之下限為〇,上限為〇 15。若 q (p q 0滿足上述上限,則密封劑之硬化性、保存穩定性 及耐熱性變尚。就進一步提高密封劑之硬化性、保存穩定 〖生及耐熱性之觀點而言,上述式⑴)中,q《p + q竹)之較佳 之上限為0.10,更佳之上限為〇.〇5以下。再者 為〇且 163225.doc -19· 201247784 q/(p+q+r)為〇之情形時,於上述式(51)中不存在 (R54R55Si〇2/2)之結構單元。 上述式(51)f,r/(p+q+r)之下限為〇 2〇,上限為〇 8〇。若 r/(P+q+r)滿足上述下限,則密封劑之硬度提昇,可防止損 傷及灰塵之附著,並且密封劑之耐熱性變高,密封劑之硬 化物之厚度變得不易於高溫環境下減少。滿足 上述上限,則容易維持作為密封劑之適當之黏度,並可進 一步提高密接性。 又,如上所述,上述第2有機聚矽氧烷較佳為上述式 (5 1A)所表示之第2有機聚矽氧烷。 上述式(51A)中,p/(p+r)之下限為〇 2〇,上限為〇 5〇。若 p/(p+r)為上述下限以上及上述上限以下,則密封劑之硬化 性及保存穩定性、以及硬化之密封劑之耐熱性進一步變 向。 上述式(51A)中,r/(p+r)之下限為〇.5〇 ,上限為〇 8〇。若 r/(p+r)為上述下限以上及上述上限以下,則密封劑之硬化 性及保存穩定性、以及硬化之密封劑之耐熱性進一步變 南。 於對上述第2有機聚矽氧烷以四甲基矽烷(以下稱為TMS) 為基準進行29Si-核磁共振分析(以下稱為NMR)時,雖然根 據取代基之種類不同而可見若干變動,但相當於上述式 (51)及上述式(51A)中之(R51R52R53Si〇w2)所表示之結構 單元的波峰出現於+ 1〇〜-5 ppm附近,相當於上述式(51)中 之(115411558丨〇2/2)及上述式(51-2)之二官能結構單元的各波 163225.doc -20- 201247784 峰出現於-10〜-5 0 ppm附近,相當於上述式(51)及上述式 (51八)中之(11568丨03/2)以及上述式(51-3)及(51-4)之三官能 結構單元的各波峰出現於-5 0〜-80 ppm附近。 因此,可藉由測定29Si-NMR並比較各訊號之波峰面積而 測定上述式(51)及上述式(5 1A)中之各結構單元之比率。 其中,於無法利用上述以TMS為基準之29Si-NMR測定鑑 別上述式(51)及上述式(51A)中之結構單元之情形時,可藉 由除了 29Si-NMR之測定結果以外視需要使用h-NMR之測 定結果而鑑別上述式(5 1)及上述式(5 1A)中之各結構單元之 比率。 相對於上述第1有機聚矽氧烷1〇〇重量份,上述第2有機 聚石夕氧烷之含量較佳為1〇重量份以上、4〇〇重量份以下。 若第1、第2有機聚矽氧烷之含量為該範圍内,則可獲得密 封劑之硬化性及保存穩定性進一步變高,進而耐熱性更優 異之密封劑。就獲得硬化性、保存穩定性及耐熱性進而更 優異之密封劑之觀點而言,相對於上述第丨有機聚矽氧烷 〇重量伤,上述第2有機聚石夕氧院之含量之更佳之下限為 3〇重量份’進而較佳之下限為5〇重量份,更佳之上限為 3〇〇重量份,進而較佳之上限為200重量份。 (第1、第2有機聚石夕氧院之其他性質及其合成方法) 上。述第1、第2有機聚石夕氧院之貌氧基之含量較佳為〇5 、耳x上更佳為1莫耳%以上,較佳為1 〇莫耳%以下, 更佳為5莫耳%以下。若 右灰•氧基之含量為上述下限以上, 則密封劑之密接性變^古 丧『變网。右烷氧基之含量為上述上限以 163225.doc 201247784 I ’則第1、第2有機聚矽氧烷及密封劑之保存穩定性變 高’密封劑之耐熱性進一步變高。 上述烷氧基之含量意指第〗、第2有機聚矽氧烷之平均組 成式中所含有之烷氧基之量。 上述第1、第2有機聚矽氧烷較佳為不含矽烷醇基。若第 1、第2有機聚矽氧烷不含矽烷醇基,則第丨、第2有機聚矽 氧烷及密封劑之儲存穩定性變高。上述矽烷醇基可藉由於 真空下加熱而減少。矽烷醇基之含量可使用紅外分光法測 定。 上述第1、第2有機聚矽氧烷之數平均分子量(Mn)之較佳 之下限為500,更佳之下限為8〇〇,進而較佳之下限為 1000,較佳之上限為5〇〇〇〇,更佳之上限為丨5〇〇〇。若數平 均刀子量滿足上述較佳之下限,則熱硬化時揮發成分變 ^,並且尚溫環境下密封劑之硬化物之厚度變得不易減 少。若數平均分子量滿足上述較佳之上限,則黏度調節較 為容易β 上述數平均分子量(Μη)係使用凝膠滲透層析法(Gpc,X 4 j 5 s'-ls R——SIR ··· (51 — b) _· (51 — 2—b) In the above formulas (51-2) and (51-2-b), X represents OH or OR, 〇R represents a linear or branched alkoxy group having a carbon number of 1 to 4. R54 and R55 in the above formulae (5 i_b), (5 1-2) and (51-2-b) are the same as those of R54 and R55 in the above formula (51). In the second organic polyoxo-oxygen represented by the above formula (51) and the above formula (51A) (R56Si〇3/; the structural unit represented by 〇 (hereinafter also referred to as a trifunctional structural unit) may also be included The structure represented by the formula (5 1-3) or (5 1-4), that is, the two oxygen atoms bonded to the ruthenium atom in the trifunctional structural unit respectively constitute a structure of a trans- or alkoxy group, or One of the trifunctional structural units bonded to the oxygen atom of the Shi Xi atom constitutes a structure of a hydroxyl group or an alkoxy group. (R56SiX2〇1/2) Formula (51-3) (R56SiX〇2, 2) Formula (51- 4) The structural unit represented by (R56Si〇3/2) includes a portion surrounded by a broken line of the structural unit represented by the following formula (51c), and may further include the following formula (5 1 -3-c) or (5 l-4-c) The part of the structural unit represented by the dotted line. That is, the structural unit having a group represented by R56 and having an alkoxy group or a hydroxyl group at the terminal is also included in (R56Si〇3). /2) In the structural unit represented. [Chem. 11] I63225.doc •18- 201247784 ~Si— I ο I — I- I · — · -Si—〇_Si—〇—Sj_.. R56 • 51-c) ,; X -Si—0 Si—x I · | 1 _5·6 ...(51 -3-c) −:−x ·-two 56 silo—siIR:I −· , · , · · 11 ... (51 —4 a c) In the upper formulas (51-3), (51 c; (i) and (51-4-c), χ represents 〇H or OR, and OR represents a direct bond or a branched carbon group having a carbon number of M. The bases of the formulae (1)-0, (51-3), (51_3_c), (51_4), and (514) are the same as those of the above formula (51) and R56 in the above formula (51A). -b) and (5i-c), formula (51_2 (51-4), and formula (mb), (51-3-c), (51~), the carbon number as a linear or branched The pit oxy group of μ is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, a n-propoxy group, a n-butoxy group, an isopropoxy group, an isobutoxy group, a second butoxy group, and the like. In the above formula (51), the lower limit of p/(p+q+r) is 〇.〇5, and the upper limit is 〇5〇. If P/(P+(4) satisfies the above upper p艮, then The heat resistance of the sealant can be further improved, and the peeling of the sealant can be further suppressed. In the above formula (9), the preferred lower limit of P/(P+(4) is 0·10, and the lower limit is preferably 〇15, more preferably the upper limit. Is 0. 45. The lower limit of 'q/(p+q+r) in the above formula (51) is 〇, and the upper limit is 〇15. If q (pq 0 satisfies the above upper limit, the hardenability, storage stability and heat resistance of the sealant) Changed. In order to further improve the hardenability of the sealant, storage stability, and heat resistance, in the above formula (1), the upper limit of q "p + q bamboo" is preferably 0.10, and the upper limit is more preferably 〇.〇5 or less. . Further, in the case where 163225.doc -19·201247784 q/(p+q+r) is 〇, the structural unit of (R54R55Si〇2/2) does not exist in the above formula (51). The lower limit of the above formula (51)f, r/(p+q+r) is 〇 2〇, and the upper limit is 〇 8〇. When r/(P+q+r) satisfies the above lower limit, the hardness of the sealant is increased to prevent damage and adhesion of dust, and the heat resistance of the sealant becomes high, and the thickness of the cured product of the sealant becomes unacceptable for high temperature. Reduced in the environment. When the above upper limit is satisfied, it is easy to maintain an appropriate viscosity as a sealant, and the adhesion can be further improved. Further, as described above, the second organopolyoxane is preferably the second organopolyoxane represented by the above formula (5 1A). In the above formula (51A), the lower limit of p/(p+r) is 〇 2〇, and the upper limit is 〇 5〇. When p/(p+r) is at least the above lower limit and not more than the above upper limit, the hardenability and storage stability of the sealant and the heat resistance of the cured sealant are further changed. In the above formula (51A), the lower limit of r/(p+r) is 〇.5〇, and the upper limit is 〇8〇. When r/(p+r) is at least the above lower limit and not more than the above upper limit, the curing property and storage stability of the sealant and the heat resistance of the cured sealant further deteriorate. When the second organopolyoxane is subjected to 29Si-nuclear magnetic resonance analysis (hereinafter referred to as NMR) based on tetramethylnonane (hereinafter referred to as TMS), although some changes are observed depending on the type of the substituent, The peak corresponding to the structural unit represented by the above formula (51) and the above formula (51A) (R51R52R53Si〇w2) appears in the vicinity of + 1 〇 to -5 ppm, which corresponds to the above formula (51) (115411558丨) 〇2/2) and each of the difunctional structural units of the above formula (51-2) 163225.doc -20- 201247784 peak appears in the vicinity of -10 to -5 0 ppm, corresponding to the above formula (51) and the above formula Each peak of the trifunctional structural unit of (51568丨03/2) and the above formulas (51-3) and (51-4) appears in the vicinity of -5 0 to -80 ppm. Therefore, the ratio of each structural unit in the above formula (51) and the above formula (5 1A) can be determined by measuring 29Si-NMR and comparing the peak areas of the respective signals. In the case where the structural unit in the above formula (51) and the above formula (51A) cannot be identified by the above-described 29Si-NMR measurement based on TMS, it is possible to use h in addition to the measurement result of 29Si-NMR. The ratio of each structural unit in the above formula (51) and the above formula (5 1A) was identified by the measurement result of NMR. The content of the second organopolyoxazine is preferably 1 part by weight or more and 4 parts by weight or less based on 1 part by weight of the first organopolyoxane. When the content of the first and second organopolysiloxanes is within this range, a sealant which is further improved in the hardenability and storage stability of the sealant and further excellent in heat resistance can be obtained. From the viewpoint of obtaining a sealant which is more excellent in hardenability, storage stability, heat resistance, and more excellent, the content of the second organopolyoxane is better than the weight loss of the above-mentioned second organopolyoxane. The lower limit is 3 parts by weight' and further preferably the lower limit is 5 parts by weight, more preferably the upper limit is 3 parts by weight, and further preferably the upper limit is 200 parts by weight. (Other properties of the first and second organopolyxides and their synthesis methods). The content of the oxy group in the first and second organopolyglycols is preferably 〇5, more preferably 1 mol% or more, more preferably 1 〇 mol% or less, and even more preferably 5 Å. Mole% or less. If the content of the right ash and the oxy group is at least the above lower limit, the adhesion of the sealant becomes "variable". The content of the dextroalkoxy group is 163225.doc 201247784 I ', and the storage stability of the first and second organopolysiloxanes and the sealant is increased. The heat resistance of the sealant is further increased. The content of the above alkoxy group means the amount of the alkoxy group contained in the average composition formula of the first and second organopolyoxane. The first and second organopolyoxane are preferably free from a stanol group. When the first and second organopolysiloxanes do not contain a stanol group, the storage stability of the second, second organopolysiloxane and the sealant becomes high. The above stanol groups can be reduced by heating under vacuum. The content of the stanol group can be determined by infrared spectroscopy. A preferred lower limit of the number average molecular weight (Mn) of the first and second organopolyoxanes is 500, and a lower limit is preferably 8 Å, and a preferred lower limit is 1000. Preferably, the upper limit is 5 Å. A better upper limit is 丨5〇〇〇. If the average number of knives satisfies the above preferred lower limit, the volatile component becomes ^ during thermal hardening, and the thickness of the cured product of the sealant becomes less likely to decrease in a warm environment. If the number average molecular weight satisfies the above preferred upper limit, the viscosity adjustment is easier. β The number average molecular weight (?η) is gel permeation chromatography (Gpc,

Gel Permeation Chromatography)’並以聚苯乙烯作為標準 物質而求得之值。上述數平均分子量(Mn)係指使用Waters 公司製造之測定裝置(管柱:昭和電工公司製造之Sh〇dex GPC LF-804(長度為300 mm)2支,測定溫度:40eC,流 速:1 mL/分,溶劑:四氫呋喃,標準物質:聚苯乙烯)而 測定之值。 作為合成上述第1、第2有機聚矽氧烷之方法,並無特別 163225.doc -22- 201247784 限定’可列舉··使烧氧基㈣化合物水解並進行縮合反應 之方法、使氣矽烷化合物水解並進行縮合之方法。其中, 就控制反應之觀點而言,較佳為使院氧基Μ化合物水解 並進行縮合反應之方法。 作為使烷氧基矽烷化合物水解並進行縮合反應之方法, 例如可舉出钱氧基㈣化合物於水及酸性觸媒或驗性觸 媒之存在下反應之方法。又,亦可將二妙氧烧化合物水解 而使用。 作為用以於上述第丨、第2有機聚矽氧烷中導入芳基之有 機矽化合物’可列舉:三苯基甲氧基矽烷、三苯基乙氧基 石夕院、二苯基二甲氧基料、二苯基二乙氧基錢、甲二 (苯基)二甲氧基矽烷及苯基三甲氧基矽烷等。 作為用以於上述第1#機聚⑦氧院中導人稀基之有機石夕 化合物’可列舉:乙稀基三甲氧基錢、乙稀基三乙氧基 石夕燒、乙雜甲基二甲氧基钱、甲氧基二甲基乙稀基石夕 烷、乙烯基二甲基乙氧基矽烷Μ,弘二乙烯基]山3,3_四 曱基二矽氧烷等。 作為用以於上述第2有機聚石夕氧燒中導人鍵結於石夕原子 上之氫原子之有機矽化合物,可列舉:三甲氧基矽烷、三 乙氧基錢、甲基二甲氧基钱、甲基二乙氧基石夕院及 1,1,3,3-四甲基二矽氧烷等。 作為可用於獲得上述第1、第2有機聚石夕氧炫之其他有機 矽化合物’例如可列舉:三甲基甲氧基矽烷、i甲基乙氧 基矽烷、一甲基二甲氧基矽烷、:甲基二乙氧基矽烷、異 163225.doc •23- 201247784 丙基(甲基)二曱氧基矽烷、 m 環己基(甲基)二甲氧基矽烷、 甲基三曱氧基矽烷、甲基_ 二乙氧基矽烷、乙基三甲氧基矽 烧、乙基二乙氧基矽烷、 基一甲氧基石夕烧及辛基三甲氣 基矽烷等。 τ ^ 作為上述酸性觸媒,例軋I sl m 例如可列舉:無機酸、有機酸'無 機酸之酸酐及其衍生物、 ''' 从及有機酸之酸酐及其衍生物。 作為上述無機酸,例如可列叛# J歹!舉.鹽酸、磷酸、硼酸及碳 酸。作為上述有機酸,例如可奧. π如可列舉.甲酸、乙酸 '丙酸、 丁酸、礼酸、|貞果酸、酒石酸、據磁缺 I、檸檬酸、草酸、丙二酸、 丁二酸、戊二酸、己二酸、月 祕_ 反丁烯一酸、順丁烯二酸及油 酸。 作為上述㈣觸媒,例如可列舉:驗金屬之氫氧化物、 鹼金屬之烷氧化物及鹼金屬之矽烷醇化合物。 作為上述驗金屬之氫氧化物,例如可列舉:氫氧化納、 氫氧化钾及氫氧減。作為上述驗金屬之院氧化物,例如 可列舉:第三丁醇鈉、第三丁醇鉀及第三丁醇鉋。 作為上述鹼金屬之矽烷醇化合物,例如可列舉:矽烷醇 鈉化合物、矽烷醇鉀化合物及矽烷醇鉋化合物。其中,較 佳為鉀系觸媒或鉋系觸媒。 (矽氫化反應用觸媒) 本發明之光半導體裝置用密封劑所含有之石夕氫化反應用 觸媒係使上述第1有機聚石夕氧烧中之稀基與上述第2有機聚 石夕氧烧中之鍵結於石夕原子上之氫原子進行石夕氫化反應的觸 媒。 163225.doc •24- 201247784 可使用使矽氫化反應進行之各種觸媒作為上述矽氫化反 應用觸媒。上述石夕氫化反應用觸媒可僅使用-種,亦可併 用兩種以上。 作為上述矽氫化反應用觸媒,例如可列舉:鉑系觸媒、 =系觸媒及把系觸料。就可提高㈣劑之透明性方面而 言’較佳為鉑系觸媒。 作為上述翻系觸媒,可列舉··翻粉末、氣翻酸、翻-稀 基矽氧烷錯合物、鉑-烯烴錯合物及鉑_羰基錯合物。尤佳 為鉑·.烯基矽氧烷錯合物或鉑-烯烴錯合物。 作為上述鉑-烯基矽氧烷錯合物中之烯基矽氧烷,例如 可列舉.1,3-二乙烯基·^义弘四曱基二矽氧烷及丨丄^-四曱基_1,3,5,7·四乙稀基環四石夕氧院等。作為上述翻_稀煙 錯η物中之烯烴,例如可列舉:烯丙基醚及丨,6_庚二烯 等。 為了提南上述鉑-烯基矽氧烷錯合物及鉑_烯烴錯合物之 穩定性,較佳為於上述鉑_烯基矽氧烷錯合物或鉑烯烴錯 合物中添加烯基矽氧烷、有機矽氧烷低聚物、烯 丙基喊或 烯烴。上述烯基矽氧烷較佳為1,3-二乙烯基四甲 基二矽氧烷。上述有機矽氧烷低聚物較佳為二甲基矽氧烷 低聚物。上述烯烴較佳為1,6·庚二稀。 就進一步抑制於高溫或高濕下之嚴酷環境中以通電之狀 I使用時的亮度降低,且進一步抑制密封劑之變色之觀點 而言,上述矽氫化反應用觸媒較佳為鉑之烯基錯合物。就 更進一步抑制於高溫或高濕之嚴酷環境中以通電之狀態使 I63225.doc •25· 201247784 用時之亮度降低,且更進一步抑制密封劑之變色之觀點而 a,上述鉑之烯基錯合物較佳為藉由使氣鉑酸六水合物與 6备量以上之二官能以上之烯基化合物反應而獲得之鉑之 烯基錯合物1該情形時,始之稀基錯合物係氣㈣六水 口物與6當量以上之二官能以上之烯基化合物的反應物。 又,藉由使用上述鉑之烯基錯纟#,亦可提高密封劑之透 明性。上述鉑之烯基錯合物可僅使用一種,亦可併用兩種 以上。 較佳為使用上述氣鉑酸六水合物(H2PtCV6H2〇)作為用 以獲得上述舶之烯基錯合物之始原料。 作為用以獲得上述鉑之烯基錯合物的上述6當量以上之 二官能以上之稀基化合物’例如可列舉:丨,3•二乙稀基- U,3’3-四甲基二矽氧烷、仏巧基以二苯基以二乙 稀基二魏m,3,5,7•四甲基·u,5,7.四乙烯基環 烷等》 關於上述6當晉以μ夕 S篁以上之一目能以上之烯基化合物中之 當#」’係將上述二官能以上之稀基化合物相對於上述 氯紐酸六水合物!莫耳為丨莫耳之重量設W當量。上述⑽ 量以上之二官能以上之烯基化合物較佳為5〇當量以下。 作為用於獲得上述姑之稀基錯合物之溶劑,例如可列 舉·甲醇、乙醇、2-丙醇及!·丁醇等醇系溶劑。亦可使用 甲苯及二甲苯等芳香族系溶劑。上述溶劑可僅使用—種, 亦可併用兩種以上。 為了獲得上⑽之烯基錯合物,除了上述成分以外亦可 163225.doc -26 - 201247784 使用單官能之乙烯基化合物。作為上述單官能之乙烯基化 合物,例如可列舉:三甲氧基乙烯基 = 一 G氧基乙焊 基矽烷及乙烯基甲基二甲氧基矽燒等。 關於氣鉑酸六水合物與6當量以上之二官能以上之烯基 化合物之反應物,鉑元素與6當量以上之二官能以上之烯 基化合物係進行共價鍵結、或進行配位、或進行共價鍵結 且進行配位。 於密封劑中,上述錢化反應用觸媒之含量較佳為以金 屬原子(於鉑之烯基錯合物之情形時為鉑原子)之重量單位 計為(UH ppm以上、麵ppm以下。若上述錢化反應用 觸媒之含量為0.01 ppm以上,則容易使密封劑充分硬化。 右上述矽虱化反應用觸媒之含量為1〇〇〇卯m以下則不易 產生硬化物之著色之問題。上述錢化反應用觸媒之含量 更佳為1 ppm以上,更佳為500 ppm以下。 (氧化碎粒子) 本發明之光半導體裝置用密封劑較佳為含有氧化石夕粒 子°藉由使㈣氧切粒子’可無損密封劑之硬化物之耐 熱性及耐光性而將硬化前之密封劑之黏度調整至適當範圍 之内因此’可提尚密封劑之操作性。又’上述氧化石夕粒 子較佳為藉由有機碎化合物而進行表面處理。藉由該表面 處理’氧化碎粒子之分散性變得非常高,並可進一步抑制 由硬化前之密封劑之溫度上升而引起之黏度降低。 上述氧化矽粒子之一次粒徑較佳為5 nm以上更佳為8 nm以上,較佳為200 nm以下,更佳為15〇 nm以下。若上 163225.doc 201247784 述氧化矽粒子之一次粒徑為上述下限以上,則氧化矽粒子 之分散性進一步變高,並且密封劑之硬化物之透明性進一 步變高。若上述氧化矽粒子之一次粒徑為上述上限以下, 則可充分獲得251下之黏度之上升效果,並且可抑制溫度 上升時之黏度之降低。 上述氧化矽粒子之一次粒徑係以如下方式而測定。使用 穿透型電子顯微鏡(商品名「JEM_21〇〇j,曰本電子公司製 造)觀察光半導體裝置用密封劑之硬化物。分別測定視野 中之100個氧化矽粒子之一次粒子之大小,將測定值之平 均值設為一次粒徑。上述一次粒徑於上述氧化矽粒子為球 形之情形時意指氧化矽粒子之直徑之平均值,於非球形之 情形時意指氧化矽粒子之長徑之平均值。 氧化石夕粒子之 BET(Brunauer-Emmett-Teller,布 特)比表面積較佳為30m2/g以上,較佳為4〇〇爪2仏以下。 上述氧化矽粒子之BET比表面積為3〇 m2/g以上,則可將 封劑於25eC下之黏度控制於較佳之範圍内,並可抑制溫 上升時之黏度之降低。若上述氧化絲子之Μτ比表面 mVg以下’則不易產生氧化石夕粒子之凝聚,可提 分散性,進而可使密封劑之硬化物之透明性進一步變高 ,作為上述氧切粒子,並無特別限定,例如可列舉1 製二氧化矽、熔融二氧化矽等利用乾式法製造之二氧 矽’以及膠體二氧化矽、溶膠_凝膠二氧化矽、沈澱二 化石夕等利用濕式法製造之二氧化 心八h i 減料H就可獲得 發成分較少且透明性更高之密封劑之觀點而言,較佳為 163225.doc •28· 201247784 用燻製二氧切作為上述氧切粒子。 j為上迷燻製二氧化石夕’例如可列舉:Aer〇sil 5〇(比表 ^/g). Aerosil 90(tb^#:9〇 2 比表面積,130 m2/g)、Aerosil 200(比表面積:200 m⑻、Aer〇sil _(比表面積:扇〇及Ae^ 3_ 表面積:38〇m2/g)(均為日本艾羅技公司製造)等。 作為上述有機妙化合物,並無特別限制,例如可列舉: =有院基之料約b合物、=甲基石夕氧貌等具有石夕氧院骨 架之矽系化合物、具有胺基之矽系化合物、具有(曱基)丙 烯醯基之矽系化合物及具有環氧基之矽系化合物等。上述 (曱基)丙烯醯基」意指丙烯醯基及曱基丙烯醯基。 就更進一步提高氧化矽粒子之分散性之觀點而言,上述 有機碎化合物較佳為選自由具有二甲基魏基之有機石夕化 S物、具有二甲基矽烷基之有機矽化合物及具有聚二甲基 矽氧烷基之有機矽化合物所組成之群中之至少一種。 作為利用有機矽化合物之表面處理之方法之一例,於使 用具有二甲基矽烷基之有機矽化合物或具有三甲基矽烷基 之有機矽化合物之情形時,可列舉使用例如二氯二甲基矽 烷、二甲基二T氧基矽烷、六曱基二矽氮烷、三甲基氯矽 烧及二甲基甲氧基矽烧等對氧化矽粒子進行表面處理之方 法°於使用具有聚二甲基矽氧烷基之有機矽化合物之情形 時’可列舉使用於聚二曱基矽氧烷基之末端具有矽烷醇基 之化合物及環狀矽氧烷等對氧化矽粒子進行表面處理之方 法0 163225.doc •29- 201247784 2藉由上述具有二甲基钱基之有機石夕化合物 氧切粒子之市售品,可列舉:卿(比表面 技公司製H及R964(比表面積:25G m2/g)(均為日本艾羅 表面Γ藉由上述具有三甲基矽烷基之有機矽化合物而進行 =面=理之氧切粒子之市售品,可列舉:職(比表面Gel Permeation Chromatography)' and the value obtained by using polystyrene as a standard substance. The above number average molecular weight (Mn) refers to a measuring device manufactured by Waters Corporation (column: Sh〇dex GPC LF-804 (length 300 mm) manufactured by Showa Denko Co., Ltd., measuring temperature: 40 eC, flow rate: 1 mL) /min, solvent: tetrahydrofuran, standard material: polystyrene) and the value determined. The method for synthesizing the first and second organopolyoxanes is not particularly limited to 163, 225. doc -22 to 201247784, and the method of hydrolyzing and condensing the alkoxy (tetra) compound is carried out, and the gas decane compound is obtained. A method of hydrolysis and condensation. Among them, from the viewpoint of controlling the reaction, a method of hydrolyzing the oxime compound and performing a condensation reaction is preferred. As a method of hydrolyzing the alkoxydecane compound and performing a condensation reaction, for example, a method in which a hydroxy (tetra) compound is reacted in the presence of water, an acidic catalyst or an organic catalyst can be mentioned. Further, the dioxo-oxygen compound can also be used by hydrolysis. Examples of the organic ruthenium compound which is used to introduce an aryl group into the above-mentioned second and second organopolyoxanes include triphenylmethoxy decane, triphenyl ethoxy shixi, and diphenyl dimethyl oxide. Base material, diphenyldiethoxy money, methylenedi(phenyl)dimethoxydecane, phenyltrimethoxydecane, and the like. The organic radix compound used for the introduction of the above-mentioned first # machine in the 7th oxygen chamber can be exemplified by ethylene trimethoxy money, ethylene triethoxy sulphur, and ethylene methyl group. Methoxy money, methoxydimethylethylene base gas, vinyl dimethyl ethoxy decane oxime, hongdi vinyl] mountain 3,3_tetradecyldioxane, and the like. Examples of the organic ruthenium compound which is used to introduce a hydrogen atom bonded to the cerium atom in the second organopolysulfide gas oxy-oxygen can be exemplified by trimethoxy decane, triethoxy valence, and methyl dimethyloxygen. Base money, methyl diethoxy zexiyuan and 1,1,3,3-tetramethyldioxane, and the like. Examples of other organic ruthenium compound which can be used for obtaining the above-mentioned first and second organopolyoxime can be exemplified by trimethyl methoxy decane, i methyl ethoxy decane, and monomethyl dimethoxy decane. ,: methyl diethoxy decane, iso-163225.doc • 23- 201247784 propyl (methyl) dimethoxy decane, m cyclohexyl (methyl) dimethoxy decane, methyl trimethoxy decane , methyl _ diethoxy decane, ethyl trimethoxy oxime, ethyl diethoxy decane, methoxy-methoxy sulfonate, and octyl trimethyl decane. τ ^ As the above-mentioned acidic catalyst, for example, I sl m may be exemplified by inorganic acids, organic acid 'organic acid anhydrides and derivatives thereof, ''' and organic acid anhydrides and derivatives thereof. As the above inorganic acid, for example, it can be listed as #J歹! Hydrochloric acid, phosphoric acid, boric acid and carbonic acid. Examples of the organic acid include, for example, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, decanoic acid, tartaric acid, magnetic deficiency I, citric acid, oxalic acid, malonic acid, and diacetyl. Acid, glutaric acid, adipic acid, sulphur _ fumaric acid, maleic acid and oleic acid. Examples of the (four) catalyst include a metal hydroxide, an alkali metal alkoxide, and an alkali metal stanol compound. Examples of the hydroxide of the above metal tester include sodium hydroxide, potassium hydroxide, and hydrogen hydroxide. As the oxide of the above-mentioned metal, for example, sodium tributoxide, potassium t-butoxide and a third butanol planer are mentioned. The stanol compound of the above alkali metal may, for example, be a sodium stanol compound, a potassium stanol compound or a stanol planer compound. Among them, potassium catalyst or planer catalyst is preferred. (The catalyst for the hydrogenation reaction) The catalyst for the hydrogenation reaction of the catalyst for the photo-semiconductor device of the present invention, the rare organic group in the first organopolysulfide and the second organic polysulfide A catalyst in which oxygen atoms bonded to the Xi's atom in the oxygen gas are subjected to a hydrogenation reaction. 163225.doc •24- 201247784 Various catalysts for the rhodium hydrogenation reaction can be used as the above-mentioned rhodium hydrogenation anticatalytic catalyst. The catalyst for the hydrogenation reaction of the above-mentioned catalyst may be used alone or in combination of two or more. Examples of the catalyst for the rhodium hydrogenation reaction include a platinum-based catalyst, a catalyst, and a catalyst. In terms of improving the transparency of the (iv) agent, it is preferred to be a platinum-based catalyst. Examples of the above-mentioned tumbling catalyst include powder turning, gas turning acid, turning-dilute oxime complex, platinum-olefin complex, and platinum-carbonyl complex. More preferably, it is a platinum alkenyl alkane complex or a platinum-olefin complex. Examples of the alkenyl alkane in the platinum-alkenyl alkoxysilane complex include 1,3-divinyl·^yihong tetradecyldioxane and 丨丄^-tetradecyl. _1,3,5,7·Tetraethylene ring-based four-stone oximeter and so on. Examples of the olefin in the above-mentioned tumbling-smoke-free η include allyl ether, hydrazine, and 6-heptadiene. In order to enhance the stability of the above platinum-alkenyl alkoxysilane complex and the platinum-olefin complex, it is preferred to add an alkenyl group to the above platinum-alkenyl alkane complex or platinum olefin complex. A siloxane, an organic oxane oligomer, an allyl group or an olefin. The above alkenyl alkane is preferably 1,3-divinyltetramethyldioxane. The above organic siloxane oxide oligomer is preferably a dimethyl methoxy olefin oligomer. The above olefin is preferably 1,6·glycol dilute. The catalyst for the hydrogenation reaction of ruthenium is preferably a platinum alkenyl group from the viewpoint of further suppressing the decrease in luminance when used in the case of energization in a severe environment under high temperature or high humidity, and further suppressing discoloration of the sealant. Complex compound. Further suppressing the brightness of the I63225.doc •25·201247784 when the power is applied to the high temperature or high humidity, and further suppressing the discoloration of the sealant, a, the above-mentioned platinum alkenyl is wrong. The compound is preferably an alkenyl complex of platinum obtained by reacting gas platinum hexahydrate with 6 or more difunctional or higher alkenyl compounds; A reaction product of a gas (iv) hexahydrate and 6 equivalents or more of a difunctional or higher alkenyl compound. Further, by using the above-mentioned platinum alkenyl group, the transparency of the sealant can be improved. The above-mentioned platinum alkenyl complex may be used alone or in combination of two or more. It is preferred to use the above-mentioned gas platinum acid hexahydrate (H2PtCV6H2〇) as a starting material for obtaining the above-mentioned alkenyl group complex. As the above-mentioned 6 equivalents or more of the difunctional or higher dilute compound for obtaining the above-mentioned platinum alkenyl complex, for example, 丨, 3•diethylene-U,3'3-tetramethyldifluorene may be mentioned. Oxygenane, 仏 基 以 二 二 二 二 二 二 二 二 二 二 二 二 二 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于In the above-mentioned alkenyl compound of the above-mentioned one or more, the above-mentioned difunctional or higher dilute compound is made W equivalent to the above-mentioned chloroauric acid hexahydrate. The difunctional or higher alkenyl compound of the above (10) or more is preferably 5 equivalents or less. Examples of the solvent for obtaining the above-mentioned rare-form complex compound include alcohol-based solvents such as methanol, ethanol, 2-propanol and ?-butanol. An aromatic solvent such as toluene or xylene may also be used. These solvents may be used alone or in combination of two or more. In order to obtain the alkenyl complex of the above (10), a monofunctional vinyl compound may be used in addition to the above components. 163225.doc -26 - 201247784. Examples of the monofunctional vinyl compound include trimethoxyvinyl = mono-glyoxyethylidene decane and vinylmethyldimethoxy oxime. a reaction product of gas platinum acid hexahydrate and 6 equivalents or more of a difunctional or higher alkenyl compound, wherein the platinum element is covalently bonded or coordinated with 6 or more equivalents of a difunctional or higher alkenyl compound, or Covalent bonding is carried out and coordination is carried out. In the sealant, the content of the catalyst for the above-mentioned hydroxylation reaction is preferably (UH ppm or more and surface ppm or less) in terms of the weight unit of the metal atom (in the case of the platinum alkenyl complex). When the content of the catalytic reaction catalyst is 0.01 ppm or more, the sealant is easily cured sufficiently. When the content of the catalyst for the above-mentioned deuteration reaction is 1 μm or less, the coloring of the cured product is less likely to occur. The content of the catalytic reaction catalyst is preferably 1 ppm or more, more preferably 500 ppm or less. (Oxidized crushed particles) The sealant for an optical semiconductor device of the present invention preferably contains oxidized oxide particles. The (4) oxygen-cut particles can be used to improve the heat resistance and light resistance of the cured product of the sealant, and the viscosity of the sealant before curing can be adjusted to an appropriate range, so that the operability of the sealant can be improved. The granules are preferably surface-treated by an organic pulverized compound. By the surface treatment, the dispersibility of the oxidized granules becomes very high, and the viscosity caused by the temperature rise of the sealant before hardening can be further suppressed. The primary particle diameter of the cerium oxide particles is preferably 5 nm or more, more preferably 8 nm or more, more preferably 200 nm or less, still more preferably 15 Å or less. If 163225.doc 201247784 When the primary particle diameter is at least the above lower limit, the dispersibility of the cerium oxide particles is further increased, and the transparency of the cured product of the sealant is further increased. When the primary particle diameter of the cerium oxide particles is at most the above upper limit, it can be sufficiently obtained. The effect of the viscosity increase under 251 is also suppressed, and the viscosity at the time of temperature rise can be suppressed. The primary particle diameter of the above cerium oxide particles is measured as follows. A transmission electron microscope (trade name "JEM_21〇〇j, 曰" is used. (manufactured by the Electronics Co., Ltd.) Observing a cured product of a sealant for an optical semiconductor device, measuring the size of primary particles of 100 cerium oxide particles in the visual field, and setting the average value of the measured values to a primary particle diameter. The case where the cerium oxide particles are spherical means the average of the diameters of the cerium oxide particles, and in the case of non-spherical means the average of the long diameters of the cerium oxide particles. The BET (Brunauer-Emmett-Teller) specific surface area of the oxidized stone particles is preferably 30 m 2 /g or more, preferably 4 〇〇 2 仏 or less. The cerium oxide particles have a BET specific surface area of 3 〇 m 2 . Above /g, the viscosity of the sealant at 25eC can be controlled within a preferred range, and the viscosity at the temperature rise can be suppressed from decreasing. If the 氧化τ of the above-mentioned oxidized silk is less than the surface mVg, it is not easy to generate oxidized oxide. The agglomeration of the particles, the dispersibility is improved, and the transparency of the cured product of the sealant is further increased. The oxygen-cut particles are not particularly limited, and examples thereof include use of cerium oxide and molten cerium oxide. The dioxins produced by the dry process and the colloidal ceria, the sol-gel cerium oxide, the precipitated bismuth oxide, etc., which are produced by the wet method, have a small amount of transparent components and are transparent. From the viewpoint of a higher sealant, it is preferably 163225.doc • 28· 201247784 using smoked dioxometer as the above oxygen-cut particles. j is the most popular smoked sulphur dioxide eve. For example, Aer〇sil 5〇 (specification ^/g). Aerosil 90 (tb^#:9〇2 specific surface area, 130 m2/g), Aerosil 200 (ratio Surface area: 200 m (8), Aer〇sil _ (specific surface area: fan 〇 and Ae^ 3 _ surface area: 38 〇 m 2 / g) (all manufactured by Japan Aerotech Co., Ltd.), etc. As the above organic compound, there is no particular limitation, for example For example, there are a ruthenium compound having a skeleton of a ceramsite, a lanthanide compound having an amine group, and a fluorenyl group having a fluorenyl group. An anthracene compound, an anthracene compound having an epoxy group, etc. The above (fluorenyl) acrylonitrile group means an acryloyl group and a fluorenyl fluorenyl group. From the viewpoint of further improving the dispersibility of cerium oxide particles, The above organic pulverized compound is preferably selected from the group consisting of an organic sulfonium S compound having a dimethyl wei group, an organic ruthenium compound having a dimethyl decyl group, and an organic ruthenium compound having a polydimethyl methoxyalkyl group. At least one of the groups. As a method of surface treatment using an organic cerium compound For example, in the case of using an organic hydrazine compound having a dimethyl fluorenyl group or an organic hydrazine compound having a trimethyl decyl group, for example, dichlorodimethyl decane, dimethyl di-oxy decane, and six may be mentioned. A method of surface treating cerium oxide particles, such as decyl diazane, trimethyl chlorohydrazine, and dimethyl methoxy oxime, in the case of using an organic hydrazine compound having a polydimethyl methoxyalkyl group The method of surface-treating cerium oxide particles, such as a compound having a stanol group at the terminal of a polydiindenyl oxyalkyl group, and a cyclic siloxane, etc. 0 163225.doc • 29- 201247784 2 by the above A commercially available product of an organic cerium compound oxygen-cutting particle having a dimethyl ketone group can be exemplified by Qing (a specific surface area: H and R964 (specific surface area: 25 G m 2 /g). A commercially available product of the above-mentioned organic ruthenium compound having a trimethylsulfanyl group and having a surface-controlled oxygen-cut particle can be exemplified:

Ll4Gm/^R8鳩(比表面積:i4Q 羅技公司製造)等。 个乂 作為藉由上述具有聚_ 進行表面處…基之有機石夕化合物而 :表面處理之氧化砂粒子之市售品, 面m2/g)(日本艾羅技公司製造)等。 方述有機石夕化合物而對氧化石夕粒子進行表面處理之 万法並無特別限定。竹 中添加氧化石夕粒子祐 例如可列舉:於混合機 氧化夕粒子並一面揽拌一面添加有機石夕化合物之乾 :法,於氧切粒子之聚料中添加有機石夕化合 可列舉:亨舍於上述乾式法之混合機, 中,有細 v型混合機等。於上述乾式法 劑.容液戈。物可直接添加,或製成醇水溶液、有機溶 齊J /合液或水溶液而添加。 =獲2述藉由有軌合物而進行表面處理之氧化 化石夕i饱、可使用於製備光半導體裝置用密封劑時,於氧 化石夕粒子與上述第1、笛 8#亩m 士 第2有機聚石夕氧烧等基質樹脂之混合 '、有機矽化合物的整體摻混法等。 163225.doc 201247784 相對於上述第1有機聚石夕氧貌與上述第4機聚#&之 。計刚重量份,上述氧切粒子之含量較佳為(Μ重量份 以上、4〇重量份以下。相對於上述第!有機聚石夕氧烧與上 述第2有機聚石夕氧燒之合計⑽重量份,上述氧化石夕粒子之 含量更佳為0.5重量份以上,進而較佳^重量份以上,更 佳為35重量份以下,進而較佳為㈣量份以下。若上述氧 化夕粒子之3量為上述下限以上,則可抑制硬化時之黏度 降低。若上述氧化矽粒子之含量為上述上限以下,則可將 密封劑之黏度進-步控制為適當之範圍内,並且可進一步 提高密封劑之透明性。 (螢光體) 本發月之光半導體裝置用密封劑亦可進而含有螢光體。 上述螢光體係以藉由吸收使用光半導體裝置用密封劑而密 封之發光元件所發出之光並產生螢光而可最終獲得所期望 之顏色之光的方式發揮作用。上述螢光體係藉由發光元件 所發出之光而激發,並發出螢光,藉由組合發光元件所發 出之光與螢光體所發出之螢光,可獲得所期望之顏色之 光。 例如’於為了使用紫外線LED晶片作為發光元件而最終 獲得白色光之情形時’較佳為組合使用藍色螢光體、紅色 榮光體及綠色螢光體。於為了使用藍色LED晶片作為發光 70件而最終獲得白色光之情形時,較佳為組合使用綠色螢 光*體及紅色勞光體,或使用黃色螢光體。上述螢光體可僅 使用一種,亦可併用兩種以上。 I63225.doc -31 · 201247784 作為上述藍色螢光體,並無特別限定,例如可列舉. ⑼、Ca、Ba、Mg)1Q(P〇4)6Cl2:Eu、(Ba、Sr)MgAiiQ〇m (Sr、Ba)3MgSi208:Eu等。 作為上述紅色螢光體,並無特別限定,例如可列舉. (Sr、Ca)S:Eu、(Ca、Sr)2Si5N8:Eu、CaSiN2:Eu、 Y2〇2S:Eu、La202S:Eu、LiW2〇8:(Eu、Sm) ' ⑻、ca、 Bs ' Mg)I0(P〇4)8Cl2:(Eu ^ Mn) , Ba3MgSi2〇8:(Eu , Mn) 寒。 作為上述綠色勞光體,並無特別限定,例如可列舉: Y3(A1 . Ga)5012:Ce ^ SrGa2S4:Eu , Ca3Sc2Si3012:Ce ^Ll4Gm/^R8鸠 (specific surface area: manufactured by i4Q Logitech).乂 市 市 市 市 藉 藉 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The method of surface-treating the oxidized stone particles is not particularly limited. For example, a method of adding an organic stone compound to a mixture of oxygen-cut particles can be exemplified by adding an organic stone compound to the mixture of oxygen-cut particles. Among the above-mentioned dry type mixers, there are fine v-type mixers and the like. In the above dry formula. The substance may be added directly or as an aqueous alcohol solution, an organic solvent J/liquid or an aqueous solution. = The above-mentioned oxidized fossils which are surface-treated by the orbital compound can be used for the preparation of a sealing agent for an optical semiconductor device, and the oxidized stone particles and the first and second flutes are 8#mu. 2 a mixture of a matrix resin such as an organic polyoxo-oxygen burning, an overall blending method of an organic cerium compound, and the like. 163225.doc 201247784 Relative to the above-mentioned first organic poly-stone appearance and the above-mentioned fourth machine poly #& The content of the oxygen-cut particles is preferably (in parts by weight or more and 4 parts by weight or less, based on the weight of the weight fraction). The total amount of the above-mentioned organic poly-stone sintering and the second organic poly-stone burning (10) The content of the above-mentioned oxidized granules is more preferably 0.5 parts by weight or more, further preferably 5% by weight or more, more preferably 35 parts by weight or less, still more preferably 4 parts by weight or less. When the amount is at least the above lower limit, the viscosity at the time of curing can be suppressed from being lowered. When the content of the cerium oxide particles is at most the above upper limit, the viscosity of the sealant can be further controlled to an appropriate range, and the sealant can be further improved. (Fluorescent) The sealing agent for the semiconductor device for light semiconductors may further contain a phosphor. The fluorescent system is emitted by a light-emitting element that is sealed by absorbing a sealing agent for an optical semiconductor device. The light and the fluorescent light can finally obtain the light of the desired color. The fluorescent system is excited by the light emitted by the light-emitting element, and emits fluorescence, by combining Light emitted by the optical element and fluorescent light emitted from the phosphor can obtain light of a desired color. For example, 'in the case of using an ultraviolet LED chip as a light-emitting element to finally obtain white light' is preferably used in combination A blue phosphor, a red luminescent body, and a green phosphor. In order to obtain a white light by using a blue LED chip as 70 pieces of light, it is preferable to use a combination of a green fluorescent body and a red working body. The yellow phosphor may be used alone or in combination of two or more. I63225.doc -31 · 201247784 The blue phosphor is not particularly limited, and examples thereof include (9). Ca, Ba, Mg) 1Q (P〇4) 6Cl2: Eu, (Ba, Sr) MgAiiQ〇m (Sr, Ba) 3MgSi208: Eu, and the like. The red phosphor is not particularly limited, and examples thereof include: (Sr, Ca) S: Eu, (Ca, Sr) 2 Si5N8: Eu, CaSiN 2 : Eu, Y 2 〇 2 S: Eu, La 202 S: Eu, Li W 2 〇 8: (Eu, Sm) '(8), ca, Bs 'Mg) I0(P〇4)8Cl2: (Eu ^ Mn) , Ba3MgSi2〇8: (Eu, Mn) Cold. The green working body is not particularly limited, and examples thereof include Y3(A1.Ga)5012: Ce^SrGa2S4:Eu, Ca3Sc2Si3012:Ce^

SrSi〇N:Eu、ZnS:(Cu、A1)、BaMgA1丨。〇i7(Eu、驗)、 SrAl2〇4:Eu 等。 作為上述黃色螢光體,並無特別限制,例如可列舉·· Y3Al5〇12:Ce、(Y、Gd)3Al5〇i2:Ce、Tb3Ai5〇2:Ce、SrSi〇N: Eu, ZnS: (Cu, A1), BaMgA1丨. 〇i7 (Eu, test), SrAl2〇4:Eu, etc. The yellow phosphor is not particularly limited, and examples thereof include Y3Al5〇12:Ce, (Y, Gd)3Al5〇i2:Ce, Tb3Ai5〇2:Ce,

CaGa2S4:Eu、Sr2Si04:Eu等。 進而,作為上述勞光體,可列舉作為有機螢光體之花系 化合物等。 可適當調整上述螢光體之含量以獲得所期望之顏色之 光,並無特別限定。相對於本發明之光半導體裝置用密封 劑100重量份,上述螢光體之含量較佳為01重量份以上、 重量份以下。相對於光半導體裝置用密封劑之除螢光體 以外之總成分100重量份,上述螢光體之含量較佳為〇」重 量份以上、40重量份以下。 (偶合劑) I63225.doc •32· 201247784 本發明之光半㈣裝置用密封劑 進而含有偶合劑。 ㈣予接者性’亦可 作為上述偶合劑,並無特別限定 蒯笪^ . 例如可舉出矽烷偶合 劑專。作為該矽烧偶合劑,可列舉: 碎基三乙氧基矽 烧、乙稀基三甲氧基石夕燒、3_縮水甘油氧基丙 矽烷、2-(3,4_環氧環己基)乙基三 氧基 基丙稀 醢氧基丙基三甲氧基石夕院、γ·胺基丙基三甲氧基石夕统及ν· 苯基-3-胺基丙基三甲氧基石夕院等。偶合劑可僅使用一種, 亦可併用兩種以上。 (其他成分) 本發明之光半導體裝置用密封劑亦可視需要而進而含有 分散劑、抗氧化劑、消泡劑、著色劑、改性劑、調平劑、 光擴散劑、導熱性填料或阻燃劑等添加劑。 再者、,關於上述^有機聚石夕氧院、上述第2有機聚石夕氧 烷及上述矽氫化反應用觸媒,亦可分別預先製備含有該等 1種或2種以上之液體’並於即將使用前混合複數之液體而 製備本發明之光半導體裝置用密封劑。例如,亦可分別預 先製備含有上述第丨有機聚矽氧烷及矽氫化反應用觸媒之A 液體,及含有第2有機聚矽氧烷之8液體,並於即將使用前 混合A液體與B液體而製備本發明之光半導體裝置用密封 劑。於該情形時,氧化矽粒子及螢光體可分別添加至八液 體中,亦可添加至B液體中。又,藉由如此將上述第丨有機 聚矽氧烷及上述矽氫化反應用觸媒與上述第2有機聚矽氧 烷分別製成第1液體與第2液體兩種液體,可提高密封劑之 163225.doc -33- 201247784 保存穩定性。 (光半導體裝置用密封劑之詳情及用途) 本發明之光半導體裝置用密封劑之硬化溫度並無特別限 定。光半導體裝置用密封劑之硬化溫度較佳為8〇t以上, 更佳為loot以上,較佳為18(rc以下,更佳為ι5〇β〇以 下。方硬化溫度為上述下限以上,則密封劑之硬化充分地 進行。若硬化溫度為上述上限以下,則不易產生封裝之熱 劣化。 … 硬化方式並無特別限定,較佳為使用分步固化方式。分 步固化方式係預先暫時於低溫下預硬化,其後於高溫下進 行硬化之方法。藉由使用分步固化方式,可抑制密封劑之 硬化收縮。 作為本發明之光半導體裝置用密封劑之製造方法,並無 特別限定,例如可列舉使用均質分散機、均質混合機、萬 能混合機、行星式混合機、捏合機、三輥研磨機或珠磨機 等混合機,於常溫或加溫下混合上述第丨有機聚矽氧烷、 上述第2有機聚矽氧烷、上述矽氫化反應用觸媒及視需要 而調配之其他成分的方法等。 作為上述發光元件,只要為使用半導體之發光元件,則 並無特別限定,例如於上述發光元件為發光二極體之情形 時’例如可舉出於基板上積層LED形式用半導體材料之結 構。於該情形時,作為半導體材料,例如可列舉:GaAS、CaGa2S4: Eu, Sr2Si04: Eu, and the like. Further, examples of the above-mentioned luminous body include a flower compound as an organic fluorescent material. The content of the above phosphor can be appropriately adjusted to obtain light of a desired color, and is not particularly limited. The content of the phosphor is preferably from 0.1 part by weight or more to 1 part by weight or less based on 100 parts by weight of the sealant for an optical semiconductor device of the present invention. The content of the phosphor is preferably 〇" by weight or more and 40 parts by weight or less based on 100 parts by weight of the total components other than the phosphor for the sealing agent for an optical semiconductor device. (Coupling agent) I63225.doc • 32· 201247784 The sealing agent for a light half (four) device of the present invention further contains a coupling agent. (4) The predator's is not particularly limited as the above-mentioned coupling agent. For example, a decane coupling agent is specifically mentioned. Examples of the oxime coupling coupler include: trimethyl sulfonium triacetate, ethylene trimethoxy sulfonate, 3 glyceroloxypropane, and 2-(3,4-epoxycyclohexyl) Tris-ethoxy propylene methoxy propyl trimethoxy sylvestre, γ-aminopropyl trimethoxy sulphate and ν· phenyl-3-aminopropyl trimethoxy sylvestre. The coupling agent may be used alone or in combination of two or more. (Other components) The sealant for an optical semiconductor device of the present invention may further contain a dispersant, an antioxidant, an antifoaming agent, a colorant, a modifier, a leveling agent, a light diffusing agent, a thermally conductive filler or a flame retardant as needed. Additives such as agents. Furthermore, the above-mentioned organic organophosphorus, the second organopolyoxane, and the above-mentioned catalyst for hydrogenation reaction may be prepared by separately preparing one or two or more kinds of liquids in advance. The sealing agent for an optical semiconductor device of the present invention is prepared by mixing a plurality of liquids immediately before use. For example, the A liquid containing the above-mentioned Dioxon organopolyoxane and the catalyst for hydrogenation reaction, and the 8 liquid containing the second organopolyoxane may be separately prepared in advance, and the A liquid and B may be mixed immediately before use. The sealant for an optical semiconductor device of the present invention is prepared from a liquid. In this case, the cerium oxide particles and the phosphor may be separately added to the octa liquid or may be added to the B liquid. Further, by forming the second organopolysiloxane and the ruthenium hydrogenation catalyst and the second organopolyoxane into a liquid of the first liquid and the second liquid, the sealant can be improved. 163225.doc -33- 201247784 Save stability. (Details and Use of Sealant for Optical Semiconductor Device) The curing temperature of the sealing agent for an optical semiconductor device of the present invention is not particularly limited. The curing temperature of the sealing agent for an optical semiconductor device is preferably 8 Torr or more, more preferably loot or more, more preferably 18 (rc or less, more preferably ι 5 〇 β 〇 or less. When the square hardening temperature is at least the above lower limit, the sealing is performed. When the curing temperature is at most the above upper limit, thermal deterioration of the package is less likely to occur. The curing method is not particularly limited, and a stepwise curing method is preferably used. The stepwise curing method is temporarily at a low temperature. A method of pre-curing and then hardening at a high temperature. The step of curing is used to suppress the curing shrinkage of the sealant. The method for producing the sealant for an optical semiconductor device of the present invention is not particularly limited, and for example, For example, a homomixer, a homomixer, a universal mixer, a planetary mixer, a kneader, a three-roll mill, or a bead mill is used to mix the above-mentioned second organopolyoxane at room temperature or under heating. The second organopolyoxane, the above-mentioned catalyst for hydrogenation reaction, and other components to be blended as needed. The light-emitting element of the semiconductor is not particularly limited. For example, when the light-emitting element is a light-emitting diode, for example, a structure in which a semiconductor material for LED form is laminated on a substrate can be used. In this case, as a semiconductor material, For example, GaAS,

GaP、GaAlAs、GaAsP、AlGalnP、GaN、InN、A1N、GaP, GaAlAs, GaAsP, AlGalnP, GaN, InN, A1N,

InGaAIN及 SiC 等。 163225.doc •34- 201247784 作為上述基板之材料, SiC、Si、ZnO及 GaN單晶 導體材料間形成緩衝層β 列舉GaN及Α1Ν等。 例如可列舉:藍寶石、尖曰 曰θ 、 等。又,亦可視需要於基板與半 作為上述緩衝層之材料,例如可 作為本發明之光半導體裝置,具體而言’例如可列舉. 發光二極體裝置、半導體雷射裝置及綠合器^此種光 半導體裝置可較佳地用於例如:液晶顯示器等之背光裝 置、照明、各種感測器、列印機及影印機等之光源、車輛 用計測器光源、信號燈、顯示燈、顯示裝置、面狀發光體 之光源、顯示器、裝飾、各種燈以及交換元件等中。 於本發明之光半導體裝置中,藉由本發明之光半導體裝 置用密封齊封由體形成之發光元件。於本發明 之光半導體裝置中,以密封由LED等光半導體形成之發光 元件之方式而配置光半導體裝置用密封劑之硬化物。因 此,不易於密封發光元件之光半導體裝置用密封劑之硬化 物上產生龜裂’不易產生自封裝之剝離,並且可提高光穿 透性、耐熱性、耐候性及阻氣性。 (光半導體裝置之實施形態) 圖1係表示本發明之一實施形態之光半導體裝置的正視 剖面圖β 本實施形態之光半導體裝置1具有外殼2。於外殼2内安 裝有包含LED之光半導體元件3。該光半導體元件3之周圍 被外殼2之具有光反射性的内表面2a包圍》於本實施形態 中,可使用光半導體元件3作為由光半導體形成之發光元 163225.doc • 35- 201247784 件。 内表面2a係以内表面2a之直徑越接近開口端變得越大之 方式而形成。因此,自光半導體元件3所發出之光中,到 達内表面2a之光藉由内表面2a而反射’並行進至光半導體 元件3之前方側。以密封光半導體元件3之方式於由内表面 2a所包圍之區域内填充光半導體裝置用密封劑4。 再者,圖1所示結構僅為本發明之光半導體裝置之— 例,光半導體裝置之安裝結構等可適當變形。 以下,列舉實施例更詳細地說明本發明。本發明並不限 定於以下實施例。 (合成例1)第1有機聚矽氧烷之合成 於具備溫度計、滴加裝置及攪拌機之1 〇〇〇 mL可分離式 燒瓶中放入1,3-二乙烯基-1,1,3,3-四曱基二矽氧烷56 g、二 曱基二曱氧基矽烷122 g及二苯基二曱氧基矽烷366 g,於 5〇t下攪拌。於其中緩慢滴加使氫氧化鉀〇·8 g溶解於水 114 g中而成之溶液’滴加後於50°C下攪拌6小時並使其反 應而獲得反應液。繼而’於反應液中添加乙酸0.9 g,減屋 而去除揮發成分’並藉由過濾而去除乙酸鉀,獲得聚合物 (A)。 所獲得之聚合物(A)之數平均分子量(Μη)為1700 ^藉由 29Si-NMR鑑定化學結構,結果聚合物(a)具有下述平均組 成式(A1) » (ViMe2SiO1/2)0 07(Me2Si〇2/2)0.45(Ph2SiO2/2)0 48 式(A1) 上述式(A1)中’ Me表示曱基’ Ph表示苯基,Vi表示乙彿 163225.doc • 36 - 201247784 基。所獲得之聚合物(A)之苯基之含有比率為52莫耳%。InGaAIN and SiC, etc. 163225.doc •34- 201247784 As a material of the above substrate, a buffer layer β is formed between SiC, Si, ZnO, and GaN single crystal conductor materials, and GaN, germanium, and the like are exemplified. For example, sapphire, sharp 曰 θ, and the like can be cited. Further, as the material of the buffer layer, the substrate and the half may be used, for example, as the optical semiconductor device of the present invention, and specific examples thereof include a light-emitting diode device, a semiconductor laser device, and a green combiner. The optical semiconductor device can be preferably used for, for example, a backlight device such as a liquid crystal display, illumination, various light sources such as a sensor, a printer, and a photocopying machine, a vehicle light source, a signal light, a display light, a display device, Light source, display, decoration, various lamps, exchange elements, etc. of the planar illuminator. In the optical semiconductor device of the present invention, the light-emitting device formed by the body is sealed by the optical semiconductor device of the present invention. In the optical semiconductor device of the present invention, a cured product of a sealing agent for an optical semiconductor device is disposed so as to seal a light-emitting element formed of an optical semiconductor such as an LED. Therefore, cracking occurs in the cured product of the sealing agent for an optical semiconductor device which is not easy to seal the light-emitting element. It is less likely to cause peeling from the package, and light permeability, heat resistance, weather resistance, and gas barrier properties can be improved. (Embodiment of Optical Semiconductor Device) Fig. 1 is a front cross-sectional view showing an optical semiconductor device according to an embodiment of the present invention. The optical semiconductor device 1 of the present embodiment has a casing 2. An optical semiconductor element 3 including an LED is mounted in the casing 2. The periphery of the optical semiconductor element 3 is surrounded by the light-reflecting inner surface 2a of the outer casing 2. In the present embodiment, the optical semiconductor element 3 can be used as a light-emitting element formed by an optical semiconductor 163225.doc • 35-201247784. The inner surface 2a is formed in such a manner that the diameter of the inner surface 2a becomes larger as the opening end becomes larger. Therefore, of the light emitted from the optical semiconductor element 3, the light reaching the inner surface 2a is reflected by the inner surface 2a and travels to the front side of the optical semiconductor element 3. The sealing agent 4 for an optical semiconductor device is filled in a region surrounded by the inner surface 2a so as to seal the optical semiconductor element 3. Further, the structure shown in Fig. 1 is only an example of the optical semiconductor device of the present invention, and the mounting structure and the like of the optical semiconductor device can be appropriately modified. Hereinafter, the present invention will be described in more detail by way of examples. The invention is not limited to the following examples. (Synthesis Example 1) Synthesis of the first organopolyoxane In a 1 mL separable flask equipped with a thermometer, a dropping device, and a stirrer, 1,3-divinyl-1, 1, 3 was placed. 56 g of 3-tetradecyldioxane, 122 g of dinonyldimethoxydecane and 366 g of diphenyldioxanoxane were stirred at 5 Torr. A solution obtained by dissolving potassium hydroxide 〇·8 g in 114 g of water was slowly added dropwise. After the dropwise addition, the mixture was stirred at 50 ° C for 6 hours and reacted to obtain a reaction liquid. Then, 0.9 g of acetic acid was added to the reaction liquid, the house was removed to remove volatile components, and potassium acetate was removed by filtration to obtain a polymer (A). The number average molecular weight (??) of the obtained polymer (A) was 1700. The chemical structure was identified by 29Si-NMR, and as a result, the polymer (a) had the following average composition formula (A1) » (ViMe2SiO1/2) 0 07 (Me2Si〇2/2) 0.45(Ph2SiO2/2)0 48 Formula (A1) In the above formula (A1), 'Me represents a fluorenyl group' Ph represents a phenyl group, and Vi represents a B Buddha 163225.doc • 36 - 201247784 base. The content ratio of the phenyl group of the obtained polymer (A) was 52 mol%.

再者’合成例1及合成例2〜7所獲得之各聚合物之分子量 係於10 mg中添加四氫呋喃1 mL ’攪拌直至溶解為止並藉 由GPC測定而測定。於GPC測定中,使用Waters公司製造 之測定裝置(管柱:昭和電工公司製造之Shodex GPC LF-804(長度為300 mm)x2支,測定溫度:40°C,流速:1 mL/min,溶劑:四氫呋喃,標準物質:聚苯乙烯)。 (合成例2)第1有機聚矽氧烷之合成 於具備溫度計、滴加裝置及攪拌機之1 〇〇〇 mL可分離式 燒瓶中放入1,3-二乙稀基-1,1,3,3-四曱基二石夕氧烧88 g、二 甲基二甲氧基矽烷102 g及二苯基二甲氧基矽烷366 g,於 5〇°C下攪拌^於其中緩慢滴加使氫氧化鉀〇.8 g溶解於水 114 g中而成之溶液’滴加後於5〇。(:下攪拌6小時並使其反 應而獲得反應液。繼而’於反應液中添加乙酸〇.9 g,減壓 而去除揮發成分,並藉由過濾而去除乙酸鉀,獲得聚合物 (B)。 所獲得之聚合物(B)之數平均分子量(Mn)g14〇〇。藉由 29Si-NMR鑑定化學結構,結果聚合物具有下述平均組 成式(B 1)。 (ViMe2Si01/2)〇.12(Me2Si02/2)0 4〇(Ph2Si02/2)〇.48 式(Bl) 上述式(B1)中,Me表示曱基,ph表示苯基,Vi表示乙烯 基。所獲得之聚合物(B)的笨基之含有比率為50莫耳0/〇。 (合成例3)第1有機聚矽氧烷之合成 於具備溫度計、滴加裝置及攪拌機之1〇〇〇 mL可分離式 163225.doc -37· 201247784 燒瓶中放入丨,3·二乙烯基-1,1,3,3-四曱基二矽氧烷102 g、 二甲基二曱氧基矽烷86g及二苯基二甲氧基矽烷366 g,於 5 0 C下棍拌β於其中緩慢滴加使氣氧化斜〇 8 g溶解於水 114 g中而成之溶液,滴加後於5〇β(:下攪拌6小時並使其反 4而獲得反應液。繼而,於反應液中添加乙酸0.9 g ’減壓 而去除揮發成分,並藉由過濾而去除乙酸鉀,獲得聚合物 (C)。 。 所獲得之聚合物(C)之數平均分子量(Μη)為11 〇〇 ^藉由 2 9 〇 * S^NMR鑑定化學結構,結果聚合物(c)具有下述平均組 成式(cip (ViMe2SiO1/2)0 22(Me2SiO2/2)0 30(Ph2SiO2/2)0 48 式(Cl) 上述式(Cl)中,Me表示曱基,Ph表示苯基,Vi表示乙烯 基。所獲得之聚合物(C)之苯基之含有比率為5〇莫耳0/〇。 (合成例4)與第2有機聚矽氧烧類似之有機聚矽氧烧之合 成 ° 於具備溫度計、滴加裝置及攪拌機之丨〇〇〇 mL可分離式 燒瓶中放入三甲基甲氧基矽烷16 g、u,33_四甲基二矽氧 烷50 g、二曱基二甲氧基矽烷36 g、二苯基二甲氧基矽烷 183 g、苯基三甲氧基矽烷149 g及乙烯基三甲氧基矽烷化 g於5〇 C下授拌。於其中緩慢滴加鹽酸丨4 g與水1 昆之 溶液,滴加後於50°C下攪拌6小時並使其反應而獲得反應 液。繼而,減壓並去除揮發成分而獲得聚合物。於所獲得 之聚合物中添加己烷150 g及乙酸乙酯15〇 g,並利用離子 交換水300 g進行1〇次清洗,減壓並去除揮發成分而獲得 163225.doc •38· 201247784 聚合物(D)。 所獲得之聚合物(D)之數平均分子量(Mn)*1〇〇〇。藉由 29Si-NMR鑑定化學結構,結果聚合物(D)具有下述平均組 成式(D1)。 ^ (Me3SiOI/2)0.05(HMe2SiO1/2)0 23(Me2SiO2/2)0.09(Ph2Si〇2/2)026 (PhSi〇3/2)〇.27(ViSi〇3/2)〇.i〇 式(Dl) 上述式(D1)中,Me表示甲基,Ph表示苯基,%表示乙烯 基。所獲得之聚合物(D)之苯基之含有比率為51莫耳0/〇。 (合成例5)與第2有機聚矽氧烷類似之有機聚矽氧烷之合成 於具備溫度計、滴加裝置及攪拌機之1〇〇〇 mL可分離式 燒瓶中放入三甲基甲氧基矽烷31 g、丨,^,%四甲基二矽氧 烷40 g、二苯基二甲氧基矽烷11〇 g、苯基三甲氧基矽烷 268 g及乙烯基三曱氧基矽烧45 g,於50°C下搜拌。於其中 緩慢滴加鹽酸1.4 g與水116 g之溶液,滴加後於5〇t下攪 拌6小時並使其反應而獲得反應液。繼而,減麗並去除揮 發成分而獲得聚合物。於所獲得之聚合物中添加己烷15〇 g及乙酸乙酯150 g,並利用離子交換水3〇〇 g進行1〇次清 洗’減壓並去除揮發成分而獲得聚合物(E)。 所獲得之聚合物(E)之數平均分子量(Μη)為11 〇〇 〇藉由 29Si-NMR鑑定化學結構,結果聚合物(£)具有下述平均組 成式(E1)。 (Me3Si01/2)。09(HMe2Si01/2)〇.19(Ph2Si02/2)。16(PhSiO3/2)0 46 (ViSi〇3/2)〇.i〇 式(El) 上述式(El)中,Me表示曱基’ Ph表示苯基,¥丨表示乙烯 163225.doc •39· 201247784 基。所獲得之聚合物⑻之苯基之含有比率為5ι莫耳 (合成例6)第2有機聚矽氧烷之合成 於具備溫度計、滴加裝置及攪拌機之1〇〇〇爪1可分離式 燒叙中放入三Τ基甲氧基我31 四甲基二石夕^ 烧40 g、二苯基二甲氧基㈣77g、苯基三甲氧基錢⑵ 以乙㈣三甲氧基石夕燒45 g,㈣。c下揽拌。於其中緩 慢滴加鹽酸M g與水116 g之溶液,滴加後於50t下授拌6 小時並使其反應而獲得反應液。繼而,減壓並去除揮發成 分而獲得聚合物。於所獲得之聚合物中添加己燒15〇 §及 乙酸乙S旨150 g,並利用離子交換水 g進行ι〇次清洗, 減塵並去除揮發成分而獲得聚合物(F)。 所獲得之聚合物(F)之數平均分子量(_為1〇〇〇。藉由 麵鑑定化學結構,結果聚合物(F)具有下述平均址 成式(Fip (Me3Si01/2)。|〇(HMe2Si〇i/2)。|9(ph2Si〇2 2)“8(phsi〇3 ^ 53 (ViSi03/2)〇 1〇 式(FI) 上述式(FD中,Me表示曱基,ph表示苯基,%表示乙烯 基。所獲得之聚合物(F)之苯基之含有比率為48莫耳%。 (合成例7)第2有機聚矽氧烷之合成 於具備溫度計、滴加裝置及攪拌機之1〇〇〇 mL可分離式 燒瓶中放人三甲基甲氧基㈣31 g、四甲基二石夕氧 烧40 g、苯基二甲氧基石夕烧399 g及乙烯基三甲氧基石夕貌c g於5〇C下搜拌。於其中緩慢滴加鹽酸14 g與水丨16呂之 溶液,滴加後於5〇t下攪拌6小時並使其反應而獲得反應 I63225.doc -40· 201247784 液。繼而’減壓並去除揮發成分而獲得聚合物。於所獲得 之聚ρ物中添加己烧15G g及乙酸乙醋g,並利用離子 交換水300 g進行10次清洗, 聚合物CG)。 減壓並去除揮發成分而獲得 所獲得之聚合物(G)之數平均分子量(Μη)為1000。藉由 W-NMR鑑定化學結構,結果聚合物⑼具有下述平均組 成式(G1)。 (Me、3Sl〇"2)° 1()(HMe2Si〇"2)0.20(PhSiO3/2)().6()(ViSi〇3/2)0 1〇 式(G1) 上述式(G1)中,Me表示甲基,Ph表示苯基,Vi表示乙烯 基。所獲得之聚合物⑼之笨基之含有比率為43莫耳%。 (實施例1) 混合聚合物A(10 g)、聚合物F(10 g)及始之13·二乙稀 ,, 曱基一矽氧烧錯合物(鉑金屬相對於密封劑整 體以重量單位計虏i ! Λ Τ成為10 ppm之量)並進行脫泡,獲得光 導體裝置用密封劑。 (實施例2) 混合聚合物1 〇 π、 _ g)、聚合物G(10 g)及鉑之i,3_二乙烯 基-1,1,3,3-四甲基-功& 歸 一 $夕氧烷錯合物(鉑金屬相對於密封劑整Further, the molecular weights of the respective polymers obtained in Synthesis Example 1 and Synthesis Examples 2 to 7 were measured by adding GPC to 10 mg of tetrahydrofuran at 10 mg until it was dissolved and measured by GPC. For the GPC measurement, a measuring device manufactured by Waters Co., Ltd. (column: Shodex GPC LF-804 (length 300 mm) x2) manufactured by Showa Denko Co., Ltd., measuring temperature: 40 ° C, flow rate: 1 mL/min, solvent : tetrahydrofuran, standard material: polystyrene). (Synthesis Example 2) Synthesis of the first organopolyoxane In a 〇〇〇mL separable flask equipped with a thermometer, a dropping device, and a stirrer, 1,3-diethyl-1,1,3 was placed. , 3-tetradecyl oxalate 88 g, dimethyldimethoxydecane 102 g and diphenyldimethoxydecane 366 g, stirred at 5 ° C, slowly added dropwise thereto A solution of potassium hydroxide 〇.8 g dissolved in 114 g of water was added dropwise at 5 Torr. (: stirring for 6 hours and reacting to obtain a reaction liquid. Then, '9 g of cesium acetate was added to the reaction liquid, the volatile component was removed under reduced pressure, and potassium acetate was removed by filtration to obtain a polymer (B). The number average molecular weight (Mn) of the obtained polymer (B) was 14 Å. The chemical structure was identified by 29Si-NMR, and as a result, the polymer had the following average composition formula (B 1). (ViMe2Si01/2) 〇. 12(Me2Si02/2)0 4〇(Ph2Si02/2)〇.48 Formula (Bl) In the above formula (B1), Me represents a fluorenyl group, ph represents a phenyl group, and Vi represents a vinyl group. The obtained polymer (B) The content ratio of the stupid base is 50 mol/min. (Synthesis Example 3) Synthesis of the first organopolyoxane in a 〇〇〇mL separable type with a thermometer, a dropping device, and a stirrer 163225.doc -37· 201247784 The flask was filled with ruthenium, 3·divinyl-1,1,3,3-tetradecyldioxane 102 g, dimethyldimethoxy decane 86 g and diphenyldimethoxy 366 g of decane was mixed with β at 50 ° C, and a solution obtained by dissolving 8 g of gas oxidized oblique sputum in 114 g of water was slowly added dropwise, and after stirring, it was stirred at 5 〇β(:6 hours and Make it 4. The reaction liquid was obtained. Then, 0.9 g of acetic acid was added to the reaction liquid to remove the volatile component, and potassium acetate was removed by filtration to obtain a polymer (C). The obtained polymer (C) The number average molecular weight (?η) was 11 〇〇^. The chemical structure was identified by 2 9 〇* S^NMR. As a result, the polymer (c) had the following average composition formula (cip (ViMe2SiO1/2) 0 22 (Me2SiO2/2) 0 30(Ph2SiO2/2)0 48 Formula (Cl) In the above formula (Cl), Me represents a fluorenyl group, Ph represents a phenyl group, and Vi represents a vinyl group. The content ratio of the phenyl group of the obtained polymer (C) is 5〇莫耳0/〇. (Synthesis Example 4) Synthesis of organic polyoxymethane similar to the second organopolyoxy oxymethane ° 可 mL separable flask with thermometer, dropping device and stirrer Put 16 g of trimethylmethoxydecane, 50 g of u, 33-tetramethyldioxane, 36 g of dimercaptodimethoxydecane, 183 g of diphenyldimethoxydecane, benzene Base trimethoxy decane 149 g and vinyl trimethoxy decylation g were mixed at 5 ° C. The solution of guanidine hydrochloride 4 g and water 1 Kun was slowly added dropwise, and after dropping, 50 The mixture was stirred for 6 hours at C to obtain a reaction liquid, and then the volatile component was removed under reduced pressure to obtain a polymer. 150 g of hexane and 15 g of ethyl acetate were added to the obtained polymer, and ions were used. Exchanging 300 g of water for 1 wash, decompressing and removing volatile components to obtain 163225.doc •38·201247784 polymer (D). The number average molecular weight (Mn)*1〇〇〇 of the obtained polymer (D). The chemical structure was identified by 29Si-NMR, and as a result, the polymer (D) had the following average composition formula (D1). ^(Me3SiOI/2)0.05(HMe2SiO1/2)0 23(Me2SiO2/2)0.09(Ph2Si〇2/2)026 (PhSi〇3/2)〇.27(ViSi〇3/2)〇.i〇 (Dl) In the above formula (D1), Me represents a methyl group, Ph represents a phenyl group, and % represents a vinyl group. The content ratio of the phenyl group of the obtained polymer (D) was 51 mol/min. (Synthesis Example 5) Synthesis of Organic Polyoxane Similar to Second Organic Polyoxane In a 1 mL-separable flask equipped with a thermometer, a dropping device, and a stirrer, trimethylmethoxy group was placed.矽 31 31 g, 丨, ^, % tetramethyldioxane 40 g, diphenyl dimethoxydecane 11 〇 g, phenyl trimethoxy decane 268 g and vinyl trimethoxy oxime 45 g , mix at 50 ° C. A solution of 1.4 g of hydrochloric acid and 116 g of water was slowly added dropwise thereto, and after dropwise addition, the mixture was stirred at 5 °t for 6 hours and allowed to react to obtain a reaction liquid. The polymer is then obtained by reducing the fluorescing and removing the volatile components. To the obtained polymer, 15 g of hexane and 150 g of ethyl acetate were added, and the mixture was washed with 1 Torr of ion-exchanged water to remove the volatile component to remove the volatile component to obtain a polymer (E). The number average molecular weight (?n) of the obtained polymer (E) was 11 〇〇. The chemical structure was identified by 29Si-NMR, and as a result, the polymer (£) had the following average composition formula (E1). (Me3Si01/2). 09 (HMe2Si01/2) 〇.19 (Ph2Si02/2). 16(PhSiO3/2)0 46 (ViSi〇3/2)〇.i〇 (El) In the above formula (El), Me represents a thiol group, Ph represents a phenyl group, and ¥丨 represents ethylene 163225.doc •39· 201247784 base. The ratio of the phenyl group of the obtained polymer (8) was 5 MPa (Synthetic Example 6). The synthesis of the second organopolyoxane was carried out in a bristles 1 equipped with a thermometer, a dropping device, and a stirrer. In the middle of the sputum, I put a trimethyl methoxy group, I 31 tetramethyl bismuth, burned 40 g, diphenyldimethoxy (tetra) 77 g, phenyl trimethoxy money (2) with B (tetra) trimethoxy sulphur, 45 g, (4). c under the mix. A solution of Mg g and 116 g of water was slowly added dropwise thereto, and after dropwise addition, the mixture was stirred at 50 t for 6 hours and allowed to react to obtain a reaction liquid. Then, the polymer was obtained by depressurizing and removing the volatile component. To the obtained polymer, 15 g of hexane and 150 g of acetic acid were added, and the mixture was washed with ion-exchanged water g to reduce dust and remove volatile components to obtain a polymer (F). The number average molecular weight of the obtained polymer (F) (_ is 1 Å. By chemically identifying the chemical structure, the polymer (F) has the following average site formula (Fip (Me3Si01/2).|〇 (HMe2Si〇i/2).|9(ph2Si〇2 2)"8(phsi〇3^53 (ViSi03/2)〇1〇 (FI) The above formula (in FD, Me represents a sulfhydryl group, and ph represents benzene The base and % represent a vinyl group. The content ratio of the phenyl group of the obtained polymer (F) is 48 mol%. (Synthesis Example 7) Synthesis of the second organopolyoxane is provided with a thermometer, a dropping device, and a mixer The 1 mL mL separable flask was charged with trimethylmethoxy (tetra) 31 g, tetramethyl bismuth oxide 40 g, phenyl dimethoxy sulphur 399 g and vinyl trimethoxy sulphur The cg was mixed at 5 ° C. The solution of 14 g of hydrochloric acid and hydrazine 16 L was slowly added dropwise, and the mixture was stirred at 5 ° t for 6 hours and reacted to obtain a reaction I63225.doc -40· 201247784 liquid. Then, the polymer was obtained by depressurizing and removing volatile components. 15 g of hexane and g of acetic acid were added to the obtained poly ρ, and 10 times of washing was performed using 300 g of ion-exchanged water. CG). The number average molecular weight (?n) of the obtained polymer (G) obtained under reduced pressure and removal of the volatile component was 1000. The chemical structure was identified by W-NMR, and as a result, the polymer (9) had the following average composition. (G1) (Me, 3Sl〇"2)° 1()(HMe2Si〇"2)0.20(PhSiO3/2)().6()(ViSi〇3/2)0 1〇(G1) In the above formula (G1), Me represents a methyl group, Ph represents a phenyl group, and Vi represents a vinyl group. The content ratio of the obtained polymer (9) to a stupid base is 43 mol%. (Example 1) Mixed polymer A ( 10 g), polymer F (10 g) and the first 13 · diethylene, sulfhydryl- anthracene oxygenated complex (platinum metal relative to the sealant as a whole in weight units !i ! Λ Τ becomes 10 ppm And defoaming to obtain a sealant for a photoconductor device. (Example 2) Mixed polymer 1 〇π, _ g), polymer G (10 g), and platinum i, 3_divinyl-1 , 1,3,3-Tetramethyl- work & normalized oxime complex (platinum metal relative to sealant

體以重量單位計成I 乂马10 ppm之量)並進行脫泡,獲得光半 導體裝置用密封劑。 (實施例3) 混合聚合物B(l0 g)、聚合物F(1〇 g)及銘之Μ 基-1,1,3,3-四曱基 _ μ & ^ 总—矽氧烷錯合物(鉑金屬相對於密封劑整 163225.doc • 41 · 201247784 體以重量單位叶成為丨0 ppm之量)並進行脫泡,獲得光半 導體裝置用密封劑。 (實施例4) 混合聚合物B(l〇 g)、聚合物G(1〇 g)及始之1,3-二乙烯 基-1,1,3,3-四甲基二矽氧烷錯合物(鉑金屬相對於密封劑整 體以重量單位計成為1〇 ppm之量)並進行脫泡,獲得光半 導體裝置用密封劑。 (實施例5) 混合聚合物C(l0 g)、聚合物F(10 g)及鉑之1,3-二乙烯 基·1,1,3,3-四曱基二矽氧烷錯合物(始金屈相對於密封劑整 體以重量單位计成為丨〇 ppm之量)並進行脫泡,獲得光半 導體裝置用密封劑。 (實施例6) 混合聚合物c(H) g)、聚合物G(1G g)及始之13二乙稀 基,1 ’3’3四甲基二矽氧烧錯合物(鉑金屬相對於密封劑整 體以重量單位§十成為10 PPm之量)並進行脫泡,獲得光半 導體裝置用密封劑。 (比較例1) 混合聚合物A(l0 g)、聚合物D(1〇 g)及舶之13-二乙婦 基"*1,1,3,3·ε9 田甘 暴二矽氧燒錯合物(鉑金屬相對於密封劑整 體以重量JSL ^ L ^ s卞成為10 ppm之量)並進行脫泡,獲得异本 導體裝置用密封劑。 + (比較例2) & 〇聚合物A(l0 g)、聚合物E(10 g)及舶之ls3_二乙稀 163225.doc • 42· 201247784 基-11,3,3-四甲基_ 體以香曰 —夕氧烷錯合物(鉑金屬相對於密封劑整 里S單位計成 導艚驻® 凡兩10 PPm之量)並進行脫泡,獲得光半 π瓶教置用密封劑。 (比較例3) 混合聚合物Β(ι〇 ^ 其〗T, g)、聚合物D(10 g)及鉑之ι,3-二乙烯 巷-113,3-四甲義_ 艚w去θ 土〜砂氧烷錯合物(鉑金屬相對於密封劑整 眩从垔1單位計成 導體*馮10 PPm之量)並進行脫泡,獲得光半 导骽裝置用密封劑。 (比較例4) 混合聚合物Β(ι〇 # , . g)、聚合物E(10 g)及鉑之l,3-二乙烯 卷-13,3,3-四甲基_ 艚 —石夕氧烷錯合物(鉑金屬相對於密封劑整 導體裝置用密封劑為1〇啊之量)並進行脫泡,獲得光半 (比較例5) 混合聚合物c(1() « 1 , g)、聚合物D(10 g)及鉑之1,3-二乙烯 丞-11,3,3-四甲基_ 雜 一砂氧烷錯合物(鉑金屬相對於密封劑整 重量單位計成為 道雜壯 為10 PPm之量)並進行脫泡,獲得光半 導體裝置用密封劑。 (比較例6) 混合聚合物C〇〇 、 , g)、聚合物E(10 g)及鉑之1,3-二乙烯 基_1,1,3,3-四.甲基二 胁,、,& a 7氧烷錯合物(鉑金屬相對於密封劑整 體以重量單位計成兔】λ 審耱肚罢田令h 馬10 PPm之量)並進行脫泡’獲得光半 導體裝置用密封劑。 (硬化速度之測定> 163225.doc •43· 201247784 初始之硬化速度: 將硬化前之實施例及比較例之光半導體裝置用密封劑放 入80°C之烘箱中,測定直至凝膠化為止之時間。 保管1個月後之硬化速度: 準備以實施例及比較例之各調配量混合實施例及比較例 所使用之第1有機聚矽氧烷與實施例及比較例所使用之鉑 之1,3-二乙烯基·1,1,3,3_四甲基二矽氧烷錯合物而成的a液 體,及以實施例及比較例之各調配量調配實施例及比較例 所使用之第2有機聚石夕氧烧而成的b液體。 將所獲得之A液體與B液體放入4〇°c之烘箱中,保存1個 月。於保存後,混合A液體之總量與B液體之總量而獲得 混合後之光半導體裝置用密封劑,將所獲得之混合後之光 半導體裝置用密封劑放入8 0 之烘箱中,測定直至凝膠化 為止之時間。 (耐熱試驗) 將所獲得之光半導體裝置用密封劑於i 5〇t>c下加熱2小時 而硬化。利用UV-VIS(Uhra Vi〇let_Visibie,紫外線_可見 光)光度計(日立U-3000)測定硬化之光半導體裝置用密封劑 之穿透率,將400 nm之值設為初始之值。作為耐熱試驗, 將硬化之光半導體裝置用密封劑放入2〇〇它之烘箱中3〇〇小 時後’利用UV-VIS光度計(日立U-3000)測定穿透率,並以 百分率計算相對於400 nm之值之初始值的保持率。 將結果示於下述表1中。 163225.doc -44 - 201247784 [表l] 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 硬化速度 [分] 初始 16 10 14 8 13 6 1個月後 23 11 18 9 18 7 耐熱試驗後穿透率保持率[%] 78.8 81.5 78.9 82.4 78.9 82.5 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 硬化速度 [分] 初始 25 22 21 18 19 16 1個月後 38 33 37 32 36 30 耐熱試驗後穿透率保持率[%] 73.3 75.2 74.2 76.1 75.1 77 [圖式簡單說明】 圖1係表示本發明之一實施形態中之光半導體裝置的正 視剖面圖。 【主要元件符號說明】 1 光半導體裝置 2 外殼 2a 内表面 3 光半導體元件 4 光半導體裝置用密封劑 163225.doc -45-The body was defibrated in an amount of 10 ppm by weight of I hummer to obtain a sealant for a photo-semiconductor device. (Example 3) Mixed polymer B (10 g), polymer F (1 〇 g), and thiol-1,1,3,3-tetradecyl _ μ & ^ total oxime The compound (platinum metal with respect to the sealant 163225.doc • 41 · 201247784, the weight unit is 丨 0 ppm) and defoamed to obtain a sealant for an optical semiconductor device. (Example 4) Mixed polymer B (10 g), polymer G (1 g) and 1,3-divinyl-1,1,3,3-tetramethyldioxane The compound (the platinum metal is in an amount of 1 〇ppm based on the entire weight of the sealant) and defoamed to obtain a sealant for an optical semiconductor device. (Example 5) Mixed polymer C (10 g), polymer F (10 g), and platinum 1,3-divinyl·1,1,3,3-tetradecyldioxane complex (The amount of the initial amount of the sealant is 丨〇ppm based on the entire weight of the sealant) and defoaming is performed to obtain a sealant for an optical semiconductor device. (Example 6) Mixed polymer c(H) g), polymer G (1G g) and the first 13 diethylene, 1 '3'3 tetramethyl fluorene oxide complex (platinum metal relative to The entire sealant was defoamed in a weight unit of § ten to 10 ppm, and a sealant for an optical semiconductor device was obtained. (Comparative Example 1) Mixed polymer A (10 g), polymer D (1 〇 g), and 13-di-glycol group "*1,1,3,3·ε9 The complex compound (the platinum metal was added to the entire sealant in an amount of 10 ppm by weight JSL ^ L ^ s ) was defoamed to obtain a sealant for a different conductor device. + (Comparative Example 2) & 〇Polymer A (10 g), Polymer E (10 g) and ls3_diethylene 163225.doc • 42· 201247784 -11,3,3-tetramethyl _ The body is a camphor-oxime complex (the platinum metal is equivalent to the sealant in units of S, which is in the range of 2 10 PPm) and is defoamed to obtain a light half π bottle sealant. . (Comparative Example 3) Mixed polymer Β (ι〇^, T, g), polymer D (10 g), and platinum, i,3-divinyl lane-113,3-tetramethyl _ 艚w to θ The soil-shale oxychloride complex (platinum metal is stunned from the sputum 1 unit into a conductor * von 10 PPm) and defoamed to obtain a sealant for a light semi-conductive device. (Comparative Example 4) Mixed polymer Β (ι〇#, .g), polymer E (10 g), and platinum 1,3 - ethene -13,3,3-tetramethyl _ 艚 - Shi Xi An oxane complex (the amount of platinum metal relative to the sealant for the entire conductor device) is defoamed to obtain a light half (Comparative Example 5) Mixed polymer c(1() « 1 , g) , polymer D (10 g) and platinum 1,3-divinyl hydrazine-11,3,3-tetramethyl _ oxa oxalate complex (platinum metal is a miscellaneous with respect to the whole weight of the sealant) The strength is 10 PPm) and defoaming is performed to obtain a sealant for an optical semiconductor device. (Comparative Example 6) a mixed polymer C〇〇, g), a polymer E (10 g), and a platinum 1,3-divinyl-1,1,3,3-tetramethyl peroxide, , & a 7 oxane complex (platinum metal as a whole in terms of weight of the sealant into a rabbit) λ 耱 耱 令 令 令 令 马 马 马 马 马 马 马 马 马 10 10 ' ' ' ' ' ' ' ' ' ' . (Measurement of Curing Rate) 163225.doc •43·201247784 Initial Hardening Speed: The sealing agent for optical semiconductor devices of Examples and Comparative Examples before curing was placed in an oven at 80 ° C and measured until gelation The curing time after storage for one month: The first organopolysiloxane used in the examples and the comparative examples and the platinum used in the examples and the comparative examples were prepared by mixing the respective amounts of the examples and the comparative examples. a liquid of 1,3-divinyl·1,1,3,3-tetramethyldioxane complex, and various examples and comparative examples of the examples and comparative examples were used to prepare examples and comparative examples. The second liquid obtained by the second organic polysulfide is used. The obtained A liquid and the B liquid are placed in an oven at 4 ° C for 1 month. After storage, the total amount of the A liquid is mixed. The sealant for an optical semiconductor device obtained by mixing with the total amount of the B liquid was placed in an oven of 80° obtained by mixing the obtained sealing agent for an optical semiconductor device, and the time until gelation was measured. Test) The obtained sealing agent for an optical semiconductor device is i 5〇t>c It is hardened by heating for 2 hours. The transmittance of the sealant for the hardened optical semiconductor device is measured by a UV-VIS (Uhra Vi〇let_Visibie, ultraviolet-visible light) luminometer (Hitachi U-3000), and the value of 400 nm is set to The initial value. As a heat resistance test, the hardened optical semiconductor device was placed in an oven for 3 hours, and the transmittance was measured by a UV-VIS luminometer (Hitachi U-3000). The retention ratio of the initial value with respect to the value of 400 nm was calculated as a percentage. The results are shown in the following Table 1. 163225.doc -44 - 201247784 [Table 1] Example 1 Example 2 Example 3 Example 4 Implementation Example 5 Example 6 Hardening speed [minutes] Initial 16 10 14 8 13 6 1 month later 23 11 18 9 18 7 Transmission rate retention after heat resistance test [%] 78.8 81.5 78.9 82.4 78.9 82.5 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Hardening speed [minutes] Initial 25 22 21 18 19 16 After 1 month 38 33 37 32 36 30 Transmission rate retention after heat resistance test [%] 73.3 75.2 74.2 76.1 75.1 77 [Simplified illustration of the drawings] Fig. 1 shows an embodiment of the present invention. N-sectional view showing a semiconductor device. The main element REFERENCE NUMERALS 1 optical semiconductor device within the housing 2 2a 3 4 optical semiconductor element surface sealing agent for an optical semiconductor device 163225.doc -45-

Claims (1)

201247784 七、申請專利範園: 1. 一種光半導體裝置用密封劑,其含有: 由下述式(1A)所表 矽氧烷, 示且具有芳基及烯基 之第1有機聚 由下述式(51)所表示且具有芳基及鍵結於石夕原子上之 氫原子的第2有機聚矽氧烷,及 砂氫化反應用觸媒;並且 上述第1有機聚⑪氧燒及上述第2有機聚⑦氧烧中之藉 由下述式(X)而求得之芳基之含有比率分別為3〇莫耳%以 上、7 0莫耳%以下; [化1] (R1R2R3SI〇1/2)a(R4R5Si〇2/2)b …式(1A) 上述式(1A)中,a及 b滿足 a/(a+b)=〇.〇5〜〇·3〇及 b/(a+b)= 0.70〜0·95 ’ R1〜R5中,至少丨個表示芳基,至少丨個表示 烯基,芳基及烯基以外之R1〜R5表示碳數為卜8之烴基; [化2] (R51 R52R53Si〇1 々)p (R54R55Si〇2〆2 )q (R56Si03/2 )r ...式(51) 上述式(51)中 ’ p、<^及 r滿足 p/(p+q+r)=〇 〇5〜〇 5〇、 q/(!P+q+r)=0〜0.15 及 r/(p+q+r)=0.2〇〜0.80,R51 〜R56 中, 至少1個表示芳基,至少1個表示鍵結於石夕原子上之氫原 子,芳基及鍵結於矽原子上之氫原子以外之R5 1〜R5 6表 示碳數為1〜8之烴基; 芳基之含有比率(莫耳%) = (上述第1有機聚矽氧烷或上 述第2有機聚矽氧烷之每1分子所含有之芳基之平均個數 163225.doc 201247784 x芳基之分子量/上述第1有機聚矽氧烷或上述第2有機聚 矽氧烷之數平均分子量)xl 00 式(X) 〇 2. 如請求項1之光半導體裝置用密封劑,其中上述第1有機 聚矽氧烷包含於1個矽原子上鍵結有2個苯基之二苯基石夕 氧烷結構單元。 3. 如請求項2之光半導體裝置用密封劑,其申於上述第1有 機聚矽氧烷之總矽氧烷結構單元100莫耳。/。中,於1個石夕 原子上鍵結有2個苯基之上述二苯基矽氧烷結構單元之 比例為20莫耳%以上。 4. 如請求項1至3中任一項之光半導體裝置用密封劑,其中 上述式(51)中之(R51R52R53Si〇i/2)所表示之結構單元包 含R51表示鍵結於矽原子上之氫原子且R52及R53表示鍵 結於矽原子上之氫原子' 芳基或碳數為之烴基的結 構單元。 5. 如請求項1至3中任一項之光半導體裝置用密封劑,其中 上述式(51)所表示之第2有機聚矽氧烷為下述式(5丨八)所 表示之第2有機聚矽氧烷; [化3] (R51R52R53Si01/2)p (R56Si〇3/2)r …式(51A) 上述式(51A)中,p及 r滿足 p/(p+r)=〇 2〇〜〇 5〇Ar/(p+r)= 0.50〜0_80,R51〜R53、R56中,至少丨個表示芳基,至少 1個表不鍵結於矽原子上之氫原子,芳基及鍵結於矽原 子上之氫原子以外之R51〜R53、R56表示碳數為卜8之烴 基。 I63225.doc 201247784 6. 如請求項5之光半導體裝置用密封劑,其中上述式(51)所 表不之第2有機聚矽氧烷為上述式(51A)所表示之第2有機 聚矽氧烷;並且 上述式(51A)中之(RSiRWRMSic^2)所表示之結構單 元包含R5 1表示鍵結於石夕原子上之氫原子且R52及R53表 示鍵結於矽原子上之氫原子、芳基或碳數為i〜8之烴基 的結構單元。 7. —種光半導體裝置,其具備光半導體元件及以密封該光 半導體元件之方式而設置之如請求項1至3中任一項之光 半導體裝置用密封劑。 8. 如請求項7之光半導體裝置,其中上述式(51)中之 (1^5111521153 810,/2)所表示之結構單元包含R51表示鍵結 於碎原子上之氫原子且R52及R53表示鍵結於發原子上之 氫原子、芳基或碳數為1〜8之烴基的結構單元。 9:如請求項7之光半導體裝置,其中上述式(51)所表示之第 2有機聚矽氧烷為下述式(51A)所表示之第2有機聚$夕氧 烷; [化4] (R51 R52R53Si〇i/2)p (R56Si〇3/2 )r …式(51A〉 上述式(51A)中,p及 Γ 滿足 p/(p+r)=0.20〜〇‘5〇 及 r/(p+r)= 0.50-0.80 ’ R51〜R53、R56中,至少1個表示芳基,至少 1個表示鍵結於矽原子上之氮原子,芳基及鍵結於梦原 子上之氫原子以外之R5卜R53、R56表示碳數為之烴 基ϋ I63225.doc 201247784 10.如請求項9之光半導體裝置,其中上述式(51)所表示之第 2有機聚矽氧烷為上述式(51A)所表示之第2有機聚矽氧 烷;並且 上述式(51八)中之(1151115211535丨01/2)所表示之結構單 元包含R51表示鍵結於矽原子上之氫原子且R52及R53表 示鍵結於矽原子上之氫原子、芳基或碳數為1〜8之烴基 的結構單元。 163225.doc201247784 VII. Patent application: 1. A sealing agent for an optical semiconductor device, comprising: a first organic polymer having an aryl group and an alkenyl group represented by the following formula (1A); a second organopolyoxyalkylene represented by the formula (51) and having an aryl group and a hydrogen atom bonded to the austenite atom, and a catalyst for a sand hydrogenation reaction; and the first organic poly 11 Oxygen and the above (2) The content ratio of the aryl group obtained by the following formula (X) in the organic polyoxy 7oxygen is 3 〇 mol% or more and 70 mol% or less; [Chemical 1] (R1R2R3SI〇1/ 2) a(R4R5Si〇2/2)b (1A) In the above formula (1A), a and b satisfy a/(a+b)=〇.〇5~〇·3〇 and b/(a+ b)=0.70~0·95 'In the case of R1 to R5, at least one represents an aryl group, and at least one of them represents an alkenyl group, and R1 to R5 other than an aryl group and an alkenyl group represent a hydrocarbon group having a carbon number of 8; ] (R51 R52R53Si〇1 々)p (R54R55Si〇2〆2 )q (R56Si03/2 )r (51) In the above formula (51), 'p, <^ and r satisfy p/(p+ q+r)=〇〇5~〇5〇, q/(!P+q+r)=0~0.15 and r/(p+q+r)=0.2〇~0.80, R5 In the case of 1 to R56, at least one represents an aryl group, at least one of which represents a hydrogen atom bonded to a cerium atom, and an aryl group and a hydrogen atom bonded to a ruthenium atom, R5 1 to R5 6 represent a carbon number of Hydrocarbon group of 1 to 8; content ratio of aryl group (mol%) = (the average number of aryl groups per molecule of the above first organopolyoxane or the above second organopolyoxane is 163,225. Doc 201247784 Molecular weight of xaryl group / number average molecular weight of the above first organopolyoxyalkylene or the above second organopolyoxyalkylene) xl 00 Formula (X) 〇2. Sealant for optical semiconductor device according to claim 1 The first organopolyaluminoxane is a structural unit containing a diphenyl oxaxoxane in which two phenyl groups are bonded to one ruthenium atom. 3. The sealant for an optical semiconductor device according to claim 2, which is the monooxane structural unit 100 of the above first organic polyoxyalkylene. /. In the above, the ratio of the above-mentioned diphenyl fluorene structural unit having two phenyl groups bonded to one shi xi atom is 20 mol% or more. 4. The sealant for an optical semiconductor device according to any one of claims 1 to 3, wherein the structural unit represented by (R51R52R53Si〇i/2) in the above formula (51) contains R51 and is bonded to a germanium atom. A hydrogen atom and R52 and R53 represent a structural unit of a hydrogen atom 'aryl group or a hydrocarbon group bonded to a halogen atom. 5. The sealant for an optical semiconductor device according to any one of claims 1 to 3, wherein the second organopolyoxane represented by the above formula (51) is the second represented by the following formula (5). Organic polyoxane; [R3R52R53Si01/2)p (R56Si〇3/2)r (51A) In the above formula (51A), p and r satisfy p/(p+r)=〇2 〇~〇5〇Ar/(p+r)= 0.50~0_80, at least one of R51~R53 and R56 represents an aryl group, and at least one hydrogen atom, aryl group and bond which are not bonded to a ruthenium atom R51 to R53 and R56 other than the hydrogen atom bonded to the ruthenium atom represent a hydrocarbon group having a carbon number of 8. 6. The sealant for an optical semiconductor device according to claim 5, wherein the second organopolyoxane represented by the above formula (51) is the second organopolyoxygen represented by the above formula (51A). And the structural unit represented by (RSiRWRMSic^2) in the above formula (51A), wherein R5 1 represents a hydrogen atom bonded to a cerium atom and R52 and R53 represent a hydrogen atom bonded to a ruthenium atom, and aryl A structural unit of a hydrocarbon group having a carbon number of from i to 8. 7. An optical semiconductor device comprising an optical semiconductor device and a sealing agent for an optical semiconductor device according to any one of claims 1 to 3, wherein the optical semiconductor device is sealed. 8. The optical semiconductor device according to claim 7, wherein the structural unit represented by (1^5111521153 810, /2) in the above formula (51) contains R51 indicating a hydrogen atom bonded to a fragmented atom and R52 and R53 are represented. A structural unit bonded to a hydrogen atom, an aryl group or a hydrocarbon group having 1 to 8 carbon atoms. 9. The optical semiconductor device according to claim 7, wherein the second organopolyoxane represented by the above formula (51) is a second organic polyoxane represented by the following formula (51A); (R51 R52R53Si〇i/2)p (R56Si〇3/2 )r (51A> In the above formula (51A), p and Γ satisfy p/(p+r)=0.20~〇'5〇 and r/ (p+r)= 0.50-0.80 'At least one of R51 to R53 and R56 represents an aryl group, at least one of which represents a nitrogen atom bonded to a ruthenium atom, an aryl group and a hydrogen atom bonded to a dream atom. Other than R5, R53 and R56 represent a hydrocarbon group having a carbon number. I63225.doc 201247784. The optical semiconductor device according to claim 9, wherein the second organopolyoxane represented by the above formula (51) is the above formula (51A). a second organopolyoxane represented by the above; and the structural unit represented by (1151115211535 丨 0 1/2) in the above formula (51) contains R51 representing a hydrogen atom bonded to a ruthenium atom and R52 and R53 are represented a structural unit bonded to a hydrogen atom, an aryl group or a hydrocarbon group having 1 to 8 carbon atoms on a helium atom. 163225.doc
TW101113658A 2011-05-17 2012-04-17 Sealing agent for optical semiconductor device, and optical semiconductor device TW201247784A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110238 2011-05-17

Publications (1)

Publication Number Publication Date
TW201247784A true TW201247784A (en) 2012-12-01

Family

ID=47176672

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101113658A TW201247784A (en) 2011-05-17 2012-04-17 Sealing agent for optical semiconductor device, and optical semiconductor device

Country Status (3)

Country Link
JP (2) JPWO2012157330A1 (en)
TW (1) TW201247784A (en)
WO (1) WO2012157330A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017889A1 (en) 2012-07-27 2014-01-30 주식회사 엘지화학 Hardening composition
TW201917173A (en) * 2017-10-20 2019-05-01 日商道康寧東麗股份有限公司 Curable silicone composition and optical semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040858B2 (en) * 2001-10-19 2008-01-30 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP5060074B2 (en) * 2006-05-11 2012-10-31 東レ・ダウコーニング株式会社 Adhesion promoter, curable organopolysiloxane composition, and semiconductor device
JP5148088B2 (en) * 2006-08-25 2013-02-20 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP4862032B2 (en) * 2008-12-05 2012-01-25 信越化学工業株式会社 Addition-curable silicone composition that provides a cured product having a high refractive index, and an optical element sealing material comprising the composition
JP2010180323A (en) * 2009-02-05 2010-08-19 Shin-Etsu Chemical Co Ltd Curable silicone composition and cured product thereof

Also Published As

Publication number Publication date
JPWO2012157330A1 (en) 2014-07-31
JP2013117032A (en) 2013-06-13
WO2012157330A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
TWI391447B (en) A light-emitting semiconductor device, and a light-emitting semiconductor device
TWI513740B (en) A light sealant for an optical semiconductor device, and an optical semiconductor device using the same
JP5066286B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
WO2013008842A1 (en) Sealing agent for optical semiconductor devices, and optical semiconductor device
JP5693063B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP2012111836A (en) Sealing agent for optical semiconductor device, and optical semiconductor device using the same
JP2012007136A (en) Sealing agent for optical semiconductor device and optical semiconductor device using the same
JP2014094970A (en) Curable composition for optical semiconductor device
WO2013035736A1 (en) Curable composition for optical semiconductor device
TW201247784A (en) Sealing agent for optical semiconductor device, and optical semiconductor device
JP2013253210A (en) Curable composition for optical semiconductor device, optical semiconductor device and method for manufacturing the optical semiconductor device
JP5323037B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP5323038B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP2012199345A (en) Lens material for optical semiconductor device, optical semiconductor device and manufacturing method therefor
JP2012197328A (en) Method of producing organopolysiloxane, composition for photosemiconductor device, and photosemiconductor device
JP2012241051A (en) Sealant for optical semiconductor device and optical semiconductor device
TWI789736B (en) Thermosetting silicone composition, sheet, and silicone cured product
JP2012197409A (en) Sealant for photosemiconductor device and photosemiconductor device using the same
JP2013018900A (en) Sealant for optical semiconductor device and optical semiconductor device using the same
JP2012193235A (en) Coating material for optical semiconductor device and optical semiconductor device using the same
JP2012188627A (en) Lens material for optical semiconductor apparatus, optical semiconductor apparatus, and method for manufacturing optical semiconductor apparatus
JP2013181061A (en) Lens material for optical semiconductor apparatus, optical semiconductor apparatus, and method for producing optical semiconductor apparatus
JP2013064062A (en) Sealing agent for optical semiconductor device, and optical semiconductor device using the same
JP2013053186A (en) Sealant for optical semiconductor device, and optical semiconductor device using the same
JP2012190952A (en) Sealant for optical semiconductor device, cured sealant for optical semiconductor device, and optical semiconductor device