TW201244824A - Field-programmable lab-on-a-chip and droplet manipulations based on EWOD micro-electrode array architecture - Google Patents

Field-programmable lab-on-a-chip and droplet manipulations based on EWOD micro-electrode array architecture Download PDF

Info

Publication number
TW201244824A
TW201244824A TW101105384A TW101105384A TW201244824A TW 201244824 A TW201244824 A TW 201244824A TW 101105384 A TW101105384 A TW 101105384A TW 101105384 A TW101105384 A TW 101105384A TW 201244824 A TW201244824 A TW 201244824A
Authority
TW
Taiwan
Prior art keywords
electrode
configuration
droplet
electrodes
droplets
Prior art date
Application number
TW101105384A
Other languages
Chinese (zh)
Other versions
TWI510295B (en
Inventor
Gary Wang
Ching Yen Ho
Wen Jang Hwang
Wilson Wang
Original Assignee
Gary Wang
Ching Yen Ho
Wen Jang Hwang
Wilson Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/029,140 external-priority patent/US8815070B2/en
Priority claimed from CN201210034566.7A external-priority patent/CN102671724B/en
Priority claimed from CN201210034561.4A external-priority patent/CN102671722B/en
Application filed by Gary Wang, Ching Yen Ho, Wen Jang Hwang, Wilson Wang filed Critical Gary Wang
Publication of TW201244824A publication Critical patent/TW201244824A/en
Application granted granted Critical
Publication of TWI510295B publication Critical patent/TWI510295B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The system relates to filed-programmable lab-on-chip (FPLOC) microfluidic operations, fabrications, and programming based on Microelectrode Array Architecture are disclosed herein. The FPLOC device by employing the microelectrode array architecture may include the following: (a) a bottom plate comprising an array of multiple microelectrodes disposed on a top surface of a substrate covered by a dielectric layer; wherein each of the microelectrode is coupled to at least one grounding elements of a grounding mechanism, wherein a hydrophobic layer is disposed on the top of the dielectric layer and the grounding elements to make hydrophobic surfaces with the droplets; (b) a field programmability mechanism for programming a group of configured-electrodes to generate microfluidic components and layouts with selected shapes and sizes; and, (c) a FPLOC functional block, comprising: (i) I/O ports; (ii) a sample preparation unit; (iii) a droplet manipulation unit; (iv) a detection unit; and (iv) a system control unit.

Description

201244824 六、發明說明: 【發明所屬之技術領域】 和方lal^Qn~a~ehip ’LQG)微流體系統 β方法。更,、體地’本發明制侧於軸微電極陣列 %可程式設計晶片實驗室(FPL〇c)系統。 相關申請的交叉參考 本了請Τ參考的方式併入_ *2月17日提交的名稱為 Droplet Manipulations on EWOD Microelectrode Array Ardutecture”的聯合待審美國專利申請N〇. 13,〇29, ]37 、 20^1年2月17日提交的名稱為«Field-Programmable Lab-on-a-Chip and Droplet Manipulations Based on EWOD MioxHElectiOde Array Architecture” 的聯合待審美國專利申 1 Na」MML_以及2011年2月17.日提交的名稱為201244824 VI. Description of the invention: [Technical field to which the invention pertains] and the method of the lal^Qn~a~ehip ’LQG) microfluidic system β. More specifically, the present invention is based on the Axis Microelectrode Array % Programmable Wafer Lab (FPL〇c) system. CROSS-REFERENCE TO RELATED APPLICATIONS RELATED APPLICATIONS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Co-pending US Patent Application 1 Na"MML_, entitled "Field-Programmable Lab-on-a-Chip and Droplet Manipulations Based on EWOD MioxHElectiOde Array Architecture", submitted on February 17, 20^1, and February 2011 17. The name submitted on the day is

Microelectrode Array Architecture” 的聯合待審美國專利申 請 No. 13, 029.140 66 全部内容。 【先前技術】 FPL0C可被現場程式設計用於微流體應用,這些微流體應用包 括(但不限於)基於液滴的微流體操作、基於連續的微流體操作、 基於介質上電潤濕(EW0D)的激勵(actuati〇n)或基於(介電電 泳)DEP的激勵。 FPL0C通過利用類似於現場可程式設計閘陣列(FpGA)的結構 為L0C設計者提供了更為便利的解決方案。與獨有的硬連線解決 方案相比’現場可程式設計微流體平臺在無需複雜的硬體設計和 封裝技術的條件下通過軟體程式設計來實現L〇c設計,這提供了 顯著優於其它平臺的優勢。FPL〇c可以以簡單靈活的方式實現不同 的應用專用系統(測定)就像利用明確表徵、大規模生產和封裝 ,FPGA —樣。結果,在微流體領域通過利用半導體行業經驗可以 實現在上市時間、大規模生產、容錯性、低成本方面的優勢以及 201244824 很多其它優點。 流體生術的可能性,微 使用了術語“小型化總化學二ί统為{二概念丄生物化學家 以外的很多學科的越來越多的採化學 的術語“微流體,,和“晶片=iTA(sL0^,,’現今經常使用更廣義 離基:===,= 操縱為在通道中或在襯底上移動 2 些液滴可被 滴,微流體功能可以被簡化為一組早立體積, 位的情況下移動—個單位的流體。在文獻中已I7,個單 ,的^法。這些技術可被分類成化i、ίϊ多g 基?液滴的微流體裝置中,液體夹在兩個平行叔夕 =的形式輸送。基於液滴的微流體系統提供了 間並以 八有低的雜並且不f要諸如泵_之_ I優點.它們 ^分析生物分子以及操縱顆粒之類的多種和反應 體系統中,介質上電潤濕(麵)和液體介^ ^數位微流 ,分配和操縱液滴的兩種主要機制。_和^ )是用 來控制液滴。麵微系統通常用於產生、輪送力 5 201244824 統巾,液滴夹在兩個平行板之間並且在被_和未被激 =1^_潤濕性差異的仙下被激勵。在聰微系統中, 朝荖争二電極上。當施加電壓時,液體變為可極化的,並且 在於激強度的區域流動。LDEP#0麵激勵機制之間的差別 tit ί鮮。在麵&quot;激财,施加通常祕丽的DC 及更古、的冲:玄堅/而LDEP冑要更高的激勵電壓(200-3’rms)以 及更回的頻率(50-200kHz)。 實驗ίϋ潤^则D)是最常見的電學方法之—。諸如晶片 優選地;】板塗覆有連續 具有導電性和透成電極,使其在薄層中 添加到板JL,wH特錢有疏水膜的介電絕緣體被 的電容。含有Ϊ=ίΪ_祕雜Μ㈣與控制電極之間 液滴在填充:介内:充媒介夾在板之間’同時 知加^塵,同時在液滴正下方的電極被去除激勵液滴的電極 近年來’ LDEP也吸引了廣泛的關注,因為 ‘)度的區域吸引可極化的液體堆⑴_ ss)綠DEP液滴分配器的基本 個共面電極塗覆有介電層以健 亟这兩 f = 邊·液滴分配,並在共面電極上Ϊ生了 二作用以及與使用共面電極的液體卿的可靠激勵有關 的關鍵因素已被報告。F耸人脾丑 J罪激勵有關 LDEP電極。平行妹播沾Tnpf壯將’、面LDEP電極改為兩個平行 订電極之間施加來實現,通過鮮將具有相對較 201244824 的液滴泵到具有相對較低介電常數(例如空氣)的區域。</ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Microfluidic operation, continuous microfluidic operation, excitation based on dielectric electrowetting (EW0D) or excitation based on (dielectrophoresis) DEP. FPL0C utilizes a similarly programmable gate array ( The structure of FpGA) provides a more convenient solution for L0C designers. Compared to the unique hard-wired solution, the 'field-programmable microfluidic platform passes without complicated hardware design and packaging technology. Software programming to achieve L〇c design provides significantly better advantages than other platforms. FPL〇c can implement different application-specific systems (measurements) in a simple and flexible way just like using explicit characterization, mass production and packaging , FPGA - like. As a result, in the field of microfluidics, by using the experience of the semiconductor industry, it can be realized at the time of market, large Advantages of mold production, fault tolerance, low cost, and many other advantages of 201244824. The possibility of fluid biotechnology, micro-use of the term "miniature total chemistry" is the concept of many concepts other than biochemistry chemists The more chemistry used in the term "microfluidics," and "wafer = iTA (sL0^,, 'today often use a more generalized basis: ===, = manipulation to move in the channel or on the substrate 2 The droplets can be dripped, and the microfluidic function can be simplified into a set of early standing volumes, in the case of a bit-moving unit. In the literature, I7, single, and ^. These techniques can be classified into In the microfluidic device of the droplets, the liquid is sandwiched between two parallel uncles. The droplet-based microfluidic system provides inter- and low-order impurities and does not have to be Pumps _ _ I advantage. They ^ analysis of biomolecules and manipulation of particles and other kinds of reactant systems, electrowetting (surface) and liquid micro-flows on the medium, distribution and manipulation of droplets The main mechanisms. _ and ^) are used to control the droplets. The face microsystem is usually used to generate, the wheel force 5 201244824 towel, the droplet is sandwiched between two parallel plates and is excited under the _ and the non-excited = 1 ^ _ wettability difference. In the Cong Wei system, the pilgrimage is on the second electrode. When a voltage is applied, the liquid becomes polarizable and flows in the region of the induced intensity. The difference between the LDEP#0 surface excitation mechanism is titish. In the face &quot; spurt, apply the usual secret DC and the more ancient, rush: Xuanjian/and LDEP 更高 higher excitation voltage (200-3'rms) and more frequent frequency (50-200kHz). The experiment ϋ ϋ ^ ^ D) is the most common electrical method -. Preferably, the plate is coated with a capacitor having a continuous conductive and transparent electrode that is added to the plate JL in a thin layer, and the dielectric insulator having a hydrophobic film is used. Contains Ϊ=ΪΪ_密杂Μ(4) and the droplet between the control electrode is filled: medium: the medium is sandwiched between the plates' while knowing to add dust, while the electrode directly below the droplet is removed from the electrode that excites the droplet In recent years, 'LDEP has also attracted a lot of attention because the ') degree attracts the polarizable liquid stack (1)_ss) The basic coplanar electrode of the green DEP droplet dispenser is coated with a dielectric layer to make these two The fact that f = edge and droplet distribution, and the two effects on the coplanar electrode and the reliable excitation of the liquid using the coplanar electrode have been reported. F towering spleen J crimes motivate about LDEP electrodes. Parallel sisters are smeared with Tnpf and 'face LDEP electrodes are changed between two parallel set electrodes. The fresher will have a relatively smaller droplet than 201244824 pumped to a region with a relatively low dielectric constant (such as air). .

EWOD^^t^LOC 冋度專用於特疋的應用。當前的L〇c系統报 车叩貝的硬體設計、測試和維護程式。關於這些 i 3 硬連線”電極。“硬連線,,是指電極的形 它們的形狀、財、==二相 對於L0C設計的高昂的一次性 #=^思咮者相 新功能或局部重概置部分的LQG的能力。 之彳有限的更 者需在要手動期望使L0C設計提 聯的利用液滴操縱產生微流體系統相關 k供現場可程式設計性,其中L0C的電極和整^ 可程_的。微、_置或欽體 以減少用於替換有問題的或退化的固Ϊ所需的二^這可 在出貨之後更新功能的能力、局 ^ ”轉時間。 於=計,的一次性工程費用::應:十:相對 此外,基於新穎的微電極陣列結構,可 ;隹 、= 桑縱液滴的技術。在基於觸 可以相信’採用微電極陣列結構的現場可程式設計晶片實驗 201244824 能力,因於,用來動態地程式設計紙oc系統的 ΐ著改進L〇C設計的周轉時間,還可以使L0C設 ,升到應簡次’以減輕L0C設計者在手動優化生物 時的硬體設計、昂貴_試和維護程式方面的負擔。 【發明内容】 驗室採極㈣結構的現射奴設計晶片實 ^ , 、置,匕括.a .底板,包括置於襯底的頂表面上 ΪϋϋΐίΪ陣列’所述多個微電極由介電層覆蓋,其中每個 二電極連翻接地結射的至少—個接地元件,在所述介電 $所述躺日元件的頂部設置有疏水層,以生成具有液滴的疏水 广、、’現場可程式設計結構,用於程式設計一組配置電極,以 ,以選找職和尺寸產生微流體元件和佈局;以及e · FpL〇c功 ^ ’包括.I/O埠;樣品製備單元;液滴操縱單元 和系統控制單元。 在另一實施方式中,一種採用CMOS技術製成品的FPL0C裝置 ?括:a · CMOS系統控制塊’包括:控制器塊,用於提供處理器單 兀、記憶體空間、介面電路和軟體程式設計能力;晶#佈局塊, 用於存儲配置電極配置資料以及FPL〇c佈局資訊和資料;液滴位 置地圖,用於存儲液滴的實際位置;和流體操作管理器,用於將 所述佈局資訊、所述液滴位置地圖以及來自所述控制器塊的FpL〇c 應用轉譯成液滴的物理激勵;以及b .多個流體邏輯塊,包括:一 =微電極,位於CMOS襯底的頂表面上;一個記憶體地圖資料存儲 單元,用於保持所述微電極的激勵資訊;以及控制電路塊,用於 管理控制邏輯。 在又一實施方式中,一種採用薄膜電晶體TFT技術製成品的 裝置包括:a . TFT系統塊,包括:控制器塊,用於提供處 理态單元、記憶體空間、介面電路和軟體程式設計能力;晶片佈 局塊’用於存儲配置電極配置資料以及Fpl〇c佈局資訊和資料; 201244824 液滴位置地圖’用於存儲液滴的實際位置;和流體操作管理器, =於將來自所述佈局資訊、所述液滴位置地圖以及FPL0C應用的 資料轉譯成用於激勵微電極的物理液滴激勵資料,所述FPL0C應 用來自所述控制器塊,其中所述物理液滴激勵資料包括以逐幀的 方式發送給有源矩陣塊的對配置電極的成組、激勵和去除激勵; 以及b .有源矩陣塊,包括:用於單獨激勵每個微電極的有源矩陣 面板’包含栅極匯流排、源極匯流排、薄膜電晶體、存儲電容器 和微電極;有源矩陣控制器,包含源極驅動器和柵極驅動器,用 於通過將驅動資料發送給驅動晶片,利用來自TFT系統控制塊的 資料來驅動TFT陣列;和DC/DC轉換器,用於向所述源極驅動器 和所述栅極驅動器施加驅動電壓。 在又一實施方式中,一種自下而上程式設計和設計FPL0C裝 置的方法包括:a .擦除FPL0C的記憶體;b .配置具有選定形狀 和尺寸的一組配置電極的微流體元件,所述一組配置電極包括在 現場可程式設計結構中以陣列形式佈置的多個微電極,所述微流 體組件包括貯液器、電極、混合室、檢測視窗、廢棄物貯存器、 液滴路徑以及指定功能電極;c ·配置所述微流體元件的物理分 配’以及d ·設計用於樣品製備、液滴操縱和檢測的微流體操作。 在又一實施方式中,一種自上而下程式設計和設計Fpl〇c裝 置的方法包括:a ·通過硬體描述語言設計FPL0C的功能;b ·依 據硬體描述語言產生排序圖模型;c ·通過硬體描述語言執行類比 以驗證FPL0C的功能;d ·根據所述排序圖模型利用體系級合成來 產生具體執行過程;e ·將來自微流體模組庫和來自設計規範的設 計資料登錄到合成處理中;f ·產生晶片上資源的測定操作的映射 檔、測定操作的時間表檔以及來自合成處理的内置自測試槽;g · 利用設計規範的輸入執行幾何級合成,以產生生物晶片的二維物 理設計;h·根據結合有具體物理資訊的生物晶片的二維物理設 計,產生三維幾何模型’所述具體物理資訊來自所述微流體模^ 庫;i .通過使用三維幾何模型執行物理級類比和設計驗證;以及 j ·將FPL0C設計載入到空白FPL0C中。 ’ 201244824 創建ίί中’—種設計FPLGC庫的方法包括:a .通奶 模組描述,所述硬體描述語 寫的^體細作的功能 作臺構成測試系統並用於類比:二】g ’所2試工 述===·通過物理類比將 行整個系統= 通過具有所述傳播延遲的連線表,運 在另一實施方式中,本發明的EW0D “ 矩陣印刷機”的概心其中,多個微電極(例如車义,構 ΐ7?Γ,去除激勵以形成各種形狀和尺寸的電極,ί ΪΪ 足在%應用中的流體操作功能的要求。 便滿 在另一實施方式中,所有的EW0D微流體 =這些微流體元件包括(但不限於)貯液器、產 液滴路徑等。並且’對於I/Q埠、貯液器、電極、路徑以^ 網路的位置的L0C物理佈局都可通過配置微電極來實現。、° 在另一實施方式中,除了配置電極的用以執 微電極的確定控綱序可提供祕賴崎 、:^ίί 一Ϊ施方式中,基於EW〇D微電極陣列結構的液滴操縱方 法可ο括.產生液滴;輸送液滴;切赚滴;以及混合液滴。 么開FPL0C的各種貫施方式。在,個實施方式中,FpL〇c的嗖 ,微電極陣列結構。FPL〇c可根據不同的應用和功能被 動,、地场程式設計,其中由很多微電極構成的所有電極可通過軟 體設計並重新配置。在配置或重新配置之後,與基於讎的L〇c 糸統的總體構思類似,L0C設計中的基於EW0D技術的流體操作可 通過控制和操縱電極來實現。 …^另一實施方式中,FPL0C系統的各種形狀和尺寸的電極比如 貯液器、電極、混合室、液滴路徑等都能夠通過軟體程式設計或 重新配置,以滿足在場應用中的操作功能的要求。 f 10 201244824 電極此3彳4?^③計或鱗配置可執行戰人蜂、貯液器、 冤極、路仕=電極網路的位置的FPL〇c物理佈局。 在又:知方式中,FPL〇c將低級微流體操作封裝應 ,中:以便設計者關注高級的應用層面。微電極的用以二呈 料和激驗綱序作鱗專紐產生和測^, 以挑選所述庫專案來組合其微流體應用。 孩ίίϋί ίΓ操縱液滴的_微電極陣列結構的設計 ^基m其巾麵激勵可發絲不具有頂板的單板配置 陣賴構的設計 眉巧?ϊ施方式,但是本發明的其它實施方式對於所 ί :究下文的詳細說明之後也將變得顯而易 ^離本發明的精神和範圍的條件下,本發明在多 夕種改型。相應地,關和詳細·在性f ^ = 的而非限制性的。 、田散矾馮不例性 【實施方式】 的,======= 互平行的玻_2〇和121。編21包含單^=== 案化陣列’頂板120塗覆有連續的地電極14〇。優選 如 化銦錫⑽)之類的材料形成電極,使其 中導^ 透光性的組合特徵。將塗覆有諸如聚四氟乙烯; 表面的潤濕性並增加在液滴與控㈣極之間的 學樣品的賴150和諸如⑪油或空氣之類 間,以有助於液滴15〇在填充媒介内部的輸送充 150,向鄰近於液滴㈣極⑽施加控制電壓,同時 201244824 下方的電極被去除激勵。 圖1B是概括說明在二維電極陣列19〇上 ,里150從電極130移動到被激勵的麵⑽中。電極⑽ 作用使得電荷積聚在液滴/絕緣 鄰電極130和180之間的間隙135上產生介 陣歹It 15D ° 變沿著線性電極 陣列的電位’可電難來沿著此€極線移 在o,v的範_調節控制電壓來控制液滴的速率, iiiH以以南達2Qcm/s的速度移動。液滴151和152也可在 罐件下,通過二維電極陣列以使用者限定 的圖案在時鐘電壓控制下輸送。 梯产ί ί m 置__極之_酿的介面張力 極的設計包括每個電極的期望形狀、尺寸以 。在基於_的L0C佈局設計中,液滴 ϊίϊΐί 的不同區域的多個電極構成。這㈣極可用 混“切其它更為複雜的操作比如在液滴操縱中的 卿可如圖2所示構建用於操縱介電液滴的 ί底245上圖案化糾_極261。每個 考電Ho上^夕”261。頂板240包含未被圖案化的參 ,,° 曰低表面能材料(比如聚四氟乙烯)210塗覆在兩 ,板上,以減小液滴250與固體表面之間的介面力,這有助於可 操作期間的介電液體殘留物。間隙高度或 ^ f ^3施巧堡’將介電液滴粟到處於激勵狀態的微電 Λ頭所示。在間隙高度*150刪的平行板裝置 以二二八3、在癸r,介電液滴(350V〇c)、十六烧介電液滴(470Vdc ) a * I/1電液滴(250Vdc乃的激勵。所施加的DC電壓的極性對EWOD^^t^LOC is specifically designed for special applications. The current L〇c system reports the hardware design, testing and maintenance procedures for mussels. Regarding these i 3 hard-wired "electrodes." Hard-wired, refers to the shape of the electrodes, their shape, wealth, == two relative to the L0C design of the high-time one-time #=^思咮者相新功能 or local Re-distribute part of the LQG capabilities. There is a limited need for the use of droplet manipulation to create a microfluidic system related to the L0C design to provide for field programmability, where the L0C electrodes and the integral _ _. Micro, _ or chin to reduce the need to replace problematic or degraded solids. This can be used to update the function of the function after shipment, and the turnaround time. Cost:: should: Ten: In addition, based on the novel microelectrode array structure, can be used; 隹, = 桑 longitudinal droplet technology. In the touch-based can believe that 'micro-electrode array structure of the field programmable wafer experiment 201244824 ability Because, in order to dynamically program the paper oc system, the turnaround time of the L〇C design can be improved, and the L0C can be set to be simple enough to alleviate the hardware of the L0C designer when manually optimizing the creature. The burden of design, expensive _ test and maintenance program. [Summary of the invention] The current design of the laboratory (4) structure of the original design of the wafer, ^, set, including. A. The bottom plate, including the top surface of the substrate The plurality of microelectrodes are covered by a dielectric layer, wherein each of the two electrodes is connected to at least one grounding element that is grounded, and a hydrophobic layer is disposed on top of the dielectric member. To generate droplets Widely hydrophobic, 'field programmable structure for programming a set of configuration electrodes to create microfluidic components and layouts for job search and size; and e · FpL〇c work ^ 'includes .I/O埠a sample preparation unit; a droplet manipulation unit and a system control unit. In another embodiment, an FPL0C device manufactured using CMOS technology includes: a · CMOS system control block 'includes: a controller block for providing processing Device unit, memory space, interface circuit and software programming capabilities; crystal # layout block, used to store configuration electrode configuration data and FPL〇c layout information and data; droplet location map for storing the actual location of the droplet And a fluid operation manager for translating the layout information, the drop location map, and the FpL〇c application from the controller block into physical excitation of the drop; and b. a plurality of fluid logic blocks, The method includes: a = microelectrode on a top surface of the CMOS substrate; a memory map data storage unit for holding excitation information of the microelectrode; and a control circuit block for Management control logic. In still another embodiment, an apparatus for fabricating a product using a thin film transistor TFT technology includes: a. a TFT system block, comprising: a controller block for providing a processing state unit, a memory space, an interface circuit, and Software programming capability; wafer layout block 'used to store configuration electrode configuration data and Fpl〇c layout information and data; 201244824 droplet location map 'used to store the actual location of the droplet; and fluid operation manager, = will come from The layout information, the drop location map, and the data of the FPLOC application are translated into physical droplet excitation data for exciting the microelectrode from the controller block, wherein the physical droplet excitation data includes Group, excitation, and de-excitation of the pair of configuration electrodes that are sent to the active matrix block on a frame-by-frame basis; and b. active matrix blocks, including: an active matrix panel for individually exciting each microelectrode' a bus bar, a source bus bar, a thin film transistor, a storage capacitor, and a microelectrode; an active matrix controller including a source driver and a pole driver for driving the TFT array by using data from the TFT system control block by transmitting the driving data to the driving chip; and a DC/DC converter for applying driving to the source driver and the gate driver Voltage. In yet another embodiment, a method for bottom-up programming and designing an FPLOC device includes: a. erasing the memory of the FPL0C; b. configuring a set of microfluidic elements having a set of configured electrodes of a selected shape and size, The set of configuration electrodes includes a plurality of microelectrodes arranged in an array in a field programmable structure, the microfluidic assembly including a reservoir, an electrode, a mixing chamber, a detection window, a waste reservoir, a droplet path, and Designating a functional electrode; c • Configuring the physical distribution of the microfluidic element 'and d · designing a microfluidic operation for sample preparation, droplet manipulation, and detection. In still another embodiment, a method for designing and designing a Fpl〇c device from top to bottom includes: a) designing a function of FPL0C by a hardware description language; b) generating a sort map model according to a hardware description language; Performing an analogy by hardware description language to verify the functionality of FPL0C; d) using system-level synthesis to generate a specific execution process according to the sorting graph model; e) logging design data from the microfluidic module library and from the design specification to the synthesis Processing; generating a mapping file for the measurement operation of the resources on the wafer, a time schedule for the measurement operation, and a built-in self-test slot from the synthesis process; g· performing geometric level synthesis using the input of the design specification to generate the biochip 2 Dimensional physical design; h· according to a two-dimensional physical design of a biochip combined with specific physical information, generating a three-dimensional geometric model from which the specific physical information comes from; i. performing physical level by using a three-dimensional geometric model Analogy and design verification; and j · Load the FPL0C design into the blank FPL0C. ' 201244824 Create ίί ' - a method of designing the FPLGC library includes: a. The description of the milk module, the function of the hardware description written in the hardware description constitutes a test system and is used for analogy: two] g ' 2 trial work ===· the entire system by physical analogy = through the wiring table with the propagation delay, in another embodiment, the EW0D "matrix printing machine" of the present invention is more Microelectrodes (eg, 车7, ΐ7?Γ, removal of excitation to form electrodes of various shapes and sizes, 足 要求 流体 在 在 在 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Microfluidics = These microfluidic components include, but are not limited to, reservoirs, droplet paths, etc. and 'L0C physical layout for I/Q埠, reservoir, electrode, path to ^ network location It is realized by configuring the microelectrode. In another embodiment, in addition to configuring the electrode to determine the microelectrode, the determinant sequence can provide the secret lysin, :^ ίί, a method based on EW〇D micro Droplet manipulation of the electrode array structure The method can produce droplets; transport droplets; cut droplets; and mix droplets. Various ways of implementing FPL0C. In one embodiment, FpL〇c 嗖, microelectrode array structure. FPL 〇c can be passive and field-programmed according to different applications and functions. All the electrodes composed of many micro-electrodes can be designed and reconfigured by software. After configuration or re-configuration, with 雠-based L〇c The overall concept is similar, the EW0D-based fluid operation in the L0C design can be achieved by controlling and manipulating the electrodes. In another embodiment, the FPL0C system has various shapes and sizes of electrodes such as a reservoir, an electrode, a mixing chamber. , droplet path, etc. can be programmed or reconfigured by software to meet the operational requirements of the field application. f 10 201244824 Electrode This 3彳4?^3 meter or scale configuration executable war bee, liquid storage , Bungee, Lu Shi = FPL〇c physical layout of the position of the electrode network. In the other way: FPL〇c will package the low-level microfluidic operation, so that the designer can pay attention to the advanced application layer. The microelectrode is used to generate and measure the two materials and the excitation sequence to select the library project to combine the microfluidic application. The _microelectrode array structure of the droplets is manipulated. The design is based on the design of the single-board configuration without the top plate. However, other embodiments of the present invention will also be changed after the detailed description below. It is obvious that the present invention is modified in the context of the spirit and scope of the present invention. Accordingly, it is related and detailed, and is not limited in nature f ^ =. For example [invention], ======= mutually parallel glass_2〇 and 121. The braid 21 contains a single ^=== case array&apos; top plate 120 coated with a continuous ground electrode 14〇. It is preferable that a material such as indium tin oxide (10) is formed into an electrode to have a combined characteristic of light transmittance. It will be coated with a wettability such as polytetrafluoroethylene; the surface of the sample between the droplet and the control (four) pole and the like, such as 11 oil or air, to help the droplet 15〇 The transfer charge 150 inside the fill medium applies a control voltage adjacent to the drop (four) pole (10) while the electrodes below 201244824 are de-energized. Figure 1B is a schematic illustration of the movement of the inner 150 from the electrode 130 into the excited face (10) on the two-dimensional electrode array 19A. The action of the electrode (10) causes the charge to accumulate on the gap 135 between the droplet/insulating adjacent electrodes 130 and 180 to create a dielectric 歹It 15D ° varies along the potential of the linear electrode array 'Electrical hard to move along this 线 line o, v's mode adjusts the control voltage to control the rate of droplets, and iiiH moves at a rate of 2Qcm/s south. Droplets 151 and 152 can also be delivered under a canister under a clock voltage control through a two-dimensional array of electrodes in a user defined pattern. Ladder ί ί m __极__ The interface tension of the electrode The design of the pole includes the desired shape and size of each electrode. In the _ based L0C layout design, droplets ϊίϊΐί are composed of multiple electrodes in different regions. This (four) pole can be mixed. "Changing other more complicated operations, such as in droplet manipulation, can be used to manipulate the dielectric droplets on the bottom of the pattern 245 as shown in Figure 2. Each test is performed. Electric Ho on ^ 夕" 261. The top plate 240 includes unpatterned fingers, and a low surface energy material (such as Teflon) 210 is applied to the two plates to reduce the interfacial force between the droplets 250 and the solid surface. Helps with dielectric liquid residues during operation. The gap height or ^ f ^3 Shi Qiaobao's will show the dielectric drop to the micro-electric head in the excited state. The parallel plate device with a gap height of *150 is 228, at 癸r, dielectric droplets (350V〇c), hexadecimal dielectric droplets (470Vdc) a * I/1 electric droplets (250Vdc The excitation of the polarity of the applied DC voltage

