TW201236510A - Apparatus, system and method for multi-channel illumination - Google Patents

Apparatus, system and method for multi-channel illumination Download PDF

Info

Publication number
TW201236510A
TW201236510A TW100147558A TW100147558A TW201236510A TW 201236510 A TW201236510 A TW 201236510A TW 100147558 A TW100147558 A TW 100147558A TW 100147558 A TW100147558 A TW 100147558A TW 201236510 A TW201236510 A TW 201236510A
Authority
TW
Taiwan
Prior art keywords
combinations
light
light sources
light source
combination
Prior art date
Application number
TW100147558A
Other languages
Chinese (zh)
Inventor
Kaathoven Dirk Jan Van
Ralph Kurt
Vries Jorrit Ernst De
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201236510A publication Critical patent/TW201236510A/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Disclosed are systems and methods for providing multi-channel illumination. A reflector and at least four solid state light sources are operable to emit light. A plurality of combinations of the solid state light sources are identified, where each of the combinations is operable to emit light that matches a target color point. The combinations are ranked based on their respective luminous flux value, and at least one of the combinations is selected based on the rank. A duty cycle of a control signal of each light source of the selected combinations is determined to control light emitted from the reflector.

Description

201236510 六、發明說明: 【發明所屬之技術領域】 本發明一般係關於提供混合光的系統及方法。更特定言 之,本文中揭示的多種發明性方法及裝置係關於控制多個 • 原色光源’以提供一所要色彩點之光。 【先前技術】 數位光照技術(即,基於半導體光源(諸如發光二極體 (LED))的照明)提供對於傳統螢光燈、HID及白熾燈的一可 實行的替代。LED的功能優點及益處包含高能量轉換及光 學效率、耐久性、低操作成本及許多其他。在許多應用 中’ LED技術的最新進展已提供實現多種光照效果的有效 率及穩健的全光譜光照源《體現此等源的一些器具特徵為 一光照模組,其包含可產生不同色彩(例如,紅色、綠色 及藍色)的一個或多個LED以及一處理器,處理器用於獨立 地控制該等LED的輸出,以產生多種色彩及色彩改變的光 照效果,例如美國專利第6,〇16,〇38號及第6,211,626號中所 詳細討論。 可藉由將不向原色光源組合成一所得色彩而產生一特定 色彩點的混合光。例如,當組合三個原色(例如,紅色、 綠色及藍色)的光時,可達成此等三個原色的色域中的每 一色彩。當組合兩個原色的光時,僅可達成該兩個原色之 間的一線上的色彩點。然而,當組合來自多於三個原色的 光時會出現一問題,此係因為該等原色的多於一個組合常 常可用於達成色域中的一所要色彩點,且因為當彼此比較 160698.doc 201236510 時,此等組合可具有光通量輸出上的明顯差異。 此問題的已知解決方案選擇許多原色組合的一者,其提 供所要色彩點的光,且使該等光源依選擇的作用時間循環 操作,以試圖達成該色彩點。然而,隨著該等光源的輸出 隨時間改變,或當選擇一不同的色彩點時’已知的解決方 案並不平滑地控制色彩點之間的轉變。色彩點之間缺乏此 一平滑轉變使光的品質劣化,且可被一觀看者注意到。 因此,此項技術中需要提供一種照明系統及方法,用以 提供來自一群組之原色光源的一所要色彩點之混合光,當 該所要色彩點跨色域而改變時,具有平滑轉變的穩健控 制。 【發明内容】 本發明係關於從一光照源提供照明的發明性方法及裝 置。例如,一反射器包含一陣列之固態光源。每一光源發 射一原色的光,且該等光源的不同組合發射色域上的相同 色彩點之光。一控制系統排序發射一特定色彩點之光的複 數個選擇,且&許多組合選擇發射具有最佳特性的該色彩 點之光的最佳光源組合。 / -般而言,在一態樣中’一種照明系統包含一反射器及 可操作以發射錢至少四個固態光源。該照明系統亦包含 一控制器,以識別該等固態光源的複數個組合,其中該等 組合之各者可經操作以發射匹配一目標色彩點的光。該控 制器基於該等組合的各自光通量值而排序該等組合,且某 於該排序而選擇該等組合之一者。該控制器判定該選擇: 160698.doc -4 - 201236510 組合的每一光源的一控制信號的一作用時間循環,以控制 由該選擇的組合從該反射器發射的光。 在一態樣中,一種方法從利用複數個固態光源的一光照 源提供照明。該方法識別該複數個固態光源的複數個組 合’其中該複數個組合之各者可經操作以發射匹配一目標 色彩點的光。該方法亦基於該複數個組合之各者的一各自 的光通量值排序該等組合,且基於該排序而選擇該複數個 組合之一者,作為一選擇的組合。該方法判定該選擇之組 合的每一光源的一控制信號的一作用時間循環,且可調變 i選擇之組合之每一光源的作用時間循環,以控制由該選 擇的組合發射的光。 在態樣中,提供一種編碼有一程式之電腦可讀取媒 體’其’該程式用於在-處理器上執行,當在該處理器上 執行該程式時,執行從具有複數個固態光源的一光照源提 供…、明的-方法。該方法識別該等固態光源的多個組合, 其中該等組合之各者可經操作以發射匹配一目標色彩點的 光:該方法基於該等組合之各者的一各自光通量值而排序 "亥等組合’且基於該排序而選擇複數個該等組合。該方法 對於該選擇的複數個組合之各者的每一光源個別地決定個 的作用時間循環,且基於該等個別的作用時間循環而決 定每一光源的總作用時間循環。該方法亦基於該等總作用 時間循環而控制由該選擇的組合發射的光。 j、,實施例中’該複數個組合的一選擇的組合發射的光 之-光通量值大於由該複數㈣合之其他各者發射之各自 ]60698.doc 201236510 的光通量值。在一些實施例中,基於該選擇之組合的每— 光源的作用時間循環而決定一作用時間循環預算,且基於 該排序而選擇該複數個組合之一第二者。亦可基於該作用 時間循環預算而決定該第二選擇之組合的每一光源的一作 用時間循環。在-實施例中,基於該選擇之組合的每一光 源之作用時間循環及該第二選擇之組合的每一光源的作用 時間循環而決定該等光源的一總作用時間循環。對於該等 光源的至少-者,亦可決定由該複數個組合提供的―累積 作用時間循環大於1。 人在一實施例中,基於該至少四個光源的兩者而定義一术 :光源,且基於該兩個光源的光通量而識別該複合光^ -光通量值m複合光源的—作用時間循環,且㈣ 输數個組合的該等光源組合而利用該複合光源。在一 貫施例中,該照明系統包含一光敏偵測器。該反射器可為 -管狀反射n ’且可包含—料,以絲自該Μ源之至 提供至該光敏侦測器。可基於從該光敏價測器 '收·的資讯而調整作用g车ρ卩彡法 门S 1下用時間循%。在一些實施例中,該201236510 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to systems and methods for providing mixed light. More specifically, the various inventive methods and apparatus disclosed herein relate to controlling a plurality of primary light sources to provide a desired color point of light. [Prior Art] Digital illumination technology (i.e., illumination based on semiconductor light sources such as light emitting diodes (LEDs)) provides an operative alternative to conventional fluorescent lamps, HIDs, and incandescent lamps. The functional advantages and benefits of LEDs include high energy conversion and optical efficiency, durability, low operating costs and many others. In many applications, the latest advances in LED technology have provided efficient and robust full-spectrum illumination sources that enable multiple illumination effects. Some of the instrumental features that embody these sources are a lighting module that contains different colors (eg, One or more LEDs of red, green, and blue) and a processor for independently controlling the output of the LEDs to produce a variety of color and color-changing lighting effects, such as U.S. Patent No. 6, 〇 16, It is discussed in detail in 〇38 and 6,211,626. The mixed light of a particular color point can be produced by combining the primary color sources into a resulting color. For example, when combining three primary colors (e.g., red, green, and blue), each of the colors in the three primary colors can be achieved. When the two primary colors of light are combined, only the color points on one line between the two primary colors can be achieved. However, a problem arises when combining light from more than three primary colors, since more than one combination of such primary colors can often be used to achieve a desired color point in the color gamut, and because when compared to each other 160698.doc At 201236510, these combinations can have significant differences in luminous flux output. A known solution to this problem selects one of a number of primary color combinations that provide light of a desired color point and causes the light sources to cycle through the selected time of action in an attempt to achieve the color point. However, the known solutions do not smoothly control the transition between color points as the output of the light sources changes over time, or when a different color point is selected. The lack of such a smooth transition between color points degrades the quality of the light and can be noticed by a viewer. Therefore, there is a need in the art to provide an illumination system and method for providing a mixture of desired color points from a group of primary color sources that have a smooth transition when the desired color point changes across the color gamut. control. SUMMARY OF THE INVENTION The present invention is directed to an inventive method and apparatus for providing illumination from an illumination source. For example, a reflector includes an array of solid state light sources. Each source emits light of a primary color, and different combinations of the sources emit light of the same color point on the color gamut. A control system sorts a plurality of selections of light that emit a particular color point, and &&;; many combinations select the best combination of light sources that emit light of that color point having the best characteristics. / - Generally speaking, in one aspect, an illumination system includes a reflector and is operable to emit at least four solid state light sources. The illumination system also includes a controller to identify a plurality of combinations of the solid state light sources, wherein each of the combinations is operable to emit light that matches a target color point. The controller sorts the combinations based on the respective luminous flux values of the combinations, and selects one of the combinations based on the ranking. The controller determines the selection: 160698.doc -4 - 201236510 A combined time cycle of a control signal for each of the combined light sources to control the light emitted by the reflector from the selected combination. In one aspect, a method provides illumination from a source of illumination utilizing a plurality of solid state light sources. The method identifies a plurality of combinations of the plurality of solid state light sources wherein each of the plurality of combinations is operable to emit light that matches a target color point. The method also ranks the combinations based on a respective luminous flux value of each of the plurality of combinations, and selects one of the plurality of combinations based on the ranking as a selected combination. The method determines an active time cycle of a control signal for each of the selected combinations of light sources and adjusts the active time cycle of each of the light sources to control the light emitted by the selected combination. In an aspect, a computer readable medium encoding a program is provided for 'executing' for execution on a processor, and when executing the program on the processor, performing one from a plurality of solid state light sources The light source provides ..., the clear - method. The method identifies a plurality of combinations of the solid state light sources, wherein each of the combinations is operable to emit light that matches a target color point: the method ranks based on a respective luminous flux value of each of the combinations " Hai et al. 'and select a plurality of such combinations based on the ranking. The method individually determines an active time cycle for each of the plurality of selected combinations of the plurality of combinations, and determines a total active time cycle for each of the light sources based on the individual active time cycles. The method also controls the light emitted by the selected combination based on the total time-cycle of the cycles. j. In the embodiment, a selected combination of the plurality of combinations emits a light-to-light flux value that is greater than a luminous flux value of each of the plurality of (four) combinations of each of the other 60720.doc 201236510. In some embodiments, an active time cycle budget is determined based on a duty cycle of each of the light sources of the selected combination, and one of the plurality of combinations is selected based on the ranking. A time period of each source of the combination of the second selections may also be determined based on the duty cycle budget. In an embodiment, a total active time cycle of the light sources is determined based on the active time cycle of each light source for each light source of the selected combination and the second time combination. For at least one of the light sources, it may also be determined that the "cumulative action time" provided by the plurality of combinations is greater than one. In one embodiment, a light source is defined based on the at least four light sources, and a time-duration cycle of the composite light source-light flux value m composite light source is identified based on the light flux of the two light sources, and (4) The composite light source is utilized by combining a plurality of combinations of the light sources. In one embodiment, the illumination system includes a photodetector. The reflector can be - tubular reflective n' and can comprise a supply of wire from the source to the photodetector. The time-lapse % can be adjusted based on the information received from the photo-sensitivity detector. In some embodiments, the

