TW201233819A - Cu-co-si-zr alloy material and method for producing same - Google Patents

Cu-co-si-zr alloy material and method for producing same Download PDF

Info

Publication number
TW201233819A
TW201233819A TW101100744A TW101100744A TW201233819A TW 201233819 A TW201233819 A TW 201233819A TW 101100744 A TW101100744 A TW 101100744A TW 101100744 A TW101100744 A TW 101100744A TW 201233819 A TW201233819 A TW 201233819A
Authority
TW
Taiwan
Prior art keywords
temperature
alloy material
less
phase particles
comparative example
Prior art date
Application number
TW101100744A
Other languages
Chinese (zh)
Other versions
TWI432587B (en
Inventor
Yasuhiro Okafuji
Original Assignee
Jx Nippon Mining & Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Mining & Metals Corp filed Critical Jx Nippon Mining & Metals Corp
Publication of TW201233819A publication Critical patent/TW201233819A/en
Application granted granted Critical
Publication of TWI432587B publication Critical patent/TWI432587B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to a Cu-Co-Si-Zr alloy material which contains 1.0-2.5 wt% of Co, 0.2-0.7 wt% of Si and 0.001-0.5 wt% of Zr with the elemental ratio Co/Si being 3.5-5.0. The Cu-Co-Si-Zr alloy material contains second phase particles having a diameter of 0.20 [mu]m or more but less than 1.00 [mu]m at a density of 3,000-500,000 particles/mm2, and has a crystal grain size of 10 [mu]m or less, an electrical conductivity of 60% IACS or more and good bending workability. The alloy material can be produced by setting the temperature of heating that is carried out after casting and before a solution heat treatment to a temperature that is higher than the later-described solution heat treatment temperature by 45 DEG C or more, by setting the cooling rate from the start temperature of hot rolling to 600 DEG C to 100 DEG C/min or less, and by selecting the solution heat treatment temperature from (50 Co wt% + 775) DEG C to (50 Co wt% + 825) DEG C (inclusive). The aging treatment after the solution heat treatment is preferably carried out at 450-650 DEG C for 1-20 hours.

Description

201233819 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種彎曲加工性 ? ^ ^ 1愛吳且可尚導電化之電 子電氣設備用材料,尤其是有關於— ?里週合作為可動連拯 器等電子電氣設備用材料之Cu- Cc) r L —Zr銅合金材。 【先前技術】 對於電子電氣設備用材料,要求 切也丄liL 文尺具備導電性、強度' ·.“加工性之特性,近年來,電氣電子零件、 連接器的高電流化要求不斷提高。、 ,^ θ 馬不使可動連接器大型 化,需要即便為〇.2mm以上之厚戶 π ^ ± 序度亦具有良好之彎曲性, 且同時可確保高導電率及強度之材料。 先前,具有可於不使導電性劣化 夕牲从AW I <贯/兄下達成南強度 特性的析出強化型鋼合金,已 么Γ ρ 负Lu—Ni- Si系鋼合 金 Cu—Co~~ Si 系、Cu-Co—Si—Zr 系七 ^ ς; έ ^ . ^ 々系或 Cu—Ni-Co~ 系銅合金。為製造該等銅合金 * m ^ 保以固溶處理使添加元201233819 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a material for electrical and electronic equipment that is curved and has a good electrical conductivity, and is particularly related to Cu-Cc) r L-Zr copper alloy material for materials for electrical and electronic equipment such as Lianzheng. [Prior Art] For materials for electrical and electronic equipment, it is required that the cut-and-slurry LiL has the characteristics of electrical conductivity and strength, and the processability is improved. In recent years, the requirements for high current of electrical and electronic parts and connectors have been increasing. , ^ θ The horse does not make the movable connector large, and it needs to have a good bending property even for a thicker π.2mm or more, and at the same time ensure a material with high electrical conductivity and strength. In order to prevent the deterioration of conductivity, a precipitation-strengthened steel alloy having a south strength characteristic is obtained from AW I < / / brother, Γ ρ negative Lu-Ni-Si steel alloy Cu-Co~~ Si system, Cu- Co—Si—Zr system ^ ^ . ^ lanthanide or Cu—Ni—Co~ copper alloy. For the manufacture of these copper alloys* m ^

Ni Si . ^ 线仏,、處理使作為第2相粒子之 2或C〇2Sl等析出或晶析於基體中。但是,由於川y 之固溶量相對較大,因此於Cu_N 、 2 ^ 6n〇/TA〇c bl系銅合金中難以達 C。Si Μ /上之導㈣°因此’㈣具有輯量較低之 c 2:為主要析出物,且顯示高導電性的Cu-con 等11銅:金系或Cu—Ni_c°—、系合金進行研究。該 成目標強度^^後^#使心析出物析出,則無法達 脊曲力…生變差等:Γ 下則會產生 差4問4,因此一直在探討各種對策。Ni Si. ^ 仏, and the treatment is carried out as a second phase particle 2 or C 〇 2Sl or the like precipitated or crystallized in the matrix. However, since the solid solution amount of Chuan y is relatively large, it is difficult to reach C in Cu_N and 2^6n〇/TA〇c bl copper alloys. Si Μ / upper guide (four) ° Therefore '(4) has a low amount of c 2 : is the main precipitate, and shows high conductivity of Cu-con, etc. 11 copper: gold or Cu-Ni_c ° -, alloys the study. When the target intensity is ^^后^#, the cardiac precipitate is precipitated, and the curvature of the ridge can not be reached. The difference between the growth and the like is caused by the difference: Γ 则会 则会 4 4 4 4 4 4 。 。 。 。 。 。 。 。 。 。 。 。 。 。

S 4 201233819 於日本特開2009- 242814號(專利文獻1)、日本特 開 2008— 2667R7 % ,由 ^ 就(專利文獻2)中,為了製造引線框架 等電氣電子零件姑斗立 柯枓用之析出強化型銅合金,係利用藉由 相粒子抑制晶粒成長之效果而控制、结晶粒徑,改善彎In Japanese Patent Laid-Open No. 2009-242814 (Patent Document 1) and JP-A-2008-2667R7 %, in order to manufacture electrical and electronic components such as lead frames, Precipitation-enhanced copper alloy is controlled by crystal grain size by the effect of suppressing grain growth by phase particles, and improves bending

曲力口 JL. 1 生。;七,、 I尨 I 。 ’文獻中’第2相粒子係於熱加工之冷卻過 程或固溶熱處理之升溫過程中析出,並且亦藉由表面研削 1之寺效析出熱處理而析出(專利文獻^之「術5」等)。 另外’國際公報第2〇1〇/〇16429 f虎(專利文獻3)中記 载有於具有特定組成之Cu—c〇—si (一 Zr)合金中,藉由 存在2種大小之組成不同的析出物,可抑制晶粒成長及提 升強度。 [專利文獻1]日本特開2009_ 2428]4號公報 [專利文獻2]日本特開2008 — 266787號公報 [專利文獻3]國際公開第2〇1〇/〇16429號 【發明内容】 通常,用以不使上述可動連接器大型化之具體目標值 為60〇/〇IACS以上之導電率、_Mpa以上之〇篇保證應力 YS或630MPa以上之拉伸強度TS,且不產生作為弯曲加工 性指標的裂痕之極限彎曲半徑R與板厚t之比(mbr/【) 為〇·5以了(0.3mm厚板’ Bad Way)。該彎曲加工性會因 結晶粒徑以及第2相粒子之尺寸及個數等而產生變化,認 為於Cu-Co-Si系或C卜Ni_CG_Si系合金中用以於 〇.3_厚板獲得〇_5以下之MBR/ t之結晶粒徑通常為i 〇 /z m以下。晶粒係於固溶處理中成長, 結晶粒徑之尺寸由固 201233819 溶處理之溫度及時間 _ 數所決定。 &加疋素 '第2相粒子之尺寸或個 t ft ^專利文獻1、2 ,係以廣範®之第2相粒子為# 子# + ί 是C。,於專利文獻〗記載的藉由第2相粒 =:控:結晶粒徑之方法中,雖可控制結晶粒徑ί == 達成高電流化。專利文獻”,係著眼 於,、有於固溶處理中抑制再 必須以析出物不固溶之方式 固溶溫度或時間,且僅可蒋 〇 差之Cu—C〇 - Si-ΖΛ金^電f曲性之任一者較 子析出物亦…, 該範圍尺寸之第2相粒 子析出物亦有U於心後析出,以直 粒徑之效果。再者,於同文獻 衩釗,、口日日 (TFM、Μ 獻中係藉由穿透式電子顯微鏡 )觀察而Sf價晶界上之第2相粒子密度、第2 子之直徑或體積密度,但是若使帛2相 粒徑控制為10# m以下,則有 可將、纟〇晶 握準確之數值。 粒子重疊等而無法掌 又’於專利文獻3中’亦著眼於具有控制結 長之效果的Co系第2相粒子, 成 〜nrtc 丁尺寸為直徑0.005 〇·05㈣及 〇·05 〜〇·5 心 ICu-Co—Si—Zr 合金 曲性劣化。 金之f :上所述,最近之析出強化型銅合金由於一直 用於引線框架等電子零件之薄板作為目的,因 〇·3πηη左右之厚板的優異之彎曲加工性進行研究。Qu Likou JL. 1 born. Seven, I尨 I. 'The second phase particles in the literature are precipitated during the cooling process of hot working or the heating process of solution heat treatment, and are also precipitated by the heat treatment of the surface grinding process 1 (patent literature ^ "surgery 5", etc.) . In addition, 'International Publication No. 2〇1〇/〇16429 f Tiger (Patent Document 3) describes that in a Cu-c〇-si (a Zr) alloy having a specific composition, there are two kinds of sizes and compositions. The precipitates can suppress grain growth and increase strength. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The specific target value which does not increase the size of the movable connector is a conductivity of 60 〇/〇 IACS or more, a stress of YS or more, and a tensile strength TS of 630 MPa or more, and does not produce an index of bending workability. The ratio of the ultimate bending radius R of the crack to the thickness t (mbr/[) is 〇·5 (0.3 mm thick plate 'Bad Way). This bending workability changes depending on the crystal grain size and the size and number of the second phase particles, and is considered to be used for the 〇.3_thick plate in the Cu-Co-Si system or the Cb Ni_CG_Si alloy. The crystal grain size of MBR/t below _5 is usually i 〇/zm or less. The grain size grows during the solution treatment, and the size of the crystal grain size is determined by the temperature and time _ number of the solid solution 201233819. & calcination 'The size of the second phase particle or t ft ^ Patent Documents 1, 2, the second phase particle of the broad range is #子# + ί is C. In the method of the second phase particle =: control: crystal grain size described in the patent document, although the crystal grain size ί == can be controlled to achieve high current. The patent literature focuses on the fact that it inhibits the solid solution treatment and must dissolve the temperature or time in such a manner that the precipitate does not solidify, and only the Cu-C〇-Si-ΖΛ金^ Any one of the f-curvature is also a precipitate of the second phase, and the precipitate of the second-phase particle of the range of size also has a U-phase precipitated, and has the effect of a direct particle diameter. Further, in the same literature, the mouth On the day of the day (TFM, by means of a transmission electron microscope), the second phase particle density at the Sf valence grain boundary, the diameter of the second sub-particle or the bulk density, but if the 帛2 phase particle size is controlled to In the case of 10# m or less, there is a numerical value that can be accurately held by the crystal. If the particles are overlapped and the like, it is not possible to use the Co-based second phase particles which have the effect of controlling the junction length. ~nrtc Ding size is 0.005 〇·05 (4) and 〇·05 〇·5 heart ICu-Co-Si-Zr alloy is degraded. Gold f: As mentioned above, the most recent precipitation-strengthened copper alloy has been used for The thin plate of the electronic component such as the lead frame is used for the purpose of the excellent bending of the thick plate of 〇·3πηη Research carried out.