同時,經測試細贈術號JAt the same time, after the test, the gift number J

12 201244824 在之間的差別在於激勵電壓和頻率。因此 通常在EW0D舰Ϊ /雙平面電極結構以及配置是可行的。 優選地驅動電壓在DC或低頻AC電壓’ 需要更高的激勵電i ( 2 ^ ^ (50-200kHZ),優選地驅動雪)以及更高的頻率 並且具有⑽-3〇〇Vrms 200kHz的AC的範圍 枯;在下文對本發明的描述中,將利用ew〇d 變、施方式,但是在大多數情況下通過適當改 艾激勵電昼和頻率’本發明也涵蓋DEP激勵。 構陣印刷機,,的概念,即,微電極陣列結 Ξ 用於形成財難體元件的“點”。換言 形成各種微流體元件。根據客戶置”不同的雜和尺寸 操S Λίΐ,ίΓί激勵以形成不同電極並執行微流體12 201244824 The difference between the excitation voltage and frequency. Therefore, the EW0D ship/double plane electrode structure and configuration are usually feasible. Preferably the driving voltage at the DC or low frequency AC voltage 'requires a higher excitation current i (2^^(50-200kHZ), preferably driving snow) and a higher frequency and has an AC of (10)-3〇〇Vrms 200kHz The range is dry; in the following description of the invention, the ew〇d will be utilized, but in most cases the excitation and frequency are excited by appropriate modifications. The present invention also covers DEP excitation. The concept of a framing press, ie, a microelectrode array Ξ is used to form a "dot" of a financially difficult component. In other words, various microfluidic components are formed. According to the customer's "different miscellaneous and size", S Λ ΐ , , , , , , , , , , , , , , , , , , , , , , ,

作用使得雷·&quot;镥枣户/·私的是向電極施加所需的電壓,從而EW〇D 絕緣體介面中’紐在相鄰電極之間的 t ^传可極化並朝著較強電場強度的區域流動。“去Ξ 勵私的疋去除施加到電極的電壓。 ’、 方式圖在明的微電極陣列結構的隱的一個實施 樣的徽雷;中’微電極陣列包括多個(30x23個)同 表干為微雷l 微電極陣列3〇0是基於標準微電極規範(這裡 ίι=ί!=)二及,,终的職用和具體微流體操作 ί JiflFPL0C °然後,基於應用需要’此微電極陣列4配 1或,體程式設計到期望的L0C中。如圖3所示,每細 括100個微電極310 (即10x10個微電極)。“配置雷搞,,°The effect is that Ray &quot; 镥 户 / / / private is to apply the required voltage to the electrode, so the E ^ 〇 D insulator interface in the 'new 在 between the adjacent electrodes can be polarized and toward a stronger electric field The area of intensity flows. “The 疋 励 励 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋For the micro-lei l microelectrode array 3〇0 is based on the standard microelectrode specification (here ίι=ί!=) II and, the final occupation and specific microfluidic operation ί JiflFPL0C ° then, based on the application needs 'this microelectrode array 4 with 1 or, the program is designed into the desired L0C. As shown in Figure 3, each micro-electrode 310 is thinned out (ie 10x10 micro-electrodes). "Configuration Lei,, °

Γϊ = 〇主個微電極310組合在一起以用作集顧極320 L t起被同時激勵或去除激勵。通常來說,配置資料存儲在 失性記憶體(比如_中,並且可“在場K 13 201244824 ΐϊϊί將裝置返回其製造商。圖3說明液滴35Q位於中心配置 %如圖、3所示’本發明配置電極的尺寸和形狀可基於應用需要 岐汁。㈣350的體積與電極320的尺寸成比例。換言之,通 過^電極32(3的尺寸,液滴350的體積也被限制以與電極320 的没計尺寸相適應’由此可以控制液滴的體積。尺寸受到控制的 配置電極的例子是電極32〇和34〇。電極32〇具有1〇χ1〇個微電極 的尺寸L而電極340具有4x4個微電極的尺寸。除了電極尺寸的 配置’,可通過彻微電極陣列來配置電極的不_狀。儘管電 ,320是方形’電極330是包括2χ4個微電極的矩形。電極36〇 是左側齒狀的方形,而電極370是圓形。 隨著微電極的數量增加,可以通過FPL〇c程式設計整個L〇c 設計’如圖4A所示,輸送路徑440、檢測視窗450和混合室460 的配置電極的形狀為方形。貯液n 是確定形狀的大尺寸配置 電極。廢棄物貯存器420是四角形。 圖4B和4C說明圖4A中的貯液器430的放大版本。圖4B說 明通過卞規EWOD-LOC系統製造的物理蝕刻的貯液器結構431。其 元件顯示為永久性蝕刻的貯液器431和四個永久性蝕刻的電^ 47卜與圖4B (常規設計)相比’圖4C說明場程式設計l〇C結構, ^具有類似尺寸的配置貯液器432以及成組的電極472。配置貯液 器432可通過將多個微電極411組合成期望的尺寸和形狀以製作 這種財液态元件來製造。成組的電極472包含4x4個微電極411。 —在設定了所需微流體組件的形狀和尺寸之後,還很重要的是 設定微流體元件的位置以及如何將這些微流體元件連接在一起作 為線路或網路。圖4A說明這些微流體元件所處的物理位置以及這 些微流體元件如何連接在一起以用作功能L〇c。這些微流體組件 為:配置電極470、貯液器430、廢棄物貯存器420、混合室460、 方双測視固450以及連接LOC的不同區域的輸送路徑440。如果是現 場可程式設計LOC,則在佈局設計之後,會有一些未使用的微電極 410。在FPLOC被充分檢驗合格之後,設計者可以嘗試硬連線版本 201244824 以節約成本,然後未使用的微電極410可被移除。 FPL0C中的微電極的形狀可以不同的方式物理地實現。在本發 明的一個貫施方式中,圖5A說明多個方形微電極的陣列,並且其 中的一個微電極被突出顯示為501。6χ6個微電極構成配置電^ 502。圖5Α總共有3x2個配置電極。在另一實施方式中,圖5β說 明多個六邊形微電極的陣列,並且其中的一個微電極被突出顯示 為503。6x6個微電極構成配置電極5〇4,圖5Β中有3x2個配置電 極。六邊形微電極的交叉指型邊緣在沿著配置電極之間的間隙^ 動液滴時具有優勢。在又-實施方式中,目5(:綱佈置在牆 ,中的多個方職電極的_,其巾的—個微電極被突出顯示為 5054x6個微電極構成配置電極506,圖5C中有3χ2個配置電極。 六邊形微電極的交叉指型邊緣在沿著配置電極之間的間隙移 具有優勢^這只發結Χ 1吐。射實祕彡其它形狀的 微電極,而不僅限於這裡所討論的三種形狀。 常規的LOC設計基於雙平面結構(其具有包含圖案化電極 列的底板以及塗覆有連續地電極的頂板)或者共 勵可發生在不具有頂板的單板配置中)。共面設計可“g 有適應寬範圍的體積尺寸的液=5 面結構的LOC裝置仍可以增加用於密 :二二 ==保護測試媒介具有更長的上架保昃: 雙平面模式之_換微電極結構。在雙 ^ ^ 680連制地,而在蓋板咖均地電極_接地網 201244824 去個實施方式中,圖6A中所示的一個物理共面微雷搞ΓΜη 口 )可以是接地網結構。接地 ° _轉極631、地線681以及在631 ’ ^有 激Γ時,驅動微電極631由DC或方波驅動電壓充電。地Ϊ H,·631處__板上以實現共面Ϊ 用以確保在631與681之間無垂直重疊。在圖服中說1 =、681 兄刀董且並且可被有效地操縱。在另一實施方式丄 ===_,糊峨崎,面賴操^ 聊FPL0C#電極結構的另一實施方式。在驅動汽紐 f6 Γ 682 5 ω 632 ^4ίJ; 中所示的實施方式中的地線,本實 貫現/、面結構。本發明的此實施方式利用了群組接地 &amp;早UL^niing) ’由此接地焊盤、微電極和液滴65^的ΐ致 作帶來任何問題即可。按要額外的接地不會給雙平面結構操 絲古,6Dy^FPL〇C微電極‘抑接地焊盤,,共面結構的另一實 雷同的i反上不具有地線或接地焊盤。而是, π~ 乍接地焊盤以貫現共面電極結構。圖6D說明4x4個 形微電極633,在微電極之間具有間隙617 州。Λ在本實化方式中’四個角的微電極被配置為地電極 及“配晉技場可程式設計性以及微型微電極對“配置電極”以 二:焊盤,’的動態配置提供了更高的靈活性和更高的細 S固目的’地微電極被程式設計在四個角上,但這 祐t以*〜、。。包含對地電極或激勵電極的改變的臨時步驟可 電ϋ也操縱的最佳結果。這種“現場可程式設計,,微 、、。冓疋貫現FPL0C的混合板結構的最靈活的方式,但是Γϊ = 〇 The main microelectrodes 310 are combined to be used as a set of poles 320 L t to be simultaneously excited or removed. In general, the configuration data is stored in a loss memory (such as _, and can be returned to its manufacturer in the presence of K 13 201244824 。 ί. Figure 3 shows that the droplet 35Q is located in the center configuration % shown in Figure 3, ' The size and shape of the electrode of the present invention can be based on the application of the juice. (iv) The volume of 350 is proportional to the size of the electrode 320. In other words, by the size of the electrode 32 (3, the volume of the droplet 350 is also limited to the electrode 320 The size is adapted to 'thereby controlling the volume of the droplets. Examples of configuration electrodes whose size is controlled are the electrodes 32A and 34A. The electrode 32 has a size L of 1〇χ1 microelectrodes and the electrode 340 has 4x4 The size of the microelectrodes. In addition to the configuration of the electrode size, the electrode can be configured by the microelectrode array. Although electric, 320 is a square 'electrode 330 is a rectangle including 2 χ 4 microelectrodes. The electrode 36 〇 is the left side The teeth are square and the electrode 370 is circular. As the number of microelectrodes increases, the entire L〇c design can be programmed by FPL〇c' as shown in Figure 4A, transport path 440, detection window 450 and mixing The configuration electrode of the chamber 460 is square in shape. The reservoir n is a large-sized electrode of a defined shape. The waste reservoir 420 is a quadrangle. Figures 4B and 4C illustrate an enlarged version of the reservoir 430 of Figure 4A. Figure 4B illustrates A physically etched reservoir structure 431 made by the EEWOD-LOC system. The components are shown as a permanently etched reservoir 431 and four permanently etched cells compared to Figure 4B (conventional design) Figure 4C illustrates a field programming architecture, ^ having a similarly sized configuration reservoir 432 and a set of electrodes 472. The configuration reservoir 432 can be assembled by combining a plurality of microelectrodes 411 into a desired size and shape. The production of such liquid components is made. The set of electrodes 472 comprises 4 x 4 microelectrodes 411. - After setting the shape and size of the desired microfluidic components, it is also important to set the position of the microfluidic components and how These microfluidic elements are connected together as a line or network. Figure 4A illustrates the physical location of these microfluidic elements and how these microfluidic elements are connected together for use as a function L〇c. The components are: a configuration electrode 470, a reservoir 430, a waste reservoir 420, a mixing chamber 460, a square dual view 450, and a transport path 440 connecting different regions of the LOC. If it is a field programmable LOC, then the layout After design, there will be some unused microelectrodes 410. After FPLOC is fully qualified, the designer can try the hardwired version 201244824 to save costs, and then the unused microelectrodes 410 can be removed. Micro in FPL0C The shape of the electrodes can be physically implemented in different ways. In one embodiment of the invention, Figure 5A illustrates an array of a plurality of square microelectrodes, and one of the microelectrodes is highlighted as 501. 6 χ 6 microelectrodes constitute a configuration Electric ^ 502. Figure 5 shows a total of 3x2 configuration electrodes. In another embodiment, FIG. 5β illustrates an array of a plurality of hexagonal microelectrodes, and one of the microelectrodes is highlighted as 503. 6×6 microelectrodes constitute the configuration electrode 5〇4, and FIG. 5Β has 3×2 configurations. electrode. The interdigitated edges of the hexagonal microelectrodes are advantageous when moving droplets along the gap between the configuration electrodes. In a further embodiment, the target electrode 506 is arranged as a plurality of square electrodes in the wall, and the microelectrodes of the towel are highlighted as 5054 x 6 microelectrodes to form the electrode 506, which is shown in FIG. 5C. 3χ2 configuration electrodes. The interdigitated edge of the hexagonal microelectrode has the advantage of moving along the gap between the configured electrodes. This is only the knot Χ 1 spit. Shooting secrets other shapes of microelectrodes, not limited to here The three shapes discussed. Conventional LOC designs are based on a biplanar structure (with a bottom plate containing patterned electrode columns and a top plate coated with continuous electrodes) or co-excitation can occur in a single plate configuration without a top plate). The coplanar design can “g have a wide range of volumetric fluids. The LOC device with a 5-sided structure can still be added for the density: 22 == protection test media has a longer shelf protection: double-plane mode _ change Microelectrode structure. In the dual ^ ^ 680 connection ground, and in the cover plate even ground electrode _ grounding network 201244824 in an embodiment, a physical coplanar micro-throttle shown in Figure 6A can be grounded Network structure: grounding ° _ pole 631, ground 681 and when 631 ' ^ is excited, the driving micro-electrode 631 is charged by DC or square wave driving voltage. The ground H, · 631 at the __ board to achieve a total The facets are used to ensure that there is no vertical overlap between 631 and 681. In the figure, 1 =, 681 is said to be and can be effectively manipulated. In another embodiment 丄 ===_, paste 峨, Another embodiment of the FPL0C# electrode structure is described. The ground wire in the embodiment shown in the driving fan f6 Γ 682 5 ω 632 ^4 ίJ; is the present invention. This embodiment utilizes group grounding &amp; early UL^niing) 'The resulting ground pad, microelectrode, and droplet 65^ Any problem can be found. Pressing the extra grounding will not give the biplanar structure a trace, the 6Dy^FPL〇C microelectrode's grounding pad, and the other surface of the coplanar structure is the same. Line or ground pad. Instead, π~ 乍 ground pad to achieve a coplanar electrode structure. Figure 6D illustrates a 4x4 shaped microelectrode 633 with a gap 617 between the microelectrodes. 'The four-corner microelectrode is configured as a ground electrode and "fitted with a programmable field and micro-micro-electrode pair "configured electrode" with two: pad, 'dynamic configuration provides more flexibility and more The high-small S-solid micro-electrodes are programmed at the four corners, but this is better than *~. . The temporary step of including a change to the ground electrode or the excitation electrode can be the best result of the operation and operation. This "field programmable, micro, and .. is the most flexible way to achieve the FPL0C hybrid board structure, but

S 16 201244824 將需要更高的輕動電屢以激勵液滴。 可調節的和翻的了 =,的混合結構中採用可拆卸的、 實現,其中用於液滴730署tli通過k電極陣列結構技術來 1 m 的配置電極的側視圖包括三個微雷 不為黑色)。用於液滴740的配置 二固微電極(顯 750的配置電極包括+ 一初已括/、個微電極,用於液滴 的應用中本實财式在諸如_C之類 形狀和尺寸時構在配置所述配置電極的 =範圍的尺蝴的i;的系二仍=;= ίΤΛ過三種方式實現:首先,所有的液滴可在不:觸 ΐ過接觸頂板***縱’其中液滴夹 構中。第曰720之間。第二種方式通常應用於雙平面結 起命托Γ種方式或混合方式合併了共面結構以及在頂蓋710盘 it 的液滴。如圖7所示,位於間隙内的液滴730 ,可在不接觸雛71Q的條件下***縱。液滴75〇*** 在頂板710與電極板72〇之間。本發明不限於誦微電極 = '構技術’也可在液滴尺寸的可細範圍可被限制的啊應 用於其它常規的電極板。 在FPLOC800的一個實施方式中,FPL〇c需要五個基礎功能 塊,如圖8所示,包括1/0埠(81〇、811、812和813)、樣品製 ,820、液滴操縱83〇、檢測840以及系統控制850。在下面的段 落中將詳細公開FPLOC的五個功能塊的實施方式。 輸入/輸出埠(810、81卜812和813)是在外部世界與FPLOC800 =間的介面。在另一實施方式中,存在FPL0C的四種輸入/輸出埠, 它們與下述四個功能塊相關聯:樣品輸入埠8丨〇、液滴丨/〇埠8i i、 17 201244824 檢測===,!控制1/0埠則,如圖 樣口口调入埠(圖8中的81〇):由於規實世只嫌σ 及晶月實驗室(毫微升)在比例上的巨大^里微f以 裝載到LOC上需要微产^ )和反應物(圖8中的833) 上之後可添加蓋,因而不需I固^㈣衰二或反應物裝载到删c 將樣品950直接裝载到共面電極板入上阜過箱S 16 201244824 will require a higher amount of light power to repeatedly force the droplets. Adjustable and turned over =, the detachable, realized, versatile side view of the configuration electrode for the droplet 730 tli through the k-electrode array structure technology to include 1 micro-thunder black). The configuration for the droplet 740 is a two-solid microelectrode (the configuration electrode of the display 750 includes + a first-inclusive/one micro-electrode, and in the application of the droplet in the shape and size such as _C The structure of the ruler of the configuration electrode of the configuration electrode is still =; = ίΤΛ is implemented in three ways: first, all the droplets can be manipulated in the absence of: contact with the top plate. In the sandwich structure, between the second and the second. 720. The second method is usually applied to the biplane junction or the hybrid mode combined with the coplanar structure and the droplets in the top cover 710. As shown in Figure 7. The droplet 730 located in the gap can be manipulated without contacting the chick 71Q. The droplet 75 is operated between the top plate 710 and the electrode plate 72. The present invention is not limited to the microelectrode = 'structural technology' It can also be applied to other conventional electrode plates in the fine range of droplet size. In one embodiment of FPLOC 800, FPL〇c requires five basic functional blocks, as shown in Figure 8, including 1/ 0埠 (81〇, 811, 812, and 813), sample system, 820, droplet manipulation 83〇, detection 840, and system Control 850. Embodiments of the five functional blocks of the FPLOC are disclosed in detail in the following paragraphs. The input/output ports (810, 81, 812, and 813) are interfaces between the external world and the FPLOC 800 = in another embodiment. There are four input/output ports of FPL0C, which are associated with the following four function blocks: sample input 埠8丨〇, droplet 丨/〇埠8i i, 17 201244824 detection ===, ! control 1 0埠, the picture is transferred to the mouth (81〇 in Figure 8): because the regulation is only σ and Jingyue Lab (nanoliters) in the proportion of the huge ^ micro-f to load to LOC After the micro-production and the reactants (833 in Fig. 8) are required, a cap can be added, so that no I (4) decay or reactant loading to the c is removed, and the sample 950 is directly loaded to the coplanar electrode plate. Enter the box

糾L ίΐ在裝載樣品950之後放置無源蓋:ίί 說明本發明的-個:r施方式,其中在刪c的喃 I 滴950夾在它們之間。圖9D說明本發明的另 方7 FPLOC採用了鉸接裝置94〇連接蓋板98Q # $ ^ 載樣品和反應物950並實現更好的板970,以方便裝 液滴I/O埠(圖8中的811):在本發明的一個f 檢測I/O埠(圖8中的812):越來越多的研究論名 的技術’尤其是那些相比吸光率或=檢 ί 化上更㈣技術。但是’—些成熟和敎的檢測技 術,例如可包括使用視頻檢測和鐳射誘導 腿中。由於穩固性、高信触以及靈敏度,光 二ΪΞΪίί比用於L〇C的ΐ它方法仍占主導地位。光學檢測最 电潤濕的L〇C平臺集成。僅需要將位於將用於光學檢 包括頂板翻、底板1G21、介電層1_和_以及 的所有材料做成透明的即可。共面設計可適應比上述更 夕的才双測機制,因而增加了系統開發的靈活性。為了外部檢測的 18 201244824 目的,我們將使用檢測 用於光學感測和回饋以4^pf(nf ^中的⑽)。檢測I/O埠也可 系統控制1/〇蜂(=部=速液體運彭的目的。 中,需要系統控帝! 1/0:813中^3) ·在本發明的一個實施方式 852,進行資料管理8 i來私^又计晶片851 ’顯示測試結果 顯干技術=的^個實施方式中’FPL0C利用現場可程式設計永久纠L ΐ 放置 Place the passive cover after loading the sample 950: ίί illustrates a method of the present invention in which a drop 950 of c is sandwiched between them. Figure 9D illustrates that the other 7 FPLOC of the present invention employs a hinge 94 94 to connect the cover 98Q # $ ^ to carry the sample and the reactant 950 and to achieve a better plate 970 to facilitate the loading of the droplet I/O 埠 (Fig. 8 811): In the f-detection I/O of the present invention (812 in Figure 8): more and more research-based techniques are used, especially those that are more efficient than absorbance or = (4) . However, some mature and flawless detection techniques, for example, may include the use of video detection and laser-induced legging. Due to its robustness, high signal sensitivity, and sensitivity, light methods are still dominant over L用于C. Optical inspection is the most electrowetting L〇C platform integration. It is only necessary to make all materials which are to be used for optical inspection including the top plate turn, the bottom plate 1G21, the dielectric layers 1_ and _, and the like. The coplanar design can accommodate the dual-test mechanism than the above, thus increasing the flexibility of system development. For the purpose of external detection 18 201244824, we will use detection for optical sensing and feedback at 4^pf (10 in nf ^). The detection of I/O埠 can also be controlled by the system 1/〇 bee (= part = speed liquid transport purpose. In the middle, system control is required! 1/0: 813 of ^ 3) · In an embodiment 852 of the present invention, Carrying out data management 8 i to privately count the chip 851 'display test results show dry technology = ^ in the implementation of 'FPL0C using field programmable permanent

ί ^11B ini進行激裝置。在圖11A中,當系統通過對微電極 水框架ιιίϊϋ接^ ί而正在執行其它微流體操作時,顯示墨 iiB中的黑色墨水(戈其3成二操作之後,自圖 動到右侧位置,以框架1114產生的液滴移 ⑴幾乎沒有静式的兩個優點在於: 於㈣十甘具不測试結果或其它消息的額外費用,因為用 力自微作的電極用作顯示圖元;以及⑵即使電 力’顯示蚁永久㈣,因此可用作測試記錄。 游圖8中的820):樣品製備中的主題將是自整個血 ,中刀離出細胞’以獲取血清或血漿,以及樣品預濃縮 lPfe-〇)ncentratlon)。樣品預濃縮在待檢測的分子在數量上 巾變得很重要。為了下述兩個原时先完祕品稀釋: 為了減少干擾物質的影響,以及為了增錢置操作的線性範圍。 ^今,已經採用了很寬範圍的各種技術比如利用聲學力、磁力、 ,學力、毛細管電泳(CE)、介電電泳⑽)力等來分離顆粒和細 胞。本發明的一個實施方式如圖12A的頂視圖所示,其中液滴125〇 和懸浮顆粒分別利用EW0D和DEP通過方形配置電極(丨21 〇、丨21 i、 1212 和 1213)和條形配置電極 d22〇、1221、1222、1223、1224、 1225和1226)被激勵。“配置(configured) ”是指圖ΐ2β和12c 是橫截面視圖,其中it過從左到右(從122〇到1226)在條形電極 19 201244824 上施加高頻信號(VHF) 1230,液滴内部的非均勻電場· DEP將顆粒驅動到右側。通過在方形電極1221和1222上施 信號(VLF) 1235,利用_觀具有不同顆 子液 滴1251和1252。作為例子,從左到右在條形電極之=子^ 虎1f時,通過正性卿吸引顆粒。在細胞聚集到 =中的右側之後,通過在兩個方形配置電極上施加斷 用液滴***成兩個子液滴。結果,通過激勵從左 形,極’細胞被聚集(右側子液滴1251)或稀 釋(左側子液滴1251),如圖12D所示。 彳f 職滴等分技術的FPLQC樣品製備的另-實施方 備步驟之一是從全血中去除血細胞,以獲取用於 體。如圖13所示’經由微電極1340利用液滴 刀介,產生更小的液滴(此液滴太小以至於不能承載一些或 =、、’然後經由小尺寸的垂直間隙1370移動小液滴 άΤΉ—成』望液滴135G。液滴等分技術和小間隙1370的組合 可有地將小液滴從貯液||/液滴丨刻經通道·移動, 液滴1350 ’同時阻擋血細胞1380。這裡的物理阻擋 等分技術,並且可以採用除了方形之外的不同 =產生更小的液滴。它並不用作去除血細胞的主 去利用液鱗分技術,此樣品製備發明不僅能從液滴 去除顆粒,。而且能夠製備用於診斷測試的合適尺寸的液滴。 措治縱(圖8中的83〇):在又一實施方式中,所有的典型 舰配置並控制細C的“配置電極,,來執行。“微 是在Μ%上的㈣的任何操縱。例如,微流體 t ί ίΪ :將液滴裝載到FPLQC中;從源液滴分配—個或多 分離或分割一個液滴為兩個或更多個液滴;將液 ^或-人個位置輸送到另—位置;將兩個或更多個液滴 、:二ί早個液滴;稀釋液滴;混合液滴;擾拌液滴;將液 ί ί滴保持在適#的位置上;培育(―ing)液滴; ㈣履滴,將液滴輸送出FPL〇c ;本文所述的其它微流體操作;和ί ^11B ini is the excitation device. In FIG. 11A, when the system is performing other microfluidic operations by performing a microelectrode water frame, the black ink in the ink iiB is displayed (after the Geqi 3 is operated, the image is moved to the right position, The two advantages of the droplet movement (1) produced by the frame 1114 with almost no static are: (4) the additional cost of not testing the results or other messages, because the electrode that is self-made by micro force is used as the display primitive; and (2) even Power 'shows ant permanent (four) and can therefore be used as a test record. 820 in Figure 8): The subject of sample preparation will be from the whole blood, the knife leaves the cell 'to obtain serum or plasma, and the sample is pre-concentrated lPfe -〇)ncentratlon). Preconcentration of the sample becomes important in the quantity of the molecules to be detected. Diluted for the following two original secrets: To reduce the effects of interfering substances, and to increase the linear range of operation for the money. Nowadays, a wide range of techniques such as the use of acoustic force, magnetic force, scholastic force, capillary electrophoresis (CE), dielectrophoresis (10) force, etc. have been used to separate particles and cells. One embodiment of the present invention is illustrated in the top view of FIG. 12A, in which droplets 125〇 and suspended particles are disposed through square configuration electrodes (丨21 〇, 丨21 i, 1212, and 1213) and strip-shaped electrodes using EW0D and DEP, respectively. D22〇, 1221, 1222, 1223, 1224, 1225, and 1226) are energized. "configured" means that Figures 2β and 12c are cross-sectional views, where it is applied from left to right (from 122〇 to 1226) on strip electrode 19 201244824 with high frequency signal (VHF) 1230, inside the droplet Non-uniform electric field · DEP drives the particles to the right. By applying a signal (VLF) 1235 to the square electrodes 1221 and 1222, there are different liquid droplets 1251 and 1252. As an example, from left to right at the strip electrode = sub ^ 1 1f, the particles are attracted by positive qing. After the cells have accumulated to the right side of =, they are split into two sub-droplets by applying a break droplet on the two square-arranged electrodes. As a result, by excitation from the left shape, the cells of the poles are aggregated (right sub-droplet 1251) or diluted (left sub-droplet 1251) as shown in Fig. 12D. Another step in the preparation of the FPLQC sample preparation technique is to remove blood cells from whole blood for use in the body. As shown in Figure 13, 'through the microelectrode 1340, the droplets are used to create smaller droplets (this droplet is too small to carry some or =, ' and then move the droplet through the small vertical gap 1370 άΤΉ—成成望滴135G. The combination of droplet halving technique and small gap 1370 can smear small droplets from the reservoir||/droplet through the channel·moving, droplet 1350' while blocking blood cells 1380 Here the physical barrier bisect technique, and can use different than the square = produce smaller droplets. It is not used to remove the blood cells of the main to use the liquid scale technology, this sample preparation invention can not only from the droplets Particles are removed, and droplets of suitable size for diagnostic testing can be prepared. Treatment vertical (83〇 in Figure 8): In yet another embodiment, all typical ships are configured and control the fine C's "configuration electrode ,, to execute. "Micro is any manipulation of (4) on Μ%. For example, microfluid t ί ί Ϊ : loading droplets into FPLQC; distributing or dividing one droplet from source droplets Two or more droplets; - the person is transported to another position; two or more droplets, two droplets; dilute droplets; mixed droplets; scrambled droplets; Positioning; cultivating (-ing) droplets; (d) trajecting droplets, delivering droplets out of FPL〇c; other microfluidic operations described herein;

S 20 201244824 /或上述的任何組合。 在又一實施方式中,除了 FPL0C的“配置電極” ,型微流^操作的常規控制之外’微電極的具體控制順^ Ϊ ίίΐ 關雜送賴;彻雜舰勵輸送液 二、’/刷殘留液滴(dead volume);在較低驅動電壓的情形下輪 f^以ΐ控的低速度輸送液滴;執行精確的切割;執行對角 二t、s,订共面切割;沿對角線合併液滴;使液滴變形以加速 犯口,通過不均勻往復混合器改進混合速度;通過迴圈混合 進混合速度;_多層混合n改進混合速度;本文賴的其;^先 進的微流體操作;和/或上述的任何組合。 〇〇液體儲存和液滴產生:來自埠的液體儲存在貯液器中。貯液 ,可,ETOD裝置上以允許液滴進、出的大電極區“形式產 生。基本L0C應當最少具有三個貯液器:一細於樣品裝載,一 細於反應物,-細於收缝㈣,但這取決於_。可能會 ,要,四個貯液器用於校準溶液(calibrating s〇luti〇n)。每二 男了液器應具有用以允許產生液滴或收集液滴的獨立控制。 I 4KL在另一貫施方式中,FPL0C具有自調節所裝載的樣品或反應物 相對於貯液器的位置的能力。這意味著可以避免對精確定位輸入 ,的需要以及避免經輸入埠將樣品和反應物傳遞到貯液器的因難 操作。圖14A說明裝載的樣品斷開成液滴142〇和液滴143〇,它們 都未精確定位在貯液器1440的頂部。液滴1420甚至與貯液器1440 不^有任何重疊。對於常規的L〇c,難以將液滴142〇重定位到貯 液器14f0中。而即使樣品液滴142〇被裝載為偏離了貯液器,通 過激勵臨時配置電極146〇以將液滴1420拉到與貯液器1440重疊 的位置,也可實現本發明的這種自定位實施方式。隨後對臨時配 置電極1460去除激勵並且對貯液器144〇進行激勵’以將樣品準 確地定位到貯液器中,如圖14B所示。 圖15表示FPL0C液滴產生過程的一個實施方式。常規地,必 21 201244824 _以及疊置電極1535來產生液滴。 並且不需要疊=====方形貯液器⑸〜 狀可以通過設計㈣it 另一貫%方式中,貯液器⑸5的形 圖15所示,液滴^根據設計需要而為任何其它形狀。如 過程。為了啟動Λ ί 方形貯液器1515擠出液滴1550的 極 1535 體指狀物(liauL f序號的ΐ電極 從貯液器1515擠出液 1540包括配置的1550。每個配置電極 電謂G的尺寸可以中,配置 = 可以為方形或其它形狀 液°°了以疋方形、圓形或其它具體形狀。 實施的稱為“液鱗分”的具驗滴產生過程的 =2==:的方式。本發明令,液滴等分可用於實現 ϊίϋϊ的更精確的控制。此外,以反向方式’此技術可用於 從液滴可產生多少個更小的液滴1615來測量更大 液滴1630的體積,如圖ι6所示。 液滴的輸送:圖17是說明FPL()C的液滴輸送實施方式的圖。 =不’有9個相鄰的配置電極1731到1739。每個配置電極包 =己置的lGxlG個微電極,因而為方形。賴位於中心配置 1極Π35的頂部。在常規的微流體輸送操作中,液滴175〇在這 方形電極设置下只能沿南北和東西方向由配置電極1735激勵。 列如,通過激勵配置電極1734並對配置電極1735去除激勵, 使f滴從配置電極1735移動到配置電極ι734上。但是,這種 規知作將不關使液滴1735從配置雜丨735沿對肖線移動到任 22 201244824 一個配置電極1731、1733、173 極與液滴咖不具有物職晶。卜目為㈣個配置電 是存在於域賴不覆蓋四_的限制總 月的一個實施方式是作為臨時步驟激勵配置= 除激勵5而的配置電極1733並對臨時配置電極176〇去 中。如圖沿對角線移動到期望的配置電極1733 Γ目移動。此外’液滴的輸送不限於8個方向。G 將個方向之外,則仍可激勵臨時配置電極以S 20 201244824 / or any combination of the above. In still another embodiment, in addition to the "configuration electrode" of the FPL0C, the conventional control of the microfluidic operation, the specific control of the microelectrode is compliant, and the carrier fluid is delivered. Brushing the dead volume; in the case of a lower driving voltage, the wheel f^ delivers the droplet at a low speed controlled by the hammer; performs precise cutting; performs diagonal two t, s, coplanar cutting; The corner lines merge the droplets; the droplets are deformed to accelerate the fouling, the mixing speed is improved by the uneven reciprocating mixer; the mixing speed is mixed by the loop; _ multilayer mixing n improves the mixing speed; Fluid operation; and/or any combination of the above. 〇〇Liquid storage and droplet generation: The liquid from the mash is stored in the reservoir. The liquid storage can be in the form of a large electrode area on the ETOD device that allows the droplets to enter and exit. The basic L0C should have at least three reservoirs: one is finer than the sample loading, one is finer than the reactants, and is finer than Sew (four), but this depends on _. It may be, four reservoirs are used for calibration solutions (calibrating s〇luti〇n). Every two male dispensers should have an independent function to allow droplets or collect droplets. Control. I 4KL In another mode of operation, FPL0C has the ability to self-adjust the position of the loaded sample or reactant relative to the reservoir. This means that the need for precise positioning of the input can be avoided and the input will be avoided. The transfer of the sample and reactants to the reservoir is difficult to operate. Figure 14A illustrates the loaded sample breaking into droplets 142 and 143, which are not precisely positioned on top of the reservoir 1440. The droplets 1420 even There is no overlap with the reservoir 1440. For conventional L〇c, it is difficult to reposition the droplet 142 into the reservoir 14f0. Even if the sample droplet 142 is loaded to deviate from the reservoir, pass Incentive the temporary configuration electrode 146 to This self-positioning embodiment of the present invention can also be implemented by the drop 1420 being pulled into a position that overlaps the reservoir 1440. The excitation is then removed from the temporary configuration electrode 1460 and the reservoir 144 is energized to accurately sample. Positioned in the reservoir as shown in Figure 14B. Figure 15 illustrates one embodiment of the FPLOC droplet generation process. Conventionally, the 21 201244824 _ and the stacked electrodes 1535 are used to create droplets. == square reservoir (5) ~ shape can be designed by (four) it another consistent % way, the shape of the reservoir (5) 5 is shown in Figure 15, the droplet ^ according to the design needs for any other shape. For example, in order to start Λ ί square The reservoir 1515 extrudes the pole 1535 of the droplet 1550. The body of the droplet 1550 from the reservoir 1515 extrudate 1540 includes a configured 1550. The size of each configuration electrode can be set in the configuration. = can be square or other shape liquid ° ° square, round or other specific shape. The implementation of the so-called "liquid scale" with the method of the test generation process = 2 ==: The invention, Droplet aliquots can be used to implement ϊί More precise control of the helium. Furthermore, in a reverse manner, this technique can be used to measure the volume of a larger droplet 1630 from how many smaller droplets 1615 the droplet can produce, as shown in Figure ι6. Delivery: Figure 17 is a diagram illustrating a droplet delivery embodiment of FPL() C. = No '9 adjacent configuration electrodes 1731 to 1739. Each configuration electrode package = 1 gxlG microelectrodes that are placed, thus The square is located at the top of the center configuration 1 pole 35. In a conventional microfluidic transport operation, the droplet 175 只能 can only be excited by the configuration electrode 1735 in the north-south and east-west directions under the square electrode arrangement. For example, by arranging the electrode 1734 and removing the excitation of the arranging electrode 1735, the f-drop is moved from the arranging electrode 1735 to the arranging electrode ι 734. However, this rule of thumb will not cause the droplet 1735 to move from the configuration of the miscellaneous 735 along the diagonal line to any of the 22 201244824 configuration electrodes 1731, 1733, 173 and the droplets. The configuration is that the (four) configuration power is one of the embodiments in which the domain does not cover the fourth total limit month. The configuration is as a temporary step excitation configuration = the configuration electrode 1733 except for the excitation 5 and the temporary configuration electrode 176 is removed. Move as shown along the diagonal to the desired configuration electrode 1733. Further, the delivery of droplets is not limited to eight directions. G will be outside the direction, then the temporary configuration of the electrode can still be excited

液滴=路ilf地,L()c具有用以連接l〇c的不同部分以輸送 ίΐίϊ 極44(3 ’如圖4A所示。本發明中,觸c J ,方式不f要用於輸送液滴送路徑,如 2 18所7F。而疋液滴路由將多個液滴從多個起始位置 地。㈣顯’FPLQC的路由處理將非常不同於常規的微流 微規的微流體料更為有效,因為通過激勵不同的 可沿包括對角線在内的任何方向移動。液滴1850、 1處們的起始位置,如圖18所示。液滴和液 2 1852將在配置電極皿〇處混合,並且液滴1851將輸 電極1820。與傳統的vlSI路由問題不同,除了路由路徑 物晶片路由問題需要解決在由流體屬性施加的實際_以及 結果的時序限制下的液滴時間表安排的問題。如果不 ^, 則可通過選擇路線1_使液滴1851首先移動,並且可&amp;過^ 路線1840使液滴1852移動。這裡所需要考慮的是安排液滴1851 和1852的輸送時序,使得它們在移動到它們的目的地的同時不合 碰撞在-起。如果考慮污染,則㈣可以選擇路線1861以避^ 液滴移動路線上的任何重疊。此外,對於要在配置電極181〇處合 併的兩個液滴1850和1852,必須要考慮安排液滴激勵的時序,^ 此路線1830和路線1840的長度差可成為考慮因素,從而具有最 佳的混合效果。當在FPL0C上執行的應用越來越複雜時,將需要 23 201244824 自上而下的設計自動化,以限定FPL0C上的液滴的路由和時序。 在定義了生物醫療微流體功能之後,利用體系級 (architectural-level)合成來向FPL0C資源提供微流體功能並 且將微流體功能映射到激勵的時間步驟中。 臨時橋接··本發明利用FPL0C輸送和移動液滴的稱為“臨 橋接技術”的另-實施方式如圖19A-19C所示。液滴切割和 ^時會使液滴變得太小’液滴不能由電極可靠地激勵。圖19Α、、^ 示由間隙1960彼此分離的兩個配置電極1犯〇和1940。液滴1950 位於左側配置電極1930上。在兩個配置電極193〇與丨94〇之間的 間隙1960足夠寬,以便能隔離兩個配置電極丨93〇和194〇 _ 位於左側配置電極1930上的液滴1950不會接觸下一個相鄰配^ 電極1940。圖19A說明在常規的液滴輸送^,液滴195〇從配 極1930到配置電極1940中的移動通常失敗,因為配置電極 與液滴1950不具有用以改變其表面張力的物理重疊。圖1卯 來自圖19A的液滴1950輸送到期望的配置電極“々ο中。在這個Droplet = road ilf ground, L () c has a different part for connecting l〇c to transport ίΐίϊ pole 44 (3 ' as shown in Fig. 4A. In the present invention, touch c J , the mode is not used for transport The droplet delivery path, such as 2 18 7F. The droplet droplet routing routes multiple droplets from multiple starting positions. (4) The routing process of 'FPLQC' will be very different from the conventional microfluidic microfluidics. It is more efficient because it can be moved in any direction including the diagonal by exciting. The starting position of the droplets 1850, 1 is as shown in Figure 18. The droplets and liquid 2 1852 will be in the configuration electrode The dish is mixed and the drop 1851 will be the electrode 1820. Unlike the conventional vlSI routing problem, in addition to the routing path wafer routing problem needs to address the droplet schedule under the actual _ and the resulting timing constraints imposed by the fluid properties The problem of arrangement. If not, the droplet 1851 can be moved first by selecting route 1_, and the droplet 1852 can be moved &amp; route 1840. What is needed here is to arrange the delivery of droplets 1851 and 1852. Timing so they are moving to their destination At the same time, the collision does not occur. If contamination is considered, (4) Route 1861 can be selected to avoid any overlap on the droplet movement path. In addition, for the two droplets 1850 and 1852 to be merged at the configuration electrode 181〇, To consider the timing of arranging the droplet excitation, the length difference between this route 1830 and route 1840 can be a consideration to have the best mixing effect. When the application executing on FPL0C becomes more and more complex, it will take 23 201244824 Top-down design automation to define routing and timing of droplets on FPL0C. After defining biomedical microfluidic functions, use architecture-level synthesis to provide microfluidic functionality to FPL0C resources and to provide microfluidic functionality Mapping to the time step of the excitation. Temporary bridging · Another embodiment of the invention called "Pro-Bridge Technology" for transporting and moving liquid droplets using FPL0C is shown in Figures 19A-19C. Droplet cutting and ^ will cause The droplets become too small 'the droplets cannot be reliably excited by the electrodes. Fig. 19, Fig. 19 shows two configuration electrodes 1 separated from each other by the gap 1960 and 1940. 50 is located on the left side of the configuration electrode 1930. The gap 1960 between the two arrangement electrodes 193A and 丨94〇 is sufficiently wide to be able to isolate the two arrangement electrodes 丨93〇 and 194〇_ the droplets on the left configuration electrode 1930 1950 does not touch the next adjacent electrode 1940. Figure 19A illustrates that in conventional droplet delivery, the movement of droplet 195 from the counter 1930 to the configuration electrode 1940 typically fails because the electrode and droplet 1950 are not configured. There is a physical overlap to change its surface tension. Figure 1A droplet 1950 from Figure 19A is delivered to the desired configuration electrode "々ο.

理重疊。杳這種情形下, 會移動到電極2011中,j δ川10並且與相鄰的電極2011不具有物 ’即使電極2011被激勵,液滴2〇5〇也不 液滴會枯留在系統+。沖走㈣液滴的一 24 201244824 種有效方式是利用電極列激勵。激勵電極佈置成多列以 列激勵’如® 20B所示。這裡’每列配轉極列_ |括= Γίί’iff置電極列組合在—起以執行電極舰勵,如圖 中標記為黑色,的部分卿。默認的列寬度是一個微電極= ,於應用也可以是其它數量。最有效的電極列激勵是具有二 電=,其寬度稍大於液滴的半徑q就是為什麼在這裡將三列 一起的原因。列的長度取決於應用,通常情況下越長越好。 移動液· 2050的這種三列配置,在首位的配 被/勵,尾隨的配置電極列被 勵/種方式’不管液滴的尺寸如何,三列配置電極列 ㈣疋提供最大有效長度的細線。絲,㈣㈣有效 ί,,為液滴上的毛細力是一致的並且被最大化。因此,液滴 犯在比$規液滴操作中的驅動電壓低射的轉電壓下移 種電極列鶴技術可用於通過在低㈣_動電壓下 動Overlapping.杳 In this case, it will move into the electrode 2011, j δ 10 and does not have the object with the adjacent electrode 2011. Even if the electrode 2011 is excited, the droplet 2〇5〇 will not be left in the system + . Washing away (four) droplets of a 24 201244824 effective way is to use the electrode column excitation. The excitation electrodes are arranged in a plurality of columns to stimulate ' as shown by ® 20B. Here, each column is equipped with a rotating pole _ | including = Γ ίί' iff. The electrode column is combined to perform the electrode stimuli, as shown in the figure as black. The default column width is a microelectrode = and can be other quantities for the application. The most efficient electrode column excitation is to have a second electricity =, the width of which is slightly larger than the radius q of the droplet is why the three columns are together here. The length of the column depends on the application, usually as long as possible. This three-column configuration of the mobile liquid · 2050, in the first position of the distribution / excitation, the trailing configuration of the electrode column is excited / kind of way 'regardless of the size of the droplet, three columns of configuration electrode column (four) 疋 provide the maximum effective length of the thin line . Silk, (iv) (iv) effective ί, the capillary forces on the droplets are consistent and maximized. Therefore, the droplets are moved down by a lower voltage than the driving voltage in the operation of the droplets. The electrode column technology can be used to move through the low (four)-dynamic voltage.

來輸送液滴。此外,由於這種技術的—致的毛細力,通過以 =配^極列’可以實現對液滴速度(尤其在低速情形中j ^卜貝驗表明:在臨界驅動電壓下,電極列激勵的這種平滑、 有效的驅動能力更為明顯。已經觀察到:在低於8Vp_p麗 驅動電塵並且在80/zm的間隙的條件下,在10cS 工穩^水滴a lmm直徑)。長度可以被配置㈣c的^ 度;使付電極列激勵的單次沖刷可以洗刷掉L〇c中的所有無效液 滴(deaddroplet)。圖20C說明小液滴2〇5〇移出配置電極2〇1〇。 用;用fploc的三個配置電極來切割液滴。本發明 滴的典型三電極切割的—個實施方式如圖 Π示。使用三個配置電極,並且待切割的液滴位於如圖 21Α所不内部配置電極2111的頂部並與外部配置電極211〇和2112 具有。卩刀重疊。在切割期間,外部的兩個配置電極211〇和 ,激勵,並且内部配置電極2m被去除激勵,液滴擴展開 來從而潤濕外部兩個電極。通常而言,兩個外部配㈣極測和 2112引發的親水力拉伸液滴,同時中央的疏水力將液體爽斷為兩 25 201244824 個子液滴2151和2152,如圖21C所示。 精物割:本發·以實現類似於 -個實施方式如圖22A-22C所示。精確切割也割的 電極的頂部。但是代替使用外部的°兩:以2 22 〇和2212來切割液滴’利用電極列激勵技術 2210和2212緩慢但穩固地拉動液滴225〇,如圖己置^電極 Ϊ二3列HZ列2215和2216 (在圖22A _己為G 士,開液滴。圖22B說明通過一次推進一個微電極列,二兩色) 電極列組保持相分離地移動。兩組電極列組2215和&amp; 黎沾 親水力拉伸液滴。當電極列組2215和2216 丨發的 2212的外緣時’所有配置電極列被去除激勵,並且配電= , 2251 ^ 2252 , -施2線ΐί始+圖=一23C說明本發明用吨行對角線切割的 2貝二ΛΪ Ϊ起始於將待切割液滴移動到臨時配置電極 i 電極2312位於四個配置電極_、咖、 四個^電極的接合角的中心之後,臨時配置電 ^ ΐίί ΐ電極2310和配㈣極2311被激勵,液滴235〇 _ =到液體柱中,如圖23Β所示。為了將液體夾斷為兩個子液滴孜 置電極2310和2311的内角去除激勵,以麵滴 中邻產生必要的疏水力。圖23C說明L形臨時配置電極2315 2316被激勵,以進一步拉伸液滴使其間僅具有薄的頸部,在中部 的疏水力隨後有助於將液滴2350夾斷為兩 2352 ; ^ , 231〇 2311 , ^ 和2352中心定位到配置電極2310和2311中,如圖2邪所示。 圖24A-24C說明在FPLOC的開放表面上的液滴切割過程。圖 24A說明液滴2450位於左側配置電極2440上。液滴2450將被切 割成兩個子液滴2470,如圖24C所示。液滴切割過程大致包括下 面兩個過私。首先,通過在適當的電壓下激勵配置電極,將 S. 26 201244824 待切割液滴2·拉伸為薄·體柱 出。這種“薄的”液體柱通當县於ι古,广了以從® 24β中看 的液體柱。接下來,激勵兩個預選;^電的2 並將ί:心定位到這兩個配置電』= ==夠在的—重個 足 克服液滴的曲 氆仝地而、士+金丨a々 方式中’當液體柱246〇由於水動力不 ,疋性而被切割成夕個液滴時,發生被動 十,被動和主動切割都被本發明採 =二:=或主動力來將起始液_:== 對液體柱長度的計算很重要。當利用 在切則過經並不重要。不管是被動蝴還是主動切割, ί ,配κ極2440和2420被正常地激勵, 以便將液滴疋位到期望的配置電極中。在 或主動切割過程在FPL0C的開放表面結構下進行;$ 液滴2450被切割成兩個液滴247〇時完成切割==^4C說月田 ί1合分析物和反應物是實現FPL°C時的 ί 合室,並錢過沿著__輸送液 最小區域的同時快速地混合液體的能力極 而,隨著微流體裝置接近子毫微升時代,降 Β⑽r,IL速和非常低的雷諾(Reyn〇lds)數導致難以以合理的 f實現對這種液體的混合。改進的混合基於兩 個以讀小尺寸產生渦流的能力’或者可選地,產生多層 以經由擴散實現快速混合的能力。 有時也需要在升尚的溫度下的培育步驟,例如用於PCR放大。 =圖25所示的FPL0C的-個實施方式中,液滴255〇放置在被 集,到襯底脱1中的微加熱元件253〇上方。還通過⑽s製造技 術建立加熱器控制/監視器2532,並將其集成到FpL〇c中。 本發明執行FPL〇c的基本合併或混合操作的一個實施方 式如圖26A-26B所示,其中兩個液滴265〇和2651被組合成單個 27 201244824 液滴2653。在本發明中,術語“合併”和“混合,,可互換地使用, 用以表示兩個或更多個液滴的組合。這是因為合併兩個液滴並不 總是直接或立即地導致初始分離的液滴的成分的完全混合。在圖 26A中’兩個液滴2650和2651初始位於配置電極2610和2612 上’並由至少一個其間的配置電極2611分離。兩個液滴2650和 2651與配置電極2611至少都具有部分重疊。如圖26B所示,外部 的兩個配置電極2610和2612被去除激勵,中心配置電極被激勵, 由此液滴2650和2651沿著中心配置電極2611相互牽引,以合併 成一個更大的液滴2653,如圖26B中的箭頭所示。 圖27A-27C說明通過用以產生FPLOC的渦流的不均句幾何運 動來實施液滴操縱的有效混合過程。通過激勵配置電極2751和 2771,使液滴2750和2770變形,如圖27B所示;由此使液滴2750 變高,使液滴2770變胖。然後’中心配置電極2760被激勵,以 將液滴2750和2770拉到混合配置電極2760 (標記為黑色)中, 如圖27C所示。在圖27B中,黑色區域表示兩個被激勵的配置電 極2751和2771不僅使兩個液滴2750和2770變形,並且將它們 局部牽引到中心配置電極2760中。圖27B所示的這種臨時激勵步 驟也有助於兩個液滴的平滑混合移動。圖27B-27C中的黑色區域 和變形液滴的形狀僅為例示的目的。在本發明中,這些形狀根據 需要可以為任意類型。 圖28A和28B說明用於改進混合速度的微電極陣列混合器。 在一個實施方式中,可使用不均勻往復混合器來加速液滴混合。 這可通過激勵一組微電極以產生不可逆轉圖案來實現,其中不可 逆轉圖案破壞了兩個迴圈的對稱性以改進混合速度。初始狀態在 圖28A中4明,其中液滴2850包含樣品和反應物,並位於配置電 極2840的頂部。用於不均勻往復混合的第一個步驟是激勵配置電 極2860以使液滴2850朝著圖28B中所示的箭頭方向變形。然後, 配置電極2860被去除激勵,並且配置電極284〇被激勵以將液滴 拉回到圖28A所示的初始位置。往復混合可執行多次,以實現優 化的混合效果。此外,圖28A和28B中的配置電極2840和變形液 28 201244824 /商的形狀僅為例示的目的。在本發明中,這些形狀可以為任意類 型的設計,只要它們具有產生渦流的能力,或可選地,具有產生 多層的能力。 在基於PFL0C液滴的混合過程的又—實施方式中,圖29說明 用於改進混合速度的迴圈混合器。這可通過激勵更小的微電極組 的序列以產生不可逆轉水準迴圈來實現,其中不可逆轉水準迴圈 破壞了垂直層迴圈的對稱性以加速混合。如圖29所示的一個實施 方式是形成包圍液滴2990的八個配置電極(2910、2920、2930、 2940、2950、2960、2970和2980),然後以迴圈的方式順序地逐 個激勵配置電極。例如,作為第一個步驟,配置電極291〇被激勵 較短的時間段,以導致表面張力改變並且朝著配置電極291〇在液 滴2990的内部產生迴圈。接下來,配置電極291〇被去除激勵, Ik後激勵下一個相鄰配置電極2920。通過全部八個配置電極(291 〇 到2980)重複迴圈激勵過程,以在液滴299〇内部產生水準迴圈。 此迴圈流激勵可根據需要執行多次。此外,迴圈流可順時針、逆 時針或者這兩種方式的交替混合來執行,以實現最佳混合效果。 此外’配置電極2910到2980以及迴圈的形狀僅為例示的目的。 在本發明中,這種迴圈混合可以是任何類型的設計,只要它們且 有產生渦流的能力,或可選地,具有產生多層的能力。 /、 抑多層混合器:本發明以小尺寸(2x2個配置電極)但有效的混 合器產生多層以加速混合的一個實施方式可以如圖3〇a_3〇f所 示。這種多層混合器對於低縱橫比(&lt;1)的情形尤其有用。縱橫 比,指_板和接地板之間的_與電極尺寸的比。低縱橫比^ 味著更難以在液納部產生黯’目而產生多層的能力變^更二 重要。在此具體混合器中利用對角線混合和對角線切割。在圖观 中’在配置電極3014處的黑色液滴3〇51與在配置電極處的 白色液滴3050混合。臨時配置電極3〇1〇將成為混合室 激勵以拉入液滴3051和3050。為了啟動多層混合,第一個步 沿對角線合併兩舰滴。液滴合併的對方向可以是4 135度’但是隨後對角、線切割的方向需要垂直於合併操作。圖遞 29 201244824 表不將液滴3051和液滴3050第-次合併成為黑白液滴3〇52。由 =低=數和低縱橫比,液滴3G52具有單純基於擴散的靜態混 口,,、導致較長的混合時間,因此液滴顯示為一半為白色,—半 ,黑色。第二個步驟是要驗滴3G52執行與起始對鱗混合呈⑽ 又的對角線切割,如圖30C所示。在臨時配置電極3〇1〇被去除激 1配置電極3012和3013以及其它臨時配置電極被激勵, 1二液滴3052沿對角線切割成兩個子液滴3〇53和3〇54,如圖3〇c 所不。對角線切割的細節已在前面的段落中討論。由於低混合率, =兩個子液滴3G53和3G54在對角線切割之後以相同的方位保 白叠層。然後,多層混合的第三個步驟是將兩個液滴移回到 配置電極上,以重複對角線混合和切割。在圖30D中,液滴 3054從配置電極3012移動到配置電極3〇11上, 3053^〇t3013 3〇U ^ ° 和3054移動的同時避免它們的合併。對配置電極3〇12和3〇13 對配置電極謝1和難激勵的簡單液滴移動操縱 致兩條滴在移__發生物理接觸,織兩個液滴 15並在一起。因此,臨時配置電極3〇15和3〇16需要首先 被激勵,以在兩個液滴之間產生保護區,用以在兩 地移動的同時防止出現任何意外合併。在液滴3^口 移動ίίίίΛΙ極謝6和3Q15巾之後,徑直向祕兩個液滴 =到配置電極3011和謝4中。第一個步驟到第三個步驟可以 複以產生用以加速混合的必要數量的多層。作為曹錄你笛 =:圖_中的液滴和觀沿對角滴 卜個步驟到第三個步驟的另-迴圈之後 研究8 1的84G):通常以下述方式之—來發出檢測信號: 鐵的分析物的競爭性結合;使用專用於固相 i 的分子;形成爽心測定;或執行酶聯免疫吸附測 k 其中添加活性酶襯底以在與酶聯分析物交互作用時 30 201244824 1=越多的研究姆探討將檢測集成到微流 til ’ if是㈣概吸光率錢光檢測在尺寸微型化 置ϊΙ=ί〇°Λ 一個實施方式是基於cmos技術將感測裝 ?广?,如圖31所示,其中感測器(期、和 32)可以與底板312卜頂板312〇、液滴315〇&amp;3⑸、感測 針3180以及微電極313〇相關聯地設置 &amp;情&amp; 的電位測量執行操作的集成電位計感測器正在 严液滴3150。通常利用在兩娜之間施加電= 培計感測器3132被顯示為通過感測器探針 3181測魏滴3151。阻抗計感測器3131被集成到了底板312 以監視酶的催化反應或者特異結合蛋自、凝集素、受主、核酸、 全細胞、抗體或抗體相關物質的生物分子識別事件。檢測1/()埠 也可用於光學感測及回饋以控制FPL〇c内部的快速液體運動的目 的0 系統控制(圖8中的850):本發明用於FPL0C系統控制塊的 一個實施方式如圖32所示。系統控制塊的主要功能在於實現 FPL0C的現場可程式設計能力。從軟體和硬體的角度來看,對FpL〇c 的數位可程式設計能力存在不同等級的要求。圖32表示fpl〇c的 分級軟體結構。場程式設計管理(FPM)軟體321〇是最低層的軟 體,其將FLB配置到微流體元件以及用於微流體元件的佈局/網路 中,以形成FPLOC。微流體操作程式設計管理(μορμ) 3220軟體 是上升一級(one level up)的功能,用以控制和管理微流體操 作。此步驟設定了微流體操作將如何在FPL0C中執行以及微流體 操作的順序。對於想關注應用的用戶而言,他們可以利用一組預 定義的和經驗證的微流體元件並且利用對流體操作排序的可程式 設計性的優點,完成FPL0C的整個設計。對於想優化FPL0C的整 個設計並利用FPL0C的靈活結構的優點的更高級的用戶而言,他 們可以直接建立微流體元件並直接程式設計微流體操作。FPM軟體 和M0PM軟體都是FPL0C晶片級的軟體。系統管理3230是管理應 用專用要求的應用級功能’其包括系統分隔和集成3231、檢測 31 201244824 3232 :資料管理3233以及週邊元件管理職。 系統分隔和集成(圖32中的抑]〗).孟 =造簡單的-次性裝置’它們被設計為勢已 、反應物供應、檢測器以及程式設計的更制電 &quot;面連接。因而微流體裝置可 p貝的孟子進行 Πίί#Γ=的.T能分隔,;= 檢測和資料存_^ Ww3f 成本。 的多個定量測量的測定,將需要c 7、對於同時發生 要-些測定校準 和只現如何以具體格式顯示、報告和存儲資料。將而要疋義 ㈣f if ί幾,同的可能㈣祕態用於FPLQC: (1)原型和 式糸統組,4 ; (2)桌面機n配置;⑶ •和 ⑷獨立式生物晶片配置。 um錢錢置,以及 用於FPL0C的原型和測試系統組態的 =從根本上講,細峨級_提供f === ίϋ 以使研究者在概念系統級原型環境的證明下快i 戶可存術L原型和測試系統組態是相對開放和用 —a &gt;八、、’里由提供標準模組功能塊和這些塊之間的標準介 戰ΐΐ租 則試系統組態的功能塊在圖33中說明。原型和 肖於流體果送的流體介面3340;用以固定 3剡和高舰^裝3|23)35矛〇 3於提供辅助驅動器(功能產生器 移彻)和_貝料嘗理A_D卡3323的驅動器子系 二 ,GA板3330 ;光學模組3370 ;以及用於控制和分析晶 PC3310。然後’原型和測試系統組態提供用於FPL0C原 硬f、^體驅動器、晶片佈局、設計檢查以及現場可程式設 办生從而只現在微流體中的概念證明(pr〇〇f_〇|:-c〇nc印研 究。原型和測試系統組態可能支援用於微流體媒介的光學表徵的 兩個主要工具:視頻檢測和鐳射誘導螢光分析(LIF)。視頻功能 32 201244824 是用於微流體_的功能的攝影記錄。提供使用者介面來經由電 月®控制泵、;^量汁、壓力感測器和鐳射誘導螢光分析(LIF)單元。 原巧和測試系統組態包括支援這些功能的主機pc。與這種中央驅 動器電腦的連接是通過RS-232和USB連接實現的。 參妝圖34A’在桌面機器配置的一些實施方式中,提供程式設 計的FPL0C作為具有桌面裝置3415的測試生物晶片341〇。圖34八 說明桌面裝置3415的外觀以及用於***程式設計的FpL〇C34i〇的 槽3416。在桌面裝置3415中包括用於感測測試結果的内置檢測感 測器、裝置控制按鈕3418以及顯示器3417。 參照圖34B,在可檇式機器配置的另一實施方式中,提供程式 设计的FPL0C作為具有可檇式裝置3425的測試生物晶片3420。圖 34B說明可檇式裝置3425的外觀以及用於***程式設計的 FPLOC3420的槽3426。在可檇式裝置3425中包括用於感測測試結 果的内置檢測感測器、裝置控制按叙3428以及顯示器3427。本發 明的FPfC的便攜性有助於在診所、手術室、急診室、小型實^ 室等寬範圍的各種場所中以及在用於能在關鍵情形下帶來較快周 轉時間的快速診斷的領域中的醫療點(P〇int_〇f_care)或需要點 (point-of-need)使用。 ° 圖34C說明獨立式生物晶片配置的另一實施方式,其中提供 程式設計的FPL0C作為獨立式生物晶片3430。圖34C說明獨立式 生物b曰片3430的外觀以及用於將樣品收集到晶片中的樣品收隼裝 置3439。用於感測測試結果的檢測感測器、預裝载的反^物^ 系統控制單元都集成到晶片中。通過使用微電極陣列,應\用現場 可程式設計永久顯示技術來顯示測試結果3437。此外,^於即使 晶片斷電’顯示的結果也不會消失’因此可用於測試記錄。'如 34C所示的大規模製造的低成本的一次性的發明可右' 所、手術室、急診室、小型實驗室等寬範圍的各種場所中丄及^ 用於能在關鍵情形下帶來較快周轉時間的快速診斷的領域中的 療點或需要點使用。 &lt; ' 資料管理和轉移(圖32中的3233): FPL0C的一個實施方式 33 201244824 疋使用新興資訊技術,复分-i/r ρρτ ΠΓ FI 44-到醫療伴健資刪〇的不同技術配置必要地連接 J啫縻保健m统。#要FPLQC通信設制以 分析器自資訊系統可存取;(2) s )使FPL〇c ΐ 允許胸G對於非專_戶的容易使 ^桑縱 同的存料級,骑免對這種敏感性資料的未授 眚絲ίΐ,ίυ32中的3234):在™^系統組態的另一 貫&amp;方式中,應自考慮諸如小型熱印表機之類的其它週邊元 以在需要^絲的立即硬拷㈣情況下使用。或者考慮 儲的測定資料輸送到lab或其它資料庫以麟處理的^記 體。條碼掃描器也是流行的用於管理樣品的現有P0CT裝置^ 網能力可被集朗,魏巾m魏钱絲連接聯網的能 力也被視為通信週邊元件功能。 在製造FPL0C的-些實施方式中,取決於應用.需要,用於 FPL0C的底層製造技術可以是基於半導體、薄膜電晶體(TFT)陣 列、PCB、塑膠或紙張的技術。標準CM〇s和TFT製造技術 的技術。 、 通過利用標準CMOS製造工藝來製造FPL0C的一個實施方式如 ^ 35的框圖所示。FPL0C的兩個主塊是系統控制塊355〇和流體邏 輯塊(FLB) 3510。正常情況下,根據應用和製造技術的限制,系 統僅需要一個系統控制塊3550,但需要多個FLB3510。 微電極陣列通過以菊鏈方式連接在一起的FLB來實現。flb 的數量由應用以及主要地由製造技術的限制來確定。一個FLB包 括咼壓驅動微電極3530、一位(one bit)記憶體地圖資料3520 以及控制電路3540。高壓驅動微電極3530是可通過施加必要的電 壓被激勵以便激勵液滴的物理微電極。一位元記憶體地圖資料 3520保持微電極的激勵的邏輯值,典型地,“1”代表對微電極進 行激勵而“0”代表對微電極去除激勵。控制電路3540管理控制 邏輯並形成FLB的菊鏈結構。 系統控制3550包括四個主塊:控制器3560、晶片佈局3570、 34 201244824 =位置地圖3580 β及流體操作管理器漏。控制器測是 祕於的記憶體空間、介面電路和軟體程式設計能力。 制器356G可被集成作為製成品的—部分,或 ΐϊ部裝置。晶片佈局塊357G是存儲配置電極的配 及ίί ίΐηΓ佈局育訊和資料白勺記憶體。液滴位置賴3580 上的液滴的實際位置。通過激勵“配置電極,,序列, 里「器虛3590將佈局資訊、液滴位置地圖以及來自控制器 的PL0C應用轉澤成對液滴實施的物理激勵。 …Ϊ方ί中’ FPL〇C提供現場可程式設計性,使得L〇C 二里甘,?佈局都可通過軟體程式設計。微流體裝置或後入系 f t if儲在諸如丽之類的非易失性記憶體中的)固件可 則可目Ϊ修改’、而無需拆解裝置或將裝置返回其製造商, ~二#可程式設計的或現現場可程狀計的。_c的現 Ϊ式设計性或軟體配置通過系統控制355G * FLB3510來實 尺核牡及FPLQG佈局胃訊和#料被存^ = 内部的非易失性記憶體中,如圖35所示。包括 斤極的被激勵電極的資訊被存儲在液滴位置地圖_中的 t。雜’軟體喊㈣通過—位元記鐘地圖資 專遞給母個微電極漏。一組微電極的成組—S): 去除激勵實際上通過FLB關的配置來執行。此外,所有To deliver droplets. In addition, due to the capillary force of this technique, the droplet velocity can be achieved by using the = pole column (especially in the low speed case, the test results indicate that the electrode column is excited at the critical driving voltage. This smooth and efficient driving capability is more pronounced. It has been observed that at less than 8Vp_p 丽 drive electric dust and at a gap of 80/zm, the water droplets are stabilized at 10cS. The length can be configured to (4) the degree of c; a single flush of the excitation of the electrode column can wash away all dead drops in the L〇c. Figure 20C illustrates that the droplet 2〇5〇 is removed from the configuration electrode 2〇1〇. Use; three configuration electrodes of fploc to cut the droplets. An exemplary embodiment of a typical three-electrode cut of the drop of the present invention is illustrated. Three configuration electrodes are used, and the droplets to be cut are located at the top of the electrode 2111 which is not disposed internally as shown in Fig. 21A and are provided with the external arrangement electrodes 211A and 2112. The files overlap. During the cutting, the outer two configuration electrodes 211 are summed, energized, and the internal configuration electrode 2m is removed from excitation, and the droplets are expanded to wet the outer two electrodes. In general, two externally coupled (four) poles and 2112 induced hydrophilic forces stretch the droplets while the central hydrophobic force cools the liquid into two 25 201244824 sub-droplets 2151 and 2152, as shown in Figure 21C. Semen cut: The present invention is similar to the embodiment shown in Figures 22A-22C. Precisely cut the top of the electrode that is also cut. But instead of using the outer two: cutting the droplets with 2 22 〇 and 2212 'using the electrode column excitation techniques 2210 and 2212 to slowly and firmly pull the droplet 225 〇, as shown in the figure, the electrode Ϊ 2 columns HZ column 2215 And 2216 (in Figure 22A, it is G, open droplets. Figure 22B illustrates the progression of one microelectrode by one push, two colors). The electrode arrays remain phase-separated. The two sets of electrode arrays 2215 and & Li Ding hydrolytically stretched the droplets. When the electrode arrays 2215 and 2216 burst the outer edge of 2212, 'all the configuration electrode columns are removed and excited, and the power distribution = , 2251 ^ 2252, - 2 lines ΐ 始 + = = 23C illustrates the invention with tons of pairs The corner cut 2 ΛΪ ΛΪ Ϊ starts from moving the droplet to be cut to the temporary configuration electrode i. The electrode 2312 is located at the center of the joint angle of the four configuration electrodes _, coffee, and four electrodes, and temporarily configures the electric ^ ΐ ί ί The erbium electrode 2310 and the (four) pole 2311 are energized, and the droplet 235 〇 _ = into the liquid column as shown in FIG. In order to pinch the liquid into the inner corners of the two sub-droplet electrodes 2310 and 2311, the excitation is removed to generate the necessary hydrophobic force in the vicinity of the droplet. Figure 23C illustrates that the L-shaped temporary configuration electrodes 2315 2316 are energized to further stretch the droplets to have only a thin neck therebetween, and the hydrophobic force in the middle then helps to pinch the droplets 2350 into two 2352; ^, 231 The centers of 〇2311, ^ and 2352 are positioned in the configuration electrodes 2310 and 2311 as shown in Fig. 2 . Figures 24A-24C illustrate the droplet cutting process on the open surface of the FPLOC. Figure 24A illustrates that the droplet 2450 is located on the left side configuration electrode 2440. Droplet 2450 will be cut into two sub-droplets 2470 as shown in Figure 24C. The droplet cutting process generally consists of two underlying ones. First, the S. 26 201244824 droplet to be cut 2· is stretched into a thin body column by exciting the configuration electrode at an appropriate voltage. This “thin” liquid column is used in the county, and it has a wide liquid column as seen from the ® 24β. Next, motivate two pre-selections; ^2's 2 and ί: the heart is positioned to the two configurations." === Enough - Heavy enough to overcome the curvature of the droplets in the same place, and + Jin Jin a In the 々 mode, when the liquid column 246 被 is cut into a droplet due to the hydrodynamic force, the passive ten occurs, and both passive and active cutting are initiated by the present invention. Liquid _:== The calculation of the length of the liquid column is important. It is not important to use it when it is used. Whether passive or active, ί, with κ poles 2440 and 2420 are normally energized to clamp the droplets into the desired configuration electrode. The active cutting process is performed under the open surface structure of FPL0C; the droplet 2450 is cut into two droplets 247〇 when the cut is completed ==^4C says that the analyte and the reactant are FPL °C The comfy room, and the ability to quickly mix liquids along the smallest area of the __ delivery liquid, with the microfluidic device approaching the sub-nano-liter era, the hail (10)r, the IL speed and the very low Renault ( Reyn〇lds) numbers make it difficult to achieve mixing of such liquids with a reasonable f. The improved blending is based on the ability to generate eddy currents by reading small sizes&apos; or alternatively, creating multiple layers to achieve rapid mixing via diffusion. Incubation steps at elevated temperatures are sometimes required, for example for PCR amplification. = In the embodiment of FPL0C shown in Fig. 25, the droplet 255 is placed above the micro-heating element 253A which is collected and removed from the substrate. The heater control/monitor 2532 is also built by the (10)s manufacturing technique and integrated into the FpL〇c. One embodiment of the present invention for performing a basic combining or mixing operation of FPL〇c is illustrated in Figures 26A-26B, in which two droplets 265〇 and 2651 are combined into a single 27 201244824 droplet 2653. In the present invention, the terms "combined" and "mixed," are used interchangeably to mean a combination of two or more droplets. This is because merging two droplets does not always result directly or immediately Complete mixing of the components of the initially separated droplets. In Figure 26A, 'two droplets 2650 and 2651 are initially located on the configuration electrodes 2610 and 2612' and separated by at least one configuration electrode 2611 therebetween. Two droplets 2650 and 2651 At least partially overlapped with the configuration electrode 2611. As shown in Fig. 26B, the outer two arrangement electrodes 2610 and 2612 are de-energized, and the center arrangement electrode is energized, whereby the droplets 2650 and 2651 are pulled along the center arrangement electrode 2611. To merge into a larger droplet 2653, as indicated by the arrows in Figure 26B. Figures 27A-27C illustrate an efficient mixing process for droplet manipulation by the geometrical motion of the irregularities used to generate the vortex of the FPLOC. The electrodes 2751 and 2771 are energized to deform the droplets 2750 and 2770 as shown in Figure 27B; thereby causing the droplet 2750 to become high, causing the droplet 2770 to become fat. Then the 'central configuration electrode 2760 is energized to drop the droplet 2750 and 2770 are pulled into the hybrid configuration electrode 2760 (labeled black) as shown in Figure 27C. In Figure 27B, the black areas indicate that the two energized configuration electrodes 2751 and 2771 not only deform the two droplets 2750 and 2770 And partially pulling them into the central configuration electrode 2760. This temporary excitation step shown in Fig. 27B also contributes to the smooth mixing movement of the two droplets. The shape of the black areas and the deformed droplets in Figs. 27B-27C are only For purposes of illustration, in the present invention, these shapes may be of any type as desired. Figures 28A and 28B illustrate a microelectrode array mixer for improving mixing speed. In one embodiment, a non-uniform reciprocating mixer may be used. Accelerate droplet mixing. This can be achieved by exciting a set of microelectrodes to create an irreversible pattern, wherein the irreversible pattern destroys the symmetry of the two loops to improve the mixing speed. The initial state is illustrated in Figure 28A, where the liquid Drop 2850 contains the sample and reactants and is located on top of the configuration electrode 2840. The first step for uneven reciprocal mixing is to energize the configuration electrode 2860 to make the droplet 2850 is deformed in the direction of the arrow shown in Fig. 28B. Then, the disposition electrode 2860 is de-energized, and the configuration electrode 284 is energized to pull the droplet back to the initial position shown in Fig. 28A. The reciprocating mixing can be performed multiple times. In order to achieve an optimized mixing effect. Furthermore, the shapes of the configuration electrode 2840 and the squeezing fluid 28 201244824 / quotient in Figures 28A and 28B are for illustrative purposes only. In the present invention, these shapes may be of any type as long as they are Having the ability to create eddy currents, or alternatively, the ability to create multiple layers. In yet another embodiment of the PFLOC droplet based mixing process, Figure 29 illustrates a loop mixer for improved mixing speed. This can be accomplished by exciting a sequence of smaller microelectrodes to create an irreversible level loop, where the irreversible level loop destroys the symmetry of the vertical layer loop to accelerate mixing. One embodiment as shown in FIG. 29 is to form eight configuration electrodes (2910, 2920, 2930, 2940, 2950, 2960, 2970, and 2980) surrounding the droplet 2990, and then sequentially align the arrangement electrodes one by one in a loop manner. . For example, as a first step, the electrode 291 is configured to be energized for a short period of time to cause a change in surface tension and a loop is generated inside the liquid droplet 2990 toward the arranging electrode 291. Next, the configuration electrode 291 is de-energized, and Ik is followed by the next adjacent configuration electrode 2920. The loop excitation process is repeated through all eight configuration electrodes (291 〇 to 2980) to create a level loop inside the droplet 299. This loop flow stimulus can be performed as many times as needed. In addition, the loop flow can be performed clockwise, counterclockwise, or an alternating mixture of the two to achieve optimal mixing. Further, the configuration of the electrodes 2910 to 2980 and the shape of the loop are for illustrative purposes only. In the present invention, such loop mixing may be of any type as long as they have the ability to generate eddy currents or, alternatively, have the ability to create multiple layers. /, Multi-layer mixer: One embodiment of the present invention which produces a plurality of layers in a small size (2 x 2 configuration electrodes) but an effective mixer to accelerate mixing can be as shown in Figures 3a to 3f. This multilayer mixer is especially useful for low aspect ratios (&lt;1). Aspect ratio refers to the ratio of _ to electrode size between the _ plate and the ground plate. The low aspect ratio ^ is more difficult to produce in the liquid-liquid portion and the ability to produce multiple layers is more important. Diagonal blending and diagonal cutting are utilized in this particular mixer. In the figure, the black liquid droplets 3〇51 at the arrangement electrode 3014 are mixed with the white liquid droplets 3050 at the arrangement electrodes. Temporarily configuring the electrode 3〇1〇 will become the mixing chamber energization to pull in the droplets 3051 and 3050. In order to initiate multi-layer mixing, the first step merges the two ship drops along the diagonal. The opposite direction of droplet merging can be 4 135 degrees' but then the direction of the diagonal, line cut needs to be perpendicular to the merging operation. Figure 29 201244824 shows that droplets 3051 and droplets 3050 are merged first into black and white droplets 3〇52. From = low = number and low aspect ratio, droplet 3G52 has a static dispersion based solely on diffusion, resulting in a longer mixing time, so the droplets appear to be half white, half, black. The second step is to perform a diagonal cut of the (3) and the starting pair of scales, as shown in Fig. 30C. The temporary arrangement of the electrodes 3〇1〇 is removed and the arrangement electrodes 3012 and 3013 and other temporary configuration electrodes are energized, and the two droplets 3052 are diagonally cut into two sub-droplets 3〇53 and 3〇54, such as Figure 3〇c does not. The details of the diagonal cut have been discussed in the previous paragraphs. Due to the low mixing ratio, = two sub-droplets 3G53 and 3G54 are laminated in the same orientation after diagonal cutting. Then, the third step of multilayer mixing is to move the two droplets back to the configuration electrode to repeat the diagonal blending and cutting. In Fig. 30D, the droplets 3054 are moved from the arrangement electrode 3012 to the arrangement electrode 3〇11, and 3053^〇t3013 3〇U ^ ° and 3054 are moved while avoiding their merging. For the configuration of the electrodes 3〇12 and 3〇13, the simple electrode movement operation of the configuration electrode and the hard-to-excitation causes the two droplets to physically contact each other, and the two droplets 15 are woven together. Therefore, the provisional electrodes 3〇15 and 3〇16 need to be first energized to create a guard zone between the two droplets to prevent any accidental merging while moving both places. After the droplet 3^ is moved ίίίίΛΙ 6 6 and 3Q15 towel, the diameter is straight to the two droplets = to the configuration electrode 3011 and Xie 4. The first to third steps can be repeated to produce the necessary number of layers to accelerate mixing. As Cao recorded your flute =: the droplets in the picture _ and the observations along the diagonal drop step to the third step after the other - loop study 8 1 84G): usually in the following way - to send the detection signal : Competitive binding of analytes of iron; use of molecules specific to solid phase i; formation of a refreshing assay; or performing enzyme-linked immunosorbent assays k where an active enzyme substrate is added for interaction with an enzyme-linked analyte 30 201244824 1 = The more research explores the integration of detection into the microflow til 'if is (four) the average absorbance of the money light detection in the size of the miniaturization = 〇 〇 Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ As shown in FIG. 31, wherein the sensor (phase, and 32) can be set in association with the bottom plate 312, the top plate 312, the droplets 315 〇 &amp; 3 (5), the sensing pin 3180, and the microelectrode 313 &&amp; The potential measurement performed by the integrated potentiometer sensor is being rigorously droplet 3150. Typically, an electrical application is applied between the two electrodes. The sensor 3132 is shown to measure Wei 3151 through the sensor probe 3181. The impedance meter sensor 3131 is integrated into the bottom plate 312 to monitor the catalytic reaction of the enzyme or biomolecular recognition events that specifically bind to the egg, lectin, acceptor, nucleic acid, whole cell, antibody or antibody related substances. Detecting 1/() 埠 can also be used for optical sensing and feedback to control the rapid liquid motion inside the FPL 〇c. System control (850 in Figure 8): One embodiment of the present invention for the FPL0C system control block is as Figure 32 shows. The main function of the system control block is to implement the FPL0C's field programmable capability. From a software and hardware perspective, there are different levels of requirements for the digitally programmable capabilities of FpL〇c. Figure 32 shows the hierarchical software structure of fpl〇c. The Field Programming Management (FPM) software 321〇 is the lowest layer of software that configures the FLB into the microfluidic components and in the layout/network of the microfluidic components to form the FPLOC. Microfluidic Programming Management (μορμ) The 3220 software is a one level up function for controlling and managing microfluid gymnastics. This step sets out how the microfluidic operation will be performed in FPL0C and the order of microfluidic operations. For users who want to focus on the application, they can complete the entire design of the FPL0C with a set of predefined and validated microfluidic components and with the programmatic advantages of sorting fluid operations. For more advanced users who want to optimize the overall design of FPL0C and take advantage of the flexible structure of FPL0C, they can directly build microfluidic components and directly program microfluidic operations. Both the FPM software and the M0PM software are FPL0C wafer level software. System Management 3230 is an application-level function that manages application-specific requirements. It includes system separation and integration 3231, detection 31 201244824 3232: data management 3233, and peripheral component management. System separation and integration (Figure 32)]. Meng = make simple-sub-devices. They are designed to be more powerful, reactant supply, detectors, and programming. Therefore, the microfluidic device can perform the Tίί#Γ=.T can be separated,; = the detection and data storage _^ Ww3f cost. The determination of multiple quantitative measurements will require c7, for simultaneous measurements, and for how to display, report, and store data in a specific format. It will be derogatory (4) f if ί, the same possible (4) secret state for FPLQC: (1) prototype and type 糸, 4; (2) desktop n configuration; (3) • and (4) free-standing biochip configuration. Um money and money, as well as the prototype and test system configuration for FPL0C = fundamentally, the fine level _ provides f === ίϋ to enable researchers to prove in the concept system level prototype environment The L-prototype and test system configuration is relatively open and uses -a &gt; eight, 'provided by the standard module function block and the standard block between these blocks. This is illustrated in FIG. Prototype and fluid interface 3340 for fluid delivery; for fixing 3剡 and high ship 3|23) 35 spears 3 for providing auxiliary drive (function generator removal) and _ shelling for A_D card 3323 The driver subsystem is two, GA board 3330; optical module 3370; and for controlling and analyzing crystal PC3310. Then the 'prototype and test system configuration provides proof of concept for the FPL0C original hard f, ^ body driver, wafer layout, design check, and field programmable programming so that only in the microfluid now (pr〇〇f_〇|: -c〇nc print studies. Prototype and test system configurations may support two main tools for optical characterization of microfluidic media: video detection and laser induced fluorescence analysis (LIF). Video function 32 201244824 is for microfluidics A photographic record of the function of the _. Provides a user interface to control the pump via the Electric Moon®, the juice, pressure sensor and laser induced fluorescence analysis (LIF) unit. The original and test system configuration includes support for these functions. Host PC. The connection to this central drive computer is via RS-232 and USB connection. Figure 34A' In some implementations of desktop machine configuration, the programmatic FPL0C is provided as a test with desktop device 3415. The biochip 341. Figure 34 illustrates the appearance of the desktop device 3415 and the slot 3416 for inserting the programmed FpL(R) C34i(R). Included in the desktop device 3415 for sensing The built-in detection sensor, the device control button 3418, and the display 3417 of the test result. Referring to FIG. 34B, in another embodiment of the portable machine configuration, the programmed FPL0C is provided as the test biochip with the removable device 3425. 3420. Figure 34B illustrates the appearance of the shackable device 3425 and the slot 3426 for inserting the programmed FPLOC 3420. The built-in detection sensor for sensing the test results is included in the shackable device 3425, device control is shown in Figure 3428. And the display 3427. The portability of the FPfC of the present invention contributes to a wide range of locations such as clinics, operating rooms, emergency rooms, small living rooms, and the like, and can be used to bring faster turnaround time in critical situations. A medical point in the field of rapid diagnosis (P〇int_〇f_care) or point-of-need use. ° Figure 34C illustrates another embodiment of a stand-alone biowafer configuration in which a programmatic FPL0C is provided as Stand-alone biochip 3430. Figure 34C illustrates the appearance of a freestanding bio-b-sheet 3430 and a sample collection device 3439 for collecting samples into a wafer. The resulting detection sensor, preloaded system, and system control unit are integrated into the wafer. By using the microelectrode array, the field testable permanent display technology should be used to display the test results 3437. Even if the wafer is powered off, the results of the display will not disappear, so it can be used for test recording. 'The low-cost one-off invention of large-scale manufacturing as shown in 34C can be used right, the operating room, the emergency room, the small laboratory. In a variety of locations of a wide range of applications, and for use in areas of rapid diagnosis that can lead to faster turnaround times in critical situations or where needed. &lt; 'Data management and transfer (3233 in Figure 32): One implementation of FPL0C 33 201244824 疋Using emerging information technology, complex-i/r ρρτ ΠΓ FI 44- to the different technical configurations of medical companion deletion Ground connection J啫縻 health care system. #要 FPLQC communication set up with analyzer from the information system accessible; (2) s) make FPL〇c ΐ allow chest G for non-specialized households easy to make ^Sang vertical storage level, ride free Unauthorized sensation of sensitive data, 3234 in the 32): In the other way of the configuration of the TM^ system, other peripheral elements such as small thermal printers should be considered for their needs. Immediately hard copy of the silk (four) use. Or consider storing the measured data to a lab or other database for processing. Barcode scanners are also popular for managing samples. Existing P0CT devices can be integrated, and the ability to connect to the network is also seen as a communication peripheral component. In some embodiments of manufacturing FPLOC, the underlying fabrication techniques for FPLOC may be based on semiconductor, thin film transistor (TFT) array, PCB, plastic or paper, depending on the application. Standard CM〇s and TFT manufacturing technology. An embodiment of manufacturing the FPL0C by using a standard CMOS fabrication process is shown in the block diagram of ^35. The two main blocks of FPL0C are system control block 355〇 and fluid logic block (FLB) 3510. Normally, depending on the application and manufacturing technology constraints, the system requires only one system control block 3550, but multiple FLBs 3510 are required. The microelectrode array is realized by FLBs daisy chained together. The number of flbs is determined by the application and primarily by manufacturing techniques. One FLB includes a rolling drive microelectrode 3530, a one bit memory map data 3520, and a control circuit 3540. The high voltage driving microelectrode 3530 is a physical microelectrode that can be excited by applying a necessary voltage to excite droplets. A meta-memory map data 3520 maintains the logical value of the excitation of the microelectrode. Typically, "1" represents excitation of the microelectrode and "0" represents excitation removal of the microelectrode. Control circuit 3540 manages the control logic and forms the daisy chain structure of the FLB. System control 3550 includes four main blocks: controller 3560, wafer layout 3570, 34 201244824 = position map 3580 β and fluid operation manager leak. Controller testing is the secret of memory space, interface circuitry and software programming capabilities. The implement 356G can be integrated as a part of the finished product, or a crotch device. The wafer layout block 357G is a memory for storing configuration electrodes and ί 育 Γ layout information and data. The actual position of the droplet on the drop position 3580. By stimulating "configuring the electrodes, the sequence, the "virtual virtual 3590 will transfer the layout information, the droplet position map, and the PL0C application from the controller into a physical excitation of the droplets. ...Ϊ方ί中' provided by FPL〇C The field is programmable, so that the layout can be designed by software. The microfluidic device or the post-input ft if stored in non-volatile memory such as Li can be used. You can see the modifications ' without having to disassemble the device or return the device to its manufacturer, ~2#programmable or on-site programmable._c's current design or software configuration is controlled by the system 355G * FLB3510 comes to the real core and FPLQG layout stomach and # material is stored ^ = internal non-volatile memory, as shown in Figure 35. The information of the excited electrode including the pole is stored in the droplet Position map _ in the t. Miscellaneous 'soft body shouting (four) through - bit memory clock map to the parent micro-electrode drain. Group of micro-electrodes group - S): removal of the excitation is actually performed through the FLB off configuration In addition, all

Hr HO都疋軟體可連接的,並且在物理上為可利用標準製造 技術製造的單片集成形式。 ,36說明FLB陣列36〇〇的電學設計的一個實施方式, 括基於標準·製造技術以菊鏈配置的很多 尺寸牲鍵是在電學工程設計中使用的佈線方式。在微電極的 ^寸持續縮小並且微電極的數量持續增長的同時, 並將變得太複雜以至於不能管理系統魏模連^^ 麵⑼之間的連接,並且Μ的錢將 的數量增加而增多,由此可實現可驗的並且更簡 補佈局設計。每個聽包含存舰勵資賴存儲裝置 201244824 以及用於激勵微電極363Q的高壓電路。去 她加诌號vm時,根據觸發器3610的輸出值 : ϊίίί紐勵。SQ健控制方波而不是穩態Dc⑯加到微電極?。 在激勵微電轉狀前,通過:雜錄ED 又 3620的值。諸如D觸發器3⑽之類的—位财 它觸發器設計或其讀料存儲助。 硕置也T以疋其 用了圖陣列製成品的橫截面。在—個實施方式中,使 3760二Sffrf —層聚乙烯層(Ρ。17 ^)。底層是襯底 制電路層_。控制電路、觸發器和高壓 ^動1包含在位於微電極374G和正下方的3751的區域 L。用於製作微電極3740、3770以及地線·。此電 t it構的頂視圖如圖5A所示。利用電壓來應用被激勵的微 電極374G,並且微電極湖是的。微·_部是介電層 3710。在本實施方式中,地線373〇不被介電層371〇覆蓋, 小所需的激勵賴。在最上面,塗覆有疏賴372()崎低表面的 潤濕性。如果從頂部觀看,僅能看到微電極陣列,而不會看見隱 藏在微電極下麵的電路。這種自包含微電極結構是在製造RB g 具有極高可擴展性的關鍵。 通過利用薄膜電晶體(TFT)陣列製造工藝來製造pfl〇c的另 一貫施方式如圖38A中的框圖所示。兩個主塊是系統控制塊385〇 和有源矩陣塊(AMB) 3800。系統控制塊3850包括四個主塊:控 制器3860、晶片佈局3870、液滴位置地圖3880以及流體操作;^ 理器3890。控制器3860是CPU ’並具有必要的記憶體空間、介面 電路和軟體程式設計能力。晶片佈局塊3870是存儲配置電極的配 置資料以及L0C佈局資訊和資料的記憶體。液滴位置地圖388〇反 映出LOC上的液滴的實際位置。通過激勵“配置電極,,序列,流 體操作管理器3890將佈局資訊、液滴位置地圖以及來自控制器 3860的LOC應用轉譯成對液滴實施的物理激勵。 °° 在一個實施方式中,LOC的現場可程式設計性或軟體配置由系 統控制3850來實現。控制器3860是CPU,並具有必要的記憶體空 36 201244824 間、介面電路和軟體程式設計能力·。取決於製造技術,控制器可 被,成作為製成品的一部分,或者可以為附接的外部裝置。電極 的形狀和尺寸設計以及L0C佈局資訊和資料被存儲在晶片佈^塊 3870内部的非易失性記憶體中’如圖38A所示。液滴位置地圖反 映出FPL〇C上的液滴的實際位置。包括臨時電極的被激勵電極的 貧訊被存儲在液滴位置地圖3880中的非易失性記憶體中。流 作管理器389G將佈局資訊、液滴位置地圖以及來自控制器的 FPL0C應用轉譯成通過激勵“配置電極’,序列對液滴實施的物理 激勵^後,對配置電極的成組、激勵和去除激勵的資料以逐幢 的方式發送給有源矩陣塊(AMB) 38〇〇。 、 糊在i—實财式中,細_包括五個主塊:有源矩陣面板 3810、源極驅動器382〇、栅極驅動器3825、DC/DC 芎 控制器3830,如圖38B所示。在有源矩陣面板38j〇中, 在,、用的基礎上使用柵極匯流排3815和源極匯流排3814,但 通過選擇位於行端部和列端部的兩個適當接觸焊盤 ί址的,如圖_所示。開關裝置使用由沉積的薄膜 — 因此稱為薄膜電晶體(TFT) 3811)°TFT陣列襯底 t、存儲電容器3813、微電極3812以及互連佈線繼 流排3815和資料信號匯流排3814的每個端部 AM批也丨哭如盤,以附接源極驅動器IC3820和柵極驅動器IC。 單^驅‘ΤΡΤ陆利用來自系統控制3850的資料3831通過驅動電路 曰g qtT,其中驅動電路單元包括一組LCD驅動LC(LDI) f/DC韓梅ϋ 2。、將沉電源3841施加到DC/DC轉換器3840, 1 TFT過柵極匯流排3815向栅極施加正脈衝,以導 . :電谷器被充電,並且微電極3812上的電壓電平上升 排3跑的電壓電平。存儲電容器上: ^極上的電壓,朗施加下—錢電壓為止。 m π〇Γ =方式中,基於TFT陣列的微電極陣列的頂視圖如 的TFTL(J佑極3812、TFT3811以及存儲電容器3813在典型 的TFT LCD佈局中說明。在另一實施方式中,實現如圖4β所示的 37 201244824 六邊形TFT陣列佈局,以減少與在相鄰微電極之間的相對較大 間隙3816的碰撞。 在另-實施方式中,基於TFT技術的FPL〇c製成品是在 38D所示的雙平面結構中。TFT麵是在具有微雜讓的 襯底3801上製造的,並且添加塗覆有疏水膜38〇5的介電絕緣體 3806,以降低表面的潤濕性’並增加在液滴與微電極之間的電容。 在頂板3802上,除了塗覆有疏水膜3805的連續地電極38〇8之 可能還需要由不透明金屬製成的黑色轉(BM) 38Q7,用以 a-Si TFT ’使其免受雜散光的照射。 均 在任何程式設計或配置之前’空白FPL〇c將看起來像圖 中所說明的那樣。它具有FLB (流!!邏輯塊)_的矩陣,並且 每個FLB在物理上是可被組合在—起並被同時激勵的微電極 式設計空白FPLOC的各種實施方式至少包括:⑴手動自下 程式設計處理;以及(2)自上而下設計方法。 通過利用手動自下而上程式設計處理來程式設計FpL〇 個貫施方式如圖39A和39B所示。在任何程式設計或配置之 空白FPLOC3901可如圖39A所示。這種空白FpL〇C39〇 謂910的陣列、FPL0C系統控制392〇以及1/〇介面393〇。= 實=式Γ1/0介面_的數量可根據設計需要為 早個或夕個。在另-實施方式中,1/〇介面393 制誦的放置位置可以是位於·391_車列的下方或者 39A ^^&gt;FPL0C 3920 祕系統刀隔、配置、控制、管理和其它系 細提供在FPL0C科部裝置之間進行連接以程1Hr HO is software-connectable and physically a monolithic form that can be fabricated using standard manufacturing techniques. 36 illustrates one embodiment of the electrical design of the FLB array 36〇〇, including many sizes of keys that are daisy-chained based on standard manufacturing techniques are the wiring used in electrical engineering design. While the microelectrode continues to shrink and the number of microelectrodes continues to increase, it will become too complicated to manage the connection between the system's Wei mold and the surface (9), and the number of money will increase and increase. This makes it possible to implement an auditable and simpler layout design. Each listener includes a storage device and a high voltage circuit for exciting the microelectrode 363Q. When she adds the nickname vm, according to the output value of the trigger 3610: ϊίίί Newton. The SQ control controls the square wave instead of the steady state Dc16 applied to the microelectrode. Before exciting the micro-electricity, pass: the value of the ED and 3620. Such as D flip-flop 3 (10) - its trigger design or its reading storage help. Shuo also used the cross section of the finished product. In one embodiment, 3760 two Sffrf-layer polyethylene layers (Ρ 17 ^) are used. The bottom layer is the substrate circuit layer _. The control circuit, the flip-flop and the high voltage 1 are included in the region L of the 3751 located directly below the microelectrode 374G. Used to make microelectrodes 3740, 3770 and ground wire. The top view of this electrical configuration is shown in Figure 5A. The excited microelectrode 374G is applied using a voltage, and the microelectrode lake is. The micro-section is a dielectric layer 3710. In the present embodiment, the ground line 373 is not covered by the dielectric layer 371, and the required excitation is small. On the top, it is coated with the wettability of the 372 () low surface. If viewed from the top, only the microelectrode array can be seen without seeing the circuitry hidden under the microelectrodes. This self-contained microelectrode structure is the key to the extremely high scalability of RB g. Another consistent manner of fabricating pfl〇c by utilizing a thin film transistor (TFT) array fabrication process is illustrated in the block diagram of Figure 38A. The two main blocks are system control block 385〇 and active matrix block (AMB) 3800. System control block 3850 includes four main blocks: controller 3860, wafer layout 3870, drop location map 3880, and fluid operation; Controller 3860 is a CPU&apos; and has the necessary memory space, interface circuitry, and software programming capabilities. The wafer layout block 3870 is a memory that stores configuration data of the configuration electrodes and L0C layout information and materials. The drop position map 388 〇 reflects the actual position of the drop on the LOC. By stimulating the "Configure Electrodes, Sequence, Fluid Handling Manager 3890, the layout information, the drop location map, and the LOC application from the controller 3860 are translated into physical excitations performed on the droplets. °° In one embodiment, the LOC The field programmable or software configuration is implemented by System Control 3850. Controller 3860 is the CPU and has the necessary memory space 36 201244824, interface circuit and software programming capabilities. Depending on the manufacturing technology, the controller can be As part of the finished product, or as an attached external device. The shape and size design of the electrode and the L0C layout information and data are stored in the non-volatile memory inside the wafer block 3870' as shown in Figure 38A. The droplet position map reflects the actual position of the droplet on the FPL 〇 C. The poor signal of the excited electrode including the temporary electrode is stored in the non-volatile memory in the droplet position map 3880. Manager 389G translates the layout information, the drop location map, and the FPL0C application from the controller into a "set electrode" by excitation, sequence versus droplet After the physical excitation, the data of the grouping, excitation, and removal excitation of the configuration electrodes is transmitted to the active matrix block (AMB) 38〇〇 in a block-by-frame manner. In the i-real money type, the fine_ includes five main blocks: an active matrix panel 3810, a source driver 382, a gate driver 3825, and a DC/DC 芎 controller 3830, as shown in FIG. 38B. In the active matrix panel 38j, the gate busbar 3815 and the source busbar 3814 are used on the basis of, but by selecting two suitable contact pads at the end of the row and the end of the column. ,as the picture shows. The switching device uses a film deposited by the film - hence called a thin film transistor (TFT) 3811), a TFT array substrate t, a storage capacitor 3813, a microelectrode 3812, and an interconnect wiring substream 3815 and a data signal bus 3814. The end AM batch is also crying as a disk to attach the source driver IC3820 and the gate driver IC. The single drive uses the data 3831 from the system control 3850 through the drive circuit 曰g qtT, wherein the drive circuit unit includes a set of LCD drive LC (LDI) f/DC Han Mei ϋ 2. The sink power supply 3841 is applied to the DC/DC converter 3840, and the TFT over gate bus 3815 applies a positive pulse to the gate to: the electric grid is charged, and the voltage level on the microelectrode 3812 rises. 3 running voltage level. On the storage capacitor: ^ The voltage on the pole is applied to the voltage - the voltage. In the m π 〇Γ = mode, a top view of the TFT array-based microelectrode array such as TFTL (J Bole 3812, TFT 3811, and storage capacitor 3813 is illustrated in a typical TFT LCD layout. In another embodiment, implementation is as Figure 37 is a 37 201244824 hexagonal TFT array layout to reduce collisions with relatively large gaps 3816 between adjacent microelectrodes. In another embodiment, the TFT based FPL 〇c article is In the biplanar structure shown in Fig. 38D, the TFT face is fabricated on a substrate 3801 having a micro-hybrid, and a dielectric insulator 3806 coated with a hydrophobic film 38〇5 is added to reduce the wettability of the surface. And increase the capacitance between the droplet and the microelectrode. On the top plate 3802, in addition to the continuous electrode 38〇8 coated with the hydrophobic film 3805, a black turn (BM) 38Q7 made of opaque metal may be used. The a-Si TFT' is protected from stray light. Before any programming or configuration, the 'blank FPL〇c will look like the one shown in the figure. It has FLB (stream!! logic block)_ Matrix, and each FLB is physically Various embodiments of the micro-electrode design blank FPLOC that are combined and simultaneously excited include at least: (1) manual self-programming processing; and (2) top-down design method. By utilizing manual bottom-up programming The process of programming FpL is shown in Figures 39A and 39B. The blank FPLOC3901 in any programming or configuration can be as shown in Figure 39A. This blank FpL〇C39〇 910 array, FPL0C system control 392 〇 and 1/〇 interface 393〇. = Real = Γ Γ 1 / 0 interface _ the number can be early or the evening according to the design needs. In another embodiment, the placement of the 1 / 〇 interface 393 can be Located under the ·391_car column or 39A ^^&gt;FPL0C 3920 secret system partition, configuration, control, management and other systems are provided to connect between the FPL0C department devices

4㈣的功能。在另—實施方式卜W (,;、以====件 尺寸和心狀以及FPL0C的整體佈局手動地進行場程式設計。圖娜 38 201244824 說明對空白FPLOC3901進行程式設計以實現配置L〇c的設計39〇2 的一個實施方式。此配置LOC3902具有包括電極394〇和貯液器 3970 :廢棄物貯存裔3990、混合室3960、檢測視窗3950以及輸 送路位3980的微流體元件,其中輸送路徑3980由連接fploc的 不同區域的電極構成。在FPL0C的佈局設計之後,在圖3gB中也 存在一些未使用的微電極3910。設計FPL〇c的第二個步驟是定義 晶片的微越操作。基本的流縣作包括··產生㈣、輸送、切 割和混合。如前面的段落所討論的,基於微電極陣列結構可以實 現更多的先進的流體操作。FPL0C的設計者可以選擇使用墓礎建立 塊FLB來建立包含流體操作的整個FpL〇c。但是為了設計者設計的 ,利性以及為了能夠擴展FPL〇c #設計,高度期望用於微 作的應用鈒2頦。 FPLOC設計和程式設計:在一個實施方式,FpL〇c的自上而下 的設計方法在圖40中說明。FPL0C的自上而下的設計起始於由生 物晶片使用者提供的生物測定協定侧。為了定義刪c的行為 用戶提供作為“高階語言描述,,4012的硬體描述語 :(gDL)或者作為“排序圖模型” 4〇15的示意性設計。“排序圖 水、5L 4fl5可自用以描述這種測定協議的“高階語言描述,,舰2 2種模型可用於執行“行為級模擬,’ 4013以驗證高級測定 1 ^ 表更適於與大型結構一起工作,因為通過數位即可指定 晝出每—件。然而,示意性目錄可實現更容易 ? ί視覺化。在這―層’ ^義應用級功能和LGC的用途。接下 二1用系級合成” _來根據排序圖模型產生具體的執行 = 體模ί庫’’/〇21和“設計絲” 4022也被提供作為 二田唯輸入。逞種模組庫,類似於在基於細胞的几幻設計中 _ Ρ二細Ϊ庫’包括諸如混合和存儲單元之_不同微流 功^^。緊湊的模咖於不同的微紐功能模組以及諸如寬 ί及裝置類比或實驗室實驗的操作減時間之類的參 .a 些叹计規範也被賦予了先驗(priori),例如,完成 、曰、限、晶片面積尺寸的上限以及不可重新配置的資源(比 39 201244824 ^片上贿器/分配埠和集成光學檢㈣)陳合。合成處理 侧、的輸出包括測定操作到晶片上資源·的映射(或映射 $)、,測定操作4023的時間表(或時間表棺)以及内置自測試(BIST) (^内置自測試標)4025。然後’在幾何級觀上通過設計規範 j輸^ ’發生幾何級合成卿。合成處理試圖找到既符合輸入規 優化一些品質因數(比如性能和面積)的期望的設計點。 在δ成之後’生物晶片的二維物理設計4〇33 (即模組放置和路由) 可與來自$與一些製造技術相關聯的)模組庫的具體物理資訊相 結合’趨得二賴何麵4_。這種_可胁執行物理級類 比4045以及低級設計驗證4〇5〇。在物理驗證之後,FpL〇c設計可 被載入到空白FPL0C中。 從示意性/HDL原始檔案到實際FPL〇c配置:在一個實施方式 中,原始檔案被饋送給適於FPLOC設計的軟體,其中將通過不同 的步驟產生-個槽。然後,將該槽通過序列介面(遞)轉移給 FPLOC或類似EEPROM的外部記憶體裝置。 最常見的HDL是VHDL和Verilog,儘管在降低亂設計的複 方,ΐ出了努力,但是相比等同的組合語言,通過引入替代 語Ϊ而高了抽象程度。也可利用圖形程式設計語言(比如美國 國豕儀益LabVIEW) ’使得FPLOC附加模組可用於定向及程式設計 FPLOC硬體。圖雜歧計語言对極大賴化了 FpLQG程式設計 處理。 在又厂實施方式中,為了簡化FPL0C中的複雜系統的設計, 可巧用^被測試和優化的預定義複雜功能的庫來加速FpL〇c設計 過程。,些預定義的微流體庫可以是諸如“對角線切割”或“以 x:y顯示ΌΚ, ”之類的先進微流體操作。在典型的設計流程中, FPLOC應用開發者將在整個設計過程中多階段地模擬設計。初始 地’以ViffiL或Verilog進行的描述通過創建用以類比系統和觀察 結果的測試工作臺來模擬。然後,在合成引擎已經將設計映射到 連線表之後,連線表被轉譯成門級描述,其中重複模擬以確認無 差錯地進行合成。最後,設計被佈局在FPLOC中,這時可以添^ 201244824 遲2且秘將這些值返回注釋㈣k_—^ 絲上,整個系統類比再次運行。 ,观 極陣方^中’代替基於液滴的微流體操作’ EW0D微電 =i Γίίϊ1流微流體操作。連續微趙操作在控制上 ΐ 產生確定體積的液體4⑽。如圖4^ 間的;^線形成了在目標配置電極4160與貯液器4110之 從貯二器流到目m和目標配置_ _被激勵時,使液體 電極41^0&quot;^。,極4160中。4130表示液體從橋流到配置 其於、y/廷裡橋是一條微電極線。這種橋配置具有連續流和 ΐϊϊΐ ,系統的特點。它具有通道的所有優點,即,—旦橋ί 或去日#去除激勵,則所有的液體都將被拉回到貯 曰極_ ’並且在通道中不存在殘留液滴。一 ϋϋ 被填滿,則橋4115被去除激勵,以將來自 ^ ^ 4ιβ^^ °^ 體真滿疋自動化的,即,一旦橋和配置電 4110 不重要。可通過激勵適當的微電極4160以及橋的中斷點來 制液體4130的產生。如圖41Β所示,通過首先對微電極 ^固後對橋去除激勵,液體4130從貯液器41_開。 k個過知腐保戦橋社部分㈣將 Γί圖41=通過配置電極4160的微電極的數量而4 (four) features. Field programming is performed manually in another embodiment, W (,;, ==== part size and heart shape, and the overall layout of FPL0C. Tuna 38 201244824 Description Programming the blank FPLOC3901 to implement the configuration L〇c One embodiment of the design 39. 2. This configuration LOC3902 has a microfluidic element comprising an electrode 394 and a reservoir 3970: waste storage 3990, mixing chamber 3960, detection window 3950, and delivery path 3980, wherein the delivery path 3980 is made up of electrodes that connect different regions of the fploc. After the FPL0C layout design, there are also some unused microelectrodes 3910 in Figure 3gB. The second step in designing FPL〇c is to define the micro-operation of the wafer. The flow county includes: (4), transport, cutting and mixing. As discussed in the previous paragraph, more advanced fluid operations can be achieved based on the microelectrode array structure. The designer of the FPL0C can choose to build blocks using the tomb foundation. FLB to build the entire FpL〇c containing fluid operation. But for the designer's design, and for the ability to extend the FPL〇c# design, it is highly desirable for Application 鈒2颏 FPLOC Design and Programming: In one embodiment, the top-down design approach of FpL〇c is illustrated in Figure 40. The top-down design of FPL0C begins with the use of biochips. The biometric agreement side provided by the user. In order to define the behavior of deleting c, the user provides a schematic design as a "high-level language description, 4012 hardware descriptor: (gDL) or as a "sorting graph model" 4〇15. Figure Water, 5L 4fl5 can be used to describe the "high-level language description of this assay protocol. Ship 2 2 models can be used to perform "behavior-level simulation," 4013 to verify that the Advanced Measurement 1 ^ table is more suitable for working with large structures. Because each digit can be specified by digits. However, the schematic catalog can be made easier. ί Visualization. In this layer, the application level function and the use of LGC are used. _ to generate specific execution according to the sorting graph model = phantom 库 library '' / 〇 21 and "design silk" 4022 is also provided as the second field only input. 逞 模组 module library, similar to the cell-based illusion Design _ Ρ The second library 'includes different micro-flow functions such as mixing and storage units. The compact module is used in different micro-function modules and operations such as wide and device analog or laboratory experiments. Some of the sham specifications have also been given a priori (priori), for example, completion, defects, limits, wafer size limits, and non-reconfigurable resources (cf. 39 201244824 ^ on-chip bribes/distribution 埠 and integrated optics) Inspection (4)) Chen He. The output of the synthesis processing side includes mapping (or mapping $) of the measurement operation to the on-wafer resource, the schedule (or schedule) of the measurement operation 4023, and the built-in self-test (BIST) (^ Built-in self-test mark) 4025. Then, at the geometric level, the geometric level synthesis is generated by the design specification j. Synthetic processing attempts to find a desired design point that meets some of the quality factors (such as performance and area) of the input specification. After δ, the two-dimensional physical design of the biochip 4〇33 (ie module placement and routing) can be combined with the specific physical information from the module library associated with some manufacturing techniques. Face 4_. This _ threaten execution physical level analog 4045 and low-level design verification 4〇5〇. After physical verification, the FpL〇c design can be loaded into the blank FPL0C. From the schematic/HDL original archive to the actual FPL〇c configuration: In one embodiment, the original archive is fed to a software suitable for the FPLOC design, where a slot will be generated by different steps. The slot is then transferred to the FPLOC or EEPROM-like external memory device via the serial interface. The most common HDLs are VHDL and Verilog, although efforts have been made to reduce the complexity of the design, but the level of abstraction is higher by introducing alternative language than the equivalent combination language. Graphical programming languages (such as LabVIEW, USA) can also be used to make FPLOC add-on modules available for orientation and programming of FPLOC hardware. The graph disambiguation language pair relies heavily on the FpLQG programming design. In the factory implementation, in order to simplify the design of complex systems in FPL0C, the library of predefined complex functions that are tested and optimized can be used to accelerate the FpL〇c design process. These predefined microfluidic libraries can be advanced microfluidic operations such as "diagonal cutting" or "displaying x:y". In a typical design flow, FPLOC application developers will simulate the design in multiple stages throughout the design process. The initial description by ViffiL or Verilog is simulated by creating a test bench for analogy systems and observations. Then, after the composition engine has mapped the design to the wire table, the wire table is translated into a gate-level description where the simulation is repeated to confirm that the composition is synthesized without errors. Finally, the design is laid out in FPLOC, at this time you can add ^ 201244824 late 2 and secretly return these values to the comment (4) k_-^ silk, the entire system analogy runs again. , the view of the pole array ^ in the 'substitute droplet-based microfluidic operation' EW0D micro-electricity = i Γ ίίϊ 1 flow microfluidic operation. The continuous micro-scan operation is controlled to produce a defined volume of liquid 4 (10). As shown in Fig. 4, the line is formed to make the liquid electrode 41^0&quot; when the target arrangement electrode 4160 and the reservoir 4110 flow from the reservoir to the target m and the target configuration _ _ is energized. In the pole 4160. 4130 indicates that the liquid flows from the bridge to the configuration, and the y/Tingli bridge is a microelectrode line. This bridge configuration features continuous flow and ΐϊϊΐ, system features. It has all the advantages of the channel, that is, if the bridge is removed or the excitation is removed, all the liquid will be pulled back to the reservoir _ ' and there are no residual droplets in the channel. When a ϋϋ is filled, the bridge 4115 is de-energized to automate the body from ^ ^ 4ιβ^^^^^, ie, once the bridge and configuration 4110 are not important. The generation of liquid 4130 can be made by energizing the appropriate microelectrode 4160 and the break point of the bridge. As shown in Fig. 41A, the liquid 4130 is opened from the reservoir 41_ by first removing the excitation from the bridge after the microelectrode is solidified. k parts of the zhizhi Baoqiao Bridge (4) will be 图ί Figure 41 = by arranging the number of microelectrodes of the electrode 4160

Li 麵4160包括10x10個微電極。可定義配The Li face 4160 includes 10 x 10 microelectrodes. Definable

說日二ίί和形狀以產生不同的液體尺寸和形狀。圖41C 且通過激勵貯液器4110和配置電極4160 _ 方可利用液體的相同產生過程來將液體切 d成兩種子液體’如圖41D所示。在對配置電極侧去除激勵之 41 201244824 後’橋配置電極4117和目標配置電極4171被激勵,液體從橋流 到4170的區域中。對橋配置電極4117去除激勵,然後對配置電 極4161和4171進行激勵,使得液體斷裂並形成兩種子液體4170 和4130 ’如圖41E所示。只要配置電極4161和4171的尺寸被預 先計算為期望的尺寸’這種切割處理就可產生不同尺寸的兩種子 液體。 ^在另一實施方式中,圖42A-C說明通過連續流微流體操作實 施的混合過程。圖42A說明通過激勵橋4215和4225以及激勵配 置電極4216和4226,液體從貯液器4210和4220經橋流到混合室 4230中。這裡,與配置電極4216和4226相關聯的液體在形狀上 發生改變以便進行更好的混合,此外液體的尺寸也不同以便進行 比例混合(ratio mixing) 在配置電極4216和犯邪之間具有間 隙,以防止過早混合。一旦液體填滿了配置電極4216和4226,則 極4230 (1__個微電極)被激勵,兩種液體將被混合, 圖42Β所不。然後,兩個橋電極被去除激勵,如圖所示。 操作S單(=:流==所J的基礎微流體 、六时^ J座生·及體4216和4226以精確的方式自貯 ί益液生4;(2)切割··液體侧與液體421°被切 Ξ液體4220被切斷;⑶輸送:橋㈣和4225 處混入。明^ 口 士猫=⑷、,昆合:液體4216和4226在4230 操作:而且 =以不僅可用以執行所有的微流體 小尺寸微^ 式執行,因騎度的解析度取決於 人 員本發明’所屬領域的技術 和細節上作出各ίίϊ離本發明的精神和範圍的條件下可在形式 【圖式簡單說明】 42 201244824 圖2巧於操縱介電液滴的雙平面卿裂置的圖。 圖3是,明微電極陣列的圖’其中微電極 ㈤f聊ed_eleetnDde)可舰 圖4A是利用微電極陣列結構的敗佈局的圖 圖4B是常規的物理餘刻的結構的圖。 置電ί的,其巾細叫·™)和配 顯示圖5Α說明多個方形微電極的陣列,其中的-個微電極被突出 出顯^邪說明夕個六邊形微電極的陣列’其中的-個微電極被突 極丨G=!L置在牆磚(wal1—brid°佈局巾的多個方形微電 極的陣列’其中的—個微電極被突出顯示。 € 包合板結構’其中混合板結構可被控制為在共面模 式和雙平祕式之_換微結構。 _ 圖6B說明接地網(gr〇und grid)微電極共面結構。 圖6C說明另一具有接地焊盤的FPL0C微電極共面結構。 結構圖6D說明另一具有可程式設計接地焊盤的FPL0C微電極共面 知躲構_,其幅合'钱結構具有可拆 =積卩的並且透明的頂板’㈣適應最寬範圍的液滴尺寸 圖8是說明FPL0C所需的五個基礎功能塊的圖。 裝載I口9A。、9B、9C和⑽說明棚可調節的另—鉸接的無源蓋來 圖10是說明檢測I/O埠的圖。 圖11A和UB說明FPL〇c利用現場可 來顯示測試結果或其它重要消息。 ^ 圖12A說明液滴和懸浮顆粒由分別通過£^〇])和1^{)利用方形 配置電極和條形配置電極激勵的頂視圖。 43 201244824 面視圖。 一包每通過DEP將顆粒驅動到右側的橫戴 顆粒極上以通過~ 式。圖13說明利用液滴等分技術驟L〇c樣品製備的另一實施方 器的力 14B說明自調節所裝載的樣品或反應物相對於貯液 圖15說明FPL0C液滴產生過程的一個實施方式。 圖16說明稱$液滴等分”的具體液滴產生過程。 圖17是說明FPL0C的液滴的輸送的圖。 圖18是說明FPL0C的液滴路由的圖。 滴的= 9A、⑽和19C是說明利用删c的臨時橋接處理輸送液 圖20A、20B和20C是說明電極列激勵的圖。 圖21A、21B和21C是說明FPL0C的液滴切割的圖。 圖22A、22B和22C是說明FPL0C的液滴的精♦刀割的 圖23A、23B和23C是說明删C的液滴的對角線 程。圖24A、24B和2C說明在獅C的開放表面上的液滴切割過 圖25是說明集成到FPL0C的襯底中的微加熱元件的圖。 圖26A和26B是說明FPL0C的基本合併/混合的圖。° 圖27A、27B和27C是說明通過用以加速混合的不均句 動來實施的液滴操縱的有效混合過程的圖。 、。遂 圖28A和28B說明用於加速液滴混合的不均勻往復混人哭。 圖29是說明基於EW0D微電極陣列結構的流體循環m 圖。. ° ^ ,圖30A-30F是說明多層混合器的圖,其中多層混合器 緣橫比(&lt;1)的情形尤其有用。 口 _ 44 201244824 圖31是說明基於CMOS技術的感測裝置集成到FpL〇c中的圖。 圖32是說明用於FPL0C的分級軟體結構的框圖。 圖33是說明用於FPL0C的原型和測試系統組態的框圖。 圖34A說明FPL0C應用的桌面機器配置。u 圖34B說明FPL0C應用的可檇式機器配置。 圖34C說明FPL0C應用的獨立式生物晶片配置。 圖35是利用標準CMOS製造工藝來製造FPL0C的框圖。 圖36說明基於標準CMOS製造技術的FLB陣列的電學設計。 圖37說明基於標準CMOS製造技術的FLB陣列製成品的橫截 面視圖。 圖38A是利用薄膜電晶體(TFT)陣列製造工藝來製造FPL0C 的框圖。 圖38B說明有源矩陣塊(AMB)的框圖。 圖38C是基於TFT陣列的微電極陣列的頂視圖。 圖38D是說明在雙平面結構中基於TFT技術的FPL0C製成品 的橫截面視圖。 圖39A說明在任何程式設計或配置之前的空白fpl〇c。 圖39B說明配置L0C的設計的實例。 圖40是說明用於FPL0C設計和程式設計的自上而下設計方法 的流程圖。 圖41A、41B和41C說明通過連續流激勵來產生液體。 圖41D和41E說明通過連續流激勵來切割液體。 圖42A、42B和42C說明通過連續流激勵來合併/混合液體。 【主要元件符號說明】 120 玻璃板(頂板) 121 玻璃板(底板) 130 電極 135 間隙 140 地電極 45 201244824 150 液滴 151 液滴 152 液滴 160 疏水膜 170 介電絕緣體 180 電極 190 二維電極陣列 210 低表面能材料 220 參考電極 245 底部襯底 250 液滴 260 配置電極 261 微電極 270 間隙高度(液滴厚度) 300 微電極陣列 310 微電極 320 電極(配置電極) 330 電極 340 電極 350 液滴 360 電極 370 .電極 410 微電極 411 微電極 420 廢棄物貯存器 430 貯液器 431 貯液器結構 432 配置貯液器 440 輸送路徑(輸送路徑電極) 450 檢測視窗Say the day and the shape to produce different liquid sizes and shapes. Fig. 41C and by exciting the reservoir 4110 and the arranging electrode 4160 _ can use the same production process of the liquid to cut the liquid into two sub-liquids as shown in Fig. 41D. After the actuator electrode side is removed from the excitation 41 201244824, the 'bridge configuration electrode 4117 and the target configuration electrode 4171 are energized, and the liquid flows from the bridge to the region of 4170. Excitation is removed from the bridge configuration electrode 4117, and then the configuration electrodes 4161 and 4171 are energized such that the liquid breaks and forms two sub-liquids 4170 and 4130' as shown in Fig. 41E. As long as the dimensions of the configuration electrodes 4161 and 4171 are pre-calculated to the desired size, this cutting process can produce two sub-liquids of different sizes. In another embodiment, Figures 42A-C illustrate a mixing process performed by continuous flow microfluidic operation. Figure 42A illustrates the flow of liquid from reservoirs 4210 and 4220 into mixing chamber 4230 via excitation bridges 4215 and 4225 and excitation configuration electrodes 4216 and 4226. Here, the liquid associated with the configuration electrodes 4216 and 4226 is changed in shape for better mixing, and in addition, the size of the liquid is also different for ratio mixing to have a gap between the arrangement electrode 4216 and the evil. To prevent premature mixing. Once the liquid fills the configuration electrodes 4216 and 4226, the poles 4230 (1__ microelectrodes) are energized and the two liquids will be mixed, as shown in Figure 42. Then, the two bridge electrodes are removed for excitation as shown. Operation S single (=: flow == the basic microfluid of J, the six hour ^ J seat and the body 4216 and 4226 in a precise manner from the storage of liquid 4; (2) cutting · liquid side and liquid 421° is cut off by the cut liquid 4220; (3) transported: bridge (four) and 4225 are mixed in. Ming ^ mouth cat = (4), Kunming: liquids 4216 and 4226 are operated at 4230: and = not only can be used to perform all Microfluid small size micro-implementation, because the resolution of the riding degree depends on the personnel of the present invention, the technical and details of the field can be made in the form of the simplification of the spirit and scope of the present invention. 42 201244824 Figure 2 is a diagram of the double-plane cleavage of the dielectric droplets. Figure 3 is a diagram of the microelectrode array where the microelectrode (five ed_eleetnDde) is available. Figure 4A is a failure to utilize the microelectrode array structure. Figure 4B of the layout is a diagram of the structure of a conventional physical residual.置 的 , , , , , , , , , , , , , , 和 TM TM TM TM TM Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α The microelectrode is placed on the wall tile by the salient pole 丨G=!L (the array of multiple square microelectrodes of the wal1-brid° layout towel is highlighted). The micro-electrode is mixed. The board structure can be controlled to be in the coplanar mode and the double-layered micro-structure. _ Figure 6B illustrates the ground plane (gr〇und grid) micro-electrode coplanar structure. Figure 6C illustrates another FPL0C with ground pad Microelectrode coplanar structure. Structure Figure 6D illustrates another FPL0C microelectrode with a programmable ground pad for coplanar occlusion, with a splicing of 'money structure with detachable = accumulated and transparent top plate' (d) adaptation The widest range of droplet sizes Figure 8 is a diagram illustrating the five basic functional blocks required for FPL0C. Load I ports 9A, 9B, 9C, and (10) illustrate the shed adjustable additional hinged passive cover. Figure 10 Explain the diagram for detecting I/O埠. Figure 11A and UB show that FPL〇c uses the field to display the test knot. Or other important information. ^ 12A illustrates the droplets and suspended particles are by £ ^ square]) and ^ {1) a top view of an electrode using square configuration and the strip-shaped configuration of the excitation electrode. 43 201244824 Face view. A pack of particles is driven to the right side of the cross-particle pole by DEP to pass the formula. Figure 13 illustrates a force 14B of another embodiment of a sample preparation using a droplet aliquot of the L 〇 样品 sample illustrating one embodiment of the FPLOC droplet generation process illustrated by self-conditioning of the loaded sample or reactant relative to the stock solution 15 . Figure 16 illustrates a specific droplet generation process for weighing a "droplet". Figure 17 is a diagram illustrating the delivery of droplets of FPLOC. Figure 18 is a diagram illustrating droplet routing for FPLOC. Drops = 9A, (10), and 19C Fig. 21A, 21B, and 21C are diagrams illustrating droplet cleavage of FPL0C. Figs. 22A, 22B, and 22C are diagrams illustrating FPL0C. Figures 23A, 23B, and 23C of the droplets are the diagonal threads illustrating the droplets of the C. Figures 24A, 24B, and 2C illustrate the droplet cutting on the open surface of the lion C. Figure 25 is an illustration. A diagram of a micro-heating element integrated into a substrate of FPL0C. Figures 26A and 26B are diagrams illustrating the basic merging/mixing of FPL0C. Figure 27A, 27B and 27C are diagrams illustrating the implementation of uneven pitching to accelerate mixing. Figure 28A and 28B illustrate uneven reciprocating mixing crying for accelerating droplet mixing. Figure 29 is a fluid cycle m diagram illustrating an EW0D microelectrode array structure. ° ^ , Figures 30A-30F are diagrams illustrating a multilayer mixer in which the multilayer mixer The case of (&lt;1) is particularly useful. Port_44 201244824 Figure 31 is a diagram illustrating the integration of a CMOS-based sensing device into FpL〇c. Figure 32 is a block diagram illustrating a hierarchical software structure for FPL0C. 33 is a block diagram illustrating the configuration of the prototype and test system for FPL0C. Figure 34A illustrates the desktop machine configuration for the FPLOC application. Figure 34B illustrates the scalable machine configuration for the FPLOC application. Figure 34C illustrates the standalone biochip for the FPLOC application. Figure 35 is a block diagram of a FPLOC fabricated using standard CMOS fabrication processes.Figure 36 illustrates the electrical design of a FLB array based on standard CMOS fabrication techniques.Figure 37 illustrates a cross-sectional view of a FLB array fabrication based on standard CMOS fabrication techniques. Fig. 38A is a block diagram of manufacturing a FPLOC using a thin film transistor (TFT) array fabrication process. Fig. 38B illustrates a block diagram of an active matrix block (AMB) Fig. 38C is a top view of a TFT array based microelectrode array. It is a cross-sectional view showing the fabrication of FPL0C based on TFT technology in a biplanar structure. Figure 39A illustrates the blank fpl〇c before any programming or configuration. Figure 39B illustrates the configuration of L0C Example of Design Figure 40 is a flow chart illustrating a top down design method for FPLOC design and programming.Figures 41A, 41B and 41C illustrate the generation of liquid by continuous flow excitation. Figures 41D and 41E illustrate excitation by continuous flow To cut the liquid. Figures 42A, 42B and 42C illustrate the incorporation/mixing of liquids by continuous flow excitation. [Main component symbol description] 120 glass plate (top plate) 121 glass plate (base plate) 130 electrode 135 gap 140 ground electrode 45 201244824 150 droplet 151 droplet 152 droplet 160 hydrophobic film 170 dielectric insulator 180 electrode 190 two-dimensional electrode array 210 low surface energy material 220 reference electrode 245 bottom substrate 250 droplet 260 configuration electrode 261 microelectrode 270 gap height (droplet thickness) 300 microelectrode array 310 microelectrode 320 electrode (configuration electrode) 330 electrode 340 electrode 350 droplet 360 Electrode 370. Electrode 410 Microelectrode 411 Microelectrode 420 Waste reservoir 430 Reservoir 431 Reservoir structure 432 Disposition reservoir 440 Transport path (transport path electrode) 450 Detection window

46 201244824 460 470 471 472 501 502 503 504 505 506 610 615 616 617 620 621 630 631 632 633 640 651 652 653 680 681 682 683 710 720 混合室 配置電極 電極 電極 微電極 配置電極 微電極 配置電極 微電極 配置電極 開關 間隙' 間隙 間隙 蓋板 電極板 共面微電極 微電極 驅動微電極 微電極 地電極 液滴 液滴 液滴 接地網(共面微電極) 地線(接地網) 接地焊盤 地電極 頂板(頂蓋) 電極板 47 201244824 730 液滴 740 液滴 750 液滴 810 I/O埠(輸入/輸出埠) 811 I/O埠(輸入/輸出埠) 812 I/O埠(輸入/輸出埠) 813 I/O埠(輸入/輸出埠) 820 樣品製備 825 樣品 830 液滴操控 833 反應物 835 廢棄物 840 檢測 850 系統控制 851 晶片 852 測試結果 853 資料管理 854 周邊元件 930 間隔物 940 鉸接裝置 950 樣品(液滴、反應物) 960 針 970 電極板 980 蓋板 1020 頂板 1021 底板 1035 光學檢測 1036 磁性納米顆粒檢測 1040 介電層 1070 介電層46 201244824 460 470 471 472 501 502 503 505 506 620 630 615 617 620 621 630 631 632 633 640 651 652 653 680 681 682 683 710 720 Mixing chamber configuration electrode electrode electrode microelectrode configuration electrode microelectrode configuration electrode microelectrode configuration electrode Switching gap 'gap gap cover electrode plate coplanar microelectrode microelectrode driving microelectrode microelectrode ground electrode droplet droplet droplet grounding grid (coplanar microelectrode) ground wire (grounding grid) grounding pad ground electrode top plate (top Cover) Electrode plate 47 201244824 730 Droplet 740 Droplet 750 Droplet 810 I/O埠 (input/output埠) 811 I/O埠 (input/output埠) 812 I/O埠 (input/output埠) 813 I /O埠(Input/Output埠) 820 Sample Preparation 825 Sample 830 Droplet Control 833 Reactant 835 Waste 840 Detection 850 System Control 851 Wafer 852 Test Results 853 Data Management 854 Peripheral Components 930 Spacer 940 Hinged Device 950 Sample (Liquid Drop, reactant) 960 needle 970 electrode plate 980 cover plate 1020 top plate 1021 bottom plate 1035 optical detection 1036 magnetic nanoparticle detection 1040 Layer dielectric layer 1070

48 201244824 1090 1110 1111 1114 1210 1211 1212 1213 1220 1221 1222 1223 1224 1225 1226 1230 1250 1251 1252 1256 1340 1345 1350 1360 1370 1380 1420 1430 1440 1460 電極 墨水框架 微電極 框架 方形配置電極 方形配置電極 方形配置電極 方形配置電極 條型配置電極 條型配置電極 條型配置電極 條型配置電極 條型配置電極 條型配置電極 條型配置電極 信號 液滴 子液滴 子液滴 非均勻電場 微電極 液滴 液滴 液滴 間隙(通道) 血細胞 液滴 液滴 貯液器 臨時配置電極 49 201244824 1515 1530 1535 1540 1550 1610 1615 1620 1630 1731 1732 1733 1734 1735 1736 1737 1738 1739 1750 1760 1810 1820 1830 1840 1850 1851 1852 1860 1861 1930 方形貯液器(貯液器) 貯液器(.電極) 電極 配置電極 液滴 貯液器 液滴 配置電極 液滴 配置電極 配置電極 配置電極 配置電極 配置電極 配置電極 配置電極 配置電極 配置電極 液滴 配置電極 配置電極 配置電極 路線 路線 液滴 液滴 液滴 路線 配置電極 配置電極 . 50 50 201244824 1940 1950 1960 1970 2010 2011 2020 2021 2022 2050 2110 2111 2112 2151 2152 2210 2212 2215 2216 2250 2251 2252 2310 2311 2312 2313 2314 2315 2316 2350 配置電極 液滴 間隙 配置電極 電極 電極 配置電極列 配置電極列 配置電極列 液滴 配置電極 配置電極 配置電極 子液滴 子液滴 配置電極 配置電極 配置電極列 配置電極列 液滴 子液滴 子液滴 配置電極 配置電極 配置電極 配置電極 配置電極 配置電極 配置電極 液滴 201244824 2351 2352 2420 2430 2440 2450 2460 2470 2521 2530 2532 2550 2610 2611 2612 2650 2651 2653 2750 2751 2760 2770 2771 2840 2850 2860 2910 2920 2930 2940 子液滴 子液滴 配置電極 配置電極 配置電極 液滴 液體柱 液滴 概底 微加熱元件 加熱器控制/監視器 液滴 配置電極 配置電極 配置電極 液滴 液滴 液滴 液滴 配置電極 配置電極 液滴 配置電極 配置電極 液滴 配置電極 配置電極 配置電極 配置電極 配置電極 201244824 2950 配置電極 2960 配置電極 2970 配置電極 2980 配置電極 2990 液滴 3010 配置電極 3011 配置電極 3012 配置電極 3013 配置電極 3014 配置電極 3015 配置電極 3016 配置電極 3050 液滴 3051 液滴 3052 液滴 3053 液滴 3054 液滴 3055 液滴 3056 液滴 3120 頂板 3121 底板 3130 感測器(微電極) 3131 感測器 3132 感測器 3150 液滴 3151 液滴 3180 感測器探針 3210 場程式設計管理(FPM)軟體 3220 微流體操作程式設計管理(MOPM) 3230 系統管理 53 201244824 3231 3232 3233 3234 3310 3320 3321 3330 3340 3350 3360 3370 3410 3415 3417 3418 3420 3425 3427 3428 3430 3437 3439 3510 3520 3530 3540 3550 3560 3570 系統分隔和集成 檢測和貧料 資料管理和轉移 週邊元件 用於控制和分析晶片功能的PC 驅動器子系統 功能產生器 FPGA 板 流體介面 固定裝置 FPLOC 光學模組 測試生物晶片(FPLOC) 桌面裝置 顯示器 裝置控制按鈕 測試生物晶片(FPLOC) 可檇式裝置 顯示器 裝置控制按鈕 獨立式生物晶片 測試結果 樣品收集裝置 流體邏輯塊(FLB) 位元記憶體地圖貧料 高壓驅動微電極 控制電路 系統控制塊 控制器 晶片佈局塊 54 201244824 3580 3590 3600 3610 3620 3630 3710 3720 3730 3740 3760 3770 3800 3802 3803 3804 3805 3806 3807 3808 3810 3811 3812 3813 3814 3815 3816 3820 3825 3830 液滴位置地圖 流體操作管理器 FLB陣列 D觸發器 FLB(觸發器) 微電極 介電層 疏水膜 地線 微電極 襯底 微電極 有源矩陣塊(AMB) 頂板48 201244824 1090 1111 1111 1114 1210 1211 1212 1213 1220 1221 1222 1223 1224 1220 1221 1222 1223 1224 1225 1226 1230 1250 1251 1252 1256 1340 1345 1350 1360 1370 1380 1420 1430 1440 1460 Electrode ink frame microelectrode frame square configuration electrode square configuration electrode square configuration electrode square configuration electrode Strip type electrode strip type electrode strip type electrode strip type electrode strip type electrode strip type electrode strip type electrode signal droplet sub-droplet droplet non-uniform electric field micro-electrode droplet droplet droplet gap Channel) blood cell droplet droplet reservoir temporary configuration electrode 49 201244824 1515 1530 1535 1540 1550 1610 1615 1620 1630 1731 1732 1733 1734 1735 1736 1737 1738 1739 1750 1760 1810 1820 1830 1840 1850 1851 1852 1860 1861 1930 Square reservoir ( Liquid reservoir) reservoir (.electrode) electrode arrangement electrode droplet reservoir droplet arrangement electrode droplet arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode droplet arrangement electrode arrangement electrode arrangement Electricity Polar route route droplet drop route configuration electrode configuration electrode. 50 50 201244824 1940 1950 1960 1970 2010 2011 2020 2021 2022 2050 2110 2111 2112 2151 2152 2210 2212 2215 2216 2250 2251 2252 2310 2311 2312 2313 2314 2315 2316 2350 Configuration electrode Droplet gap arrangement electrode electrode arrangement electrode array arrangement electrode array arrangement electrode array droplet arrangement electrode arrangement electrode arrangement electrode sub-droplet droplet arrangement electrode arrangement electrode arrangement electrode array arrangement electrode column droplet sub-droplet droplet arrangement electrode Configuring electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode droplet 201244824 2351 2352 2420 2430 2440 2450 2460 2470 2521 2530 2532 2550 2610 2611 2612 2650 2651 2653 2750 2751 2760 2770 2771 2840 2850 2860 2910 2920 2930 2940 Drop configuration electrode configuration electrode configuration electrode droplet liquid column droplet bottom micro heating element heater control / monitor droplet configuration electrode configuration electrode configuration electrode droplet droplet droplet droplet configuration electrode configuration electrode droplet configuration Pole arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode arrangement electrode 201244824 2950 arrangement electrode 2960 arrangement electrode 2970 arrangement electrode 2980 arrangement electrode 2990 droplet 3010 arrangement electrode 3011 arrangement electrode 3012 arrangement electrode 3013 arrangement electrode 3014 arrangement electrode 3015 arrangement electrode 3016 Configuration electrode 3050 droplet 3051 droplet 3052 droplet 3053 droplet 3054 droplet 3055 droplet 3056 droplet 3120 top plate 3121 bottom plate 3130 sensor (microelectrode) 3131 sensor 3132 sensor 3150 droplet 3151 droplet 3180 Sensor Probe 3210 Field Programming Management (FPM) Software 3220 Microfluidic Programming Management (MOPM) 3230 System Management 53 201244824 3231 3232 3233 3234 3310 3320 3321 3330 3340 3350 3360 3370 3410 3415 3417 3418 3420 3425 3427 3428 3430 3437 3439 3510 3520 3530 3540 3550 3560 3570 System Separation and Integration Detection and Poor Material Management and Transfer Peripheral Components PC Driver Subsystem Function Generator FPGA Board Fluid Interface Fixture FPLOC Optical Module Test for Control and Analysis of Wafer Functions Chip (FPLOC) Desktop Device Display Device Control Button Test Biochip (FPLOC) Portable Device Display Device Control Button Standalone Biochip Test Results Sample Collection Device Fluid Logic Block (FLB) Bit Memory Map Poor Material High Voltage Drive Micro Electrode Control Circuitry Control Block Controller Wafer Layout Block 54 201244824 3580 3590 3600 3610 3620 3630 3710 3720 3730 3740 3760 3770 3800 3802 3803 3804 3805 3806 3807 3808 3810 3811 3812 3813 3814 3815 3816 3820 3825 3830 Droplet Position Map Fluid Operations Management FLB array D flip-flop FLB (trigger) microelectrode dielectric layer hydrophobic film ground line microelectrode substrate microelectrode active matrix block (AMB) top plate

TFT 微電極 疏水膜 介電絕緣體 黑色矩陣(BM) 地電極TFT microelectrode hydrophobic film dielectric insulator black matrix (BM) ground electrode

有源矩陣面板 TFT 微電極 存儲電容器 源極匯流排(互連佈線) 柵極匯流排(互連佈線) 間隙 源極驅動器 栅極驅動器 AM控制器 55 201244824 3831 資料 3840 DC/DC轉換器 3841 DC電源 3850 系統控制塊 3860 控制器 3870 晶片佈局 3880 液滴位置地圖 3890 流體操作管理器 3901 FPLOC 3902 LOC 3910 FLB (流體邏輯塊、微電極) 3920 FPLOC系統控制 3930 I/O介面 3940 電極 3950 檢測視窗 3960 混合室 3970 貯液器 3980 輸送路徑 3990 廢棄物貯存器 4010 生物測定協定 4012 高階語言描述 4013 行為級模擬 4015 排序圖模型 4020 體系級合成 4021 微流體模組庫 4022 設計規範 4023 測定操作 4025 内置自測試(BIST)(或内置自測試檔) 4030 幾何級合成 4032 幾何級 56 201244824 4033 二維物理設計 4040 三維幾何模型 4042 資源 4045 物理級類比 4050 低級設計驗證 4110 貯液器 4115 橋 4116 微電極 4117 橋配置電極 4130 液體 4160 配置電極 4161 配置電極 4170 液體 4171 配置電極 4210 貯液器 4215 橋 4216 配置電極(液體) 4220 貯液器(液體) 4225 橋 4226 配置電極(液體) 4230 混合室 57Active Matrix Panel TFT Microelectrode Storage Capacitor Source Bus (Interconnect Wiring) Gate Bus (Interconnect Wiring) Gap Source Driver Gate Driver AM Controller 55 201244824 3831 Data 3840 DC/DC Converter 3841 DC Power Supply 3850 System Control Block 3860 Controller 3870 Wafer Layout 3880 Droplet Position Map 3890 Fluid Operation Manager 3901 FPLOC 3902 LOC 3910 FLB (Fluid Logic Block, Micro Electrode) 3920 FPLOC System Control 3930 I/O Interface 3940 Electrode 3950 Detection Window 3960 Hybrid Room 3970 Reservoir 3980 Transport Path 3990 Waste Reservoir 4010 Biometric Protocol 4012 High-Level Language Description 4013 Behavioral Level Simulation 4015 Sort Chart Model 4020 System Level Synthesis 4021 Microfluidic Module Library 4022 Design Specification 4023 Determination Operation 4025 Built-In Self Test BIST) (or built-in self-test file) 4030 geometry synthesis 4032 geometry 56 201244824 4033 2D physical design 4040 3D geometry model 4042 Resources 4045 Physical level analog 4050 Low level design verification 4110 Reservoir 4115 Bridge 4116 Microelectrode 4117 Bridge configuration Polar electrode configuration 4161 4160 4130 Liquid electrode disposed electrode configuration 4210 4171 4170 liquid reservoir 4215 arranged bridge electrode 4216 (liquid) 4220 reservoir (liquid) 4225 4226 bridge electrode configuration (liquid) mixing chamber 57 4230

Claims (1)

201244824 七、申請專利範圍: r 微f鱗赌獅現場可財設計“實驗室 wnxKj裝置,包括: a.底板,包括置於襯底的頂表面上的多個微電極的陣 2個微電極由介電層覆蓋,其中每個所述微電極連接到接地社 構中的至少-個接地元件,在所述介電層和所述接地元件的頂部 设置有疏气層,以生狀有賴的疏水表面; 、 、、^·現場可程式設計結構,用於程式設計一組配置電極,以便 以選定的形狀和尺寸產生微流體元件和佈局;以及 單亓C 功能塊’包括:1/0埠;樣品製備單元;液滴操縱 早兀,核測早兀;和系統控制單元。 2·如請求項1所述的裝置,其中在所述現場可程式設計妹禮 置電極包括:第—配置電極,包含以陣列形式佈置的多°個 電極’以及與所述第—配置電極相㈣至少—個第二相鄰配置 ^極’液滴置於所述第—配置電極_部並與所述第二相鄰 電極的一部分重疊。 ι + 、如請求項1所述的裝置,其中所述FPL0C功能塊執行如下 厘驟.通過順序地施加用於對一個或多個選定的配置電極進行激 和去除激勵的驅動電壓,以順序地對選定的配置電極進行激勵/ =除激勵從而激勵液滴沿著選定的路線移動,來操縱在多個 電極之間的一個或多個液滴。 -直 4.,請求項3所述的裝置,其中所述FPL0C功能塊執行如下 二驟%操縱所述配置電極的微電極的數量,以大致控制液滴的 寸和形狀。 5·如請求項2所述的裝置,其中所述配置電極包括至少一 微電極。 . IU 6·如請求項5所述的裝置,其中在所述現場可程式設計結檨 :的一組配置電極的微流體元件包括:貯液器、電極、混合ί、 取測視由、廢棄物貯存器、液滴路徑以及指定功能電極。 7.如請求項6所述的裝置,其中所述微流體組件的佈局包 58 201244824 括.輸入/輸出埠、貯液器、電極、混合室、檢測視窗、廢棄物貯 存态、液滴路徑以及電極網路的物理分配。 8. 如請求項1所述的裝置,其中所述FPL0C功能塊執行如下 步驟.對第一配置電極去除激勵,並對第二相鄰配置電極進行激 勵’以將液滴從所述第一配置電極拉到所述第二相鄰配置電極上。 9. 如睛求項8所述的裝置,其中所述FPL0C功能塊執行通過 使用三個配置電極來***液滴的步驟,其中在處於中心的第一配 置電極上裝載的液滴大致與兩個第二相鄰配置電極重疊,並且所 述通過使用三個配置電極來***液滴的步驟包括: a·配置包括多條微電極線的兩個臨時配置電極,所述多條微 電極線覆蓋在所述第一配置電極上裝載的液滴; b·激勵所述兩個臨時配置電極; c·逐行地激勵以朝著所述兩個第二相鄰配置電極移動,並且 對與中心最接近的線去除激勵,以大致朝著所述兩個第二相 置電極拉動液滴;以及 d.對所述兩個臨時配置電極去除激勵,並且對所述兩個 相鄰配置電極進行激勵。 一 、10·如請求項8所述的裝置,其中所述FPL0C功能塊執 過使用三個配置電極來***液滴的步驟,其中液滴裝载在處於中 ’、心的第一配置電極上,並且兩個相鄰配置電極不與液滴重聂, 述通過使用三個配置電極來***液滴的步驟包括: 且 a·配置包括多條微電極線的兩個臨時配置電極, 電極線覆蓋在所述第一配置電極上裝載的液滴; 夕保微 b.激勵所述兩個臨時配置電極; c·逐行地激勵以朝著所述兩個第二相鄰配置電極移 心最接近麟去除簡,以大_著所述兩個第二相鄰配 置電極拉動液滴;以及 Wnl配 d.對所述兩個臨時配置電極去除激勵,並且對 相鄰配置電極進行激勵。 扣個第- 11.如請求項8所述贼置,其中所述FPL0C功能塊執行: 59 201244824 ===;的?驟,;,心的第— 述通過使用三個配置電 ^~相邱配置電極部分地重疊,所 a . 液滴的步驟包括·· b.激勵崎激勵;以及 汉如請求们丨所述 =大 =動和切割液滴。 對角線***液滴的步驟,包括裝U所錢敗功能塊執行沿 a·將液滴設置在所述第-配置電極上; 番晶L i所述第—配置電極去除激勵,並對與所述第—配置電梅 所述兩個沿對祕佈糾第^—鄰朝著 邴罢L對所述第一配置電極與所述兩個沿對角 '線佈置的第二相鄰 -,極之^的重疊區域去除激勵,以將液滴夾斷為兩個子液滴。 3.如請求項8所述的褒置,其中所述FPL〇C功能塊執行 液滴重粒回所述貯液財的步驟,包括: 產生臨時配置電極,其中所述臨時配置電極與所述貯液器 、。卩分重疊,並且液滴的一部分不與所述貯液器重疊; 、、b.對所述臨時配置電極進行激勵,以拖動液滴,使液滴與 述貯液器至少部分地重疊;以及 一 c ·對所述臨時配置電極去除激勵,並對所述貯液器進行激 勵,以將液滴大致拉到所述貯液器中。 14. 如請求項1所述的裝置,其中所述FPL0C功能塊執行如 下步驟·配置第三相鄰配置電極,使所述第二相鄰配置電極不與 第一配置電極上的液滴重疊。 、 15. 如請求項14所述的梦詈,立中所述第三相鄰配置電極包 ^陣列形式佈置的多個微電極 16. 如請求項15所述的裝置,其中所述FPL0C功能塊執行液 滴對角線移動的步驟,進—步包括: a ·產生與一部分液滴重疊的臨時配t電極以及產生第三相鄰 &amp;置電極; 201244824 匕通過對所述第-配置電極去除激勵 第—配置電極沿對角線輸送到所述€ 極進H述臨時配置電極去除激勵,並對所述第三相鄰配置電 —求項14所述的裝置’其情述FPLQC:魏塊執行沿 所有方向移動液滴的步驟,包括: σ kL·/生與—部分液滴44的臨時配置電極収產生第三相鄰 配置電極, b通過對所述第—配置電極去除激勵並對所述臨時配置 ,打激勵’將液滴從所述第一配置電極輸送到所述第 電極上;以及 I夏 C.對所述臨時配置電極去除激勵,並對所述第三 極進行激勵。 π I电 18.如請求項8所述的裝置,其中所述FpL〇c功能塊執 面***的步驟,包括: /、 a·配置與液滴重疊的薄帶式臨時配置電極; b·對所述第一配置電極去除激勵,並對所述薄帶式臨時配 電極進行激勵; c·對所述臨時配置電極去除激勵;以及 d·對所述第一配置電極和所述第二相鄰配置電極進行激勵。 、19·_如請求項8所述的裝置,其中所述FPL0C功能塊執行通 過使用二個配置電極將兩個液滴合併到一起的步驟,其中兩個第 —配置電極由所述第二相鄰配置電極分離,所述通過使用三個配 置電極將兩個液滴合併到一起的步驟包括: a·對所述兩個第一配置電極去除激勵;以及 b.對處於中間的第二相鄰配置電極進行激勵。 2〇.如請求項19所述的裝置,其中所述FPL0C功能瑰執行變 形混合的步驟,包括: a·產生兩個臨時配置電極,以改變兩個液滴的形狀; 61 201244824 置配置冑料除總,靖__臨時配 相鄰^,並對祕巾_二 過改,所述的^置,其中所述fplqc功能塊執行通 π文滴形狀來加速在液滴内部的混合的步驟,包括: a •產生臨時配置電極,以改變液滴的形狀; 行激勵 對所述第一配置電極去除激勵,並對所述臨時配置電極進 c·對所述臨時配置電極去除激勵 ’並對所述第一配置電極進 行激勵;以及 ^」重複對所述以時配置電極和所述第一配置電極的去除激勵 和激勵。 22:如請求項8所述的裝置,其中所述FpL〇c功能塊執行通 α在液滴内部迴圈來加速在液滴内部的混合的步驟,包括: a·產生包圍液滴的多個臨時配置電極;以及 b ·沿順時針方向一次一個地對每個所述臨時配置電極進行激 勵和去除激勵,以在迴圈運動中混合液滴。 23. 如請求項22所述的裝置,其中所述FPL〇c功能塊執行如 下步驟:沿逆時針方向一次一個地對每個所述臨時配置電極進行 激勵和去除激勵。 24. 如請求項8所述的裝置’其中所述fpl〇C功能塊執行產 生液滴的多層混合的步驟,包括: ★ a •配置2x2陣列的配置電極,包括在第一對角位置上的兩個 第一配置電極; b ·產生位於所述2x2陣列的配置電極的中心的臨時配置電極; c·對所述時配置電極進行激勵,以合併來自所述兩個第一 配置電極的兩個第一液滴; d·對所述臨時配置電極去除激勵,並對在第二對角位置上的 兩個配置電極進行激勵; 62 201244824 液滴; 對所述臨時配置電極去除激勵,以將液滴切割成兩個第二 通過對兩個額外的臨時配置電極進行激勵將所 液滴輸送回在所述弟-對角位置上的第—配置電極, 兩個額外的臨時配置電極去除激勵並對在所述第一對角、位 兩個第一配置電極進行激勵,以完成輸送; 夏上的 g ·對所述臨時配置電極進行激勵,以合併來自所述兩 配置電極的兩個第二液滴;以及 $ h·重複對角線***、輸送和對角線合併。 25.如請求項8所述的裝置,其中所述FPL〇c功能塊執 生液滴的步驟,包括: a.在所述貯液器中配置第一臨時配置電極; b·自裝載有液體的貯液器配置一條相鄰的配置電極線; 田c·產生與所述貯液器中的液體重疊並與最近的相鄰配置電極 重疊的第二臨時配置電極; d·對所述第一臨時配置電極進行激勵; e·對所述第二臨時配置電極進行激勵,並對最近的相鄰配置 電極進行激^; f.對所述第二臨時配置電極去除激勵;以及 g·對線序列中的後一相鄰配置電極進行激勵,並對前一被激 勵的相鄰配置電極去除激勵,直到產生液滴為止。 、26.如請求項8所述的裝置,其中所述FPL0C功能塊執行通 過利用液滴等分技術來產生液滴的步驟,包括: a產生用於期望液滴尺寸的目標配置電極; 、、b .自裝载有液體的貯液器配置小尺寸相鄰配置電極線’所述 液體連接到所述目標配置電極,其中所述小尺寸相鄰配置電極線 的兩端與所述貯液器和所述目標配置電極重疊; c .述目標配置電極進行激勵; d·沿著從貯液器側到所述目標配置電極的路徑,一次一個地 對順序地裝载有微等分液滴的每一個小尺寸相鄰配置電極進行激 63 201244824 勵和去除激勵;以及 e·重複小尺寸相鄰配置電極的激勵和去除激勵順序,以在所 述目才吊配置電極中產生期望的液滴。 27. 如請求項26所述的裝置,其中所述FPL0C功能塊執;f亍預 先計算所述微等分液滴的數量的步驟。 28. 如請求項8所述的裝置,其中所述FPL0C功能塊執行通 過利用液滴等分技術來計算裝載在所述第一配置電極上的液滴的 體積的步驟,包括: a·產生存儲配置電極; b·在所述第一配置電極的内部配置臨時配置電極; c. 自裝載有與所述存儲配置電極連接的液滴的第一配置電極 配置小尺寸相鄰配置電極線,其中所述小尺寸相鄰配置電極線的 兩端與所述第一配置電極和所述存儲配置電極重疊; d. 對所述臨時配置電極進行激勵; e·對所述存儲配置電極進行激^; f·沿著從第一配置電極側到所述存儲配置電極的路径,一 二個=轉地裝載有鮮分液_每—個小尺寸相鄰配 進行激勵和去除激勵;以及 电斤 π复〗尺寸相鄰配置電極的激勵和去除激勵順序,以計管 所述微等分液滴的總數。 α 用所ΐ莖所述的裝置,其中所述肌〇C功能塊執行利 電狀間的構接來移配&amp;電極對齊的第三相鄰配置 純崎料却鄰配置 b.對所述第一配置雷揣^^域’、, 激勵;以及 °去除激勵’並對所述橋配置電極進行 進行^情逃橋配置電極去_場,並對麟第三轉配置電極 30.如請求項8所述的裝置,其中所述睛功能塊執行通 64 201244824 過矛]用列激勵來移動液滴的步驟,包括: a .配置包,多列微電極的列配置電極;以及 ·通過沿著目標方向對所朗配置電極的子列進行激勵和去 除激勵,來沖刷所述列配置電極上的液滴。 如請求項8所述的裝置,其中所述FpL〇C功能塊執行沖 刷電極表面上的殘留液滴的步驟,包括: a·配置舰置電極,所制配置電極包括多顺電極並 覆盍所有殘留液滴的長度;以及 “有 b ·通過沿著目標方向對所述列配置電極的子列進行激勵和 除激勵’來沖刷所述列配置電極上的所有殘留液滴。 32.如請求項8所述的裝置,其中所述貯液器裝載有液體。 ,33: ^請求項32所述的裝置,其中所述FPL〇c功能塊執行通 過利用連續流來產生不同形狀和尺寸的液體的步驟,包括: a·配置用於期望液體尺寸和形狀的目標配置電極; 、b ·配置橋配置電極,所述橋配置電極包括微電極線並連接到 所述貯液器和所述目標配置電極; c·對所述橋配置電極和所述目標配置電極進行激勵;以及 d·通過首先對所述橋配置電極的、與所述目標配置電極最近 的一組微電極去除激勵’來對所述橋配置電極去除激勵。 34.如請求項32所述的裝置,其中所述fpl〇c功能塊可執行 通過利用連續流以受控尺寸和***比將液體***成兩種子液體的 步驟,包括: a.配置與液體重疊的具有預定義的第一子液體尺寸和形狀的 第一目標配置電極; b·配置具有預定義的第二子液體尺寸和形狀的第二目標配置 電極; c·配置橋配置電極,所述橋配置電極包括微電極線並連接到 所述第一目標配置電極和所述第二目標配置電極; d·對所述橋配置電極和所述第二目標配置電極進行激勵; e ·對所述橋配置電極去除激勵·,以及 65 201244824 f·對所述第一目標配置電極進行激勵。 、35·如請求項32所述的裴置,其中所述FPL〇c功能塊執行通 過利用連續流以受控尺寸、形狀和合併比來合併兩種液 驟,包括: a·配置混合配置電極; b ·配置與所述混合配置電極重疊的第一目標配置電極和二 目標配置電極; 一 、、c.配置第一橋配置電極,所述第一橋配置電極包括微電極線 並連接到所述第一目標配置電極和第一液體源; d.配置第二橋配置電極,所述第二橋配置電極包括微電極線 並連接到所述第二目標配置電極和第二液體源; 、 e ·對所述第一橋配置電極和所述第二橋配置電極以及所述第 一目標配置電極和所述第二目標配置電極進行激勵; f·對所述第一橋配置電極和所述第二橋配置電極去除激勵; 以及 g·對所述混合配置電極進行激勵。 36.如請求項1所述的裴置,其中所述接地結構在雙平面結 構的頂板上製造,所述頂板位於底板上方旅且在所述頂板與所述 底板之間具有間隙。 ―37.如請求項1所述的裝置,其中所述接地結構為具有無源 頂蓋或不具有頂蓋的共面結構。 38.如請求項1所述的裝 豆 述接地結構為具有接 網的共面結構。 八 39.如請求項丨所述的裝置,立中所述接地結構為具有接地 焊盤的共面結構。 /、 ^ 4〇·如睛求項1所述的裝置,苴中所述接地結構為具有程式 设計的接地焊盤的共面結構。/、 42. 41.如請求項1所述的農置,其中戶斤述接地結構為利用可選 擇開關將雙平面結構與共面結構組合办^結構。 .如請求項8所述的襄置,其中所述FPLOC功能塊執行將 201244824 液體裝載到所述貯液器中的步驟,包括: a·將液體裝載到共面結構上;以及 b.在液體上放置無源蓋。 43·如請求項丨所述的裝置,其中利用間隙距離調節單元將 液滴夾在頂板與底板之間,所述間隙距離調節單元用於適應寬範 圍的、具有不同尺寸的液滴,其中所述間隙距離調節單 , 如下步驟: 轨仃 a•配置在所述頂板與所述底板之間的間隙距離的高度; b·配置所述配置電極的尺寸,以控制液滴的尺 ^ 觸所述頂板和所述底板; 饮,同接 c·配置所述配置電極的尺寸,以控制液滴的尺 接觸所述底板。 4\如請求項1所述的裝置,其巾所述微電極可以以陣列形 式佈置為大致圓形、方形、六邊蜂窩狀或疊磚形。 45.如請求項1所述的裝置,其中所述I/O埠包括: a ·液滴I/O埠單元; b ·檢測I/O埠單元;以及 c ·糸統控制1/〇璋單元。 璋單^包ί請求項45所述的裝置’其帽述I/Q埠中的液滴1/0 a .用於裝载樣品的樣品〖/ο埠單元; b .用於献應物裝健進行介面連接的反應物I/O埠單元; c •用於沖走廢棄物的廢棄物I/O埠單元。 頻檢戶f的裝置,其中所述檢測1/0埠單元與視 ί、^鸯光分析(LIF)以及磁性納米顆粒檢測相連接。 連接到包括ί理-45所述的裝置’其情述祕蝴I/Q埠單元 電源的外部單元。 賴:_心體、網路介面' 49.如明求項!所述的裝置,其中在所述_〇功能塊中的 67 201244824 樣品製備單元可執行樣品製備,包括如下步驟: 彡配置獅條雜置電極; 壓;以及 、向在所述條形配置電極上施加DEP驅動電 施加_鋪麵,以將液滴切 °】成具有不同顆粒浪度的兩個子液滴。 樣σ ί Si:述的裝置,其中在所述FPL〇C功能塊中的 至於_微尺爛’舰微尺核滴太小以 _==通道將職微尺寸__賊齡置,同時 止。C·重複所述微尺寸液滴的移動,直到產生期望尺寸的液滴為 里雨51· Ϊ請求項8所述的裝置’還包括通過激勵FPL0C中的配 置電極而貫現的液滴路由結構,所述液滴路由結構可執行如+ 驟: ^ # ; a·配置用於輸送液滴並包括多個配置電極的至少—個路由路 .b.以順序的序列選擇每個路由路徑的激勵和去除激勵的 序;以及 寺 c·對所述路由路徑的選定配置電極進行激勵和去除激 52.如請求項1所述的裝置,其中微加熱元件集成到^ 置的襯底中’可用以在選定溫度下加熱液滴。 53·如請求項1所述的裝置,其中在所述FPL〇c功能 檢測單元包括集成在所述襯底中的感測裝置,所述感測裝置的 電位計感測器、安培計感測器或阻抗計感測器。 匕括 54.如請求項1所述的裝置’其中在所述fpl〇C功^餘 系統控制單元包括: b思中的 68 201244824 a •分級FPLOC晶片級軟體結構,包括:場程式設計管 理敕體 用於將所述微電極配置到微流紅件以及用於所述微f 和微流體操作程式設計管理軟 微流體操作;以及 匕·應㈣統管理單元,包括:系統分隔和集成塊,用於 所述裝置;檢測和顯示塊’用於獲取、顯示、報告和存儲測: 果;資料管理和轉移塊,用於將所述裝置連接到外部 、'·σ 和用於連接到外部系統的週邊管理塊。 ° ’ 造。55.如請求項54所述的裝置’可被配置為原型和測試系統構 56. 如請求項54所述的裝置,可被配置為桌面機器構造。 57. 如請求項54所述的裝置,可被配置為可檇式機器構造。 58. 如請求項54所述的裝置’可被配置為獨立式生物晶片構 59· —種採用CMOS技術製成品的FPL0C裝置,包括: a CMOS系統控制塊,包括:控制器塊,用於提供處理器單元、 記憶體空間、介面電路和軟體程式設計能力;晶片佈局塊,用於 存儲配置電極配置資料以及FPL0C佈局資訊和資料;液滴位置地 圖,,於存儲液滴的實際位置;和流體操作管理器,用於將所述 佈局育訊、所述液滴位置地圖以及來自所述控制器塊的fpl〇c應 用轉譯成液滴的物理激勵;以及 b.多個流體邏輯塊,每個流體邏輯塊包括:一個微電極,位 於CMOS襯底的頂表面上;一個記憶體地圖資料存儲單元,用於保 持所述微電極的激勵資訊;以及控制電路塊,用於管理控制邏輯。 60. 如請求項59所述的裝置,其中所述多個流體邏輯塊的控 制電路塊以菊鏈結構連接在一起。 61. 如請求項59所述的裝置,其中所述流體邏輯塊的微電極 玎通過施加驅動電壓被激勵。 =·如請求項59所述的裝置,其中所述流體邏輯塊的記憶體 地圖資料存儲單元在激勵之前載入有資料。 69 201244824 63. 如請求項59所述的裝置,其中所述FPL〇c裝置的流體邏 輯塊的製成品包括: a·頂部金屬層’用於形成微電極和接地結構; b·在所述頂部金屬層下方的第二層,包括所述控制電路塊、 所述5己憶體地圖資料存儲單元以及用於激勵所述微電極的高壓驅 動器;以及 α c ·底部概底。 64. 如請求項63所述的裝置,其中所述控制電路塊、所述記 憶體地圖資料存儲單元和所述高壓驅動器都包含在相應微電極正 下方的區域中。 65. —種採用薄膜電晶體TFT技術製成品的fpl〇c展置,包 括: a · TFT系統塊,包括:控制器塊,用於提供處理器單元、記 憶體空間、介面電路和軟體程式設計能力;晶片佈局塊,用於存 儲配置電極配置資料以及FPL〇c佈局資訊和資料;液滴位置地圖, 用於存儲液滴的實際位置;和流體操作管理器,用於將來自所述 佈局資訊、所述液滴位置地圖以及FPL0C應用的資料轉譯成用於 激勵微電極的物理液滴激勵資料,所述FPL0C應用來自所述控制 器塊;其中所述物理液滴激勵資料包括以逐幀的方式發送給^源 矩陣塊的、對配置電極進;^的成組、激勵和去除激勵的數士;'以 及 b·有源矩陣塊,包括:用於單獨激勵每個微電極的有源矩陣 面板’該有源矩陣面板包含栅極匯流排、源極匯流排、薄膜電曰 體、存儲電容器和微電極;有源矩陣控制器,包含源極驅動器&lt; 柵極驅動器’用於通過將驅動資料發送給驅動晶片,利用來自°呢了 系統控制塊的資料來驅動TFT陣列;和DC/DC轉換器,用於向所 述源極驅動器和所述栅極驅動器施加驅動電壓。 ' 66_如請求項65所述的裝置,其中所述FPL0C襞置包括丄邊 形TFT陣列佈局。 /、違 67.如請求項65所述的裝置’其中所述FPL0C裝置包括雙平 70 201244824 面結構,所述雙平面結構包含: a·具有微電極的玻璃襯底; b. 塗覆有疏水膜的介電絕緣體; c·塗覆有疏水膜的連續地電極;以及 d·由不透明金屬製成的黑色矩陣。 68. —種自下而上程式設計和設計^^^^裝置的方法,包括: a ·擦除FPL0C的記憶體; b ·配置具有選定形狀和尺寸的一組配置電極的微流體元件, 所述一組配置電極包括在現場可程式設計結構中以陣列形式佈置 的多個微電極,所述微流體組件包括貯液器、電極、混合室、檢 測視窗、廢棄物貯存器、液滴路徑以及指定功能電極; c. 配置所述微流體元件的物理分配;以及 d · 5免§·}*用於樣品製備、液滴操縱和檢測的微流體操作。 69. —種自上而下程式設計和設計?孔〇(:裝置的方 a ·通過硬體描述語言設計fpl〇c的功能; b·依據硬體描述語言產生排序圖模型; c ·通過硬體描述語言執行類比以驗證FpL〇c的功能; d·根據所述排序圖模型利用體系級合成來產生具體執行 程; ' e ·將來自微流體模組庫和來自設計規範的設計資料登錄到合 成處理中; 、 、α f ·產生晶片上資源的測定操作的映射檔、測定操作的時間表 檔以及來自合成處理的内置自測試檔; g·利用設計規範的輸入執行幾何級合成,以產生生物晶片的 二維物理設計; h·根據結合有具體物理資訊的生物晶片的二維物理設計,產 生二維幾何模型,所述具體物理資訊來自所述微流體模組庫; i·通過使用二維幾何模型執行物理級類比和設計驗證;以及 j ·將FPL0C設計載入到空白fpl〇C中。 70·如請求項69所述的方法,其中步驟j將fpL0Cs計载入 71 201244824 到空白FPL0C中包括: a ·根據FPL0C的自上而下的程式設計和設計,獲取晶片上資 源的測定操作的映射檔以及測定操作的時間表播; b .將所述播經序列介面(JTAG)轉移給F{:L〇 樓 轉移給外部記憶體裝置。 71. —種設計FPL0C庫的方法,包括: -二式工作$來類比由硬體描述語言編寫的微流體 b ·;過合成引擎將所述結果; C.將所述連線表轉譯成門級描述.、射到連線表, d·模擬所述門級描述; ’ e.通過物理類比將傳播 f .通過具有所述傳播延遲的二异斤述,線表j以及 72. 如請求項3所述的裝置:二運行整個系統類比。 動電壓在DC到l〇kHz的AC的^=述裝置為EW0D裝置,其中驅 73. 如請求項3所述的且小於膽。 動電壓在50kHz到200kHz的αγ 述展置為DEP裝置’其中驅 勺乾圍並且具有100-300Vrms。 72201244824 VII, the scope of application for patents: r micro-f scale gambling lion can be designed on the spot "lab wnxKj device, including: a. the bottom plate, including the array of two micro-electrodes placed on the top surface of the substrate, two micro-electrodes a dielectric layer covering, wherein each of the microelectrodes is connected to at least one grounding element in a grounded structure, and a gas permeable layer is disposed on a top of the dielectric layer and the grounding element to facilitate hydrophobicity Surface; , , , ^· Field programmable structure for programming a set of configuration electrodes to create microfluidic components and layouts of selected shapes and sizes; and single-turn C function blocks 'includes: 1/0埠; The sample preparation unit; the droplet manipulation early, the nuclear test early; and the system control unit. The apparatus of claim 1, wherein the field programmable electrode in the field comprises: a first configuration electrode Having a plurality of electrodes arranged in an array form and at least one second adjacent arrangement electrode with the first configuration electrode (four) is placed in the first configuration electrode portion and the second Adjacent electrode The apparatus of claim 1, wherein the FPL0C functional block performs the following steps. By sequentially applying driving voltages for exciting and removing excitation of one or more selected configuration electrodes, The one or more droplets between the plurality of electrodes are manipulated by sequentially energizing/=dividing the selected configuration electrodes to excite the droplets to move along the selected path. - Straight 4., Request 3 The device of claim 2, wherein the FPLOC function block performs the following two steps to manipulate the number of microelectrodes of the configuration electrode to substantially control the size and shape of the droplets. The configurable electrode comprises at least one microelectrode. The apparatus of claim 5, wherein the set of microfluidic elements of the configuration electrode in the field: the reservoir, the electrode, the mixing The apparatus of claim 6, wherein the microfluidic component layout package 58 201244824 includes input/output ports, The apparatus of claim 1, wherein the FPL0C function block performs the following steps. Disposing the electrode to remove the excitation and exciting the second adjacent configuration electrode to pull the droplet from the first configuration electrode to the second adjacent configuration electrode. 9. As described in item 8 a device, wherein the FPLOC function block performs a step of splitting a droplet by using three configuration electrodes, wherein a droplet loaded on a first configuration electrode at a center substantially overlaps with two second adjacent configuration electrodes, and The step of splitting the droplets by using three configuration electrodes includes: a· arranging two temporary configuration electrodes including a plurality of microelectrode lines covering the liquid loaded on the first configuration electrode Dropping; b. exciting the two temporary configuration electrodes; c· exciting row by row to move toward the two second adjacent configuration electrodes, and removing excitation from the line closest to the center to substantially A second phase of said two opposite electrode pulling droplets; and d of the two electrodes arranged temporary deenergized, and configured to excite the two electrodes adjacent. The apparatus of claim 8, wherein the FPLOC function block performs a step of splitting a droplet using three configuration electrodes, wherein the droplet is loaded on the first configuration electrode at the center And the two adjacent configuration electrodes are not reciprocal with the droplets, and the step of splitting the droplets by using the three configuration electrodes includes: and a· configuring two temporary configuration electrodes including a plurality of microelectrode lines, the electrode line covering a droplet loaded on the first configuration electrode; 夕保微b. exciting the two temporary configuration electrodes; c· row-by-row excitation to move closer to the two second adjacent configuration electrodes The lining removes the simplification, and pulls the droplets with the two second adjacent configuration electrodes; and Wn1 matches d. the excitation is removed for the two temporary configuration electrodes, and the adjacent configuration electrodes are excited. Deducted - 11. As set forth in claim 8, the FPL0C function block executes: 59 201244824 ===; The first step of the heart is described by using three configurations. The configuration electrodes partially overlap, a. The steps of the droplets include: b. the excitation of the excitation; and the Hans as requested by the = large = moving and cutting droplets. a step of splitting the droplets diagonally, comprising performing a U-depleted function block to perform a setting of the droplets on the first-arrangement electrode; and the first-disposing electrode of the crystal L1 removing the excitation, and The first-configured electric plum, the two adjacent edges, and the second adjacent-arranged along the diagonal line The overlap region of the poles removes the excitation to pinch the droplets into two sub-droplets. 3. The device of claim 8, wherein the FPL〇C functional block performs a step of re-granulating the liquid droplets back to the liquid storage, comprising: generating a temporary configuration electrode, wherein the temporary configuration electrode is Liquid reservoir, . The splits overlap and a portion of the droplets do not overlap the reservoir; , b. energizing the temporarily disposed electrode to drag the droplets to at least partially overlap the droplets with the reservoir; And removing the excitation from the temporary configuration electrode and energizing the reservoir to draw the droplet substantially into the reservoir. 14. The apparatus of claim 1, wherein the FPLOC function block performs the following steps: configuring a third adjacent configuration electrode such that the second adjacent configuration electrode does not overlap with a droplet on the first configuration electrode. The apparatus of claim 15, wherein the apparatus of claim 15 wherein the FPL0C function block is arranged in the form of an array of the third adjacent configuration electrode package. Performing a step of moving the droplet diagonally, the method comprising: a) generating a temporary matching t electrode overlapping with a portion of the droplet and generating a third adjacent &amp;electrode; 201244824 去除 removing the first-configured electrode Exciting the first-arranged electrode to be diagonally transported to the sinus H to temporarily configure the electrode to remove the excitation, and to the third adjacent configuration of the device as described in item 14 of the description of the FPLQC: Wei block The step of performing the movement of the droplets in all directions comprises: σ kL·/- and the temporary arrangement of the partial droplets 44 to generate a third adjacent configuration electrode, b by removing the excitation from the first-configuration electrode and Said temporary configuration, energizing 'delivering droplets from said first configuration electrode to said first electrode; and I Xi C. removing excitation from said temporary configuration electrode and energizing said third pole. The apparatus of claim 8, wherein the step of splitting the FpL〇c functional block comprises: /, a· configuring a thin strip temporary configuration electrode overlapping the droplet; b· The first configuration electrode removes excitation and excites the thin strip temporary electrode; c· removes excitation from the temporary configuration electrode; and d· pairs the first configuration electrode and the second adjacent Configure the electrodes for excitation. 19. The apparatus of claim 8, wherein the FPLOC function block performs the step of merging two droplets together by using two configuration electrodes, wherein the two first-configuration electrodes are from the second phase Neighboring electrode separation, the steps of combining two droplets together by using three configuration electrodes include: a) removing excitation from the two first configuration electrodes; and b. pairing the second adjacent in the middle Configure the electrodes for excitation. The apparatus of claim 19, wherein the FPL0C function performs a step of morphing mixing, comprising: a) generating two temporary configuration electrodes to change the shape of the two droplets; 61 201244824 In addition to the total, the __ temporary allocation adjacent ^, and the secret towel _ two over, the above, wherein the fplqc functional block performs a π Descrip shape to accelerate the mixing inside the droplet, The method includes: a: generating a temporary configuration electrode to change the shape of the droplet; performing excitation to remove the excitation from the first configuration electrode, and injecting the temporary configuration electrode into the temporary configuration electrode Exciting the first configuration electrode; and repeating the removal excitation and excitation of the timing electrode and the first configuration electrode. 22. The apparatus of claim 8, wherein the FpL〇c functional block performs a step of looping inside the droplet to accelerate mixing within the droplet, comprising: a. generating a plurality of surrounding droplets Temporarily arranging the electrodes; and b. energizing and removing excitation of each of the temporarily disposed electrodes one at a time in a clockwise direction to mix the droplets in a loop motion. 23. The apparatus of claim 22, wherein the FPL〇c functional block performs the step of energizing and removing excitation of each of the temporarily configured electrodes one at a time in a counterclockwise direction. 24. The apparatus of claim 8, wherein the fpl〇C functional block performs the step of generating a multi-layer mixture of droplets, comprising: a: Configuring a configuration electrode of the 2x2 array, including at the first diagonal position Two first configuration electrodes; b) generating temporary configuration electrodes at the center of the configuration electrodes of the 2x2 array; c. energizing the time configuration electrodes to combine two from the two first configuration electrodes a first droplet; d· removing excitation from the temporary configuration electrode and exciting two configuration electrodes at a second diagonal position; 62 201244824 droplet; removing excitation from the temporary configuration electrode to liquid The droplets are cut into two seconds. By energizing the two additional temporary configuration electrodes, the droplets are transported back to the first configuration electrode at the di- diagonal position, and the two additional temporary configuration electrodes remove the excitation and Exciting at the first diagonal, two first configuration electrodes to complete the transport; g on the summer to excite the temporary configuration electrodes to merge the electrodes from the two configurations A second droplet; and $ h · repeat diagonal split, merge and diagonal transport. 25. The device of claim 8, wherein the step of the FPL〇c function block to perform a droplet comprises: a. arranging a first temporary configuration electrode in the reservoir; b. self-loading liquid The reservoir is configured with an adjacent configuration electrode line; a second temporary configuration electrode that overlaps with the liquid in the reservoir and overlaps with the nearest adjacent configuration electrode; d· pairs the first Temporarily arranging electrodes for excitation; e. exciting the second temporary configuration electrode and exciting the nearest adjacent configuration electrode; f. removing excitation for the second temporary configuration electrode; and g·pairing sequence The next adjacent configuration electrode in the middle is energized and the excitation is removed from the previously excited adjacent configuration electrode until a droplet is generated. The apparatus of claim 8, wherein the FPLOC function block performs the step of generating a droplet by utilizing a droplet halving technique, comprising: a generating a target configuration electrode for a desired droplet size; b. from a liquid-loaded reservoir configured with a small-sized adjacently disposed electrode line 'the liquid is connected to the target-configured electrode, wherein both ends of the small-sized adjacently-arranged electrode line are connected to the reservoir Overlapped with the target configuration electrode; c. the target configuration electrode is energized; d. along the path from the reservoir side to the target configuration electrode, sequentially loaded with micro-aliquots of droplets one at a time Each of the small-sized adjacent configuration electrodes performs excitation and removal excitation; and e. repeats the excitation and removal excitation sequences of the small-sized adjacent configuration electrodes to produce desired droplets in the target configuration electrode. 27. The apparatus of claim 26, wherein the FPLOC function block performs a step of pre-calculating the number of micro-aliquots of droplets. 28. The device of claim 8, wherein the FPLOC function block performs the step of calculating a volume of a droplet loaded on the first configuration electrode by utilizing a droplet halving technique, comprising: a. generating a memory Configuring an electrode; b· arranging a temporary arrangement electrode inside the first arrangement electrode; c. arranging a small-sized adjacent arrangement electrode line from a first configuration electrode loaded with a droplet connected to the storage arrangement electrode, wherein Both ends of the small-sized adjacent arrangement electrode line overlap with the first configuration electrode and the storage configuration electrode; d. exciting the temporary arrangement electrode; e· exciting the storage configuration electrode; · along the path from the first configuration electrode side to the storage configuration electrode, one or two = reversingly loaded with fresh liquid _ each small size adjacent to the excitation and removal excitation; and the electric π 〖 complex The excitation and removal excitation sequences of adjacently disposed electrodes are dimensioned to account for the total number of micro-aliquots of droplets. α with the device described in the stalk, wherein the tendon C functional block performs a configuration of the electro-mechanical interaction to align the &lt;electrode aligned third adjacent configuration pure raw material but adjacent configuration b. The first configuration Thunder ^ ^ domain ',, excitation; and ° remove the excitation 'and the bridge configuration electrode to perform the escaping bridge configuration electrode to _ field, and the third rotation of the configuration electrode 30. The device of claim 8, wherein the eye function block performs a step of moving the liquid droplets by column excitation, comprising: a. a configuration packet, a column arrangement electrode of the plurality of columns of microelectrodes; and The target direction excites and removes the excitation of the sub-columns of the arrayed electrodes to flush the droplets on the column of configuration electrodes. The apparatus of claim 8, wherein the FpL〇C functional block performs a step of flushing residual droplets on the surface of the electrode, comprising: a· arranging a ship-mounted electrode, the configured electrode comprising a plurality of electrodes and covering all The length of the residual droplets; and "having b. energizing and de-energizing the sub-columns of the column-arranged electrodes along the target direction" to flush all residual droplets on the column-arranged electrodes. The device of claim 8, wherein the liquid reservoir is loaded with a liquid. The device of claim 32, wherein the FPL〇c functional block performs liquid by using a continuous flow to produce liquids of different shapes and sizes. The steps comprising: a) configuring a target configuration electrode for a desired liquid size and shape; b) configuring a bridge configuration electrode, the bridge configuration electrode including a microelectrode wire and connecting to the reservoir and the target configuration electrode c· exciting the bridge configuration electrode and the target configuration electrode; and d· removing excitation by first setting a microelectrode closest to the target configuration electrode to the bridge configuration electrode The apparatus of claim 32, wherein the fpl〇c functional block is operable to split the liquid into two sub-liquids by using a continuous flow at a controlled size and split ratio. The steps comprising: a. configuring a first target configuration electrode having a predefined first sub-liquid size and shape that overlaps with the liquid; b· configuring a second target configuration electrode having a predefined second sub-liquid size and shape; c· configuring a bridge configuration electrode, the bridge configuration electrode including a microelectrode line and connected to the first target configuration electrode and the second target configuration electrode; d· configuring the electrode and the second target configuration The electrode is energized; e. the electrode is configured to remove excitation from the bridge, and 65 201244824 f. The first target configuration electrode is energized. 35. The device of claim 32, wherein the FPL〇 c function block execution combines two liquid steps by using a continuous flow in a controlled size, shape, and combination ratio, including: a. Configuring a hybrid configuration electrode; b. Configuring the hybrid configuration Overlapping first target configuration electrode and two target configuration electrode; one, c. configuring a first bridge configuration electrode, the first bridge configuration electrode comprising a microelectrode line and connected to the first target configuration electrode and the first liquid a source; d. configuring a second bridge configuration electrode, the second bridge configuration electrode including a microelectrode line and connected to the second target configuration electrode and a second liquid source; e) configuring the electrode to the first bridge The second bridge configuration electrode and the first target configuration electrode and the second target configuration electrode are excited; f· removing excitation from the first bridge configuration electrode and the second bridge configuration electrode; and g· 36. The apparatus of claim 1, wherein the grounding structure is fabricated on a top plate of a bi-planar structure, the top plate is located above the bottom plate and is in the top plate and the There is a gap between the bottom plates. The device of claim 1, wherein the ground structure is a coplanar structure having a passive top cover or no top cover. 38. The grounding structure as claimed in claim 1 is a coplanar structure having a mesh. VIII. 39. The device of claim 1, wherein the grounding structure is a coplanar structure having a ground pad. /, ^4〇. The device of claim 1, wherein the ground structure is a coplanar structure having a programmed ground pad. 41. 41. The agricultural device according to claim 1, wherein the grounding structure is a combination of a biplane structure and a coplanar structure by using an optional switch. The device of claim 8, wherein the FFLOC functional block performs the step of loading 201244824 liquid into the reservoir, comprising: a. loading a liquid onto a coplanar structure; and b. Place a passive cover on it. 43. The device of claim 3, wherein the gap is adjusted between the top plate and the bottom plate by using a gap distance adjusting unit for adapting a wide range of liquid droplets having different sizes, wherein The gap distance adjustment sheet is as follows: a rail a• a height at which a gap distance between the top plate and the bottom plate is disposed; b· configuring a size of the arrangement electrode to control the size of the droplet a top plate and the bottom plate; drinking, co-connecting c· configuring the size of the configuration electrode to control the ruler of the liquid droplet to contact the bottom plate. 4. The device of claim 1, wherein the microelectrodes are arranged in an array in a substantially circular, square, hexagonal honeycomb or stacked brick shape. The apparatus of claim 1, wherein the I/O埠 comprises: a • a droplet I/O unit; b • a detection I/O unit; and c • a system control 1/〇璋 unit . The device described in claim 45, the device described in item 45, the droplet 1/0 a in the cap I/Q埠. The sample for loading the sample 〖/ο埠 unit; b. for the warehousing a reactant I/O unit that interfaces with the interface; c • a waste I/O unit for flushing away waste. The device of the frequency checker f, wherein the detecting 1/0 unit is connected to the visual analysis, the fluorescent analysis (LIF), and the magnetic nanoparticle detection. Connected to an external unit that includes the device described in the '45'. Lai: _ heart, network interface '49. If you ask for help! The device wherein the sample preparation unit in the 2012 20122424 sample preparation unit can perform sample preparation, comprising the steps of: arranging a lion strip miscellaneous electrode; pressing; and, applying to the strip-shaped electrode A DEP is applied to apply an electrical application to the surface to cut the droplets into two sub-droplets having different particle velocities. σ ί Si: the device described, wherein in the FPL〇C function block, as for the _ micro-foot rot 'the ship's micro-scale nucleus is too small to _== channel will be the micro-size _ _ thief set, while stopping . C. repeating the movement of the micro-sized droplets until the droplet of the desired size is produced is raining 51. The apparatus described in claim 8 further includes a droplet routing structure that is realized by exciting the configuration electrodes in the FPL0C The droplet routing structure may be performed as follows: ^#; a· configured to transport the droplets and include at least one routing path of the plurality of configuration electrodes. b. Selecting the excitation of each routing path in a sequential sequence And removing the excitation sequence; and the temple c. exciting and removing the selected configuration electrode of the routing path. 52. The apparatus of claim 1, wherein the micro heating element is integrated into the substrate The droplets are heated at the selected temperature. The device of claim 1, wherein the FPL〇c function detecting unit comprises a sensing device integrated in the substrate, a potentiometer sensor of the sensing device, an ammeter sensing Or impedance meter sensor. The device of claim 1 wherein the fpl〇C power system control unit comprises: 68 in the middle of thinking 2012 20122424 a • hierarchical FPLOC wafer level software structure, including: field programming management The body is configured to configure the microelectrode to the microfluidic red component and to manage the soft microfluidic operation for the microf and microfluidic operation programming; and the (four) unified management unit, including: system separation and integration block, For the device; detection and display block 'for acquiring, displaying, reporting and storing measurements: data management and transfer blocks for connecting the device to the outside, '·σ and for connecting to an external system Peripheral management block. ° 造. 55. The apparatus of claim 54 can be configured as a prototype and test system. 56. The apparatus of claim 54 can be configured as a desktop machine configuration. 57. The apparatus of claim 54, configured to be a configurable machine configuration. 58. The device of claim 54, wherein the device can be configured as a stand-alone biochip device. The FPL0C device is manufactured using CMOS technology, and includes: a CMOS system control block, including: a controller block, for providing Processor unit, memory space, interface circuitry, and software programming capabilities; wafer layout block for storing configuration electrode configuration data and FPL0C layout information and data; droplet location map, for storing actual location of droplets; and fluid An operation manager for translating the layout information, the drop location map, and the fpl〇c application from the controller block into physical excitation of the drop; and b. a plurality of fluid logic blocks, each The fluid logic block includes: a microelectrode on a top surface of the CMOS substrate; a memory map data storage unit for holding excitation information of the microelectrode; and a control circuit block for managing control logic. 60. The device of claim 59, wherein the control circuit blocks of the plurality of fluid logic blocks are connected together in a daisy chain configuration. 61. The device of claim 59, wherein the microelectrode of the fluid logic block is energized by applying a drive voltage. The apparatus of claim 59, wherein the memory map data storage unit of the fluid logic block is loaded with data prior to the stimulus. The apparatus of claim 59, wherein the finished product of the fluid logic block of the FPL〇c device comprises: a. a top metal layer 'for forming a microelectrode and a ground structure; b. A second layer below the metal layer includes the control circuit block, the 5 memory map data storage unit, and a high voltage driver for exciting the microelectrode; and an α c · bottom bottom. 64. The apparatus of claim 63, wherein the control circuit block, the memory map data storage unit, and the high voltage driver are all included in a region directly below a respective microelectrode. 65. A fpl〇c display made of thin film transistor TFT technology, comprising: a · TFT system block, including: controller block for providing processor unit, memory space, interface circuit and software programming Capability; a wafer layout block for storing configuration electrode configuration data and FPL〇c layout information and data; a drop location map for storing the actual position of the drop; and a fluid operation manager for coming from the layout information The droplet position map and the data of the FPLOC application are translated into physical droplet excitation data for exciting the microelectrode, the FPLOC application being from the controller block; wherein the physical droplet excitation data is included in a frame-by-frame manner The mode is sent to the ^ source matrix block, the set electrode, the excitation and the removal excitation are performed on the configuration electrode; and the b and the active matrix block include: an active matrix for separately exciting each microelectrode Panel 'The active matrix panel comprises a gate bus, a source bus, a thin film capacitor, a storage capacitor and a microelectrode; an active matrix controller comprising a source driver &lt; a gate driver 'for driving a TFT array by transmitting data to a driver chip using data from a system control block; and a DC/DC converter for the source driver and the The gate driver applies a driving voltage. The device of claim 65, wherein the FPL0C device comprises a meandering TFT array layout. The device of claim 65, wherein the FPLOC device comprises a double flat 70 201244824 face structure comprising: a. a glass substrate having a microelectrode; b. being coated with a hydrophobic a dielectric insulator of the film; c. a continuous electrode coated with a hydrophobic film; and d. a black matrix made of an opaque metal. 68. A method for bottom-up programming and designing a device, comprising: a: erasing a FPL0C memory; b) configuring a set of microfluidic components having a selected shape and size of the configuration electrode, The set of configuration electrodes includes a plurality of microelectrodes arranged in an array in a field programmable structure, the microfluidic assembly including a reservoir, an electrode, a mixing chamber, a detection window, a waste reservoir, a droplet path, and Designating a functional electrode; c. Configuring the physical distribution of the microfluidic element; and d·5 exempting from the use of microfluidic operations for sample preparation, droplet manipulation, and detection. 69. — Top-down programming and design?孔〇 (: device side a · design fpl〇c function by hardware description language; b) generate sort map model according to hardware description language; c · perform analogy by hardware description language to verify FpL〇c function; d. using system-level synthesis to generate a specific execution process according to the sorting graph model; 'e · registering design data from the microfluidic module library and from the design specification into the synthesis process; , , α f · generating on-wafer resources The mapping file of the measurement operation, the time-slot file of the measurement operation, and the built-in self-test file from the synthesis process; g· performing geometric level synthesis using the input of the design specification to generate a two-dimensional physical design of the biochip; h· according to the combination The two-dimensional physical design of the biochip of specific physical information, generating a two-dimensional geometric model from the microfluidic module library; i. performing physical level analogy and design verification by using a two-dimensional geometric model; Load the FPL0C design into the blank fpl〇C. 70. The method of claim 69, wherein step j loads the fpL0Cs meter 71 201244824 The blank FPL0C includes: a. According to the top-down programming and design of the FPL0C, the mapping file of the measurement operation of the resources on the wafer and the schedule of the measurement operation are acquired; b. The broadcast sequence interface (JTAG) is used. Transfer to F{:L〇楼 to transfer to external memory device. 71. A method for designing FPL0C library, including: - Two-way work $ to analogy to microfluidics written in hardware description language · Over-synthesis engine The result; C. Translating the connection table into a gate level description, projecting to a connection table, d. simulating the gate level description; 'e. propagating f through a physical analogy. By having the propagation delay The two-dimensional description, line table j and 72. The device according to claim 3: two runs the entire system analogy. The dynamic voltage is DC to l〇kHz AC, the device is EW0D device, of which drive 73. As described in claim 3, and less than the gallbladder, the αγ of the dynamic voltage at 50 kHz to 200 kHz is extended to the DEP device, in which the shuttle is dry and has 100-300 Vrms.
TW101105384A 2011-02-17 2012-02-17 Field-programmable lab-on-a-chip and droplet manipulations based on ewod micro-electrode array architecture TWI510295B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13/029,140 US8815070B2 (en) 2010-03-09 2011-02-17 Microelectrode array architecture
US13/029,137 US8834695B2 (en) 2010-03-09 2011-02-17 Droplet manipulations on EWOD microelectrode array architecture
US13/029,138 US8685325B2 (en) 2010-03-09 2011-02-17 Field-programmable lab-on-a-chip based on microelectrode array architecture
CN201210034566.7A CN102671724B (en) 2011-02-17 2012-02-14 Microelectrode array architecture
CN201210034561.4A CN102671722B (en) 2011-02-17 2012-02-14 Field-programmable lab-on-a-chip based on microelectrode array architecture
CN201210034563.3A CN102671723B (en) 2011-02-17 2012-02-14 Method of manipulating droplet on ewod microelectrode array architecture

Publications (2)

Publication Number Publication Date
TW201244824A true TW201244824A (en) 2012-11-16
TWI510295B TWI510295B (en) 2015-12-01

Family

ID=48095048

Family Applications (3)

Application Number Title Priority Date Filing Date
TW101105386A TWI510296B (en) 2011-02-17 2012-02-17 Droplet manipulations on ewod microelectrode array architecture
TW101105387A TWI515831B (en) 2011-02-17 2012-02-17 Microelectrode array architecture
TW101105384A TWI510295B (en) 2011-02-17 2012-02-17 Field-programmable lab-on-a-chip and droplet manipulations based on ewod micro-electrode array architecture

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW101105386A TWI510296B (en) 2011-02-17 2012-02-17 Droplet manipulations on ewod microelectrode array architecture
TW101105387A TWI515831B (en) 2011-02-17 2012-02-17 Microelectrode array architecture

Country Status (1)

Country Link
TW (3) TWI510296B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498557B (en) * 2012-12-17 2015-09-01 Taiwan Semiconductor Mfg Co Ltd Integrated semiconductor device for manipulating and processing bio-entity samples
US9254487B2 (en) 2012-12-17 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing semiconductor device
US9254485B2 (en) 2012-12-17 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing device
CN111107937A (en) * 2017-10-18 2020-05-05 伊英克公司 Digital microfluidic device including dual substrates with thin film transistors and capacitive sensing
TWI713656B (en) * 2016-09-08 2020-12-21 台灣積體電路製造股份有限公司 Method of designing layout and a system for designing layout
CN114177958A (en) * 2021-12-09 2022-03-15 华南师范大学 High-flux uniform liquid drop array preparation method and microstructure array chip
TWI797601B (en) * 2020-04-27 2023-04-01 英商核酸有限公司 Digital microfluidic device and method of driving a digital microfluidic system
TWI804778B (en) * 2019-11-20 2023-06-11 英商核蛋白有限公司 Digital microfluidic device comprising spatially variable hydrophobic layers for digital microfluidics and method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510780B (en) * 2014-03-20 2015-12-01 Univ Nat Chiao Tung An inspecting equipment and a biochip
TWI576882B (en) * 2016-04-19 2017-04-01 明新科技大學 Wafer level humidity microswitch and an electronic apparatus having a humidity sensing function
US10997931B2 (en) * 2018-12-03 2021-05-04 Sharp Life Science (Eu) Limited AM-EWOD array element circuitry with high sensitivity for small capacitance
US11524297B2 (en) * 2019-12-03 2022-12-13 Sharp Life Science (Eu) Limited Method of concentrating particles in a liquid droplet using an EWOD device with sensing apparatus
WO2021154627A1 (en) 2020-01-27 2021-08-05 E Ink Corporation Method for degassing liquid droplets by electrowetting actuation at higher temperatures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313830C (en) * 2004-08-27 2007-05-02 清华大学 Low voltage micro liquid drop control device
ITBO20050481A1 (en) * 2005-07-19 2007-01-20 Silicon Biosystems S R L METHOD AND APPARATUS FOR THE HANDLING AND / OR IDENTIFICATION OF PARTICLES
TWI303312B (en) * 2005-12-21 2008-11-21 Ind Tech Res Inst Matrix electrodes controlling device and digital fluid detection platform thereof
US7815871B2 (en) * 2006-04-18 2010-10-19 Advanced Liquid Logic, Inc. Droplet microactuator system
US8409417B2 (en) * 2007-05-24 2013-04-02 Digital Biosystems Electrowetting based digital microfluidics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498557B (en) * 2012-12-17 2015-09-01 Taiwan Semiconductor Mfg Co Ltd Integrated semiconductor device for manipulating and processing bio-entity samples
US9239328B2 (en) 2012-12-17 2016-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing semiconductor device
US9254487B2 (en) 2012-12-17 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing semiconductor device
US9254485B2 (en) 2012-12-17 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing device
TWI713656B (en) * 2016-09-08 2020-12-21 台灣積體電路製造股份有限公司 Method of designing layout and a system for designing layout
US10990741B2 (en) 2016-09-08 2021-04-27 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple patterning method and system for implementing the method
CN111107937A (en) * 2017-10-18 2020-05-05 伊英克公司 Digital microfluidic device including dual substrates with thin film transistors and capacitive sensing
TWI804778B (en) * 2019-11-20 2023-06-11 英商核蛋白有限公司 Digital microfluidic device comprising spatially variable hydrophobic layers for digital microfluidics and method of manufacturing the same
US11927740B2 (en) 2019-11-20 2024-03-12 Nuclera Ltd Spatially variable hydrophobic layers for digital microfluidics
TWI797601B (en) * 2020-04-27 2023-04-01 英商核酸有限公司 Digital microfluidic device and method of driving a digital microfluidic system
CN114177958A (en) * 2021-12-09 2022-03-15 华南师范大学 High-flux uniform liquid drop array preparation method and microstructure array chip

Also Published As

Publication number Publication date
TWI510295B (en) 2015-12-01
TW201250929A (en) 2012-12-16
TWI510296B (en) 2015-12-01
TW201244825A (en) 2012-11-16
TWI515831B (en) 2016-01-01

Similar Documents

Publication Publication Date Title
TW201244824A (en) Field-programmable lab-on-a-chip and droplet manipulations based on EWOD micro-electrode array architecture
CN102671722B (en) Field-programmable lab-on-a-chip based on microelectrode array architecture
US8685325B2 (en) Field-programmable lab-on-a-chip based on microelectrode array architecture
Chakrabarty et al. Digital microfluidic biochips: synthesis, testing, and reconfiguration techniques
CN102671724B (en) Microelectrode array architecture
Su et al. Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges
TWI575238B (en) Biologic test chip and kit thereof
WO2011002957A2 (en) Droplet actuator devices and methods
JP2010503516A (en) Droplet treatment system
Chakrabarty et al. Design automation for microfluidics-based biochips
Wang et al. Practical functional and washing droplet routing for cross-contamination avoidance in digital microfluidic biochips
Oevreeide et al. Curved passive mixing structures: a robust design to obtain efficient mixing and mass transfer in microfluidic channels
Zhu et al. Stackable micromixer with modular design for efficient mixing over wide Reynold numbers
Wang Field-programmable microfluidic test platform for point-of-care diagnostics
CN107001026A (en) Microfluid sensing system
Roy et al. Congestion-aware layout design for high-throughput digital microfluidic biochips
Roy et al. Pin-constrained designs of digital microfluidic biochips for high-throughput bioassays
Roy et al. A best path selection based parallel router for DMFBs
Momtahen et al. Drug discovery applications: A customized digital microfluidic biochip architecture/CAD flow
Kirtland Interfacial mass transfer in microfluidic systems: existence and persistence of the modified Grætz behavior
Groot Conceptual design of a microfluidic-based platform for medical diagnosis
Potter Design Automation of Paper Microfluidic Devices
CHOUDHARY MEDA based biochips: Design automation issues and algorithms
Hunt Integrated circuit/microfluidic chips for dielectric manipulation
Kim Micro pipes–a portable integrated platform for electrochemical sensing using essence architecture

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees