TW201245678A - Non-contact type constant distant measured temperature detecting device and measuring method thereof - Google Patents

Non-contact type constant distant measured temperature detecting device and measuring method thereof Download PDF

Info

Publication number
TW201245678A
TW201245678A TW100116224A TW100116224A TW201245678A TW 201245678 A TW201245678 A TW 201245678A TW 100116224 A TW100116224 A TW 100116224A TW 100116224 A TW100116224 A TW 100116224A TW 201245678 A TW201245678 A TW 201245678A
Authority
TW
Taiwan
Prior art keywords
unit
temperature
signal
temperature sensing
sensing device
Prior art date
Application number
TW100116224A
Other languages
Chinese (zh)
Inventor
Yu-Chiao Chi
Chiung-Hsien Chen
Original Assignee
Rossmax Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rossmax Int Ltd filed Critical Rossmax Int Ltd
Priority to TW100116224A priority Critical patent/TW201245678A/en
Publication of TW201245678A publication Critical patent/TW201245678A/en

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

A non-contact type constant distant operated temperature detecting device includes an emitting unit, a detecting unit and a single chip microprocessor. The emitting unit emits a signal to a temperature measuring body. The detecting unit receiving a reflecting signal reflected from the temperature measuring body. The single chip microprocessor is electrically connected to the emitting unit and the detecting unit. The single chip microprocessor determines a measuring distant between the device and the temperature measuring body according to the reflecting signal and when the measuring distance is located in a predetermined measuring range, the single chip microprocessor sent out an enabling signal of measuring temperature.

Description

201245678 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係有關於一種非接觸式溫度感測裝置,尤其指一 種可定距量測之非接觸式溫度感測裝置。 【先前技_術】 [0002] 溫度為生命體的生理指標,可以知悉生命體是否處於健 康狀態,市面上存在有一些接觸式額溫搶可量測額頭或 皮膚的溫度,但是,這些接觸式額溫搶於進行溫度量測 時,可能會有接觸感染病媒的風險,因此市面上出現有 非接觸式的額溫量測裝置,以免除上述病媒感染風險。 [0003] 非接觸型額溫量測裝置内部的紅外線溫度感知器係將所 感測的紅外線溫度透過光電轉換為成比例的電壓信號, 並經由適當演算得出温度待測體溫度值,再經由顯示器 顯示讀值。然而,該電壓信號大小的變化係與量測距離 成一定反比關係,亦即於量測同一溫度待測體溫度時, 其量測結果會隨著該紅外線溫度感知器與該溫度待測體 之間的距離不同而有高低不同的溫度數據,例如溫度待 測體距離該紅外線溫度感知器愈近,則所量測到的溫度 顯示值愈高。為有效地避免因量測距離的大小影響該溫 度感測器的準確度,必須於非接觸型額溫量測裝置配置 有一個量測距離定位的設計。 [0004] 配合參閱第一圖,為習知之兩可見光束聚焦定距系統之 架構圖。該具有光瞄準系統之紅外線溫度計90包含二光 源92、二聚光單元94及一溫度感知器96。各該光源90係 透過各該聚光單元94以朝向一溫度待測體P投射光線,並 100116224 表單編號A0101 第4頁/共27頁 1002027224-0 201245678 且透過適當的設計使該溫度感知器96與溫度待測體P間的 距離恰好等於一預設距離D時,由該等光源90出射之兩道 可見光線將由兩分離光點集中為單一光點。如此,可大 幅地降低因量測距離不同所造成的溫度誤差。 [0005] 然而,上述之紅外線溫度計所使用的之光源定位指示具 有設計上的缺點,例如:必須由他人量測才能檢視照射的 兩束LED光線是否藉由量測頭的移動合而為一點,溫度待 測體P係因無法自行檢視照射至自己額頭上的兩束光線及 會聚光點,進而無法自行量測額温。 【發明内容】 [0006] 鑒於先前技術所述,本發明之一目的,在於提供一種可 定距量測之非接觸式溫度感測裝置。 [0007] 並且,本發明之另一目的,在於提供一種可定距量測之 非接觸式溫度感測方法。 [0008] 為達上述目的,本發明提供一種可定距量測之非接觸式 溫度感測裝置,該可定距量測之非接觸式溫度感測裝置 包含一發射單元、一感知單元及一單晶片微處理器。該 發射單元係朝向一溫度待測體發射一信號;該感知單元 接收上述發射之信號經由該溫度待測體所反射之一反射 信號;該單晶片微處理器電氣連接於該發射單元及該感 知單元;其中,該單晶片微處理器依據該反射信號判斷 該非接觸式溫度感測裝置與該溫度待測體之間的一量測 距離,當該量測距離在一預定量測範圍内時,該單晶片 微處理器產生一溫度量測致能信號。 100116224 表單編號A0101 第5頁/共27頁 1002027224-0 201245678 [0009] 並且,為達到本發明之另一目的,本發明提供一種可定 距量測之非接觸式溫度感測方法,該可定距量測之非接 觸式溫度感測方法包含: [0010] 首先,利用一發射單元朝向一溫度待測體發射一信號; [0011] 接著,利用一感知單元接收經由該溫度待測體反射該信 號之一反射信號; [0012] 最後,利用一單晶片微處理器依據該反射信號判斷該反 射信號是否落於一預設量測範圍,並且於上述步驟成立 後,該單晶片微處理器產生一溫度量測致能信號。 [0013] 本發明之該可定距量測之非接觸式溫度感測裝置係透過 該發射單元及該感知單元以偵測該非接觸式溫度感測裝 置與溫度待測體之間的該量測距離,並且當該量測距離 落入於一預設量測範圍時,驅使該非接觸式温度感測裝 置進行溫度的量測,如此,有效地避免因量測距離的不 同所造成溫度量測誤差值的產生,且溫度待測體可以自 行量測體溫。 【實施方式】 [0014] 配合參閱第二圖,為本發明之可定距量測之非接觸式溫 度感測裝置之使用架構圖。該非接觸式溫度感測裝置10 係於量測一溫度待測體P溫度時,預先偵測溫度待測體P 與該非接觸式溫度感測裝置10之間的一量測距離,並且 當該量測距離落入於一預設量測範圍内時,驅使該非接 觸式溫度量測裝置量測溫度待測體P的溫度值。如此,以 有效地避免該非接觸式溫度感測裝置1 0因量測距離的遠 100116224 表單編號A0101 第6頁/共27頁 1002027224-0 201245678 近不同而導致溫度量測誤差的產生,進而提供一準確之 溫度量測結果。 [0015] Ο 該非接觸式溫度感測裝置10包含有一殼體1〇〇、一發射單 元110、一感知單元120及一溫度感知單元13〇。該殼體 100包含一視窗102,該發射單元110、該感知單元丨2〇及 該溫度感知單元130係設置鄰近於該視窗102。該發射單 元110係朝向該感知單元120的方向地與該視窗1〇2之、去 線方向具有一第一角度(91傾斜’該感知單元12〇係朝向 該發射單元110之方向地與該視窗102之法線方向具有_ 第二角度0 2傾斜,如此,使由該發射單元11〇發射的信 號經由該溫度待側體Ρ反射後可以被該感知單元12〇接收 〇 [0016] 〇闺 配合參閱第三圖,為本發明之可定距量測之非接觸式溫 度感測裝置之一電路方塊圖。該非接觸式溫度感測裝置 包含一單晶片微處理器U、該發射單元11〇 '該感知單元 120、一溫度感知單元13〇及一量測距離提示單元2〇〇。 同時配合參閱第二圖’該發射單元UG係朝向該溫度待測 體P發射一信號,該發射單元11〇可以為不可見光發射單 元、可見光發射單元或超音波發射單元。其中該不可見 光發射單元所發射的信號可以為紫外光信號(波長介於 200~400nm)或紅外光信號(波長介於7〇〇~14〇〇〇nm),該 可見光發射單元的所發射的信號波長介於4〇〇 7〇〇nm。 於本實施例中,該發射單元U0為紅外光發射二極體,該 紅外光發射二極體係具有該第—角度^地朝向溫度待測 體P發射一紅外光信號。 100116224 表單编號A0101 第7頁/共27頁 1002027224-0 201245678 [0018] 該感知單元120接收經由該溫度待測體p反射由該發射單 元110發射之該信號所產生之一反射信號。該感知單元 120可以為不可見光感知單元、可見光感知單元或超音波 感知單元,且分別對應該不可見光發射單元、該可見光 發射單元及έ亥超音波感知單元使用。其中不可見光感知 單元可以感知的信號包含紫外光(波長介於2〇〇〜4〇〇nm) 及紅外光(波長介於700〜14000nm),該可見光感知單元 可以感知彳§號波長介於400~700nm之可見光。於本實施 例中,該感知單元120為紅外光光電晶體接收器,但不以 此為限,其他可以達到相等功效之均等元件皆應包含在 本發明之範疇中。 [0019] 該單晶片微處理器11係接收該反射信號;接著,依據該 反射信號判斷該非接觸式溫度感測裝置10與該溫度待測 體P之間的一量測距離,且當該量測距離在一預定量測範 圍内%,產生一定距提示信號或一溫度量測致能信號。 其中該定距提示信號傳遞至該量測距離提示單元200,該 溫度量測致能信號傳遞至該溫度感知單元130。 闕於實際實施時,該單晶片微處理器u可以以特殊應用 IC(application specific ic,ASIC)或現場可程式 化閘陣列(Field Programmable Gate Arrays FpGA) 等其他可以達到相等功效之均等元件以取代之其並不 脫離本發明之精神與範圍。 剛配合參閱第四圖,為本發明之可定距量測之非接觸式溫 度感測裝置之另一電路方塊圖。該單晶月微處理器1 1包 含一中央處理單元140、一脈波寬度調變(pulse width 100116224 表單編號A0101 1002027224-0 第8頁/共27頁 201245678 modulation, PWM)單元 150、一計數單元 170、一第一類 比數位轉換單元180、一輸入/輸出單元190及一第二類比 數位轉換單元210。又,該非接觸式溫度感測裝置10更包 含至少一開關單元160。該中央處理單元140電氣連接於 該脈波寬度調變單元150、該計數單元170、該第一類比 數位轉換單元180、該輸入/輸出單元190及該第二類比數 位轉換單元210。該中央處理單元140係負責協調及指揮 各單元間資料的傳送與運作。 [0022] 該脈波寬度調變單元150電氣連接於該發射單元110,該 脈波寬度調變單元150具有一脈波寬度調變信號(PWM信號 ),該脈波寬度調變信號係控制該發射單元110的工作頻 率,亦即該發射單元110的導通(turn-on)時間與截止 (turn-off)時間,使該發射單元110發射具有該工作頻 率之一脈衝信號。又,該中央處理單元140係同時控制該 脈衝信號的發射次數。 [0023] 該開關單元160設置於該非接觸式溫度感測裝置10之該外 殼體100(如第二圖所示)並電氣連接於該輸入/輸出單元 190。該開關單元160係供使用者開啟或關閉該非接觸式 溫度感測裝置10,並且使用者係可以透過按壓該開關單 元160啟動該發射單元110發射脈衝信號及啟動該溫度感 知單元130以量測溫度待測體P的溫度。 [0024] 該計數單元170電氣連接於該感知單元120及該中央處理 單元140,該計數單元170係接收該反射信號,並進一步 的判斷該反射信號的工作頻率及其發射次數是否與由該 發射單元110發射的脈衝信號相同,如此,可達到避免環 100116224 表單編號A0101 第9頁/共27頁 1002027224-0 201245678 境雜訊造成誤量測的情形產生,其中該環境雜訊可例如 為太陽光、日光燈管所發出之光線或遙控器發出之紅外 光線。 [0025] [0026] [0027] 該第-類比數轉鮮元18〇電氣連接於該❹單元12〇 及該中央處理單元14G。該反射信號係透過連接於該感知 單元120之-電阻㈤及―電容器c組成之i波電路滅波 後形成一類比形式的反射信號並傳遞至該第一類比數位 轉換單元18G。該第-類比數位轉換單元18()係接收該經 濾波後之該類比形式的反射信號,並將經濾波後之該類 比形式的反射信號轉換為對應之數位形式的一反射信號 後’並傳遞至該中央處理單元14〇。 該中央處理單元140具有一預設量測範圍。該中央處理單 元14 0係冬慧型地判斷該反射信號是否落入該預設量測範 圍,以對應地判別該非接觸式溫度感測裝置1〇與該溫度 待測體P之間的一量測距離。其中該智慧型判斷係指依據 溫度待測體P皮膚之色澤、光澤、細密度等條件以判別該 非接觸式溫度感測裝置10與該溫度待測體p之間的該量測 距離。 若該中央處理單元判斷該數位形式的反射信號落入於該 預設量測範圍,則該中央處理單元14〇判斷該非接觸式溫 度感測裝置10與溫度待側體P間位於適當的量測距離,則 該中央處理單元140送出一對應該數位形式的反射信號大 小之定距提示信號,該定距提示信號係經由該輸入/輪出 單元190傳遞至該量測距離提示單元2〇〇,以啟動該量測 距離提示單元2〇〇。該量測距離提示單元2〇〇係產生對應 100116224 表單編號A0101 第頁/共27頁 1002027224-0 201245678 Ο [0028] ❹ [0029] [0030] 100116224 該定距提示信號之定距提示資訊,以告知使用者該非接 觸式溫度感測裝置10與溫度待測體Ρ之間的距離為落入於 該預設量測距離,可以對溫度待測體Ρ進行溫度量測。其 中該量測距離提示單元200可以為一顯示器200Α、一揚聲 元件200Β或一發光元件200C,可對應不同的定位提示信 號產生不同的音頻、發光顏色或圖示。其中該顯示器 200Α可以為液晶顯示器(Liquid Crystal Display, LCD) , 該揚聲元件 200Β 可以為一蜂鳴器或一制口八 ’該發光元件200C可以為一發光二極體’但不以此為限 ’其他可以達到相等功效之均等元件皆應包含在本發明 之範疇中。 另外,當該中央處理單元140判斷該非接觸式溫度感測裝 置10與溫度待侧體P間位於適當的量測距離,該中央處理 單元140亦可產生一溫度量測致能信號,並傳遞至該溫度 感知單元130,以啟動該溫度感知單元130並開始量測該 溫度待側體P的溫度。於本實施例中,該溫度感知單元 130為一紅外線溫度感知器(inf rared sensor),且較佳地,該溫度感知單元13〇為一熱敏電阻 ,用以感知溫度待測體ρ輻射之紅外線輻射,並將該溫度 值傳遞至該第二類比數位轉換單元21〇。 該第二類比數位轉換單元21〇係將該溫度值轉換相對應的 溫度信號,並傳遞至該中央處理單元14〇。 於實際量測溫度待測體P溫度時,該溫度感知單元130係 於—預定範圍内感知該溫度待測體ρ,並擷取至少一溫度 值’該溫度值為-類比形式的信號。該溫度值係傳遞致 表單蝙號麵1 第u頁/共27頁 1002027224-0 201245678 〇亥第一類比數位轉換單元21Q ’該第二類比數位轉換單元 210將類比形式之該溫度值轉換為對應之數位形式的至少 一溫度信號,該溫度信號係傳遞至該中央處理單元14〇。 [0031] [0032] «亥/里度感知單TL130的感知方式為:於該預定範圍内前後 移動該非接觸式溫度感測裝置10,同時擷取至少一溫度 值,並經由該第二類比數位轉換單元210轉換為相對應的 一溫度信號,並傳遞至該中央處理單元14〇。當該非接觸 式溫度感測裝置10於該預定範圍内移動時(如由遠處逐漸 地接近該溫度待測體p),該等溫度信號係對應地逐漸增 加。當該非接觸式溫度感測裝置丨0超出該預定範圍時(例 如距離溫度待測體P過近),則對應之該溫度信號係隨即 下降。該中央處理單元140係擷取該溫度信號之最大值, 並經環境溫度補償後,將該最大溫度信號透過該輸入/輸 出早元190傳遞至έ亥顯不器200A並由該顯示器200A顯示 該溫度信號。 另外,該中央處理單元14 0係同時判斷該溫度信號是否大 於一預設溫度範圍,若該溫度信號大於該預設溫度範圍 ,則停止該非接觸式溫度感測裝置10感測溫度,以避免 該非接觸式溫度感測裝置10因感知過高的溫度而損壞。 又,該中央處理單元140也判斷該溫度信號使否小於該預 設溫度範圍,若該溫度信號小於該預設溫度反為’則由 該顯示係輸出” Lo信號”。 綜上所述,該蚱接觸式溫度感測裝置1〇於實際量測溫度 時之步驟簡述如下: 100116224 表單編號A0101 第12頁/共27頁 1002027224-0 [0033] 201245678 [0034] [0035] [0036] Ο [0037]201245678 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a non-contact temperature sensing device, and more particularly to a non-contact temperature sensing device capable of measuring distance. [Previous technique _ surgery] [0002] Temperature is the physiological index of the living body, you can know whether the living body is in a healthy state. There are some contact type temperature rush to measure the temperature of the forehead or skin, but these contact types When the temperature is rushed for temperature measurement, there may be a risk of exposure to infectious agents. Therefore, there is a non-contact temperature measurement device on the market to avoid the risk of infection. [0003] The infrared temperature sensor inside the non-contact type temperature measuring device converts the sensed infrared temperature into a proportional voltage signal through photoelectric conversion, and obtains the temperature value of the temperature object to be tested through appropriate calculation, and then passes through the display. Display the reading. However, the change in the magnitude of the voltage signal is inversely proportional to the measured distance, that is, when measuring the temperature of the body to be tested at the same temperature, the measurement result will follow the infrared temperature sensor and the temperature object to be tested. The distance between the two is different, and the temperature data is different. For example, the closer the temperature object is to the infrared temperature sensor, the higher the measured temperature value is. In order to effectively avoid the influence of the measuring distance on the accuracy of the temperature sensor, a non-contact type temperature measuring device must be configured with a measuring distance positioning design. [0004] Referring to the first figure, it is an architectural diagram of a conventional visible beam focusing and distance system. The infrared thermometer 90 having a light sighting system includes a two light source 92, a dichroic unit 94, and a temperature sensor 96. Each of the light sources 90 transmits light to a temperature object P through each of the light collecting units 94, and the temperature sensor 96 is configured by a suitable design. 100116224 Form No. A0101 Page 4 of 271002027224-0 201245678 When the distance from the temperature object P is exactly equal to a predetermined distance D, the two visible rays emitted by the light sources 90 will be concentrated by the two separated spots into a single spot. In this way, the temperature error caused by the different measurement distances can be greatly reduced. [0005] However, the light source positioning indication used by the infrared thermometer described above has design disadvantages, for example, it must be measured by others to check whether the two LED lights that are illuminated are combined by the movement of the measuring head. The temperature subject P is unable to self-measure the amount of light by illuminating the two rays of light and the concentrated spot on the forehead. SUMMARY OF THE INVENTION [0006] In view of the foregoing, it is an object of the present invention to provide a non-contact temperature sensing device that can be distance measured. Moreover, another object of the present invention is to provide a non-contact temperature sensing method capable of distance measurement. [0008] In order to achieve the above object, the present invention provides a non-contact temperature sensing device capable of measuring a distance measurement, the non-contact temperature sensing device of the variable distance measurement comprising a transmitting unit, a sensing unit and a Single chip microprocessor. The transmitting unit transmits a signal toward a temperature object to be tested; the sensing unit receives a reflected signal reflected by the emitted signal via the temperature object to be tested; the single chip microprocessor is electrically connected to the transmitting unit and the sensing a unit, wherein the single-chip microprocessor determines a measurement distance between the non-contact temperature sensing device and the temperature object to be tested according to the reflected signal, when the measurement distance is within a predetermined measurement range, The single wafer microprocessor generates a temperature measurement enable signal. 100116224 Form No. A0101 Page 5 of 27 1002027224-0 201245678 [0009] Also, in order to achieve another object of the present invention, the present invention provides a non-contact temperature sensing method capable of distance measurement, which can be determined The non-contact temperature sensing method for measuring distance includes: [0010] first, transmitting a signal toward a temperature object to be tested by using a transmitting unit; [0011] then receiving, by using a sensing unit, reflecting the body through the temperature One of the signals reflects the signal; [0012] Finally, a single-chip microprocessor determines whether the reflected signal falls within a predetermined measurement range according to the reflected signal, and after the step is established, the single-chip microprocessor generates A temperature measurement enables the signal. [0013] The non-contact temperature sensing device of the distance measuring method of the present invention transmits the measurement between the non-contact temperature sensing device and the temperature object through the transmitting unit and the sensing unit. The distance, and when the measuring distance falls within a predetermined measuring range, drives the non-contact temperature sensing device to measure the temperature, thus effectively avoiding the temperature measurement error caused by the difference of the measuring distance The value is generated, and the temperature test body can measure the body temperature by itself. [Embodiment] [0014] Referring to the second figure, the use diagram of the non-contact temperature sensing device capable of measuring the distance is shown. The non-contact temperature sensing device 10 detects a temperature between the temperature object P and the non-contact temperature sensing device 10 in advance when measuring the temperature of the temperature object P, and when the amount is When the measuring distance falls within a predetermined measuring range, the non-contact temperature measuring device is driven to measure the temperature value of the temperature measuring object P. In this way, in order to effectively prevent the non-contact temperature sensing device 10 from measuring the distance of the distance 100116224 Form No. A0101 Page 6 / Total 27 pages 1002027224-0 201245678 Nearly different temperature measurement error is generated, thereby providing a Accurate temperature measurement results. [0015] The non-contact temperature sensing device 10 includes a housing 1 , a transmitting unit 110 , a sensing unit 120 , and a temperature sensing unit 13 . The housing 100 includes a window 102. The firing unit 110, the sensing unit 〇2〇, and the temperature sensing unit 130 are disposed adjacent to the window 102. The transmitting unit 110 has a first angle toward the direction of the sensing unit 120 and the direction of the window 1 〇 2 (91 tilted 'the sensing unit 12 is oriented toward the transmitting unit 110 and the window The normal direction of 102 has a _ second angle 0 2 inclination, so that the signal emitted by the transmitting unit 11 经由 can be received by the sensing unit 12 经由 after being reflected by the temperature side body 〇 [0016] 〇闺 〇闺Referring to the third figure, it is a circuit block diagram of a non-contact temperature sensing device capable of measuring the distance according to the present invention. The non-contact temperature sensing device comprises a single-chip microprocessor U, and the transmitting unit 11' The sensing unit 120, a temperature sensing unit 13 and a measuring distance indicating unit 2 are simultaneously referred to the second figure 'the transmitting unit UG is transmitting a signal toward the temperature measuring body P, the transmitting unit 11〇 It may be an invisible light emitting unit, a visible light emitting unit or an ultrasonic transmitting unit, wherein the signal emitted by the invisible light emitting unit may be an ultraviolet light signal (wavelength between 200 and 400 nm) or an infrared light signal. The wavelength of the visible light emitting unit is between 4 and 7 〇〇 nm. In this embodiment, the transmitting unit U0 is an infrared light emitting diode. The infrared light emitting diode system has the first angle to emit an infrared light signal toward the temperature object P. 100116224 Form No. A0101 Page 7 of 27 1002027224-0 201245678 [0018] The sensing unit The receiving 120 reflects a reflected signal generated by the signal emitted by the transmitting unit 110. The sensing unit 120 may be a non-visible light sensing unit, a visible light sensing unit, or an ultrasonic sensing unit, and respectively correspond to The invisible light emitting unit, the visible light emitting unit and the ultrasonic sensing unit are used. The signal that the invisible light sensing unit can perceive comprises ultraviolet light (wavelength between 2〇〇~4〇〇nm) and infrared light (wavelength between The visible light sensing unit can sense the visible light having a wavelength between 400 and 700 nm. In the embodiment, the sensing unit 120 is an infrared light photoelectric crystal. The receiver, but not limited thereto, other equal components that can achieve equal efficiency should be included in the scope of the present invention. [0019] The single-chip microprocessor 11 receives the reflected signal; and then, according to the reflected signal Determining a measurement distance between the non-contact temperature sensing device 10 and the temperature object P, and generating a certain distance warning signal or a temperature measurement when the measurement distance is within a predetermined measurement range The signal can be transmitted to the measurement distance indicating unit 200, and the temperature measurement enable signal is transmitted to the temperature sensing unit 130. In actual implementation, the single-chip microprocessor u can be special Other equivalent elements that can achieve equal efficiency, such as an application specific ic (ASIC) or Field Programmable Gate Arrays (FpGA), are used instead of departing from the spirit and scope of the present invention. Just referring to the fourth figure, another circuit block diagram of the non-contact temperature sensing device capable of measuring the distance according to the present invention. The single crystal monthly microprocessor 11 includes a central processing unit 140, a pulse width modulation (pulse width 100116224 form number A0101 1002027224-0 page 8 / 27 pages 201245678 modulation, PWM) unit 150, a counting unit 170. A first analog-to-digital conversion unit 180, an input/output unit 190, and a second analog-to-digital conversion unit 210. Moreover, the non-contact temperature sensing device 10 further includes at least one switching unit 160. The central processing unit 140 is electrically coupled to the pulse width modulation unit 150, the counting unit 170, the first analog digital conversion unit 180, the input/output unit 190, and the second analog digital conversion unit 210. The central processing unit 140 is responsible for coordinating and directing the transmission and operation of data between units. [0022] The pulse width modulation unit 150 is electrically connected to the transmitting unit 110, and the pulse width modulation unit 150 has a pulse width modulation signal (PWM signal), and the pulse width modulation signal controls the The operating frequency of the transmitting unit 110, that is, the turn-on time and the turn-off time of the transmitting unit 110, causes the transmitting unit 110 to emit a pulse signal having one of the operating frequencies. Further, the central processing unit 140 simultaneously controls the number of times the pulse signal is transmitted. The switch unit 160 is disposed on the outer casing 100 of the non-contact temperature sensing device 10 (as shown in the second figure) and is electrically connected to the input/output unit 190. The switch unit 160 is configured for the user to turn on or off the non-contact temperature sensing device 10, and the user can activate the transmitting unit 110 to emit a pulse signal by pressing the switch unit 160 and activate the temperature sensing unit 130 to measure the temperature. The temperature of the body P to be tested. [0024] The counting unit 170 is electrically connected to the sensing unit 120 and the central processing unit 140. The counting unit 170 receives the reflected signal, and further determines whether the operating frequency of the reflected signal and the number of its transmissions are related to the transmission. The pulse signal transmitted by the unit 110 is the same, so that the occurrence of mis-measurement caused by the ring noise of the ring 100116224, the form number A0101, the page noise, and the environment noise can be caused, for example, the sunlight. , the light from the fluorescent tube or the infrared light from the remote control. [0027] [0027] The first analog to digital unit 18 is electrically connected to the unit 12 and the central processing unit 14G. The reflected signal is formed by an i-wave circuit composed of a resistor (5) and a capacitor c connected to the sensing unit 120 to form an analog signal of an analogy form and transmitted to the first analog-to-digital conversion unit 18G. The first analog-to-digital conversion unit 18() receives the filtered reflected signal of the analog form, and converts the filtered analog signal of the analog form into a reflected signal of a corresponding digital form and transmits To the central processing unit 14A. The central processing unit 140 has a predetermined measurement range. The central processing unit 140 determines whether the reflected signal falls within the preset measurement range to correspondingly determine an amount between the non-contact temperature sensing device 1 and the temperature object P. Measuring distance. The smart judgment refers to determining the measurement distance between the non-contact temperature sensing device 10 and the temperature object to be tested p according to conditions such as the color, gloss, and fineness of the skin of the body P to be tested. If the central processing unit determines that the reflected signal of the digital form falls within the preset measurement range, the central processing unit 14 determines that the non-contact temperature sensing device 10 and the temperature standby body P are in proper measurement. The distance, the central processing unit 140 sends a pair of distance indicating signals corresponding to the magnitude of the reflected signal in the form of digits, and the distance indicating signal is transmitted to the measuring distance indicating unit 2 via the input/rounding unit 190. To initiate the measurement distance prompting unit 2〇〇. The measuring distance prompting unit 2 generates a corresponding 100116224 Form No. A0101 Page/Total 27 Page 1002027224-0 201245678 Ο [0028] ❹ [0030] [10030] 100116224 The distance indicating information of the distance indicating signal is The user is informed that the distance between the non-contact temperature sensing device 10 and the temperature sensing body 落 falls within the preset measuring distance, and the temperature measurement can be performed on the temperature sensing body. The measurement distance indicating unit 200 can be a display 200, a speaker component 200, or a light-emitting component 200C, and can generate different audio, illumination colors or icons corresponding to different positioning prompt signals. The display device 200 can be a liquid crystal display (LCD), and the speaker element 200 can be a buzzer or a mouthpiece. The light-emitting element 200C can be a light-emitting diode. Equivalent elements that are equivalent to other equivalents are intended to be included within the scope of the invention. In addition, when the central processing unit 140 determines that the non-contact temperature sensing device 10 and the temperature standby body P are located at an appropriate measurement distance, the central processing unit 140 may also generate a temperature measurement enable signal and transmit the signal to the temperature measurement enable signal. The temperature sensing unit 130 activates the temperature sensing unit 130 and starts measuring the temperature of the temperature side body P. In this embodiment, the temperature sensing unit 130 is an inf rared sensor, and preferably, the temperature sensing unit 13 is a thermistor for sensing the temperature of the body to be measured. Infrared radiation is transmitted to the second analog-to-digital conversion unit 21A. The second analog-to-digital conversion unit 21 converts the temperature value into a corresponding temperature signal and transmits it to the central processing unit 14A. When the temperature of the temperature P to be measured is actually measured, the temperature sensing unit 130 senses the temperature object ρ within a predetermined range, and extracts at least one temperature value, which is a signal in the analogy form. The temperature value is transmitted to the form bat face 1 page u / page 27 1002027224-0 201245678 第一海 first analog digital conversion unit 21Q 'the second analog digital conversion unit 210 converts the temperature value of the analog form into a corresponding At least one temperature signal in the form of a digit, the temperature signal being passed to the central processing unit 14A. [0032] The method of perceiving the single TL 130 is: moving the non-contact temperature sensing device 10 back and forth within the predetermined range, while capturing at least one temperature value, and via the second analog digital position The conversion unit 210 converts to a corresponding temperature signal and transmits it to the central processing unit 14A. When the non-contact temperature sensing device 10 moves within the predetermined range (e.g., gradually approaching the temperature object to be tested p from a distance), the temperature signals are correspondingly gradually increased. When the non-contact temperature sensing device 丨0 exceeds the predetermined range (e.g., too close to the temperature object P), the temperature signal correspondingly drops. The central processing unit 140 captures the maximum value of the temperature signal, and after being compensated by the ambient temperature, transmits the maximum temperature signal to the display device 200A through the input/output early element 190 and displays the display by the display 200A. Temperature signal. In addition, the central processing unit 140 determines whether the temperature signal is greater than a preset temperature range, and if the temperature signal is greater than the preset temperature range, stopping the non-contact temperature sensing device 10 to sense the temperature to avoid the non- The contact temperature sensing device 10 is damaged by sensing an excessively high temperature. Moreover, the central processing unit 140 also determines whether the temperature signal is less than the preset temperature range, and if the temperature signal is less than the preset temperature, the display system outputs a "Lo signal". In summary, the steps of the 蚱 contact temperature sensing device 1 when actually measuring the temperature are as follows: 100116224 Form No. A0101 Page 12 / Total 27 Page 1002027224-0 [0033] 201245678 [0034] [0035 [0036] Ο [0037]

GG

[0038] 首先,利用該發射單元11〇朝向一溫度待測體ρ發射一信 號*’接著利用該感知單元12〇接收經由該溫度待測體ρ反 射該信號之一反射信號。 最後利用該單晶片微處理器丨丨判斷該反射信號判斷該反 射仏號是否落於一預設量測範圍,且於上述步驟成立後 ’遠單晶片微處理器產生一定距提示信號或一溫度量測 致能信號。 配合參閱第五圖,為本發明之可定距量測之非接觸式溫 度感測方法之流程圖。於使用該非接觸式溫度感測裝置 10時’需透過該開關單元16〇以啟動該非接觸式溫度感測 展置10。當該非接觸式溫度感測裝置10被啟動時,該中 央處理單元140係驅使該非接觸式溫度感測裝置10回復初 始設定(步驟S400)。 之後’利用該發射單元11〇對應該發射次數地發射一脈衝 信號(步驟S402),該脈衝信號具有該工作頻率。該脈衝 信號係傳遞至該溫度待測體Ρ,該溫度待測體ρ係反射該 脈衝信號。其中該脈衝信號係利用該脈波寬度調變控制 單元150產生之該脈波寬度調變信號以控制該發射單元 110之該工作頻率。 該感知單元12 0係接收經由該溫度待測體ρ反射該脈衝信 號之該反射脈衝信號(步驟S404),並將該反射脈衝信號 傳遞至該計數單元170及該第一類比數位轉換單元18〇。 該計數單元17 0係判斷該反射脈衝信號的工作頻率及發射 次數是否與由該發射單元110發射的該脈衝信號之工作頻 100116224 表單編號Α0101 第13頁/共27頁 1002027224-0 [0039] 201245678 率及發射次數相同(步驟S406)。於步驟S406之後,若該 計數單元1 7 0判斷該反射脈衝信號的工作頻率及發射次數 與該脈衝信號不相同,則利用該中央處理單元14 〇進一步 地判斷該非接觸式溫度感測裝置1〇是否感知逾時(S422) [0040] 於步驟S422之後,若該中央處理單元14〇判斷該非接觸式 溫度感測裝置10感知逾時,則由該顯示器2〇〇A輸出一錯 誤訊息(S424)。 [0041] 於步驟S422之後,若該中央處理單元14〇判斷該非接觸式 溫度感測裝置ίο感知未逾時,則回覆步驟S4〇2,利用該 發射單元110重新發射脈衝信號。 [_於步驟S406之後,若該計數單元17〇騎該反射脈衝信號 的工作頻率及發射次數與該脈衝信號相同,則將該反射 脈衝信號傳遞至該中央處理單元14〇。 闕肖巾央處料itl4G具冑-預設量測範圍,該巾央處理單 兀140係藉由判別該反射脈衝信號是否落於該預設量測範 圍以判斷該非接觸式溫度感測裝置1 〇與溫度待測體p之間 的一量測距離(步驟S410)。 [0044]於步驟S41G之後,若該中央處理單元14()判斷該反射脈衝 信號未落入於預設量測範圍内,則該中央處理單元140進 一步地判_非接觸式溫度感《置1GM感知逾時 (S422)。 [0045] 100116224 於步驟S422之後,若該中央處理單元14G判斷該非接觸式 /皿度感測裝置10感知逾時’則由該顯示器2〇〇A輸出一錯 表單、編號A0101 第14頁/共27 s 1002027224-0 201245678 [0046] [0047] ❹ [0048] Ο [0049] 誤訊息(S 4 2 4 )。 於步驟S422之後,若該中央處理單元140判斷該非接觸式 溫度感測裝置10感知未逾時,則回復步驟S402,利用該 發射單元110重新發射脈衝信號。 於步驟S410之後,若該中央處理單元140判斷該反射脈衝 信號落入該預設量測範圍内,則傳遞一對應該反射脈衝 信號大小之定距提示信號以驅使該量測距離提示單元2 0 0 產生一定距提示資訊,以提示持有該非接觸式溫度感測 裝置10的使用者可對溫度待測體P可進行溫度量測(步驟 S412)。其中該量測距離提示單元200可以為一顯示器 200A、一揚聲元件20 0B或發光元件200C,並可對應不同 的定位提示信號產生不同的音頻、發光顏色或圖示。 該中央處理單元140係傳遞一溫度量測致能信號至該溫度 感測單元130,以啟動該溫度感知單元130讀取溫度待測 體P的溫度(步驟S414)。該溫度感知單元130係擷取類比 形式的至少一溫度值,並傳遞至該第二類比數位轉換單 元210,該第二類比數位轉換單元210係將該溫度值轉換 為對應之數位形式的至少一溫度信號並傳遞至該中央處 理單元140。 該中央處理單元140具有一預設溫度範圍,該中央處理單 元140係判斷該溫度信號是否小於該預設溫度範圍(步驟 S415)。於步驟S415之後,若該中央處理單元140判斷該 溫度信號小於該預設溫度範圍,則該顯示器200A顯示一 ” Lo”信號(S416),且該中央處理單元140進一步地判 100116224 表單編號A0101 第15頁/共27頁 1002027224-0 201245678 斷該非接觸式溫度感測裝置1 0是否感知逾時(S 4 2 2)。 [0050] 於步驟S422之後,若該中央處理單元140判斷該非接觸式 溫度感測裝置10感知逾時,則由該顯示器200A輸出一錯 誤訊息(S 4 2 4)。 [0051] 於步驟S422之後,若該中央處理單元140判斷該非接觸式 温度感測裝置10感知未逾時,則回復步驟S402,利用該 發射單元110重新發射脈衝信號。 [0052] 於步驟S415之後,若該中央處理單元140判斷該溫度信號 不小於該預設溫度範圍,則進一步地判斷該溫度信號是 否大於該預設溫度範圍(S417)。 [0053] 於步驟S417之後,該中央處理單元140將該溫度信號經由 環境溫度補償後傳遞至該顯示器200A,該顯示器200A係 顯示對應該最大溫度信號(步驟S420)。 [0054] 於步驟S417之後,若中央處理單元140判斷該溫度信號確 實大於該預設溫度範圍,則該顯示器200A顯示一” Hi” 信號(S418),且該中央處理單元140結束該非接觸式溫 度感測裝置10的動作,以避免該非接觸式溫度感測裝置 1 0因感測過高溫而損壞。 [0055] 綜合以上所述,本發明之該可定距量測之非接觸式溫度 感測裝置10係透過該發射單元110及該感知單元120以預 先偵測該非接觸式溫度感測裝置10與溫度待測體P之間的 一量測距離,並且當該量測距離落入於該預設量測範圍 内時,傳遞一定距提示信號以提示持有該非接觸式溫度 感測裝置10之使用者可進行溫度的量測,或者直接地量 100116224 表單編號A0101 第16頁/共27頁 1002027224-0 201245678 測溫度待測體p的溫度值,以有效地避免因量測距離的不 同所造成溫度量測誤差值的產生,且溫度待測體p可以自 行量測體溫。 [0056] 然以上所述者,僅為本發明之較佳實施例,當不能限定 本發明實施之範圍,即凡依本發明申請專利範圍所作之 均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍意 圖保護之範疇。 【圖式簡單說明】 [0057] 第一圖為習知之具有光學瞄準系統之紅外線溫度器之架 構圖。 [0058] 第二圖為本發明之可定距量測之非接觸式溫度感測裝置 之使用架構圖。 [0059] 第三圖為本發明之可定距量測之非接觸式溫度感測裝置 之一電路方塊圖。 [0060] 第四圖為本發明之可定距量測之非接觸式溫度感測裝置 〇 之另一電路方塊圖。 [0061] 第五圖為本發明之可定距量測之非接觸式溫度感測方法 之流程圖。 【主要元件符號說明】 [0062] 〈先前技術〉 [0063] 9 0具有光瞄準系統之紅外線溫度計 [0064] 9 2發光單元 [0065] 94溫度感知器 1002027224-0 100116224 表單編號A0101 第17頁/共27頁 201245678 [0066] 9 6聚光單元 [0067] P溫度待測體 [0068] 〈本發明〉 [0069] 1 0非接觸式溫度感測裝置 [0070] 11單晶片微處理器 [0071] 110發射單元 [0072] 120感知單元 [0073] 130溫度感知單元 [0074] 140中央處理單元 [0075] 150脈波寬度調變單元 [0076] 160開關單元 [0077] 170計數單元 [0078] 180第一類比數位轉換單元 [0079] 190輸入/輸出單元 [0080 ] 200量測距離提示單元 [0081] 200A顯示器 [0082] 200B揚聲元件 [0083] 200C發光元件 [0084] 210第二類比數位轉換單元 100116224 表單編號A0101 第18頁/共27頁 1002027224-0 201245678 [0085] 0 1第一角度 [0086] 6&gt; 2 第二角度 [0087] P溫度待測體 ❹ ❹ 100116224 表單編號A0101 第19頁/共27頁 1002027224-0First, the transmitting unit 11 发射 transmits a signal*' toward a temperature measuring object ρ. Then, the sensing unit 12 〇 receives a reflected signal of one of the signals reflected by the temperature measuring object ρ. Finally, the single-chip microprocessor determines whether the reflected signal determines whether the reflected signal falls within a predetermined measurement range, and after the step is established, the remote single-chip microprocessor generates a certain distance warning signal or a temperature. Measure the enable signal. Referring to FIG. 5, it is a flow chart of the non-contact temperature sensing method for the distance measurement according to the present invention. When the non-contact temperature sensing device 10 is used, the switching unit 16 is required to activate the non-contact temperature sensing display 10. When the non-contact temperature sensing device 10 is activated, the central processing unit 140 drives the non-contact temperature sensing device 10 to return to the initial setting (step S400). Thereafter, a pulse signal is transmitted by the transmitting unit 11 〇 corresponding to the number of times of transmission (step S402), and the pulse signal has the operating frequency. The pulse signal is transmitted to the temperature object to be measured, and the temperature object ρ reflects the pulse signal. The pulse signal is generated by the pulse width modulation control unit 150 to control the operating frequency of the transmitting unit 110. The sensing unit 120 receives the reflected pulse signal that reflects the pulse signal via the temperature object to be tested ρ (step S404), and transmits the reflected pulse signal to the counting unit 170 and the first analog digital conversion unit 18〇. . The counting unit 170 determines whether the operating frequency and the number of transmissions of the reflected pulse signal and the working frequency of the pulse signal transmitted by the transmitting unit 110 are 100116224. Form No. 1010101 Page 13 / Total 27 pages 1002027224-0 [0039] 201245678 The rate and the number of shots are the same (step S406). After the step S406, if the counting unit 170 determines that the operating frequency and the number of transmissions of the reflected pulse signal are different from the pulse signal, the central processing unit 14 further determines the non-contact temperature sensing device. Whether the timeout is perceived (S422) [0040] After the step S422, if the central processing unit 14 determines that the non-contact temperature sensing device 10 senses the timeout, an error message is outputted by the display 2A (S424) . [0041] After the step S422, if the central processing unit 14 determines that the non-contact temperature sensing device ίο does not exceed the timeout, the step S4〇2 is repeated, and the pulse signal is retransmitted by the transmitting unit 110. [0] After step S406, if the operating frequency and the number of transmissions of the counting unit 17 riding the reflected pulse signal are the same as the pulse signal, the reflected pulse signal is transmitted to the central processing unit 14A. The 阙 巾 央 it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it it A measurement distance between the crucible and the temperature test object p (step S410). [0044] After the step S41G, if the central processing unit 14() determines that the reflected pulse signal does not fall within the preset measurement range, the central processing unit 140 further determines that the non-contact temperature sense is set to "1GM". Perceived timeout (S422). [0045] 100116224 After the step S422, if the central processing unit 14G determines that the non-contact/dish sensing device 10 senses the timeout, then the display 2A outputs a wrong form, number A0101, page 14/total 27 s 1002027224-0 201245678 [0047] ❹ [0049] Error message (S 4 2 4 ). After the step S422, if the central processing unit 140 determines that the non-contact temperature sensing device 10 has not perceived the timeout, the process returns to step S402, and the pulse signal is retransmitted by the transmitting unit 110. After the step S410, if the central processing unit 140 determines that the reflected pulse signal falls within the preset measurement range, transmitting a pair of distance indicating signals corresponding to the magnitude of the reflected pulse signal to drive the measuring distance prompting unit 2 0 0 A certain distance prompt information is generated to prompt the user holding the non-contact temperature sensing device 10 to perform temperature measurement on the temperature test object P (step S412). The measurement distance indicating unit 200 can be a display 200A, a speaker element 20 0B or a light-emitting element 200C, and can generate different audio, illumination colors or icons corresponding to different positioning prompt signals. The central processing unit 140 transmits a temperature measurement enable signal to the temperature sensing unit 130 to activate the temperature sensing unit 130 to read the temperature of the temperature subject P (step S414). The temperature sensing unit 130 captures at least one temperature value of the analog form and transmits the analog value to the second analog digital conversion unit 210, and the second analog digital conversion unit 210 converts the temperature value into at least one of the corresponding digital forms. The temperature signal is passed to the central processing unit 140. The central processing unit 140 has a predetermined temperature range, and the central processing unit 140 determines whether the temperature signal is smaller than the preset temperature range (step S415). After the step S415, if the central processing unit 140 determines that the temperature signal is less than the preset temperature range, the display 200A displays a "Lo" signal (S416), and the central processing unit 140 further determines 100116224 Form No. A0101. 15 pages/total 27 pages 1002027224-0 201245678 Whether the non-contact temperature sensing device 10 senses the timeout (S 4 2 2). [0050] After the step S422, if the central processing unit 140 determines that the non-contact temperature sensing device 10 senses the timeout, an error message is outputted by the display 200A (S 4 24). [0051] After the step S422, if the central processing unit 140 determines that the non-contact temperature sensing device 10 is not aware of the timeout, the process returns to step S402, and the pulse signal is retransmitted by the transmitting unit 110. [0052] After the step S415, if the central processing unit 140 determines that the temperature signal is not less than the preset temperature range, it is further determined whether the temperature signal is greater than the preset temperature range (S417). [0053] After step S417, the central processing unit 140 transmits the temperature signal to the display 200A via ambient temperature compensation, and the display 200A displays the corresponding maximum temperature signal (step S420). [0054] After the step S417, if the central processing unit 140 determines that the temperature signal is indeed greater than the preset temperature range, the display 200A displays a "Hi" signal (S418), and the central processing unit 140 ends the non-contact temperature. The action of the sensing device 10 is prevented to prevent the non-contact temperature sensing device 10 from being damaged due to the sensing of high temperatures. [0055] In summary, the non-contact temperature sensing device 10 of the present invention can detect the non-contact temperature sensing device 10 in advance through the transmitting unit 110 and the sensing unit 120. a measuring distance between the temperature measuring objects P, and when the measuring distance falls within the preset measuring range, transmitting a distance indicating signal to prompt to hold the use of the non-contact temperature sensing device 10 Temperature measurement can be performed, or directly, 100116224 Form No. A0101 Page 16 / Total 27 Page 1002027224-0 201245678 Measure the temperature value of the body p to effectively avoid the temperature caused by the difference in measurement distance The measurement error value is generated, and the temperature test body p can measure the body temperature by itself. [0056] However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention should still belong to the present invention. The patent covers the scope of the intent to protect. BRIEF DESCRIPTION OF THE DRAWINGS [0057] The first figure is a frame configuration of a conventional infrared temperature device having an optical sighting system. [0058] The second figure is a structural diagram of the use of the non-contact temperature sensing device for the distance measurement of the present invention. [0059] The third figure is a circuit block diagram of a non-contact temperature sensing device capable of measuring the distance according to the present invention. [0060] The fourth figure is another circuit block diagram of the non-contact temperature sensing device of the present invention. [0061] The fifth figure is a flow chart of the non-contact temperature sensing method for the distance measurement according to the present invention. [Main Component Symbol Description] [0062] <0086] 90 Infrared Thermometer with Light Aiming System [0064] 9 2 Light Emitting Unit [0065] 94 Temperature Sensor 1002027224-0 100116224 Form No. A0101 Page 17/ 27 pages 201245678 [0066] 9 6 concentrating unit [0067] P temperature measuring body [0068] <present invention> [0069] 10 0 non-contact temperature sensing device [0070] 11 single-chip microprocessor [0071] 110 transmitting unit [0072] 120 sensing unit [0073] 130 temperature sensing unit [0074] 140 central processing unit [0075] 150 pulse width modulation unit [0076] 160 switching unit [0077] 170 counting unit [0078] 180 First analog-to-digital conversion unit [0079] 190 input/output unit [0080] 200 measurement distance prompt unit [0081] 200A display [0082] 200B speaker element [0083] 200C light-emitting element [0084] 210 second analog-to-digital conversion Unit 100116224 Form No. A0101 Page 18/Total 27 Page 1002027224-0 201245678 [0085] 0 1 First Angle [0086] 6&gt; 2 Second Angle [0087] P Temperature Subject ❹ 116 100116224 Form No. A0101 Page 19 / Total 27 pages 1002027224-0

Claims (1)

201245678 七、申請專利範圍: 1 . 一種可定距量測之非接觸式溫度感測裝置,包含: 一發射單元,係朝向一溫度待測體發射一信號; 一感知單元,係接收上述發射之信號經由該溫度待測體所 反射之一反射信號;及 一單晶片微處理器,電氣連接於該發射單元及該感知單元 其中,該單晶片微處理器依該反射信號大小判斷該非接觸 式溫度感測裝置與該溫度待測體之間的一量測距離,當量 測距離在一預定量測範圍内時,該單晶片微處理器產生一 溫度量測致能信號。 2 .如申請專利範圍第1項所述之可定距量測之非接觸式溫度 感測裝置,其中該發射單元與該感知單元為可見光發射單 元及可見光感知單元。 3 .如申請專利範圍第1項所述之可定距量測之非接觸式溫度 感測裝置,其中該發射單元與該感知單元為不可見光發射 單元及不可見光感知單元。 4 .如申請專利範圍第1項所述之可定距量測之非接觸式溫度 感測裝置,其中該發射單元與該感知單元為超音波發射單 元及超音波感知單元。 5 .如申請專利範圍第1項所述之可定距量測之非接觸式溫度 感測裝置,其中該單晶片微處理器更包含: 一中央處理單元; 一第一類比數位轉換單元,電氣連接於該感測單元及該中 央處理單元; 100116224 表單編號A0101 第20頁/共27頁 1002027224-0 201245678 一第二類比數位轉換單元,電氣連接於該中央處理單元; 及 一輸入/輸出單元,電氣連接於該中央處理單元。 6 .如申請專利範圍第5項所述之可定距量測之非接觸式溫度 感測裝置,更包含: 一溫度感知單元,電氣連接於該第二類比數位轉換單元, 該溫度感知單元係接收該溫度量測致能信號並感測溫度待 測體的至少一溫度值;及 一量測距離提示單元,電氣連接於該輸入/輸出單元,以 產生一定距提示資訊。 7 .如申請專利範圍第5項所述之可定距量測之非接觸式溫度 感測裝置,其中該單晶片微處理器更包含一脈波寬度調變 單元,電氣連接於該發射單元及該中央處理單元,用以控 制該發射單元的工作頻率及發射次數,使該發射單元發射 一經脈波寬度調變之脈衝信號。 8 .如申請專利範圍第7項所述之可定距量測之非接觸式溫度 感測裝置,其中該單晶片微處理器更包含一計數單元,電 氣連接於該感知單元。 9 .如申請專利範圍第5項所述之可定距量測之非接觸式溫度 感測裝置,更包含一開關單元,電氣連接於該輸入/輸出 〇〇 一 早7〇。 10 .如申請專利範圍第6項所述之可定距量測之非接觸式溫度 感測裝置,其中該量測距離提示單元為顯示器、揚聲元件 或發光元件。 11 .如申請專利範圍第10項所述之可定距量測之非接觸式溫度 感測裝置,其中該顯示器係顯示該溫度感測單元之該溫度 100116224 表單編號A0101 第21頁/共27頁 1002027224-0 201245678 值0 12 .-種可定距量測之非接觸式溫度相方法,包含: a.利用-發射單元朝向一溫度待測體發射一信號,· b•利用-感知單元接收經由該溫度待測體反射該信號之 一反射信號; ' c‘利用-單晶片微處理器判斷該反射信號是否落於—預 設量測範圍; d·於步驟c之後,若是’則該單晶片微處理器產生—溫度 量測致能信號。 值又 W .如申請專利範圍第12項所述之可定距量測之非接觸式溫度 感測方法’於步驟a之前,更包含利用該單晶片微處理器 提供-脈波寬度調變單元,該脈波寬度調變單元產生一脈 波寬度調變信號,並傳遞至該發射單元,以控制該發射單 元的一工作週期。 14 . 15 16 . 如申請專利範圍第13項所述之可定距量測之非接觸式溫度 感測方法,於步驟b之後,更包含該單晶片微處理器 ,供-計數單元,該計數單元判斷該反射信號的工作週期 疋否於該發射單元所發射之該信號相同。 如申請專利範圍第14項所述之可定距量測之非接觸式溫度 感測方法,於步驟(1之後,更包含一步驟匕 ^ 利用一溫度感知單元操取至少一溫度值。 如申請專利範圍第15項所述之可定距_之非接觸式溫度 感測方法’於步驟e之後,更包含一步驟1 該單晶片微處理器判斷該等溫度信號是否落於—預設溫产 範圍内。 X 100116224 表單編號A0101 第22頁/共27頁 1002027224-0201245678 VII. Patent application scope: 1. A non-contact temperature sensing device capable of measuring distance, comprising: a transmitting unit that emits a signal toward a temperature object to be tested; and a sensing unit that receives the above-mentioned emission a signal reflected by the temperature sensing object; and a single-chip microprocessor electrically connected to the transmitting unit and the sensing unit, wherein the single-chip microprocessor determines the non-contact temperature according to the size of the reflected signal The single-chip microprocessor generates a temperature measurement enable signal when the measured distance between the sensing device and the temperature object is measured within a predetermined measurement range. 2. The non-contact temperature sensing device according to claim 1, wherein the transmitting unit and the sensing unit are a visible light emitting unit and a visible light sensing unit. 3. The non-contact temperature sensing device according to claim 1, wherein the transmitting unit and the sensing unit are an invisible light emitting unit and an invisible light sensing unit. 4. The non-contact temperature sensing device according to claim 1, wherein the transmitting unit and the sensing unit are an ultrasonic transmitting unit and an ultrasonic sensing unit. 5. The non-contact temperature sensing device according to claim 1, wherein the single-chip microprocessor further comprises: a central processing unit; a first analog digital conversion unit, electrical Connected to the sensing unit and the central processing unit; 100116224 Form No. A0101 Page 20 of 27 1002027224-0 201245678 A second analog-to-digital conversion unit electrically connected to the central processing unit; and an input/output unit, Electrically connected to the central processing unit. 6. The non-contact temperature sensing device of the variable distance measurement according to claim 5, further comprising: a temperature sensing unit electrically connected to the second analog digital conversion unit, the temperature sensing unit Receiving the temperature measurement enable signal and sensing at least one temperature value of the temperature object to be tested; and a measurement distance indicating unit electrically connected to the input/output unit to generate a certain distance prompt information. 7. The non-contact temperature sensing device according to claim 5, wherein the single-chip microprocessor further comprises a pulse width modulation unit electrically connected to the transmitting unit and The central processing unit is configured to control an operating frequency and a number of transmissions of the transmitting unit, so that the transmitting unit emits a pulse signal with a pulse width modulation. 8. The non-contact temperature sensing device according to claim 7, wherein the single-chip microprocessor further comprises a counting unit electrically connected to the sensing unit. 9. The non-contact temperature sensing device of the variable distance measurement according to claim 5, further comprising a switch unit electrically connected to the input/output port 7 am. 10. The non-contact temperature sensing device according to claim 6, wherein the measuring distance indicating unit is a display, a speaker element or a light emitting element. 11. The non-contact temperature sensing device according to claim 10, wherein the display indicates the temperature of the temperature sensing unit 100116224 Form No. A0101 Page 21 of 27 1002027224-0 201245678 Value 0 12 - A non-contact temperature phase method for distance measurement, comprising: a. a transmitting-emitting unit transmits a signal towards a temperature object to be tested, b • utilizing-sensing unit receiving via The temperature object to be tested reflects a reflected signal of the signal; 'c' uses a single-chip microprocessor to determine whether the reflected signal falls within a predetermined measurement range; d. after step c, if the single chip The microprocessor generates a temperature measurement enable signal. The value of W. The non-contact temperature sensing method of the variable distance measurement described in claim 12, before step a, further comprises providing a pulse width modulation unit by using the single chip microprocessor. The pulse width modulation unit generates a pulse width modulation signal and transmits the signal to the transmitting unit to control a duty cycle of the transmitting unit. 14 . 15 16 . The non-contact temperature sensing method of the variable distance measurement according to claim 13 of the patent application, after step b, further comprising the single-chip microprocessor, the supply-counting unit, the counting The unit determines whether the duty cycle of the reflected signal is the same as the signal transmitted by the transmitting unit. The non-contact temperature sensing method capable of measuring the distance measurement according to claim 14 of the patent application, after the step (1, further comprising a step of using a temperature sensing unit to operate at least one temperature value. The non-contact temperature sensing method of the rangeable distance according to the fifteenth item of the patent range after step e further includes a step 1 of the single-chip microprocessor determining whether the temperature signals fall in the preset temperature production In the range. X 100116224 Form No. A0101 Page 22 of 27 1002027224-0
TW100116224A 2011-05-09 2011-05-09 Non-contact type constant distant measured temperature detecting device and measuring method thereof TW201245678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100116224A TW201245678A (en) 2011-05-09 2011-05-09 Non-contact type constant distant measured temperature detecting device and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116224A TW201245678A (en) 2011-05-09 2011-05-09 Non-contact type constant distant measured temperature detecting device and measuring method thereof

Publications (1)

Publication Number Publication Date
TW201245678A true TW201245678A (en) 2012-11-16

Family

ID=48094377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116224A TW201245678A (en) 2011-05-09 2011-05-09 Non-contact type constant distant measured temperature detecting device and measuring method thereof

Country Status (1)

Country Link
TW (1) TW201245678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456172B (en) * 2013-03-01 2014-10-11 Radiant Innovation Inc Infrared forehead thermometer with alignment function
TWI570393B (en) * 2015-06-01 2017-02-11 熱映光電股份有限公司 Temperature sensing apparatus having light indicator, system, and method for processing signals thereof
TWI646345B (en) * 2018-03-19 2019-01-01 廣達電腦股份有限公司 Ultrasonic ranging device, system and method
TWI766573B (en) * 2021-02-05 2022-06-01 百略醫學科技股份有限公司 Non-contact infrared thermometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456172B (en) * 2013-03-01 2014-10-11 Radiant Innovation Inc Infrared forehead thermometer with alignment function
TWI570393B (en) * 2015-06-01 2017-02-11 熱映光電股份有限公司 Temperature sensing apparatus having light indicator, system, and method for processing signals thereof
TWI646345B (en) * 2018-03-19 2019-01-01 廣達電腦股份有限公司 Ultrasonic ranging device, system and method
TWI766573B (en) * 2021-02-05 2022-06-01 百略醫學科技股份有限公司 Non-contact infrared thermometer

Similar Documents

Publication Publication Date Title
JP5107696B2 (en) Multifunctional probe for measuring skin properties
TWI468073B (en) Field Sensitive Sensitivity Adjustment Device for Light Sensing Non - contact Switching Device (SW)
JP5264943B2 (en) thermometer
TW201245678A (en) Non-contact type constant distant measured temperature detecting device and measuring method thereof
AU2009334518B2 (en) Illuminated optical apparatus
US20100127159A1 (en) Photodetecting semiconductor apparatus and mobile device
CN105352601A (en) Image sensor for measuring illumination, proximity and color temperature
US20060215728A1 (en) Forehead thermometer for hygienic measurement
EP2288885A1 (en) Non-contact thermometer
EP2884248A2 (en) Forehead thermometer
JP2013007744A5 (en)
JP2004327053A (en) Cooker
JP2009153728A (en) Multifunctional probe for measuring skin property
CN102772199A (en) Non-contact temperature sensing device capable of interval measurement and temperature measurement method thereof
CN104540309A (en) Multifunctional intelligent table lamp
WO2017152866A1 (en) Fully automatic infrared milk temperature measuring apparatus
TWI464388B (en) Light calibration device, biological detection calibration system and operating method thereof
US20120298869A1 (en) Proximity sensing apparatus and sensing method thereof
JP5436269B2 (en) Thermometer
CN204392650U (en) Multifunctional intelligent desk lamp
TW201929775A (en) Photoelectric heart rate detection system including an array detection module, a blood vessel scanning positioning module and a heart rate monitoring module
WO2021192325A1 (en) Non-contact thermometer
JP5602200B2 (en) Multifunctional probe for measuring skin properties
CN108548605B (en) Infrared thermometer
JP2004095312A (en) Cooker