光源發射一不同原色的光, 〇X 各者包含至少一發光二…少,態光源之 2實施例中,基於該作用時間循環預算而按比例縮放 猶環V固選擇之組合係共同的至少一光源的-作用時間 仙。亦可調整該選擇之組合之每_光源的作用時j 該選擇之組合發射的光維持於該目標色彩點。在- 二Η 列令,比較該等個別作用時間猶環與一作用時間循 I60698.doc 201236510 :預算’且按比例縮放至少一個別的作用時間循環,以決 定一總作用時間循環。 '' 出於本發明之目的’如在本文巾所使料術語「LED」 應理解為包含任意電致發光二極體或可回應於一電信號產 ^輻射的其他類型基於載子注入/接面的系統。因此,術 6吾LED包含但不限於回應於電流發射光的多種基於半導體 的”、。構、發光聚合物、有機發光二極體(〇led)、電致發 光條及類似物。特定言之’術語LED指可經組態以在紅外 、、東光》、a紫外線光谱及可見光譜(一般包含從約4 〇 〇奈米至 約700奈米的輻射波長)之多種部分的一者或多者中產生輻 射所有類型的發光二極體(包含半導體及有機發光二極 體)。LED的一些實例包含但不限於多種類型的紅外線 LED、紫外線LED、紅色LED、藍色LED、綠色LED、黃 色LED、琥珀色led、橙色LED及白色LED(在下文中進一 步讨論)。亦應瞭解,LED可經組態及/或經控制以對於一 給定光譜(例如’較窄頻寬、較寬頻寬)產生具有多種頻寬 (例如’半高全寬,或FWHM)的輻射,及在一給定一般色 彩分類中的多種主要波長。 例如’經組態以產生基本上白光的一 LED(例如,白色 LED)的—實施可包含許多晶粒,該等晶粒分別發射不同光 譜的電致發光,該等不同光譜的電致發光經組合混合以形 成基本上白光。在另一實施中,一白光LED可與一磷光體 材料關聯,該磷光體材料將具有一第一光譜的電致發光轉 換為一不同的第二光譜。在此實施的一實例中,具有一相 160698.doc 201236510 泵吸」該磷光體 寬光譜的更長波 對較短波長及較窄頻寬光譜的電致發光Γ 材料,其繼而輻射具有在某種程度上一更 長輻射。 亦應理解,術語LED並不限制一LED的實體及/或電封裝 類型。例如,如上文所討論,一 LED可指—單一發光器 件,其具有經組態以分別發射不同光譜之麵射的多個晶粒 (例如,其可能或可能不個別可控制)^再者,_ [ED可與 視作該LED之一成整體部分的一磷光體關聯(例如,一些類 型的白色LED)。-般而言,術語刷可指封裝的led、未 封裝的LED、表面安裝LED、板上晶片LED、了封裝安裝 LED '徑向封裝lED、功率封裝LED、包含一些類型之外 罩及/或光學元件(例如,一漫射透器)的led,等等。 術語「光源」應理解為指多種輻射源的任意一者或多 者’包含但不限於基於LED的源(包含如上文所定義的一個 或多個LED)、白熾源(例如’白熾燈、齒素燈)、螢光源、 磷光發光源、高強度放電源(例士口,鈉汽燈、汞汽燈及金 屬齒化物燈)、雷射、其他類型的電致發光源、熱電發光 源(例如,火焰)' 燭光源(例如,汽燈罩、碳孤輕射源)、 光致發光源(例如,氣體放電源)、使用電子飽和的陰極發 光原U光源、晶體發光源、運動發光源、熱發光 源、摩擦發光源、聲致發光源、㈣發光源及發光聚合 物。 一給定光源可經組態以產 或兩者之一組的電磁輻射合 生可見光譜内、可見光譜之外 。因此’在本文中可交替使用 160698.doc 201236510 術語「光」及「輻射」。另外,一光源可包含作為一成整 體組件之一個或多個濾光器(例如,彩色濾光器)、透器或 其他光學組件。再者應理解,光源可經組態以用於多種應 用,包含但不限於指示、顯示及/或照明。一「照明源」 係特定地經組態以產生輻射的一光源,該輻射具有一足夠 強度以有效率地照亮一戶内或戶外空間》在此内文中, 「足夠強度」指在空間或環境中產生的可見光譜中足夠的 輻射功率(通常利用單位「流明」來表示從一光源在所有 方向上就照輻射功率或「光通量」而論的總光輸出),以 提供周圍照明(即’可間接感知的光,且可例如在整體或 部分感知之前從一個或多個多種中介表面反射開 術語「光譜」應理解為指由一個或多個光源產生的輻射 之任意一個或多個頻率(或波長)。相應地,術語「光譜」 指不僅在可見範圍内的頻率(或波長),而且在整個電磁光 譜之紅外線區域、紫外線區域及其他區域内的頻率(或波 長)。再者,一給定光譜可具有一相對較窄的頻寬(例如, 具有基本上較少頻率或波長分量的一 FWHM)或一相對較 寬的頻寬(具有多種相對強度的頻率或波長分量)。亦應瞭 解,一給定光譜可為兩個或兩個以上其他光譜之一混合的 結果(例如,分別從多個光源發射的混合輻射)。 出於本發明的目的,術語「色彩」可與術語「光譜」交 替使用。,然而’術語「色彩」—般主要用於指可由一觀看 者感知的輻射的-性質(儘管此用法並不意欲限制此術語 的範圍)。相應地’術語「不同色彩」暗指具有不同波長 160698.doc 201236510 分量及/或頻寬的多個光譜。亦應瞭解,術語Γ色彩」可 與白光及非白光兩者連同使用。 術語「色溫」在本文中一般與白光連同使用,儘管此用 法並不意欲限制此術語的範圍。色溫基本上指白光的一特 定色彩内容(color content)或色澤(shade)(例如,微紅色、 微藍色)。按慣例根據與一給定輻射樣本基本上輻射相同 光譜的一黑體輻射體的克耳文溫度度數(κ)而特徵化正在 討論中的該輻射樣本的色溫,黑體輻射體色溫一般落在從 約700度Κ(通常視作對於人眼可見之第一者)至超過1〇〇〇〇 度κ的一範圍内;白光一般以超過^⑼度尺至汕㈧度κ的色 溫感知。 較低色溫一般指示具有一更明顯紅色分量或一「較暖感 覺」的白光,而較南色溫一般指示具有一更明顯藍色分量 或一「較冷感覺」的白光。經由實例’火具有約^⑼紅 的一色溫,一習知白熾燈泡具有約之^“度尺的一色溫早 晨的日光具有約3,000度Κ的一色溫,且正午陰天的天空具 有約10’GGG度κ的-色溫4白光下觀看的具有約3,_度 K的一色溫的一色彩影像具有一相對微紅色調,而具有約 1〇,_度艮的一色溫的相同色彩影像在白光下觀看具有一 相對微藍色調。 ' 本文中所使用的術m「光照器具」#以—特定外觀尺寸 的一個或多個光照單it、總成或封裝的_實施或配置。本 文中所使用的術語「光照單元」#包含—個或多個相同或 不同類型的光源的一裝置。一給定光照單元可具有對於該 160698.doc 201236510 (該等)光源、封閉體/外殼配置與形狀及/或電及機械連接 組態的多種安裝配置之任意一者。另外’一給定光照單元 視需要可與(與該(該等)光源之操作相關的)多種其他組件 (例如,控制電路)關聯(例如,包含,耦接至及/或一起封 裝)。一「基於LED的光照單元」指包含如上文所討論的一 個或多個基於LED的光源的一光照單元,其係單獨的或與 其他不基於LED的光源組合。一「多通道」光照單元指基 於LED或不基於LED的一光照單元,其包含至少兩個光 源’其等經組態以分別產生不同的輻射光譜,其中每一不 同源光譜可稱為該多通道光照單元的一「通道」。 本文中使用的術語「控制器」一般描述關於一個或多個 光源之操作的多種裝置。一控制器可以多種方式實施(例 如,用專屬硬體),以執行本文中討論的多種功能。一 「處理器」係一控制器的一實例,其利用一個或多個微處 理器’其等可使用軟體(例如,微碼)而程式化,以執行本 文中所討論的多種功能。一控制器可利用一處理器或不利 用一處理器而實施,且亦可柞&袖y_ 丌]作為執仃一些功能的專屬硬體 及執行其他功能的一 # I® 51 / -&ii jv. 扪處理器(例如’-個或多個程式化微 =及相關電路)的一組合而實施。可在本發明之多種 理/特1用的控制器組件的實例包含但不限於習知微處 里器、特殊應用積體電路(Α (FPGa” %(ASIC)及场可程式化閘陣列 在夕種實施中,—處理器 M mr μ 工制器可與一個或多個儲存 螺體關聯(-般在本文中稱 匕愿體」,例如,揮發性記 160698.doc 201236510 憶體及非揮發性電腦記憶體,The light source emits light of a different primary color, and each of the 〇X includes at least one illuminating light. In the embodiment of the state light source, at least one of the combinations of the quaternary ring V solid selection is scaled based on the duty cycle budget. The time of the light source - the action time. It is also possible to adjust the effect of each of the selected combinations of light sources. j The selected combination of light is maintained at the target color point. In the -2 Η order, compare the individual action times with a time period of I60698.doc 201236510: Budget' and scale at least one other action time cycle to determine a total action time cycle. ''For purposes of the present invention', as used herein, the term "LED" shall be taken to include any electroluminescent diode or other type of carrier-based injection/connection that may respond to an electrical signal. Surface system. Therefore, the LEDs include, but are not limited to, a variety of semiconductor-based, photoluminescent, organic light-emitting diodes, electroluminescent strips, and the like that respond to current-emitting light. 'The term LED refers to one or more of a variety of parts that can be configured to be in the infrared, east light, a ultraviolet spectrum, and the visible spectrum (generally containing a radiation wavelength from about 4 nanometers to about 700 nanometers). Radiation generates all types of light-emitting diodes (including semiconductors and organic light-emitting diodes). Some examples of LEDs include, but are not limited to, various types of infrared LEDs, ultraviolet LEDs, red LEDs, blue LEDs, green LEDs, yellow LEDs. , amber led, orange LED, and white LED (discussed further below). It should also be understood that LEDs can be configured and/or controlled to produce for a given spectrum (eg, 'narrower bandwidth, wider bandwidth') Radiation with multiple bandwidths (eg 'half height full width, or FWHM'), and multiple major wavelengths in a given general color classification, such as 'an LED configured to produce substantially white light (eg, white) The implementation of the LED) may comprise a plurality of grains which respectively emit electroluminescence of different spectra which are combined to form substantially white light. In another implementation, a white LED Associated with a phosphor material that converts electroluminescence having a first spectrum into a different second spectrum. In one example of this implementation, there is a phase 160698.doc 201236510 pumping" The longer wavelength of the broad spectrum of the phosphor versus the shorter wavelength and narrower bandwidth spectrum of the electroluminescent Γ material, which in turn has a somewhat longer radiation to some extent. It should also be understood that the term LED does not limit the physical and/or electrical package type of an LED. For example, as discussed above, an LED can refer to a single light emitting device having a plurality of dies configured to emit different spectra of the respective spectra (eg, which may or may not be individually controllable), _ [ED can be associated with a phosphor that is considered an integral part of one of the LEDs (eg, some types of white LEDs). In general terms, the term brush may refer to packaged led, unpackaged LEDs, surface mount LEDs, on-board wafer LEDs, package mounted LEDs 'radial package lEDs, power package LEDs, include some types of covers and/or optics The LED of the component (for example, a diffuser), and so on. The term "light source" is understood to mean any one or more of a plurality of radiation sources 'including but not limited to LED-based sources (including one or more LEDs as defined above), incandescent sources (eg 'incandescent lights, teeth Prime lamp), fluorescent light source, phosphorescent light source, high-intensity discharge power source (such as Shishikou, sodium vapor lamp, mercury vapor lamp and metal toothed lamp), laser, other types of electroluminescence source, thermoelectric light source (for example, flame ) 'candle source (eg, lamp cover, carbon source), photoluminescence source (eg, gas discharge source), cathode-illuminated U-light source using electron saturation, crystal illumination source, motion illumination source, thermal illumination source , a rubbing light source, an sono light source, (four) a light source, and a light emitting polymer. A given source of light can be configured to produce electromagnetic radiation in one or both of the visible spectra outside the visible spectrum. Therefore, the term "light" and "radiation" are used interchangeably herein. Additionally, a light source can include one or more filters (e.g., color filters), diffusers, or other optical components as a unitary component. It should also be understood that the light source can be configured for a variety of applications including, but not limited to, indication, display, and/or illumination. An "illumination source" is a source of light that is specifically configured to generate radiation having a sufficient intensity to efficiently illuminate an indoor or outdoor space. In this context, "sufficient strength" refers to space or Sufficient radiant power in the visible spectrum produced in the environment (usually using the unit "lumens" to represent the total light output from a source in all directions versus radiant power or "light flux") to provide ambient illumination (ie ' Light that can be indirectly perceived, and can be reflected from one or more intervening surfaces, for example, before or in whole or in part. The term "spectrum" is understood to mean any one or more frequencies of radiation produced by one or more sources ( Or wavelength. Accordingly, the term "spectrum" refers to a frequency (or wavelength) that is not only in the visible range, but also in the infrared region, the ultraviolet region, and other regions of the entire electromagnetic spectrum. A given spectrum may have a relatively narrow bandwidth (eg, a FWHM having substantially less frequency or wavelength components) or a relatively wider Wide (frequency or wavelength component with multiple relative intensities) It should also be appreciated that a given spectrum can be the result of mixing one of two or more other spectra (eg, mixed radiation emitted from multiple sources, respectively). For the purposes of the present invention, the term "color" can be used interchangeably with the term "spectrum." However, the term "color" is used primarily to refer to the nature of the radiation that can be perceived by a viewer (although this usage is not intended Limit the scope of this term.) The term 'different colors' implies different spectra with different wavelengths of 160698.doc 201236510 components and/or bandwidth. It should also be understood that the term "color" can be used with both white and non-white light. The term "color temperature" is used herein generally in conjunction with white light, although this usage is not intended to limit the scope of the term. Color temperature essentially refers to a particular color content or shade of white light (eg, , reddish, bluish), according to convention, the Kerr temperature of a blackbody radiator that radiates substantially the same spectrum as a given radiation sample (κ) characterizing the color temperature of the radiation sample in question, the color temperature of the black body radiator generally falls from about 700 degrees Κ (usually regarded as the first one visible to the human eye) to more than 1 κ κ Within a range; white light is generally perceived as a color temperature greater than ^(9) to 汕(eight) degrees κ. Lower color temperature generally indicates white light with a more pronounced red component or a "warm sensation", while the southern color temperature generally indicates a more pronounced blue component or a "cold feeling" of white light. By way of example, the fire has a color temperature of about ^(9) red, a conventional incandescent bulb has a color temperature of about 2,000 degrees. a color temperature of one degree, and the sky of the midday cloudy has a color image of about 10'GGG degrees κ-color temperature. The color image having a color temperature of about 3, _ degrees K has a relatively reddish hue, and has a A color image of the same color temperature of about 1 inch, _ degree 具有 has a relatively slight blue hue when viewed under white light. The technique m "lighting device" used in this document is implemented or configured with one or more lighting sheets it, assembly or package of a specific appearance size. The term "lighting unit" as used herein includes a device that has one or more light sources of the same or different types. A given lighting unit can have any of a variety of mounting configurations for the 160698.doc 201236510 (these) light source, enclosure/housing configuration and shape, and/or electrical and mechanical connection configuration. In addition, a given illumination unit can be associated (e.g., included, coupled to, and/or packaged together) with a variety of other components (e.g., control circuitry) associated with the operation of the source (as such). An "LED-based lighting unit" refers to a lighting unit that includes one or more LED-based light sources as discussed above, either alone or in combination with other non-LED-based light sources. A "multi-channel" illumination unit refers to an illumination unit based on LEDs or not based on LEDs, which includes at least two light sources 'which are configured to generate different radiation spectra, respectively, wherein each different source spectrum may be referred to as that A "channel" of the channel lighting unit. The term "controller" as used herein generally describes a variety of devices relating to the operation of one or more light sources. A controller can be implemented in a variety of ways (e. g., with proprietary hardware) to perform the various functions discussed herein. A "processor" is an example of a controller that is programmed with one or more microprocessors (such as microcode) to perform the various functions discussed herein. A controller can be implemented by a processor or without using a processor, and can also be used as a dedicated hardware for performing some functions and a function of performing other functions. # I® 51 / -& Ii jv. Implemented by a combination of processors (eg, '- or more stylized micro= and related circuits). Examples of controller components that may be used in various embodiments of the present invention include, but are not limited to, conventional micro-integrators, special application integrated circuits (Α(FPGa)%(ASIC) and field programmable gate arrays) In the implementation of the present invention, the processor M mr μ can be associated with one or more storage screws (generally referred to herein as a wish body), for example, volatiles 160698.doc 201236510 Recalling and non-volatile Sexual computer memory,

及 EFPROM 从· 邊如 RAM、PROM ' EPROM 及EEPR〇M、軟碟、緊密光碟(com^⑴ (optical disk)、磁帶等等)β在—此 ' 編碼有-個或多個程式,當於,㈣存媒體可 :個或多個處理器及/ ¾控 制器上執行程式時,執行本 U器及/或控 _ .., 中对3W的至少一些功能。多 種儲存媒體可固定於一處理一 ΑΑ Χ衩利器内,或可為可運送 的,使仵儲存於其上的一個 個程式可載入至—虛 或控制器中,以便實施本文中 處 宁4响的本發明的多種態樣。 本文中使用的術語「程式或「 ^ 飞電腦程式」以一般的意義 刑沾带_ , 义多個處理15或控制器的任意類 ,電腦程式碼(例如,軟體或微碼卜 ⑷如t所使用的術4「可選址」指經組態以接收資訊 ⑽如’資料)的一器件(例如’ 一般的一光源、一光照單元 : 肖個或多個光源或光照單元關聯的一控制器或 =器、其他與光照不相關的器件,等等),該資訊意欲 ^個器件’包含其自身,且以選擇性地回應於其意欲 ^ ^疋資訊。術語「可選址」通常與一網路環境(或一 網路」,在下文中進-步討論)連同使用, 經由-些通信媒體而輕接至一起。 在—網路實施中,耦接至一網路的一個或多個器件可用 作對於耦接至該網路(例如,以一主/從關係)的一個或多個 、器件的控制器。在另一實施中,一網路環境可包含 ,或多個專屬控制器,其等經組態以控制麵接至該網路 的個或多個該等器件。一般而言,耦接至該網路的多個 ^〇698.doc 12 201236510 器件之各者可具有對於存在於該通信媒體上的資料的入 口i然而’-給定ϋ件可為「可選址」在於其經組態以例 如基於指派至其的一倘劣客加此+ _ μ μ多個特定朗符(例如「位址」) 而選擇性地與該網路交換資料 _ 吳育枓(即,從該網路接收資料及/ 或傳輸資料至該網路)。 。本文中使用的術語「網路」指促進任意兩個或兩個以上 器件之間及/或耦接至該網路之多個器件之間的資訊傳輸 (例如,用於器件控制、眘钮紗— 貪枓儲存、資料交換等等)的兩個 或兩個以上器件(包含抟备丨$ + + _ 1匕3控制器或處理器)的任意互連。如應 容易地瞭解,適宜於互連多個器件的網路的多種實施可包 含多種網路拓撲之Μ者,且利用多種通信協定之任意 者》另外,在根據本發明的多種網路中,兩個器件之間的 任意-連接可表示兩個系統之間的—專屬連接,或替代地 為一非專屬連接。除承載意欲用於該兩個器件的資訊之 卜此#專屬連接亦可承載並非必需意欲用於該兩個器 =之任-者的資訊(例如’―開放的網路連接卜此外,應 今易地瞭解’本文中所討論的器件之多種網路可利用一個 或多個無線/有線/電境’及/或光纖鏈接,以促進貫穿該網 路的資訊傳輸。 本文中使用的術語「你田本八二 使用者介面」指一人類使用者或操 作者與-個或多個器件之間的—介面,該介面實現該使用 者與該(該等)器件之間的通信。可在本發明之多種實施中 利用的使用者介面的實例包含但不限㈣關、電位計、按 紐、撥盤、滑桿、-滑鼠、鍵盤、小鍵台、多種類型的遊 160698.doc 201236510 戲控制器(例如,操縱桿)、軌跡球、顯示螢幕、多種類型 的圖形使用者介面(GUI)、觸控螢幕、麥克風以及可接收 一些形式的人類產生的刺激且回應於其而產生—信號的其 他類型感測器。 無論是否由-彩色LED,—單獨的磷光體或與—滤光器 組。的磷光體’透器或其他光學組件提供,術語「原色」 應理解為指由—離散光源提供的㈣色彩。-原色包含可 與至^ 4固其他原色組合以建立一複色的任何色彩。應瞭 術"口原色」可與以任意頻率發射輕射的一離散光源 連同使用。 應瞭解,前述概念及下文中更詳細討論的額外概念的所 有組合(假設此等概念並不相互矛盾)預期為本文中揭示之 發明性標㈣部分。特定’在本發明末尾出現的所主 張的‘的的所有組合預期為本文中揭示之發明性標的的部 刀亦應瞭解’本文中明確利用的術語(亦可出現於以引 用方式併入的任意揭示中)應與本文中揭示之特定概念最 相符的意義一致。 【實施方式】 圖式中’相同參考字符貫穿不同視圖一般指相同部分。 再者’該等圖式並不必需按比例㈣,取而代之,一般是 出於強調繪示本發明的原理。 由於多於-個組合的原色導致在色域中的一所要色彩 點’找到此等原色的最佳組合仍是一問題。申請者已意識 到及瞭解到;^多個源找到發射具有最佳特性(諸如,通 160698.doc -14· 201236510 量)的所要色彩點之光的一光組合將為有益的。鑑於前 文’本發明的多種實施例及實施係關於識別發射—所要色 彩點之混合光的複數個原色光源組合,且控制該等光源以 發射具有最高可達成通量的該色彩點之混合光的照明系統 及方法。 參考圖1,在一實施例中,照明系統100包含至少一光照 單元105❶光照單元105包含複數個固態光源11〇,諸如一 個或多個LED ^例如,每一光源11〇可包含發射一原色(諸 如紅色、.綠色、藍色 '青色、號泊色、雜色、深紅、或白 色,以及其他)的光的一個或多個LED。在一實施例中,光 照單元105包含至少四個光源11〇,每一者經組態以發射一 不同原色的光。光照單元105亦可包含至少一控制器丨。、 至夕一光敏偵測器120及至少一溫度感測器125。控制器 115 -般例如基於來自光敏伯測器12 〇或溫度感測器^ 2 5的 資訊而決錢作光源m的控制信號的作用時間循環,該 資訊可用於決定該等光源的光通量輸出及波長以及預定 資訊或所要輸出,諸如一目標色彩點。控制器115可包含 於光照單元105内,或從光照單元105分離。 在貫施例中,控制器i J 5使光源i i 〇依其等計算的作用 夺間循環刼作。光照單元105將從光源110發射的光混合, 以提供可從光照單元105輸出的一混合光,以最佳輸出特 Μ該目;^色彩點照亮—物件。例如,控制器⑴可決定 光源110的個別作用時間循,裒使得該目標色彩點的混合 輸出光具有一最大可達成的通量。 160698.doc -15· 201236510 圖2描繪照明系統100的一實例。參考圖2,在一實施例 中,複數個光源11 〇經配置以朝向至少一反射器205發射 光。反射器205包含一反射性内表面、一入口孔隙及一出 口孔隙。在一實施例中,光源110形成一陣列,其將光發 射至該入口孔隙中,且從該出口孔隙出來。來自多種光源 110的光在反射器205中混合,且經由該出口孔隙出去。該 光可準直為具有一硬邊緣的一白色光束,其例如可操作為 一電影院中的一投影聚光。在一實施例中,該出口孔隙大 於該入口孔隙。反射器205可為一管狀反射器,或多種其 他形狀’包含圓柱及多邊形。在一實施例中,反射器2〇5 包含複數個光導210〇來自至少一光源11〇的光跟隨至少一 光導210至光敏偵測器120,該光敏偵測器120可感測各自 光源110之光通量》 圖3繪示來自可從複數個原色組合獲得的一色域上的一 色彩點。在圖3之實例中,該色域上存在五個光源丨丨〇, 即’紅色(R) '綠色(G)、藍色(b)、琥珀色(A)及白色(W)。 其他光源110係可行的,諸如青色或洋紅。落入由任意三 個光源110之組合建立的三角形内的色彩點0及^座標)可藉 由混合該等各自光源11〇的光而獲得。例如,具有(〇 35, 0.25)之(X,y)座標的目標色彩點描繪於圖3中。光源的 組合(其等的三角形與此目標色彩點交疊)可在此目標色彩 點提供混合光。在此實例中,BRW、BGR、bga及baw組 合之各者包含在目標色彩點(〇.35, 0.25)提供混合光的三個 光源11 〇此外,原色組合BGW、GAW、ARW、GAR、 160698.doc -16 * 201236510 BAR及GRW並不與該目標色彩點交疊,且無法提供與圖3 之該目標色彩點匹配的混合光,例如,見表i。 是否在 BGW GAW ARW BRW BGR GAR BGA BAR GRW BAW 色域内? 否 否 否 是, 是 否 是 否 否 是 表1 根據一些實施例,控制器115評估此等組合,且決定該 專個別光源11 〇(例如,R、G、B、A及W)之一 PWM控制信 號的作用時間循環,提供具有最高可達成光通量的該目標 色彩點之混合光。例如,控制器丨15識別該目標色彩點, 其可作為一輸入提供至控制器丨丨5,且識別光源11 〇的色彩 點。控制器115亦識別或決定光源11〇的最大通量。控制器 ⑴從此輸人資訊識別覆蓋該目標色彩點的光源⑽的組合 (例如’該色域之(x,y)軸上可能的三角形,如圖从表”。 繼續此實例’控制器115計算形成提供該目標色彩的該等 組合的該等個別光源110的作用時間循環。例如,在 BRW、職、BGA及BAW組合之各者覆蓋該目標色彩點之 處’控制器115決定對·於|_卜梦& 、疋對於此#組合之各者的藍色、紅色、 白色、綠色及琥珀色光泝 時間循環。 ’、G之各者的—控制信號的作用 在一實施例中,當掉竹技 -先们〗… 制器115將每-組合的每 光源11 0之作用時間 S, 〇 ^ ^ . 裒相加,以與該目標色彩點匹 配。根據此貫施例,藉由 守所選擇的組合之久去的禮樓 之原色光源的作用時間。之各者#選擇 光源Μ 1接以 、的—值相加到一起而決定每一 元源的一累積作用時間 可 門循%(該選擇之原色光源出現在該 I60698.doc -17- 201236510 選擇的組合内)。思斗 . 來自四個選擇之組合 ^前實例令,該藍色光源包含 色、白色、號站色及綠^ 用時間循環,且該等紅 细么忐去 、源之各者包含在該四個選擇之 ,·且S之兩者内的作用時間循環。 當形成一组合之邱八从 Η循璟冬丨於η 有光源110之該等累積作用時 間4袞各小於1時,控制器 作用時間循環操作,且每 光源110依該累積 、且母-光源"0對匹配該目標色彩點 的混合輸出光有貢獻。缺 ’錄&而在一實施例中,此等累積作用 時間循&之至j -者大於卜例如,若該藍色光源no的作 用時間循環在該BRW組合令為㈣,且在該BGR組合中為 0.68,則其累積作用時間循環係128。根據一實施例該 藍色光源11〇在此實例中無法完全對該等BRW及BGR組合 兩者有貢獻(即’大於赚。的一作用時間循環比率係不可 月b的),且控制器115實施進一步的操作,以將每一光源 H0之累積作用時間循環減小至不大於1的一值。 根據一些實施例,控制器115根據該等組合對該總光通 量的貝獻而排序該等组合。例如’該等組合的光源1丨〇可 按以下順序排序’從最高到最低通量:BRW、BAW、BGH 及BGA。其他原色光源11〇組合及排序係可能的,例如, 為匹配該色域中的不同目標色彩點。控制器n 5選擇相對 於其他組合對該總通量貢獻最多的組合(例如,BRW),且 識別該選擇之組合的每一光源110(B、R及W)的作用時間 循環。在此實例中,此等作用時間循環從1(總作用時間循 環預算)減去,以獲得對於光源11 〇可用的剩餘作用時間循 160698.doc • 18- 201236510 衣預算例如,若藍色光源lio在組合BRW中具有〇 59的 作用時間彳;I環,則對於剩餘組合,藍色光源11G的剩餘 作用時間循環預算為〇·41。控制器115接著選擇具有最高 通量的幻餘組合,且比較此第二組合的作用時間循環與剩 餘作用時間循環預算。該第二選擇的組合之作用時間循環 從剩餘的作用時間循環預算減去,且可按比例縮放以擬合 於該預算内。可重複此程序,直到已包含覆蓋該目標色彩 點的每一組合。例如在一實施例中,該第二選擇之組合中 3的個或多個光源的作用時間循環超過該剩餘的作用 時間循環預算。在此實例中,控制器】15按比例減小形成 該選擇之組合的光源1 10之作用時間循環,以將該等作用 時間循環維持於該剩餘的預算内。當以此方式按比例縮放 時,該選擇之組合對光照單元1〇5(或反射器2〇5)之混合光 輸出的貢獻減弱。 在一實施例中,控制器115決定匹配該目標色彩點的光 源110之組合的作用時間循環,且對於每一光源11〇而將其 等相加,以決定每一光源1 10的總作用時間循環,以達成 具有最高可達成通量的該目標色彩點之光。例如,參考表 1 ’藍色(Β)光源110係可達成該目標色彩點之輸出光的四 個組合之部分。在此,根據一實施例,控制器1丨5將對於 每一組合的此光源的作用時間循環相加,且按比例縮放該 等作用時間循環縮放比例,以將該總作用時間循環維持於 小於或等於1。此實例中的藍色光源1〗〇依該相加的作用時 間循環操作,此係由於按比例縮放,且該總作用時間循環 I60698.doc •19· 201236510 預算上限為1 〇控制器115控制—杈i 起為—匹配之組合之部分 的每一光源110,以決定該總作用時 T间循環,且使光源11 0 依分離的總作用時間循環操作,此道 導致母一者在達成該目 標色彩點之最大通量。 在-實施例中,色彩點或光源叫之通量隨時間、使用 及/或溫度而改變。例如’ LED驅動電流或作用時間循環可 影響光源溫度’此繼而影響該光源的輸出波長。在一實施 例中,溫度感測器125感測該溫度,且光敏债測器12〇感測 至少一光源110的通量,且將此資訊提供至控制器115。基 於所感測的溫度回饋,控制115預測未來的光源溫度,且 調整光源110的色彩點,以考量所估計的未來溫度波動。 基於所感測的通量資訊,及光源110的校準(例如,工廠決 定)之通量值,控制器115可決定光源11〇相對於彼此的作 用時間循環比率在變化,或將變化,且可調整光源11〇的 作用時間循環,將其等之比率保持恆定,以維持該目標色 彩點之最大通量。根據一實施例,溫度感測器i 25監測安 裝該光源之一基板的一溫度。 光源110可包含至少一複合光源。例如,控制器1丨5可基 於該等色彩點及兩個或兩個以上光源的通量值而產生一複 合光源。例如,當相比於藍色 '綠色或白色光源丨丨0時, 紅色(R)光源110及琥珀色(A)光源110在圖3之色域中彼此相 對接近。控制器115可產生位於紅色光源與琥珀色光源110 之間的一複合光源’例如藉由將該等通量相加,且決定最 接近於此等兩個光源110的一色彩點。藉由將紅色及琥珀 160698.doc •20· 201236510 色(或任意其他)組合的光源11 〇合併為一單一複合光源,光 源110的數目有效地減少至少一個’例如,從五個減少至 四個。此途徑減少覆蓋該目標色彩點的可能原色組合的數 目,且因此減少由控制器115處理的資訊量。例如在表2 中,該複合光源用一「C」表示。 是否在色 BGW GCW BCW BGC 域内? 否 否 是 是 表2 參考表1及表2,將紅色及琥珀色光源丨1〇合併為一複合 光源將匹配組合的數目從四個減少到兩個。在表2中,紅 色(R)及琥珀色(Α)光源11 〇由複合光源c表示,匹配該目標 色彩點的組合係BCW(藍色、複合色、白色)及BGc(藍色二 綠色、複合色)。在一實施例中’㈣器"5接著從最高到 最低通量來排序該等匹配組合,對於每—匹配組合決定每 -光源的作用時間循環。^該等作用時間循環的總和大於 1,則選擇最高排序的組合,識別其作用時間循環,且從 作用時間循環預算1減去。剩餘的作用時間循環預算應用 於該等匹配組合的(由通量的)下一最高排序,若必要,則 按比例縮放,以針對該耸έΒ人a & u 項荨組合中每一色彩使總作用時間循 環維持於預算内。對於所古#松 、斤有該等匹配的組合的每一光源 11 0相加所得的作用時問 砰間循環’預算1為最大作用時間循 環。在一實施例中,拷在丨 制15 U5將該複合光源的作用時間 適%應用於產生其之兩個 (或夕個)光源,例如,表2之實例 中的紅色及琥珀色。 160698.doc •21. 201236510 在一實施例中’照明系統100包含藍色、綠色、琥站 色、紅色及白色(例如,t性白)光源11 0,且飽和色彩:對 於藍色係至少148 lm、對於綠色係至少1700 lm、對於號站 色係至少873 lm、對於紅色係至少7〇9 im、且對於白色係 至少4700 lm。此等數字是實例’且在另—實施例中光 源110的光通量:對於藍色係至少235 1ίη、對於綠色係至 少2608 lm '對於琥珀色係至少1289 lm、對於紅色係至少 1048 lm、且對於白色係至少58〇8 lm。從光照單元1〇5的光 輸出的色溫可在一預定範圍内改變。例如,在—實施例 中’光輸出在2700 K與6500 K之間。 在一實施例中,照明系統1〇〇包含藍色、綠色、琥珀色 及紅色光源110 ’其等分別具有448 5 nm,515.9 nm, 599.6 nm及6423 nm的峰值波長,且一白色光源具有 (0.3895,0.3798)的—(X,y)色彩點。在此實例中,照明系 統提供具有對於藍色至少148化、對於至少綠色i7〇〇 lm、 對於琥珀色至少873 lm、對於紅色至少7〇9丨⑺、且對於白 色至夕4700 im通量冑的飽和色彩。&具有此等波長及色 彩點的另一實例中,該等通量值:對於藍色係至少235 對於綠色係至少2608 lm、對於琥珀色係至少1289 lm對於紅色係至少1〇48匕、且對於白色係至少$麵 在此實例中,對該色域内之該目標色彩點的容許偏差 以方程式(1)表達: 160698.doc •22- 201236510 在一實施例中,由照明系統100提供的色彩的標準偏差 在該色域的全範圍内小於5 sdem,且不同光源ιι〇可具有 從該目標色彩點的不同偏差。例如,貞色、綠色、號站色 及紅色光源110可分別對該目標色彩點偏離〇 001、〇 〇〇4、 0.003及 0.002。 圖4繪示從一光照單元提供照明的一方法4〇〇的一流程 圖。在一實施例中’方法4〇〇包含識別複數個光源之色彩 點的一動作(動作405)。例如,一原色光源之至少四個色彩 點可由其等在一色域上的(x, y)座標或由色溫而識別(動作 405)。方法400亦識別一目標色彩點(動作41〇)。例如― 識別的目標色彩點可作為輸入提供於一照明系統中,其中 依該目標色彩點提供來自該系統的混合光輸出。方法4〇〇 亦包含識別匹配該目標色彩點的光源組合的一動作(動作 415)。例如’三個光源形成一色域上的三角形且此等三 個光源的組合可提供在該三角形内的任意色彩點之光。當 該三角形覆蓋該目標色彩點時,該對應光源組合可達成在 該三角形内的所有點之光,且因此匹配該目標色彩點(動 作415)。在一實施例中,排序(動作420)該等識別的匹配組 合(動作41 5)。例如,可依通量的順序排序該等組合,具有 最高輸出的匹配組合排序在最前,且具有最低通量的匹配 組合排序在最後。選擇最高排序的組合(動作425),且決定 形成該組合之部分的每一光源之作用時間循環(動作430)。 該剩餘的作用時間循環預算可例如藉由將該第一選擇的組 合之光源的作用時間循環從一最初的作用時間循環預算1 160698.doc •23· 201236510 減去而決疋(動作435),且方法4〇〇可繼續進行選擇下—最 咼排序的剩餘組合(動作44〇)。例如,方法4〇〇可在先前選 擇的組合之後繼續進行選擇具有了一最高通量的剩餘的匹 配組0可决定該選擇之剩餘組合的每一光源的作用時間 循環(動作445),且可對於每一匹配組合以其等基於通量的 排序順序而重複該預算決定(動作435)、剩㈣合的料 (動作44〇)及作用時間循環的決定(動作445)程序(動作 450)。 在實施例中,$法400包含決定每一光源之總作用時 間循環的一動作(動作乜”。例士口,可!|由將該第一選擇之 組合(動作430)與每—剩餘組合(動作445)的光源所決定的 作用時間循環相加而決定該總作料間循環(動作455)。接 著該等光源可依其等決定(動作455)的作料間循環操作 (動作46G),以在該所要的目標點提供具有最高可達成通量 的混合輸出光。 圖5繪示從一光照單元提供照明的一方法5〇〇的一流程 圖方法500 -般繪不對於每—匹配組合之光源的作用時 間循環分配’其在一實施例中對於每一匹配組合以從最高 至最低的排序順序發生(動作,。在具有複錢匹配^ 組合的-實施例中,方法5〇〇包含比較每一光源的作用時 間循環與-預算的作用時間循環的一動作(動作5〇5)。例 如,該第-選擇的匹配組合的作用時間循環從一初始預算 U其表示最大作用時間循環)減去,差值係剩餘作用時間循 環。接著比較剩餘組合的作用時間循環與剩餘的作用時間 160698.doc -24. 201236510 循環預算(動作505),且判定該剩餘組合之任意光源的作用 時間循環是否超過該預算(動作510)β若判定超過該預算, 則決定-縮放因數(動作515),依該縮放因數按比例減小包 含於該選擇之組合内的所有該等光源的作用時間循環,以 -冑合於該預算内。此減弱從該選擇的、按比例縮放的組合 所得的光。在此實例中,無論是否取決於前述動作結果進 仃按比例縮放,接著對於該選擇的剩餘組合之光源建立作 用時間循環(動作525)。 圖6繪示從一光照單元提供照明的一方法6〇〇的一流程 圖。根據一些實施例,方法6〇〇係識別匹配該目標色彩點 的光源組合的動作(動作415)的部分^在一實施例中,方法 600包含下列動作:組合複數個光源之色彩點(動作6〇5)以 產生一複合色彩點;及組合複數個光源的通量(動作6丨0)以 產生一複合通量值。由該組合光源色彩點及通量值定義一 複合光源(動作615)。可隨著任意其他原色光源而決定或調 整光源之作用時間循環、通量及色彩點。在一實施例中, 使用複合色彩光源作為一色域上彼此接近的兩個光源的一 坪估’諸如藍色光源及青色光源’或紅色光源及琥珀色光 源。在一實施例中’方法600識別包含匹配該目標色彩點 的至少一複合光源的光源組合(620),且基於該等光源組合 的各自通量值而一起排序包含複合光源的匹配組合與包含 非複合光源(例如,R、G、Β等等)的任意匹配組合。 雖然已在本文中描述及繪示若干發明性實施例,一般技 術者將容易地預想用於執行功能及/或獲得結果及/或本文 160698.doc -25- 201236510 中描述的-個或多個優點的多種其他構件及/或結構,且 此等變動及/或修改之各者被認為在本文中描述的發明性 實施例之範圍内。更一般而言,熟習此項技術者將容易地 瞭解’本文令描述的所有參數、尺寸、材料及組態意指例 示性的,且實際參數、尺寸、材料及/或組態將取決於特 殊應用或本發明性教示所使用的應用。熟習此項技術者將 使用不多於例行試驗而瞭解或能夠確定對於本文中描述的 特定發明性實施例的許多等價物。因此,應理解,前述實 施例僅經由實例呈現,且除特殊描述及主張之外,發明性 實施例可在隨附中請專利範圍及其等價物的範圍之内實 踐本發明之發明性實施例係關於本文中描述的每一個別 的特徵部、系統、物品、材料、套組及/或方法。另外, 兩個或兩個以上此等特徵部、系統、物品、材料、套組及/ 或方法的任意組合(若此等特徵部 '系統、物品'材料、 套組及/或方法並不相互矛盾)包含於本發明之發明性 内。 —#本文中所定義及使用的所有定義應理解為控制於詞典 疋義、以引用之方式併入的文件甲的定義及/或所定義之 術語的一般意義。 除非另有相反的指示’否則在本說明書及請求項令所使 用的不定冠詞「一」及「一個」應理解為意指「至少一 個」。 在本說明書及請求項中所使用的片言吾「及/或」應理解 為意指元件的「任-者或兩者」這樣結合,即,在—些情 I60698.doc -26 - 201236510 況中連接地存在,且在其他情況中分離地存在的元件。用 「及/或」列出的多個元件應以相同方式詮釋,即,「一個 或多個」該等元件這樣結合,其他元件可視需要存在於除 由該「及/或」子句特定識別的元件之外,無論是否與此 等特定識別的元件有關或無關。因此,作為一非限制性實 例,對「A及/或B」的一參考,當與開放式語言協力使用And EFPROM from the side such as RAM, PROM 'EPROM and EEPR〇M, floppy disk, compact disc (com^(1) (optical disk), tape, etc.) β--this code has one or more programs, when (4) Storage media: When executing the program on one or more processors and / 3⁄4 controllers, perform at least some functions of the 3W in the U and/or control _.. A variety of storage media can be fixed in a processing device, or can be transported, so that a program stored on it can be loaded into a virtual or controller for implementation in this article. A variety of aspects of the invention. The term "program or "^ fly computer program" used in this article is generally used to mean _, multiple processing 15 or any class of controller, computer code (for example, software or microcode (4) such as t The 4 "addressable address" used refers to a device that is configured to receive information (10) such as 'data' (eg 'a general light source, one light unit: one or more light sources or one controller associated with the light unit) Or = device, other devices not related to illumination, etc.), the information is intended to include 'the device' itself, and to selectively respond to its intended information. The term "addressable address" is generally used in conjunction with a network environment (or a network, as discussed further below), along with some of the communication media. In a network implementation, one or more devices coupled to a network may be used as a controller for one or more devices that are coupled to the network (e.g., in a master/slave relationship). In another implementation, a network environment can include, or be, a plurality of dedicated controllers that are configured to control one or more of the devices that are interfaced to the network. In general, each of the plurality of devices 698.doc 12 201236510 devices coupled to the network may have an entry for the data present on the communication medium. However, the given element may be "optional" Address" is configured to selectively exchange data with the network based on, for example, a singularity assigned to it + _ μ μ of a specific suffix (eg, "address") _ Wu Yuxi (ie , receiving data from the network and / or transmitting data to the network). . The term "network" as used herein refers to the transfer of information between any two or more devices and/or between devices coupled to the network (eg, for device control, caution) — Any interconnection of two or more devices (including 丨$ + + _ 1匕3 controller or processor) for greedy storage, data exchange, etc. As should be readily appreciated, various implementations of networks suitable for interconnecting multiple devices can encompass a variety of network topologies and utilize any of a variety of communication protocols. Additionally, in various networks in accordance with the present invention, An arbitrary-connection between two devices may represent a proprietary connection between two systems, or alternatively a non-proprietary connection. In addition to carrying the information intended for the two devices, the #exclusive connection can also carry information that is not necessarily intended for the two devices (for example, 'open network connection. Easily understand that 'multiple networks of the devices discussed in this article can utilize one or more wireless/wired/electrical' and/or fiber optic links to facilitate the transfer of information throughout the network. The term "you" is used in this article. "Tanben 82 user interface" means a interface between a human user or operator and one or more devices that enables communication between the user and the device. Examples of user interfaces utilized in various implementations of the invention include, but are not limited to, (4) off, potentiometers, buttons, dials, sliders, - mice, keyboards, keypads, and various types of games 160698.doc 201236510 Controllers (eg, joysticks), trackballs, display screens, various types of graphical user interfaces (GUIs), touch screens, microphones, and those that can receive some form of human-generated stimuli and respond to them - signals Other types of sensors. Whether or not provided by a -color LED, a separate phosphor or a phosphor group of a filter, or other optical components, the term "primary color" is understood to mean a discrete light source. (4) Color provided. - The primary color contains any color that can be combined with other primary colors to create a complex color. The original color can be used together with a discrete light source that emits light at any frequency. It is understood that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (assuming that such concepts are not mutually contradictory) are contemplated as part of the inventive subject matter disclosed in the disclosure herein. The specific 'claimed' appearing at the end of the invention All combinations of the invention are intended to be the subject matter of the inventive subject matter disclosed herein. It should also be understood that the terminology explicitly used herein (which may also be present in any disclosure incorporated by reference) should be the most The meaning of the agreement is the same. [Embodiment] In the figure, 'the same reference character generally refers to the same part throughout different views. Again, the drawings do not have to be proportional. (d) Instead, the principle of the invention is generally emphasized. It is still a problem to find the best combination of such primary colors in a color point in the color gamut due to more than one combined primary color. It has been recognized and appreciated that it would be beneficial for a plurality of sources to find a light combination that emits light of a desired color point having the best characteristics (such as the amount of 160698.doc -14·201236510). Various embodiments and implementations are directed to illumination systems and methods for identifying a plurality of primary color light source combinations that emit light of a desired color point and controlling the light sources to emit mixed light having the highest achievable flux. Referring to FIG. 1, in an embodiment, the illumination system 100 includes at least one illumination unit 105. The illumination unit 105 includes a plurality of solid state light sources 11A, such as one or more LEDs. For example, each light source 11A can include a primary color ( One or more LEDs of light such as red, green, blue 'cyan, berth, variegated, deep red, or white, and others. In one embodiment, the illumination unit 105 includes at least four light sources 11A, each configured to emit light of a different primary color. The illumination unit 105 can also include at least one controller. , a photodetector 120 and at least one temperature sensor 125. The controller 115 generally determines the duty cycle of the control signal of the light source m based on information from the photodetector 12 or the temperature sensor, which can be used to determine the luminous flux output of the light source and The wavelength as well as the predetermined information or desired output, such as a target color point. The controller 115 can be included in or separated from the illumination unit 105. In the embodiment, the controller i J 5 causes the light source i i to perform the intervening loop according to its calculation. The illumination unit 105 mixes the light emitted from the light source 110 to provide a mixed light that can be output from the illumination unit 105 to optimally output the target; the color point illuminates the object. For example, the controller (1) can determine the individual action time of the source 110 such that the mixed output light of the target color point has a maximum achievable flux. 160698.doc -15· 201236510 FIG. 2 depicts an example of a lighting system 100. Referring to Figure 2, in one embodiment, a plurality of light sources 11 are configured to emit light toward at least one reflector 205. Reflector 205 includes a reflective inner surface, an inlet aperture, and an outlet aperture. In one embodiment, light source 110 forms an array that emits light into the inlet aperture and exits the exit aperture. Light from a plurality of light sources 110 is mixed in reflector 205 and exits through the exit aperture. The light can be collimated into a white light beam having a hard edge that is operable, for example, as a projection concentrating light in a movie theater. In an embodiment, the exit aperture is larger than the inlet aperture. Reflector 205 can be a tubular reflector, or a variety of other shapes' including cylinders and polygons. In one embodiment, the reflector 2〇5 includes a plurality of light guides 210. The light from the at least one light source 11〇 follows at least one light guide 210 to the photodetector 120, and the photodetector 120 can sense the respective light sources 110. Luminous Flux Figure 3 depicts a color point from a color gamut that can be obtained from a combination of multiple primary colors. In the example of Figure 3, there are five sources 丨丨〇 on the color gamut, namely 'red (R) 'green (G), blue (b), amber (A) and white (W). Other light sources 110 are possible, such as cyan or magenta. The color points 0 and ^ coordinates falling within the triangle created by the combination of any three light sources 110 can be obtained by mixing the light of the respective light sources 11 。. For example, a target color point having (X, y) coordinates of (〇 35, 0.25) is depicted in FIG. A combination of light sources (the triangles of which are equal to the target color point) provide mixed light at this target color point. In this example, each of the BRW, BGR, bga, and baw combinations includes three light sources 11 that provide mixed light at the target color point (〇.35, 0.25). In addition, the primary color combinations BGW, GAW, ARW, GAR, 160698 .doc -16 * 201236510 BAR and GRW do not overlap the target color point and do not provide mixed light that matches the target color point of Figure 3, for example, see Table i. Is it in the BGW GAW ARW BRW BGR GAR BGA BAR GRW BAW gamut? No No No Yes, whether or not it is Table 1 According to some embodiments, the controller 115 evaluates such combinations and determines one of the individual light sources 11 〇 (eg, R, G, B, A, and W) PWM control signals The action time loop provides the mixed light of the target color point with the highest achievable luminous flux. For example, controller 15 identifies the target color point, which is provided as an input to controller 丨丨5 and identifies the color point of source 11 〇. Controller 115 also identifies or determines the maximum flux of source 11〇. The controller (1) identifies from the input information a combination of the light sources (10) covering the target color point (eg, 'a possible triangle on the (x, y) axis of the color gamut, as shown in the table.) Continue this example 'Controller 115 calculation Forming a time period of action of the individual light sources 110 providing the combinations of the target colors. For example, where each of the BRW, job, BGA, and BAW combinations covers the target color point, the controller 115 determines the pair of _ 卜梦 &, 蓝色 for each of the # combination of the blue, red, white, green and amber light trace time loop. ', G of each - the role of the control signal in an embodiment, when off Bamboo Technique - First] The controller 115 adds the action time S, 〇^^. 每 of each light source of each combination to match the target color point. According to this example, by the defending The selected time is the time of the primary color light source of the rites. The respective ones # select the light source Μ 1 and the values are added together to determine a cumulative action time of each source. The primary color source selected appears in the I60698.doc -17- 2012365 10 selected combinations). Thoughts. From the combination of the four choices ^ before the example, the blue light source contains color, white, station color and green ^ time loop, and the red color, the source Each of them includes a time-cycle of action within the four choices, and S. When a combination is formed, the cumulative action time of the light source 110 is 衮When less than 1, the controller acts on the time loop operation, and each light source 110 contributes to the mixed output light that matches the target color point according to the accumulation, and the mother-light source " 0. In the embodiment, , the cumulative action time of & to j - is greater than b. For example, if the action time cycle of the blue light source no is (4) in the BRW combination, and 0.68 in the BGR combination, the cumulative action time Circulation system 128. According to an embodiment, the blue light source 11 无法 cannot fully contribute to both the BRW and BGR combinations in this example (ie, an action time loop ratio greater than earned is not b). And the controller 115 performs further operations to each The cumulative action time cycle of source H0 is reduced to a value no greater than 1. According to some embodiments, controller 115 ranks the combinations of the total luminous flux according to the combinations. For example, 'the combined light source 1 You can sort 'from highest to lowest flux: BRW, BAW, BGH, and BGA in the following order. Other primary color sources 11〇 combination and ordering are possible, for example, to match different target color points in the color gamut. Control The n5 selects the combination (e.g., BRW) that contributes the most to the total flux relative to the other combinations, and identifies the active time cycle of each of the light sources 110 (B, R, and W) of the selected combination. In this example, these action time cycles are subtracted from 1 (total action time cycle budget) to obtain the remaining action time available for source 11 循. 160698.doc • 18- 201236510 Clothing budget, for example, if blue light source lio In the combined BRW, there is an action time 〇 of 〇59; for the I ring, for the remaining combination, the remaining action time cycle budget of the blue light source 11G is 〇·41. The controller 115 then selects the magical remainder combination with the highest throughput and compares the active time cycle and the remaining active time cycle budget for this second combination. The action time cycle of the combination of the second selection is subtracted from the remaining active time cycle budget and can be scaled to fit within the budget. This procedure can be repeated until it has included every combination that covers the target color point. For example, in one embodiment, the time of action of the one or more light sources of the third selected combination exceeds the remaining active time cycle budget. In this example, the controller 15 scales down the active time cycle of the light source 110 forming the selected combination to maintain the active time cycle within the remaining budget. When scaled in this manner, the combination of the choices reduces the contribution of the mixed light output of illumination unit 1〇5 (or reflector 2〇5). In one embodiment, the controller 115 determines the active time cycle of the combination of the light sources 110 that match the target color point, and adds them for each light source 11 to determine the total duration of each light source 110. Loop to achieve the light of the target color point with the highest achievable flux. For example, referring to Table 1 'blue (Β) light source 110 is a portion of the four combinations of output light of the target color point. Here, according to an embodiment, the controller 1丨5 adds the action time cycles of the light source for each combination, and scales the equal-action time cycle scaling to maintain the total active time cycle less than Or equal to 1. The blue light source 1 in this example is cyclically operated according to the added action time, which is scaled, and the total action time cycle is I60698.doc •19· 201236510 The budget upper limit is 1 〇 controller 115 control — Each light source 110 is part of the matched combination to determine the T-cycle of the total action, and to cause the light source 110 to operate in accordance with the total active time of the separation, which leads to the achievement of the target by the parent The maximum flux of color points. In an embodiment, the color point or source of light is said to vary in flux over time, usage, and/or temperature. For example, 'LED drive current or duty cycle can affect the source temperature' which in turn affects the output wavelength of the source. In one embodiment, temperature sensor 125 senses the temperature, and photosensitive detector 12 detects the flux of at least one source 110 and provides this information to controller 115. Based on the sensed temperature feedback, control 115 predicts the future source temperature and adjusts the color point of source 110 to account for the estimated future temperature fluctuations. Based on the sensed flux information, and the flux value of the calibration (eg, factory decision) of the light source 110, the controller 115 may determine that the time cycling ratio of the source 11 〇 relative to each other is changing, or will vary, and may be adjusted The action time of the light source 11 循环 is cycled, and the ratio of the light source is kept constant to maintain the maximum flux of the target color point. According to an embodiment, the temperature sensor i 25 monitors a temperature at which the substrate of one of the light sources is mounted. Light source 110 can include at least one composite light source. For example, controller 1丨5 can generate a composite light source based on the color points and the flux values of two or more light sources. For example, when compared to the blue 'green or white source 丨丨 0, the red (R) source 110 and the amber (A) source 110 are relatively close to each other in the color gamut of FIG. The controller 115 can generate a composite light source between the red light source and the amber light source 110, e.g., by adding the fluxes and determining a color point that is closest to the two light sources 110. By combining the red and amber 160698.doc •20·201236510 color (or any other) combination of light sources 11 一 into a single composite light source, the number of light sources 110 is effectively reduced by at least one 'eg, from five to four . This approach reduces the number of possible primary color combinations that cover the target color point, and thus reduces the amount of information processed by controller 115. For example, in Table 2, the composite light source is represented by a "C". Is it in the color BGW GCW BCW BGC domain? No No Yes Yes Table 2 Referring to Tables 1 and 2, combining the red and amber lights 丨1〇 into a composite source reduces the number of matching combinations from four to two. In Table 2, the red (R) and amber (Α) light sources 11 〇 are represented by the composite light source c, and the combination of the target color points is BCW (blue, composite color, white) and BGc (blue two green, Composite color). In one embodiment, the '(4) device" 5 then sorts the matching combinations from highest to lowest flux, and determines the duration of each light source for each of the matching combinations. ^ If the sum of these action time cycles is greater than 1, then the combination of the highest order is selected, the action time cycle is identified, and subtracted from the action time cycle budget 1. The remaining action time cycle budget is applied to the next highest order of the matching combinations (by flux), if necessary, scaled to match each color in the group of a & u items The total action time cycle is maintained within the budget. For the ancient #松, 斤 has the matching of each of the combinations of the light source 11 0 add effect time 砰 cycle ' budget 1 is the maximum action time cycle. In one embodiment, the copying time 15 U5 applies the appropriate time of the composite light source to the two (or evening) light sources that produce it, for example, the red and amber colors in the example of Table 2. 160698.doc •21. 201236510 In an embodiment, the illumination system 100 includes blue, green, amber, red, and white (eg, t white) light sources 110, and saturated colors: at least 148 for blue. Lm, at least 1700 lm for green, at least 873 lm for station color, at least 7 〇 9 im for red, and at least 4700 lm for white. These numbers are for example 'and in another embodiment the luminous flux of source 110: at least 235 1 ίη for blue, at least 2608 lm for green, at least 1289 lm for amber, at least 1048 lm for red, and for White is at least 58〇8 lm. The color temperature of the light output from the illumination unit 1〇5 can be changed within a predetermined range. For example, in the embodiment the light output is between 2700 K and 6500 K. In one embodiment, the illumination system 1A includes blue, green, amber, and red light sources 110' having peak wavelengths of 448 5 nm, 515.9 nm, 599.6 nm, and 6423 nm, respectively, and a white light source has ( - (X, y) color point of 0.3895, 0.3798). In this example, the illumination system is provided with at least 148 for blue, at least i7 lm for green, at least 873 lm for amber, at least 7 〇 9 丨 (7) for red, and 4700 im flux for white to eve 胄The saturated color. & In another example having such wavelengths and color points, the flux values are at least 235 for blue and at least 2608 lm for green, at least 1289 lm for amber, and at least 1 for 48 for red. And for white, at least $ in this example, the tolerance of the target color point within the color gamut is expressed by equation (1): 160698.doc • 22- 201236510 In an embodiment, provided by illumination system 100 The standard deviation of the colors is less than 5 sdem over the full range of the color gamut, and different light sources may have different deviations from the target color point. For example, the green, green, station color, and red light sources 110 may deviate from the target color points by 〇 001, 〇〇 〇〇 4, 0.003, and 0.002, respectively. Figure 4 illustrates a flow diagram of a method 4 of providing illumination from a lighting unit. In one embodiment, the method 4 includes an action of identifying color points of the plurality of light sources (act 405). For example, at least four color points of a primary color source may be identified by their (x, y) coordinates on a color gamut or by color temperature (act 405). Method 400 also identifies a target color point (action 41 〇). For example, the identified target color point can be provided as an input in an illumination system in which the mixed light output from the system is provided in accordance with the target color point. Method 4A also includes an act of identifying a combination of sources that match the target color point (act 415). For example, 'three light sources form a triangle on a color gamut and the combination of these three light sources provides light at any color point within the triangle. When the triangle covers the target color point, the corresponding source combination can achieve light at all points within the triangle, and thus match the target color point (action 415). In an embodiment, the identified matching combinations are ordered (act 420) (act 41 5). For example, the combinations can be ordered in order of flux, with the highest combination of matching combinations ranked first, and the lowest combination of matching combinations at the end. The highest ranked combination is selected (act 425) and the action time loop for each light source forming part of the combination is determined (act 430). The remaining active time cycle budget can be determined, for example, by subtracting the active time cycle of the first selected combination of light sources from an initial active time cycle budget of 1 160698.doc • 23· 201236510 (act 435), And method 4 〇〇 can continue to select the remaining combination of the last-last sort (action 44〇). For example, method 4 继续 may continue to select after the previously selected combination. The remaining matching set 0 having the highest throughput may determine the active time cycle of each of the remaining combinations of the selection (act 445), and may The budget decision (ACT 435), the remaining (four) material (action 44), and the action time loop decision (action 445) program are repeated for each matching combination in a flux-based sorting order (act 450). In an embodiment, the $ method 400 includes an action (action 乜) that determines the total active time cycle of each light source. The exemplified by the combination of the first selection (act 430) and each of the remaining combinations The action time determined by the light source (ACT 445) is added to determine the total inter-feed cycle (ACT 455). The light sources can then be determined (ACT 455) for the inter-feed cycle operation (Action 46G). The hybrid output light having the highest achievable flux is provided at the desired target point. Figure 5 illustrates a method of providing illumination from a lighting unit. A method 500 is generally not shown for each matching combination. The action time cyclic allocation of the light source 'which occurs in one embodiment for each matching combination in the highest to lowest sort order (action, in the embodiment with the complex matching ^ combination), method 5 〇〇 contains comparison The action time cycle of each light source and the action of the time-cycle of the budget (action 5〇5). For example, the action time cycle of the first-selected match combination is from an initial budget U, which represents the maximum action time. Subtracting, the difference is the remaining action time cycle. Then comparing the remaining time period of the remaining combination with the remaining action time 160698.doc -24.201236510 cycle budget (action 505), and determining the action time of any remaining light source of the remaining combination Whether the loop exceeds the budget (act 510). If the decision exceeds the budget, a scaling factor is determined (act 515), and the duration of the action of all of the light sources included in the selected combination is scaled down according to the scaling factor. , to fit within the budget. This attenuates the light from the selected, scaled combination. In this example, whether or not it is scaled according to the aforementioned action result, then the remainder of the selection The combined light source establishes an active time loop (act 525). Figure 6 illustrates a flow diagram of a method 6 of providing illumination from an illumination unit. According to some embodiments, the method 6 identifies a match to the target color point. The portion of the action of the combination of light sources (act 415). In an embodiment, method 600 includes the act of combining color points of a plurality of light sources (moving 6〇5) to generate a composite color point; and combine the flux of the plurality of light sources (action 6丨0) to generate a composite flux value. A composite light source is defined by the combined source color point and flux value (action 615 The time cycle, flux, and color point of the light source can be determined or adjusted with any other primary color source. In one embodiment, a composite color source is used as a flat estimate of two light sources that are close to each other in a color gamut. Such as a blue light source and a cyan light source' or a red light source and an amber light source. In an embodiment, the method 600 identifies a light source combination (620) comprising at least one composite light source that matches the target color point, and based on the combination of the light sources The matching combinations comprising the composite light source are sorted together with the respective flux values and any matching combination comprising non-composite light sources (eg, R, G, Β, etc.). Although a number of inventive embodiments have been described and illustrated herein, one of ordinary skill in the art will readily envision one or more of the functions and/or results obtained and/or described in the text 160698.doc-25-201236510 A variety of other components and/or configurations of the advantages, and such variations and/or modifications are considered to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that 'all parameters, dimensions, materials, and configurations described herein are illustrative, and actual parameters, dimensions, materials, and/or configurations will depend on the particular Application or application of the inventive teachings. Many equivalents to the specific inventive embodiments described herein will be apparent to those skilled in the art. Therefore, the present invention is to be construed as being limited by the description of the embodiments of the invention. Each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more of these features, systems, articles, materials, kits, and/or methods (if such features, systems, articles, materials, kits, and/or methods are not mutually exclusive Contradiction) is included in the inventive concept of the present invention. —# All definitions defined and used herein are to be understood as controlling the meaning of the dictionary, the definition of the document A incorporated by reference, and/or the general meaning of the defined terms. The indefinite articles "a" and "an" are used to mean "at least one". The phrase "and/or" used in this specification and the claims is to be understood as meaning a combination of "any" or both of the elements, that is, in the case of I60698.doc -26 - 201236510 An element that exists in a connected manner and that is separately present in other cases. Multiple elements listed with "and/or" shall be interpreted in the same manner, that is, "one or more" such elements are so combined, and other elements may be present in a particular need to be identified by the "and/or" clause. In addition to or not related to such specifically identified elements. Therefore, as a non-limiting example, a reference to "A and/or B" should be used in conjunction with open language.