S 6 201233819 本發明人為了解決上述課題經潛心研究的結果,完成 下述發明。 (1) 一種銅合金材,其具有良好之彎曲加工性,係含 有 1.0 〜2_5wt% 之 Co、〇.2 〜〇.7wt% 之 Si、0.001 〜0_5wt% 之S 6 201233819 The inventors of the present invention have completed the following inventions in order to solve the above problems. (1) A copper alloy material having good bending workability, containing 1.0 to 2_5 wt% of Co, 〇.2 to 〇.7 wt% of Si, 0.001 to 0_5 wt%

Zr且Co/ Si之元素比為35〜5〇的Cu — c〇—si_Zr合金 材’含有直徑為0.20// m以上且未達1.00" m之第2相粒 子3,000〜500,〇〇〇個/mm2,導電率EC為6〇%IACS以上, 結晶粒控為1 〇从ni以下。 (2) 如(1)之銅合金材,其含有直徑為1〇〇"m以 上、10.00 μ m以下之第2相粒子1〇〜2,000個/mm2。 (3) 如(1)或(2)之銅合金材,其〇·2%保證應力 YS為600MPa以上。 (4) 一種(1)或(2)之銅合金材之製造方法,其於 鎮ie後固浴處理則進行之南溫加熱的溫度係較下述所選 擇的固溶處理溫度高4rc以上之溫度,且自熱壓延開始時 溫度至60(TC之冷卻速度為100<t/分鐘以下;固溶處理溫 度係於(5〇xCowt%+ 775 ) °C 以上、(50xC〇wt%+ 825 ) t 以下之範圍内選擇。 (5) 如(4)之銅合金材料之製造方法,其中,固溶 處理後之時效處理係於45 0〜650°C進行1〜2〇小時。 本發明於具有特定組成之Cu—Co—Si—Zr合金材之製 造中’為了避免結晶粗大化,而調整固溶處理、、w洛 〇 心狂/皿度’且將 固溶處理前之高溫加熱溫度亦調整成適合於 、σ A固溶處理溫 度’且亦調整高溫加熱後之冷卻速度,從而使特定量的具 201233819 ,特定粒徑之第2相粒子析出。藉由調整上述第2相粒子, 可獲得以下之結晶粒徑,從而可達成適合於可動連 接器之f曲加卫性、及可高電流化之導隸,此外亦可達 成可實際應用之強度。 【實施方式】 (Cu - Co - Si - Zr 合金材) 本發明之合金材含有U〜2_5wt% (以下,只要無特別 說明均以❶/。表示)、較佳為】.5〜22%之c〇,且含有〇2〜 〇.7%、較佳為0.3〜0.55%之Si。較佳為下述☆以外的剩餘 部分由Cu及不可避免之雜質構成,以亦可於可達成本發 明之構成目標效果之範圍内,進一步含有本領域技術人員 通常採用作為添加於銅合金之成分的各種元素,例如心、A Cu-c〇-si_Zr alloy material having a Zr and a Co/Si element ratio of 35 to 5 Å contains a second phase particle of 3,000 to 500 having a diameter of 0.20 / / m or less and less than 1.00 " m, 〇〇〇 /mm2, the conductivity EC is 6〇% IACS or more, and the crystal grain size is 1 〇 from below ni. (2) The copper alloy material according to (1), which contains 1 〇〇 " m or more and 10.00 μm or less of the second phase particles 1 〇 to 2,000 / mm 2 . (3) For the copper alloy material of (1) or (2), the 2·2% guaranteed stress YS is 600 MPa or more. (4) A method for producing a copper alloy material according to (1) or (2), wherein the temperature at which the south temperature is heated after the solid bath treatment is more than 4 rc higher than the solid solution treatment temperature selected below. Temperature, and the temperature from the start of auto-calendering to 60 (the cooling rate of TC is 100 < t / min; the solution treatment temperature is above (5〇xCowt% + 775 ) °C, (50xC〇wt%+ 825 (b) The method for producing a copper alloy material according to (4), wherein the aging treatment after the solution treatment is performed at 45 to 650 ° C for 1 to 2 hours. In the manufacture of Cu-Co-Si-Zr alloy materials with a specific composition, in order to avoid coarsening of the crystal, the solid solution treatment is adjusted, and the high temperature heating temperature before the solution treatment is also adjusted. Adjusting the temperature to be suitable for the σ A solution treatment temperature and adjusting the cooling rate after high-temperature heating to precipitate a specific amount of the second phase particles having a specific particle diameter of 201233819. By adjusting the second phase particles, Obtaining the following crystal grain size, thereby achieving f-curvability suitable for a movable connector And a high-current-conducting guide, and a practically usable strength can also be achieved. [Embodiment] (Cu-Co-Si-Zr alloy material) The alloy material of the present invention contains U~2_5 wt% (hereinafter, as long as In particular, it is represented by ❶/., preferably 5% to 22% of c〇, and contains 〇2 to 7%.7%, preferably 0.3 to 0.55% of Si. It is preferably other than the following ☆ The remainder of the composition consists of Cu and unavoidable impurities, and may also contain various elements commonly used by those skilled in the art as components added to the copper alloy, such as the heart, within the scope of the desired effect of the invention.

Mg、Μη ' Ni、Sn、Zn、P、Ag 等。 第2相粒子為c〇2Si之情形眸沾r / '時的C〇/Sl之化學計量比 里-w上為4.2,但於本發明中為1 赞Η為3·5〜5.0’較佳為3.8〜4.6, 右在該範圍内,則會形成適合 %析出強化及結晶粒徑調整 第2相粒子C〇2Si及c〇_Si〜Zr化合物。若及Mg, Μη 'Ni, Sn, Zn, P, Ag, and the like. In the case where the second phase particle is c〇2Si, the stoichiometric ratio of C〇/Sl at the time of r / ' is 4.2 in the -w, but in the present invention, 1 is preferably 3·5 to 5.0'. It is 3.8 to 4.6, and in the right range, the second phase particles C〇2Si and c〇_Si to Zr compounds suitable for % precipitation strengthening and crystal grain size adjustment are formed. If and

Sl過少,則析出強化效果變小 5 雷性玄妒至, 右過多,則無法固溶且導 電!·生亦較差。若析出第2相粒子 效果,且析出後基體純度變t ::表現出析出強化 右存在特定量的特定尺寸之 疋叩 阻礙,可使“ 相粒子’貝1丨晶粒成長受到 .使,,,。晶粒控為1 0以m以下。 本發明之合金材含有0.00l〜05wt% 〇·械之Zr,且強度及導 =佳為〇·〇ι〜 a加。此政果為根據僅有CuIf there is too little Sl, the precipitation enhancement effect will become smaller. 5 Lei Xingxuan to, too much right, can not be dissolved and conductive! · Health is also poor. When the effect of the second phase particles is precipitated, and the purity of the substrate after the precipitation is changed to t: :, the precipitation of the precipitate is strengthened, and there is a specific amount of the specific size of the precipitate, so that the "phase particles" can be grown. The grain control is 10 or less in m. The alloy material of the present invention contains 0.001 to 05 wt% of Zr, and the strength and conductivity are preferably 〇·〇ι~ a plus. With Cu

S 201233819 ~ C〇 — Si之系所預測之程度以 則盔屮俨?丨从 右Zr未達0.001wt%, :广到作為目標之強度或導電率上升的效果, 過〇.5wt%,則產生粗大的矽化物 。 下降。 &成強度或考曲加工性 本發明之合金材之結晶粒徑$ 1〇"爪以下。若結晶极 徑為10" m以下,則可達成良好之f曲加工性。 溘好本:明之銅合金材料例如可具有板材、條材、線材、 1等各種㈣’亦可為可動連接器用板材或條材, 並無特別限定。 (第2相粒子) 所謂本發明之第2相粒子,係指於銅中含有其他元素 日,生成,且形成與銅母相(基體)不同相的粒子。直徑為 :〇nm以上之第2相粒子的數目可藉由下述方式而獲得:對 "·幾械研磨進行鏡面拋光後經.電解研磨或酸洗触刻之鋼 板:之平仃剖面(平行於壓延面,且平行於厚度方向之面) 任:選擇5個部位,從藉此所獲得之1視野之掃描式電子 顯微鏡照片來測定該直徑範圍之粒子數目。此處所謂直 =,係如圖1所示般測定粒子之短徑(L1 )與長徑(]^2 ), 指L1與L2之平均值。 一本發明之第2相粒子大部分為Coji或Co — Si — Zr化 〇 ’但只要直徑在範圍内則亦可為NizSi等其他金屬間化 ° 。構成第2相粒子之元素例如可使用FE— SEM (曰本 股份有限公司’型號·· XL30SFEG )附帶之EDX而確認。 本發明之銅合金材中,係含有3,〇〇〇〜5〇〇,〇〇〇個/ 201233819 職’較佳為1(),_〜㈣,_個,賴2,更佳為i3卿〜 1〇〇,〇〇〇個/mm2的〇.2Mm以上且未達i 〇〇"m之第2相 粒子’該第2相粒子主要係於熱壓延後、固溶處理前析出, 但亦存在藉由固溶處理而析出之情況。於固溶處理前析出 之第2相粒子可於固溶處理中抑制結晶粒徑成長,但亦有 產生固溶之虞。因&,較佳為調整固溶處理條件而儘 地抑制第2相粒子之數目之變動。 另外,所含有之直徑為㈣心以上且1〇〇〇"m以下 之第2相粒子較佳為1〇〜2,_nmm2,MAn_ 广2,最佳為3〇〜500個,_2。可藉由減緩高溫加敎 後之冷部速度而使該直徑範圍㈣2相粒子析出,且視需 要可藉由進行帛"夺效處理來調整粒徑。上述直徑之第2 1子的數目之較佳範圍亦與㈣心以上且未達㈣㈣ 2相粒子之數目連動。若為該範圍,則可高溫固溶, 可抑制於固溶處理中結晶粒徑成 仫成1長且另一方面,經充分 广Co、Si及Zr藉由後階段之(第2)時效處理而被微 也析出,可達成南強度、高導電性、良好之彎曲加工性。 但是,若超過2,〇〇〇個曲性下降因而不佳。 上述直徑為0.20"m以上且未達i 〇Mm以及i 以Μ⑽心以下之第2相粒子之數目在固溶處理前後 :第2時效處理後亦不太產生變動,因此可利用最終壓 延月·』或最終加工後之試片進行評價。 若存在直徑超過10.00“之第2相粒子,則微細第2S 201233819 ~ C〇 — The degree predicted by the Si system is the helmet?丨 From the right Zr is less than 0.001% by weight, which is wide enough to achieve the effect of increasing the strength or conductivity of the target. If it exceeds 5 wt%, coarse telluride is produced. decline. & Strength or Testability The crystal grain size of the alloy material of the present invention is $1〇" below the claw. When the crystal diameter is 10 " m or less, good f-workability can be achieved.溘本本: The copper alloy material of the present invention may have, for example, a plate, a bar, a wire, a 1 or the like, and may be a plate or a strip for a movable connector, and is not particularly limited. (Second phase particle) The second phase particle of the present invention refers to a particle which is formed by containing other elements in copper, and which forms a phase different from the copper matrix (matrix). The number of the second phase particles having a diameter of 〇nm or more can be obtained by mirror polishing the electromechanical or acid-washed steel sheet: Parallel to the calendering surface and parallel to the thickness direction) Any: Five sites were selected, and the number of particles in the diameter range was measured from the scanning electron micrograph of the field of view obtained thereby. Here, the straight =, as shown in Fig. 1, measures the short diameter (L1) and the long diameter (]^2) of the particles, and refers to the average of L1 and L2. Most of the second phase particles of the present invention are Coji or Co-Si-Zr-formed ’', but other metalizations such as NizSi may be used as long as the diameter is within the range. The element constituting the second phase particle can be confirmed, for example, by EDX attached to FE-SEM (Sakamoto Co., Ltd. model XL30SFEG). The copper alloy material of the present invention contains 3, 〇〇〇~5〇〇, 〇〇〇一/201233819 职' preferably 1 (), _~(4), _, Lai 2, more preferably i3 Qing ~ 1〇〇, 〇〇〇/mm2 〇.2Mm or more and less than i 〇〇"m second phase particles' The second phase particles are mainly precipitated after hot rolling and before solution treatment. However, there is also a case where it is precipitated by solution treatment. The second phase particles precipitated before the solution treatment can suppress the growth of the crystal grain size during the solution treatment, but there is also a tendency to cause solid solution. It is preferable to suppress the fluctuation in the number of the second phase particles by adjusting the solution treatment conditions. Further, the second phase particles having a diameter of (four) or more and 1 〇〇〇 " m or less are preferably 1 〇 2, _n mm 2 , MAn _ 2 , and most preferably 3 〇 500, _2. The diameter range (4) of the 2-phase particles can be precipitated by slowing down the cold portion after the high temperature is added, and the particle size can be adjusted by performing the 帛" effect treatment as needed. The preferred range of the number of the second one of the above diameters is also in conjunction with the number of (four) cores and less than (four) (four) two-phase particles. If it is in this range, it can be solid-solved at a high temperature, and it can suppress that the crystal grain size becomes 1 long in the solution treatment, and on the other hand, the Co, Si, and Zr are sufficiently widened by the (second) aging treatment in the latter stage. It is also precipitated slightly, and can achieve south strength, high electrical conductivity, and good bending workability. However, if it exceeds 2, the curvature is lowered and thus it is not good. The number of the second phase particles having a diameter of 0.20"m or more and less than i 〇Mm and i is less than Μ(10) is before and after the solution treatment: no change occurs after the second aging treatment, so the final calendering month can be utilized. ·" or the final processed test piece for evaluation. If there is a second phase particle having a diameter exceeding 10.00", the second is fine

相粒子之析出受到阻礙,I 又』 無法獲得析出強化效果,因此,The precipitation of phase particles is hindered, and I can't obtain the precipitation strengthening effect.

S 10 201233819 於本發明之合金材中,直徑超過10.00// m之第2相粒子較 佳為僅含有1個以下,更佳為〇 〇1個7_2以下。 0.05/z m以上且未達〇 2〇# m之第2相粒子係於熱壓 延、之後之冷卻、帛1時效處理中析出,但大部分於固溶 處理中固溶,且藉由之後之冷卻及(帛2)時效處理而析出。 未達0.05 " m之第2相粒子於固溶處理中固溶,且藉由(第 2)時效處理而大晉^^ φ 分咕尬 析出因此,3亥等第2相粒子無調整結 晶粒徑之效果,但有助於提高強度。 (合金材之物性) 本發明之合金材之導電率EC# 6〇%iacs以上較佳 為65/〇IACS以上。若在該範圍内,則可製造可高電流 零件。 本發明中所謂良好之料加工性,係指於〇‘3随厚板 厚最:脊曲半經馳/t為。.5以下(一纱若於— MBR/t為〇.5卩下,則可滿足製造、使用電子零件、 。是可動連接H時所要求的特性。再者,當 金材之厚度較。.3咖薄時,可獲得更佳之f曲加工性。口 本發明之合金材之〇2%保證應力Μ較佳》 ’更佳為650MPa以卜, JV , _ 拉伸強度TS較佳為630MPa β可#λ έ佳為66GMPa M上。若在上述範圍内,則作為尤其 疋°動連接器用板材等電子零件用材料而言充分。 (製造方法) 的步驟與通常之析出強化 (均質化熱處理)—熱壓 本發明之合金材之製造方法 型銅合金相同,為:熔解鑄造〜 201233819 l -冷部一(帛"夺效處理)〜表面研削—冷壓延一固溶 處理-冷卻—(冷壓延)2時效處理—最終冷壓延〜 (»周質他力退火)。再者’括弧内之步驟可省略,最終冷 壓延亦可於時效熱處理前進行。 於本發明中係於鑄造後進行均質加熱處理及熱壓延, 但均質加熱處理亦可為熱壓延中之加& (再者,本案說明 曰中將於均質加熱及熱壓延時進行之加熱總稱為「高溫 加熱」)。 同/皿加熱之溫度為添加元素大體上固溶之溫度即可 具體而言,係較於下述中選擇之固溶處理溫度高40t 上’較佳為高价以上之溫度。高溫加熱之溫度上限係 金屬組成及設備個別地規定,但通常為以下。加 時間亦根據板厚度而變化’較佳& 3〇〜5〇〇分鐘,更佳 6〇〜240分鐘。高溫加熱時,較佳為c。& si等添加元素 部分炼解。 高溫加熱後之冷卻速度為1〇(rc/min以下較佳為f 〜50C/min。若為該冷卻速度,則最後直徑為❹…爪以 上、未達l〇.〇〇"m的第2相粒子會在目標之範圍析出。作 是三先前為了抑制帛2相粒子之粗大化而藉由水冷喷淋等 進行急冷,因此僅析出微細之第2相粒子。 冷卻後,對材料進行表面刊,若心任意地進行身 時效處理,則可調整目標之第2相粒子之尺寸、數目, 而較佳。該第i時效處理之條件較佳為於_〜綱。C進 3Os〜3Oh 〇In the alloy material of the present invention, the second phase particles having a diameter of more than 10.00/m preferably contain only one or less particles, more preferably one or less of 7 _2. The second phase particles of 0.05/zm or more and less than 〇2〇# m are precipitated in hot rolling, subsequent cooling, and aging treatment, but most of them are solid solution in solution treatment, and by the latter It is cooled and precipitated by aging treatment. The second phase particles which are less than 0.05 " m are solid-solved in the solution treatment, and are precipitated by the (2) aging treatment, so that the second phase particles of 3H have no crystals. The effect of particle size, but helps to increase strength. (Physical properties of the alloy material) The electrical conductivity of the alloy material of the present invention is preferably 65 or more IACS or more. If it is within this range, high current parts can be manufactured. The term "good material processability" as used in the present invention means that the thickness of the layer is the same as that of the thickness of the plate: .5 or less (a yarn if it is - MBR / t is 〇.5 卩, it can meet the manufacturing and use of electronic parts, is the characteristics required when the movable connection H. Moreover, when the thickness of the gold material is relatively. 3 When the coffee is thin, better processing of the F-curve can be obtained. The 〇2% of the alloy material of the present invention ensures the stress Μ is better. 'More preferably 650 MPa, JV, _ tensile strength TS is preferably 630 MPa β In the range of the above-mentioned range, it is sufficient for the material for electronic parts such as the sheet material for the movable connector. (Production method) and normal precipitation strengthening (homogenization heat treatment) - Hot pressing of the alloy material of the present invention The same type of copper alloy is: melt casting ~ 201233819 l - cold part one (帛 " effect treatment) ~ surface grinding - cold rolling - solution treatment - cooling - (cold Calendering) 2 aging treatment - final cold rolling ~ (»peripheral annealing). In addition, the steps in 'brackets can be omitted, and the final cold rolling can also be performed before the aging heat treatment. In the present invention, it is homogenized after casting. Heat treatment and hot rolling, but homogeneous heat treatment It can be added to the hot rolling & (In addition, in this case, the heating in the crucible will be called "high temperature heating" in the case of homogeneous heating and hot pressing delay.) The temperature of the same / dish heating is substantially solid solution for the added elements. Specifically, the temperature is preferably higher than the temperature at which the solution treatment temperature selected below is 40 t. The upper limit of the temperature at which the high temperature is heated is determined by the metal composition and equipment individually, but usually the following The addition time also varies according to the thickness of the board. 'Best & 3 〇~5 〇〇 minutes, more preferably 6 〇 to 240 minutes. When heating at a high temperature, it is preferably c. & si and other added elements are partially refined. The cooling rate after heating is 1 〇 (r/min or less is preferably f 〜50 C/min. If the cooling rate is the second, the final diameter is ❹...the claw is above, and the second is less than 〇.〇〇" The phase particles are precipitated in the target range. In order to suppress the coarsening of the 帛2 phase particles, the particles are quenched by water-cooling or the like, so that only the fine second phase particles are precipitated. If you are arbitrarily aging, Adjust the size of the second phase particles of the target, the number, the better. The conditions of the i-aging treatment is preferably in _~ into 3Os~3Oh square outline .C

12 201233819 在上述任意之第1時效處理之後進行的固溶處理之溫 度係於(50xCowt%+ 775 ) °c 以上、(50xc〇wt%+ 825 ) °c 以下之範圍内選擇。較佳之處理時間為3〇〜5〇〇s,更佳為 60〜200s。若在該範圍内’則可殘留經調整之第2相粒子而 阻止結晶粒徑增大,另一方面,微細地析出之c〇、si、& 充分地固溶,且藉由後階段之第2時效處理,形成為微細 之第2相粒子而析出。 固溶處理後之較佳冷卻速度為丨〇。〇 / S以上。若低於該 冷卻速度,則冷卻中析出第2相粒子,固溶量降低。冷卻 速度並無特別之較佳上限,若為通常採用之設備,則例如 即便為1 0 0 °c / S左右亦可。 根據本發明,於Co、Si及Zr含量較低,或者熱壓延後 不緩慢冷卻,且亦不進行第2時效處理加熱之情形時,在 固溶處理前析出之第2相粒子較少。對析出之第2相粒子 較;的合金進行固溶處理時,於超過85〇<>c之高溫且超過1 分鐘之固溶處理時間下,結晶粒徑粗大化,因此僅可進行 3〇秒左右之短時間熱處理,實際上可固溶之量較少,因此 無法獲得充分之析出強化效果。 。固溶處理後之第2時效處理之溫度較佳為45〇t〜65〇 進行1 20小日寺。若在該範圍β,則於固溶處理中殘 留之第2相粒子之直徑可維持在本發明之範圍内,並且經 =之添加元素形成為微細之第2相粒子而析出,有助於 強度強化。 敢終壓延加 丄 度較佳為5〜40%,更佳為1〇〜2〇%。若 13 201233819 未達5%,則因加工硬化而得之強度提昇不充分另 若超過4 0 % ’則弯曲加工性下降。 另外,於D時效熱處理前進行最終冷壓延之情形時, 方面 時即可 第2時效熱處理於45〇t〜6〇〇。(:進行小 弛力退火溫度較佳為250〜60(Tr 1 , ' 600 C,退火時間較佳 〜1小時。若在該範圍内,則第2相粒 J <人寸、數目不合 產生變化,且結晶粒徑亦不變化。 曰 [實施例] _於以電解銅、Si、C°、Zr作為原料之料中,變更添 加7L素之量、種類而進行添加,鎢造厚度為鍵。 以表中之溫度對該鑄鍵進行3小時(高溫)純,藉由孰 壓延而製成厚度10_之板、繼而,研削除去表面之氧化 皮,進打小時之時效熱處王里,然後,進行溫度、時間經 適宜變更之固溶處理,以表中之冷卻溫度進行冷卻,以表 中之溫度進行卜15小時之時效熱處理,藉由最終之冷壓 延而將最終厚度精加工為〇 ^ 山 马0.3mm〇弛力退火時間為1分鐘。 (評價) 使用表面研削步驟後之樣品,藉由Icp—質譜分析法分 析銅合金基質中之添加元素之濃度。 第2相粒子之直徑及個數可藉由下述方法進行測定: 對最終冷!延前之樣品屢延平行剖面進行機械研磨而抛光 成鏡面後’進行電解研磨或酸洗飯刻,使用掃描式電子顯 微鏡獲付各倍率之顯微鏡照片5張,由該顯微鏡照片測定12 201233819 The temperature of the solution treatment performed after any of the above first aging treatments is selected within a range of (50xCowt% + 775) °c or more and (50xc〇wt% + 825) °c or less. The preferred processing time is from 3 〇 to 5 〇〇s, more preferably from 60 to 200 s. If it is within this range, the adjusted second phase particles may remain and the crystal grain size may be prevented from increasing. On the other hand, c微, si, & finely precipitated are sufficiently solid-solved, and by the latter stage In the second aging treatment, fine second phase particles are formed and precipitated. The preferred cooling rate after solution treatment is 丨〇. 〇 / S or above. When the cooling rate is lower than this, the second phase particles are precipitated during cooling, and the amount of solid solution is lowered. There is no particularly preferable upper limit for the cooling rate. If it is a commonly used device, for example, it may be about 10 ° C / S. According to the present invention, when the content of Co, Si, and Zr is low, or is not slowly cooled after hot rolling, and the second aging treatment is not performed, the second phase particles precipitated before the solution treatment are less. When the alloy of the second phase particles which are deposited is subjected to a solution treatment, the crystal grain size is coarsened at a solution treatment time exceeding 85 Å <>> c for more than 1 minute, so that only the crystal grain size can be increased. In the short-time heat treatment of about twenty-seconds, the amount of solid solution can be practically small, so that a sufficient precipitation strengthening effect cannot be obtained. . The temperature of the second aging treatment after the solution treatment is preferably 45 〇t to 65 进行 for 1 20 Xiaori Temple. When it is in this range β, the diameter of the second phase particles remaining in the solution treatment can be maintained within the range of the present invention, and the added element is formed into fine second phase particles and precipitated, contributing to strength. strengthen. The enthalpy is preferably 5 to 40%, more preferably 1 to 2%. If 13 201233819 is less than 5%, the strength increase due to work hardening is insufficient, and if it exceeds 40%, the bending workability is lowered. Further, in the case where the final cold rolling is performed before the D aging heat treatment, the second aging heat treatment may be performed at 45 〇t to 6 Torr. (: The annealing temperature for small relaxation is preferably 250 to 60 (Tr 1 , '600 C, and the annealing time is preferably ~1 hour. If it is within the range, the second phase particles J <变化 [Examples] _ In the case of electrolytic copper, Si, C°, and Zr as raw materials, the amount and type of 7L of the added substance are changed and added, and the thickness of tungsten is set as a bond. The cast bond is made pure for 3 hours (high temperature) at the temperature in the table, and is formed into a plate having a thickness of 10 Å by calendering, and then, the scale of the surface is removed by grinding, and the aging heat is taken in the hour. Then, the solution treatment is carried out by appropriately changing the temperature and time, and is cooled at the cooling temperature in the table, and subjected to an aging heat treatment for 15 hours at the temperature in the table, and the final thickness is finished into a crucible by final cold rolling. ^ The equine horse 0.3mm relaxation annealing time is 1 minute. (Evaluation) The concentration of the additive element in the copper alloy matrix is analyzed by Icp-mass spectrometry using the sample after the surface grinding step. The number can be determined by the following method After the final cold! Sample before the casting repeated Yenping line sectional mechanically polishing a mirror-finished "electrolytic polishing or pickling rice engraved, using a scanning electron microscope is eligible payment microscope photograph of each magnification of 5, determined by the microscopic photograph

