TW201247035A - Microwave plasma source and plasma processing apparatus - Google Patents

Microwave plasma source and plasma processing apparatus Download PDF

Info

Publication number
TW201247035A
TW201247035A TW100137616A TW100137616A TW201247035A TW 201247035 A TW201247035 A TW 201247035A TW 100137616 A TW100137616 A TW 100137616A TW 100137616 A TW100137616 A TW 100137616A TW 201247035 A TW201247035 A TW 201247035A
Authority
TW
Taiwan
Prior art keywords
microwave
plasma
gas
microwaves
introducing
Prior art date
Application number
TW100137616A
Other languages
Chinese (zh)
Inventor
Taro Ikeda
Yuki Osada
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW201247035A publication Critical patent/TW201247035A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32293Microwave generated discharge using particular waveforms, e.g. polarised waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

There are provided a microwave plasma source and a plasma processing apparatus capable of improving uniformity of a plasma density distribution within a processing chamber by controlling positions of nodes and antinodes of a standing wave of microwave within the processing chamber not to be fixed. The microwave plasma source 2 includes a microwave supply unit 40. The microwave supply unit 40 includes multiple microwave introducing devices 43 each introducing microwave into the processing chamber; and multiple phase controllers 46 for adjusting phases of the microwaves inputted to the microwave introducing devices 43. Here, the phases of the microwaves inputted to the microwave introducing devices 43 are adjusted by fixing an input phase of the microwave inputted to one of two adjacent microwave introducing devices 43 while varying an input phase of the microwave inputted to the other microwave introducing device 43 according to a periodic waveform.

Description

201247035 六、發明說明: 【發明所屬之技術領域】 本發明關於一種微波電漿源及使用其之電漿處理 裝置》 【先前技術】 半導體元件或液晶顯示裝置之製程中,係使用電漿 I虫刻裝置或電漿CVD成膜裝置等電漿處理裝置來對半 導體晶圓或玻璃基板之被處理基板施予蝕刻處理或成 膜處理等電漿處理。 近年來,這類電毁處理裝置有一種可均勻地形成高 密度且低電子溫度的表面波電漿之RLSA(Radial Line201247035 VI. Description of the Invention: [Technical Field] The present invention relates to a microwave plasma source and a plasma processing apparatus using the same. [Prior Art] In the process of a semiconductor element or a liquid crystal display device, a plasma I pest is used. A plasma processing apparatus such as an etching apparatus or a plasma CVD film forming apparatus applies a plasma treatment such as an etching treatment or a film formation treatment to a substrate to be processed on a semiconductor wafer or a glass substrate. In recent years, such an electric destruction treatment device has a RLSA (Radial Line) which can uniformly form a high-density and low-electron-temperature surface wave plasma.

Slot Antenna)微波電漿處理裝置受到矚目(例如專利文 獻1)。 上 RLSA微波電職理裝置係於處理室(處理容器) 部設置有形成有特定圖㈣槽孔之平面天線⑽咖Slot Antenna) Microwave plasma processing equipment has attracted attention (e.g., Patent Document 1). The upper RLSA microwave electric service device is provided with a planar antenna (10) in which a specific figure (4) slot is formed in the processing chamber (processing container).

Line Slot Antenna) ’而從平面天線的槽絲將從微波> 生源經由同軸構造的導波道所料而㈣微波放射至 處理室内’域由微波電場使被導人至處理室内之氣] 電漿化’來對半導體晶圓等被處理體進行電聚處理。 上述RLSA微波電漿裝置+,當調整電漿分佈時 ==先槽孔形狀及圖案等相異的複數天線來更 換天線’故極為煩雜。 相對於此,專利文獻2中揭示了一種將微波複數: 201247035 刀配而透過複數天線模組來將微波放射至處理室内, 並在處理室内的空間合成微波之微波電漿源。 _ 、如此地藉由使用複數天線模組來對微波進行空間 5成’便可調整從各天線模組的天線所放射之微波的相 位或強度,烊而可調整電漿分佈。 專利文獻1 :日本特開2000-294550號公報 專利文獻2 :國際公開第2008/013112號 但如上所述地使用複數天線模組來將微波放射至 處理室内而形成電漿之情況,會有微波被放射至處理室 内時所產生之駐波的波腹與波節變得明顯,其導致電漿 中的電子密度分佈局部化,而使電漿密度分佈的均勻性 惡化之問題。 本發明係鑑於上述情事所發明者,其目的在於提供 —種可盡量抑制處理容器内之微波之駐波的波腹與波 節之位置被固定,來提高處理室内的電漿密度均勻性之 微波電漿源及使用其之電漿處理裝置。 【發明内容】 本發明第1觀點提供一種微波電漿源,係將微波導 入至進行電漿處理之處理容器内,來使供應至該處理容 器内之氣體電漿化,其特徵在於具備有:微波2^機 構’係用以產生微波,以及微波供應部,係將所生成之 微波供應至該處理容器内;其中該微波供應部具有:將 微波導入至該處理谷器内之複數微波導入機構,'與甲整Line Slot Antenna) 'And the slotted wire from the planar antenna will be from the microwave> source through the coaxial waveguide of the coaxial structure and (4) the microwave is radiated into the processing chamber 'the domain is controlled by the microwave electric field to the gas in the processing chamber. Slurrying is used to electropolymerize a processed object such as a semiconductor wafer. The RLSA microwave plasma device + is extremely cumbersome when the plasma distribution is adjusted == the complex antenna with a different slot shape and pattern to replace the antenna. On the other hand, Patent Document 2 discloses a microwave plasma source that combines microwaves into a plurality of antenna modules to radiate microwaves into a processing chamber and synthesizes microwaves in a space in the processing chamber. _ Thus, by using a plurality of antenna modules to spatially space the microwaves, the phase or intensity of the microwaves radiated from the antennas of the antenna modules can be adjusted, and the plasma distribution can be adjusted. Patent Document 1: JP-A-2000-294550, JP-A-2008-013112, but the use of a plurality of antenna modules to radiate microwaves into a processing chamber to form a plasma as described above, there is a microwave The antinodes and nodes of the standing wave generated when being radiated into the processing chamber become conspicuous, which causes localization of the electron density distribution in the plasma and deteriorates the uniformity of the plasma density distribution. The present invention has been made in view of the above circumstances, and an object thereof is to provide a microwave capable of suppressing the uniformity of plasma density in a processing chamber by suppressing the position of an antinode and a node of a standing wave of a microwave in a processing container as much as possible. Plasma source and plasma processing device using the same. SUMMARY OF THE INVENTION According to a first aspect of the present invention, a microwave plasma source is provided for introducing microwaves into a processing vessel for performing plasma processing to plasmaize a gas supplied into the processing vessel, characterized by comprising: The microwave device is configured to generate microwaves, and the microwave supply portion supplies the generated microwaves into the processing container; wherein the microwave supply portion has: a plurality of microwave introduction mechanisms for introducing microwaves into the processing valleys , 'With a whole

S 201247035 S亥複數微波導入機構所分別輸入之微波的相位之複數 相位器;關於複數微波導入機構當中相鄰接者,係藉由 該複數相位Is來調整被輸入至該複數微波導入機構之 微波的相位,而固定其中一微波的輪入相位,並使另一 微波的輸入相位以周期性波形變化,抑或,使得相鄰接 之微波導入機構兩者的微波輸入相位以不會相互重疊 之周期性波形變化。 上述第1觀點中,該周期性波形可使用正弦波、三 角波、梯形波及正弦波狀波形當中其中一者。 又,構成該處理容器上壁而供從該複數微波導入機 構所放射的微波穿透之頂板係一種具有對應於該複數 微波導入機構之位置處所設置之複數介電體組件,與支 撐介電體組件之金屬製框體之構造,該框體可為具有蜂 巢狀構造者。此情況下,該框體可具有氣體流道與複數 氣體噴出孔,而從該氣體喷出孔朝向該處理容器嘴出電 漿處理所需氣體。 本發明第2觀點提供一種電漿處理裝置,其具備 有:處理容器,係收納被處理基板;載置台,係於該處 理容器内載置被處理基板;氣體供應機構,係將氣體供 應至該處理容器内;以及上述第1觀點之微波電製源; 藉由從該微波電漿源導入至該處理容器内之微波來產 生電漿,並藉由該電漿來對被處理基板施予處理。 依據本發明,關於複數微波導入機構當中相鄰接 者’由於係藉由該複數相位器來調整被輸入至該複數微 5 201247035 波導入機構之微波的相位,而固定其中一微波的輸入相 位,並使另一微波的輸入相位以周期性波形變化,抑 或,使得相鄰接之微波導入機構兩者的微波輸入相位以 不會相互重疊之周期性波形變化,因此放射至處理容器 内之微波的駐波之波節與波腹的位置便會連續地變化 而使電場強度平均化,從而可提高電場強度的面内均勻 性。於是,便可使處理容器内的電子密度(亦即電漿密 度)均勻來進行均勻的電漿處理。 【實施方式】 以下,參照添附圖式來詳細說明本發明實施形態。 <第1實施形態> 圖1係顯轉有本發明第丨實麵態的微波電㈣ 之表面波電|處理裝置的概略結構之剖面圖,圖2係顯 源結構之結構圖,圖3係概略顯示微波電聚 :天二部之俯視圖,圖4係顯示微波電漿源中 式,圖?ί 主增巾111的電料構範例之圖 導入機構m波錢财之天軸㈣制的微波 等入機構之剖面圖,圖6 構而為圖5之从'線橫剖面圖:圖=機構的供電機 芯塊:滑動組件而為圖5之崎橫=刪中的 表面波電漿處理穿罟 圃 毁處理(例如㈣處理)之;;成為對晶圓施予電 地構成之_不鏽鋼等m其具有由氣密 寺孟屬材賊構成且為接地狀態S 201247035 A complex phaser for the phase of the microwave input by the microwave introduction mechanism; and for the adjacent one of the plurality of microwave introduction mechanisms, the microwave input to the plurality of microwave introduction mechanisms is adjusted by the complex phase Is Phase, while fixing the phase of one of the microwaves, and changing the input phase of the other microwave by a periodic waveform, or so that the microwave input phases of the adjacent microwave introducing mechanisms do not overlap each other Sexual waveform changes. In the above first aspect, the periodic waveform may use one of a sine wave, a triangular wave, a trapezoidal wave, and a sinusoidal waveform. Further, a top plate constituting the upper wall of the processing container and allowing microwaves radiated from the plurality of microwave introducing mechanisms to have a plurality of dielectric members disposed at positions corresponding to the plurality of microwave introducing mechanisms, and a supporting dielectric body The structure of the metal frame of the assembly, which may be a honeycomb structure. In this case, the frame may have a gas flow path and a plurality of gas ejection holes, and the gas required for the plasma treatment is discharged from the gas ejection hole toward the processing container. According to a second aspect of the present invention, there is provided a plasma processing apparatus comprising: a processing container for storing a substrate to be processed; a mounting table for placing a substrate to be processed in the processing container; and a gas supply mechanism for supplying gas to the substrate Processing the inside of the container; and the microwave power source of the first aspect; generating a plasma by introducing microwaves into the processing container from the microwave plasma source, and applying treatment to the substrate to be processed by the plasma . According to the present invention, the adjacent one of the plurality of microwave introducing mechanisms adjusts the input phase of one of the microwaves by adjusting the phase of the microwave input to the complex transistor 5 201247035 by the complex phaser. And the input phase of the other microwave is changed by the periodic waveform, or the microwave input phases of the adjacent microwave introduction mechanisms are changed in a periodic waveform that does not overlap each other, and thus radiated to the microwave in the processing container. The position of the wave node and the antinode of the standing wave is continuously changed to average the electric field intensity, thereby improving the in-plane uniformity of the electric field strength. Thus, the electron density (i.e., plasma density) in the processing container can be made uniform to perform uniform plasma processing. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. <First Embodiment> Fig. 1 is a cross-sectional view showing a schematic configuration of a surface wave electric current processing apparatus of a microwave electric power (fourth) in which the first surface of the present invention is reproduced, and Fig. 2 is a structural view of a apparent source structure. The 3 series outlines the microwave electropolymerization: the top view of the second part, and the figure 4 shows the Chinese version of the microwave plasma source. ί The schematic diagram of the electric material structure of the main towel 111 is introduced into the cross-sectional view of the microwave equal-input mechanism made by the mechanism m wave money axis (4), and FIG. 6 is the cross-sectional view of the line from Fig. 5: Fig. The power supply movement block: the sliding component is the surface wave plasma of Fig. 5 = the surface wave plasma treatment of the smashing treatment (for example, (4) processing); the electric field is applied to the wafer _ stainless steel, etc. m which has a thief of the airtight temple and is grounded

S 201247035 之略圓筒狀處理室1,與用以於處理室1内形成微波電 漿之微波電漿源2。處理室1的上部係形成有開口部 la,而微波電漿源2係設置為自該開口部ia面臨處理 室1的内部。 於處理室1内,用以水平地支撐被處理體(晶圓W) 之載置台(susceptor)ll係在藉由透過絕緣組件12a而直 立設置在處理室1的底部中央之筒狀支撐組件12所支 撐之狀態下而加以設置。構成載置台Η及支樓組件12 的材料舉例有表面經耐酸鋁處理(陽極氧化處理)之鋁 等。 又’雖未圖示,載置台11係依需要而設置有用以 靜電吸附晶圓W之靜電夾具、溫度控制機構、將熱傳 ‘用氣體供應至晶圓w内面之氣體流道、以及用以搬 送晶圓w之可升降的升降銷等。此外,載置台11係透 過匹配器13而電連接有高頻偏壓電源14。藉由從該高 頻偏壓電源14對載置台Π供應高頻電功率,則電漿中 的離子便會被料至晶圓則則。 处理室1底部係連接有排氣管15,且該排氣管Μ 哕包含真空幫浦之排氣裝置16。然後,藉由使 置16作動來將處理室1内排氣,便可高速地 係:=内減壓至特定真空度。又’處理室1的侧壁 二又有用以進行晶圓W的搬出入之搬出入口 17,盘 開閉該搬出人σ 17之關18。 ,、 處理至1内之載置台π上方位置處係水平地設置 201247035 有朝晶圓w喷出電漿蝕刻用處理氣體之淋氣板20。該 淋氣板20係具有形成為格子狀之氣體流道21,與形成 於該氣體流道21之多個氣體噴出孔22,而格子狀氣體 流道21之間便成為空間部23。該淋氣板20的氣體流 道21係連接有延伸至處理室1外側之配管24,該配管 24係連接有處理氣體供應源25。 另一方面’處理室1的淋氣板20上方位置處係沿 著處理室壁而設置有環狀電漿氣體導入組件26,該電 漿氣體導入組件26係於内周設置有多個氣體喷出孔。 5亥電漿·氣體導入組件26係透過配管28而連接有供應電 漿氣體之電漿氣體供應源27。電漿氣體較佳係使用Ar 氣等稀有氣體。 從電漿氣體導入組件26導入至處理室1内之電辦: 氣體會因從微波電漿源2導入至處理室1内之微波而電 漿化,該電漿會通過淋氣板20的空間部23而激發從淋 氣板20的氣體喷出孔22所喷出之處理氣體,並形成處 理氣體的電漿。 微波電漿源2係設置在藉由設置於處理室1上部的 支撐環29所支撐之頂板11〇上。支撐環29與頂板11〇 之間係氣密地密封。如圖2所示,微波電漿源2係具有 將微波分配並輸出至複數路徑之微波輸出部30,與用 以將從微波輸出部30所輸出之微波引導至處理室1並 放射至處理室1内之微波供應部40。 微波輸出部30係具有微波電源31、微波發振器S 201247035 is a slightly cylindrical processing chamber 1 and a microwave plasma source 2 for forming microwave plasma in the processing chamber 1. The upper portion of the processing chamber 1 is formed with an opening portion la, and the microwave plasma source 2 is disposed to face the inside of the processing chamber 1 from the opening portion ia. In the processing chamber 1, a mounting susceptor for horizontally supporting the object to be processed (wafer W) is a cylindrical supporting member 12 which is erected at the center of the bottom of the processing chamber 1 by the insulating member 12a. Set in the supported state. The material constituting the mounting table and the branch assembly 12 is exemplified by aluminum whose surface is treated with an alumite treatment (anodized). Further, although not shown, the mounting table 11 is provided with a static chuck for electrostatically adsorbing the wafer W, a temperature control mechanism, a gas flow path for supplying a heat transfer gas to the inner surface of the wafer w, and the like. Transfer the lifting and lowering pins of the wafer w. Further, the stage 11 is electrically connected to the high frequency bias power source 14 via the matching unit 13. By supplying high frequency electric power to the mounting stage from the high frequency bias power supply 14, ions in the plasma are fed to the wafer. An exhaust pipe 15 is connected to the bottom of the processing chamber 1, and the exhaust pipe 哕 includes a vacuum pump exhaust device 16. Then, by exhausting the inside of the processing chamber 1 by the operation of the 16, the internal pressure can be reduced to a specific degree of vacuum at a high speed. Further, the side wall 2 of the processing chamber 1 is also used to carry out the loading/unloading port 17 for carrying in and out of the wafer W, and the opening and closing of the unloading person σ 17 is opened. The processing is performed horizontally at a position above the mounting table π in the processing unit. 201247035 A shower plate 20 for ejecting a processing gas for plasma etching toward the wafer w. The air shower plate 20 has a gas flow path 21 formed in a lattice shape, and a plurality of gas discharge holes 22 formed in the gas flow path 21, and a space portion 23 is formed between the lattice gas flow paths 21. The gas passage 21 of the shower plate 20 is connected to a pipe 24 extending to the outside of the processing chamber 1, and the pipe 24 is connected to a processing gas supply source 25. On the other hand, at the position above the shower plate 20 of the processing chamber 1, an annular plasma gas introduction unit 26 is disposed along the wall of the processing chamber, and the plasma gas introduction unit 26 is provided with a plurality of gas sprays on the inner circumference. Out of the hole. The 5th plasma/gas introduction unit 26 is connected to the plasma gas supply source 27 for supplying the plasma gas through the pipe 28. The plasma gas is preferably a rare gas such as Ar gas. The electricity introduced into the processing chamber 1 from the plasma gas introduction unit 26: the gas is plasmaized by the microwave introduced into the processing chamber 1 from the microwave plasma source 2, and the plasma passes through the space of the shower plate 20. The portion 23 excites the processing gas ejected from the gas ejection holes 22 of the shower plate 20 to form a plasma of the processing gas. The microwave plasma source 2 is disposed on the top plate 11 supported by the support ring 29 provided on the upper portion of the processing chamber 1. The support ring 29 and the top plate 11 are hermetically sealed. As shown in FIG. 2, the microwave plasma source 2 has a microwave output unit 30 for distributing and outputting microwaves to a plurality of paths, and for guiding the microwave outputted from the microwave output unit 30 to the processing chamber 1 and radiating to the processing chamber. The microwave supply unit 40 in 1. The microwave output unit 30 has a microwave power source 31 and a microwave oscillator

S 8 201247035 32、使發振後的微波增幅之增幅器33、以及複數地分 配增幅後微波之分配器34。 微波發振器32係使特定頻率(例如2 45GHz)的微波 以例如PLL(Phase_L〇CkedLo0p,鎖相迴路)方式發振。 在分配器34中,會以儘可能地不會造成微波損失之方 式來一邊取得輸入側與輸出側的阻抗匹配,一邊對在增 幅器33中增幅後的微波進行分配。此外,微波的頻率 除了 2.45GHz 以外’亦可使用 8.35GHz、5 8GHz、 1.98GHz、915MHz 等。 微波供應部40係具有將分配器34所分配之微波引 導至處理室1内之複數天線模組4卜各天線模組41係 具有主要會使所分配的微波增幅之增幅部42,與微波 導入機構43。X ’微波導人機構43係具有用以匹配阻 抗之調諧器60,與將增幅後的微波放射至處理室丄内 之天線部45。然後,微齡從各天線模組41中之微波 ‘入機構43的天線部45被放射至處理室i内。如圖3 所示,微波供應部40係具有7個天線模組41,各天線 模組41的微波導入機構43係在圓形頂板ιι〇上圓周狀 地配置為6個及其中心具有⑽。頂板n(M系具有真空 密封及具有微波穿透板功能之金屬製框體UQa,與飯入 至微波導人機構43所配置的部分之石英等介電體所構 成的介電體組件ll〇b。 增幅部42係具有相位器46、可變增益放大器 (Variable Gain Amplifier)47、構成固態放大 器(solid-state 201247035 amplifier)之主增幅器48、以及阻振器(isolator)49。 相位器46係構成為可改變微波的相位,藉由此調 整便可使放射特性變調《例如,藉由調整每個天線模組 的相位來控制指向性,便可改變電漿分佈。本實施形態 中,如後所述地,係藉由固定特定天線模組的相位,並 使鄰接於其之天線模組的相位連續地改變,來抑制微波 的駐波。 可變增益放大器47係調整輸入至主增幅器48之微 波的電功率程度,並調整各個天線模組的偏差或電漿強 度調整用之放大器。藉由使可變增益放大器47隨著各 天線模組改變,則亦可使所產生之電漿為不同的分佈。 構成固態放大器之主增幅器48例如圖4所示,可 為具有輸入匹配電路131、半導體增幅元件132、輸出 匹配電路133、以及高q共振電路134之結構。 阻振器49係用以分離在天線部45反射而朝向主增 幅裔48反射之微波,其具有環流器叫與虛擬負 載(dUmmy丨。ad)(同轴終端器)。環流器係將在天線部45 所反射之微波導向虛㈣载,*虛擬負制會將藉由環 流器所引導的反射微波轉換成熱量。 接下來說明微波導入機構43。 如圖5、圖6所示,微波導入機構43係具有傳送 微波之同軸構造的導波道44,與將在導波道44所傳送 之微波放射至處理室1内之天線部45。麟,從微波 導入機構43放射i處理室1内之微波會在處理室i内 201247035 的空間被合成’而於處理室1内形成有表©波電毁β 導波道44係同轴狀地配置有筒狀外側導體& 設置於其中心之棒狀㈣導體53所構成,且導波道料 前端係设置有天線部45。導波道44係内側導體53為 供電侧,而外側導體52則為接地側。外側導體52及、内 侧導體53的上端係成為反射板58 ^ 導波道4 4的基端側係設置有對微波(電磁波)進行 供電之供電機構54。供電機構54係具有設置在導波道 44(外侧導體52)的侧面而用以導入微波電功率之微波 電功率導入埠55。微波電功率導入埠55係連接有作為 用以供應自增幅部42増幅後的微波之供電線,而由内 側導體56a及外侧導體56b所構成的同軸線路%。然 後,同轴線路56的内側導體56a前端係連接有朝外侧 導體52内部水平地延伸之供電天線9〇。 供電天線90係作為微帶傳輸線(micr〇strip 1^)而 形成於例如印刷基板之PCB基板上。反射板58到供電 天線90之間係設置有用以縮短反射波的實際波長之鐵 氟龍(註冊商標)等介電體所構成的慢波材59。此外,使 用2.45G等高頻微波之情況則亦可不設置慢波材59。 此時’藉由使從供電天線90所放射之電磁波在反射板 58反射’便可將最大的電磁波傳送至同軸構造的導波 道44内。此情況下’供電天線9〇到反射板58的距離 係設定為約Xg/4的半波長倍數β 供電天線90如圖6所示,其具備有具有在微波電 201247035 功率導入埠55處連接至同軸線路56的内側導體56a而 供應有電磁波之第1極92以及放射所供應的電磁波之 第2極93之天線本體91,與從天線本體91兩側沿著 内側導體53外側延伸而呈環狀之反射部94,而構成為 入射至天線本體91之電磁波與在反射部94反射之電磁 波會形成駐波。天線本體91的第2極93係接觸至内側 導體53。 供電天線90係藉由放射微波(電磁波),來將微波電 功率供電至外側導體52與内側導體53之間的空間。然 後,供應至供電機構54之微波電功率會朝向天線部45 傳播。 又,導波道44係設置有調諧器60。調諧器60係 用以將處理室1内負載(電漿)的阻抗匹配於微波輸出部 30中之微波電源的特性阻抗,其具有在外側導體52與 内側導體53之間上下移動之2個芯塊(slug)61a、61b, 與設置於反射板58外侧(上側)之芯塊驅動部70。 該等芯塊當中,芯塊61a係設置於芯塊驅動部70 側,而芯塊61b則設置於天線部45側。又,内側導體 5 3的内部空間係設置有沿其長邊方向而形成有例如梯 形螺絲之螺桿所構成的2根芯塊移動用之芯塊移動軸 64a、64b。 如圖7所示,芯塊61a係由介電體所構成而呈圓環 狀,且其内側係嵌入有具滑動性之樹脂所構成的滑動組 件63。滑動組件63係設置有螺合有芯塊移動軸64a之S 8 201247035 32. A booster 33 for amplifying the microwave after oscillation, and a distributor 34 for multiplying the amplified microwave. The microwave oscillator 32 oscillates a microwave of a specific frequency (e.g., 2 45 GHz) in, for example, a PLL (Phase_L〇Cked Lo0p, phase locked loop). In the distributor 34, the microwaves amplified in the amplifier 33 are distributed while the impedance matching between the input side and the output side is obtained without causing microwave loss as much as possible. In addition, the frequency of the microwave can be 8.35 GHz, 5 8 GHz, 1.98 GHz, 915 MHz, etc. except for 2.45 GHz. The microwave supply unit 40 has a plurality of antenna modules 4 for guiding the microwaves distributed by the distributors 34 into the processing chamber 1. Each of the antenna modules 41 has an amplification unit 42 that mainly increases the allocated microwaves, and introduces the microwaves. Agency 43. The X' microwave guiding mechanism 43 has a tuner 60 for matching the impedance, and an antenna portion 45 for radiating the amplified microwaves into the processing chamber. Then, the antenna portion 45 of the microwave entrance mechanism 43 in each of the antenna modules 41 is radiated into the processing chamber i. As shown in Fig. 3, the microwave supply unit 40 has seven antenna modules 41, and the microwave introduction mechanism 43 of each antenna module 41 is arranged in a circumferential shape on the circular top plate ι and has six (10) centers. The top plate n (M is a dielectric body member having a vacuum seal and a metal frame body UQa having a microwave penetrating plate function, and a dielectric such as quartz which is placed in a portion to be placed in the microwave guiding mechanism 43. b. The amplification unit 42 has a phaser 46, a variable gain amplifier 47, a main amplifier 48 constituting a solid-state 201247035 amplifier, and an isolator 49. The phaser 46 The configuration is such that the phase of the microwave can be changed, and the radiation characteristics can be adjusted by the adjustment. For example, by adjusting the phase of each antenna module to control the directivity, the plasma distribution can be changed. In this embodiment, In the latter case, the standing wave of the microwave is suppressed by fixing the phase of the specific antenna module and continuously changing the phase of the antenna module adjacent thereto. The variable gain amplifier 47 adjusts the input to the main amplifier. The electric power level of the microwave of 48, and adjusting the deviation of each antenna module or the amplifier for adjusting the plasma intensity. By changing the variable gain amplifier 47 with each antenna module, it is also possible to The plasma generators have different distributions. The main amplifier 48 constituting the solid-state amplifier, for example, as shown in FIG. 4, may have a structure including an input matching circuit 131, a semiconductor amplification element 132, an output matching circuit 133, and a high-q resonance circuit 134. The damper 49 is used to separate the microwave reflected by the antenna portion 45 toward the main augmentation 48, which has a looper called a virtual load (dUmmy丨.ad) (coaxial terminator). The circulator will be at the antenna. The microwave reflected by the portion 45 is guided to the virtual (four) carrier, and the virtual negative system converts the reflected microwave guided by the cyclone into heat. Next, the microwave introduction mechanism 43 will be described. As shown in Fig. 5 and Fig. 6, the microwave introduction mechanism 43 is a waveguide 44 having a coaxial structure for transmitting microwaves, and an antenna portion 45 radiating the microwave transmitted in the waveguide 44 to the processing chamber 1. The lining is radiated from the microwave introduction mechanism 43 into the processing chamber 1 The microwave is synthesized in the space of the processing chamber i in 201247035, and the surface of the processing chamber 1 is formed with a surface-wave-destroying β-guide channel 44. The cylindrical outer conductor is disposed coaxially and the rod is disposed at the center thereof. Shape (four) conductor 53 The antenna portion 45 is provided at the front end of the waveguide material. The waveguide 44 is the power supply side of the inner conductor 53, and the outer conductor 52 is the ground side. The outer conductor 52 and the upper end of the inner conductor 53 serve as the reflection plate 58. The base end side of the waveguide 44 is provided with a power supply mechanism 54 for supplying power to microwaves (electromagnetic waves). The power supply mechanism 54 has a side surface provided on the waveguide 44 (outer conductor 52) for introducing microwave electric power. The microwave electric power is introduced into the crucible 55. The microwave electric power introduction crucible 55 is connected with a coaxial line % composed of the inner conductor 56a and the outer conductor 56b as a power supply line for supplying microwaves from the amplitude of the amplitude increasing portion 42. Then, the front end of the inner conductor 56a of the coaxial line 56 is connected to a power supply antenna 9A extending horizontally toward the inside of the outer conductor 52. The power supply antenna 90 is formed as a microstrip transmission line on a PCB substrate such as a printed circuit board. A slow wave material 59 composed of a dielectric body such as Teflon (registered trademark) for shortening the actual wavelength of the reflected wave is provided between the reflection plate 58 and the power supply antenna 90. Further, in the case of using a high frequency microwave such as 2.45 G, the slow wave material 59 may not be provided. At this time, the maximum electromagnetic wave can be transmitted to the waveguide 44 of the coaxial structure by causing the electromagnetic wave radiated from the power supply antenna 90 to be reflected by the reflection plate 58. In this case, the distance between the power supply antenna 9 and the reflection plate 58 is set to a half wavelength multiple of about Xg/4. The power supply antenna 90 is as shown in FIG. 6, and is provided with a power supply port 55 at the microwave power 201247035. The first conductor 92 of the electromagnetic wave is supplied to the inner conductor 56a of the coaxial line 56, and the antenna main body 91 of the second pole 93 for radiating the supplied electromagnetic wave extends in a ring shape along the outer side of the inner conductor 53 from both sides of the antenna main body 91. The reflection portion 94 is configured such that electromagnetic waves incident on the antenna main body 91 and electromagnetic waves reflected on the reflection portion 94 form a standing wave. The second pole 93 of the antenna main body 91 is in contact with the inner conductor 53. The power supply antenna 90 supplies microwave power to the space between the outer conductor 52 and the inner conductor 53 by radiating microwaves (electromagnetic waves). Then, the microwave electric power supplied to the power supply mechanism 54 is propagated toward the antenna portion 45. Further, the waveguide 44 is provided with a tuner 60. The tuner 60 is for matching the impedance of the load (plasma) in the processing chamber 1 to the characteristic impedance of the microwave power source in the microwave output portion 30, and has two cores that move up and down between the outer conductor 52 and the inner conductor 53. The slugs 61a and 61b are connected to the pellet driving unit 70 provided on the outer side (upper side) of the reflecting plate 58. Among the core blocks, the core piece 61a is provided on the side of the core block driving portion 70, and the core piece 61b is provided on the side of the antenna portion 45. Further, the inner space of the inner conductor 53 is provided with the core block moving shafts 64a and 64b for moving the two core blocks formed by the screw having the ladder screw in the longitudinal direction thereof. As shown in Fig. 7, the pellet 61a is formed of a dielectric body and has an annular shape, and a sliding member 63 made of a slidable resin is fitted inside. The slide assembly 63 is provided with a screw block moving shaft 64a.

S 12 201247035 螺孔65a,與插通有芯塊移動軸64b之通孔65b。另一 方面,芯塊61b雖與芯塊61a同樣地具有螺孔65a與通 孔65b,但與芯塊61a相反地,螺孔65a係螺合於芯塊 移動軸64b,而通孔65b則插通有芯塊移動軸64a。藉 此,藉由使芯塊移動軸64a旋轉,則芯塊61a便會升降 移動,而藉由使芯塊移動軸64b旋轉,則芯塊61b便會 升降移動。亦即,藉由芯塊移動軸64a、64b與滑動組 件63所構成的螺絲機構,則芯塊61 a、61 b便會升降移 動。 内側導體53係沿著長邊方向等間隔地形成有3個 狹縫53a。另一方面,滑動組件63係等間隔地設置有對 應於該等狹縫53a之3個突出部63a。然後,滑動組件 63會在該等突出部63a係抵接至芯塊61a、61b内周之 狀態下而喪入於芯塊61a、61b内部。滑動組件63的外 周面係與内側導體53的内周面無間隙地接觸,則藉由 芯塊移動軸64a、64b的旋轉,滑動組件63便會在内侧 導體53滑動並升降。亦即内側導體53的内周面係具有 能夠引導芯塊61a、61b滑動之功能。此外,狹缝53a 的寬度較佳為5mm以下。藉此,便可如後述般實質地 消除溢漏至内側導體53内部之微波電功率,從而可將 微波電功率的放射效率維持在較高。 構成滑動組件63之樹脂材料較佳可舉例有具良好 滑動性且較容易加工之樹脂,例如聚苯硫醚(p]ps)樹脂 (商品名:BEAREE AS5000(NTN股份有限公司製))。 13 201247035 上述芯塊移動軸64a、64b係貫穿反射板58而延伸 於芯塊驅動部70。芯塊移動軸64a、64b與反射板58 之間係設置有軸承(未圖示)。又,内側導體53的下端係 設置有導體所構成的軸承部67,芯塊移動軸64a、64b 的下端係軸支撐在該軸承部67。 芯塊驅動部70係具有框體71,芯塊移動軸64a及 64b係延伸於框體71内’且芯塊移動軸64a及64b的上 端係分別安裝有齒輪72a及72b。又,芯塊驅動部7〇 k β又置有讓芯塊移動轴64a旋轉之馬達73a,與讓怎塊 移動軸64b旋轉之馬達73b。馬達73a的軸係安裝有齒 輪74a ’而馬達73b的軸則安裝有齒輪74b,齒輪74a 會嚙合於齒輪72a,而齒輪74b則會嗜合於齒輪72b。 於是’藉由馬達73a且透過齒輪74a及72a則芯塊移動 轴64a便會旋轉’而藉由馬達73b且透過齒輪74b及72b 則芯塊移動軸64b便會旋轉。此外,馬達73a、73b係 例如步進馬達(Stepper motor)。 此外,芯塊移動軸64b係較芯塊移動軸64a要長而 到達更上方,於是,齒輪72a及72b的位置便會上下地 錯開,而馬達73a及73b亦會上下地錯開。藉此,便可 減少馬達及齒輪等動力傳達機構的空間,從而可使收納 有該等之框體71的直徑與外侧導體52相同。 馬達73a及73b上係設置有直接連結於該等輸出 軸,而用以分別檢測芯塊61a及6lb的位置之增量型編 石馬器75a及75b。 201247035 制。具t61b的位置係受到芯塊控制部68的控 圖示i所檢狀根ί藉峨檢測器(未 7,, _ 鳊的阻抗值,與精由編碼器75a及 二61b的位置情報,來將控制訊 ^傳^至馬達73a及73b以控制魏61a及⑽的位 蚀玖驗阻抗。騎控制部68會執行阻抗匹配來 使Α為例如5 G Ω。若移動2個魏當中其中一者,便 會㈣通過史密斯圖(Smith chart)的原點之軌跡,而若 同時移動兩者,則會僅有相位旋轉。 天線α[Μ5係具有作為微波放射天線*發揮功能, 且具有槽孔81a之呈平面狀的平面槽孔天線81。天線部 45係具有設置在平面槽孔天線81上面之慢波材&慢 波材82財心係貫穿有導體所構成的圓柱組件仏而又 將軸承部67與平面槽孔天線81加以連接。於是,内側 導體53便會透過軸承部67及圓柱組件咖而連接至平 面槽孔天、線8卜平面槽孔天線81前端侧係配置有慢波 材83。此外,外側導體52下端係延伸至平面槽孔天線 81,且慢波材82周圍係覆蓋有外側導體52。又,平面 槽孔天線81及慢波材83的周圍係覆蓋有被覆導體84。 慢波材82、83係由介電率大於真空之例如石英、 陶瓷、聚四氟乙烯等氟系樹脂或聚醯亞胺系樹脂所構 成,由於微波的波長在真空中會變長,故具有縮短微波 波長來使天線縮小之功能。慢波材82、83可藉由其厚 度來調整微波的相位,而將其厚度調整為平面槽孔/天線 201247035 81會成為駐波的「波腹」。藉此,便可使反射為最小, 而平面槽孔天線81的放射能量為最大。 慢波材83係設置為連接至嵌入在頂板11〇的框體 110a之介電體組件ii〇b。然後,在主增幅器48增幅後 的微波會通過内側導體53與外側導體52周壁之間,而 從平面槽孔天線81的槽孔81a穿选慢波材83及頂板 110的介電體組件ll〇b而被放射至處理室1内的空間。 本實施形態中’主增幅器48、調諧器60與平面槽 孔天線81係接近配置。然後,由於調諧器60與平面槽 孔天線81構成了存在於1/2波長内之集中常數電路 (lumped constant circuit),且平面槽孔天線81、慢波材 82、83的合成電阻係設定為50Ω,因此調諧器6〇係便 可直接調整電漿負載,而可有效率地將能量傳達至電 漿。 表面波電漿處理裝置1〇〇中之各構成部係藉由具 有徼處理器之控制部120來加以控制。控制部係具 備記憶有表面波電漿處理裝置100的製程序列及控制 參數(製程配方)之記憶部,或輸入機構及顯示器等^,而 依照所選擇之製程配方來控制電漿處理裝置。 接下來說明上述方式構成之表面波處理裝置 100的動作。 首先’將晶圓W搬入至處理室i内,並載置於載 置台11上。然後,從電漿氣體供應源27透過配管28 及電毁氣體導人組件26來將電漿氣體(例如&氣)導入 201247035 至處理室1内,並從微波電漿源2將微波導入至微波處 理室1内而生成表面波電漿。 如此地生成表面波電漿後,從處理氣體供應源25 透過配管24及淋氣板20來將處理氣體(例如c】2氣體等 蝕刻氣體)喷出至處理室1内。所噴出之處理氣體會因 通過淋氣板20的空間部23而來之電漿而被激發並電漿 化,並藉由該處理氣體的電漿來對晶圓w施予電漿處 理,例如姓刻處理。 在生成上述表面波電漿時,於微波電漿源2中,從 微波輸出部30的微波發振器32所發振之微波電功率會 在增幅器33中增幅後,藉由分配器34來複數地分配, 所分配之微波電功率會被導向微波供應部4〇。於微波 供應部40巾’上述複數地分配之微波電功率會在構成 固態放大器之主增幅器48中被個別地增幅,再供電至 微波導入機構43的導波道44 ’並在調諧器60中自動 匹配阻抗’而在實質上未有電功率反射之狀態下,經由 天線部45的慢波材82、平面槽孔天線81、慢波材83、 及頂板110的介電體組件110b而被放射至處理室1内 並進行空間合成。 此時’當輸入至複數微波導入機構43之微波的輸 入相位全部固定在例如〇。的情況,由於微波被放射至處 理室1内時所產生之駐波之波腹與波節的位置會固 定’故其會導致電漿的電子密度局部化,而使電漿密度 分佈的均勻性惡化。 201247035 是以’本實施形態中’便針對複數微波導入機構 43當中相鄰接者’固定其中一者的微波輸入相位,並 使另一者的微波輸入相位以正弦波等周期性波形變 化。或是’使得相鄰接之微波導入機構43兩者的微波 輸入相位以不會相互重疊之周期性波形變化。 例如’針對圖8中以斜線所示之3個微波導入機構 43,使微波的輸入相位以周期性波形變化,而針對其餘 的白色微波導入機構43則將輸入相位固定在〇。。於 是,此時相鄰接之微波導入機構43中的微波輸入相位 便會如圖9所示般地成為周期性波形的正弦波。然後, 在相鄰接之微波導入機構43的微波輸入相位皆為〇。時 成為駐波的波腹之部分’會在一者的輸入相位偏移18〇。 時成為波節,而先前成為波節的部分則會成為波腹。於 是’藉由如上所述地周期性地改變輸入相位,則駐波之 波節與波腹的位置便會連續地變化而使電場強度平均 化’從而可提南電場強度的面内均勻性。是以,可使處 理室1内的電子密度(亦即電漿密度)均勻,來進行均勻 的電漿處理。 此時,輸入至各微波導入機構43之微波的相位係 藉由各天線模組41的相位器46來調整。而各相位器 46係受到控制部120的控制。 周期性波形可不限於使用正弦波,而亦可使用圖 1〇(a)所示之三角波,或圖(b)所示之梯形波等各種波。 又,不限於完全的正弦波,例如欲使相位180〇附近的時S 12 201247035 screw hole 65a, and a through hole 65b through which the core block moving shaft 64b is inserted. On the other hand, the core block 61b has the screw hole 65a and the through hole 65b similarly to the core block 61a. However, contrary to the core block 61a, the screw hole 65a is screwed to the core block moving shaft 64b, and the through hole 65b is inserted. The core block moving shaft 64a is passed through. As a result, by rotating the pellet moving shaft 64a, the pellet 61a moves up and down, and by rotating the pellet moving shaft 64b, the pellet 61b moves up and down. That is, the core blocks 61a, 61b are moved up and down by the screw mechanism constituted by the pellet moving shafts 64a, 64b and the sliding member 63. The inner conductor 53 is formed with three slits 53a at equal intervals in the longitudinal direction. On the other hand, the slide unit 63 is provided with three projecting portions 63a corresponding to the slits 53a at equal intervals. Then, the slide unit 63 is immersed in the inside of the pellets 61a, 61b in a state where the projections 63a abut against the inner circumference of the pellets 61a, 61b. When the outer peripheral surface of the slide unit 63 is in contact with the inner peripheral surface of the inner conductor 53 without a gap, the slide unit 63 slides on the inner conductor 53 and moves up and down by the rotation of the core block moving shafts 64a and 64b. That is, the inner peripheral surface of the inner conductor 53 has a function of guiding the sliding of the pellets 61a, 61b. Further, the width of the slit 53a is preferably 5 mm or less. Thereby, the microwave electric power leaking to the inside of the inner conductor 53 can be substantially eliminated as will be described later, whereby the radiation efficiency of the microwave electric power can be maintained high. The resin material constituting the sliding unit 63 is preferably a resin which has good slidability and is easy to process, for example, a polyphenylene sulfide (p) ps) resin (trade name: BEAREE AS5000 (manufactured by NTN Co., Ltd.)). 13 201247035 The above-described pellet moving shafts 64a and 64b extend through the reflecting plate 58 and extend to the pellet driving unit 70. A bearing (not shown) is provided between the pellet moving shafts 64a, 64b and the reflecting plate 58. Further, a bearing portion 67 made of a conductor is provided at the lower end of the inner conductor 53, and the lower end of the pellet moving shafts 64a, 64b is supported by the bearing portion 67. The pellet driving unit 70 has a casing 71, and the pellet moving shafts 64a and 64b extend in the casing 71. The upper ends of the pellet moving shafts 64a and 64b are respectively provided with gears 72a and 72b. Further, the pellet driving unit 7 〇 k β is further provided with a motor 73a for rotating the pellet moving shaft 64a and a motor 73b for rotating the spindle 64b. The shaft of the motor 73a is attached with a gear 74a', and the shaft of the motor 73b is fitted with a gear 74b. The gear 74a is meshed with the gear 72a, and the gear 74b is fitted with the gear 72b. Then, the core block moving shaft 64a is rotated by the motor 73a and transmitted through the gears 74a and 72a, and the core moving shaft 64b is rotated by the motor 73b and through the gears 74b and 72b. Further, the motors 73a, 73b are, for example, stepper motors. Further, the core moving shaft 64b is longer than the core moving shaft 64a and reaches the upper side, so that the positions of the gears 72a and 72b are shifted up and down, and the motors 73a and 73b are also vertically displaced. Thereby, the space of the power transmission mechanism such as the motor and the gear can be reduced, and the diameter of the casing 71 in which the casing 71 is accommodated can be made the same as that of the outer conductor 52. The motors 73a and 73b are provided with incremental weaves 75a and 75b for directly connecting the output shafts to detect the positions of the pellets 61a and 6lb, respectively. 201247035 system. The position with t61b is detected by the control block i of the pellet control unit 68. The detector (the impedance value of 7, _ ,, and the position information of the encoders 75a and 61b) The control signal is transmitted to the motors 73a and 73b to control the erosion test impedances of the electrodes 61a and (10). The ride control unit 68 performs impedance matching to make Α, for example, 5 G Ω. If one of the two Weis is moved (4) The trajectory of the origin of the Smith chart is passed, and if both are moved at the same time, only the phase rotation is performed. The antenna α [Μ5 has a function as a microwave radiating antenna* and has a slot 81a The planar planar slot antenna 81. The antenna portion 45 has a slow wave material disposed on the planar slot antenna 81. The slow wave material 82 has a cylindrical component formed by a conductor and a bearing. The portion 67 is connected to the planar slot antenna 81. Then, the inner conductor 53 is connected to the plane slot through the bearing portion 67 and the cylindrical member, and the front end side of the plane 8 slot antenna 81 is provided with a slow wave material. 83. In addition, the lower end of the outer conductor 52 extends to the plane slot hole 81, and the outer side of the slow wave material 82 is covered with the outer conductor 52. Further, the periphery of the planar slot antenna 81 and the slow wave material 83 is covered with the covered conductor 84. The slow wave materials 82, 83 are made of, for example, a dielectric constant greater than a vacuum. A fluorine-based resin such as quartz, ceramics, or polytetrafluoroethylene, or a polyimine-based resin, since the wavelength of the microwave is increased in a vacuum, the microwave wavelength is shortened to reduce the size of the antenna. 83 can adjust the phase of the microwave by its thickness, and adjust its thickness to the plane slot/antenna 201247035 81 to become the "antinode" of the standing wave. Thereby, the reflection can be minimized, and the planar slot antenna The radiant energy of 81 is the largest. The slow wave material 83 is disposed to be connected to the dielectric member ii 〇b of the frame 110a embedded in the top plate 11A. Then, the microwave amplified by the main amplifier 48 passes through the inner conductor 53. Between the peripheral wall of the outer conductor 52 and the slot 81a of the planar slot antenna 81, the dielectric member 11b of the slow-wave material 83 and the top plate 110 is passed through to the space in the processing chamber 1. Medium 'main amplifier 48, tuner 60 and flat The slot antenna 81 is arranged close to each other. Then, since the tuner 60 and the planar slot antenna 81 constitute a lumped constant circuit existing in 1/2 wavelength, the planar slot antenna 81 and the slow wave material 82 are formed. The combined resistance of 83 is set to 50 Ω, so the tuner 6 can directly adjust the plasma load, and the energy can be efficiently transmitted to the plasma. The components of the surface wave plasma processing apparatus 1 The control unit 120 is controlled by a control unit 120 having a 徼 processor. The control unit includes a memory unit that stores a program sequence of the surface wave plasma processing apparatus 100 and a control parameter (process recipe), or an input unit and a display. The plasma processing apparatus is controlled in accordance with the selected process recipe. Next, the operation of the surface acoustic wave processing apparatus 100 configured as described above will be described. First, the wafer W is carried into the processing chamber i and placed on the mounting table 11. Then, plasma gas (for example, & gas) is introduced into the processing chamber 1 from the plasma gas supply source 27 through the piping 28 and the electric destruction gas guiding unit 26, and the microwave is introduced from the microwave plasma source 2 to Surface wave plasma is generated in the microwave processing chamber 1. After the surface wave plasma is generated in this manner, the processing gas supply source 25 passes through the pipe 24 and the shower plate 20 to eject the processing gas (for example, an etching gas such as c 2 gas) into the processing chamber 1. The sprayed process gas is excited and plasmaized by the plasma coming through the space portion 23 of the shower plate 20, and the wafer w is subjected to plasma treatment by the plasma of the process gas, for example, The surname is processed. When the surface wave plasma is generated, in the microwave plasma source 2, the microwave electric power radiated from the microwave oscillator 32 of the microwave output unit 30 is increased in the amplifier 33, and then multiplied by the distributor 34. The ground distribution, the distributed microwave power will be directed to the microwave supply unit 4〇. The plurality of microwave electric powers distributed in the microwave supply unit 40 are individually amplified in the main amplifier 48 constituting the solid-state amplifier, and then supplied to the waveguide 44' of the microwave introduction mechanism 43 and automatically in the tuner 60. The matching impedance ' is radiated to the processing via the slow wave material 82 of the antenna portion 45, the planar slot antenna 81, the slow wave material 83, and the dielectric assembly 110b of the top plate 110 in a state where substantially no electric power is reflected. Space synthesis is performed in chamber 1. At this time, the input phases of the microwaves input to the plurality of microwave introducing mechanisms 43 are all fixed at, for example, 〇. In the case, since the position of the antinode and the node of the standing wave generated when the microwave is radiated into the processing chamber 1 is fixed, it causes localization of the electron density of the plasma, and uniformity of the plasma density distribution. deterioration. In the embodiment of the present invention, the microwave input phase of one of the plurality of microwave introduction mechanisms 43 is fixed, and the other microwave input phase is changed by a periodic waveform such as a sine wave. Or 'the microwave input phases of the adjacent microwave introducing mechanisms 43 are changed in a periodic waveform that does not overlap each other. For example, the three microwave introduction mechanisms 43 indicated by oblique lines in Fig. 8 change the input phase of the microwave by a periodic waveform, and the remaining white microwave introduction mechanism 43 fixes the input phase to 〇. . Then, the microwave input phase in the adjacent microwave introducing mechanism 43 at this time becomes a sinusoidal wave of a periodic waveform as shown in Fig. 9 . Then, the microwave input phases of the adjacent microwave introduction mechanisms 43 are all 〇. When the time becomes part of the antinode of the standing wave, the input phase of one is shifted by 18〇. It becomes a wave node, and the part that was previously a wave node becomes a wave. Then, by periodically changing the input phase as described above, the position of the node and the antinode of the standing wave is continuously changed to average the electric field intensity, thereby making the in-plane uniformity of the electric field strength of the south electric. Therefore, the electron density (i.e., plasma density) in the processing chamber 1 can be made uniform to perform uniform plasma treatment. At this time, the phase of the microwave input to each of the microwave introducing units 43 is adjusted by the phaser 46 of each antenna module 41. Each phaser 46 is controlled by the control unit 120. The periodic waveform is not limited to the use of a sine wave, and various waves such as a triangular wave shown in Fig. 1(a) or a trapezoidal wave shown in Fig. 2(b) may be used. Moreover, it is not limited to a complete sine wave, for example, when the phase is near 180 〇

S 201247035 間1加時’則亦可如圖〇)所示般地,使正弦波在相位 180°附近處為扁平之接近正弦波的波形(正弦波狀波 形)。雖然亦可使用矩形波,但由於會有微分值成為無 限大之部分,故不佳。 在實際上使用如圖3般地配置有7個微波導入機構 之電漿源’來使所有微波導入機構的微波輸入相位為〇。 之情況下,與在將外周之6個微波導入機構當中的3個 輸入相位改變為180。之情況下,掌握處理室内的電場分 佈。此處,係使處理室内壓力為〇 5T〇rr,使微波功率 為200W。將其結果顯示於圖u。圖u(a)為顯示使所 有微波導入機構的微波輸入相位為〇。情況的電場分 佈,圖(b)為顯示將外周之3個微波導入機構的微波輸入 相位改變為180。情況的電場分佈。圖u係以單色來表 示貫際上以顏色差異來表示電場強度大小者,圖(勾中的 淡圓環狀部分為天線模組中之微波導入機構周圍的電 場強度較高之部分,相當於駐波的波腹。中間之較深的 部分為電場強度更高之部分。又,相鄰接之微波導入機 構之間的部分係電場強度較低,相當於駐波的波節。虛 線圍繞的區域係相當於駐波的波節之部分。可知藉由將 3個微波導入機構的輸入相位改變為18〇。,則電場分佈 便會如圖(b)所示般地大幅變化。圖(a)中相當於駐^的 波節之部分(虛線圍繞的部分),在圖(b)中會受到包失兮 部分之2個微波導人機構當中射—者使^波^^ 入相位為180。之影響,而造成電場強度增強,並變成駐 201247035 波的波腹。亦即,當全部的輸入相位為0。時,雖然相鄰 接之微波導入機構43之間的部分會成為駐波的波節, 但藉由將外周之3個微波導入機構43的輸入相位改變 為置’則該等部分便會變成駐波的波腹。由此可明瞭 只要周期性地改變輸入相位,則駐波之波腹與波節的位 置便會連續地移動,而使電場強度平均化。於是,藉由 電場所獲得之電漿的密度亦會均勻化。 本實施形態中,雖係針對複數微波導入機構43當 中相鄰接者,固定其中一者的微波輸入相位,並使另一 者的微波輸入相位以正弦波等周期性波形變化,抑或使 得相鄰接之微波導入機構43兩者的微波輸入相位以不 會相互重疊之周期性波形變化,但相鄰接者不須全部滿 足上述關係,只要相鄰接之微波導入機構43的組合當 令有一部分的組合滿足上述關係即可。 &lt;第2實施形態&gt; 接下來說明本發明第2實施形態。 本實施形態中,微波電漿源及電漿處理裝置的基本 結構係與第1實施形態相同,但頂板結構不同。 圖12係概略顯示本實施形態中之電漿源的微波供 應部與頂板之俯視圖,圖13係圖12之CC'線剖面圖。 如該等圖所示,本實施形態之圓形頂板110中,石英等 介電體所構成的介電體組件11沘係嵌入至用以將微波 放射至處理室1内之複數微波導入機構43所配置的部 分,而呈現六角形,且相鄰接之介電體組件ll〇b彼此S 201247035 1 plus hour' can also be a flat sinusoidal waveform (sinusoidal waveform) near the phase 180° as shown in Fig. 〇. Although a rectangular wave can also be used, it is not preferable because the differential value becomes an infinite part. In actuality, a plasma source _ having seven microwave introduction mechanisms as shown in Fig. 3 is used to make the microwave input phase of all the microwave introduction mechanisms 〇. In this case, the phase of the three inputs among the six microwave introducing mechanisms on the outer circumference is changed to 180. In this case, the electric field distribution in the processing chamber is grasped. Here, the pressure in the processing chamber is 〇 5T 〇rr, and the microwave power is 200 W. The result is shown in Figure u. Figure u(a) shows that the microwave input phase of all microwave introduction mechanisms is 〇. In the case of the electric field distribution, Fig. (b) shows that the microwave input phase of the three microwave introducing mechanisms on the outer circumference is changed to 180. The electric field distribution of the situation. Figure u shows the intensity of the electric field in terms of color difference in a single color. The light ring in the hook is the part of the antenna in the antenna module where the electric field strength is high. In the antinode of the standing wave, the deeper part in the middle is the part with higher electric field strength. Moreover, the part between the adjacent microwave introducing mechanisms is lower in electric field strength, which is equivalent to the node of the standing wave. The region corresponds to the portion of the node of the standing wave. It can be seen that by changing the input phase of the three microwave introducing mechanisms to 18 〇, the electric field distribution greatly changes as shown in (b). a) corresponds to the part of the node in which the ^ is located (the part surrounded by the dotted line), and in the figure (b), the two microwave guiding mechanisms that are subjected to the missing part of the package are the ones that make the wave into the phase 180. The effect of the electric field is enhanced and becomes the antinode of the 201247035 wave. That is, when all the input phases are 0, although the portion between the adjacent microwave introduction mechanisms 43 becomes a standing wave Waves, but by taking the outer microwaves When the input phase of the mechanism 43 is changed to set, the portions become the antinodes of the standing wave. It can be understood that as long as the input phase is periodically changed, the positions of the antinodes and the nodes of the standing wave are continuously moved. Then, the electric field intensity is averaged, and the density of the plasma obtained by the electric field is also uniformized. In the present embodiment, the microwave of one of the plurality of microwave introduction mechanisms 43 is fixed. Inputting the phase and changing the phase of the microwave input of the other to a periodic waveform such as a sine wave, or causing the microwave input phases of the adjacent microwave introducing mechanisms 43 to change with a periodic waveform that does not overlap each other, but the phase The adjacent members do not have to satisfy the above relationship as long as the combination of the adjacent microwave introducing means 43 is such that a part of the combination satisfies the above relationship. <Second embodiment> Next, a second embodiment of the present invention will be described. In the present embodiment, the basic structure of the microwave plasma source and the plasma processing apparatus is the same as that of the first embodiment, but the top plate structure is different. Fig. 12 is a schematic view showing the present embodiment. FIG. 13 is a cross-sectional view of the microwave supply portion and the top plate of the plasma source in the state, and FIG. 13 is a cross-sectional view taken along the line CC' of FIG. 12. As shown in the above figures, in the circular top plate 110 of the present embodiment, a dielectric body such as quartz is used. The dielectric member 11 is configured to be embedded in a portion of the plurality of microwave introduction mechanisms 43 for radiating microwaves into the processing chamber 1, and has a hexagonal shape, and the adjacent dielectric members 11bb are mutually connected.

S 20 201247035 ,以其六角形的1邊呈對向之方式而接近地設置。於 ,,支撐介電體組件110b之金屬製框體11〇3便會具有 鄰接之介電體組件110b之間的部分呈細直線狀之蜂巢 式構&amp;。框體110a係具有支撐介電體組件110b之支撐 部 110c 〇 、▲ *v 上所通地兴负供微波穿透之功能,從 有效率地供微波穿透之觀點來看,較佳係整體皆由介電 體所形成。但如本實施形態之電漿源般地從複數微波導 入機構43放射微波之情況’若是頂板整體皆由石英等 ^電體所形成’财可能從微波導人機構43所放射之 不會被全部放射至處理室1内,而是有-部分通過 頂,、11〇而到達其他的微波導人機構43。上述情況下, 波導人機構43所放射之微波與從其他微波導入機 地頂板斤二射r由:皮便η生干涉…若是如上所述 敬正體白由石夬專介電體所形成,便 «的模生 強度無法特體組件的 ^是,便如第i實施形態般地,頂板u …微波導入機構43之部分設置3 、-件而其他部分則為用以支撐介 =框:二;1:, 鄰接 201247035 組件的佔有面積變小,導致微波放射區域縮窄,而難以 有效率地生成電漿。又,若介電體組件為長方形或正方 形的情況,則頂板的強度便會變小。 相對於此,如本實施形態般,藉由使頂板11〇的框 體110a為蜂巢式構造,且使介電體組件為六角狀,由 於可使介電體組件11〇b所佔頂板110的面積最大化, 故可擴大微波照射區域來有效率地生成電漿。又,如上 所述地,藉由使框體110a為蜂巢式構造,亦可確保頂 板110的強度。 圖12雖顯示框體110a為蜂巢式構造之情況,但並 非一定要是完全的蜂巢式構造,只要是接近蜂巢式構造 之構造即可,例如圖14所示,可為對應於外側微波導 入機構43之介電體組件丨1〇b的外周部分朝外侧突出般 之構造。上述構造的情況,由於可使介電體組件11〇b 的面積更大,故較佳。如上所述地本實施形態中,只要 框體llGa為蜂巢式構造及包含有接近蜂巢式構造的構 造之蜂巢狀構造即可。 如圖15所示,亦可於頂板110的框體ll〇a設置有 複數氣體嘖出口 112’來喷淋狀地供應入1&gt;等電漿氣體。 此情況下,係於頂板110的框體110a内部形成有氣體 流道,並透過例如配管28來將電漿氣體供應源27連接 至該氣體流道,而從氣體喷出口 112均勻地喷出Ar氣 等電漿氣體。藉此,便可迅速地使A]r氣錢化而生成 均勻的電漿。S 20 201247035 is arranged close to one side of the hexagonal shape. Then, the metal frame 11〇3 supporting the dielectric body assembly 110b has a honeycomb structure in which a portion between the adjacent dielectric members 110b is thin and linear. The frame body 110a has a function of supporting the microwaves of the support portions 110c ▲, ▲ *v of the dielectric member 110b, and is preferably provided for microwave penetration. Both are formed by a dielectric body. However, in the case of the plasma source of the present embodiment, the microwave is radiated from the plurality of microwave introduction mechanisms 43. If the entire top plate is formed of quartz or the like, it may be radiated from the microwave guiding mechanism 43. Radiation into the processing chamber 1 is carried out, in part, through the top, 11 〇 to the other microwave guiding mechanism 43. In the above case, the microwave radiated by the waveguide mechanism 43 and the top plate of the other microwave introduction machine are interfered by the skin: if the above-mentioned Jingzheng body is formed by the stone dielectric material, «The mold strength can not be the special component ^, as in the i-th embodiment, the top plate u ... part of the microwave introduction mechanism 43 is set 3, - and the other part is used to support the media = box: two; 1: The area occupied by the adjacent 201247035 component becomes smaller, which causes the microwave radiation area to be narrowed, and it is difficult to efficiently generate plasma. Further, if the dielectric member is rectangular or square, the strength of the top plate becomes small. On the other hand, as in the present embodiment, the frame body 110a of the top plate 11b has a honeycomb structure, and the dielectric body assembly has a hexagonal shape, so that the dielectric member 11b can occupy the top plate 110. The area is maximized, so that the microwave irradiation area can be enlarged to efficiently generate plasma. Further, as described above, the strength of the top plate 110 can be ensured by making the casing 110a a honeycomb structure. 12 shows a case where the casing 110a has a honeycomb structure, but it does not have to be a completely honeycomb structure. As long as it is a structure close to a honeycomb structure, for example, as shown in FIG. 14, it may correspond to the outer microwave introduction mechanism 43. The outer peripheral portion of the dielectric member 丨1〇b is configured to protrude outward. In the case of the above configuration, it is preferable since the area of the dielectric member 11b can be made larger. As described above, in the embodiment, the casing 11Ga may have a honeycomb structure and a honeycomb structure including a structure close to a honeycomb structure. As shown in Fig. 15, a plurality of gas gas outlets 112' may be provided in the casing ll 〇 a of the top plate 110 to supply a plasma gas such as 1 &gt; In this case, a gas flow path is formed inside the casing 110a of the top plate 110, and the plasma gas supply source 27 is connected to the gas flow path through, for example, the pipe 28, and the Ar is uniformly discharged from the gas discharge port 112. Gas and other plasma gases. As a result, A]r can be quickly mobilized to produce a uniform plasma.

S 22 201247035 此外’本實施形態中’雖然可藉由與第1實施形態 相組合來發揮更大的效果,但當然縱使非以第丨實施形 態為前提仍可獲得上述效果。 此外,本發明不限於上述實施形態,可在本發明之 思想範圍内做各種變形。例如,微波輸出部的電路結構 或微波供應部、主增幅器的電路結構等不限定於上述實 施形態。又,微波導入機構亦不限於上述實施形態的構 造,只要是能夠將微波適當地放射至處理室内之構造即 可。此外,微波導入機構的數量或配置亦不限於上述實 施形態。 此外,上述實施形態中,雖例示了以蝕刻處理裝釁 作為電漿處理裝置之範例,但不限於此,而亦可使用於 成膜處理、氧氮化膜處理、灰化處理等其他的電聚處 理。又,被處理基板不限於半導體晶圓,而亦可為 LCD(液晶顯不器)用基板所代表之FpD(平板顯示器)基 板或陶瓷基板等其他的基板。 【圖式簡單說明】 圖1係顯不具有本發明第1實施形態的微波電漿源 之表面波電漿處理裝置的概略結構之剖面圖。 圖2係顯示微波電漿源結構之結構圖。 圖3係概略顯示微波電漿源中的微波供應部之俯 視圖。 圖4係顯示微波電聚源中之天線模組所使用的主 23 201247035 增幅器的電路結構_之圖式。 使用的微 圖仏·,、、員示微波電毁源中之天線模組所 波導入機構之剖面圖。 圖6係顯示微波導 AA'線橫剖面圖。 入機構的供電機構而為圖 5中的 而為圖5的 圖7係顯示調·巾的魏與滑動組件 BB\線橫剖面圖。 電漿源所設置之7根微波導入 位以周期性波形變化者之概 圖8係用以說明微波 機構當中使微波的輸入相 略圖® 圖9係顯示將鄰接之微波導入機構其中一者的相 位固定在〇°’而使另—者的輸人相位為正賊時之輸入 相位的時間變化之圖式。 圖10(a)〜(c)係顯示周期性波形之正弦波以外的範 例之圖式。 圖11係顯示使用如圖3般地配置有7個微波導入 機構之電锻源’而在使所有微波導入機構的微波輸入相 位為0°之情況下(圖11(a)),以及將外周之3個微波導 入機構的輸入相位改變為18〇。之情況下(圖11(b))掌握 處理室内電場分佈的結果之圖形。 圖12係概略顯示本發明第2實施形態中之電漿源 的微波供應部與頂板之俯視圖。 圖13係圖12的CC線剖面圖。 圖14係概略顯示頂板構造的變形例之俯視圖。S 22 201247035 Further, in the present embodiment, a larger effect can be exerted by combining with the first embodiment. However, the above effects can be obtained even if the second embodiment is not implemented. Further, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the inventive concept. For example, the circuit configuration of the microwave output unit, the microwave supply unit, the circuit configuration of the main amplifier, and the like are not limited to the above embodiments. Further, the microwave introducing means is not limited to the configuration of the above embodiment, and may be any structure that can appropriately radiate microwaves into the processing chamber. Further, the number or arrangement of the microwave introducing mechanisms is not limited to the above embodiment. Further, in the above-described embodiment, an example in which the etching treatment device is used as the plasma processing device is exemplified, but the invention is not limited thereto, and may be used for other processes such as film formation processing, oxynitride film treatment, and ashing treatment. Poly processing. Further, the substrate to be processed is not limited to a semiconductor wafer, and may be another substrate such as an FpD (flat panel display) substrate or a ceramic substrate represented by a substrate for an LCD (Liquid Crystal Display). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a schematic configuration of a surface wave plasma processing apparatus which does not have a microwave plasma source according to a first embodiment of the present invention. Figure 2 is a structural view showing the structure of a microwave plasma source. Fig. 3 is a schematic plan view showing the microwave supply unit in the microwave plasma source. Figure 4 is a diagram showing the circuit structure of the main 23 201247035 amplifier used in the antenna module in the microwave power source. The micro-images used by the 仏·, , , and the members are shown as sectional views of the waveguide introduction mechanism of the antenna module in the microwave power source. Figure 6 is a cross-sectional view showing the microwave guide AA' line. The power supply mechanism of the mechanism is shown in Fig. 5 and Fig. 7 is a cross-sectional view showing the BB\ line of the Wei and the sliding assembly of the towel. The outline of the seven microwave introduction points set by the plasma source with periodic waveform changes is used to illustrate the phase of the microwave input in the microwave mechanism. Figure 9 shows the phase of one of the adjacent microwave introduction mechanisms. A pattern of the time variation of the input phase when fixed at 〇°' and the input phase of the other is a thief. Fig. 10 (a) to (c) are diagrams showing examples other than the sine wave of the periodic waveform. Figure 11 is a diagram showing the use of an electric forging source of seven microwave introduction mechanisms as shown in Figure 3, while the microwave input phase of all the microwave introduction mechanisms is 0° (Fig. 11(a)), and the periphery is The input phase of the three microwave induction mechanisms was changed to 18 〇. In the case (Fig. 11(b)), the graph of the result of the electric field distribution in the room is grasped. Fig. 12 is a plan view schematically showing a microwave supply unit and a top plate of a plasma source in a second embodiment of the present invention. Figure 13 is a cross-sectional view taken along line CC of Figure 12 . Fig. 14 is a plan view schematically showing a modification of the top plate structure.

S 24 201247035 圖15係顯示頂板構造的其他變形例之仰視圖 【主要元件符號說明】 W 晶圓 1 處理室 la 開口部 2 微波電漿源 11 載置台 12 支擇組件 12a 絕緣組件 13 匹配器 14 兩頻偏壓電源 15 排氣管 16 排氣裝置 17 搬出入口 18 閘閥 20 淋氣板 21 氣體流道 22 氣體喷出孔 23 空間部 24 配管 25 處理氣體供應源 26 電漿氣體導入組件 27 電漿氣體供應源 25 201247035 28 29 30 31 32 33 34 40 41 42 43 44 45 46 47 48 49 52 53 53a 54 55 56 56a 配管 支撐環 微波輸出部 微波電源 微波發振器 增幅器 分配器 微波供應部 天線模組 增幅部 微波導入機構 導波道 天線部 相位器 可變增益放大器 主增幅器 阻振器 外側導體 内側導體 狹縫 供電機構 微波電功率導入埠 同軸線路 内側導體S 24 201247035 Fig. 15 is a bottom view showing another modification of the top plate structure [Description of main components] W wafer 1 processing chamber la opening portion 2 microwave plasma source 11 mounting table 12 supporting assembly 12a insulating member 13 matching device 14 Two-frequency bias power supply 15 Exhaust pipe 16 Exhaust device 17 Carry-out port 18 Gate valve 20 Air shower plate 21 Gas flow path 22 Gas discharge hole 23 Space portion 24 Pipe 25 Process gas supply source 26 Plasma gas introduction unit 27 Plasma Gas supply source 25 201247035 28 29 30 31 32 33 34 40 41 42 43 44 45 46 47 48 49 52 53 53a 54 55 56 56a Piping support ring microwave output microwave power microwave oscillator expander distributor microwave supply antenna die Group amplification part microwave introduction mechanism guide channel antenna phaser variable gain amplifier main amplifier vibration absorber outer conductor inner conductor slit power supply mechanism microwave electric power introduction 埠 coaxial line inner conductor

S 26 201247035 56b 外側導體 58 反射板 59 慢波材 60 調諧器 61a、61b 芯塊 63 滑動組件 63a 突出部 64a、64b芯塊移動軸 65a 螺孔 65b 通孔 67 抽承部 68 芯塊控制部 70 芯塊驅動部 71 框體 72a、72b 齒輪 73a、73b 馬達 74a、74b 齒輪 75a、75b編碼器 81 平面槽孔天線 81a 槽孔 82、83 慢波材 82a 圓柱組件 84 被覆導體 90 供電天線 27 201247035 91 92 93 94 100 110 110a 110b 110c 120 131 132 133 134 天線本體 第1極 第2極 反射部 表面波電漿處理裝置 頂板 框體 介電體組件 支撐部 控制部 匹配電路 半導體增幅元件 輸出匹配電路 向Q共振電路S 26 201247035 56b Outer conductor 58 Reflector 59 Slow wave material 60 Tuner 61a, 61b Core block 63 Slide assembly 63a Projection 64a, 64b Block moving shaft 65a Screw hole 65b Through hole 67 Draw portion 68 Pell control portion 70 Ball block drive unit 71 frame 72a, 72b gear 73a, 73b motor 74a, 74b gear 75a, 75b encoder 81 planar slot antenna 81a slot 82, 83 slow wave 82a cylindrical assembly 84 coated conductor 90 power supply antenna 27 201247035 91 92 93 94 100 110 110a 110b 110c 120 131 132 133 134 Antenna body 1st pole 2nd pole reflection part Surface wave plasma processing apparatus Top plate frame Dielectric body component support part Control part matching circuit Semiconductor amplification element Output matching circuit to Q Resonant circuit

S 28S 28

Claims (1)

201247035 七 申請專利範圍: L —種微波電漿源,係將微波導入至進行電漿處理之 處理容器内,來使供應至該處理容器内之氣體電漿 化,其特徵在於具備有: 微波生成機構,係用以產生微波;以及 微波供應部,係將所生成之微波供應至該處理 容器内; 其中該微波供應部異有:將微波導入至該處理 容器内之複數微波導入機構’與調整該複數微波導 入機構所分別輸入之微波的相位之複數相位器; 關於複數微波導入機構當中相鄰接者,係藉由 該複數相位器來調整被輸入至該複數微波導入機 構之微波的相位,而固定其中一微波的輸入相位’ 並使另一微波的輸入相位以周期性波形變化,抑 或’使得相鄰接之微波導入機構兩者的微波輸入相 位以不會相互重疊之周期性波形變化。 2. 如申請專利範圍第1項之微波電漿源,其中該周期 性波形為正弦波、三角波、梯形波及正弦波狀波形 當中其中一者。 3. 如申請專利範圍第丨或2項之微波電漿源,其另具 備構成該處理容器上壁,而供從該複數微波導入機 構所放射之微波穿透的頂板;該頂板係具有對應於 該複數微波導入機構之位置處所設置之複數介電 體組件,與支撐介電體組件之金屬製框體;該框體 29 201247035 係具有蜂巢狀構造。 4. 如申請專利範圍第3項之微波電漿源,其中該框體 係具有氣體流道與複數氣體喷出孔,而從該氣體喷 出孔朝向該處理容器喷出電漿處理所需氣體。 5. 一種電漿處理裝置,其具備有: 處理容器,係收納被處理基板; 載置台,係於該處理容器内載置被處理基板; 氣體供應機構,係將氣體供應至該處理容器 内;以及 如申請專利範圍第1至4項中任一項之微波電 漿源; 藉由從該微波電漿源導入至該處理容器内之 微波來產生電漿,並藉由該電漿來對被處理基板施 予處理。201247035 Seven patent application scope: L - a microwave plasma source, which introduces microwave into a processing vessel for plasma treatment to plasmaize the gas supplied into the processing vessel, characterized by having: microwave generation a mechanism for generating microwaves; and a microwave supply unit for supplying the generated microwaves into the processing container; wherein the microwave supply portion has a plurality of microwave introduction mechanisms for introducing microwaves into the processing container and adjusting a complex phaser of the phase of the microwave input by the plurality of microwave introducing mechanisms; and an adjacent one of the plurality of microwave introducing mechanisms adjusts a phase of the microwave input to the plurality of microwave introducing mechanisms by the complex phaser The input phase of one of the microwaves is fixed and the input phase of the other microwave is changed in a periodic waveform, or the microwave input phases of the adjacent microwave introducing mechanisms are changed in a periodic waveform that does not overlap each other. 2. For the microwave plasma source of claim 1, wherein the periodic waveform is one of a sine wave, a triangle wave, a trapezoidal wave, and a sinusoidal waveform. 3. The microwave plasma source of claim 2 or 2, further comprising a top plate constituting an upper wall of the processing container for microwave penetration from the plurality of microwave introduction mechanisms; the top plate having a corresponding The plurality of dielectric components disposed at the position of the plurality of microwave introduction mechanisms and the metal frame supporting the dielectric component; the frame 29 201247035 has a honeycomb structure. 4. The microwave plasma source of claim 3, wherein the frame body has a gas flow path and a plurality of gas ejection holes, and the gas required for plasma treatment is sprayed from the gas ejection hole toward the processing container. A plasma processing apparatus comprising: a processing container for accommodating a substrate to be processed; a mounting table for placing a substrate to be processed in the processing container; and a gas supply mechanism for supplying gas into the processing container; And a microwave plasma source according to any one of claims 1 to 4; generating a plasma by introducing microwaves from the microwave plasma source into the processing container, and the plasma is used to The substrate application treatment is performed.
TW100137616A 2010-10-19 2011-10-18 Microwave plasma source and plasma processing apparatus TW201247035A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234688A JP2012089334A (en) 2010-10-19 2010-10-19 Microwave plasma source and plasma processing apparatus

Publications (1)

Publication Number Publication Date
TW201247035A true TW201247035A (en) 2012-11-16

Family

ID=45933068

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100137616A TW201247035A (en) 2010-10-19 2011-10-18 Microwave plasma source and plasma processing apparatus

Country Status (5)

Country Link
US (1) US20120090782A1 (en)
JP (1) JP2012089334A (en)
KR (1) KR101289771B1 (en)
CN (1) CN102458032A (en)
TW (1) TW201247035A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893865B2 (en) * 2011-03-31 2016-03-23 東京エレクトロン株式会社 Plasma processing apparatus and microwave introduction apparatus
JP5601348B2 (en) * 2012-05-17 2014-10-08 株式会社島津製作所 Plasma generation unit and surface wave excitation plasma processing apparatus
JP6037688B2 (en) * 2012-07-09 2016-12-07 東京エレクトロン株式会社 Anomaly detection method in microwave introduction module
JPWO2015029090A1 (en) * 2013-08-30 2017-03-02 国立大学法人東北大学 Plasma processing apparatus and plasma processing method
JP6356415B2 (en) * 2013-12-16 2018-07-11 東京エレクトロン株式会社 Microwave plasma source and plasma processing apparatus
JP6478748B2 (en) * 2015-03-24 2019-03-06 東京エレクトロン株式会社 Microwave plasma source and plasma processing apparatus
JP6509049B2 (en) * 2015-06-05 2019-05-08 東京エレクトロン株式会社 Microwave plasma source and plasma processing apparatus
JP6694736B2 (en) 2016-03-14 2020-05-20 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP6671230B2 (en) 2016-04-26 2020-03-25 東京エレクトロン株式会社 Plasma processing device and gas introduction mechanism
JP2018006718A (en) * 2016-07-08 2018-01-11 東京エレクトロン株式会社 Microwave plasma processing device
CN106987827B (en) * 2017-04-14 2019-03-29 太原理工大学 Plasma activated chemical vapour deposition microwave cavity and device
JP6353963B2 (en) * 2017-07-13 2018-07-04 東京エレクトロン株式会社 Microwave plasma processing apparatus and microwave supply method
JP6960813B2 (en) * 2017-09-20 2021-11-05 東京エレクトロン株式会社 Graphene structure forming method and forming device
JP7026498B2 (en) * 2017-12-12 2022-02-28 東京エレクトロン株式会社 Antenna and plasma film forming equipment
JP2019106358A (en) * 2017-12-14 2019-06-27 東京エレクトロン株式会社 Microwave plasma processing apparatus
TWI826925B (en) 2018-03-01 2023-12-21 美商應用材料股份有限公司 Plasma source assemblies and gas distribution assemblies
EP3800967A4 (en) * 2018-07-02 2021-06-16 Mitsubishi Electric Corporation Microwave heating device
CN111372343A (en) * 2018-12-26 2020-07-03 财团法人工业技术研究院 Distributed microwave phase control method
US11631583B2 (en) 2019-10-25 2023-04-18 Applied Materials, Inc. RF power source operation in plasma enhanced processes
WO2021131097A1 (en) * 2019-12-25 2021-07-01 三菱電機株式会社 Microwave plasma treatment device
US11623197B2 (en) * 2020-01-23 2023-04-11 Lyten, Inc. Complex modality reactor for materials production and synthesis
AT523626B1 (en) * 2020-05-22 2021-10-15 Anton Paar Gmbh Waveguide coupling unit
CN112689376B (en) * 2021-03-15 2021-06-18 四川大学 Microwave plasma jet excitation device adopting piezoelectric material
FR3120861B1 (en) * 2021-03-22 2023-11-24 Sakowin Carbon-free dihydrogen production unit
WO2024111102A1 (en) * 2022-11-25 2024-05-30 三菱電機株式会社 Semiconductor processing device, control circuit, and semiconductor processing method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230740A (en) * 1991-12-17 1993-07-27 Crystallume Apparatus for controlling plasma size and position in plasma-activated chemical vapor deposition processes comprising rotating dielectric
US5573595A (en) * 1995-09-29 1996-11-12 Lam Research Corporation Methods and apparatus for generating plasma
JP4017274B2 (en) * 1999-01-07 2007-12-05 松下電器産業株式会社 Plasma processing method and apparatus
JP4523118B2 (en) * 2000-06-14 2010-08-11 東京エレクトロン株式会社 Plasma processing equipment
KR20020091430A (en) * 2001-05-30 2002-12-06 사단법인 고등기술연구원 연구조합 Plasma electric discharging system by using circularly polarized cavity mode
DE10138693A1 (en) 2001-08-07 2003-07-10 Schott Glas Device for coating objects
JP3969081B2 (en) * 2001-12-14 2007-08-29 東京エレクトロン株式会社 Plasma processing equipment
JP3935401B2 (en) * 2002-07-22 2007-06-20 東京エレクトロン株式会社 Inductively coupled plasma processing equipment
US7806077B2 (en) * 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation
JP5013393B2 (en) 2005-03-30 2012-08-29 東京エレクトロン株式会社 Plasma processing apparatus and method
KR101240842B1 (en) * 2006-07-28 2013-03-08 도쿄엘렉트론가부시키가이샤 Microwave plasma source and plasma processing apparatus
JP4944198B2 (en) * 2007-06-11 2012-05-30 東京エレクトロン株式会社 Plasma processing apparatus and processing method
DE112008001130T5 (en) 2007-06-11 2010-04-29 Tokyo Electron Ltd. A plasma processing apparatus, a power supply apparatus, and a method of operating the plasma processing apparatus
US8710354B2 (en) * 2007-12-19 2014-04-29 Honeywell International Inc. Solar cell with hyperpolarizable absorber
CN101933402B (en) * 2008-01-31 2013-03-27 应用材料公司 Multiple phase RF power for electrode of plasma chamber
JP2010170974A (en) * 2008-12-22 2010-08-05 Tokyo Electron Ltd Plasma source and plasma treatment device
US8312839B2 (en) * 2009-03-24 2012-11-20 Applied Materials, Inc. Mixing frequency at multiple feeding points
JP5502070B2 (en) * 2009-03-27 2014-05-28 東京エレクトロン株式会社 Tuner and microwave plasma source
WO2011138680A2 (en) * 2010-05-03 2011-11-10 Goji Ltd. Spatially controlled energy delivery

Also Published As

Publication number Publication date
JP2012089334A (en) 2012-05-10
CN102458032A (en) 2012-05-16
US20120090782A1 (en) 2012-04-19
KR101289771B1 (en) 2013-07-26
KR20120040677A (en) 2012-04-27

Similar Documents

Publication Publication Date Title
TW201247035A (en) Microwave plasma source and plasma processing apparatus
JP5836144B2 (en) Microwave radiation mechanism and surface wave plasma processing equipment
KR101208884B1 (en) Microwave introduction mechanism, microwave plasma source and microwave plasma processing device
KR101774089B1 (en) Microwave plasma source and plasma processing apparatus
TWI685015B (en) Microwave plasma source and plasma processing device
KR101746332B1 (en) Microwave plasma source and plasma processing apparatus
CN102655708B (en) Surface wave plasma generation antenna and surface wave plasma processing apparatus
JP6144902B2 (en) Microwave radiation antenna, microwave plasma source, and plasma processing apparatus
JP6624833B2 (en) Microwave plasma source and plasma processing apparatus
JP2010170974A (en) Plasma source and plasma treatment device
WO2013105358A1 (en) Surface wave plasma treatment device
TWI587751B (en) Microwave radiation antenna, microwave plasma source and plasma processing device
WO2020116252A1 (en) Plasma treatment device and plasma treatment method
JP6283438B2 (en) Microwave radiation antenna, microwave plasma source, and plasma processing apparatus
JP3874726B2 (en) Plasma processing apparatus and plasma generation method
WO2014010317A1 (en) Plasma treatment device
JP6700128B2 (en) Microwave plasma processing equipment
JP2004363247A (en) Plasma processing apparatus
JP2014220288A (en) Microwave plasma processing apparatus and microwave plasma source
JP3866590B2 (en) Plasma generator
JP2014220046A (en) Microwave plasma processing apparatus and microwave plasma source