時,諸如「包括」,在一實施例中可僅指A(視需要包含除B 以外的元件);在另一實施例中僅指B(視需要包含除A以外 的元件);在又一實施例中指a&amp;b兩者(視需要包含其他元 件);等等。 如本說明書及請求項中所使用,「或」應理解為與上文 定義的「及/或」|有相同的意義。例如,當在一列表中 分離項目’「或」或「及/或」應解譯為包含性的,即,包 含-數目或列表之元件的至少一纟,而且包含多於一者, 且視需要包含額外未列出的項目。只有明確相反指示的術 -諸如I者」或「恰好一者」或當使用於請求項中 時的「由···組成」將指包含__數目或列表之㈣的恰好一 者 般而Q s在前面加上排他性術語(諸如「任一 者」、「一者」、「僅―者」或「恰好一者」)時,本文中所 使用的術語「或」僅應解譯為指示排他性的替代(即,「一 者或另—者但非兩者」)。當使用於請求項中時,「基本上 由…組成」應具有如直丨丨、ΑΈ , Is丄 寻矛j法領域中所使用的其之一般意 義β 如本說明書及請求項中所制,參考—列表之—個或多 160698.doc •27- 201236510 2疋件的片語「至少—個」應理解為意指從該列表之元件 中的-個或多個元件選擇的至少一元件,但並不必要包含 該列表之元件中特定列出的每個元件的至少一者,且並不 排除該列表之元件中的任意元件組合。此定義亦允許可視 ^要存在除片豸「至少-個」所參考的該列表之元件内特 2識别的/L件之外的%件,無論是否與此等特殊識別的元 件有關或無關。因此,作為一非限制性實例,「A及B的至In this case, such as "including", in one embodiment may refer only to A (including elements other than B as needed); in another embodiment, only B (including elements other than A as needed); In the examples, both a &amp; b (including other components as needed); As used in this specification and the claims, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when the item "or" or "and/or" is separated in a list, it should be interpreted as inclusive, that is, at least one of the elements containing the number or list, and containing more than one, and Need to include additional items that are not listed. Only the technique that clearly indicates the opposite direction - such as the "I" or "Exactly One" or when used in the request item, will consist of the number of __ or the (4) of the list. s prefixed with exclusive terms (such as "any", "one", "only" or "just one"), the term "or" used in this article should only be interpreted as indicating exclusiveness. Alternative (ie, "one or another" but not both). When used in a request item, "consisting essentially of" shall have the general meaning β as used in the field of Is丄 丄 矛, as in the specification and claims, Reference - list of one or more 160698.doc • 27- 201236510 2 The phrase "at least one" is understood to mean at least one element selected from one or more of the elements of the list, It is not necessary, however, to include at least one of the particular elements listed in the <RTIgt; This definition also allows for the presence of % of the elements other than the /L identified in the component of the list referenced by the "at least one" reference, whether or not related to such specially identified elements. Therefore, as a non-limiting example, "A and B to

=」(或等價地,「八或B的至少-者」,或等價地,「A 二或:的至少一者」)在一實施例中可指至少一個,視需 要^多於-個A,但不存〇(且視需要包含除B之外的 ),在另一實施例中,指至少-個,視需要包含多於 -個B,但不存在A(且視需要包含除A之外的元件);在又 T實施例中’指至少一個,視需要包含多於一個A,及至= " (or equivalently, "at least one of eight or B", or equivalently, "at least one of: A or:") may mean at least one in an embodiment, as needed - more than - A, but not 〇 (and optionally other than B), in another embodiment, means at least one, optionally more than -B, but no A (and optionally include Element other than A); in the T embodiment, 'refers to at least one, if necessary, contains more than one A, and

=一個’ I需要包含多於__個B(且視需 件);等等。 d /、他7C 二除非另外相反地指示,否則在本文中主張的 ^多於-步驟或動作的任意方法中,該方法的 =順序並非必需限制於該方法所敛述的步驟或動作中的 在該等請求項中的括孤之間出現的任意參考 :符僅出於方便而提供’且並不意欲以任何方式二: 括 包含」、「承載」、「具有」、厂 在請求項α及上文的說明書令,所有連接詞,諸如 含有」、「涉及 J、厂白 .厂,ΑΙ, 「β . _ 己= an 'I needs to contain more than __ B (and as needed); and so on. d /, he 7C 2, unless otherwise indicated to the contrary, in any method claimed herein, more than - steps or actions, the = order of the method is not necessarily limited to the steps or actions recited by the method Any reference appearing between the orphans in such claims is provided for convenience only and is not intended to be in any way two: including, "bearing", "having", factory request item a And the above-mentioned instructions, all connected words, such as containing "," involving J, factory white, factory, ΑΙ, "β. _

J 持 l6069S.doc -28 - 201236510 有」、「由…組成」及類似物理解為開放式, 卜,惹指包含 但不限制。只有連接詞「由…組成及「 」久基本上由,.組 成」分別應為封閉或半封閉的連接詞,如美國專利局4 利檢查程序手冊的2111.03章節中所闡明。 【圖式簡單說明】 圖1繪示根據一實施例的一照明系統的一方塊圖; 圖2繪示根據一實施例的一照明系統的—透視圖; 圖3根據一實施例繪示可從複數個原色組合獲得的一色 域上的一色彩點; 圖4根據一實施例繪示從一光照單元提供照明的一方法 的一流程圖; 圖5根據一實施例繪示從一光照單元提供照明的一方法 的一流程圖;及 圖6根據一實施例繪示從一光照單元提供照明的一方法 的一流程圖。 【主要元件符號說明】 100 照明系統 105 光照單元 110 固態光源 115 控制器 120 光敏偵測器 125 溫度感測器 205 反射器 210 光導 160698.doc -29-J holds l6069S.doc -28 - 201236510 ", composed of" and the like is understood to be open, and includes, but not limited to, inclusion. Only the conjunctions "consisting of and consisting of" shall consist of closed or semi-closed conjunctions, as set forth in Section 2111.03 of the U.S. Patent Office. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an illumination system according to an embodiment; FIG. 2 is a perspective view of an illumination system according to an embodiment; a color point on a color gamut obtained by combining a plurality of primary colors; FIG. 4 is a flow chart showing a method of providing illumination from an illumination unit according to an embodiment; FIG. 5 is a diagram showing illumination from an illumination unit according to an embodiment. A flow chart of a method; and FIG. 6 illustrates a flow chart of a method of providing illumination from an illumination unit, in accordance with an embodiment. [Main component symbol description] 100 Lighting system 105 Illumination unit 110 Solid state light source 115 Controller 120 Photodetector 125 Temperature sensor 205 Reflector 210 Light guide 160698.doc -29-

Claims (1)

201236510 七、申請專利範園: 1. 一種照明系統(〗〇〇),其包括: 一反射器(205); 至少四個固態光源(11 0) ’每一固態光源可經操作以經 該反射器發射光;及 一控制器(】15),其經組態以識別該至少四個固態光源 的複數個組合,其中該複數個組合之各者可經操作以發 射匹配一目標色彩點的光,且其十該控制器經組態以·· 基於該複數個組合之各者的一各自的光通量值而排 序該複數個組合,且基於該排序而選擇該複數個組合 之一者;及 決定該選擇之組合的每一光源的一控制信號的一作 用時間循環,以控制由該選擇的k合從該反射器發射201236510 VII. Application for Patent Park: 1. An illumination system (〗 〖) comprising: a reflector (205); at least four solid state light sources (110). [Each solid state light source is operable to undergo the reflection Transmitting light; and a controller (15) configured to identify a plurality of combinations of the at least four solid state light sources, wherein each of the plurality of combinations is operable to emit light that matches a target color point And the controller is configured to: sort the plurality of combinations based on a respective luminous flux value of each of the plurality of combinations, and select one of the plurality of combinations based on the ranking; and determine a selected time period of a control signal for each source of the selected combination to control emission from the reflector by the selected k-sum 各者發射的各自光通量值。 f、統’其中該複數個組合之該選擇的 光通量值大於由該複數個組合之其他The respective luminous flux values emitted by each. f, system, wherein the selected plurality of combinations have a selected luminous flux value greater than the other of the plurality of combinations 定一作用時間循環預算; 一光源的該作用時間循環而決Set a time-cycle budget; the time of a light source is determined by the cycle 4.如請求項3之照明系 固組合之一第二者;及 而決定該第二選擇之組合的 統’其中該控制器經組態以基於該 160698.doc 201236510 選擇之組合的每-光源的該 之組合的每一光源之該作用時間循環::及㈣二選擇 光源之各者的一總作用日夺間循環。 、疋該至少四個 5. 6. 如請求項1之照明系統,其 去 q U至少四個光源之各 2該控制器經組態以決定由該複數個組合提供的 積作用時間循環大於1。 * 如請求項1之照明系統,其中該控制器經組態以: 基於該至少四個光源之兩者而定義一複合光源; 基於該兩個光源之光通量而識別該複合光源之一光通 量值; 決定該複合光源的一作用時間循環;及 與形成該複數個組合的該至少四個光源的至少兩者組 合而利用該複合光源。 7.如請求項1之照明系統,其包括: 一光敏偵測器(120),其中該反射器係一管狀反射器, 其包含一光導(21 0),該光導經組態以將來自該至少四個 光源之至少一者的光提供至該光敏偵測器。 8·如請求項1之照明系統’其中該至少四個光源之各者發 射一不同原色的光,且其中該至少四個光源之各者包含 至少一發光二極體。 9· 一種從具有複數個固態光源的一光照源提供照明的方 法,該方法包括: 識別該複數個固態光源之複數個組合,其中該複數個 組合之各者可經操作以發射匹配一目標色彩點的光; 160698.doc 201236510 基於4複數個組合之各者的一各自光通量值而排序該 複數個組合; μ 土 ; °亥排序而選擇該複數個組合之一者作為一選擇之 組合; 决定該選擇之組合之每一光源的一控制信號的一 時間循環;及 調變該選擇之組合的每一光源的該作用時間 控制由該選擇之組合發射的光。 10. 如請求項9之方法,其包括· 決疋4選擇之組合的—光通量值大於該複數個組合之 每一剩餘組合的光通量值。 11. 如請求項9之方法,其包括: 基::選擇之組合的每一光源的該作用時間循環而決 疋作用時間循環預算。 12·如請求項11之方法,其包括: 基於該排序而選擇該複數個組合之—第二者.及 環決Γ第二選擇之組合的每一光源的:作用時間循 ,二例縮放至少一光源的一作用時間循環,其中該至 二。4對於該選擇之組合及該第二選擇之組合係制 13·如請求項9之方法,其包括: 基於該排序而選擇該複數個組合之—第二者. 、定該第一選擇之組合的每一光一 J作用時間循 160698.doc 201236510 14. 15. 16. 17. 18. 19. 環;及 至少部分基於該選擇之入 &gt; 循環及該第二選擇之組合的光源的該作用時間 =该複數個光源之各者的―總作用時間循環。 如味求項9之方法,其包括: 決定由該複數個組合之、 ^ . 田 夕—者提供的該複數個光源 的至一者之一累積作用時間猶環大於卜 如凊求項9之方法,其包括: 調整S亥選擇之組合的每一 ^ 先源的該作用時間循環,以 將由該選擇之組合發射的 ▲、 旳先維持於該目標色彩點。 如請求項9之方法,其包括: 獨立地調變該複數個固鲅 時間循環。 先源之各者之控制信號作用 如請求項9之方法,其包括: 基於該複數個組合之兮夂土 &gt; 夂該各者之每一光源的作用時間循 環而決定該複數個光源之各去 地&gt; „ * 谷者的一總作用時間循環。 如請求項9之方法,其包括: 基於該複數個光源之兩者而定義一複合光源; 基於該兩個光源的光通量而決定該複合光源的一光通 量值, 決定該複合光源的-作用時間循環;及 與形成該複數個組合的該複數個光源組合而利用該複 合光源。 -種編碼有-程式之電腦可讀取媒體,該程式用於在一 160698.doc 201236510 處理器上執行’當執行於該處理II上時,該程式執行從 具有複數個固態光源的一光照源提供照明的一方法,該 方法包括以下動作: 識別該複數個固態光源之多個組合,其中該等植合之 各者可經操作以發射匹配-目標色彩點的光; 基於δ亥等組合之各者的一各自光通量值而排序該等組 基於該排序而選擇複數個該等組合; 對於該選擇之複數個組合之各者個別地決定每一光源 個別的作用時間循環; 基於該等個別的作用時間循環而決定每一光源的㈣ 用時間循環;及 “ 基於該等總作用時間循環而控制由該選擇之植 的光。 11 20. 21. 如請求項19之電腦可讀取媒體,該方法進—步包括: 比較該等個別的作用時間循環與一作用時間循環預 算;及 按比例縮放至少一個別的作用時間循環,以決定至少 一個總作用時間循環。 如請求項19之電腦可讀取媒體,該方法進—步包括: 將來自該複數個®態光源的至少一者❼光提供至一光 敏偵測器;及 基於從該光敏情測器接收的資訊而調整該等個別作用 時間循環之至少一者。 160698.doc 201236510 22.如請求項19之電滕可讀取媒體,該方 基於該複數個光源之兩者而定義一複合光源包括: 基於该兩個光源之光通量而决定該複合光源'的一光通 量值; 決定該複合光源的一作用時間循環,·及 與形成該多個組合的該複數個光源組合而利用該複合 光源》 160698.doc • 6 ·4. The second of one of the lighting securing combinations of claim 3; and determining the combination of the second selection 'where the controller is configured to be based on the combination selected by the 160698.doc 201236510 The active time cycle of each of the light sources of the combination: and (d) two selected ones of the light sources for each total daytime cycle. 6. The at least four 5. 6. The lighting system of claim 1, which goes to q U each of at least four light sources 2 the controller is configured to determine that the product time period provided by the plurality of combinations is greater than one . * The illumination system of claim 1, wherein the controller is configured to: define a composite light source based on the at least four light sources; identify a luminous flux value of the composite light source based on the luminous flux of the two light sources; Determining an active time cycle of the composite light source; and utilizing the composite light source in combination with at least two of the at least four light sources forming the plurality of combinations. 7. The illumination system of claim 1, comprising: a photodetector (120), wherein the reflector is a tubular reflector comprising a light guide (21 0) configured to receive from the light guide Light from at least one of the at least four light sources is provided to the photodetector. 8. The illumination system of claim 1 wherein each of the at least four light sources emits light of a different primary color, and wherein each of the at least four light sources comprises at least one light emitting diode. 9. A method of providing illumination from an illumination source having a plurality of solid state light sources, the method comprising: identifying a plurality of combinations of the plurality of solid state light sources, wherein each of the plurality of combinations is operable to emit a matching target color Point light; 160698.doc 201236510 Sorting the plurality of combinations based on a respective luminous flux value of each of the 4 plural combinations; μ soil; °H sorting and selecting one of the plurality of combinations as a combination of choices; A time period of a control signal for each source of the selected combination; and the active time of each source modulating the selected combination controls the light emitted by the selected combination. 10. The method of claim 9, which comprises the combination of the selection of the plurality of light-optic values having a luminous flux value greater than each of the remaining combinations of the plurality of combinations. 11. The method of claim 9, comprising: base:: the active time cycle of each source of the selected combination and the duty cycle budget. 12. The method of claim 11, comprising: selecting each of the plurality of combinations of the plurality of combinations based on the ranking - and the combination of the second selection of the second selection: the time of action, and the scaling of the two cases A time period of a light source, where the two are. The combination of the combination of the selection and the selection of the second selection. The method of claim 9, comprising: selecting the plurality of combinations based on the ranking - the second one. Each light-J action time follows 160698.doc 201236510 14. 15. 16. 17. 18. 19. The ring; and the action time of the light source based at least in part on the combination of the selection&gt; cycle and the second selection = the total action time cycle of each of the plurality of light sources. The method of claim 9, comprising: determining, by the plurality of combinations, ^. Tian Xi, one of the plurality of light sources provided by one of the plurality of light sources, the cumulative action time is greater than the sum of the items The method includes: adjusting the duration of each action time of each of the combinations of S-selects to maintain ▲, 发射 transmitted by the selected combination at the target color point. The method of claim 9, comprising: independently modulating the plurality of solid time cycles. The control signal of each of the prior sources functions as in the method of claim 9, which comprises: determining each of the plurality of light sources based on the plurality of combinations of the earth&gt; Go to the ground &gt; „ * A total action time loop of the valley. The method of claim 9, comprising: defining a composite light source based on the plurality of light sources; determining the composite based on the luminous flux of the two light sources a luminous flux value of the light source, determining a cycle time of the composite light source; and using the composite light source in combination with the plurality of light sources forming the plurality of combinations. - A computer-readable medium having a coded program For performing on a 160698.doc 201236510 processor, when executed on the process II, the program performs a method of providing illumination from an illumination source having a plurality of solid state light sources, the method comprising the following actions: identifying the complex number Multiple combinations of solid state light sources, wherein each of the plantings can be operated to emit light of a matching-target color point; one of each of the combinations based on δHai et al Sorting from the luminous flux values, the groups select a plurality of the combinations based on the ranking; each of the plurality of combinations of the selection individually determines an individual action time cycle for each light source; based on the individual action time cycles Determining (4) the time cycle of each light source; and "controlling the light of the selected plant based on the total time-cycle of the action. 11. 20. 21. The computer-readable medium of claim 19, the method further comprising: comparing the individual time-of-action cycles with an active time cycle budget; and scaling at least one other time-of-action cycle, To determine at least one total action time cycle. The computer readable medium of claim 19, the method further comprising: providing at least one of the plurality of light sources from the plurality of light sources to a photodetector; and based on receiving from the photosensitive sensor Adjusting at least one of the individual time periods of the information. The method of claim 19, wherein the defining a composite light source based on the plurality of light sources comprises: determining a composite light source based on the luminous flux of the two light sources a luminous flux value; determining an active time cycle of the composite light source, and combining the plurality of light sources forming the plurality of combinations to utilize the composite light source" 160698.doc • 6 ·
TW100147558A 2010-12-21 2011-12-20 Apparatus, system and method for multi-channel illumination TW201236510A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US42551210P 2010-12-21 2010-12-21

Publications (1)

Publication Number Publication Date
TW201236510A true TW201236510A (en) 2012-09-01

Family

ID=47222845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100147558A TW201236510A (en) 2010-12-21 2011-12-20 Apparatus, system and method for multi-channel illumination

Country Status (1)

Country Link
TW (1) TW201236510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707606B (en) * 2019-09-25 2020-10-11 大陸商漳州立達信光電子科技有限公司 Light smoothing output system and controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707606B (en) * 2019-09-25 2020-10-11 大陸商漳州立達信光電子科技有限公司 Light smoothing output system and controller

Similar Documents

Publication Publication Date Title
US7772787B2 (en) Light source and method for optimising illumination characteristics thereof
JP5363487B2 (en) Method and apparatus for providing LED spotlight illumination in podium lighting applications
US9491833B2 (en) Lighting methods for providing personalized lighting to users positioned proximal to one another
CN101653041B (en) Methods and apparatus for simulating resistive loads
TWI329724B (en) Integrated lamp with feedback and wireless control
US8212466B2 (en) Solid state lighting devices including light mixtures
US20220390074A1 (en) Led filament and led filament lamp
US9867254B2 (en) Solid state lighting fixture with incandescent dimming characteristics
US8330383B2 (en) Method and system for dependently controlling colour light sources
US8616715B2 (en) Remote light wavelength conversion device and associated methods
US10264638B2 (en) Circuits and methods for controlling solid state lighting
US20150173151A1 (en) Tunable correlated color temperature led-based white light source with mixing chamber and remote phosphor exit window
CN104137650A (en) Led lighting unit with color and dimming control
JP6463355B2 (en) LED lighting apparatus and method
CN103493590A (en) Apparatus, system and method for pulse width modulated lighting control
JP5211293B2 (en) Method and structure for adjusting color position, and light emitting system
JP6588432B2 (en) Method and apparatus for controlling illumination of a multi-light source lighting unit
JP2014503968A (en) Apparatus, system and method for multi-channel illumination
TW201236510A (en) Apparatus, system and method for multi-channel illumination
JP2020167063A (en) Lighting device
Hertog The design and implementation of a spectrally tuneable LED-based light sourde: towards a new era of intelligent illumination
CN114902809A (en) Lighting device
Garnett Development and Prototyping of a Solid State Lighting Product for Architectural and Accent Applications
Garnett Development and prototyping of a solid state lighting product for architectural and accent applications: a thesis presented in fulfilment of the requirements for the degree of Master of Product Development in Technology at Massey University, School of Engineering & Technology, Albany campus, New Zealand
WO2014165450A1 (en) Circuits and methods for controlling solid state lighting