S 14 201233819 第2相粒子之直徑及個數。觀察倍率 、 如下.(a) 0.05// m 以上且未達0.20βm為5xl04倍,(b、n1Λ 〇.2〇ym以上且未 U.OO/zmWxm,((〇1.〇〇心以上且 1〇〇〇心以 下為lxl〇3倍(於表卡分別表示為「5〇—2〇()nm」、「2⑽ -lOOOnm」、及「1000- i〇000nm」)。 結晶粒徑係依據JISH0501 ’藉由切斷法而測定平均結 晶粒徑。 導電率EC係於保持為20t (±〇.rc)之怪溫槽中藉 由四端子法(four-terminal meth〇d)測量比電阻(端子間 距離為5 0mm )。 關於彎曲加工性MBR/ t ’係以彎曲軸與壓延方向成直 角的方式進行經T.D. ( Transverse Direction)截取之矩形試 片(寬1 Ommx長3 0mmx厚0_3mm )之90。W彎曲試驗(jjs H3130,Bad Way),將不產生裂痕之最小彎曲半徑( 設為 MBR ( Minimum Bend Radius ),根據該 MBR 與板厚 t ( mm )之比MBR/ t來評價彎曲加工性。 關於0.2%保證應力YS及拉伸強度TS,將在壓延平行 方向切割出之JIS Z2201 - 13B號之樣品,依據JIS z 2241 進行3次測定並求出平均值。 將Co及Si濃度、Co/ Si之元素比、直徑為〇 2〇 " m 以上且未達1 ·〇〇 M m之第2相粒子數、導電率EC及結晶粒 徑設於本發明之範圍内,將改變Zr的添加量之結果示於表 1A〜C。 根據表1A及B,與完全未添加Zr之比較例3相比, 15 201233819 添加了 〇鳥或ο·3%之Zr的實施例其強度及導 或導電率上升。並且’確認到導電率隨Zr添加量成比例地 上升。然而’於添加了⑽之心的比較例4中強度及彎曲 加工性下降(後述表! C之說明)。 根據上述結果,將Zr量設為〇1%且改變成分組成及製 造條件而得的結果示於表2A〜C (後述表2(:之說明)。 實施例1〜1 1由於滿足本發明之必要條件,因此是具 備優異之導電性、強度、厚板下之彎曲加工性,且適合作 為可高電流化之可動連接器的材料。 參考例22與實施例6的條件相同,係於固溶處理後, 以表中之冷卻溫度進行冷卻,於時效處理前藉由最終冷壓 延將最終厚度精加工為〇.3mm,以表中之溫度進行3 ^時 之時效處理’纟同樣地進行調f弛力退火所得的材料,與 實施例6的物性相比雖然強度稍變差,但彎曲性提高。 比較例12由於固溶溫度過高,故而直徑為〇 2〇〆爪以 上且未達1 ·00" m之第2相粒子於固溶熱處理中消失,且 無法發揮抑制結晶成長之效果,結晶粒徑變大且彎曲性較 差。 比較例13係Co/Si比低,比較例14係Co/Si比高, 均無法獲得微細第2相粒子所致的析出強化作用,且強度 變低,由於Co.或Si之固溶濃度提高因而導電性亦變差。 比較例1 5係熱加工後之冷卻速度過度緩慢,因此直徑 為1 m以上且未達1〇 〇〇/z m之第2相粒子增多,彎曲 性較差。S 14 201233819 The diameter and number of the second phase particles. The observation magnification is as follows: (a) 0.05// m or more and less than 0.20 βm is 5×10 times, (b, n1Λ 〇.2〇ym or more and not U.OO/zmWxm, ((〇1. 1〇〇〇The following is lxl〇3 times (in the table, it is expressed as “5〇—2〇()nm”, “2(10)−lOOOnm”, and “1000-i〇000nm”). The crystal size is based on JISH0501 'The average crystal grain size was determined by the cutting method. The conductivity EC was measured by a four-terminal method (four-terminal meth〇d) in a strange temperature bath maintained at 20t (±〇.rc) ( The distance between the terminals is 50 mm. The bending process MBR/t ' is a rectangular test piece (width 1 Ommx length 30 mmx thickness 0_3 mm) which is cut by TD (Transverse Direction) at a right angle to the bending direction. 90. W bending test (jjs H3130, Bad Way), the minimum bending radius without cracking (set to MBR (Minimum Bend Radius), according to the ratio of MBR to thickness t (mm) MBR / t to evaluate bending processing About 0.2% guaranteed stress YS and tensile strength TS, samples of JIS Z2201 - 13B which are cut in the parallel direction of rolling, JIS z 2241 performs three measurements and obtains an average value. The ratio of Co and Si, the element ratio of Co/Si, and the number of second phase particles having a diameter of 〇2〇" m or more and less than 1 ·〇〇M m The conductivity EC and the crystal grain size are within the range of the present invention, and the results of changing the amount of addition of Zr are shown in Tables 1A to C. According to Tables 1A and B, compared with Comparative Example 3 in which Zr is not added at all, 15 201233819 The example in which the ostrich or ο·3% of Zr was added increased in strength and conductance or conductivity, and 'confirmed that the conductivity increased in proportion to the amount of Zr added. However, 'Comparative example with the added heart of (10) (4) The medium strength and the bending workability are deteriorated (described in Table C!). Based on the above results, the results of changing the composition and manufacturing conditions by setting the amount of Zr to 〇1% are shown in Tables 2A to C (Table 2 to be described later). (Description of the invention) In the first to the first embodiments, the present invention satisfies the requirements of the present invention, and therefore has excellent electrical conductivity, strength, and bending workability under a thick plate, and is suitable as a movable connector capable of high current. Reference Example 22 is the same as the condition of Example 6, after the solution treatment. The cooling was carried out at the cooling temperature in the table, and the final thickness was refined to 〇3 mm by final cold rolling before the aging treatment, and the aging treatment was performed at a temperature of 3 ° at the temperature in the table. The obtained material had a slightly lower strength than the physical properties of Example 6, but the flexibility was improved. In Comparative Example 12, since the solid solution temperature was too high, the second phase particles having a diameter of 〇2〇〆 or more and less than 1·00" m disappeared in the solution heat treatment, and the effect of suppressing crystal growth could not be exhibited. The diameter becomes large and the bending is poor. In Comparative Example 13, the Co/Si ratio was low, and in Comparative Example 14, the Co/Si ratio was high, and the precipitation strengthening effect by the fine second phase particles could not be obtained, and the strength was lowered, and the solid solution concentration of Co. or Si was increased. Therefore, the electrical conductivity also deteriorates. Comparative Example 1 Since the cooling rate after the thermal processing of 5 is excessively slow, the number of second phase particles having a diameter of 1 m or more and less than 1 〇 z / z m is increased, and the bending property is inferior.

S 16 201233819 比較例1 6係熱加工後之冷卻速度較快,直徑為〇 2〇 # m以上且未達i.00// m之第2相粒子之個數較少,無法發 揮抑制結晶成長之效果,彎曲性較差。於比較例丨7中,雖 然為了補偵熱加工後之冷卻速度較快且直徑為〇. 2 〇以m以 上且未達1.00以m之第2相粒子之個數較少,而於高溫下 進行第1時效處理且使直徑為〇.2〇//m以上且未達丨〇〇#m 之第2相粒子析出,但因此時之加熱而使結晶粒徑增大, 因此彎曲性較差。 比較例1 8與實施例8相t匕,因為高溫加熱溫度及固溶 處理恤度杈尚,故無法發揮抑制結晶成長之效果,結晶粒 徑變大、彎曲性較差且導電性亦低於實施例8。 比較例19與實施例U相比 溶處理中添加元素的固溶量變少 固溶處理溫度較低 強度較低。 固 比較例2G係Co m交高,固溶處理溫度較高且時間 亦較長’因此直徑為0.2“ m以上且未達l 〇Mm之第2 相粒子之個數較多,彎曲性較差。 比較例2 1係C。濃度較高’固溶處理溫度與熱加工溫 X同6為冋/皿,因此無法發揮抑制結晶粒徑成長之效 果直徑為0.20"m以上且未達1〇〇"m之第2相粒子之 :固數較/ ’直徑為L00”以上且i〇以下之第2相 粒子之個數較多,彎曲性較差。 本發明中,雖然理論上並 之步驟與第2相粒子之消失、 皿加熱中’添加元素固溶於鋼 無限制’但可認為製造方法 析出之關係如下所述。於高 中。於熱壓延中以及熱壓延 17 201233819 後之速度經調節之冷卻階段中,析出0·05 μ m以上之第2 相粒子。於熱壓延後之第1時效處理中,並不析出0.05以m 以上之第2相粒子’而大量析出未達之第2相粒 子。於溫度經調整之固溶處理中,未達〇.2〇ym之第2相 粒子固溶消失。於固溶處理後之速度經調節之冷卻階段 t ’主要係少量地析出0.05 μιη以上且未達〇·2/zm之第2 相粒子。於固溶處理後之第2時效處理十,大量析出未達 0.05以m之第2相粒子。 於表1C及表2C中,表示測定(a) 5〇nm以上且未達 200nm、( b) 200nm 以上且未達 1〇〇〇nm、( c) 1〇〇〇1^ 以 上ι〇,〇〇〇ηηι以下之直徑範圍的第2相粒子在製造步驟中如 何變化所得的結果。再者,於全部的測定中皆無法確認到 直徑超過HMOOnmdO.oo”)之第2相粒子。因為隨著 直徑變大個數呈對數地減少,故改變表示位數。 於U) ’若為本發明之固溶處理條件,則固溶而 Ϊ二5: WO左右之數目’於第2時效處理後數目不 產生變動。關於(b ),若Α太 右為本發明之固溶處理條件及第 時效處理條件,則數目幾婵 +曰/咸。關於(C),兹Α太 明之南溫加熱、冷细條彼 數& 6 ” ,彳固溶處理前、最終冷壓延 數目均儿全不變化。 〜 再者,若帛1 B夺效處理溫度 (比較例17) m 又n (b)的個數未 則⑴的個數減少,且有變;處理時間較. (比較例18及21)。、成未達本發明之下限值之伯S 16 201233819 Comparative Example 1 The cooling rate after 6-step hot working is fast, and the number of second-phase particles having a diameter of 〇2〇# m or more and less than i.00//m is small, and it is impossible to suppress crystal growth. The effect is poor. In Comparative Example 7, although the cooling rate after the hot processing is fast, and the diameter is 〇. 2 〇, the number of the second phase particles of m or more and less than 1.00 m is small, and at a high temperature. The first aging treatment is performed, and the second phase particles having a diameter of 〇.2 〇//m or more and less than 丨〇〇#m are precipitated. However, heating is performed to increase the crystal grain size, and thus the flexibility is inferior. In Comparative Example 1 and Example 8, the temperature of the high-temperature heating temperature and the solution treatment were not good, so that the effect of suppressing crystal growth was not exhibited, the crystal grain size was large, the bendability was poor, and the conductivity was lower than that of the implementation. Example 8. In Comparative Example 19, compared with Example U, the amount of solid solution of the added element in the solution treatment was small, and the solution treatment temperature was low, and the strength was low. In the solid comparative example 2G, the Co m cross height is high, and the solution treatment temperature is high and the time is also long. Therefore, the number of the second phase particles having a diameter of 0.2 μm or more and less than 1 〇Mm is large, and the bending property is poor. Comparative Example 2 1 system C. Higher concentration 'Solution treatment temperature and hot working temperature X and 6 are 冋/dish, so the effect of suppressing the growth of crystal grain size cannot be exhibited. The diameter is 0.20 quot; m or more and less than 1 〇〇. "m of the second phase particles: the solid number is smaller than the 'diameter L00' or more, and the number of the second phase particles below i〇 is large, and the bending property is poor. In the present invention, although the theoretical step and the disappearance of the second phase particles and the addition of the element to the steel in the dish heating are not limited, it is considered that the relationship of the precipitation of the production method is as follows. In high school. The second phase particles of 0·05 μm or more are precipitated in the cooling stage in which the temperature is adjusted during hot rolling and after hot rolling 17 201233819. In the first aging treatment after the hot rolling, the second phase particles of 0.05 m or more are not precipitated, and the second phase particles which are not reached are precipitated in a large amount. In the solution treatment in which the temperature was adjusted, the second phase particles which did not reach 〇.2〇ym disappeared. In the cooling stage t ′ after the solution treatment, the second phase particles of 0.05 μm or more and less than 〇·2/zm are mainly precipitated in a small amount. After the second aging treatment after the solution treatment, a large amount of the second phase particles of not more than 0.05 m were precipitated. Table 1C and Table 2C show that (a) 5 〇 nm or more and less than 200 nm, (b) 200 nm or more, and less than 1 〇〇〇 nm, (c) 1〇〇〇1^ or more, 〇 The result of how the second phase particles in the diameter range below 〇〇ηηι are changed in the manufacturing step. Further, in the entire measurement, the second phase particles having a diameter exceeding HMOOnmdO.oo") could not be confirmed. Since the number of logs became logarithmically decreased as the diameter became larger, the number of expressed digits was changed. The solution treatment conditions of the present invention are solid solution and the number of Ϊ2:WO is not changed after the second aging treatment. Regarding (b), if Α太右 is the solution treatment condition of the present invention and For the aging treatment conditions, the number is a few 婵 + 曰 / salt. Regarding (C), the temperature of the south temperature of the Α Α 明 加热 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 No change. Further, if 帛1 B is effective treatment temperature (Comparative Example 17) m and n (b) is not the number of (1), the number of (1) is decreased, and the processing time is longer (Comparative Examples 18 and 21). To the limit of the lower limit of the invention

S 18 201233819 【VI <】 1弛力退火i 溫度 I °C/\m\n I 500 ο 500 500 最終壓延 加工度 o ο o o 時效 溫度 °C/l-15h I 540 540 540 540 冷卻 速度 °C/sec 1 固溶 o ο o o 溫度 P 900 900 900 900 5〇xCowt% + 775 下限°c 860 860 860 860 時效 溫度 1 t/15h」 600 600 600 600 冷卻 速度 °C/ min IT) 高溫加熱 溫度 Mc/3h I 980 980 980 980 1 成分 Co/Si rn 寸· cn — cn — N wt% 0.01 m d 〇 o >—< wt% o TT o o 寸 d wt% 卜 Γ-; 實施例1 實施例2 比較例3 比較例4 【SI^〕 第2時效處理後之第2相粒子 lOOO-lOOOOnm 個/mm2 § 400 § 2,500 200— lOOOnm 個/mm2 0 1 o o。 o o 〇Λ oo 4,000 50 —200nm χ 1000000 個/mm2 in 〇 CO o o 〇 物性 R/t (B.W.) o o o <N 〇 p Ο I 卜 00 u ω 1 %IACS I 〇\ o 〇 MPa | 680 670 670 610 MPa I | 660 I |65〇J | 650 | 590 |實施例i | 實施例2 |比較例3 1 比較例4 201233819 υΙί 第2時效處理後 | 1000-10000 § 400 § 2,500 200-1000 7 20,000 14,000 18,000 4,000 50-200 X1000000 d Ο •λ ο ο 固溶處理後 1000-10000 7 § 380 g 2,600 200-1000 20,000 14,000 ο ο 00^ 4,000 50-200 X1000000 d 0.35 ο c5 第1時效處理後、固溶處理前 1000-10000 7 § 440 ο 2,500 200-1000 7 ο ο 1 16,000 1 22,000 4,000 50-200 X1000000 (Ν •ο — 第丨時效處理前 1000-10000 7 140 400 § 2,600 200-1000 ο ο 0〇Λ 14,000 Ο Ο 1 6,000 1 50—200 X1000000 ο ο ο ο 粒徑 nm 丨個/mm2 實施例1 1實施例2 1 1比較例3 1 比較例4 s 201233819 【vrsl^】 他力退火 溫度 500 o 500 o 500 Ο 500 ο 500 500 500 500 500 500 500 500 500 500 最终壓延 加工度 o o O o o ο ο Ο ο ο ο ο Ο ο ο ο ο ο 時效 |溫度 550 540 540 «Λ 520 ο 500 «η 520 520 520 540 540 530 510 500 500 500 冷卻 速度 °C/sec o s ο 固溶 時間, (Λ o o o o o ο ο ο ο ο ο ο ο ο ο 1000 ο ο 溫度 Ρ 860 : JO 00 875 900 925 940 950 930 875 875 875 875 875 950 800 950 1000 875 5〇xCowt%H-775 下限°c 850 s 00 860 o 00 880 00 900 〇〇 860 860 860 860 860 870 900 910 910 860 時效 溫度 P 600 600 o 600 ο 600 ο S 600 600 I 650 800 600 600 600 600 600 冷卻 速度 〇C/min o l〇 »n r〇 m Ο »η ΓΓι ο 200 200 •η •η 高溫加熱 溫度 I °C/3h 900 § ON 980 950 975 990 1000 § OS 950 950 950 950 950 1000 1000 1000 1000 980 成分 Co/Si 00 rn ΓΛ — — (N 对· (N 寸’ ο »η ο ΓΛ (Ν — 00 (Ν 卜 *r> ΓΛ rn 寸· — — ίΝ rf (Ν Tf (Ν 对· N wt% 〇 o d 〇 〇 ο ο Ο Ο ο Ο Ο Ο ο Ο ο ο Ο wt% 0.40 0.40 0.40 0.45 ! 0.50 0.46 0.70 0.36 0.60 0.30 0.40 0.40 0.40 0.45 0.60 0.64 0.64 0.40 〇 U wt% Os m <Ν *η (Ν Γ-; σν «η (Ν 卜 (Ν 卜 <Ν γ·^ 實施例5 實施例6 實施例7 實施例8 實施例9 1實施例ίο 實施例11 比較例12 比較例13 比較例14 比較例15 比較例16 比較例17 比較例18 比較例19 比較例20 比較例21 1參考例22 - 201233819 【s<】 第2時效處理後之第2相粒子 lOOO-lOOOOnm 個/mm2 o 1 i 200 300 260 1800 200 § o 2600 〇 o ο 1800 200 2100 1 200— lOOOnm 個/mm2 20000 60000 80000 80000 140000 200000 300000 2000 10000 8000 18000 2000 68000 2000 400000 600000 2000 60000 50 —200nm x 1000000 個/mm2 o in o — in CN (N (N o <N 〇 rn 〇 〇 CN Ο Ο ΓΟ ο ο R/t (B.W.) o o o (N d O 寸 d d d d 〇 〇 (N p q Ο irj ο Ο ο (Ν ο ο C/3 〇 I 卜 卜 卜 〇\ o o CN 卜 卜 卜 s 宕 00 Ό 卜 a ω %IACS o \〇 00 !〇 in o cs v〇 v〇 00 oo 〇 v〇 00 v〇 (Ν Ό ο m ν〇 § 00 ζΛ | MPa | 640 1 Ι_67〇| | 680 1 | 680 | ItioJ 1 750 1 | 780 1 | 660 1 |62〇J |62〇J L65〇J 〇 VO | 660 | Ο |62〇Ι ο Os 800 沄 a> | MPa o 3 | 650 1 |65〇J | 660 | | 680 1 | 730 | |Τ60| |63〇J |58〇J o | 620 1 | 640 I Ι_63〇| |τι〇Ι |5?〇| |Τ60| 1 770 1 610 1 實施例5 |實施例61 實施例7 實施例8 實施例9 實施例10 實施例11 比較例12 |比較例13 I 比較例14 比較例15 比較例16 比較例17 比較例18 比較例19 比較例20 比較例21 1參考例22 1 s 201233819 第2時效處理後 1000-10000 7 〇 1 § Ο ο 260 1800 200 § ο 2600 ο ο ο 1800 200 2100 200-_ 7 20000 60000 80000 80000 140000 200000 300000 2000 10000 8000 180000 2000 68000 2000 400000 600000 2000 60000 50—200 X1000000 ο ο ο »η (Ν m (Ν Ο (Ν ο (Ν Ο ο — «η ο (Ν Ο ο ο •Τ) Ο 固溶處理後 1000-10000 X ο 1 1 200 300 260 1600 200 1 Ο 2600 ο ο ο Ο 1800 § 2100 1 200-1000 7 20000 60000 80000 80000 140000 180000 300000 2000 10000 ! 8000 180000 2000 70000 2000 400000 600000 2000 60000 〇 1 X1000000 «ο ο 0.45 ο «η (Ν CM Ο <Ν ο ίΝ Ο ΓΛ - •ο ο 0.05 二 0.05 0.45 第1時效處理後、固溶處理前 1000-10000 7 ο § 1 240 320 300 1800 § 1 § 3000 § ο ο ο ! 1800 ! 200 2200 1 200-1000 24000 ! 80000 90000 80000 160000 200000 400000 2000 16000 12000 200000 4000 110000 18000 400000 600000 4000 80000 50-200 xl00(K)00 rt ο 卜 ο Ό ο ο - ο (Ν 第1時效處理前 1000-10000 ~ § I 200 300 300 1800 Ο Ο 3000 § § ο !800 240 2400 1 200-1000 X 14000 70000 80000 70000 160000 110000 400000 1 2000 16000 12000 200000 3000 3000 18000 400000 600000 2000 70000 50-200 X1000000 ο ο ο ο ο ο ο ο Ο ο ο 〇〇 ο 00 ο ο ο ο ο ο 粒徑 nm 個/mm2 實施例5 1實施例6 1 實施例7 丨實施例8 1 1實施例9 1 實施例10 實施例11 比較例12 比較例13 比較例14 比較例15 比較例16 比較例17 比較例18 比較例19 比較例20 比較例21 參考例22 201233819 【產業上的可利用性】 藉由本發明之銅合金材可達成適合於可動連接器之彎 曲加工性、及可高電流化之導電性,此外亦可達成可實際 應用之強度 【圖式簡單說明】 圖1,係說明第2相粒子之直徑之參考圖。 【主要元件符號說明】 L1 :粒子的短徑 L2 :粒子的長徑S 18 201233819 [VI <] 1 Relaxation Anneal i Temperature I °C/\m\n I 500 ο 500 500 Final calendering degree o ο oo Aging temperature °C/l-15h I 540 540 540 540 Cooling rate ° C/sec 1 Solid solution o ο oo Temperature P 900 900 900 900 5〇xCowt% + 775 Lower limit °c 860 860 860 860 Aging temperature 1 t/15h” 600 600 600 600 Cooling rate °C/ min IT) High temperature heating temperature Mc/3h I 980 980 980 980 1 composition Co/Si rn inch · cn — cn — N wt% 0.01 md 〇o >—< wt% o TT oo inch d wt% Γ - Example 1 Example 2 Comparative Example 3 Comparative Example 4 [SI^] The second phase particle after the second aging treatment is 100-1000 nm/mm2 § 400 § 2,500 200 - lOOOnm / mm2 0 1 oo. Oo 〇Λ oo 4,000 50 —200nm χ 1000000 pieces/mm2 in 〇CO oo 〇 physical property R/t (BW) ooo <N 〇p Ο I 00 u ω 1 %IACS I 〇\ o 〇MPa | 680 670 670 610 MPa I | 660 I |65〇J | 650 | 590 |Example i | Example 2 |Comparative Example 3 1 Comparative Example 4 201233819 υΙί After 2 aging treatment | 1000-10000 § 400 § 2,500 200-1000 7 20,000 14,000 18,000 4,000 50-200 X1000000 d Ο •λ ο ο After solution treatment 1000-10000 7 § 380 g 2,600 200-1000 20,000 14,000 ο ο 00^ 4,000 50-200 X1000000 d 0.35 ο c5 After the first aging treatment, solid 1000-10000 7 § 440 ο 2,500 200-1000 7 ο ο 1 16,000 1 22,000 4,000 50-200 X1000000 (Ν •ο - 1000-10000 7 140 400 § 2,600 200-1000 ο ο 0 〇Λ 14,000 Ο Ο 1 6,000 1 50-200 X1000000 ο ο ο ο particle size nm / / mm 2 Example 1 1 Example 2 1 1 Comparative Example 3 1 Comparative Example 4 s 201233819 [vrsl^] Other annealing temperature 500 o 500 o 500 Ο 500 ο 500 500 500 500 500 500 500 500 500 500 Final calendering degree Oo O oo ο ο Ο ο ο ο ο Ο ο ο ο ο ο « 950 540 540 « 520 520 520 540 540 530 510 500 500 500 Cooling rate °C / sec os ο Solid solution time , (Λ ooooo ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο s 00 860 o 00 880 00 900 〇〇860 860 860 860 860 870 900 910 910 860 Aging temperature P 600 600 o 600 ο 600 ο S 600 600 I 650 800 600 600 600 600 600 Cooling speed 〇C/min ol〇» Nr〇m Ο »η ΓΓι ο 200 200 •η •η High temperature heating temperature I °C/3h 900 § ON 980 950 975 990 1000 § OS 950 950 950 950 950 1000 1000 1000 1000 980 Composition Co/Si 00 rn ΓΛ — —(N对·(N inch' ο »η ο ΓΛ (Ν — 00 (Ν卜*r> ΓΛ rn 寸·—— ίΝ rf (Ν Tf (Ν 对 · N wt% 〇od 〇〇ο ο Ο Ο ο Ο Ο Ο ο Ο ο ο Ο wt% 0.40 0.40 0.40 0.45 ! 0.50 0.46 0.70 0.36 0.60 0.30 0.40 0 .40 0.40 0.45 0.60 0.64 0.64 0.40 〇U wt% Os m <Ν *η (Ν Γ-; σν «η (Ν卜(Ν卜<Ν γ·^ Example 5 Example 6 Example 7 Example 8 Example 9 1 Example ίο Example 11 Comparative Example 12 Comparative Example 13 Comparative Example 14 Comparative Example 15 Comparative Example 16 Comparative Example 17 Comparative Example 18 Comparative Example 19 Comparative Example 20 Comparative Example 21 1 Reference Example 22 - 201233819 [s< The second phase particle after the second aging treatment is 1000-100 nm/mm2 o 1 i 200 300 260 1800 200 § o 2600 〇o ο 1800 200 2100 1 200- lOOOnm/mm2 20000 60000 80000 80000 140000 200000 300000 2000 10000 8000 18000 2000 68000 2000 400000 600000 2000 60000 50 —200nm x 1000000 pieces/mm2 o in o — in CN (N (N o <N 〇rn 〇〇CN Ο Ο ΓΟ ο ο R/t (BW) ooo (N d O inch dddd 〇〇 (N pq Ο irj ο Ο ο (Ν ο ο C/3 〇I 卜卜卜〇 oo CN 卜卜卜s 宕00 Ό 卜 a ω %IACS o \〇00 !〇in o Cs v〇v〇00 oo 〇v〇00 v〇(Ν Ό ο m ν〇§ 00 ζΛ | MPa | 640 1 Ι_67〇| | 680 1 | 680 | ItioJ 1 750 1 | 780 1 | 660 1 |62〇J |62〇J L65〇J 〇VO | 660 | Ο |62〇Ι ο Os 800 沄a> | MPa o 3 | 650 1 |65〇J | 680 1 | 730 | |Τ60| |63〇J |58〇J o | 620 1 | 640 I Ι_63〇| |τι〇Ι |5?〇| |Τ60| 1 770 1 610 1 Example 5 | Example 61 Example 7 Example 8 Example 9 Example 10 Example 11 Comparative Example 12 | Comparative Example 13 I Comparative Example 14 Comparative Example 15 Comparative Example 16 Comparative Example 17 Comparative Example 18 Comparative Example 19 Comparative Example 20 Comparative Example 21 1 Reference example 22 1 s 201233819 After the second aging treatment 1000-10000 7 〇 1 § Ο ο 260 1800 200 § ο 2600 ο ο ο 1800 200 2100 200-_ 7 20000 60000 80000 80000 140000 200000 300000 2000 10000 8000 180000 2000 68000 2000 400000 600000 2000 60000 50—200 X1000000 ο ο ο »η (Ν m (Ν Ο (Ν ο (Ν Ο ο — «η ο (Ν Ο ο ο Τ Τ) 1000 1000-10000 X ο 1 1 after solution treatment 200 300 260 1600 200 1 Ο 2600 ο ο ο Ο 1800 § 2100 1 200-1000 7 20000 60000 80000 80000 140000 180000 300000 2000 10000 ! 8000 180000 2000 70000 2000 400000 600000 2000 60000 〇1 X1000000 «ο ο 0.45 ο «η (Ν CM Ο <Ν ο Ν Ο ΓΛ - • ο ο 0.05 2 0.05 0.45 After the first aging treatment, before the solution treatment 1000-10000 7 ο § 1 240 320 300 1800 § 1 § 3000 § ο ο ο ! 1800 ! 200 2200 1 200-1000 24000 ! 80000 90000 80000 160000 200000 400000 2000 16000 12000 200000 4000 110000 18000 400000 600000 4000 80000 50-200 xl00(K)00 rt ο ο Ό ο ο - ο (Ν 1000-10000 before the first aging treatment ~ § I 200 300 300 1800 Ο Ο 3000 § § ο !800 240 2400 1 200-1000 X 14000 70000 80000 70000 160000 110000 400000 1 2000 16000 12000 200000 3000 3000 18000 400000 600000 2000 70000 50-200 X1000000 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Example 8 1 1 Example 9 1 Example 10 Example 11 Comparative Example 12 Comparative Example 13 Comparative Example 14 Comparative Example 15 Comparative Example 16 Comparative Example 17 Comparative Example 18 Comparative Example 19 Comparative Example 20 Comparative Example 21 Reference Example 22 201233819 [Industry Availability According to the copper alloy material of the present invention, the bending workability suitable for the movable connector and the conductivity capable of high current can be achieved, and the practical strength can be achieved. [Simple description of the drawing] FIG. A reference map of the diameter of the phase particles. [Main component symbol description] L1: short diameter of particle L2: long diameter of particle

24 S24 S

Claims (1)

201233819 七、申請專利範圍: 其具有良好 〜〇.7wt0/0之 之彎曲加工性,係含有 Si、0.001 〜〇_5wt%之 Zr 1. 一種銅合金材, 1.0〜2_5wt%iCo、〇.2 且Co/Si之元素比為35〜 的 Cu - Co - Si - Zr 合金材, 含有直徑為0·20 u m以卜B A + U上且未達l.OOAin之第2相粒子 3,0〇〇〜5〇〇,〇〇〇個/2,邋 導電率EC為60%IACS以上,結 晶粒彳望為1 〇 # m以下。 2 ·如申請專利範 1 ·〇〇 β m 以上、10.00 mm2 〇 圍第1項之銅合金材,其含有直徑為 "m以下之第2相粒子1〇〜2,〇〇〇個/ 3.如申請專利範㈣!或2項之銅合金材,其〇2%保 證應力YS為600MPa以上。 ’、 、4.一種申請專利範圍第1或2項之銅合金材之製造方 去,其於鑄造後、固溶處理前進行之高溫加熱的溫度係較 下述所選擇的固溶處理溫度高45它以上之溫度, . 又且自熱壓 開始時溫度至600°c之冷卻速度為1〇〇。(: /分鐘以下·固 '容處理溫度係於(5〇xCowt% + 775 )。〇以上、(5〇xC〇wt〇/ + 825 ) °C以下之範圍内選擇。 5.如申請專利範圍第4項之銅合金材之製造方法,其 中’固溶處理後之時效處理係於450〜650°C進行 25201233819 VII. Patent application scope: It has good bending workability of ~ 〇.7wt0/0, which is Si, 0.001 ~ 〇 _5wt% Zr 1. A copper alloy material, 1.0~2_5wt% iCo, 〇.2 And the Cu/Co-Si-Zr alloy material having an element ratio of Co/Si of 35~, containing the second phase particles of 0. 20 um in the form of BA + U and not up to 1.0 O inin. ~5〇〇, 〇〇〇/2, 邋 conductivity EC is 60% IACS or more, and the crystal grain looks like 1 〇# m or less. 2 · For example, the copper alloy material of the first item of the patent No. 1 · 〇〇β m or more and 10.00 mm2 is contained, and the second phase particles having a diameter of "m or less are 1 〇 2, 〇〇〇 / 3 Such as applying for a patent (four)! Or 2 items of copper alloy material, the 〇2% proof stress YS is 600MPa or more. ', 4. A copper alloy material of the first or second patent application scope, the temperature of the high temperature heating after casting and before the solution treatment is higher than the solution treatment temperature selected below. 45 The temperature above it, and the cooling rate from the start of the hot pressing to 600 ° C is 1 〇〇. (: / min or less · solid 'capacity treatment temperature is (5〇xCowt% + 775 ). 〇 above, (5〇xC〇wt〇 / + 825 ) °C or less. 5. If the scope of application The method for producing a copper alloy material according to item 4, wherein the aging treatment after the solution treatment is carried out at 450 to 650 ° C.
TW101100744A 2011-01-13 2012-01-09 Cu-Co-Si-Zr alloy and its manufacturing method TWI432587B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005088A JP2012144789A (en) 2011-01-13 2011-01-13 Cu-Co-Si-Zr ALLOY MATERIAL

Publications (2)

Publication Number Publication Date
TW201233819A true TW201233819A (en) 2012-08-16
TWI432587B TWI432587B (en) 2014-04-01

Family

ID=46507242

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101100744A TWI432587B (en) 2011-01-13 2012-01-09 Cu-Co-Si-Zr alloy and its manufacturing method

Country Status (7)

Country Link
US (1) US20130284323A1 (en)
EP (1) EP2664685B1 (en)
JP (1) JP2012144789A (en)
KR (1) KR20130122654A (en)
CN (1) CN103298961B (en)
TW (1) TWI432587B (en)
WO (1) WO2012096351A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388859A (en) * 2014-11-18 2015-03-04 昆明理工大学 Method for simultaneously improving strength and plasticity of copper aluminum alloy
KR102434449B1 (en) * 2018-09-10 2022-08-18 주식회사 엘지화학 Backplate for display apparatus having excellent fatigue resistance properties

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439530C (en) * 2004-12-24 2008-12-03 株式会社神户制钢所 Copper alloy having bendability and stress relaxation property
JP4943095B2 (en) * 2006-08-30 2012-05-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
JP5085908B2 (en) * 2006-10-03 2012-11-28 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP4357536B2 (en) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP2008266787A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy material and its manufacturing method
WO2009116649A1 (en) * 2008-03-21 2009-09-24 古河電気工業株式会社 Copper alloy material for electric and electronic components
JP2009242814A (en) 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Copper alloy material and producing method thereof
JP4697267B2 (en) 2008-07-01 2011-06-08 ソニー株式会社 Howling detection apparatus and howling detection method
WO2010013790A1 (en) * 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP5619389B2 (en) * 2008-08-05 2014-11-05 古河電気工業株式会社 Copper alloy material
WO2010016429A1 (en) 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component

Also Published As

Publication number Publication date
EP2664685A1 (en) 2013-11-20
EP2664685B1 (en) 2015-10-07
CN103298961A (en) 2013-09-11
TWI432587B (en) 2014-04-01
CN103298961B (en) 2015-06-17
JP2012144789A (en) 2012-08-02
WO2012096351A1 (en) 2012-07-19
KR20130122654A (en) 2013-11-07
EP2664685A4 (en) 2014-04-09
US20130284323A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
TWI571519B (en) Cu-ni-co-si based copper alloy sheet material and manufacturing method thereof
KR101667812B1 (en) Copper alloy plate and method for producing same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5448763B2 (en) Copper alloy material
WO2010064547A1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
TWI432586B (en) Cu-Co-Si alloy material
TW200918678A (en) Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same
CN107208191B (en) Copper alloy material and method for producing same
JP2008075172A (en) Cu-Ni-Si-BASED ALLOY
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
TWI429764B (en) Cu-Co-Si alloy for electronic materials
US11091827B2 (en) Copper alloy material for automobile and electrical and electronic components and method of producing the same
JP2005139501A (en) Copper alloy having excellent heat resistance, and its production method
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
TW201233819A (en) Cu-co-si-zr alloy material and method for producing same
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JP2016180130A (en) Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME, AND LEAD FRAME
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP2011046970A (en) Copper alloy material and method for producing the same
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
TWI391952B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP2012211355A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees