TW201239098A - Clean steel production process using carbon-free renewable energy source - Google Patents

Clean steel production process using carbon-free renewable energy source Download PDF

Info

Publication number
TW201239098A
TW201239098A TW100109459A TW100109459A TW201239098A TW 201239098 A TW201239098 A TW 201239098A TW 100109459 A TW100109459 A TW 100109459A TW 100109459 A TW100109459 A TW 100109459A TW 201239098 A TW201239098 A TW 201239098A
Authority
TW
Taiwan
Prior art keywords
hydrogen
steel
steam
energy
iron
Prior art date
Application number
TW100109459A
Other languages
Chinese (zh)
Inventor
Victor Joseph
Amjad Huda
Pia A Victor
Joy J Victor
Original Assignee
Sun Hydrogen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Hydrogen Inc filed Critical Sun Hydrogen Inc
Priority to TW100109459A priority Critical patent/TW201239098A/en
Publication of TW201239098A publication Critical patent/TW201239098A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

Systems and methods for producing steel comprise using a renewable energy source, such as solar energy, to heat a heat-releasing energy storage medium, such as MgF2. Heat from the heat-releasing energy storage medium is used to generate steam from liquid water. Next, H2 and O2 are generated from steam via electrolysis or direct thermal decomposition at > 2400 DEG C. The energy required for the electrolysis of steam may be provided from one or more renewable energy sources, such as one or more wind turbines and/or fuel cells. A fraction of the H2 and O2 formed via electrolysis is used to generate oxy-hydrogen, which is subsequently used to form steel in an oxy-hydrogen steel smelter. The oxy-hydrogen steel smelter uses iron formed in a hydrogen-based blast furnace, which uses H2 formed from the dissociation of water to reduce iron oxide.

Description

201239098 六、發明說明: 交叉引用 本申請案主張2010年3月18曰申請之美國臨時專利申請 案第6W3A362號、2〇10年9月22日申請之第61/385 538號 及201^2月1日申請之第61/438,498號之優先權該等_ 請案以全文引用的方式併入本文中。 【先前技術】 鋼為包含鐵及碳之金屬合金。鋼通常用二階段方法製 造。在第一階段中,於鼓風爐中用焦炭及石灰石還原或炫 練鐵礦,得到溶融鐵,將其鑄造成生鐵或以熔融鐵形式運 送至下-階段。在稱作煉鋼之第二階段中,移除雜質(諸 如硫、磷及過量碳)且添加合金元素(諸如錳鎳、鉻及釩) 以得到具有所要鋼組成之鋼。 鋼可使用綜合製鋼廠(integrated steel miu)形成。综合廠 之主要原料為鐵礦、石灰石及煤(或焦炭)。將此等材料分 批裝入鼓風爐中,在鼓風爐中,礦石中之鐵化合物釋放過 ^氧,且變成液體鐵。以數小時之間隔將積累之液體鐵自 鼓風爐放出,且鑄造成生鐵或引導至其他容器以進行其他 煉鋼操作。隨後,將熔融鋼鑄造成大塊。在禱造過程中可 吏用各種方法,諸如添加紹,以使鋼中之雜質漂浮於表 面,在此處可自最終產物去除該等雜質。 【發明内容】 在本發明之一態樣中,形成鋼之系統包含熱交換器以藉 助於…碳可再生能源所提供之能量自液體水產生蒸汽。該 154879.doc 201239098 系統可在熱交換器下游進一步包括氫氣產生器,該氫氣產 生器用於自蒸汽產生氫氣(H2)及氧氣(〇2) ^可使用氫氣反 應器下游之鋼溶爐藉助於氫氣產生器中所形成之只2及〇2產 生鋼。 在本發明之另一態樣中,形成鋼之方法包含藉助於可再 生能源所提供之能量自液體水產生蒸汽。隨後,可自蒸汽 產生氫氣(HO及氧氣(〇2)。隨後,可在鋼熔爐中使用來自 基於氫氣之鼓風爐的鐵形成鋼。可藉助於自蒸汽產生之 及〇2產生鋼。 在一實施例中,形成供形成鋼所使用之氫氣及氧氣的方 法包含錢2或空氣與氫氣產生器中之含氧化鐵表面接觸, 以形成含鐵表面及氧氣(〇2)β隨後,彳自氧氣產生器移出 。可隨後使蒸汽與氫氣產生器中之含鐵表面接觸以形成 含氧化鐵表面及氫氣㈣。蒸汽可藉助於來自無碳可再生 能源之能量而產生。可隨後自氫氣產生器移出H2。隨後, H2及〇2可用於使用鋼熔爐產生鋼。 =中所提及之所有公開案:專利及專利申請案係 案、專利或專利申4= 如同各個別公開 併入一般 遣料収個別地指明以引用的方式 【實施方式】 本發明之新賴特徵註M i a 洋閣述於隨附申請專利範圍中。太 發明之特徵及優點將藉由 ㈣中本 參考闡述說明性實施例(直中使 154879.doc 201239098 用本發明之原理)之以下實施方式及隨附圖式而獲得充分 瞭解。 儘管本文已展示及描述本發明之較佳實施例,但熟習此 項技術者顯而易知該等實施例僅以實例之方式提供。熟習 此項技術者現在在不背離本發明之情況下可進行多種改 變、變化及替換《應瞭解本文所述之本發明實施例的各種 替代物可用於實施本發明。 存在各種與當前形成鋼之方法及系統有關之問題。舉例 而言’與綜合製鋼廠有關之主要環境危害為製造焦炭時產 生之污染’焦炭為在鼓風爐中還原鐵礦之必需中間產物。 作為另一實例,與加熱及冷卻鼓風爐有關之能量成本及結 構應力需要主要煉鋼容器以連續性生產爐期操作數年,產 生大量能量成本。即使在鋼需求低之時期令,仍可能不能 讓鼓風爐變冷。 當前鋼熔煉之缺點在於其可能為一種能量密集型方法, 造成可能加劇全球變暖之溫室氣體以及可能具有有害健康 及環境影響之其他污染物(諸如NOx(例如NO、N02)及 SOx(例如S〇2))的大量排放》熔煉可能為人為二氧化硫排 放之主要貝獻者。一氧化硫可在大氣中氧化為硫酸,硫酸 可以酸雨形式返回地平面。酸雨可能對植物、水產動物及 基礎設施具有有害影響。此外,能量密集型鋼熔煉操作可 能提高對供應相對有限之化石燃料的依賴性。 本發明提供可有利地減少(若未消除)當前鋼炫煉法之缺 點的系統及方法’以及可能需要蒸汽、氫氣及/或氧氣作 154879.doc 201239098 為進料化學品之其他方法。本文所提供之系統及方法可減 少(若未消除)溫室氣體排放’由此減少碳^跡且降低全球 變暖程度…卜,本文所提供之系統及方法可減少(若未 4除)對用於產生蒸汽及鋼炼煉所需 依賴性。 …置的化石燃料的 本發明提供用於製鋼之系統及方法。本文所述之本發明 之各種態樣可應用於下述任何特定應用或用於利用可再生 能源(諸如無碳可再生能源)之任何其他類型之製造方法。 無碳可再生能源可包括太陽輻射、風能、地熱能、波能 可自一或多個該等來源獲得能量,例如藉助於渴輪、光伏 打太陽電池及模組、及朗#(Rankine)或有機朗肯循環。 θ本發明可作為獨立的系統或方法或作為可在集中位置中 =之綜合製鋼法之-部分應用。應瞭解,本發明之不同 I、樣可個別地、整體地或彼此組合地理解。 本文所提供之系統可自可再生能源獲 量來產生蒸汽,隨後該蒸汽可用於產生可::: = =諸如鋼料)的賊〇2。可再生能源之位置可密切接近 送水於/蒸汽之熱交換器,此可有利地避免對倚存及輸 送水:虱氣及氧氣的需要。因為能量可在本地自可再生能 «得’故可減少(若未消除)能量傳輸損耗。 b 处本文,所提供之系統會由單元之組合產生在傳統方法中可 “效益。舉例而言,大容量鋼炫煉操作可 生能源產生Η2及02之利益,因為傳統鋼 溶煉麵作之相對大能量需求可能難以料再生能源滿足。 154879.doc 201239098 本文所提供之單元的組合以及單元相對於彼此的空間分 佈使得可獲得用於產生供下游製程(諸如鋼熔煉)使用之h2 及〇2的有效且環保之系統。在實施例中,本文所提供之系 統可彼此密切接近地定位,從而免除儲存之需要,由此使 進料反應物(例如H2及〇2)轉化為可用於產生鋼之產物及能 量的轉化效率達到最大。 圖1A示意性說明根據本發明之一實施例的形成鋼之系 統。s亥系統可包括能源或熱源〇1〇、氫氣產生器〇15及製鋼 總成040 〇製鋼總成040可包括鋼熔爐。氫氣產生器〇15可 用於產生氫氣(HO或H2及氧氣(〇2)。能源〇1〇可包括熱能儲 存介質。在一些情況下,能源〇1〇可用於將液體水加熱成 蒸汽。蒸汽可隨後藉助於氫氣產生器〇15解離為H2 在一 些情況下,來自蒸汽之氧可以〇2形式自氫氣產生器〇15回 收。 在些情況下,風氣產生器可為電解單元(或電解器)。 圖1B展示可包括能源或熱源010、電源〇2〇、電解裝置〇3〇 及製鋼總成040之製鋼系統。 能源010可為可再生能源,諸如太陽、地熱或水電能源 中之一或多者。能源〇1〇可熱耦接於熱能儲存介質(參見下 文)。 舉例而言,太陽能可直接加熱電解中所用之流體(例如 H2〇),或可加熱工作流體,該工作流體又可用於加熱電解 流體。在一些實施例中,可使用諸如熱交換器、聚光裝置 或反射器之組件。可使用加熱流體之替代形式,諸如本文 154879.doc .201239098 別處所述之形式。在—些實施例中,用於加熱之可再生能 源可補充有其他加熱源。流體可加熱至或可不加熱至形成 蒸氣之程度。 電源0 2 0可為能夠提供電能以執行電解製程之任 源。電源較佳可包括可再生能源,其可補充有或可未補充 有其他能源。舉例而言,可使用風能源產生電。風能可補 充有或可未補充有其他可再生能源(例如太陽、地熱、水 電能源)、來自電網設施之電力或使用儲存能量。 電解030可利用由熱源〇1〇加熱之經加熱流體及來自電源 〇2〇之能量進行。在製鋼系統中較佳可使用高溫蒸汽電 解°舉例而言’可自蒸汽分離出及〇2。 電解030之後’可使用製鋼配置〇4〇,其可利用由電解產 生之%及〇2。製鋼配置可包括氫氧焰產生器、基於氫氣之 鼓風爐及一或多個熔爐(諸如氫氧廢料熔爐及氫氧鋼熔 爐)。其他細節及實施例可在本文別處進一步論述。包括 熱源、電源、電解裝置及製鋼總成之製鋼系統較佳可集中 在一個位置。舉例而言,可為製鋼系統之所有部件或大多 數部件提供—個地點。在__些實施例中,電解及製鋼配置 可在同-位置提供。視情況’用於電解之流體或蒸汽來源 可在同一位置或附近提供。類似地,電能源可視情況在同 一位置或附近提供。 2為替代方案,電源020及電解裝置〇3〇可替換為氫氣產 生器,諸如殼管式氫氣反應器或流體化床反應器(參見下 文)。氫氣產生器可自蒸汽產生氫氣產生器亦可產生 154879.doc 201239098 〇2。 本文所提供之系統及方法可至少部分基於如下認識:自 蒸汽產生Hz及〇2可能比自液體水產生仏及〇2有效。在一些 實施例中’使用太陽輕射產生蒸汽,隨後蒸汽可解離成h2 及〇2。隨後112及〇2可用於製造鋼。 工業方法中使用太陽能之一問題為熱量自一介質傳遞至 另一介質的效率。舉例而言,可能需要使用太陽能產生蒸 汽,但在一些情況下,使用當前之熱交換器在太陽輻射照 射輻射表面時傳遞太陽能或熱能以產生水可能為一種低效 方法。一種解決方案為使用大輻射表面來收集更多太陽 能’此造成可用空間減少及材料成本增加。另一解決方案 為使用具有大量傳熱旋管之熱交換器,但此解決方案可能 造成高材料成本及可用空間減少,因為需要大型熱交換 器。 向水傳遞太陽輻射之另一問題為當前之傳熱系統及方法 可能不能提供有效能量傳遞。舉例而言,為向水傳遞太陽 能,太陽能須傳遞至一或多個中間介質。若太陽能收集器 未安置在熱交換器附近,則此解決方案可能並不實用,因 為能量經歷較長距離傳輸可能會損耗(輻射、傳導)。 在一些情況下,太陽輻射可使用在熱交換器附近之太陽 輻射收集模組(或單元)(諸如太陽能收集器)收集以將能量 傳送至水。太陽輻射收集模組可用作製鋼系統之—部分, 例如作為圖1A及1B中所提供之熱源010的一部分。或者, 其可與其他生產方法及組態一起使用。 154879.doc •10· 201239098 本文所提供之方法及系統可使向水傳遞太陽能而產 汽時的能量損耗減至最小。在一實施例中,太陽輻射藉: 於垂直堆疊之太陽能集中器收集,垂直堆疊之太陽能集中 器有利地使太陽能收集器所需之空間量減至最小,同時使 捕捉到之太陽輻射的量(或通量)達到最大。在—實施例 中’太陽輻射收集模組可定位㈣於自H2q產生1及%之 其他系統附近》 2 當與其他當前线及方料較時,本文所提供之系統及 方法可使太陽能可有效傳遞至液體水以產生蒸汽。在實施 例中’將太陽能傳敍與_水減狀放減量儲存介 質(亦為本文之「熱能儲存材料」)。熱能儲存材料係經組 態成可保留太陽能且使向水傳輸太陽能後之損耗減至最 小 〇 在實施例中,藉助於能量傳遞介質將熱能引入一或多種 量之熱能儲存材料中。在—實施例中,利用此方法之系統 具有熱流體穿過浸在液體能量傳遞介質中之管道。介質沸 騰且蒸氣冷凝於-或多個填充有熱能儲存材料之容器的側 面上。冷凝熱使儲存材㈣融’藉此在溶融儲存材料中儲 存熱能。熱㈣錢用在L㈣存材料之模組附近的 一或多個太陽能收制產生。在另_實施财,利用此方 法之系統直接將太陽能料至熱㈣存材料中,隨後熱能 儲存材料㈣’藉_存聽在㈣料材料中。 在-實施例中,熱能儲存材料為鹽。在—實施例中,該 鹽包含第1族元素或第11族元素。在一實施例中,熱能儲存 154879.doc 201239098 材料為二元鹽。在另一實施例中,熱能儲存材料為三元 鹽。在一實施例中,鹽可具有通式AxBy,其中『A』為第j 族或第II族元素,『B』為齒素’且『x』及『y』為大於〇 之數值。在一實施例中,『x』及『y』係經選擇以提供八與 B之化學計量比。在一實施例中,A可選自由u、Na、κ、 Rb、Cs、Be、Mg、Ca及Sr組成之群,B可選自由F、c卜 Br及I組成之群。在實施例中,熱能儲存介質可為氣化 鈣、氯化鋇、氣化勰、溴化鈉、溴化鉀、溴化鎂、氟化 鈉、氟化鉀、氟化鎂、碘化鋰、碘化鈉、碘化鉀、碘化 鎂、碘化鈣、碘化锶及其混合物(或組合)。 在-實施例中能儲存介質之組成及量經選擇以使熱 能儲存材料之熔點降低。在實施例中’在向水釋放熱能而 產生蒸汽後,再循環熱能儲存介質以便進一步使用,諸如 再進行加熱而用於進一步蒸汽製備。 在本發明之-態才策中’提供一種鋼製造方法。鋼製造方 法包含使用可再生能源以減少含碳化合物之排放。在一實 施例中,可再生能源密切接近於製鋼容器定位。在一實施 例中,水藉由首先將HA⑴預加熱為邮⑷(蒸汽)來解離 為及〇2。 在本發明之-態樣中,水使用熱能源來轉化為蒸汽,隨 後電解。在實施例中,必需解離能之—部分由熱能源供應 的南溫蒸汽電解比低溫水電解有效。 在實施例中,水解離為氫氣(h2)及氧氣(〇2)。在各種實 施例t,水經由電解而解離。在—實施例中,纟電解之必 154879.doc -12· 201239098 、離峰電源(off peak electricity 或多者提供。在一實施例中,自 兩者可儲存於適合儲存模組中以 需電力由可再生能源資源 source)及習知電廠中之一 Ηζ0產生之&及ο:之一或 供後續使用。 在實施例中’使用自Ha產生之仏及〇2形成鋼。在一 實施例中’製鋼包含在適合還原模組中使㈣用於化學還 =電位且燃燒Η2以提供用於還原反應之熱量而使具有金屬 S或礦石等效物之材料(包括(但不限於)鐵礦' 軋屑(mUl )鎳礦或與氧化元素化學組合之其他亞鐵金 原。 =實施例中’將包括—或多個太陽能收集器、一或多個 …父換器(各自具有熱能儲存材料)、風力渦輪機及/或燃料 =池以及電解模組的用於自&⑽成仏及^^的系統及組件 疋位於同一位置。此有利地使與輸送氫氣有關之危險以及 與輸送氫氣有關之高成本減至最小。此外,使所有組件處 於同一位置有助於維護及修理且使停卫期減至最少,因為 該等組件可易於接取。 处在實施例中,使用可再生能源加熱能量儲存介質以釋放 能量。使用自能量儲存介質釋放之能量自水產生蒸汽。隨 後,解離水形成Ha及〇2。在一實施例中,水經由在電解模 組中進订水電解而解離。可由一或多個可再生能源提供水 電解之能量。在—實施例中,電解模組密切接近於-或多 個可再生能源。在實施例中,水電解之能量由風能、太陽 月匕地熱忐、波能 '水力、由燃燒生物燃料獲得之電及來 154879.doc •13· 201239098 自燃料電池之電中之一或多者提供。在一較佳實施例中, 水電解之能量由一或多個風力渦輪機及/或一或多個燃料 電池提供。隨後’使用Η2及/或A形成鋼。在一實施例 中,形成鋼期間所形成之任何水可再循環以供進一步使 用。舉例而言,水可再循環以產生蒸汽而用於進一步電 解。 在一實施例中,藉由蒸汽電解製備氫氣之方法包含將太 陽輻射(或太陽能)轉化為熱能及電能,及使用熱能之至少 一部分將水轉化為蒸汽且將蒸汽加熱至至少7〇〇<>c之溫 度。在一實施例中,藉助於光伏打(太陽)細胞產生電能。 使用至少一部分電能及至少一部分剩餘熱能操作電解池 (或模組)以使蒸汽分解為Hz及〇2。熱能提供化〇電解所需 之至少一部分吸熱能量,此減少了電解所需之其他外部電 能。在一實施例中,來自太陽輻射之電能(例如經由光伏 打電池產生)用來自一或多個其他可再生能源(諸如風力渦 輪機、燃料電池及電網)之電能增強。201239098 VI. INSTRUCTIONS: Cross-Reference This application claims US Provisional Patent Application No. 6W3A362, filed March 18, 2010, and Nos. 61/385 538 and 201^February, September 22, 2010 Priority No. 61/438,498, filed on Jan. 1, the entire contents of which is hereby incorporated by reference. [Prior Art] Steel is a metal alloy containing iron and carbon. Steel is usually manufactured in a two-stage process. In the first stage, iron ore is reduced or scoured with coke and limestone in a blast furnace to obtain molten iron, which is cast into pig iron or transported as molten iron to the next stage. In a second stage called steelmaking, impurities such as sulfur, phosphorus and excess carbon are removed and alloying elements such as manganese nickel, chromium and vanadium are added to obtain a steel having the desired steel composition. Steel can be formed using an integrated steel miu. The main raw materials for the integrated plant are iron ore, limestone and coal (or coke). These materials are batch-loaded into a blast furnace in which the iron compound in the ore releases oxygen and becomes liquid iron. The accumulated liquid iron is discharged from the blast furnace at intervals of several hours and cast into pig iron or guided to other containers for other steel making operations. Subsequently, the molten steel is cast into a large block. Various methods, such as addition, may be employed during the prayer process to cause impurities in the steel to float on the surface where the impurities may be removed from the final product. SUMMARY OF THE INVENTION In one aspect of the invention, a system for forming a steel includes a heat exchanger to generate steam from liquid water by means of energy provided by a carbon renewable energy source. The 154879.doc 201239098 system may further include a hydrogen generator downstream of the heat exchanger for generating hydrogen (H2) and oxygen (〇2) from the steam ^ using a steel furnace downstream of the hydrogen reactor by means of hydrogen Only 2 and 〇2 formed in the generator produce steel. In another aspect of the invention, a method of forming steel includes generating steam from liquid water by means of energy provided by a renewable energy source. Subsequently, hydrogen (HO and oxygen (〇2)) can be generated from the steam. Subsequently, steel from a hydrogen-based blast furnace can be used to form steel in a steel furnace. Steel can be produced by means of steam and 〇2. In one example, the method of forming hydrogen and oxygen for forming steel comprises the use of money 2 or air in contact with the surface of the iron oxide containing hydrogen generator to form an iron-containing surface and oxygen (〇2) β, followed by oxygen generation. The gas is then removed. The steam can then be contacted with the iron-containing surface in the hydrogen generator to form an iron oxide-containing surface and hydrogen (4). The steam can be generated by means of energy from a carbon-free renewable energy source. The H2 can then be removed from the hydrogen generator. Subsequently, H2 and 〇2 can be used to produce steel using steel furnaces. = All publications mentioned in the patent: patent and patent application systems, patents or patent applications 4 = as individual disclosures into general repatriation Illustrated by way of reference [Embodiment] The novel features of the present invention are described in the scope of the accompanying patent application. The features and advantages of the invention will be explained by reference to (4) The following embodiments of the illustrative embodiments (the principles of the present invention are used to exemplify the principles of the present invention) and the accompanying drawings are fully understood. Although the preferred embodiments of the present invention have been shown and described herein, It is obvious to those skilled in the art that the embodiments are provided by way of example only. Those skilled in the art can now make various changes, changes and substitutions without departing from the invention. Various alternatives can be used to practice the invention. There are various problems associated with current methods and systems for forming steel. For example, 'the main environmental hazard associated with an integrated steel mill is the pollution produced when coke is produced' coke is in a blast furnace The necessary intermediate product for the reduction of iron ore. As another example, the energy costs and structural stress associated with heating and cooling blast furnaces require the primary steelmaking vessel to operate continuously for several years, resulting in substantial energy costs. Even in low steel demand During the period, it may still not be possible to cool the blast furnace. The disadvantage of current steel smelting is that it may be a kind of energy. Intensive methods, resulting in large emissions of greenhouse gases that may exacerbate global warming and other pollutants that may have harmful health and environmental impacts (such as NOx (eg, NO, N02) and SOx (eg, S〇2)) may be A major contributor to anthropogenic sulphur dioxide emissions. Sulphur oxide can be oxidized to sulphuric acid in the atmosphere, and sulphuric acid can return to the ground level in the form of acid rain. Acid rain can have harmful effects on plants, aquatic animals and infrastructure. In addition, energy-intensive steel smelting operations It may increase the dependence on the supply of relatively limited fossil fuels. The present invention provides systems and methods that can advantageously reduce, if not eliminate, the shortcomings of current steel smelting processes, and may require steam, hydrogen and/or oxygen as 154879. Doc 201239098 Other methods of feeding chemicals. The systems and methods provided in this paper can reduce (if not eliminate) greenhouse gas emissions 'thus reducing carbon footprint and reducing global warming..., the system provided here and The method can reduce (if not 4) the dependence on the steam and steel refining required. The present invention provides systems and methods for steel making. The various aspects of the invention described herein are applicable to any particular application described below or any other type of manufacturing method for utilizing renewable energy sources, such as carbon-free renewable energy sources. Carbon-free renewable energy can include solar radiation, wind energy, geothermal energy, and wave energy to obtain energy from one or more of these sources, such as thirsty wheels, photovoltaic solar cells and modules, and Rankine. Or organic Rankine cycle. θ The invention may be used as a stand-alone system or method or as part of an integrated steelmaking process that can be used in a centralized location. It will be appreciated that the differences I of the present invention can be understood individually, collectively or in combination with one another. The system provided herein can be derived from renewable energy sources to produce steam, which can then be used to produce a thief 2 that can be::: = = such as steel. Renewable energy is located in close proximity to the water/steam heat exchanger, which advantageously avoids the need to rely on and transport water: helium and oxygen. Because energy can be locally regenerated from renewable energy, it can reduce (if not eliminate) energy transmission losses. b In this paper, the system provided will be produced by a combination of units that can be “effective in traditional methods. For example, large-capacity steel smelting operations can generate energy for the benefit of Η2 and 02, because traditional steel-melting surfaces are used. Relatively large energy demands may be difficult to meet with renewable energy. 154879.doc 201239098 The combination of units provided herein and the spatial distribution of the units relative to one another make it possible to obtain h2 and 〇2 for use in downstream processes such as steel smelting. An efficient and environmentally friendly system. In embodiments, the systems provided herein can be positioned in close proximity to one another, thereby eliminating the need for storage, thereby converting feed reactants (eg, H2 and 〇2) into steel for production. The conversion efficiency of the product and energy is maximized. Figure 1A schematically illustrates a system for forming steel in accordance with an embodiment of the present invention. The system can include an energy source or heat source, a hydrogen generator 〇15, and a steel assembly 040. The tantalum steel assembly 040 can include a steel furnace. The hydrogen generator crucible 15 can be used to generate hydrogen (HO or H2 and oxygen (〇2). Energy 〇1〇 can include thermal energy storage. Medium. In some cases, the energy 〇1〇 can be used to heat the liquid water into steam. The steam can then be dissociated into H2 by means of the hydrogen generator 〇15. In some cases, the oxygen from the steam can be in the form of 〇2 from the hydrogen generator. 〇15 recycling. In some cases, the ventilator can be an electrolysis unit (or electrolyzer). Figure 1B shows a steelmaking system that can include an energy source or heat source 010, a power source 〇2, an electrolysis unit 〇3〇, and a steel assembly 040 Energy 010 can be one or more of renewable energy sources, such as solar, geothermal or hydroelectric energy. Energy 〇1〇 can be thermally coupled to a thermal energy storage medium (see below). For example, solar energy can be directly heated in electrolysis. The fluid used (e.g., H2〇), or a working fluid, which in turn can be used to heat the electrolytic fluid. In some embodiments, components such as heat exchangers, concentrating devices, or reflectors can be used. Heating can be used. An alternative form of fluid, such as that described elsewhere herein, 154,879. doc. 201239098. In some embodiments, the renewable energy source for heating may be supplemented with other additions. Heat source. The fluid may or may not be heated to the extent that it forms a vapor. The power source 0 2 0 may be any source capable of providing electrical energy to perform an electrolysis process. The power source may preferably include a renewable energy source, which may or may not be supplemented Other sources of energy. For example, wind energy can be used to generate electricity. Wind energy can be supplemented with or without other renewable energy sources (such as solar, geothermal, hydroelectric energy), electricity from grid facilities, or use of stored energy. It can be carried out by heating the heated fluid from the heat source 及1〇 and the energy from the power source. In the steel making system, it is preferred to use high-temperature steam electrolysis. For example, it can be separated from steam and 〇2. 'The steel can be used in 〇4〇, which can take advantage of % and 〇2 produced by electrolysis. The steelmaking configuration may include an oxyhydrogen flame generator, a hydrogen-based blast furnace, and one or more furnaces (such as a oxyhydrox scrap furnace and a oxyhydrogen steel furnace). Other details and embodiments can be further discussed elsewhere herein. The steel making system including the heat source, the power source, the electrolysis device, and the steel assembly is preferably concentrated in one position. For example, it is possible to provide a location for all or most of the components of a steelmaking system. In some embodiments, the electrolysis and steel making arrangements can be provided in the same position. Depending on the situation, the source of fluid or vapor used for electrolysis may be provided at or near the same location. Similarly, electrical energy sources may be provided at or near the same location. 2 As an alternative, the power source 020 and the electrolyzer 〇3〇 can be replaced by a hydrogen generator such as a shell-and-tube hydrogen reactor or a fluidized bed reactor (see below). Hydrogen generators can also produce hydrogen generators from steam. 154879.doc 201239098 〇2. The systems and methods provided herein can be based, at least in part, on the recognition that Hz and 〇2 from steam generation may be more effective than 仏 and 〇2 from liquid water. In some embodiments, the use of solar light produces steam, which is then dissociated into h2 and 〇2. Subsequent 112 and 〇2 can be used to make steel. One of the problems with the use of solar energy in industrial processes is the efficiency with which heat is transferred from one medium to another. For example, it may be desirable to use solar energy to generate steam, but in some cases it may be an inefficient method to use current heat exchangers to transfer solar or thermal energy to produce water when the solar radiation illuminates the surface of the radiation. One solution is to use a large radiating surface to collect more solar energy', which results in reduced available space and increased material costs. Another solution is to use a heat exchanger with a large number of heat transfer coils, but this solution may result in high material costs and reduced available space because of the large heat exchangers required. Another problem with delivering solar radiation to water is that current heat transfer systems and methods may not provide effective energy transfer. For example, to transfer solar energy to water, solar energy must be transferred to one or more intermediate media. This solution may not be practical if the solar collector is not placed near the heat exchanger, as energy may experience losses (radiation, conduction) over longer distances. In some cases, solar radiation may be collected using a solar radiation collection module (or unit) (such as a solar collector) in the vicinity of the heat exchanger to transfer energy to the water. The solar radiation collection module can be used as part of a steelmaking system, for example as part of the heat source 010 provided in Figures 1A and 1B. Alternatively, it can be used with other production methods and configurations. 154879.doc •10· 201239098 The methods and systems provided herein minimize energy loss when delivering solar energy to water and producing steam. In one embodiment, the solar radiation is collected by a vertically stacked solar concentrator, and the vertically stacked solar concentrators advantageously minimize the amount of space required for the solar collector while simultaneously capturing the amount of solar radiation ( Or flux) to reach maximum. In the embodiment, the 'solar radiation collection module can be positioned (4) in the vicinity of other systems that generate 1% and % from H2q. 2) When compared with other current lines and materials, the system and method provided herein can make solar energy effective. Transfer to liquid water to produce steam. In the examples, the solar energy and the water-reducing amount of storage medium (also referred to herein as "thermal energy storage material"). The thermal energy storage material is configured to retain solar energy and minimize losses after transporting solar energy to the water. 实施 In an embodiment, thermal energy is introduced into one or more amounts of thermal energy storage material by means of an energy transfer medium. In an embodiment, the system utilizing this method has a hot fluid passing through a conduit immersed in a liquid energy transfer medium. The medium boils and the vapor condenses on the side of the vessel or a plurality of vessels filled with the thermal energy storage material. The heat of condensation causes the storage material (4) to melt, thereby storing thermal energy in the molten storage material. The heat (4) money is generated by one or more solar energy collections near the module of the L (four) storage material. In another implementation, the system using this method directly feeds the solar material into the thermal (four) storage material, and then the thermal energy storage material (4) is borrowed and stored in the (four) material. In an embodiment, the thermal energy storage material is a salt. In an embodiment, the salt comprises a Group 1 element or a Group 11 element. In one embodiment, the thermal energy storage 154879.doc 201239098 material is a binary salt. In another embodiment, the thermal energy storage material is a ternary salt. In one embodiment, the salt may have the formula AxBy, wherein "A" is a Group j or Group II element, "B" is a dentate' and "x" and "y" are values greater than 〇. In one embodiment, "x" and "y" are selected to provide a stoichiometric ratio of eight to B. In one embodiment, A may be selected from the group consisting of u, Na, κ, Rb, Cs, Be, Mg, Ca, and Sr, and B may be selected from the group consisting of F, c, Br, and I. In an embodiment, the thermal energy storage medium may be gasified calcium, barium chloride, gasified strontium, sodium bromide, potassium bromide, magnesium bromide, sodium fluoride, potassium fluoride, magnesium fluoride, lithium iodide, Sodium iodide, potassium iodide, magnesium iodide, calcium iodide, cesium iodide, and mixtures (or combinations thereof). The composition and amount of the storable medium in the embodiment are selected to reduce the melting point of the thermal energy storage material. In the embodiment, after the heat is released from the water to generate steam, the thermal energy storage medium is recycled for further use, such as heating for further steam preparation. In the present invention, a steel manufacturing method is provided. Steel manufacturing methods involve the use of renewable energy sources to reduce emissions of carbonaceous compounds. In one embodiment, the renewable energy is closely related to the positioning of the steel vessel. In one embodiment, water is dissociated into 〇2 by first preheating HA(1) to post (4) (steam). In the aspect of the invention, water is converted to steam using a thermal energy source and then electrolyzed. In an embodiment, it is necessary to dissociate energy - a portion of the south temperature steam electrolysis supplied by the thermal energy source is more effective than the low temperature water electrolysis. In the examples, the hydrolysis is separated into hydrogen (h2) and oxygen (?2). In various examples t, water is dissociated via electrolysis. In the embodiment, the cesium electrolysis must be 154879.doc -12· 201239098, off peak electricity or more. In one embodiment, the two can be stored in a suitable storage module for power demand. One of the & and ο: generated by one of the renewable energy resources and one of the known power plants or for subsequent use. In the examples, steel was formed using ruthenium and ruthenium 2 produced from Ha. In an embodiment, the steelmaking comprises, in a suitable reduction module, (4) for chemically = potential and burning enthalpy 2 to provide heat for the reduction reaction to make the material having the metal S or ore equivalent (including (but not Limited to) iron ore 'milled mastic (mUl) nickel ore or other ferrous metal combination chemically combined with oxidizing elements. = In the embodiment 'will include - or multiple solar collectors, one or more ... parental converters (each having The thermal energy storage material), the wind turbine and/or the fuel=pool and the system and components of the electrolysis module for the self-contained and/or (10) enthalpy and the enthalpy are located at the same location. This advantageously makes the dangers associated with the transport of hydrogen and the transport The high cost associated with hydrogen is minimized. In addition, having all components in the same location facilitates maintenance and repair and minimizes the stand-off period because the components are easily accessible. In the embodiment, renewables are used. The energy heats the energy storage medium to release energy. The energy released from the energy storage medium is used to generate steam from the water. Subsequently, the water is dissociated to form Ha and 〇 2. In one embodiment, the water passes through the electrolysis module. The water is electrolyzed to dissociate. The energy of water electrolysis may be provided by one or more renewable energy sources. In an embodiment, the electrolysis module is in close proximity to - or a plurality of renewable energy sources. In an embodiment, the energy of water electrolysis Provided by wind energy, solar enthalpy geothermal enthalpy, wave energy 'hydraulic power, electricity obtained from burning biofuels, and 154879.doc • 13· 201239098 from one or more of the fuel cell power. In a preferred embodiment The energy of water electrolysis is provided by one or more wind turbines and/or one or more fuel cells. The steel is then formed using Η2 and/or A. In one embodiment, any water formed during the formation of the steel may be Recycling for further use. For example, water can be recycled to produce steam for further electrolysis. In one embodiment, the method of preparing hydrogen by steam electrolysis comprises converting solar radiation (or solar energy) into thermal energy and The electrical energy, and the use of at least a portion of the thermal energy, converts the water to steam and heats the steam to a temperature of at least 7 Torr <>c. In one embodiment, by means of photovoltaic (sun) cells The at least a portion of the electrical energy and at least a portion of the remaining thermal energy are used to operate the electrolytic cell (or module) to decompose the steam into Hz and 〇 2. The thermal energy provides at least a portion of the endothermic energy required for the hydrazine electrolysis, which reduces the need for electrolysis External electrical energy. In one embodiment, electrical energy from solar radiation (eg, generated via photovoltaic cells) is enhanced with electrical energy from one or more other renewable energy sources, such as wind turbines, fuel cells, and electrical grids.

在一實施例中,太陽輻射分離為較短波長組分及較長波 長組分。較短波長組分轉化為電能且較長波長組分轉化為 熱能。在-實施例中,使用較長波長組分熔融熱能儲存材 料(諸如MgF2)。藉助於太陽輻射自仏〇形成Η:之替代性方 法可見於例如Lasich之美國專利第5,658,448號 (^PRODUCTION OF HYDROGEN FROM SOLAR R細ATI0N AT HIGH EFFICIENCY」)中其以全文引用 的方式併入本文中。 154879.doc •14- 201239098 參考圖2,根據本發明之一實施例,提供一種形成用於 製鋼之Η,及〇2的方法100。在第一步驟1〇5中,使用可再生 能源加熱放熱能量儲存介質(本文中亦稱作「熱能儲存材 料」)。在-實施例中,熱能儲存材料包含Μ#"在一實 施例中,可再生忐源為太陽能,其可藉助於垂直堆疊之太 陽能集中器來提供。在一實施例中,熱能儲存物在某一溫 度下加熱-段時間,以使熱能儲存材料之預定部分溶融。 在-實施例中,將熱能儲存材料加熱至其溶點或沸點。隨 後,在步驟110中,使用來自放熱能量儲存介質之熱量自 H2〇⑴產生H2〇(g)(蒸汽)。在一實施例中,此#助於執交 換器型容器完成,該容器中有水管與放熱能量儲存介質献 接觸。隨後,在步驟115中,自蒸汽產生仏及〇2。在一實 施例中,使用電解使H2〇解離為^及〇2。在一實施例中, 蒸》"L電解所需之能量由一或多個可再生能源(諸如一或多 個風力渦輪機)提供。在另-實施例中,蒸汽電解所需之 能量由燃料電池(諸如固體氧化物燃料電池(「SO% ”提 供。在另-實施例中,蒸汽電解所需之能量由一或多個風 力渦輪機及-或多個燃料電池提供。隨後,在步驟12〇 中’在下游製程(諸如製鋼)t使用仏及,或隨後,在步 ㈣5中’下游製程中產生形成之任何水可再循環至諸如 步驟110。 參考圖3,展示根據本發明之—實施例的形成鋼之系統 2〇〇 °首先’加熱MgF2至略低於其汽化點,直至所有或實 質上所有MgF2熱量儲存介質炫融。在實施例中,使用太陽 154879.doc -15- 201239098 能加熱MgF2。在一實施例中,使用太陽能集中器205(諸如 垂直堆疊之太陽能集中器)加熱MgF2。在一實施例中,使 用美國臨時專利申請案第61/277,696號中所述之太陽能集 中器加熱MgF2,該案以全文引用的方式併入本文中。 MgF2之熱量儲存能力大小可為可藉助於加熱器21 〇(諸如熱 交換器)將適量或預定量之引入生冷水預加熱至所要或預 定溫度。在一實施例中,加熱冷水至低於約1263°C之溫 度。將水預加熱至為整個製鋼需要、尤其自下游高溫蒸汽 電解系統(HTSS)或模組215形成112所足夠的溫度。 在一實施例中’ HTSS 215可經由以下半電池(氧化還原) 反應將H20解離為H2及02 : (1) 2 H20(g)+4 e_ 今 2 Η2+2 02·(陰極) (2) 2 02· + 〇2+4 e_(陽極) (3) 2 Η20 ·>2 H2+02(總) 在實施例中’ HTSS 215可包含陽極及陰極(參見圖4)。 在一實施例中’陰極為多孔(或半滲透)陰極且陽極為多孔 陽極。HTSS 215可進一步包含氣密性(或不滲透性)電解質 以提供用於分離氫離子與氧離子之化學電位梯度。在陽極 及陰極上施加電位降(或電動勢,「Vj )時,蒸汽分離為h2 及〇2伴隨電子自陽極流向陰極。 繼續參考圖3,在一實施例中,HTSS 215包含氣密性陶 瓷電解質。在一實施例中’水解離為仏及〇2後,可分離h2 及〇2。在一實施例中,若蒸汽在18〇〇ec -2400°C下熱解離 為H2及〇2,則可使用基於陶瓷之膜分離仏與…。基於陶竞 I54879.doc -16· 201239098 之膜可包括陶瓷-陶瓷複合材料或陶瓷_金屬複合材料。在 另一實施例中’ Ha及〇2可藉助於固體電解質分離(固體電 解質氧氣分離)。在一實施例中’若蒸汽在約〗8〇〇。〇_ 240(TC之間的溫度下熱解離為氏及〇2,則可使用含硼放熱 月&量儲存介質’該能量儲存介質之熔點為約23〇〇艽且沸點 為約2550°C。在此情況下,可使用包含含鎢及銖之合金 (諸如W3/5e/〇 Re(熔點為335〇〇c ’沸點為341〇°c)或w-25Re(熔點為3120°C,沸點為313〇。〇)的容器。一些其他容 器材料可包括锇〇s(熔點為3,〇27〇c(33〇〇 κ));銖以(熔點 為3,180。(:(3,450 1^));鎢\^(熔點為 3,422。(:(3,695 1〇);碳 (金剛石)C(熔點為3,55(TC(3,820 Κ));或塗有鎢之碳(石 墨)C(熔點為 3,675t (3,948 K))。 在一實施例中,可使用來自風能塔22〇(其可在HTSS固 體氧化物電解池上連續(亦即每天24小時,每週7天,每年 52週)操作)之電力(諸如直流(DC)電力)製備隨後可用於一 或多個下游製程中之H2及〇2。在一實施例中,使用由蒸汽 電解形成之%及〇2製造鋼。在另一實施例中,水電解所需 之能量可由燃料電池225提供。在一實施例中,燃料電池 225為固體氧化物燃料電池(s〇FC)。 在實施例中,燃料電池225可包括陽極、陰極及電解 質。自陽極向陰極施加負載或電阻(「R」)在燃料解離時 提供電子流及伴隨之離子流。可在HTSS 215中使用電子以 電化學方式解離^0。 在實施例中,陽極及陰極可由導電可滲透(或半滲透)材 154879.doc •17· 201239098 料形成。在實施例中,陽極及陰極包含一或多種選自Cll、 Ni、Pt、Au及Ag之過渡金屬。在一實施例中,陽極由^形 成。在一實施例中,陰極由Ni形成。 在一實施例中,燃料電池225為氫(或基於氫之)燃料電 池。在一實施例中,燃料電池225為質子交換膜(PEM)燃料 電池(參見圖5) *在另一實施例中,燃料電池225為固體氧 化物燃料電池(參見圖6)。在另一實施例中,燃料電池225 為炫融碳酸鹽燃料電池。在一些實施例中,燃料電池225 包含由妈鈦礦形成之電解質。 參考圖5,展示基於氫之pem燃料電池。氫燃料電池可 包括作為質子交換膜(「PEM」)之電解質,在該情況下, 燃料電池可稱作PEM燃料電池(本文中亦稱作「聚合物電 解質膜燃料電池」)。在一實施例中,在PEM之陽極,氫 氣經由H2 + 2 H++2 e-(E°=0 VSHE)解離,且在陰極,經由4 H++4 e_+〇2>>2 Η20(Ε0=1.229 VSHE)形成水。在各種實施例 中’ PEM可由基於鉑之催化劑(或基於Pt之催化劑)或基於 鐵之催化劑(諸如含鐵、氮及碳之催化劑)形成。在一實施 例中’氧化還原反應中所產生之熱量傳送至Η2〇,H2〇離 開燃料電池。 參考圖6,展示SOFC。在一實施例中,陽極及陰極由可 滲透材料形成以使〇2及H2可流向電解質且仏〇可流動而離 開電解質。電解質由不可滲透材料形成。參考圖6,在一 實施例中,向燃料電池之陽極提供出及C〇作為燃料,且 向燃料電池之陰極提供空氣。燃料電池提供化學電位梯度 154879.doc -18 · 201239098 以形成H20。在陽極’經由2 h2+〇2·今4 e.+ 2 H20形成 水’且在陰極,氧氣經由〇2+4 e-今2 〇2-解離。H2〇及任何 未使用之燃料在出口處離開燃料電池。在一實施例中’將 燃料電池225中所形成之HjO引導至HTSS 215以形成H2及 〇2。在一實施例中’氧化還原反應中所產生之熱量與空氣 一起離開燃料電池6在一些情況下,熱量可與Η" 一起離 開燃料電池。 在一實施例中,SOFC之陽極可由陶瓷材料形成。陶瓷 材料可為多孔的以使燃料可流向電解質。在實施例中,陰 極及陽極組態成可將電子傳導至與使用點(諸如HtsS 215) 電連接之負載(R)。在一實施例中,陽極之陶瓷材料包括 金屬陶瓷’其包括錄與用於特定電池之電解質的陶瓷材料 (諸如氧化紀穩定之二氧化锆(YSZ))的混合物。在一實施 例中’陽極之厚度經選擇以使穿過電解質擴散之氧離子能 夠氧化氫燃料。 在一實施例中,SOFC之電解質可由傳導氧離子之陶瓷 之緻密層形成。電解質之電導率可保持儘可能低以防止因 /戈漏電流導致之電損耗。在一實施例中,電解質可由 YSZ(諸如8°/。形式Y8SZ)或亂摻雜之氧化鈽(GDC)形成。 在一實施例中,陰極為電解質上之薄多孔層,在此處進 行氧氣還原。SOFC之陰極可由鋼銘磁鐵礦(LSM)或具有 LSM及YSZ之複合材料形成。在一實施例中,可使用混合 型離子/電子傳導(MIEC)陶瓷,諸如鈣鈦礦(例如鋼锶鈷鐵 氧體(lanthanum strontium cobalt ferrite))。 154879.doc -19- 201239098 在一替代性實施例中,燃料電池225組態成可使用含碳 燃料操作。在一些實施例中,燃料電池225為組態成可使 用含碳材料(諸如烴或醇)作為燃料的PEM燃料電池或 SOFC。舉例而言’燃料電池225可為使用甲醇(CH3〇H)作 為燃料之PEM燃料電池。在此情況下,燃料電池225可稱 作直接曱醇燃料電池。直接甲醇燃料電池之總氧化還原反 應為2 CH3〇H+3 02~>4 H20+2 C02。在另一實施例中,燃 料電池可組態成可使用乙醇作為燃料。在一些實施例中, 燃料電池225組態成可使用烴cxHy操作,其中『X』及 『y』為大於0之數值。在一實施例中,燃料電池組態成可 使用烧烴(例如甲烷、乙烷)、烯烴(例如乙烯)及炔烴(例如 乙快)中之一或多者操作。在實施例中,含碳燃料用作燃 料電池中氧化還原半電池反應中之氧陰離子受體。 繼續參考圖3 ’在本發明之一實施例中,由使用htss進 行水電解形成之及〇2可如下使用:丨)將出及〇2以約ι:1 至5:1之H2:〇2比率引導至氫氧焰產生器no,該氫氧焰產生 器在低於約2800X:之溫度下操作;2)將H2引導至製鐵鼓風 爐235,以兩步法(亦即Fe3 + + Fe2+ + Fe)還原鐵,此得到蒸 汽及海綿鐵作為副產物而未排放C〇2 ; 3)向多級鋼熔爐24〇 供應〇2 ’此由Fe、Mg、B、Cr、Mo、碳形成所要類型之 鋼(具有預定組成),而以氧化物流出物形式移除S、p、^ 及其他雜質;及4)在廢料熔爐245中用氫氧處理來自鋼炫 爐240之廢料。在—實施例中,硫、磷及矽以氧化物形式 (諸如 SOx(例如 S〇、s〇2)、p〇j Si〇x(例如 Si〇2),其中 154879.doc -20· 201239098 『χ』為大於〇之數值)移除。 在一實施例中,由蒸汽解離形成之Η2及〇2可組合形成具 有比率為約1:1或1_5:1或2:1或2.5:1或3:1或3.5:1或4:1或 4.5:1或5:1或10:1或20:1之Ηζ及〇2的混合物。在一些實施例 . 中’風氣與氧氣之比率可為約1至20,或為約2至5。在一 • 實施例中,氫氣與氧氣之比率為約2,此為化學計量比。 在些貫施例中,混合物中氫氣與氧氣之比率可調節成可 達成所要燃燒(或自燃)溫度。 在一實施例中,氫氧焰產生器23〇在安全、可靠且獨立 之同心管中向使用點(「P0U」)供應比率為約1:1至5:1之 氣氣與氧氣。在一實施例中,在所有製造系統中分佈之所 有pou處,氫氣均在中心管中,該中心管在距載氧外管約 1吋遠或2吋遠或3吋遠處終止。在一實施例中,在需要高 /皿之時及之處,氣氣首先在遠端自燃,隨後開放氧氣流。 氧氣可替換為空氣、或另一惰性氣體(例如He、,其 可添加以維持鼓風爐、廢鐵、煉鋼爐/熔爐中之其他溫度 低於約2800°C。 ® 7說明根據本發明之-實施例的鋼熔爐(或容器)24〇。 將來自鼓風爐235之鐵(Fe)引導至鋼溶爐(或炫煉容器)24〇 ’中以形成具有所要或預定組成之鋼。在所說明之實施例 中,溶煉容器包括在鋼形成期間加熱鐵之爐。在一實施例 I將仏與〇2之混合物(諸如氯氧)引導至爐中以經由燃燒 ^熱量。在鋼形成期間,自容器移除溶渣(例如金屬氧 之混合物)。添加氧氣(〇2)以將Fe中之雜質(例如s、 154879.doc 201239098 p、Si)氧化》另外,氧氣可輔助在容器中所形成之鋼上形 成一或多個氧化層(例如^(^層)。在一實施例中,可添加 氫氣以進一步辅助鐵還原。 繼續參考圖7’可向熔煉容器中添加一或多種合金元素 以獲得具有預定組成之鋼。在實施例中,合金元素係選自 碳(C)、鎮(Mg)、棚(B)、鉻(Cr) ' 鉬(M〇)、錳(Mn)及叙(v) 及鶴(W)。鋼形成期間所用之合金元素以及處理條件(壓 力、溫度)可經選擇以獲得具有預定組成及材料特性(諸如 硬度、熱導率及電導率)之鋼組合物。 繼續參考圖7,在一實施例中,若進入熔煉容器之鐵足 夠熱,則可排除該爐。在另一實施例中,該爐可與炼煉容 器相鄰定位》 在一實施例中,鋼在約800。(:至1600。(:或約l〇00〇c至 1400C之熔煉溫度下形成。在一實施例中,鋼在低於或等 於約1370C之溫度下形成》在一些實施例中,因為金屬之 氧化速率(包括本體氧化)可隨溫度升高而增加,故鋼熔煉 在低(或有限之)氧氣環境中進行。 在一實施例中,在夜間使用時,蒸汽可自藉助於非太陽 基可再生能源(諸如風能、地熱能或波能)操作之熱交換器 產生。在一實施例中,在夜間使用來自電網之電產生蒸 汽,而在日間使用太陽能產生蒸汽。若對電之需要在曰間 最高且在夜間較低,則此舉可產生較低電成本。或者,在 夜間H2及〇2可使用來自電網之電形成,且在日間可使用上 文在圖3之情形下所述之方法形成^及〇2。 I54879.doc •22- 201239098 在一實施例中,在日問匍供+ ττ 製備之Ηζ及〇2可儲存以供將來使 用。在一實施例中,Η,η -Γ + 2可在日間形成且儲存於各別Η2 及〇2儲存槽中。隨後,在將來,以〇2可用於以上在圖3 之情形下所描述之方法中。或者,可使用%及〇2產生電, 其可引導至電網或用於其他方法中。在—實施例中,可藉 助於燃料電池(諸如聚合物電解質膜(簡)燃料電池)使用 由Η2〇解離形成之Η2及〇2產生電(參見圖句。 抛物線型太陽碟 在本發明之一態樣中,提供拋物線型(或拋物面型)太陽 碟。本發明實施例之拋物面型太陽碟可包括抛物線型反射 表面以將陽光引導至容納熱能儲存介質(或材料)之儲存單 元在實把例中,熱能儲存介質可包括以下中之一或多 者.虱化鈣、氯化鋇、氣化锶、溴化鈉、溴化鉀、溴化 鎂、1化納、氟切、氟化鎂、破㈣、魏納、峨化 卸磁化鎂破化詞、壤化錄。在一實施例中,熱能儲存 介質可包括氟化鎂(MgF2)與硼之一或兩者。 在一實施例中,太陽碟包括反射表面,其用於將光引導 至反射表面之焦點;安置於反射表面之焦點處的具有能量 儲存介質之能量儲存容器;安置於反射表面之底面的一或 多個球轴承,及用於沿兩個或兩個以上軸調節反射表面之 兩個或兩個以上馬達。反射表面可為拋物線型反射表面。 能量儲存容器可包括組態成可保留太陽能之任何材料,諸 如MgF2或硼。 圖8說明根據本發明之一實施例的拋物面型太陽碟。抛 154879.doc -23- 201239098 物面型太陽碟包括在球軸承上旋轉之集中太陽反射器,該 等球軸承在距碟之頂點規定(或預定)距離處安置且耦接於 雙軸鏈驅動電動太陽追蹤器。具有太陽熱能儲存材料(諸 如一或多種鹽’包括MgF2及硼)之太陽熱能儲存槽置放於 碟之焦點處。碟可在沿碟之各點處包括機械支撐物β在一 實施例中’碟可包括具有可變高度之額外三根支柱以將碟 緊固於基座或以推拉方式驅動三點追蹤系統。 繼續參考圖8,太陽能由碟集中於碟之焦點。亦即,將 入射於碟上之太陽之射線引導至碟之焦點。具有熱能儲存 材料之熱能儲存槽安置於碟焦點處(或附近)^碟組態成可 將太陽能聚焦於太陽熱能儲存槽’該太陽能加熱太陽熱能 儲存槽中之太陽熱能材料。 碟可包括一或多個用於調節碟之馬達。在圖8之所說明 實施例中,碟包括沿第一軸(平行於頁面之平面)調節碟之In one embodiment, the solar radiation is separated into a shorter wavelength component and a longer wavelength component. The shorter wavelength components are converted to electrical energy and the longer wavelength components are converted to thermal energy. In an embodiment, a longer wavelength component is used to melt the thermal energy storage material (such as MgF2). An alternative method of forming a ruthenium by means of solar radiation is described in, for example, US Patent No. 5,658,448 (the "PRODUCTION OF HYDROGEN FROM SOLAR R ATI0N AT HIGH EFFICIENCY"), which is incorporated herein by reference in its entirety. . 154879.doc • 14- 201239098 Referring to Figure 2, in accordance with an embodiment of the present invention, a method 100 of forming a crucible for steelmaking, and crucible 2, is provided. In a first step 1, 5, a renewable energy source is used to heat the exothermic energy storage medium (also referred to herein as "thermal energy storage material"). In an embodiment, the thermal energy storage material comprises Μ#" In one embodiment, the renewable germanium source is solar energy, which may be provided by means of a vertically stacked solar concentrator. In one embodiment, the thermal energy store is heated at a temperature for a period of time to melt a predetermined portion of the thermal energy storage material. In an embodiment, the thermal energy storage material is heated to its melting point or boiling point. Thereafter, in step 110, H2 〇 (g) (steam) is produced from H2 〇 (1) using heat from the exothermic energy storage medium. In one embodiment, this # assists in the completion of the exchanger-type container in which a water pipe is in contact with the exothermic energy storage medium. Subsequently, in step 115, helium and helium 2 are produced from the steam. In one embodiment, electrolysis is used to dissociate H2 为 to ^ and 〇2. In one embodiment, the energy required for steaming "L electrolysis is provided by one or more renewable energy sources, such as one or more wind turbines. In another embodiment, the energy required for steam electrolysis is provided by a fuel cell (such as a solid oxide fuel cell ("SO%". In another embodiment, the energy required for steam electrolysis is by one or more wind turbines). And - or a plurality of fuel cells are provided. Subsequently, in step 12, 'in the downstream process (such as steel making) t use 仏 and or, subsequently, any water formed in the downstream process in step (4) 5 may be recycled to such as Step 110. Referring to Figure 3, a steel forming system in accordance with an embodiment of the present invention is shown. First, 'MgF2 is first heated to a point slightly below its vaporization point until all or substantially all of the MgF2 heat storage medium is glazed. In an embodiment, the MgF2 can be heated using the sun 154879.doc -15-201239098. In one embodiment, the solar concentrator 205 (such as a vertically stacked solar concentrator) is used to heat the MgF2. In one embodiment, a US interim patent is used. The solar concentrator described in the application No. 61/277,696 heats MgF2, which is incorporated herein by reference in its entirety. The heat storage capacity of MgF2 can be heated by means of heating. The apparatus 21 (such as a heat exchanger) preheats an appropriate amount or a predetermined amount of the raw cooling water to a desired or predetermined temperature. In one embodiment, the cold water is heated to a temperature lower than about 1263 ° C. The water is preheated to The entire steelmaking needs, in particular, a sufficient temperature of 112 from the downstream high temperature steam electrolysis system (HTSS) or module 215. In one embodiment, 'HTSS 215 can dissociate H20 to H2 and 02 via the following half-cell (redox) reaction : (1) 2 H20(g)+4 e_ present 2 Η2+2 02·(cathode) (2) 2 02· + 〇2+4 e_(anode) (3) 2 Η20 ·>2 H2+02( In the examples, 'HTSS 215 may comprise an anode and a cathode (see Figure 4). In one embodiment 'the cathode is a porous (or semi-permeable) cathode and the anode is a porous anode. HTSS 215 may further comprise gas tightness ( Or impervious) electrolyte to provide a chemical potential gradient for separating hydrogen ions from oxygen ions. When a potential drop (or electromotive force, "Vj" is applied to the anode and cathode, the vapor is separated into h2 and 〇2 with electron flow from the anode. Cathode. With continued reference to Figure 3, in one embodiment, the HTSS 215 contains airtightness. Ceramic electrolyte. In one embodiment, after hydrolysis to 仏 and 〇2, h2 and 〇2 can be separated. In one embodiment, if the steam is thermally dissociated to H2 and 〇2 at 18〇〇ec -2400 °C. The ceramic-based membrane can be used to separate ruthenium and .... The membrane based on Tao Jing I54879.doc -16·201239098 can comprise a ceramic-ceramic composite or a ceramic-metal composite. In another embodiment, 'Ha and 〇2 Separation by means of a solid electrolyte (solid electrolyte oxygen separation). In one embodiment, 'if the steam is about 8 inches. 〇 _ 240 (thermal decompression at temperatures between TC is 〇 and 〇 2, then boron-containing exothermic month & storage medium can be used. The energy storage medium has a melting point of about 23 〇〇艽 and a boiling point of about 2550 ° C In this case, an alloy containing tungsten and rhenium (such as W3/5e/〇Re (melting point 335〇〇c 'boiling point 341〇°c) or w-25Re (melting point 3120°C, boiling point) may be used. A container of 313 〇.〇). Some other container materials may include 锇〇s (melting point 3, 〇27〇c (33〇〇κ)); 铢 (melting point 3,180. (:(3,450 1^) )); Tungsten\^ (melting point 3,422. (:(3,695 1〇); carbon (diamond) C (melting point 3,55 (TC(3,820 Κ)); or tungsten-coated carbon (graphite) C (melting point) 3,675 t (3,948 K)). In one embodiment, it can be used from a wind energy tower 22 (which can be continuous on a HTSS solid oxide electrolytic cell (ie, 24 hours a day, 7 days a week, 52 weeks per year) The operation of the power, such as direct current (DC) power, can then be used for H2 and 〇2 in one or more downstream processes. In one embodiment, steel is produced using % and 〇2 formed by steam electrolysis. In an embodiment, The energy required for electrolysis may be provided by fuel cell 225. In one embodiment, fuel cell 225 is a solid oxide fuel cell (s〇FC). In an embodiment, fuel cell 225 may include an anode, a cathode, and an electrolyte. Applying a load or resistance ("R") to the cathode provides electron flow and accompanying ion flow upon dissociation of the fuel. Electrons can be electrochemically dissociated using electrons in HTSS 215. In embodiments, the anode and cathode can be electrically conductive. Infiltrated (or semi-permeable) material 154879.doc • 17· 201239098 material formation. In an embodiment, the anode and cathode comprise one or more transition metals selected from the group consisting of C11, Ni, Pt, Au, and Ag. In one embodiment, The anode is formed by a cathode. In one embodiment, the cathode is formed of Ni. In one embodiment, the fuel cell 225 is a hydrogen (or hydrogen-based) fuel cell. In one embodiment, the fuel cell 225 is a proton exchange membrane ( PEM) Fuel Cell (see Figure 5) * In another embodiment, fuel cell 225 is a solid oxide fuel cell (see Figure 6). In another embodiment, fuel cell 225 is a flash carbonate fuel In some embodiments, fuel cell 225 comprises an electrolyte formed from aramid. Referring to Figure 5, a hydrogen-based pem fuel cell is shown. Hydrogen fuel cell can include an electrolyte as a proton exchange membrane ("PEM"), In this case, the fuel cell may be referred to as a PEM fuel cell (also referred to herein as a "polymer electrolyte membrane fuel cell"). In one embodiment, at the anode of the PEM, hydrogen is passed through H2 + 2 H++2 e-( E° = 0 VSHE) dissociation, and at the cathode, water was formed via 4 H++4 e_+〇2>>2 Η20 (Ε0=1.229 VSHE). In various embodiments, the 'PEM can be formed from a platinum-based catalyst (or a Pt-based catalyst) or an iron-based catalyst (such as a catalyst containing iron, nitrogen, and carbon). In one embodiment, the heat generated in the redox reaction is transferred to Η2〇, which exits the fuel cell. Referring to Figure 6, a SOFC is shown. In one embodiment, the anode and cathode are formed of a permeable material such that 〇2 and H2 can flow to the electrolyte and the ruthenium can flow away from the electrolyte. The electrolyte is formed from an impermeable material. Referring to Figure 6, in one embodiment, the anode of the fuel cell is supplied with C 〇 as fuel and air is supplied to the cathode of the fuel cell. The fuel cell provides a chemical potential gradient 154879.doc -18 · 201239098 to form H20. At the anode 'water is formed via 2 h2+〇2·present 4 e.+ 2 H20' and at the cathode, oxygen is dissociated via 〇2+4 e-present 2 〇2-. H2〇 and any unused fuel leave the fuel cell at the exit. In one embodiment, HjO formed in fuel cell 225 is directed to HTSS 215 to form H2 and 〇2. In one embodiment, the heat generated in the redox reaction leaves the fuel cell 6 together with the air. In some cases, the heat can be separated from the fuel cell by Η". In an embodiment, the anode of the SOFC can be formed from a ceramic material. The ceramic material can be porous to allow fuel to flow to the electrolyte. In an embodiment, the cathode and anode are configured to conduct electrons to a load (R) that is electrically coupled to a point of use, such as HtsS 215. In one embodiment, the ceramic material of the anode comprises a cermet' which comprises a mixture of ceramic materials such as oxidized zirconium dioxide (YSZ) recorded for the electrolyte of a particular cell. In one embodiment, the thickness of the anode is selected such that oxygen ions diffused through the electrolyte are capable of oxidizing hydrogen fuel. In one embodiment, the electrolyte of the SOFC can be formed from a dense layer of ceramic that conducts oxygen ions. The conductivity of the electrolyte can be kept as low as possible to prevent electrical losses due to /Gap current. In an embodiment, the electrolyte may be formed of YSZ (such as 8°/form Y8SZ) or randomly doped yttrium oxide (GDC). In one embodiment, the cathode is a thin porous layer on the electrolyte where oxygen reduction is performed. The cathode of the SOFC can be formed from a steel magnetite (LSM) or a composite material having LSM and YSZ. In one embodiment, a hybrid ion/electron conduction (MIEC) ceramic such as a perovskite (e.g., lanthanum strontium cobalt ferrite) may be used. 154879.doc -19- 201239098 In an alternative embodiment, fuel cell 225 is configured to operate using a carbonaceous fuel. In some embodiments, fuel cell 225 is a PEM fuel cell or SOFC configured to use a carbonaceous material such as a hydrocarbon or alcohol as a fuel. For example, the fuel cell 225 can be a PEM fuel cell that uses methanol (CH3〇H) as a fuel. In this case, the fuel cell 225 can be referred to as a direct methanol fuel cell. The total redox reaction of a direct methanol fuel cell is 2 CH3 〇 H + 3 02 ~ > 4 H20 + 2 C02. In another embodiment, the fuel cell can be configured to use ethanol as a fuel. In some embodiments, fuel cell 225 is configured to operate using hydrocarbon cxHy, where "X" and "y" are values greater than zero. In one embodiment, the fuel cell is configured to operate using one or more of a hydrocarbon (e.g., methane, ethane), an olefin (e.g., ethylene), and an alkyne (e.g., B-fast). In an embodiment, the carbonaceous fuel is used as an oxygen anion acceptor in a redox half-cell reaction in a fuel cell. With continued reference to Figure 3, in one embodiment of the present invention, water electrolysis is formed using htss and 〇2 can be used as follows: 丨) H2 and 〇2 of about ι:1 to 5:1 The ratio is directed to the oxyhydrogen flame generator no, which operates at a temperature below about 2800X: 2) directs H2 to the blast furnace 235 in a two-step process (ie, Fe3 + + Fe2+ + Fe) reduced iron, which gives steam and sponge iron as by-products without discharging C〇2; 3) supplying 〇2 to the multi-stage steel furnace 24〇 'This is the type of Fe, Mg, B, Cr, Mo, carbon formed The steel (having a predetermined composition) removes S, p, ^ and other impurities in the form of an oxide effluent; and 4) treats the waste from the steel furnace 240 with hydrogen in the scrap furnace 245. In an embodiment, sulfur, phosphorus, and antimony are in the form of an oxide (such as SOx (eg, S〇, s〇2), p〇j Si〇x (eg, Si〇2), wherein 154879.doc -20· 201239098 『 χ" is greater than 〇 value) removed. In one embodiment, Η2 and 〇2 formed by vapor dissociation may be combined to form a ratio of about 1:1 or 1-5:1 or 2:1 or 2.5:1 or 3:1 or 3.5:1 or 4:1 or A mixture of 4.5:1 or 5:1 or 10:1 or 20:1 and 〇2. In some embodiments, the ratio of 'air and oxygen' may be from about 1 to 20, or from about 2 to 5. In one embodiment, the ratio of hydrogen to oxygen is about 2, which is a stoichiometric ratio. In some embodiments, the ratio of hydrogen to oxygen in the mixture can be adjusted to achieve the desired combustion (or autoignition) temperature. In one embodiment, the oxyhydrogen flame generator 23 supplies gas and oxygen at a rate of use of about 1:1 to 5:1 to a point of use ("P0U") in a safe, reliable, and independent concentric tube. In one embodiment, at all of the pou distributed throughout the manufacturing system, hydrogen is in the central tube which terminates about 1 吋 or 2 吋 or 3 吋 from the oxygen carrying outer tube. In one embodiment, the gas is first self-ignited at the distal end and at the time when the high/dish is required, and then the oxygen flow is opened. The oxygen may be replaced by air, or another inert gas (such as He, which may be added to maintain the blast furnace, scrap iron, other temperatures in the steelmaking furnace/furnace below about 2800 ° C. ® 7 illustrates according to the present invention - The steel furnace (or vessel) of the embodiment is 24 〇. The iron (Fe) from the blast furnace 235 is directed into a steel furnace (or smelting vessel) 24 〇 ' to form a steel having a desired or predetermined composition. In an embodiment, the lysing vessel comprises a furnace for heating iron during the formation of steel. In a first embodiment, a mixture of cerium and cerium 2, such as oxychloride, is introduced into the furnace to pass heat through the combustion. The vessel removes the slag (for example a mixture of metal oxygen). Oxygen (〇2) is added to oxidize the impurities in the Fe (eg s, 154879.doc 201239098 p, Si). In addition, oxygen can assist in the formation of the container. One or more oxide layers are formed on the steel (eg, layers). In one embodiment, hydrogen may be added to further assist in the reduction of iron. Further reference may be made to Figure 7 to add one or more alloying elements to the smelting vessel to obtain Steel with a predetermined composition. In an embodiment, the alloying elements are selected from the group consisting of carbon (C), town (Mg), shed (B), chromium (Cr) 'molybdenum (M〇), manganese (Mn), and Syria (v) and crane (W) The alloying elements used during steel formation and the processing conditions (pressure, temperature) can be selected to obtain a steel composition having a predetermined composition and material properties such as hardness, thermal conductivity, and electrical conductivity. In an embodiment, the furnace may be excluded if the iron entering the smelting vessel is sufficiently hot. In another embodiment, the furnace may be positioned adjacent to the refining vessel. In one embodiment, the steel is at about 800. (: To 1600. (: or formed at a smelting temperature of about 100 〇 c to 1400 C. In one embodiment, the steel is formed at a temperature lower than or equal to about 1370 C. In some embodiments, because of the oxidation rate of the metal (including bulk oxidation) can increase with increasing temperature, so steel smelting can be carried out in a low (or limited) oxygen environment. In one embodiment, steam can be self-powered by non-solar based renewable energy at nighttime use. A heat exchanger (such as wind, geothermal or wave energy) is produced. In one embodiment, electricity is generated from electricity generated by the grid at night, and solar energy is used during the day to generate steam. This may result in lower electricity costs if the demand for electricity is highest during the day and lower at night. At night H2 and 〇2 can be formed using electricity from the grid, and can be formed during the day using the method described above in the context of Figure 3. I54879.doc • 22- 201239098 In an embodiment In the embodiment, Η, η -Γ + 2 can be formed during the day and stored in the respective Η2 and 〇2 storage tanks. Subsequently, in the future, 〇2 can be used in the method described above in the case of FIG. Alternatively, electricity can be generated using % and 〇2, which can be directed to the grid or used in other methods. In an embodiment, electricity can be generated by means of a fuel cell (such as a polymer electrolyte membrane (small) fuel cell) using Η 2 and 〇 2 formed by dissociation of Η 2 ( (see the figure. Parabolic sun dish is one of the inventions) In a aspect, a parabolic (or parabolic) solar disk is provided. The parabolic sun dish of the embodiment of the present invention may include a parabolic reflective surface to direct sunlight to a storage unit that houses the thermal energy storage medium (or material). The thermal energy storage medium may include one or more of the following: calcium telluride, barium chloride, barium vapor, sodium bromide, potassium bromide, magnesium bromide, sodium hydride, fluorine cut, magnesium fluoride, Broken (four), Weiner, 峨化Magnetized magnesium cracking words, soiling records. In one embodiment, the thermal energy storage medium may comprise one or both of magnesium fluoride (MgF2) and boron. In an embodiment, The sun dish includes a reflective surface for directing light to a focus of the reflective surface; an energy storage container having an energy storage medium disposed at a focus of the reflective surface; one or more ball bearings disposed on a bottom surface of the reflective surface, and use Two or more motors that adjust the reflective surface along two or more axes. The reflective surface can be a parabolic reflective surface. The energy storage container can include any material configured to retain solar energy, such as MgF2 or boron. 8 illustrates a parabolic sun dish according to an embodiment of the present invention. 154879.doc -23- 201239098 A surface type solar disk includes a concentrated solar reflector that rotates on a ball bearing, the ball bearings being defined at the apex of the disk The (or predetermined) distance is disposed and coupled to the dual-axis chain-driven electric sun tracker. A solar thermal energy storage tank having a solar thermal energy storage material (such as one or more salts including MgF2 and boron) is placed at the focus of the dish. The disc may include a mechanical support at various points along the disc. In one embodiment, the disc may include an additional three struts having a variable height to secure the disc to the base or to push the three-point tracking system in a push-pull manner. Referring to Figure 8, the solar energy is concentrated by the disc at the focus of the disc, that is, the rays of the sun incident on the disc are directed to the focus of the disc. The thermal energy storage of the thermal energy storage material The trough is disposed at (or in the vicinity of) the disc focus to be configured to focus the solar energy on the solar thermal energy storage tank 'the solar thermal energy storage material in the solar thermal energy storage tank. The disc may include one or more for adjusting the disc Motor. In the illustrated embodiment of Figure 8, the disc includes a disc along the first axis (parallel to the plane of the page)

構件(例如帶、索纜)連接於碟。 產生用於製鋼之氫氣及氧氣的方法及系統Components (such as straps, cables) are attached to the disc. Method and system for producing hydrogen and oxygen for steelmaking

儲存以用於產生電力(或電)、烴或氨。Stored for generating electricity (or electricity), hydrocarbons or ammonia.

再生能源(諸如無碳可再生能源)提供。 吹瘵汽的能量可由可 。在一些情況下,用 154879.doc -24· 201239098 於將液體水加熱成蒸汽之能量可由太陽転射或僅由太陽賴 射提供。隨後蒸汽可藉助於氫氣產生器解離為氫氣⑽及 氧氣(〇2)。隨後可如上所述使用氫氣及氧氣形成鋼。在一 實施例中,產生鋼所需之能量可僅由太陽能提供。 在一些情況下,氫氣產生器可為殼管式氫氣反應器(本 文中亦稱作「殼管式反應ϋ」p在其他情況下,氯氣產 生器可為流體化床氫氣反應器(本文中亦稱作「流體化床 反應器」)(參見下文)。在其他情況下,氫氣產生器可為殼 e式氫氣反應器與流體化床氫氣反應器之組合。 在一些情況下,氫氣產生器可包括具有元素鐵之反應表 面可引導蒸〉飞使其在含元素鐵(例如Fe)之表面上通過以 產生含氧化鐵(例如FhOJ之表面及%可自氫氣產生器 移出N2、二氣或其他氧化惰性(或非氧化性)氣體可引導 於氫氣產生器中且使其與含氧化鐵之表面接觸,以產生 (或再生)含元素鐵之表面及〇2。%可自氫氣產生器移出。 在一些情況下,氫氣產生器可為殼管式反應器。在其他情 況下’氫氣產生器可為流體化床反應器。 在一些實施例中,用於產生蒸汽之熱交換器可接近氫氣 產生器(諸如殼管式氫氣反應器)安置。另外,氫氣產生器 (例如殼管式氫氣反應器)可接近鋼熔爐安置。在一些情況 下,熱交換器可至多距氫氣產生器約丨呎、或2呎、或3 呎、或4呎、或5呎' 1〇呎、或20呎、或30呎、或4〇呎、或 5〇呎、或60呎、或70呎、或80呎、或90呎、或100呎、或 2〇〇呎、或300呎、或400呎、或500呎、或1000呎、或2〇〇〇 154879.doc -25· 201239098 呎、或5000呎、或10,000呎放置,且氫氣產生器可至多距 鋼熔爐約1呎、或2呎、或3呎、或4呎、或5呎、1〇呎、或 20叹、或3011尺、或40叹、或50p尺、或60吸、或70叹、或80 呎、或90呎、或100呎、或200呎、或300呎、或400呎、或 500叹、或1000叹、或2000叹、或5000吸、或1〇,〇〇〇吸放 置。舉例而言,熱交換器可至多距殼管式氫氣反應器約i 吸、或2吸、或3叹、或4吸、或5吸、10吸、或20吸、或30 呎、或40呎、或50呎、或60呎、或70呎、或80呎、或90 .叹、或100呎、或200呎、或300呎、或400呎、或500呎、 或1000呎、或2000呎、或5000呎、或1〇,〇〇〇呎放置。 在一些情況下,用於向熱交換器提供能量之可再生能源 (例如太陽碟、拋物線型太陽碟、太陽集中器)可接近熱交 換器安置。舉例而言,可再生能源(例如太陽碟、抛物線 型太陽碟、太陽集中器)可至多距熱交換器約丨呎、或2 呎、或3呎、或4呎、或5呎、10呎、或20呎、或30呎、或 40吸、或50吸、或60吸、或70吸、或80吸、或90吸、或 100呎、或200叹、或300呎、或400吸、或500吸、或1〇〇〇 呎、或2000呎、或5000呎、或10,〇〇〇呎放置。可再生能源 可與熱交換器熱耦接(或熱連接)。 參考圖9’用於自水產生氫氣及氧氣之系統可包括抛物 面型(或抛物線型)集中太陽能(CSP)圓頂、太陽追蹤器及殼 f式氫氣反應器。太陽追蹤器可為垂直交錯雙軸太陽追蹤 器。該系統可進一步包括氫氣反應器下游之氫氣與氧氣分 離器。太陽追蹤器可組態成可將太陽能引導至拋物線型 154879.doc • 26· 201239098 CSP圓頂。抛物線型CSP圓頂組態成可將太陽能引導至具 有熱能儲存材料之太陽熱能健存槽(或容器 在一實施例中,對於圓頂,x=4f(y2+z2),其中『x』為 自抛物線型圓頂之頂點量測之圓頂之x座標,f=h/a2,『h』 為圓頂之最大深度,而『a』為圓頂開口之直徑。圓頂之 表面積為na((a2 + 4h2)3/2-a3)/3h2,且圓頂之體積為 (na2h/4)。在一實施例中,太陽追蹤器可包括電動旋轉控 制器與垂直線型滑動器搞接’從而使用呈交錯方式(以避 免高海拔風力)之N=a/4單位的大小為4,x2y的95%光太陽反 射器即時追蹤太陽。 设管式氫氣反應器(本文中亦稱作「殼管式反應器」)可 包括由含鐵材料(諸如鐵、氧化鐵、塗有氧化鐵之核心或 塗有鐵之核心)形成之管。經塗佈管之核心可由熔點高於 氧化鐵之材料形成。在一些情況下,管可由錄j及鎢中之一 或多者形成。殼管式反應器之殼可由熔點高於氧化鐵之材 料形成。在一些情況下,殼可由铷及鎢中之一或多者形 成。 在些情/兄下’设管式反應器可包括複數個管,該等管 具有流體流動通道以用於與蒸汽接觸。管可為圓柱形、三 角形、正方形、矩形、五邊形、六邊形、七邊形或八邊 形。在其他情況下,管可由交叉或相交之二維平面形成, 諸如圖14A所示,圖14A展示形成反應表面之相交平面。 圖UA中說明反應表面14〇1、Μ”、14〇3及14〇4。該等管 之表面可由含鐵材料(諸如鐵或氧化鐵)形成或塗有該材 154879.doc -27- 201239098 料。若使用鐵,則穿過管 牙30 s之第—4汽脈衝(或其他氧化性 化子cm )可將鐵轉化為氧化鐵〇 在其他情況下,殼管式沒庙 S式反應4可包括具有管中管組態之 管’诸如圖14B所示。圖14B中呤昍只處狄 口 ϋ甲說明反應管1405、1406、 二07及:彻。亦即’管可有-或多個其他管安置於該管 …各Β及-或多個其他管由含鐵材料(諸如鐵或氧化鐵) 形成或塗有該材料。在使用鐵之情況下,穿過管之第一蒸 汽脈衝(或其他氧化性化學品)可將鐵轉化為氧化鐵。… 管中管可具有外管及一或多個半徑相對於外管遞減之内 管厂或多個内管各安置於較大管中。在該種組態下,可 在管之外表面與下-較大管之内表面之間提供流體通道。 另外,可在管之内表面與下_較小管之外表面之間提供流 體通道。 殼管式反應器可包括呈管中管組態之管,其具有2個或2 個以上、或3個或3個以上、或4個或4個以上、或$個或㈣ 以上、或6個或6個以上、或7個或7個以上、或8個或請以 上、或ίο個或ίο個以上、或20個或20個以上、或3〇個或3〇 個以上、或40個或40個以上、或5〇個或5〇個以上或ι〇〇 個或100個以上、或1000個或1〇〇〇個以上半徑依次遞減之 管安置於彼此内。舉例而言,管中管可包括第一管安置於 第二管中。 管中管組態之管可具有圓形、橢圓形、三角形、正方 形、矩形、五邊形、六邊形、七邊形或八邊形截面。該等 管沿與具有該等截面之平面正交之軸一般可為伸長形,諸 154879.doc •28· 201239098 如圓柱形或矩形。此可使氣體與管之一或多個表面之間的 接觸面積達到最大。 在氫氣反應器中,氫氣及氧氣可藉助於經由可再生能源 (例如太陽可再生能源)產生之蒸汽,藉由首先熱解離Fe2〇3 而形成Fe及氧氣來產生《解離之Fe可隨後與高壓蒸汽反應 產生氫氣。此方法可將Fe轉化為Fe203。亦即: (1) 2 Fe203 —4 Fe+3 02(g) (2) 2 Fe+3 H2〇~>Fe2〇3+3H2(g) 反應(1)可在約300eC至1600°C或約400°C至1600°C之溫 度下操作。反應(1)可大致在Fe2〇3之熔點(1566°C)下執 行。反應(2)可在約loot至1000°C、或125eC至400。(:或約 150°C至3 50°C之溫度下執行。舉例而言,反應(2)可在約 200°C之溫度下執行。 反應(1)可吸熱且反應(2)可放熱。反應(1)之反應检可為 約825.5 KJ/mol ’且反應(2)之反應焓可為約_ι〇〇 〇7 KJ/mol。 繼續參考圖9,抛物面型圓頂將太陽能引導至具有一或 多種鹽(諸如MgFz或硼)之熱能儲存介質。集中之太陽能加 熱熱能儲存介質。使用來自太陽熱能儲存介質(本文中亦 稱作「熱能儲存介質」)之能量在具有熱能儲存介質(或材 料)之熱交換器中產生蒸汽》在一實施例中,使用來自熱 月b儲存介質之能量自液體水或低溫蒸汽產生高溫蒸汽。將 蒸汽引導至殼管式氫氣反應器。 根據以上反應(1),在氫氣反應器中,在第一步驟中, 154879.doc •29· 201239098 將來自蒸汽之能量傳遞至Fe203以產生Fe及02 »根據以上 反應(2),在第二步驟中,Fe與h20反應產生Fe203及H2。 氫氣及氧氣可藉助於可由鈀或具有所要晶格常數之其他金 屬形成之氫氣與氧氣分離器來分離^ 在一實施例中’ H2及〇2在一或多個安置於氫氣反應器中 之管中產生。一或多個管可具有蜂窩狀組態。在一實施例 中’藉助於來自熱能儲存介質之能量產生的蒸汽在氫氣反 應器之殼側進入殼管式氫氣反應器。將熱能傳遞至Fe2〇3 以在氫氣反應器之管側產生鐵及氧氣。在一實施例中,隨 後氫氣反應器之殼側上的水或蒸汽離開氫氣反應器且引導 至熱能儲存介質以產生蒸汽。隨後,根據以上反應(2),向 氫氣反應器之管側提供水(例如液體水、蒸汽)以產生Fe2〇3 及氫氣。 〆 在一些情形下’蒸汽可在約4〇〇t之溫度及約15 psig之 壓力下進入氫氣反應器之殼側。蒸汽可在約3〇(rc至 1300t:或約400°C至約I250t之溫度及大於或等於約5 psig、或大於或等於約psig或大於或等於約15 psig之壓 力下進入II氣反應器之殼側◊蒸汽在約至4〇〇。〇或約 150 C至350 C之溫度下在管側進入氫氣反應器。蒸汽可在 感測器控制之閉環環境中提供。感測器(或耦接於感測器 之電腦系統)可組態成可在氧氣分壓(或濃度)為某一預定濃 度(例如分壓)時偵測。在一些情況下,在反應(1)之後當 氧氣分壓低於某一水準時,電腦系統可組態成可將蒸汽引 入氫氣反應器之管側中以根據反應(2)產生Fe2〇3及Η]。 154879.doc •30· 201239098 圖9之系統可包括一或多個泵以促進使氫氣及氧氣中之 一或兩者流動。在圖9之所說明實施例中,系統可在氮氣 反應器之下游且在氫氣與氧氣分離器之上游包括泵。泵可 包括渦輪分子(「渦輪」)泵、低溫泵、離子泵、擴散泵及 機械泵中之一或多者。在一實施例中,泵組態成可在氫氣 反應器之下游部分維持如下壓力:小於或等於約1〇4托 (叫,或小於或等於約1〇_5托,或小於或等於約ι〇 6托, 或小於或等於約UT7托,或小於或等於約1〇.8托或小於 或等於約10·9托。 氫氣反應器之管可由熔點高於Fe203之熔點的任何金屬 或金屬之組合(諸如金屬合金)形成。在一實施例中,管可 由铷及鎢中之一或多者形成。 在-些實施例中,管可塗有Fe0x,其中『x』為大於0之 數值。在-些情況下,Fe〇x可為Fe2Q3。加熱時,%〇3可 轉化為w”Fe可覆蓋管之反應表m汽與塗扣 之管接觸可將Fe轉化為以山3,且同時產生h2。 在-些情形下’可提供由氫氣反應^產生之氫氣及氧氣 :供製鋼(參見上文)。或者,由殼管式氫氣反應器產生之 氫氣及氧氣巾之-或兩者可用於產生氨卿),儲存以供 在後期用於藉助於燃料f池產生電,用於產生電力或用於 產生烴(參見下文)。 ' 參考圖10,在-替代性實施例中,圖9之拋物面型圓頂 及太陽追蹤器可替換為拋物面型(或拋物線型)csp碟(諸如 圖8之碟)(或與其結合使用)。 154879.doc •31- 201239098 參考圖11 ’在一替代性實施例中,圖9及圖丨〇之殼管式 氫氣反應器可替換為自蒸汽產生仏及〇2之電解器。在一實 施例中’自熱能儲存介質所提供之熱量產生高溫蒸汽。隨 後’可將蒸汽引導至電解器中以經由H2〇電解(亦即解離) 產生H2及〇2。可使用經由電解器形成之仏及〇2來製鋼。 參考圖9-11 ’可將由蒸汽形成之氫氣及氧氣引導至殼管 式氫氣反應器或電解器下游之鋼炫爐中。可使用鋼溶爐藉 助於上述氫氣反應器或電解器中所產生之氫氣及氧氣形成 鋼。 圖9-11之系統及方法可與本文所提供之任何系統及方法 一起使用。舉例而言,圖9及圖1〇之系統可用於產生氫氣 及氧氣以供圖1及圖3之製鋼系統使用。 在一些實施例中’圖1A之氫氣產生器可為流體化床反應 器。舉例而言’圖9及圖1〇之氫氣反應器可替換為流體化 床反應器。亦即,可使用流體化床反應器替代圖9及圖1〇 之殼管式氫氣反應器。可使用流體化床反應器產生出及 〇2,其可用於例如製鋼。或者,用於產生氫氣及氧氣之系 統可包括殼管式氫氣反應器及流體化床反應器。 舉例而言,用於形成氫氣及氧氣之系統可包括具有熱能 儲存介質之熱交換器,該熱交換器係用於自水產生蒸汽。 用於將液體水加熱成蒸汽之能量可由可再生能源(諸如無 碳可再生能源)提供。在一些情況下’用於將液體水加熱 成蒸汽之能量可由太陽輻射或僅由太陽輻射提供。該系統 可在熱交換器下游進一步包括流體化床反應器,該流體化 154879.doc •32· 201239098 床反應器係用於產生氮氣及氧氣。流體化床反應器可包括 由含鐵材料(諸如元素鐵或氧化鐵)形成或塗有該材料之粒 子。或者’流體化床反應器可包括由含鐵材料形成或塗有 該材料之奈米粒子或微粒,諸如塗有元素鐵或氧化鐵之奈 米粒子。該系統可在流體化床反應器下游進一步包括鋼熔 爐,該鋼熔爐係用於使用經由燃燒流體化床反應器中所產 生之氫氣及氧氣之至少一部分所產生的熱量形成鋼。 在一些實施例中,用於產生蒸汽之熱交換器可接近流體 化床反應器安置。另外,流體化床反應器可接近鋼熔爐安 置。在一些情況下,熱交換器可至多距流體化床反應器約 1吸、或2叹、或3叹、或4吸、或5吸、1〇吸 '或20叹、或 30呎、或40呎、或50呎、或60呎、或70呎、或80呎、或90 口尺、或100吸、或200吸、或300吸、或4〇〇p尺、或500吸、 或1000呎、或2000呎、或5000呎、或1〇,〇〇〇呎放置,且流 體化床反應器可至多距鋼熔爐約1叹、或2吸、或3吸、或4 吸、或5呎、10呎、或20呎、或30呎、或4〇呎、或5〇呎、 或60呎、或70呎、或80呎、或90呎、或100呎、或2〇〇呎、 或300呎、或400呎、或500呎、或10〇〇呎、或2〇〇〇呎、或 5000呎、或10,000呎放置。 形成氳氣及氧氣之方法可包括在向液體水施加來自熱能 儲存材料之能量時產生蒸汽,該熱能儲存材料藉助於無碳 可再生能源(諸如太陽輻射)加熱。該方法可進一步包括使 N2 '空氣或具有適合熱力學特性(例如熱容量)之任何其他 氣體或蒸氣與流體化床反應器中塗有氧化鐵之粒子接觸, 154879.doc •33· 201239098 形成塗有鐵之粒子及氧氣(〇2)。N2、空氣或其他氣體(例如 H2〇(g))可具有足以實現自塗有氧化鐵之粒子析出02的能 量。在一些情況下,該氣體之能量可大於或等於氧氣自氧 化鐵表面解吸附之能量。在其他氣體中,該氣體之能量大 於或等於氧化鐵解離為鐵及〇2且隨後〇2自氧化鐵表面解吸 附的能量。 隨後,可使蒸汽與流體化床反應器中塗有鐵之粒子接 觸,形成塗有氧化鐵之粒子及氫氣(h2)。在一實施例中, H2及〇2之至少一部分可轉化為氫氧。在另一實施例中,可 在鋼熔爐中使用來自基於氫氣之鼓風爐的鐵形成鋼,其中 用於鋼熔爐之熱量經由燃燒流體化床反應器中所形成之h2 及〇2之至少一部分提供。在流體化床反應器中產生仏及〇2 之方法可如以上反應(1)及(2)所述。 或者,若在FBR中使用鐵或塗有鐵之粒子(例如奈米粒 子、微粒),則可首先使鐵或塗有鐵之粒子與H2〇接觸以產 生塗有氧化鐵(例如FezO3)之粒子及H2,其可自FBR移出。 隨後’塗有氧化鐵之粒子可與A、空氣或具有可足以實現 氧化鐵解離為鐵及〇2且隨後〇2自氧化鐵表面解吸附之能量 的其他氣體接觸。〇2可隨後自FBR移出。 FBR中所形成之Η:及〇2可引導至製鋼系統(諸如圖ία之 系統040)而形成鋼。或者,H2及/或〇2可儲存於儲存容器 中以供隨後使用。在一些情形下,來自FBR之Η2及〇2可引 導至氣體分離器以分離Η2及〇2。 在一些情況下,流體化床反應器可包括塗有含鐵材料之 154879.doc -34- 201239098 备-#塗有氧化鐵之粒子、塗有氧化鐵之奈米粒子、 塗有氧化鐵之介觀粒子或在由高溫材料形成之核心上 化鐵薄膜的塗有氧化鐵之粒子。高溫材料之溶點可大於氧 化鐵之熔點。在—些情況下,流體化床反應n可包括在由 「或多種選自以下之材料形成之核心上具有氧化鐵薄膜的 塗有氧化鐵之粒子:Ti〇x(例如Ti〇2)、Zr〇x(例如Z叫)、Renewable energy sources (such as carbon-free renewable energy) are available. The energy of blowing steam can be made. In some cases, the energy used to heat liquid water to steam using 154879.doc -24·201239098 may be provided by the sun or by solar radiation alone. The steam can then be dissociated into hydrogen (10) and oxygen (〇2) by means of a hydrogen generator. Hydrogen and oxygen can then be used to form the steel as described above. In one embodiment, the energy required to produce steel may be provided solely by solar energy. In some cases, the hydrogen generator may be a shell-and-tube hydrogen reactor (also referred to herein as a "shell-and-tube reactor" p. In other cases, the chlorine generator may be a fluidized bed hydrogen reactor (also herein) It is called a "fluidized bed reactor" (see below). In other cases, the hydrogen generator can be a combination of a shell e hydrogen reactor and a fluidized bed hydrogen reactor. In some cases, the hydrogen generator can The reaction surface comprising elemental iron can be guided to vaporize and fly over the surface of the elemental iron (eg Fe) to produce iron oxide (eg FhOJ surface and % can be removed from the hydrogen generator N2, two gas or other The oxidizing inert (or non-oxidizing) gas can be directed into the hydrogen generator and brought into contact with the surface containing iron oxide to produce (or regenerate) the surface of the elemental iron and 〇2.% can be removed from the hydrogen generator. In some cases, the hydrogen generator can be a shell and tube reactor. In other cases, the hydrogen generator can be a fluidized bed reactor. In some embodiments, the heat exchanger for generating steam can be accessed. A gas generator (such as a shell-and-tube hydrogen reactor) is placed. In addition, a hydrogen generator (such as a shell-and-tube hydrogen reactor) can be placed close to the steel furnace. In some cases, the heat exchanger can be connected to a hydrogen generator.呎, or 2呎, or 3呎, or 4呎, or 5呎' 1〇呎, or 20呎, or 30呎, or 4〇呎, or 5〇呎, or 60呎, or 70呎, or 80呎, or 90呎, or 100呎, or 2〇〇呎, or 300呎, or 400呎, or 500呎, or 1000呎, or 2〇〇〇154879.doc -25· 201239098 呎, or 5000呎, Or placed at 10,000 Torr, and the hydrogen generator can be up to 1 呎, or 2 呎, or 3 呎, or 4 呎, or 5 呎, 1 〇呎, or 20 叹, or 3011 ft, or 40 叹, Or 50p ruler, or 60 suction, or 70 sigh, or 80 呎, or 90 呎, or 100 呎, or 200 呎, or 300 呎, or 400 呎, or 500 叹, or 1000 叹, or 2000 叹, or 5000 Suction, or 1 〇, sucking. For example, the heat exchanger can be up to 2 inches, or 2, or 3, or 4, or 5 or 10, to the shell-and-tube hydrogen reactor. , or 20, or 30, or 40, Or 50呎, or 60呎, or 70呎, or 80呎, or 90. sigh, or 100呎, or 200呎, or 300呎, or 400呎, or 500呎, or 1000呎, or 2000呎, or 5000呎, or 1〇, 〇〇〇呎 placed. In some cases, renewable energy sources (such as solar discs, parabolic sun dish, solar concentrator) used to supply energy to the heat exchanger can be placed close to the heat exchanger. For example, renewable energy sources (eg, solar discs, parabolic solar discs, solar concentrators) can be up to 2 呎, or 3 呎, or 4 呎, or 5 呎, 10 至 to the multi-pass heat exchanger. , or 20呎, or 30呎, or 40, or 50, or 60, or 70, or 80, or 90, or 100, or 200, or 300, or 400, or 500 sputum, or 1 〇〇〇呎, or 2000 呎, or 5000 呎, or 10, 〇〇〇呎 placed. Renewable energy can be thermally coupled (or thermally connected) to the heat exchanger. Referring to Figure 9', the system for generating hydrogen and oxygen from water may include a parabolic (or parabolic) concentrated solar (CSP) dome, a solar tracker, and a shell-f hydrogen reactor. The sun tracker can be a vertically interlaced two-axis sun tracker. The system can further include a hydrogen and oxygen separator downstream of the hydrogen reactor. The solar tracker can be configured to direct solar energy to a parabolic type 154879.doc • 26· 201239098 CSP dome. The parabolic CSP dome is configured to direct solar energy to a solar thermal energy storage tank having a thermal energy storage material (or container in one embodiment, for a dome, x = 4f (y2+z2), where "x" is The x coordinate of the dome of the self-parabolic dome is measured, f = h / a2, "h" is the maximum depth of the dome, and "a" is the diameter of the dome opening. The surface area of the dome is na ( (a2 + 4h2)3/2-a3)/3h2, and the volume of the dome is (na2h/4). In an embodiment, the sun tracker may include an electric rotary controller that is coupled to the vertical linear slider. Using a staggered (to avoid high-altitude wind) N=a/4 units of size 4, x2y's 95% light solar reflector instantly tracks the sun. Set tube hydrogen reactor (also referred to herein as "shell tube" The reactor "" may comprise a tube formed of a ferrous material such as iron, iron oxide, a core coated with iron oxide or a core coated with iron. The core of the coated tube may be formed from a material having a higher melting point than iron oxide. In some cases, the tube may be formed by one or more of the recording j and tungsten. The shell of the shell and tube reactor may be melted. A material higher than iron oxide is formed. In some cases, the shell may be formed by one or more of tantalum and tungsten. In some cases, the tubular reactor may include a plurality of tubes having fluid flow. Channels for contact with steam. Tubes can be cylindrical, triangular, square, rectangular, pentagonal, hexagonal, heptagonal, or octagonal. In other cases, the tubes can be crossed or intersected in a two-dimensional plane. Forming, such as shown in Figure 14A, Figure 14A shows the intersection plane forming the reaction surface. The reaction surfaces 14 〇 1, Μ", 14 〇 3, and 14 〇 4 are illustrated in Figure UA. The surfaces of the tubes may be made of ferrous materials (such as Iron or iron oxide is formed or coated with the material 154879.doc -27- 201239098. If iron is used, the iron can be converted through the fourth steam pulse (or other oxidizing agent cm) of the tooth for 30 s. In other cases, the shell-and-tube type S-type reaction 4 may include a tube having a tube-in-tube configuration, such as shown in Fig. 14B. In Fig. 14B, the crucible is only in the mouth, indicating the reaction tube 1405. , 1406, 2 07 and: Che. That is, the tube can have - or a plurality of other tubes are placed in Tubes ... and/or a plurality of other tubes formed or coated with a ferrous material such as iron or iron oxide. In the case of iron, a first vapor pulse (or other oxidative chemistry) through the tube The iron pipe can be converted into iron oxide. The pipe can have an outer pipe and one or more inner pipe plants or a plurality of inner pipes which are decremented relative to the outer pipe are disposed in the larger pipe. In the state, a fluid passage can be provided between the outer surface of the tube and the inner surface of the lower-larger tube. In addition, a fluid passage can be provided between the inner surface of the tube and the outer surface of the lower-small tube. The reactor may comprise tubes in a tube-in-tube configuration having 2 or more, or 3 or more, or 4 or more, or $ or (four) or more, or 6 or 6 More than, or 7 or more, or 8 or more, or ίο or ίο or more, or 20 or more, or 3 or more, or 40 or 40 Above, or 5 or more or more than 10 or more than 100 or more than 1000 or more than one radius are placed in each otherFor example, the tube in the tube can include a first tube disposed in the second tube. The tubes in the tube tube configuration may have a circular, elliptical, triangular, square, rectangular, pentagonal, hexagonal, heptagonal or octagonal cross section. The axes of the tubes that are orthogonal to the plane having the sections are generally elongate, and are 158, 879.doc • 28·201239098 such as cylindrical or rectangular. This maximizes the contact area between the gas and one or more surfaces of the tube. In a hydrogen reactor, hydrogen and oxygen can be generated by first dissolving Fe2〇3 to form Fe and oxygen by means of steam generated by a renewable energy source (for example, a solar renewable energy source). The steam reaction produces hydrogen. This method converts Fe to Fe203. That is: (1) 2 Fe203 —4 Fe+3 02(g) (2) 2 Fe+3 H2〇~>Fe2〇3+3H2(g) The reaction (1) can be from about 300eC to 1600°C or It is operated at a temperature of about 400 ° C to 1600 ° C. The reaction (1) can be carried out substantially at the melting point of Fe2?3 (1566 °C). The reaction (2) may range from about loot to 1000 ° C, or from 125 ° C to 400. (: or performed at a temperature of about 150 ° C to 3 50 ° C. For example, the reaction (2) can be carried out at a temperature of about 200 ° C. The reaction (1) is endothermic and the reaction (2) is exothermic. The reaction of the reaction (1) may be about 825.5 KJ/mol ' and the reaction enthalpy of the reaction (2) may be about _ι〇〇〇7 KJ/mol. With continued reference to Figure 9, the parabolic dome directs the solar energy to have Thermal energy storage medium of one or more salts (such as MgFz or boron). Concentrated solar energy heating thermal energy storage medium. Using energy from a solar thermal energy storage medium (also referred to herein as "thermal energy storage medium") in a thermal energy storage medium (or Steam is produced in the heat exchanger of the material. In one embodiment, high temperature steam is produced from liquid water or low temperature steam using energy from the heat month b storage medium. The steam is directed to a shell and tube hydrogen reactor. 1) In a hydrogen reactor, in a first step, 154879.doc •29·201239098 transfers energy from steam to Fe203 to produce Fe and 02 » according to the above reaction (2), in the second step, Fe Reacts with h20 to produce Fe203 and H2 Hydrogen and oxygen may be separated by means of a hydrogen and oxygen separator which may be formed from palladium or other metal having the desired lattice constant. In one embodiment, 'H2 and 〇2 are disposed in one or more hydrogen reactors. One or more tubes may have a honeycomb configuration. In one embodiment, 'the steam generated by the energy from the thermal energy storage medium enters the shell-and-tube hydrogen reactor on the shell side of the hydrogen reactor. It is passed to Fe2〇3 to produce iron and oxygen on the tube side of the hydrogen reactor. In one embodiment, water or steam on the shell side of the hydrogen reactor then exits the hydrogen reactor and is directed to the thermal energy storage medium to produce steam. Subsequently, according to the above reaction (2), water (for example, liquid water, steam) is supplied to the tube side of the hydrogen reactor to produce Fe2〇3 and hydrogen. 〆 In some cases, the steam may be at a temperature of about 4 Torr. Entering the shell side of the hydrogen reactor at a pressure of about 15 psig. The steam may be at a temperature of about 3 Torr (rc to 1300 t: or about 400 ° C to about I 250 t and greater than or equal to about 5 psig, or greater than or equal to about psig or Greater than or At the pressure of about 15 psig, enter the side of the II gas reactor. The steam enters the hydrogen reactor at a temperature of about 4 Torr or about 150 C to 350 C. The steam can be controlled at the sensor. Provided in a closed loop environment. The sensor (or computer system coupled to the sensor) can be configured to detect when the oxygen partial pressure (or concentration) is at a predetermined concentration (eg, partial pressure). In the case, when the oxygen partial pressure is lower than a certain level after the reaction (1), the computer system can be configured to introduce steam into the tube side of the hydrogen reactor to produce Fe2〇3 and Η according to the reaction (2). 154879.doc • 30· 201239098 The system of Figure 9 can include one or more pumps to facilitate the flow of one or both of hydrogen and oxygen. In the illustrated embodiment of Figure 9, the system can include a pump downstream of the nitrogen reactor and upstream of the hydrogen and oxygen separator. The pump may include one or more of a turbo molecular ("turbine") pump, a cryopump, an ion pump, a diffusion pump, and a mechanical pump. In an embodiment, the pump is configured to maintain a pressure at a downstream portion of the hydrogen reactor that is less than or equal to about 1 Torr (about, or less than or equal to about 1 〇 5 Torr, or less than or equal to about ι 〇6 Torr, or less than or equal to about UT7 Torr, or less than or equal to about 1 〇.8 Torr or less than or equal to about 10.9 Torr. The tube of the hydrogen reactor may be any metal or metal having a melting point higher than the melting point of Fe203. A combination, such as a metal alloy, is formed. In one embodiment, the tube may be formed from one or more of tantalum and tungsten. In some embodiments, the tube may be coated with Fe0x, where "x" is a value greater than zero. In some cases, Fe〇x can be Fe2Q3. When heated, %〇3 can be converted into w"Fe can cover the reaction table of the tube. The contact between the vapor and the coated tube can convert Fe into the mountain 3, and at the same time Produce h2. In some cases, 'hydrogen and oxygen produced by hydrogen reaction can be supplied: for steel production (see above). Alternatively, hydrogen and oxygen blankets produced by shell-and-tube hydrogen reactor - or both can be used Generating ammonia for storage, for later use in generating electricity by means of a fuel pool, for generating Force or for the production of hydrocarbons (see below). Referring to Figure 10, in an alternative embodiment, the parabolic dome and sun tracker of Figure 9 can be replaced with a parabolic (or parabolic) csp disc (such as a figure). 8) (or in combination with it) 154879.doc • 31- 201239098 Referring to Figure 11 'In an alternative embodiment, the shell-and-tube hydrogen reactor of Figures 9 and 可 can be replaced by steam generation. And an electrolyzer of 〇2. In one embodiment, the heat provided by the self-heating storage medium generates high temperature steam. Subsequently, the steam can be directed to the electrolyzer to produce H2 and 〇2 via H2 〇 electrolysis (ie, dissociation). Steel can be made using crucibles and crucibles 2 formed by electrolyzers. Referring to Figures 9-11 'The hydrogen and oxygen formed by steam can be directed to a shell-and-tube hydrogen reactor or a steel furnace downstream of the electrolyzer. Steel can be used The furnace forms steel by means of hydrogen and oxygen produced in the above hydrogen reactor or electrolyzer. The systems and methods of Figures 9-11 can be used with any of the systems and methods provided herein. For example, Figure 9 and Figure 1〇 system Used to produce hydrogen and oxygen for use in the steelmaking systems of Figures 1 and 3. In some embodiments, the hydrogen generator of Figure 1A can be a fluidized bed reactor. For example, 'Figure 9 and Figure 1 The reactor can be replaced with a fluidized bed reactor. That is, a fluidized bed reactor can be used in place of the shell and tube hydrogen reactor of Figures 9 and 1 . A fluidized bed reactor can be used to produce the helium 2, which It can be used, for example, in steel making. Alternatively, the system for producing hydrogen and oxygen can include a shell and tube hydrogen reactor and a fluidized bed reactor. For example, a system for forming hydrogen and oxygen can include heat with a thermal energy storage medium. An exchanger for generating steam from water. The energy used to heat liquid water into steam can be provided by a renewable energy source, such as a carbon-free renewable energy source. In some cases, the energy used to heat liquid water into steam may be provided by solar radiation or by only solar radiation. The system may further include a fluidized bed reactor downstream of the heat exchanger, the fluidized 154879.doc • 32· 201239098 bed reactor for generating nitrogen and oxygen. The fluidized bed reactor may comprise particles formed or coated with a material comprising iron, such as elemental iron or iron oxide. Alternatively, the fluidized bed reactor may comprise nanoparticle or microparticles formed of or coated with a ferrous material, such as nanoparticles coated with elemental iron or iron oxide. The system may further comprise a steel furnace downstream of the fluidized bed reactor for forming steel using heat generated by burning at least a portion of hydrogen and oxygen produced in the fluidized bed reactor. In some embodiments, the heat exchanger for generating steam can be placed close to the fluidized bed reactor. In addition, the fluidized bed reactor can be placed close to the steel furnace. In some cases, the heat exchanger can be up to 1 suction, or 2 s, or 3 s, or 4 s, or 5 s, 1 s, or 20 s, or 30 s, or 40, to the fluidized bed reactor.呎, or 50呎, or 60呎, or 70呎, or 80呎, or 90 feet, or 100, or 200, or 300, or 4〇〇p, or 500, or 1000呎, Or 2000呎, or 5000呎, or 1〇, placed, and the fluidized bed reactor can be up to 1 s, or 2, or 3, or 4, or 5, 10呎, or 20呎, or 30呎, or 4〇呎, or 5〇呎, or 60呎, or 70呎, or 80呎, or 90呎, or 100呎, or 2〇〇呎, or 300呎, Or placed at 400 呎, or 500 呎, or 10 〇〇呎, or 2 〇〇〇呎, or 5000 呎, or 10,000 呎. The method of forming helium and oxygen may include generating steam upon application of energy from the thermal energy storage material to the liquid water, the thermal energy storage material being heated by means of a carbon-free renewable energy source such as solar radiation. The method may further comprise contacting the N2 'air or any other gas or vapor having suitable thermodynamic properties (eg, heat capacity) with the iron oxide coated particles in the fluidized bed reactor, 154879.doc •33· 201239098 forming an iron coated Particles and oxygen (〇2). N2, air or other gases (e.g., H2(g)) may have sufficient energy to effect precipitation of 02 from the iron oxide coated particles. In some cases, the energy of the gas may be greater than or equal to the energy of desorption of oxygen from the surface of the iron oxide. In other gases, the energy of the gas is greater than or equal to the energy dissociated from iron oxide to iron and helium 2 and subsequently desorbed from the surface of the iron oxide. Subsequently, the steam can be contacted with iron coated particles in the fluidized bed reactor to form iron oxide coated particles and hydrogen (h2). In one embodiment, at least a portion of H2 and 〇2 can be converted to oxyhydrogen. In another embodiment, iron may be formed from a hydrogen-based blast furnace in a steel furnace wherein heat for the steel furnace is provided via at least a portion of h2 and 〇2 formed in the combustion fluidized bed reactor. The method of producing ruthenium and osmium 2 in a fluidized bed reactor can be as described in the above reactions (1) and (2). Alternatively, if iron or iron-coated particles (eg, nanoparticles, particles) are used in the FBR, the iron or iron-coated particles may first be contacted with H2 to produce particles coated with iron oxide (eg, FezO3). And H2, which can be removed from the FBR. The 'iron oxide coated particles can then be contacted with A, air or other gas having sufficient energy to dissociate the iron oxide into iron and ruthenium 2 and subsequently desorb 2 from the surface of the iron oxide. 〇2 can then be removed from the FBR. The crucible formed in the FBR: and the crucible 2 can be directed to a steel making system (such as system 040 of Fig.) to form steel. Alternatively, H2 and/or 〇2 can be stored in a storage container for later use. In some cases, Η2 and 〇2 from the FBR can be directed to a gas separator to separate Η2 and 〇2. In some cases, the fluidized bed reactor may include 154879.doc -34-201239098 prepared with iron-containing material -# coated with iron oxide particles, coated with iron oxide nanoparticles, coated with iron oxide Viewing particles or iron oxide coated particles of an iron film on a core formed of a high temperature material. The melting point of the high temperature material may be greater than the melting point of the iron oxide. In some cases, the fluidized bed reaction n may include iron oxide coated particles having an iron oxide film on "or a plurality of cores selected from the group consisting of: Ti〇x (eg, Ti〇2), Zr 〇x (for example, Z called),

AlxOy(例如Al2〇3)&Si〇x(例如Si〇2),其中『χ』及為 大於〇之數值。流體化床反應器可包括無核心之氧化二粒 子、奈米粒子或微粒。氧化鐵可選自Fex0y,其中『X』及 『y』為大於〇之數值。舉例而言,氧化鐵(包括氧化鐵薄 膜)可包括Fe203。 在-些情形下,流體化床反應器可包括在由—或多種選 自以下之材料形成之核心上具有鐵薄膜的塗有鐵之粒子: Ti〇x(例如 Ti〇2)、Zr〇x(例如 Zr〇2)、Alx〇y(例如 Ai2〇3)及 si〇x(例如Si02),其中『x』及『y』為大於0之數值。或 者,流體化床反應器可包括無核心之鐵粒子、奈米粒子戋 微粒。在該等情況下,至少一部分鐵可藉助於來自熱交換 器之蒸汽氧化為氧化鐵(參見上文)。 流體化床反應β可包括塗有氧化鐵之粒子,該等粒子由 具有一或多種熔點大於氧化鐵熔點之材料的粒子分隔。在 一些情形下,流體化床反應器可包括塗有鐵之粒子。用於 流體化床反應器中之粒子可為公司供應之粒子,諸如由AlxOy (for example, Al2〇3) &Si〇x (for example, Si〇2), where "χ" is a value greater than 〇. The fluidized bed reactor may comprise a coreless oxidized granule, a nanoparticle or a microparticle. The iron oxide may be selected from Fex0y, wherein "X" and "y" are values greater than 〇. For example, iron oxide (including an iron oxide film) may include Fe203. In some cases, the fluidized bed reactor may comprise iron coated particles having an iron film on a core formed of - or a plurality of materials selected from the group consisting of: Ti〇x (eg Ti〇2), Zr〇x (eg Zr〇2), Alx〇y (eg Ai2〇3) and si〇x (eg Si02), where “x” and “y” are values greater than zero. Alternatively, the fluidized bed reactor may comprise coreless iron particles, nanoparticle particles. In such cases, at least a portion of the iron can be oxidized to iron oxide by means of steam from a heat exchanger (see above). The fluidized bed reaction β may comprise particles coated with iron oxide separated by particles having one or more materials having a melting point greater than the melting point of the iron oxide. In some cases, a fluidized bed reactor can include iron coated particles. The particles used in the fluidized bed reactor can be supplied by the company, such as by

Analogies In Matters of Science,Inc” Cold Spring,ΝΥ供應 之粒子。粒子可經成型以具有增加之表面積,此可有助於 154879.doc -35- 201239098 使反應之動力學速率及熱傳遞 最佳。該等粒子可具有規則及 圓柱形、正方形或矩形。 至粒子及自粒子傳遞熱達到 不規則之形狀,諸如球形、 粒包括由選自以下之材料形成之間隔粒子(「氧化物 :子」)刀隔的塗有鐵之粒子,例如Ti02)zr0x(例 r〇2)、AIx〇y(例如八12〇3)及 Si〇x(例如 si〇2),其中『X 及『y』為大於0之數值。在一實施例中,塗有鐵之粒子: 間隔粒子之間的比率可為1:1、或1:2、或1:3、或1:4、或 1:5、或1:6、或1:7、或1:8、或 m 紅·10、或 1:15、或 U0。在另-實施例中,FBR中作為間隔粒子之粒子的分 率可為至少蘭、或至少15%、或至少纖、或至少25%、 或至少3〇%、或至少35%、或至少4〇%、或至少45%、或至 少50%、或至少55%、或至少6〇%、或至少⑽、或至少 70%、或至少75%、或至少8〇%、或至少85%、或至少 90°/。、或至少 95%。 在一實施例中’具有塗有氧化鐵之粒子的流體化床反應 器可替代或結合本文所提供之任何系統(諸如圖9及圖1〇之 殼官式氫氣反應器)使用《在另一實施例中,複數個流體 化床反應器可以串聯方式(亦即一個接一個)或平行方式使 用。 參考圖12,展示根據本發明之一實施例的用於產生氫氣 (Hz)及氧氣(〇2)之系統。首先,將高溫氮氣(n2)、空氣或 具有所要熱容量之任何其他氣體或蒸氣引導穿過具有塗有 氧化鐵之粒子的流體化床反應器(「FBR」)以使氧化鐵還 154879.doc • 36 - 201239098 原為鐵及氧氣。塗有氧化鐵之粒子可轉化為塗有鐵之粒 子。藉助於FBR流體學上游(「上游」)之泵(未圖示,參見 圖13)自系統移出氧氣。隨後,將高溫水或蒸汽引 導穿過FBR以在塗有鐵之粒子上產生%及氧化鐵。藉助於 泵自FBR移出氫氣。高溫蒸汽可藉由藉助於能源(其可為本 文所提供之任何太陽能源)加熱液體水(H2〇⑴)而形成。能 源可包括使熱能儲存介質(或材料)與水熱接觸而產生蒸汽 之熱父換器。舉例而言,能源可為圖8之旋轉水平拋物面 型太陽碟及相關組件,或圖9之抛物面型csp圓頂及太陽追 蹤器及相關組件,或圖10之拋物面型csp碟及相關組件。 在一實施例中,熱能儲存材料(例如MgF2)可藉助於來自太 陽能集中器(例如垂直堆疊之太陽能集中器)之太陽能而加 熱至諸如其熔點。可使熱能儲存材料與H2〇(l)熱接觸來產 生112〇(§)。 在一實施例中,圖12之系統可在流體化床反應器的下游 進步包括鋼熔爐以形成鋼。在另一實施例中,圖丨2之系 統可在流體化床反應器下游進一步包括一或多個金屬產生 單元操作,該一或多個金屬產生單元操作用於產生一或多 種金屬。 參考圖13,說明根據本發明之一實施例的流體化床反應 盗(「FBR」),其具有Fe2〇3奈米粒子或沈積於Zr02奈米粒 子上之Fe203原子層。在—實施例中,流體化床反應器可 為圖12之FBR。在—實施例中,除塗作办之奈来粒子以 外,亦可提供α!2〇3奈米粒子而使塗有Fe2〇3之奈米粒子彼 154879.doc •37- 201239098 此分隔°此可有利地防止塗有Fe203之奈米粒子聚結β 續β考圖13,FBR可為高溫陶究流體化床反應器,其 在FBR之底部裝備有多孔分配器且在舰之粒子或奈米粒 子床上方裝備有η24〇2氣體m。FBR可包括篩及/或分 配器以在FBR中分配氣體流及防止粒子離開舰。另外, 舰可包括振動構件以使粒子在歷中振動而防止粒子聚 結。振動構件可安置於FBR之分配器上方或下方。 繼續參考圖13,使溫度低於約1600°C或低於約1500。(:且 可運载來自太陽熱儲存槽之熱量的熱空氣或乂以最佳速度 通過底部分配器板以確保所有或實質部分之Fe2〇3開始熔 融從而自Fe2〇3釋放氧氣❶溶融時,Fe2〇3形成Fe。在使 用塗有氧化鐵(例如塗有FhO3)之奈米粒子的情況下,在支 撐材料上形成卩6層。隨後,可將水引入FBR中。在一實施 例中’可將高溫水或蒸汽(例如沸騰去離子水)引入FBR 中。水可與Fe反應形成Fe203及H2。可將Η20與Fe之間反應 時形成的Η:自FBR引導至h2/02分離器,且隨後引導至h2 儲存槽(或「儲存容器」)。在一實施例中,可將H2〇自 FBR之底部或頂部引入fbr中。 繼續參考圖13 ’具有FBR之系統可包括一或多個用於將 氣體引導出FBR之泵、用於量測進入及離開FBr之氣體之 壓力的壓力感測器(「P1」及「P2」,如所說明),及用於 量測離開FBR之氣體之組成的質譜儀。對於所說明之系 統,自FBR之底部(FBR之具有壓力感測器P1之側面)向FBR 提供N2(或空氣)及蒸汽,且自FBR之頂部(FBR之具有壓力 154879.doc -38· 201239098 感測器P2之側面)自FBR移出H2及〇2(包括其他排出氣)。 在一實施例中,圖13之系統可在流體化床反應器的下游 進一步包括鋼熔爐以形成鋼。在另一實施例中,圖13之系 統可在流體化床反應器下游進一步包括一或多個金屬產生 單元操作,該一或多個金屬產生單元操作用於產生一或多 種金屬。 在實施例中,一或多個製程參數可經選擇以使氫氣(Η?) 及氧氣(〇2)之輸出得到改良或最佳化(例如達到最大)。舉 例而言,可改變一或多個製程參數以達成氫氣及氧氣之改 良(或最佳)之輸出。在一實施例中,製程參數可經選擇以 便使質譜儀或組態成可偵測H2及〇2之任何其他裝置中的 及〇2讀數最佳(或得到改良)。在另一實施例中,流速可經 選擇以便使質譜儀或組態成可偵測氫氣及氧氣之任何其他 裝置中所偵測到之H2及〇2最佳。在另一實施例中,水(或 蒸汽)之溫度可經選擇以便使質譜儀或組態成可偵測氫氣 及氧氣之任何其他裝置中所偵測到之^及〇2最佳。在另一 實施例中,FBR之尺寸(例如直徑及/或長度)可經選擇以便 使質譜儀或組態成可偵測氫氣及氧氣之任何其他裝置中所 偵測到之H2及〇2最佳。在另一實施例中,n2、空氣或用於 還原氧化鐵之任何其他氣體的溫度可經選擇以便使質譜儀 或組態成可偵測氫氣及氧氣之任何其他裝置中所偵測到之 H2及〇2最佳。在另一實施例中,粒子(例如塗有氧化鐵之 粒子及/或間隔粒子)之尺寸可經選擇以便使質譜儀或組態 成可偵測氫氣及氧氣之任何其他裝置中所偵測到之^及〇2 154879.doc -39· 201239098 最佳。在其他實施例中,材料、流速、壓力、溫度、滞留 時間及空間速度巾之—或多者可經選擇以便使質譜儀或組 態成可㈣氫氣及氧氣之任何其他裝置中削貞測到之仏及 〇 2最佳。 在-些情形下’用於自蒸汽產生氫氣或氧氣之系統可以 平行方式包括複數個氫氣反應器或流體化床反應器。此可 使得可同時或幾乎同時形成仏及◦"在—些情況下,此可 排除對〜及/或〇2儲存容器之需要。Hj〇2可用於例如如 上所述產生鋼。舉例而言,系統可包括平行之第—流體化 床反應器及第二流體化床反應器,第一FBR具有塗有鐵之 粒子,且第二FBR具有塗有氧化鐵之粒子。將蒸汽引導(或 在一些情況下脈衝式傳輸)至第一及第二FBR中可在第一 FBR中產生Hr且在第二FBR中產生〇2,由此在第一 fbr 中形成塗有氧化鐵之粒子且在第二FBR中形成塗有鐵之粒Analogies In Matters of Science, Inc. Cold Spring, ΝΥ supplied particles. The particles can be shaped to have an increased surface area, which can help 154879.doc -35 - 201239098 to optimize the kinetic rate and heat transfer of the reaction. The particles may have a regular and cylindrical, square or rectangular shape. The particles and the heat transferred from the particles to an irregular shape, such as a sphere, the particles comprising spacer particles formed from a material selected from the group consisting of "oxides". The iron-coated particles are separated by a knife, such as Ti02)zr0x (for example, r〇2), AIx〇y (for example, eight 12〇3), and Si〇x (for example, si〇2), where “X and “y” are greater than The value of 0. In one embodiment, the iron coated particles: the ratio between the spacer particles may be 1:1, or 1:2, or 1:3, or 1:4, or 1:5, or 1:6, or 1:7, or 1:8, or m red·10, or 1:15, or U0. In another embodiment, the fraction of particles in the FBR as spacer particles can be at least blue, or at least 15%, or at least fibrid, or at least 25%, or at least 3%, or at least 35%, or at least 4 〇%, or at least 45%, or at least 50%, or at least 55%, or at least 6%, or at least (10), or at least 70%, or at least 75%, or at least 8%, or at least 85%, or At least 90°/. , or at least 95%. In one embodiment, a fluidized bed reactor having particles coated with iron oxide can be used in place of or in combination with any of the systems provided herein (such as the shell-type hydrogen reactor of Figures 9 and 1). In embodiments, a plurality of fluidized bed reactors may be used in series (i.e., one after the other) or in parallel. Referring to Figure 12, a system for generating hydrogen (Hz) and oxygen (?2) in accordance with an embodiment of the present invention is shown. First, high temperature nitrogen (n2), air or any other gas or vapor having the desired heat capacity is directed through a fluidized bed reactor ("FBR") with iron oxide coated particles to make the iron oxide 154879.doc • 36 - 201239098 Originally iron and oxygen. The iron oxide coated particles can be converted into iron coated particles. The oxygen is removed from the system by means of a pump upstream of the FBR fluidics ("upstream") (not shown, see Figure 13). Subsequently, high temperature water or steam is directed through the FBR to produce % and iron oxide on the iron coated particles. Hydrogen is removed from the FBR by means of a pump. High temperature steam can be formed by heating liquid water (H2(1)) by means of an energy source, which can be any solar source provided herein. The energy source may include a hot parent exchanger that thermally contacts the thermal energy storage medium (or material) with water to produce steam. For example, the energy source can be the rotating horizontal parabolic sun dish and related components of Figure 8, or the parabolic csp dome and sun tracker and related components of Figure 9, or the parabolic csp disc and related components of Figure 10. In one embodiment, the thermal energy storage material (e.g., MgF2) can be heated to such as its melting point by means of solar energy from a solar energy concentrator (e.g., a vertically stacked solar concentrator). The thermal energy storage material can be brought into thermal contact with H2(l) to produce 112 Å (§). In one embodiment, the system of Figure 12 can be advanced downstream of a fluidized bed reactor to include a steel furnace to form steel. In another embodiment, the system of Figure 2 can further include one or more metal generating unit operations downstream of the fluidized bed reactor, the one or more metal generating units operating to produce one or more metals. Referring to Figure 13, a fluidized bed reaction thief ("FBR") having Fe2〇3 nanoparticles or a Fe203 atomic layer deposited on Zr02 nanoparticles is illustrated in accordance with one embodiment of the present invention. In an embodiment, the fluidized bed reactor can be the FBR of Figure 12. In the embodiment, in addition to the coated particles, α!2〇3 nano particles can be provided to make the nano particles coated with Fe2〇3. 154879.doc •37- 201239098 This is the separation It can be advantageously prevented that the Fe203 coated nanoparticles are coalesced β. Continued β. Figure 13, FBR can be a high temperature ceramic fluidized bed reactor equipped with a porous distributor at the bottom of the FBR and in the ship particles or nano The particle bed is equipped with η24〇2 gas m. The FBR may include a screen and/or dispenser to distribute the gas flow in the FBR and prevent particles from leaving the vessel. Additionally, the vessel may include a vibrating member to cause the particles to vibrate throughout the calendar to prevent particle agglomeration. The vibrating member can be placed above or below the FBR distributor. With continued reference to Figure 13, the temperature is made below about 1600 ° C or below about 1500. (: and hot air or helium that can carry heat from the solar thermal storage tank passes through the bottom distributor plate at an optimum speed to ensure that all or a substantial portion of Fe2〇3 begins to melt to release oxygen from Fe2〇3, melting, Fe2 〇3 forms Fe. In the case of using nanoparticle coated with iron oxide (for example, coated with FhO3), a layer of ruthenium 6 is formed on the support material. Subsequently, water can be introduced into the FBR. In an embodiment Introducing high temperature water or steam (eg boiling deionized water) into the FBR. Water can react with Fe to form Fe203 and H2. The enthalpy formed during the reaction between Η20 and Fe can be directed from the FBR to the h2/02 separator, and It is then directed to the h2 storage tank (or "storage container"). In one embodiment, H2 can be introduced into the fbr from the bottom or top of the FBR. Continuing to refer to Figure 13 'The system with FBR can include one or more a pressure sensor that directs gas out of the FBR, a pressure sensor ("P1" and "P2" as described) for measuring the pressure of the gas entering and leaving the FBr, and a gas for measuring the gas leaving the FBR. a mass spectrometer consisting of the described system, from FBR The bottom (FBR with the side of the pressure sensor P1) supplies N2 (or air) and steam to the FBR, and from the top of the FBR (FBR has the pressure 154879.doc -38·201239098 side of the sensor P2) The FBR removes H2 and 〇2 (including other vent gas). In one embodiment, the system of Figure 13 may further include a steel furnace downstream of the fluidized bed reactor to form steel. In another embodiment, Figure 13 The system can further include one or more metal generating unit operations downstream of the fluidized bed reactor, the one or more metal generating units operative to produce one or more metals. In an embodiment, one or more process parameters can be Select to improve or optimize the output of hydrogen (Η?) and oxygen (〇2). For example, one or more process parameters can be changed to achieve hydrogen and oxygen improvements (or most Preferably, in one embodiment, the process parameters can be selected to optimize (or be improved) the readings of the mass spectrometer or any other device configured to detect H2 and 〇2. In another embodiment, the flow It may be selected to optimize the H2 and 〇2 detected by the mass spectrometer or any other device configured to detect hydrogen and oxygen. In another embodiment, the temperature of the water (or steam) may be The choice is made to optimize the mass spectrometer or any other device configured to detect hydrogen and oxygen. In another embodiment, the size of the FBR (eg, diameter and/or length). It may be selected to optimize the H2 and 〇2 detected by the mass spectrometer or any other device configured to detect hydrogen and oxygen. In another embodiment, n2, air or used to reduce iron oxide The temperature of any other gas may be selected to optimize the H2 and 〇2 detected by the mass spectrometer or any other device configured to detect hydrogen and oxygen. In another embodiment, the size of the particles (eg, iron oxide coated particles and/or spacer particles) can be selected to be detected by the mass spectrometer or any other device configured to detect hydrogen and oxygen. ^^〇2 154879.doc -39· 201239098 Best. In other embodiments, materials, flow rates, pressures, temperatures, residence times, and space velocity zones may be selected to allow the mass spectrometer or any other device configured to be capable of (d) hydrogen and oxygen. After the best and the best. In some cases, the system for producing hydrogen or oxygen from steam may comprise a plurality of hydrogen reactors or fluidized bed reactors in parallel. This allows the formation of 仏 and ◦ at the same time or almost simultaneously. In some cases, this eliminates the need for a ~ and / or 〇 2 storage container. Hj〇2 can be used, for example, to produce steel as described above. For example, the system can include a parallel first fluidized bed reactor and a second fluidized bed reactor, the first FBR having iron coated particles and the second FBR having iron oxide coated particles. Directing (or in some cases pulsing) steam into the first and second FBRs may produce Hr in the first FBR and 〇2 in the second FBR, thereby forming an oxidation in the first fbr Iron particles and iron coated particles in the second FBR

子。隨後,將蒸汽引導至第一及第二FBR中可在第一 FBR 中產生〇2’且在第二FBR中產生Η?,由此在第一 fbR中形 成塗有鐵之粒子且在第二FBR中形成塗有氧化鐵之粒子。 或者,第一及第二FBR中之一或兩者可替換為殼管式氫氣 反應器,諸如圖9及圖1〇之殼管式氫氣反應器。 在一些情況下,氫氣產生器可維持在真空下以促進產生 %及〇2。舉例而言,殼管式反應器或流體化床反應器可藉 助於抽汲系統抽汲而維持用於形成%及〇2之真空。 可加熱氫氣產生器以提供Ha及〇2之所要反應速率及解吸 附速率。加熱可藉助於惰性氣體(對流加熱)、電阻加熱或 154879.doc • 40· 201239098 輻射加熱來完成。 用於殼管式氫氣產生器及流體化床反應器中之氧化鐵 (例如Fe2〇3)可藉由於支撐材料(諸如氧化鈦及/或氧化鋁)上 沈積氧化鐵而形成》在一些情況下,氧化鐵可藉由原子層 沈積(ALD)、化學氣相沈積(CVD)、物理氣相沈積(pvd)及 分子束磊晶法(MBE)(包括基於電漿之ALD、CVD及PVD) 形成。 舉例而言,Fe2〇3層可藉由原子層沈積(ALD)使用二茂鐵 及氧化劑(諸如臭氧(〇3)或氧氣(〇2))之交替及連續脈衝形 成。Fe2〇3可在200°C下形成;可觀察到速率至多約丨_3 A/ 循環或1-2 A/循環的Fe2〇3之自限制性生長。在一些情況 下’可觀察到約1_4 A/循環的生長速率。可於各種基板(諸 如含矽基板、氧化鈦或氧化鋁)上生長緻密且堅固之薄 膜。可使用二茂鐵均一地塗佈縱橫比為至少約U、或 10:1、或 20:1、或 30:1、或 40:1、或 50:1、或 60:1、或 7〇:1、或80:1、或90:1、或1〇〇:1、或15〇:1之大表面積模 板。 本文所提供之方法及系統可用於其他應用中,諸如能量 儲存、電力產生、氨製備、去鹽、水純化。舉例而言,可 使用上述使用可再生能源產生氫氣及氧氣之方法產生氫氣 及氧氣以用於可用於在尖峰操作條件期間提供電的燃料電 池。 作為另一實例,如上所述製備之氫氣可用於在費托型合 成(FiScher-Tropsch type synthesis)中根據式(2n+1) H2+n 154879.doc 201239098 CO~>CnH(2n+2)+n H20產生烴,其中『η』為大於0之數值。 根據上述方法形成之Η2可與CO組合形成烴(CnH2n+2),諸如 曱烧、乙烧、丙烧、丁烧、戊院、己院、庚烧、辛烧、壬 烧及癸烧中之一或多者。烴可氧化為醇、酮、酸及叛酸。 作為另一實例,如上所述製備之氫氣可用於在與N2根據 式3 H2+N2~>2 NH3反應時產生氨。N2可由空氣提供且經純 化以移除任何氧氣,隨後形成NH3。該反應可藉助於一或 多種催化劑(諸如非均相催化劑)促進。 本文所提供之方法及系統可與其他系統及方法組合或經 其他系統及方法修改,該等其他系統及方法諸如Soyland 之美國專利公開案第2009/0249922號(「PROCESS FOR THE PRODUCTION OF STEEL USING A LOCALLY PRODUCED HYDROGEN AS THE REDUCING AGENT」) 及 Edelson之美國專利第 5,454,853 號(「METHOD FOR THE PRODUCTION OF STEEL」)中所述之方法及/或系統,該 等案以全文引用的方式併入本文中。 實例1 使用來自垂直堆疊太陽能集中器的太陽能加熱MgF2至其 熔點。太陽能集中器之太陽輻照度為約1 KW/m2至6.3 KW/m2。MgF2儲存於具有W-25Re或陶瓷材料之容器中。 在1263°C(MgF2之熔點)下,MgF2之熔化熱為約0.94χ106 J/kg。MgF2之密度為約 2430 Kg/m3。 隨後,使用自MgF2釋放之熱量自液體水產生蒸汽。隨後 將蒸汽引導至HTSS(參見上文)以使H20經由電解解離為H2 154879.doc -42- 201239098 及〇2。蒸汽電解所需之能量由自風力渦輪機及固體氧化物 燃料電池(SOFC)儲存之能量提供。風力渦輪機及s〇FC本 地定位於電解池附近以使傳輸損耗減至最小且作為後備。 隨後’分離&與〇2。將H2之一部分引導至基於氫氣之鼓 風爐。將H2之另一部分引導至氫氧焰產生器。將〇2之一部 分引導至氫氧焰產生器。將仏之另一部分引導至氫氧鋼熔 爐。使用氫氧焰產生器產生H2與A之混合物,H2:〇2莫耳 比為約4至5。氫氧焰產生器在約2800t:之最高溫度下操 作。添加惰性氣體(諸如N2)以達成所要較低溫度。 在基於氫氣之鼓風爐中,氧化鐵Fe3+以兩步法還原。首 先,使Fe3+還原為 Fe2+ : 3 以办碼% Fe3〇4+H2〇(Ea=89 13 kJ/mol,Tmax=325.4°C)。隨後,使Fe2+還原為Fe : Fe304+4 H2+ 3 Fe+4 H2O(Ea=70.41 kJ/mo卜 Tmax=459.rc )。 在氫氧鋼熔爐中,鋼由Fe及預定量之C、Mg、B、Cr、 Mo ' V、Μη及W形成以形成預定組成(或類型)之鋼。在鋼 形成期間,藉助於〇2以氧化物形式移除S、p、以及其他雜 質製鋼之必需熱量由燃燒氫氧提供。將可回收廢鐵引導 至氫氧廢料溶爐以供處理。廢料溶爐之熱量由燃燒氫氧提 供。 實例2 提供一種產生氫氣及氧氣之系統,諸如圖9之系統。該 系統可每天使用大於或等於約2或3小時太陽每年操作33〇 天。系統可包括高度為約150 ft之抛物面型圓頂及約3〇〇 & 之基座以及產生95。/〇反射率之150 ftx300 ft鋁反射器(例如 154879.doc -43- 201239098child. Subsequently, directing steam into the first and second FBRs can produce 〇2' in the first FBR and Η? in the second FBR, thereby forming iron coated particles in the first fbR and in the second Iron oxide coated particles are formed in the FBR. Alternatively, one or both of the first and second FBRs may be replaced by a shell and tube hydrogen reactor, such as the shell and tube hydrogen reactor of Figures 9 and 1 . In some cases, the hydrogen generator can be maintained under vacuum to promote the production of % and 〇2. For example, a shell and tube reactor or a fluidized bed reactor can maintain a vacuum for forming % and 〇2 by pumping the pumping system. The hydrogen generator can be heated to provide the desired reaction rate and desorption rate for Ha and 〇2. Heating can be accomplished by means of an inert gas (convection heating), electrical resistance heating or 154879.doc • 40· 201239098 radiant heating. Iron oxide (e.g., Fe2〇3) used in shell-and-tube hydrogen generators and fluidized bed reactors may be formed by depositing iron oxide on a support material such as titanium oxide and/or alumina. In some cases Iron oxide can be formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (pvd), and molecular beam epitaxy (MBE) (including plasma-based ALD, CVD, and PVD). . For example, the Fe2〇3 layer can be formed by alternating and continuous pulses of ferrocene and an oxidizing agent such as ozone (〇3) or oxygen (〇2) by atomic layer deposition (ALD). Fe 2 〇 3 can be formed at 200 ° C; self-limiting growth of Fe 2 〇 3 at a rate of up to about 丨 3 A / cycle or 1-2 A / cycle can be observed. In some cases, a growth rate of about 1_4 A/cycle was observed. A dense and strong film can be grown on a variety of substrates, such as ruthenium containing substrates, titanium oxide or aluminum oxide. The ferrocene may be uniformly coated with an aspect ratio of at least about U, or 10:1, or 20:1, 30:1, or 40:1, or 50:1, or 60:1, or 7: 1, or 80: 1, or 90: 1, or 1 〇〇: 1, or 15 〇: 1 large surface area template. The methods and systems provided herein can be used in other applications such as energy storage, power generation, ammonia production, desalting, water purification. For example, hydrogen and oxygen can be produced using the above-described method of generating hydrogen and oxygen using renewable energy for use in a fuel cell that can be used to provide electricity during peak operating conditions. As another example, the hydrogen produced as described above can be used in a Fischer-Tropsch type synthesis according to the formula (2n+1) H2+n 154879.doc 201239098 CO~>CnH(2n+2) +n H20 produces a hydrocarbon, where "η" is a value greater than zero. The crucible 2 formed according to the above method can be combined with CO to form a hydrocarbon (CnH2n+2), such as simmering, sulphur, simmering, simmering, pentad, hexa, garg, cinnabar, simmering and simmering. One or more. Hydrocarbons can be oxidized to alcohols, ketones, acids, and retinoic acids. As another example, hydrogen produced as described above can be used to produce ammonia upon reaction with N2 according to formula 3 H2+N2~>2 NH3. N2 can be supplied by air and purified to remove any oxygen, followed by formation of NH3. The reaction can be promoted by means of one or more catalysts such as heterogeneous catalysts. The methods and systems provided herein may be combined with other systems and methods, or may be modified by other systems and methods, such as the US Patent Publication No. 2009/0249922 by Soyland ("PROCESS FOR THE PRODUCTION OF STEEL USING A LOCALLY PRODUCED HYDROGEN AS THE REDUCING AGENT") and the methods and/or systems described in U.S. Patent No. 5,454,853 ("METHOD FOR THE PRODUCTION OF STEEL"), which is incorporated herein by reference in its entirety. Example 1 The solar energy from a vertically stacked solar concentrator was used to heat MgF2 to its melting point. The solar concentrator has a solar irradiance of about 1 KW/m2 to 6.3 KW/m2. MgF2 is stored in a container with W-25Re or ceramic material. At 1263 ° C (melting point of MgF 2 ), the heat of fusion of MgF 2 is about 0.94 χ 106 J / kg. The density of MgF2 is about 2430 Kg/m3. Subsequently, steam is generated from the liquid water using heat released from the MgF2. The steam is then directed to the HTSS (see above) to dissociate H20 via electrolysis to H2 154879.doc -42 - 201239098 and 〇2. The energy required for steam electrolysis is provided by energy stored from wind turbines and solid oxide fuel cells (SOFCs). The wind turbine and s〇FC are locally located near the electrolytic cell to minimize transmission losses and serve as a backup. Then 'separate & and 〇2. One part of H2 is directed to a hydrogen-based blast furnace. Another portion of H2 is directed to the oxyhydrogen flame generator. A portion of the crucible 2 is directed to the oxyhydrogen flame generator. Route another part of the crucible to the oxyhydrogen furnace. A mixture of H2 and A is produced using an oxyhydrogen flame generator having a H2: 〇2 molar ratio of about 4 to 5. The oxyhydrogen flame generator operates at a maximum temperature of about 2800 t:. An inert gas such as N2 is added to achieve the desired lower temperature. In a hydrogen-based blast furnace, iron oxide Fe3+ is reduced in a two-step process. First, Fe3+ is reduced to Fe2+: 3 to code % Fe3〇4+H2〇 (Ea=89 13 kJ/mol, Tmax=325.4 °C). Subsequently, Fe2+ was reduced to Fe:Fe304+4H2+ 3 Fe+4 H2O (Ea=70.41 kJ/mo Bu Tmax=459.rc ). In a oxyhydrogen steel furnace, steel is formed of Fe and a predetermined amount of C, Mg, B, Cr, Mo'V, Μ, and W to form a steel of a predetermined composition (or type). During the formation of steel, the necessary heat to remove S, p, and other miscellaneous steels in the form of oxides by means of ruthenium 2 is provided by the combustion of hydrogen. The recyclable scrap iron is directed to a oxy-hydrogen waste furnace for processing. The heat of the waste furnace is supplied by burning hydrogen. Example 2 A system for producing hydrogen and oxygen, such as the system of Figure 9, is provided. The system can operate for 33 days per year using the sun for greater than or equal to about 2 or 3 hours per day. The system can include a parabolic dome having a height of about 150 ft and a pedestal of about 3 〇〇 & and producing 95. / 〇 reflectivity of 150 ftx300 ft aluminum reflector (eg 154879.doc -43- 201239098

Alanod鋁反射器)’其可產生約6152 kwh太陽熱而在約 400°C至1365°C之溫度下熱解離4309 Kg/hr Fe2〇3為Fe及 〇2。殼管式氫氣反應器可在管束内包括約43 09 Kg粒徑為 20-40 nm、多孔容積密度為1.2 gm/cm3之Fe203,從而在大 於或等於約200°C之溫度下使用872 Kg/hr高壓製程蒸汽產 生161.62 Kg/Hr氫氣及1292.93 Kg/hr 02。可在殼側上使用 來自太陽熱交換器之溫度為約1263°C的蒸汽》系統可包括 輔助設備’諸如太陽熱儲存@5500XSUN、POU熱交換 器、氫氣過濾器(纪或陶瓷)、CSD設施。該設備可使用上 述尺寸限制。可使用此製程之直接太陽熱製備38 KWH/Kg H2。 由上述内容應瞭解’儘管已說明且描述了特定實施例, 但可對其進行各種修改,且該等修改涵蓋於本文中。本發 明亦不欲受本說明書中所提供之特定實例限制。儘管已參 考上述說明書描述了本發明,但本文中較佳實施例之描述 及說明不欲以限制方式解釋。此外,應瞭解,本發明之所 有態樣不限於本文所述之特定描述、組態或相對比例,該 等特定描述、組態或相對比例視多種條件及變數而定。本 發明實施例之形式及細節的各種修改對於熟習此項技術者 將顯而易知。因此預期本發明亦應涵蓋任何該等修改、改 變及等效物。 【圖式簡單說明】 圖1A展示本發明之一實施例的製鋼系統的高水準描繪; 圖1B展示本發明之一實施例的製鋼系統的高水準描繪; 154879.doc • 44· 201239098 圖2展示本發明之一實施例的方法流程圖; 圖3不意性說明根據本發明之一實施例的製鋼系統; 圖4不意性說明根據本發明之一實施例的高溫蒸汽電解 系統; - 圖5示意性說明根據本發明之一實施例的質子交換膜 (PEM)燃料電池; 圖ό不意性說明根據本發明之一實施例的固體氧化物燃 料電池(SOFC); 圖7不意性說明根據本發明之一實施例的鐵熔煉容器; 圖8展不根據本發明之—實施例的具有電動雙轴追蹤器 之旋轉水平抛物面型太陽碟; 圖9展不根據本發明之一實施例的用於產生氫氣及氧氣 (例如用於製鋼)之系統,該系統具有抛物面型圓頂; 圖10展示根據本發明之一實施例的用於產生氫氣及氧氣 之系統,該系統具有太陽碟; 圖11展示根據本發明之一實施例的用於產生氫氣及氧氣 之系統’該系統具有電解器; 圖12展不根據本發明之一實施例的用於產生氫氣及氧氣 之系統’該系統具有流體化床反應器(「Fbr」); - 圖13展示本發明之一實施例的流體化床反應器;且 圖14 Α展示根據本發明之一實施例的用於殼管式反應器 之形成相交平面的反應表面;圖14B展示根據本發明之一 實施例的用於殼管式反應器之管中管組態。 【主要元件符號說明】 154879.doc -45- 201239098 010 015 020 030 040 100 105 110 115 120 125 200 205 210 215 220 225 230 235 240 245 1401 1402 能源/熱源 氫氣產生器 電源 電解裝置/電解 製鋼總成/製鋼配置 方法 第一步驟 步驟 步驟 步驟 步驟 系統 太陽能集中器 加熱器 高溫蒸汽電解系統/HTSS/模組 風能塔 燃料電池 氫氧焰產生器 製鐵鼓風爐/鼓風爐 多級鋼熔爐/鋼熔爐/鋼熔爐(或容器)/熔煉 容器 廢料熔爐 反應表面 反應表面 154879.doc •46- 201239098 1403 反應表面 1404 反應表面 1405 反應性管 1406 反應性管 1407 反應性管 1408 反應性管 PI 壓力感測器 P2 壓力感測器 154879.doc -47-Alanod aluminum reflectors] which produce about 6152 kwh of solar heat and thermally dissociate 4309 Kg/hr Fe2〇3 to Fe and 〇2 at temperatures of about 400 ° C to 1365 ° C. The shell-and-tube hydrogen reactor can include about 43 09 Kg of Fe203 having a particle size of 20-40 nm and a porous bulk density of 1.2 gm/cm3 in the tube bundle, thereby using 872 Kg/ at a temperature greater than or equal to about 200 °C. The hr high pressure process steam produces 161.62 Kg/Hr of hydrogen and 1292.93 Kg/hr 02. The steam from the solar heat exchanger at a temperature of about 1263 ° C can be used on the shell side. The system can include ancillary equipment such as solar thermal storage @5500XSUN, POU heat exchanger, hydrogen filter (Ji or ceramic), CSD facility. The device can use the above size restrictions. 38 KWH/Kg H2 can be prepared using direct solar heat from this process. It will be understood from the foregoing that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The present invention is also not intended to be limited by the specific examples provided in the specification. The description and illustration of the preferred embodiments herein are not intended to be construed as limiting. In addition, it should be understood that the invention is not limited to the specific description, the configuration or the relative proportions described herein. Various modifications in form and detail of the embodiments of the invention will be apparent to those skilled in the art. It is intended that the present invention cover the modifications and variations and equivalents. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A shows a high level depiction of a steelmaking system in accordance with one embodiment of the present invention; Figure 1B shows a high level depiction of a steelmaking system in accordance with one embodiment of the present invention; 154879.doc • 44·201239098 Figure 2 shows FIG. 3 is a schematic illustration of a steelmaking system in accordance with an embodiment of the present invention; FIG. 4 is a schematic illustration of a high temperature steam electrolysis system in accordance with an embodiment of the present invention; A proton exchange membrane (PEM) fuel cell according to an embodiment of the present invention is illustrated; a solid oxide fuel cell (SOFC) according to an embodiment of the present invention is not illustrated; FIG. 7 is not intended to illustrate one of the present invention. The iron smelting container of the embodiment; FIG. 8 is a rotating horizontal parabolic sun dish with an electric double-axis tracker according to an embodiment of the present invention; FIG. 9 is not for generating hydrogen gas according to an embodiment of the present invention; a system of oxygen (e.g., for steelmaking) having a parabolic dome; Figure 10 shows a system for producing hydrogen and oxygen, in accordance with an embodiment of the present invention, Figure 1 shows a system for producing hydrogen and oxygen in accordance with an embodiment of the present invention. The system has an electrolyzer; Figure 12 is not for the production of hydrogen and oxygen according to an embodiment of the present invention. System 'The system has a fluidized bed reactor ("Fbr"); - Figure 13 shows a fluidized bed reactor of one embodiment of the invention; and Figure 14 shows a shell tube for use in accordance with an embodiment of the present invention The reaction surface of the reactor forms an intersecting plane; Figure 14B shows a tube-in-tube configuration for a shell-and-tube reactor in accordance with an embodiment of the present invention. [Description of main component symbols] 154879.doc -45- 201239098 010 015 020 030 040 100 105 110 115 120 125 200 205 210 215 220 225 230 235 240 245 1401 1402 Energy/heat source hydrogen generator power supply electrolysis unit / electrolytic steel assembly /Steel configuration method First step Steps Steps Steps System Solar concentrator heater High temperature steam electrolysis system / HTSS / Module wind energy tower Fuel cell oxyhydrogen flame generator Iron blast furnace / blast furnace multi-stage steel furnace / steel furnace / steel Furnace (or vessel) / smelting vessel waste furnace reaction surface reaction surface 154879.doc • 46- 201239098 1403 reaction surface 1404 reaction surface 1405 reactive tube 1406 reactive tube 1407 reactive tube 1408 reactive tube PI pressure sensor P2 pressure Sensor 154879.doc -47-

Claims (1)

201239098 七、申請專利範圍: 1 · 一種產生鋼之系統,其包含: 藉助於無碳可再生能源所提供之能量自液體水產生蒸 汽之熱交換器; 該熱交換器下游之氫氣產生器,該氫氣產生器係用於 自蒸汽產生氫氣(h2)及氧氣(〇2);及 該氫氣反應器下游之鋼熔爐,該鋼熔爐係用於藉助於 該氫氣產生器中所產生之H2及〇2產生鋼。 2. 如請求項1之系統,其中該氫氣產生器包含殼管式氫氣 反應器。 3. 如請求項1之系統,其中該殼管式氫氣反應器管由氧化 鐵形成或塗有氧化鐵。 4. 如請求項1之系統,其中該氫氣產生器包含流體化床反 應器。 5. 如請求項4之系統’其中該流體化床反應器包含由氧化 鐵形成或塗有氧化鐵之粒子。 6. 如請求項1之系統,其在該氫氣產生器下游進一步包含 氫氧產生器。 7. 如請求項1之系統,其在該氫氣產生器下游且在該鋼熔 爐上游進一步包含基於氫氣之鼓風爐,該基於氫氣之鼓 風爐係用於自Fe203產生鐵(Fe)。 8·如請求項7之系統,其令該鋼熔爐係用於使用來自該基 於氫氣之鼓風爐的鐵產生鋼。 9_如請求項1之系統,其中該熱交換器包含放熱能量儲存 154879.doc 201239098 介質。 10·如請求jgQ+么 項9之系統,其中該放熱能量儲存介質包含一 多種鹽。 长項10之系統,其中該一或多種鹽係選自氣化鈣、 氣化鋇、氯化鳃、溴化鈉、溴化鉀、溴化鎂、氟化鈉、 氟化卸、IL化鎂、魏裡、換化納、蛾化鉀、破化鎮、 鐵化辦、碘化鳃及其組合。 12.如請求項1之系統,其中唁可A决处.、居6人丄β 升r通可冉生月b源包含太陽能集中 13.如:求項12之系統’其中該太陽能集中器為垂直堆疊之 太陽能集中器。 14_如明求項13之系統,其中該太陽能集中器與該熱交換器 15. 如請求項1之系統, 熱交換器約5 0 0吸處 16. 如請求項1之系統, 氣產生器約5〇〇呎處 17·如請求項1之系統, 鋼熔爐約500呎處。 18·如請求項1之系統, 包含: 其中該可再生能源安置於至多距該 〇 其中該熱交換器安置於至多距該氫 D 其中該氫氣產生器安置於至多距該 其中&quot;亥可再生能源包含太陽碟,其 反射表面’其用於將光弓丨導至該反射表面之隹點. 能量儲存容器’其具有安置於該反射表面之該焦點 能量儲存介質; ' · 154879.doc 201239098 一或多個球軸承,其安置於該反射表面之底面;及 兩個或兩個以上之馬達,其用於沿兩個或兩個以上軸 調節該反射表面。 青求項1之系統,其中該太陽碟為拋物線型太陽碟。 如月求項1之系統,其中該氫氣產生器包含電解單元。 21. 如請求項1之系統,其中用於自蒸汽產生%及〇2之該能 量的至少一部分係由該可再生能源及燃料電池中之一 多者提供。 $ 22. 如睛求項21之系統,其中該燃料電池為固體氧化物燃 電池。 ' 23. 如請求項i之系統,其中該可再生能源係選自由以下組 成之群:光伏打電池、地熱能產生器、風力渦輪機、波 能產生器及水電能產生器。 24_ —種形成鋼之方法,其包含: 藉助於可再生能源所提供之能量自液體水產生蒸汽; 自蒸汽產生氫氣(H2)及氧氣(〇2);及 在鋼熔爐中使用來自基於氫氣之鼓風爐的鐵形成鋼, 其中鋼係藉助於自蒸汽產生之該h2及該〇2產生。 25. 如請求項24之方法,其中蒸汽解離為^及〇2包含: 使含元素鐵之材料與蒸汽接觸以形成含氧化鐵之材料 及H2 ;及 含氧化鐵之材料解離為含元素鐵之材料及〇2。 26. 如請求項25之方法,其中該含氧化鐵之材料係藉助於n, 或空氣解離。 &lt; 154879.doc 201239098 27.如請求項24之方法,其進一步白 I 3自H2及02產生氫氧。 28·如請求項27之方法,其中开:士 、化成鋼包含使用來自燃燒該氫 氧之至少一部分的能量。 29.如請求項24之方法,其中Η,月八&amp;廿知 γ 2及〇2自蒸汽於殼管式反應器 或流體化床反應器中產生。 3 0 ·如請求項2 4之方法’其中自液體水產生蒸汽包含: 將來自該可再生能源之能量引導至熱能儲存介質;及 藉助於該熱能儲存介質中所儲存之可再生能源產生蒸 汽。 31. —種形成氫氣及氧氣之方法,其包含: 使&gt;12或空氣與氫氣產生器中之含氧化鐵之表面接觸, 形成含鐵之表面及氧氣(〇2); 自該氫氣產生器移出〇2; 使蒸汽與氫氣產生器中之該等含鐵表面接觸形成含 氧化鐵之表面及氫氣(Η2),其中該蒸汽係藉助於來自無 碳可再生能源之能量產生;及 自該氫氣產生器移出η2。 32. 如請求項31之方法,其中該氫氣產生器為殼管式反應器 或流體化床反應器。 33. 如請求項31之方法,其中形成該%及該&amp;以用於鋼熔煉。 34. 如請求項33之方法,其進一步包含藉助於該氫氣產生器 中所形成之%及〇2於鋼熔爐中形成鋼。 35. 如請求項34之方法,其辛鋼係使用來自基於氫氣之鼓風 爐的鐵形成,其_用於該鋼熔爐之熱量係經由燃燒該氫 154879.doc 201239098 36. 37. 38. 39. 40. 41. 42. 氣產生器中所形成之該Η2及該〇2之至少一部分提供。 一種形成鋼之系統,其包含: 具有放熱能量儲存介質之熱交換器,該熱交換器係用 於自水產生蒸汽; 該熱交換器下游之電解單元,該電解單元係用於自蒸 汽產生Η2及〇2 ; 該電解單元下游之氫氧產生器; 該電解單元下游之基於氫氣之鼓風爐,該基於氫氣之 鼓風爐係用於自FhO3產生鐵(Fe);及 該電解單元下游之鋼熔爐,該鋼熔爐係用於使用來自 該基於氫氣之鼓風爐的鐵產生鋼。 如請求項36之系統,其進一步包含用於向該電解單元提 供電力之可再生能源。 如印求項37之系統,其中該可再生能源係選自一或多個 風力渴輪機及一或多個燃料電池。 如清求項37之系…统,其中該&amp;交換器與肖可再生能源相 鄰。 如叫求項3 7之系統,其中該一或多個燃料電池係選自質 子交換膜燃料電池、固體氧化物燃料電池及熔融碳酸鹽 燃料電池。 如清求項36之系、統,丨進一步包含用於加熱該放熱能量 儲存介質之太陽能集中器。 如明求項41之系統,其中該太陽能集中器為垂直堆疊之 太陽能集中器。 154879.doc 201239098 43.如”月求項41之系統,其中該太陽能集中器與該熱交換器 相鄰。 44·如請求項41之系統,其中該放熱能量儲存介質包含鹽。 45. 如請求項44之系統,其中該鹽係選自氣化鈣、氣化鋇、 氣化鳃、溴化鈉、溴化鉀、溴化鎂、氟化鈉、氟化鉀、 氟化鎂、碘化鋰、碘化鈉、碘化鉀、碘化鎂、碘化鈣、 碘化鳃及其組合。 46. —種形成鋼之方法,其包含: 在向液體水施加來自熱能儲存材料之能量時產生蒸 &gt;飞’邊熱能儲存材料係藉助於太陽輻射加熱; 使用可再生能源及燃料電池中之一或多者所提供之電 力使蒸汽解離為氫氣(H2)及氧氣(〇2); 將該H2及該〇2之至少一部分轉化為氫氧;及 在鋼熔爐中使用來自基於氫氣之鼓風爐的鐵形成鋼, 其中用於該鋼熔爐之熱量係藉由燃燒該氫氧之一部分提 供。 47. 如請求項46之方法,其進一步包含使該鋼熔爐中之鐵與 該〇2之至少一部分接觸。 48. —種形成鋼之系統,其包含: 組態成可將太陽能引導至太陽能儲存材料之圓頂或碟 型太陽能收集器; 該圓頂或碟型太陽能收集器下游之熱交換器,該熱交 換器具有該太陽能儲存材料’該熱交換器係用於自水產 生蒸汽; 154879.doc 201239098 該熱交換器下游之殼管式氫氣反應器,該殼管式氫氣 反應器係用於自蒸汽產生氫氣及氧氣;及 〜设&amp;式乳氣反應器下游之氫氣與氧氣分離器,該氫 氣與氧氣分離器係用於分離氫氣與氧氣。 49. 50. 51. 52. 53. 如請求項48之系統,其在該殼管式氫氣反應器下游進一 步包含鋼熔爐,該鋼熔爐係用於產生鋼。 一種形成氫氣及氧氣之系統,其包含: 無碳可再生能源,其係用於向與該無碳可再生能源熱 連接之熱能儲存介質提供能量; 接近該無碳可再生能源之熱交換器,該熱交換器係用 於藉助於來自該熱能儲存介質之能量 該熱交換器下游之氫氣產生器,該氫氣產生 自該熱交換器中所形成之蒸汽產生氫氣及氧氣。 如請求項50之系統,其中該氫氣產生器為流體化床反應 器或殼管式反應器。 一種形成氫氣及氧氣之方法,其包含: 在向液體水施加來自熱能儲存材料之能量時產生蒸 汽’該熱能儲存材料係藉助於無碳可再生能源加熱; 使乂或空氣與氫氣產生器中之含氧化鐵之材料接觸, 形成含鐵材料及氧氣(02);及 使蒸汽與該氫氣產生器中之含鐵材料接觸,形成含氧 化鐵之材料及氫氣(H2)。 如請求項52之方法’其進—步包含將制2及該02之至少 一部分轉化為氫氧。 154879.doc201239098 VII. Patent application scope: 1 · A system for producing steel, comprising: a heat exchanger for generating steam from liquid water by means of energy provided by carbon-free renewable energy; a hydrogen generator downstream of the heat exchanger, a hydrogen generator for generating hydrogen (h2) and oxygen (〇2) from steam; and a steel furnace downstream of the hydrogen reactor for utilizing H2 and 〇2 generated in the hydrogen generator Produce steel. 2. The system of claim 1 wherein the hydrogen generator comprises a shell and tube hydrogen reactor. 3. The system of claim 1, wherein the shell-and-tube hydrogen reactor tube is formed of iron oxide or coated with iron oxide. 4. The system of claim 1 wherein the hydrogen generator comprises a fluidized bed reactor. 5. The system of claim 4 wherein the fluidized bed reactor comprises particles formed of or coated with iron oxide. 6. The system of claim 1 further comprising a oxyhydrogen generator downstream of the hydrogen generator. 7. The system of claim 1, further comprising a hydrogen-based blast furnace downstream of the hydrogen generator and upstream of the steel furnace, the hydrogen-based blast furnace for producing iron (Fe) from Fe203. 8. The system of claim 7 which causes the steel furnace to be used to produce steel using the iron from the blast furnace based on hydrogen. 9_ The system of claim 1, wherein the heat exchanger comprises an exothermic energy storage 154879.doc 201239098 medium. 10. A system for requesting jgQ+, wherein the exothermic energy storage medium comprises a plurality of salts. The system of claim 10, wherein the one or more salts are selected from the group consisting of calcium carbonate, gasified hydrazine, strontium chloride, sodium bromide, potassium bromide, magnesium bromide, sodium fluoride, fluorinated unloading, and magnesium hydride , Wei Li, Changhua Na, moth potassium, broken Huazhen, Tiehua Office, cesium iodide and their combinations. 12. The system of claim 1, wherein the A A A . 、 、 、 居 居 升 升 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Solar concentrator. 14_ The system of claim 13, wherein the solar concentrator and the heat exchanger 15. The system of claim 1, the heat exchanger is about 5,000 suction 16. The system of claim 1, the gas generator About 5 17 17 · As in the system of claim 1, the steel furnace is about 500 miles. 18. The system of claim 1, comprising: wherein the renewable energy source is disposed at a distance from the crucible, wherein the heat exchanger is disposed at a maximum distance from the hydrogen D, wherein the hydrogen generator is disposed at a maximum distance from the The energy source comprises a solar disk whose reflective surface is used to direct the light bow to the point of the reflective surface. The energy storage container 'has the focal energy storage medium disposed on the reflective surface; ' 154879.doc 201239098 Or a plurality of ball bearings disposed on a bottom surface of the reflective surface; and two or more motors for adjusting the reflective surface along two or more axes. The system of claim 1, wherein the sun dish is a parabolic sun dish. A system of claim 1, wherein the hydrogen generator comprises an electrolysis unit. 21. The system of claim 1 wherein at least a portion of the energy used to generate % and 自2 from the steam is provided by one of the renewable energy sources and the fuel cell. $ 22. The system of claim 21, wherein the fuel cell is a solid oxide fuel cell. 23. The system of claim i, wherein the renewable energy source is selected from the group consisting of a photovoltaic cell, a geothermal energy generator, a wind turbine, a wave energy generator, and a hydroelectric energy generator. 24_ - a method of forming steel, comprising: generating steam from liquid water by means of energy provided by renewable energy; generating hydrogen (H2) and oxygen (〇2) from steam; and using hydrogen-based in a steel furnace The iron of the blast furnace forms steel, wherein the steel system is produced by means of the h2 and the enthalpy 2 generated from the steam. 25. The method of claim 24, wherein the vapor dissociation is ^ and 〇2 comprises: contacting the elemental iron-containing material with steam to form an iron oxide-containing material and H2; and the iron oxide-containing material dissociating into elemental iron Materials and 〇2. 26. The method of claim 25, wherein the iron oxide-containing material is dissociated by means of n, or air. &lt; 154879.doc 201239098 27. The method of claim 24, wherein the further white I 3 produces hydrogen and oxygen from H2 and 02. 28. The method of claim 27, wherein the opening: the steel into the steel comprises using energy from at least a portion of the combustion of the hydrogen. 29. The method of claim 24, wherein Η, 八八& 廿 γ 2 and 〇 2 are produced from steam in a shell and tube reactor or a fluidized bed reactor. The method of claim 2, wherein the generating steam from the liquid water comprises: directing energy from the renewable energy source to the thermal energy storage medium; and generating steam by means of the renewable energy stored in the thermal energy storage medium. 31. A method of forming hydrogen and oxygen, comprising: contacting >12 or air with an iron oxide-containing surface in a hydrogen generator to form an iron-containing surface and oxygen (〇2); from the hydrogen generator Removing 〇2; contacting the steam with the iron-containing surface in the hydrogen generator to form an iron oxide-containing surface and hydrogen (Η2), wherein the steam is generated by means of energy from a carbon-free renewable energy source; and from the hydrogen The generator moves out of η2. 32. The method of claim 31, wherein the hydrogen generator is a shell and tube reactor or a fluidized bed reactor. 33. The method of claim 31, wherein the % and the & are formed for steel smelting. 34. The method of claim 33, further comprising forming steel in the steel furnace by means of % and 〇2 formed in the hydrogen generator. 35. The method of claim 34, wherein the aging steel is formed using iron from a hydrogen-based blast furnace, wherein the heat used in the steel furnace is via combustion of the hydrogen 154879.doc 201239098 36. 37. 38. 39. 40 41. 42. The crucible 2 formed in the gas generator and at least a portion of the crucible 2 are provided. A steel forming system comprising: a heat exchanger having an exothermic energy storage medium for generating steam from water; an electrolysis unit downstream of the heat exchanger, the electrolysis unit being used for generating steam from steam And 〇2; a hydrogen-oxygen generator downstream of the electrolysis unit; a hydrogen-based blast furnace downstream of the electrolysis unit, the hydrogen-based blast furnace for producing iron (Fe) from FhO3; and a steel furnace downstream of the electrolysis unit, A steel furnace is used to produce steel using iron from the hydrogen-based blast furnace. The system of claim 36, further comprising a renewable energy source for providing electrical power to the electrolysis unit. The system of claim 37, wherein the renewable energy source is selected from the group consisting of one or more wind turbines and one or more fuel cells. For example, the &amp; exchanger is adjacent to Shaw Renewable Energy. The system of claim 37, wherein the one or more fuel cells are selected from the group consisting of proton exchange membrane fuel cells, solid oxide fuel cells, and molten carbonate fuel cells. The system of claim 36 further includes a solar concentrator for heating the exothermic energy storage medium. The system of claim 41, wherein the solar concentrator is a vertically stacked solar concentrator. 43. The system of claim 41, wherein the solar concentrator is adjacent to the heat exchanger. 44. The system of claim 41, wherein the exothermic energy storage medium comprises a salt. The system of item 44, wherein the salt is selected from the group consisting of calcium carbonate, gasified hydrazine, gasified hydrazine, sodium bromide, potassium bromide, magnesium bromide, sodium fluoride, potassium fluoride, magnesium fluoride, lithium iodide , sodium iodide, potassium iodide, magnesium iodide, calcium iodide, cesium iodide, and combinations thereof. 46. A method of forming steel, comprising: generating steam when applying energy from a thermal energy storage material to liquid water &gt; The fly-side thermal energy storage material is heated by means of solar radiation; the steam is dissociated into hydrogen (H2) and oxygen (〇2) using the power provided by one or more of the renewable energy source and the fuel cell; At least a portion of 〇2 is converted to oxyhydrogen; and iron is formed from a hydrogen-based blast furnace in a steel furnace, wherein heat for the steel furnace is provided by burning a portion of the oxyhydrogen. 46 method, which further comprises The iron in the steel furnace is in contact with at least a portion of the crucible 2. 48. A steel forming system comprising: a dome or dish type solar collector configured to direct solar energy to a solar energy storage material; a heat exchanger downstream of the top or dish type solar collector, the heat exchanger having the solar energy storage material 'the heat exchanger for generating steam from water; 154879.doc 201239098 Shell-and-tube hydrogen reaction downstream of the heat exchanger The shell-and-tube hydrogen reactor is for generating hydrogen and oxygen from steam; and a hydrogen and oxygen separator downstream of the &amp; type lacto-gas reactor for separating hydrogen and oxygen 49. 50. 51. 52. 53. The system of claim 48, further comprising a steel furnace downstream of the shell and tube hydrogen reactor, the steel furnace being used to produce steel. A system for forming hydrogen and oxygen, The invention comprises: a carbon-free renewable energy source for supplying energy to a thermal energy storage medium thermally coupled to the carbon-free renewable energy source; a heat exchanger close to the carbon-free renewable energy source The heat exchanger is for use in a hydrogen generator downstream of the heat exchanger by means of energy from the thermal energy storage medium, the hydrogen being generated from the steam formed in the heat exchanger to produce hydrogen and oxygen. a system wherein the hydrogen generator is a fluidized bed reactor or a shell and tube reactor. A method of forming hydrogen and oxygen, comprising: generating steam when applying energy from a thermal energy storage material to liquid water 'the thermal energy storage material Heating with carbon-free renewable energy; contacting the helium or air with the iron oxide-containing material in the hydrogen generator to form a ferrous material and oxygen (02); and causing steam and the iron-containing material in the hydrogen generator Contact to form a material containing iron oxide and hydrogen (H2). The method of claim 52, wherein the step of converting the system 2 and at least a portion of the 02 into hydrogen hydroxide. 154879.doc
TW100109459A 2011-03-18 2011-03-18 Clean steel production process using carbon-free renewable energy source TW201239098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100109459A TW201239098A (en) 2011-03-18 2011-03-18 Clean steel production process using carbon-free renewable energy source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109459A TW201239098A (en) 2011-03-18 2011-03-18 Clean steel production process using carbon-free renewable energy source

Publications (1)

Publication Number Publication Date
TW201239098A true TW201239098A (en) 2012-10-01

Family

ID=47599416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109459A TW201239098A (en) 2011-03-18 2011-03-18 Clean steel production process using carbon-free renewable energy source

Country Status (1)

Country Link
TW (1) TW201239098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110997947A (en) * 2017-07-03 2020-04-10 乔治洛德方法研究和开发液化空气有限公司 Method for operating an iron or steel plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110997947A (en) * 2017-07-03 2020-04-10 乔治洛德方法研究和开发液化空气有限公司 Method for operating an iron or steel plant
US11377700B2 (en) 2017-07-03 2022-07-05 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for operating an iron- or steelmaking- plant

Similar Documents

Publication Publication Date Title
WO2011116141A2 (en) Clean steel production process using carbon-free renewable energy source
Mao et al. Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide–A review
Muhich et al. A review and perspective of efficient hydrogen generation via solar thermal water splitting
Abanades et al. Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen
Yadav et al. A review of solar thermochemical processes
JP7085838B2 (en) Methods and systems for manufacturing carbon nanofibers
JP6092426B2 (en) Conversion of carbon dioxide to hydrocarbon fuel by a syngas production cell utilized from solar radiation
Guo Green nanotechnology of trends in future energy: a review
Crabtree et al. The hydrogen fuel alternative
Haribal et al. Modified ceria for “low‐temperature” CO2 utilization: a chemical looping route to exploit industrial waste heat
US20060048808A1 (en) Solar, catalytic, hydrogen generation apparatus and method
Chambon et al. Design of a lab-scale rotary cavity-type solar reactor for continuous thermal dissociation of volatile oxides under reduced pressure
JP5549732B2 (en) Hydrogen production method and apparatus
Dinçer et al. Hydrogen and fuel cell systems
Roeb et al. Solar thermal water splitting
Ozalp et al. An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production
WO2019050397A1 (en) System for energy storage including heat exchangers
Hinkley et al. Solar thermal energy and its conversion to solar fuels via thermochemical processes
Orfila et al. Experimental evaluation and energy analysis of a two-step water splitting thermochemical cycle for solar hydrogen production based on La0. 8Sr0. 2CoO3-δ perovskite
Lamb et al. Emerging technology for hydrogen and bioenergy production
Yadav et al. Advancements in microreactor technology for hydrogen production via steam reforming: A comprehensive review of experimental studies
Petrasch et al. Integrated solar thermochemical cycles for energy storage and fuel production
CN210560792U (en) Amino solar thermochemical solid oxide water electrolysis hydrogen production system
US20140255806A1 (en) Methane-based power generation with zero-carbon emissions
TW201239098A (en) Clean steel production process using carbon-free renewable energy source