TW201232351A - Method and device for recognizing multi-touch on touch panel with single layer structure - Google Patents

Method and device for recognizing multi-touch on touch panel with single layer structure Download PDF

Info

Publication number
TW201232351A
TW201232351A TW100102338A TW100102338A TW201232351A TW 201232351 A TW201232351 A TW 201232351A TW 100102338 A TW100102338 A TW 100102338A TW 100102338 A TW100102338 A TW 100102338A TW 201232351 A TW201232351 A TW 201232351A
Authority
TW
Taiwan
Prior art keywords
electrode
point
value
electrode point
maximum
Prior art date
Application number
TW100102338A
Other languages
Chinese (zh)
Other versions
TWI446237B (en
Inventor
xiang-yu Li
bing-cun Lin
Original Assignee
xiang-yu Li
bing-cun Lin
Li zhong fu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by xiang-yu Li, bing-cun Lin, Li zhong fu filed Critical xiang-yu Li
Priority to TW100102338A priority Critical patent/TW201232351A/en
Publication of TW201232351A publication Critical patent/TW201232351A/en
Application granted granted Critical
Publication of TWI446237B publication Critical patent/TWI446237B/zh

Links

Abstract

The present invention relates to a method and device for recognizing multi-touch on a touch panel with a single layer structure. The touch panel with single layer structure comprises a plurality of electrode points arranged in a rhomb matrix, and each electrode point will correspondingly generate a sensing value based on the position and size of the touch point. The method includes the following steps: (A) the control circuit recognizes the electrode points having sensing values exceeding a predetermined value; (B) the control circuit selects at least one electrode point that has the maximum sensing value in a relative region from the electrode points having sensing values exceeding the predetermined value; (C) the control circuit extracts the sensing values of a plurality of electrode points neighbored to the electrode point having the maximum sensing value in the relative region; and, (D) the control circuit calculates the positions for touch points based on the sensing values of the electrode points having the maximum sensing value in the relative region and the neighbored electrode points.

Description

201232351 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種判斷多點觸控之方法及裝置,尤指 一種適用於單層結構觸控面板上判斷多點觸控之方法及裝 置。 【先前技術】 目前觸控面板技術主要可分為電阻式、電容式、光學 式、電磁式、超音波式、液晶面板嵌入式、以及曲波或壓 力偵測等類《其中,電阻式的技術發展較早,市佔率也最 高,電容式居次。但自從多點觸控(Multi-Touch)輸入的技 術需求爆發以來,投射電容式(Projected Capacitive)觸控技 術逐漸在手機應用中取得主流優勢。 投射電容式技術可實現多點觸控,其主要透過雙層 IT0(銦錫氧化物)形成行列交錯感測單元矩陣,以偵測得精 確的觸控位置。投射電容式觸控技術的基本原理是以電容 感應為主’利用設計多個蝕刻後的IT0電極,增加數組存在 不同平面、同時又相互垂直的透明導線,形成類似X、γ軸 驅動線。這些導線都皆由控制器所控制,其係依序輪流掃 瞄偵測電容值變化至控制器》 然而’使用雙層ΙΤΟ結構的觸控面板,必需採用跨橋結 構始能實現。另外,由於在同一平面採用雙層結構,ΙΤ0電 極點連接至控制器時其間的電路間距較窄,容易產生短路 而造成偵測錯誤。 201232351 【發明内容】 有鑑於此,本發明提供一種單層結構觸控面板裝置, 俾能以單層結構設置於觸控面板上,而完成多點觸控之功 效。 為達成上述目的,本發明之單層結構觸控面板裝置, 包3 . —觸控面板,具有一表面,係用以接收有至少一個 觸控點;複數個電極點,以菱形矩陣排列而設置於表面上, 每一電極點係根據至少一觸控點之位置及大小而對應產生 一感應值;以及一控制電路,其係電性連接至該等複數個 電極點。其中’每一電極點距離至少一觸控點之位置越近, 其所對應產生之感應值越大,距離越遠,則對應產生之感 應值越小,其關係屬於非線性函數關係。 本發明另外提供一種於單層結構觸控面板上判斷多點 觸控之方法,包括下列步驟:(A)控制電路判斷感應值超過 一預定值之該等電極點;(B)控制電路由該等感應值超過預 定值的電極點中選取至少一具有相對區域最大感應值之電 極點,(C)控制電路擷取與至少一具有相對區域最大感應值 之電極點相鄰之複數個電極點的感應值;以及(D)控制電路 根據至少一具有相對區域最大感應值之電極點及與其相鄰 之複數個電極點的感應值計算至少一觸控點的位置。 較佳地’於步驟(A)中,預定值為觸控面板接收到至少 一觸控點時所對應產生的感應值的平均值。 201232351201232351 VI. Description of the Invention: [Technical Field] The present invention relates to a method and apparatus for judging multi-touch, and more particularly to a method and apparatus for judging multi-touch on a single-layer touch panel. [Prior Art] At present, touch panel technology can be mainly divided into resistive, capacitive, optical, electromagnetic, ultrasonic, liquid crystal panel embedded, and curve wave or pressure detection. Among them, resistive technology The development is earlier, the market share is also the highest, and the capacitive type is second. However, since the technology demand for multi-touch input has exploded, Projected Capacitive touch technology has gradually gained mainstream advantages in mobile applications. Projected capacitive technology enables multi-touch, which is mainly used to form a matrix of interlaced sensing units through double-layer IT0 (indium tin oxide) to detect accurate touch positions. The basic principle of the projected capacitive touch technology is based on capacitive sensing. By designing multiple etched IOT electrodes, the transparent conductors with different planes and perpendicular to each other are added to form X- and γ-axis drive lines. These wires are all controlled by the controller, which in turn scans the detected capacitance value to the controller. However, the touch panel using the double-layered ΙΤΟ structure must be realized by the cross-bridge structure. In addition, since the double-layer structure is used in the same plane, the circuit spacing between the ΙΤ0 electrodes is narrow when connected to the controller, and a short circuit is easily generated to cause a detection error. In view of the above, the present invention provides a single-layer structure touch panel device, which can be disposed on a touch panel in a single layer structure to complete the multi-touch effect. In order to achieve the above object, the single-layer touch panel device of the present invention has a surface for receiving at least one touch point, and a plurality of electrode points arranged in a diamond matrix. On the surface, each electrode point correspondingly generates an inductive value according to the position and size of the at least one touch point; and a control circuit electrically connected to the plurality of electrode points. The closer the position of each electrode point is to at least one touch point, the larger the induced value is, and the smaller the distance is, the smaller the corresponding sensed value is, and the relationship is nonlinear. The invention further provides a method for judging multi-touch on a single-layer touch panel, comprising the following steps: (A) the control circuit determines the electrode points whose sensed value exceeds a predetermined value; (B) the control circuit is And selecting at least one electrode point having a maximum sensing value of the relative area among the electrode points whose sensing value exceeds a predetermined value, and (C) controlling the circuit to extract a plurality of electrode points adjacent to at least one electrode point having a maximum sensing value of the relative area And the (D) control circuit calculates the position of the at least one touch point according to the sensing value of the at least one electrode point having the maximum sensing value of the relative region and the plurality of electrode points adjacent thereto. Preferably, in step (A), the predetermined value is an average value of the sensing values corresponding to when the touch panel receives at least one touch point. 201232351

於步驟(c)中,若至少一具有相對區域最大感應值之電 極點位於觸控面板x方向之邊界區域時,其相鄰之電極點包 括X方向上之第一電極點及第二電極點、及γ方向上之第三 電極點。此時,於步驟(D)中,計算至少一觸控點的位置係 包括.在X方向上係根據至少一第一電極點及至少一第二電 極點之感應值的比例、及至少一具有相對區域最大感應值 之電極點的位置而計算;在Y方向上係根據至少一第三電極 點的感應值與至少一具有相對區域最大感應值之電極點的 感應值之差值及與至少一具有相對區域最大感應值之電極 點的感應值之比例、以及至少一具有相對區域最大感應值 之電極點的位置而計算。具體而言, 該至少一觸控點與該具有相對區域最大感應值之電極 點在X方向上的距離、及γ方向上的距離係可分別由數值 ^ ' Xl = a-X2 ,η-卿, VI + V2 X卜Υ1經由一第一函數對應轉換後取得,其 a n = --~r3,當中,, b(V2) 2 ㈧ νΰΎ2 為該第一電極點至該第二電極點距離的一半,b為該第一電 極點至該第二電極點距離,^為第一電極點的感應值, 為第二電極點的感應值,V3為第三電極點的感應值,V0為 具有相對區域最大感應值之電極點的感應值’ κ為一常數 值。該至少-觸控點與該I有相對區❺最大感應值之電極 點在X方向、及Υ方向上的距離與數值又卜γι係為非線性之 正比例關係’該對應關係係由第一函數對應轉換而成。 其次,於步驟(C)令,若至少一具有相對區域最大感應 值之電極點位於觸控面板γ方向之邊界區域時,其相鄰之電 201232351 極點包括γ方向上之第-電極點及第二電極點、及χ方向上 之第三電極點。此時’於步驟(D)中,計算至少—觸控點的 位置係包括:在Y方肖上係根據至少一第一電極點及至少一 第-電極之感應值的比例、及至少__具有相對區域最大 感應值之電極點的位置而計算;在X方向上係根據至少一第 三電極點的感應值與至少-具有相對區域最大感應值之電 極點的感應值之差值及與至少一具有相對區域最大感應值 之電極點的感應值之比例、以及至少一具有相對區域最大 感應值之電極點的位置而計算。具體而言,該至少一觸控 點與該具有相對區域最大感應值之電極點在x方向上的距 離、及Y方向上的距離係分別由數值P1、經由一第二函 數對應轉換後取得,其中,P1 b{V\) P2-P3 ~~2~ 01 = fl-02,當中 P3In the step (c), if at least one of the electrode points having the maximum sensing value of the opposite region is located in the boundary region of the touch panel x direction, the adjacent electrode points include the first electrode point and the second electrode point in the X direction. And the third electrode point in the γ direction. At this time, in step (D), calculating the position of the at least one touch point includes: in the X direction, according to a ratio of the sensing values of the at least one first electrode point and the at least one second electrode point, and at least one has Calculated according to the position of the electrode point of the maximum sensing value of the region; in the Y direction, the difference between the sensing value of the at least one third electrode point and the sensing value of the electrode point having the maximum sensing value of the relative region is at least one The ratio of the sensed value of the electrode point having the maximum sensed value of the region and the position of the electrode point having at least one of the maximum sensed values of the region are calculated. Specifically, the distance between the at least one touch point and the electrode point having the maximum sensing value of the relative area in the X direction and the distance in the γ direction are respectively determined by the value ^ ' Xl = a-X2 , η - 卿, VI + V2 X dice 1 is obtained by a first function corresponding conversion, and an = --~r3, wherein, b(V2) 2 (eight) νΰΎ2 is half of the distance from the first electrode point to the second electrode point b is the distance from the first electrode point to the second electrode point, ^ is the sensing value of the first electrode point, is the sensing value of the second electrode point, V3 is the sensing value of the third electrode point, and V0 is the relative area The induced value of the electrode point of the maximum sensing value 'κ is a constant value. The distance between the at least-touch point and the electrode point of the maximum relative sensing value of the I in the X direction and the Υ direction is proportional to the value and the γι is a nonlinear proportional relationship. The correspondence is determined by the first function. Corresponding conversion. Next, in step (C), if at least one of the electrode points having the maximum sensing value of the opposite region is located in the boundary region of the touch panel γ direction, the adjacent electric pole 201232351 includes the first electrode point in the γ direction and the first The second electrode point and the third electrode point in the x direction. In this step, in step (D), calculating at least the position of the touch point includes: proportioning the sensing value according to the at least one first electrode point and the at least one first electrode on the Y square, and at least __ Calculating the position of the electrode point having the maximum sensed value of the region; in the X direction, the difference between the sensed value of the at least one third electrode point and the at least the sensed value of the electrode point having the maximum sensed value of the relative region and at least Calculating the ratio of the sensed value of the electrode point having the maximum sensed value of the relative region and the position of the electrode point having at least one of the maximum sensed values of the relative region. Specifically, the distance between the at least one touch point and the electrode point having the maximum sensing value of the relative area in the x direction and the distance in the Y direction are respectively obtained by converting the value P1 and the second function. Among them, P1 b{V\) P2-P3 ~~2~ 01 = fl-02, among them P3

Vl + V2 62 = ^^2),a為該第一電極點至 該第二電極點距離的一半,b為該第一電極點至該第二電極 點距離,VI為第一電極點的感應值,V2為第二電極點的感 應值’ V3為第三電極點的感應值’ v〇為具有相對區域最大 感應值之電極點的感應值’ K為一常數值®該至少一觸控點 與該具有相對區域最大感應值之電極點在X方向、及γ方向 上的距離與數值p 1、Q1係為非線性之正比例關係,該對應 關係係由第二函數對應轉換而成。 另外’於步驟(C)中’若至少一具有相對區域最大感應 值之電極點位於觸控面板之非邊界區域時,其相鄰之電極 點包括位於至少一具有相對區域最大感應值之電極點左上 201232351Vl + V2 62 = ^^2), a is half of the distance from the first electrode point to the second electrode point, b is the distance from the first electrode point to the second electrode point, and VI is the induction of the first electrode point Value, V2 is the sensing value of the second electrode point 'V3 is the sensing value of the third electrode point' v 〇 is the sensing value of the electrode point having the maximum sensing value of the relative region 'K is a constant value ® the at least one touch point The distance between the electrode points having the maximum inductive value of the relative region in the X direction and the γ direction and the values p 1 and Q1 are nonlinearly proportional, and the correspondence relationship is converted by the second function. In addition, in step (C), if at least one of the electrode points having the maximum sensing value of the opposite region is located in the non-boundary region of the touch panel, the adjacent electrode points include at least one electrode point having the maximum sensing value of the opposite region. Upper left 201232351

方之第四電極點,位於至少一具有相對區域最大感應值之 電極點位置右上方之第五電極點,位於至少一具有相對區 域最大感應值之電極點位置右下方第六電極點,位於至少 一具有相對區域最大感應值之電極點位置左下方之第七電 極點。此時,於步驟(D)中,計算至少一觸控點的位置係包 括:在第一方向上係根據第四電極點與第五電極點之感應 值的平均值及第六電極點與第七電極點之感應值的平均值 之比例、以及至少一具有相對區域最大感應值之電極點的 位置而计算’在第二方向上係根據第五電極點與第六電極 點之感應值的平均值及第七電極點與第四電極點之感應值 的平均值之比例、以及至少一具有相對區域最大感應值之 電極點的位置而計算《具體而言, 該至少一觸控點與該具有相對區域最大感應值之電極 在X方向上的距離、及γ方向上的距離係分別由數值M1、 N1經由一第三函數轉換後取得,其中,, 2~ = ’ 當中,M1= bjVA^Vl-) , (F4 + F7) + (^5 + F6) M3 = —^5±£6)__ (F4 + F7) + (F5 + F6) b(V4 + V5) W4 + V5) + (V6 + V7) , = — _ + , (F4 + F5) + (K6 + F7) b為該第一電極點及該第二電極點之 間距’ V4為第四電極點的感應值,V5為第五電極點的感應 值’ V6為第六電極點的感應值,V7為第七電極點的感應 值。第四電極點位於具有相對區域最大感應值電極點之左 上方’第五電極點位於具有相對區域最大感應值電極點位 201232351 置之右上方’第六電極點位於具有相對區域最大感應值電 極點位置之右下方’第七電極點位於具有相對區域最大感 應值電極點位置之左下方◊該至少一觸控點與該具有相對 區域最大感應值之電極點在X方向、及Y方向上的距離與數 值Ml、N1係為非線性之正比例關係,該對應關係係由第三 函數對應轉換而成。 由此’經由本發明所提供之發法及裝置,可克服習知 技術中需採用跨橋結構的問題。另外,以菱形矩陣排列方 式’複數個電極點連接至控制電路時,其間的電路間距較 寬,故不易短路,可避免造成偵測錯誤。 【實施方式】 請先參考圊1,其係本發明一較佳實施例之架構圖,如 圊所示’本發明之單層結構觸控面板裝置含:一觸控面 板11、複數個電極點12、及一控制電路13。觸控面板^具 有一表面111,其係用以接收有至少一觸控點。複數個電極 點12係以菱形矩陣排列而設置於表面u丨上,於本實施例 中,其包含有十七個電極點1201〜1217,每一電極點12係根 據觸控點之位置及大小而對應產生一感應值。控制電路13 係電性連接至電極點12,以擷取對應產生之感應值。具趙 而言’觸控點與電極點12越近’其所對應產生之感應值越 大’越遠則對應產生之感應值越小,其關係屬於非線性函 數關係。 201232351 接著’請一併參考圖1及圖2,圖2係本發明一較佳實施 例之方法流程圖。 首先’於步驟S201中,控制電路π判斷感應值超過一 預定值之電極點12。預定值係根據觸控面板丨丨接收到觸控 點12所產生之感應值的平均值來制定。由於感應值的大小 與觸控點之位置及大小有關,距離觸控點較近的電極點j 2 將有較高的感應值。 接著’於步驟S202中,控制電路13由感應值超過預定 值的電極點12中選取具有相對區域最大感應值之電極點 12。例如’使用者拇指對應的觸控點a在電極點12〇2附近, 故電極點1202及其鄰近的電極點1205、1206、1209將有較 大的感應值。同樣地’使用者食指對應的觸控點B在電極點 1208附近’故電極點1208及其鄰近的電極點12〇4、12〇5、 1211、1212亦將有較大的感應值。控制電路13係於該等相 對區域中(電極點1202、1205、1206、1209所形成之區域; 以及電極點1204、1205、1208、121卜12 12所形成之區域), 分別選出最大感應值之電極點1202、1208。 再來’於步驟S203中,控制電路13擷取與具有相對區 域最大感應值之電極點12(例如1202、1208)相鄰之電極點12 的感應值。此一步驟可分兩種情形來說明,即觸控點位於 觸控面板11之邊界區域及非邊界區域。於步驟S204中,控 制電路13根據具有相對區域最大感應值之電極點12及與其 相鄰之複數個電極點12的感應值計算觸控點的位置。 9 201232351 若具有相對區域最大感應值之電極點位於觸控面板11 之邊界區域,此又可分為兩種情形來說明,即X方向之邊界 區域及Y方向之邊界區域,其中,X方向及Y方向係互相垂 直。 先說明觸控點在Y方向邊界區域的情況。由於觸控點A 位於電極點1202附近,故電極點1202具有相對區域最大感 應值,其鄰近的電極點12為電極點1205、1206、1209。其 中,電極點1209位於X方向上,電極點1205、1206位於Y方 向上,故控制電路13擷取電極點1205、1206、1209之感應 值。請參考圖3(a)及圖3(b)之圖式,觸控點A與電極點1202 在X方向上的距離、及Y方向上的距離係分別由數值XI、Y1 經由一第一函數對應轉換後取得。XI的計算方式為:a fourth electrode point of the fourth electrode point located at a right uppermost position of the electrode point having a maximum sensing value of the opposite region, and a sixth electrode point located at the lower right side of the electrode point having the maximum sensing value of the opposite region, at least A seventh electrode point at the lower left of the electrode point position having the largest sensed value of the opposite region. At this time, in step (D), calculating the position of the at least one touch point includes: in the first direction, an average value of the sensing values according to the fourth electrode point and the fifth electrode point, and a sixth electrode point and a Calculating the average of the sensing values of the fifth electrode point and the sixth electrode point in the second direction by the ratio of the average value of the sensing values of the seven electrode points and the position of the electrode point having at least one of the maximum sensing values of the relative area Calculating, in particular, the at least one touch point and the ratio of the value and the ratio of the average value of the sensing values of the seventh electrode point and the fourth electrode point, and the position of the electrode point having at least one maximum sensing value of the relative area The distance between the electrode in the X direction and the distance in the γ direction of the maximum inductive value of the relative region are respectively obtained by converting the values M1 and N1 via a third function, wherein, 2~ = ', where M1 = bjVA^Vl -) , (F4 + F7) + (^5 + F6) M3 = —^5±£6)__ (F4 + F7) + (F5 + F6) b(V4 + V5) W4 + V5) + (V6 + V7) , = — _ + , (F4 + F5) + (K6 + F7) b is the distance between the first electrode point and the second electrode point 'V4 The induced value of the fourth electrode point, V5 is the induced value of the fifth electrode point 'V6 is the sensing value of the sixth electrode point, and V7 is the sensing value of the seventh electrode point. The fourth electrode point is located at the upper left side of the electrode with the largest area sensing value of the opposite area. The fifth electrode point is located at the upper right side of the electrode point with the largest area of the opposite sensing area 201232351. The sixth electrode point is located at the electrode point having the maximum sensing value of the relative area. The lower right side of the position 'the seventh electrode point is located at the lower left of the position of the electrode with the largest area of the relative area, and the distance between the at least one touch point and the electrode point having the maximum sensed value of the opposite area in the X direction and the Y direction The values M1 and N1 are proportional to the nonlinearity, and the corresponding relationship is converted by the third function. Thus, the problem of the cross-bridge structure required in the prior art can be overcome by the method and apparatus provided by the present invention. In addition, when the plurality of electrode points are connected to the control circuit in a diamond matrix arrangement mode, the circuit pitch therebetween is wide, so that it is not easy to be short-circuited, and detection errors can be avoided. [Embodiment] Please refer to FIG. 1 , which is a structural diagram of a preferred embodiment of the present invention. As shown in FIG. 2 , the single-layer touch panel device of the present invention includes: a touch panel 11 and a plurality of electrode points. 12. A control circuit 13. The touch panel has a surface 111 for receiving at least one touch point. The plurality of electrode points 12 are arranged on the surface u丨 in a diamond matrix. In this embodiment, the method includes 12 electrode points 1201 to 1217, and each electrode point 12 is based on the position and size of the touch point. Correspondingly, a sensing value is generated. The control circuit 13 is electrically connected to the electrode point 12 to capture the corresponding induced value. In the case of Zhao, the closer the touch point is to the electrode point 12, the larger the induced value is. The farther the distance is, the smaller the induced value is, and the relationship is a nonlinear function. 201232351 Next, please refer to FIG. 1 and FIG. 2 together. FIG. 2 is a flow chart of a method according to a preferred embodiment of the present invention. First, in step S201, the control circuit π judges the electrode point 12 whose sensed value exceeds a predetermined value. The predetermined value is determined based on the average value of the sensing values generated by the touch panel 12 when the touch panel 12 is received. Since the magnitude of the sensing value is related to the position and size of the touch point, the electrode point j 2 closer to the touch point will have a higher sensing value. Next, in step S202, the control circuit 13 selects the electrode point 12 having the maximum sensed value of the relative area from the electrode points 12 whose sensed values exceed a predetermined value. For example, the touch point a corresponding to the thumb of the user is near the electrode point 12 〇 2, so the electrode point 1202 and its adjacent electrode points 1205, 1206, 1209 will have a larger sensing value. Similarly, the touch point B corresponding to the user's index finger is near the electrode point 1208. Therefore, the electrode point 1208 and its adjacent electrode points 12〇4, 12〇5, 1211, and 1212 will also have large sensing values. The control circuit 13 is connected to the opposite regions (the regions formed by the electrode points 1202, 1205, 1206, and 1209; and the regions formed by the electrode dots 1204, 1205, 1208, and 121), and the maximum sensing value is selected. Electrode points 1202, 1208. Further, in step S203, the control circuit 13 draws an inductance value of the electrode point 12 adjacent to the electrode point 12 (e.g., 1202, 1208) having the maximum sensed value of the region. This step can be explained in two cases, that is, the touch point is located in the boundary area and the non-boundary area of the touch panel 11. In step S204, the control circuit 13 calculates the position of the touch point based on the sensing value of the electrode point 12 having the maximum sensed value of the relative area and the plurality of electrode points 12 adjacent thereto. 9 201232351 If the electrode point with the maximum sensing value of the relative area is located in the boundary area of the touch panel 11, this can be divided into two cases, namely, the boundary area of the X direction and the boundary area of the Y direction, wherein the X direction and The Y directions are perpendicular to each other. First, the case where the touch point is in the boundary area of the Y direction will be described. Since the touch point A is located near the electrode point 1202, the electrode point 1202 has a maximum relative value of the relative area, and the adjacent electrode point 12 is the electrode point 1205, 1206, 1209. Here, the electrode point 1209 is located in the X direction, and the electrode points 1205, 1206 are located in the Y direction, so the control circuit 13 draws the induced values of the electrode points 1205, 1206, 1209. Referring to FIG. 3( a ) and FIG. 3( b ), the distance between the touch point A and the electrode point 1202 in the X direction and the distance in the Y direction are respectively determined by the values XI and Y1 via a first function. Obtained after the conversion. The calculation method of XI is:

Xl = a-X2 r aK(Vl202-F1209), 一 Π 202 Υ1的計算方式為: Π = 72 = V3 = Y2-Y3 _ , 2 b(V\206) F1205 + F1206 6(K1205) Π205 + Κ1206 其中,a為兩相鄰電極點(電極點1202、1209或電極點1205、 1206)間距的一半,b為兩相鄰電極點(電極點1202、1209或 201232351 電極點1205、1206)之間距,V1202為電極點1202的感應值, V1209為電極點1209的感應值,V1205為電極點1205的感應 值,V1206為電極點1206的感應值,K為根據量測結果而設 定之實驗常數。觸控點A與電極點1202在X方向、及Y方向 上的距離與數值XI、Y1係為非線性之正比例關係,該對應 關係由第一函數對應轉換而成。 若觸控點在X方向之邊界區域,如圖1之觸控點C,請 參考圖4(a)及圖4(b)。如圖所示,觸控點C所造成之具有相 對區域最大感應值之電極點12為電極點1214,觸控點C與電 極點1214在X方向上的距離、及Y方向上的距離係分別由數 值PI、Q1經由一第二函數對應轉換後取得。P1的計算方式 P\ = P2-P3 ~2~ 尸3 p2 = _b(ynvi)_, H210 + F1217 b(V\2\Qi) , Κ1210 + Π217 Q1的計算方式為 Q\ = a-Q2 ' m αΛ:(Π214-Π213), ΰ Π214 201232351 其中,a為兩相鄰電極點(電極點1210、1217或電極點1213、 1214)間距的一半,b為兩相鄰電極點(電極點1210、1217或 電極點1213、1214)之間距,V1210為電極點1210的感應值, V1213為電極點1213的感應值,V1217為電極點1217的感應 值,V1214為電極點1214的感應值,K為根據量測結果而設 定之實驗常數。觸控點C與電極點1214在X方向、及Y方向 上的距離與數值PI、Q1係為非線性之正比例關係,該對應 關係由第二函數對應轉換而成。 另外’若具有相對區域最大感應值之電極點位於觸控 面板11之非邊界區域,如圊1之觸控點8及其所對應的具有 相對區域最大感應值的電極點1208 *請參考圖5(a)及圖 5(b) ’電極點1208鄰近的電極點12為電極點1204、1205、 1211、1212 ’控制電路13操取其鄰近的電極點12〇4、1205、 1211、1212之感應值。觸控點b與電極點12〇8在父方向上的 距離、及Y方向上的距離係分別由數值Ml、ni經由一第三 函數對應轉換後取得。Ml的計算方式為:Xl = a-X2 r aK(Vl202-F1209), one Π 202 Υ1 is calculated as: Π = 72 = V3 = Y2-Y3 _ , 2 b(V\206) F1205 + F1206 6(K1205) Π205 + Κ1206 Where a is half the distance between two adjacent electrode points (electrode points 1202, 1209 or electrode points 1205, 1206), and b is the distance between two adjacent electrode points (electrode points 1202, 1209 or 201232351 electrode points 1205, 1206), V1202 is the sensing value of the electrode point 1202, V1209 is the sensing value of the electrode point 1209, V1205 is the sensing value of the electrode point 1205, V1206 is the sensing value of the electrode point 1206, and K is an experimental constant set according to the measurement result. The distance between the touch point A and the electrode point 1202 in the X direction and the Y direction is proportional to the numerical values XI and Y1, and the corresponding relationship is converted by the first function. If the touch point is in the boundary area of the X direction, as shown in Figure 1, the touch point C, please refer to Figure 4 (a) and Figure 4 (b). As shown in the figure, the electrode point 12 having the maximum sensing value of the relative area caused by the touch point C is the electrode point 1214, and the distance between the touch point C and the electrode point 1214 in the X direction and the distance in the Y direction are respectively It is obtained by converting the values PI and Q1 via a second function. P1 calculation method P\ = P2-P3 ~2~ corpse 3 p2 = _b(ynvi)_, H210 + F1217 b(V\2\Qi) , Κ1210 + Π217 Q1 is calculated as Q\ = a-Q2 ' m αΛ: (Π214-Π213), ΰ Π 214 201232351 where a is half the distance between two adjacent electrode points (electrode points 1210, 1217 or electrode points 1213, 1214), and b is two adjacent electrode points (electrode point 1210, 1217 or the distance between the electrode points 1213, 1214), V1210 is the sensing value of the electrode point 1210, V1213 is the sensing value of the electrode point 1213, V1217 is the sensing value of the electrode point 1217, and V1214 is the sensing value of the electrode point 1214, K is based on The experimental constant set by the measurement result. The distance between the touch point C and the electrode point 1214 in the X direction and the Y direction is proportional to the numerical values PI and Q1, and the corresponding relationship is converted by the second function. In addition, if the electrode point having the maximum sensing value of the relative area is located in the non-boundary area of the touch panel 11, such as the touch point 8 of 圊1 and the corresponding electrode point 1208 having the maximum sensing value of the relative area, please refer to FIG. (a) and FIG. 5(b) 'The electrode point 12 adjacent to the electrode point 1208 is the electrode point 1204, 1205, 1211, 1212'. The control circuit 13 senses the proximity of the electrode points 12〇4, 1205, 1211, 1212. value. The distance between the touch point b and the electrode point 12〇8 in the parent direction and the distance in the Y direction are respectively obtained by the values M1 and ni being converted by a third function. Ml is calculated as:

Ml = M2-M3 ~2Ml = M2-M3 ~2

_6(Π204 + Π205)_ (Vl2ll + Vi2l2) + (V1204 + Vl 205) _6(F1211 + F1212)_ (F1211 + F1212) + (F1204 + F1205) N1的計算方式為: m N2-N3 ~~2~ 12 201232351 N2 N3 厶(71205 +Π 212) (Π 205 + ^1212) + (FI 204 + Π211) _b(Vl204 + Vl2ll)_ (F1205 + F1212) + (F1204 + Π211) 其中’ b為兩相鄰電極點(電極點1204、1211 '電極點1205、 1212、電極點1204、1205、或電極點1211、1212)之間距, V1204為電極點1204的感應值,V1205為電極點1205的感應 值’ V1211為電極點1211的感應值,V1212為電極點1212的 感應值。觸控點B與電極點1208在X方向、及γ方向上的距 離與數值Ml、N1係為非線性之正比例關係,該對應關係由 第三函數對應轉換而成。 是故,經由本發明所提供之單層結構觸控面板裝置及 於單層結構觸控面板上判斷多點觸控的方法,複數個電極 點12可以單層的結構設置於觸控面板η的表面〖η上即可 完成多點觸控之功效。由此,可克服習知技術中需採用跨 橋結構的問題。另外,經由本發明所採用的菱形矩陣排列 方式’複數個電極點12連接至控制電路13時,其間的電路 間距較寬’故不易短路,以避免造成僧測錯誤。 然而,上述實施例僅係為了方便說明而舉例而已本 發明所主張之權利範圍自應以申請專利範圍所述為準,而 非僅限於上述實施例。 【圖式簡單說明】 圖1係本發明一較佳實施例之架構圖。 201232351 圖2係本發明一較佳實施例之流程圖。 圖3(a)係本發明一較佳實施例之邊界區域的第一量測示意 圖。 圖3(b)係本發明一較佳實施例之邊界區域的第二量測示意 圖。 圖4(a)係本發明一較佳實施例之邊界區域的第三量測示意 圖。 圖4(b)係本發明一較佳實施例之邊界區域的第四量測示意 圖。 囷5(a)係本發明一較佳實施例之非邊界區域的第一量測示 意圖。 圖5(b)係本發明一較佳實施例之非邊界區域的第二量測示 意圖。 【主要元件符號說明】 I 單層結構觸控面板裝置 II 觸控面板 12, 電極點 1201〜1217 13 控制電路 hi 表面 A, B, C 觸控點 步驟S201〜S204_6(Π204 + Π205)_ (Vl2ll + Vi2l2) + (V1204 + Vl 205) _6(F1211 + F1212)_ (F1211 + F1212) + (F1204 + F1205) The calculation of N1 is: m N2-N3 ~~2 ~ 12 201232351 N2 N3 厶(71205 +Π 212) (Π 205 + ^1212) + (FI 204 + Π211) _b(Vl204 + Vl2ll)_ (F1205 + F1212) + (F1204 + Π211) where ' b is two phases The distance between the adjacent electrode points (electrode points 1204, 1211 'electrode points 1205, 1212, electrode points 1204, 1205, or electrode points 1211, 1212), V1204 is the sensing value of the electrode point 1204, and V1205 is the sensing value of the electrode point 1205' V1211 is the sensing value of the electrode point 1211, and V1212 is the sensing value of the electrode point 1212. The distance between the touch point B and the electrode point 1208 in the X direction and the γ direction is proportional to the nonlinear values of the values M1 and N1, and the correspondence relationship is converted by the third function. Therefore, through the single-layer touch panel device provided by the present invention and the multi-touch method on the single-layer structure touch panel, the plurality of electrode dots 12 can be disposed on the touch panel η in a single layer structure. The surface 〖η can complete the multi-touch effect. Thereby, the problem of the need to adopt a cross-bridge structure in the prior art can be overcome. Further, according to the rhombic matrix arrangement method employed in the present invention, when a plurality of electrode dots 12 are connected to the control circuit 13, the circuit pitch therebetween is wide, so that it is not easily short-circuited to avoid a misdetection error. However, the above-described embodiments are merely exemplified for the convenience of the description, and the scope of the claims is intended to be limited to the above embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of a preferred embodiment of the present invention. 201232351 Figure 2 is a flow chart of a preferred embodiment of the present invention. Figure 3 (a) is a first measurement schematic view of a boundary region of a preferred embodiment of the present invention. Figure 3 (b) is a second measurement schematic view of a boundary region of a preferred embodiment of the present invention. Figure 4 (a) is a third measurement diagram of a boundary region of a preferred embodiment of the present invention. Figure 4 (b) is a fourth measurement diagram of a boundary region of a preferred embodiment of the present invention.囷5(a) is the first measure of the non-boundary region of a preferred embodiment of the present invention. Figure 5 (b) is a second measure of the non-boundary region of a preferred embodiment of the present invention. [Main component symbol description] I Single-layer structure touch panel device II Touch panel 12, electrode point 1201~1217 13 Control circuit hi Surface A, B, C Touch point Step S201~S204

Claims (1)

201232351 七、申請專利範圍: 1. 一種於單層結構觸控面板上判斷多點觸控之方 法,該單層結構觸控面板係包含有複數個以菱形矩陣排且 分別電性連接至一控制電路之電極點,該觸控面板係接收 有至少一觸控點,每一電極點係根據該至少一觸控點的位 置及大小而對應產生一感應值,該方法包括下列步驟: (A) 該控制電路判斷感應值超過一預定值之該等電極 點; (B) 該控制電路由該等感應值超過該預定值的電極點 中選取至少一具有相對區域最大感應值之電極點; (C) 該控制電路擁取與該至少一具有相對區域最大感 應值之電極點相鄰之複數個電極點的感應值;以及 (D) 該控制電路根據該至少一具有相對區域最大感應 值之電極點及與其相鄰之複數個電極點的感應值計算該至 少一觸控點的位置。 2·如申請專利範圍第1項所述之方法,其中,於步驟(A) 中’該預定值為該觸控面板接收到該至少一觸控點時所對 應產生的感應值的平均值。 3.如申请專利範圍第1項所述之方法,其中,於步驟 (C)中,若該至少一具有相對區域最大感應值之電極點位於 該觸控面板Y方向之邊界區域時,其相鄰之電極點包括Y方 向上之第一電極點及第二電極點、及X方向上之第三電極 點〇 15 201232351 4_如申請專利範圍第3項所述之方法,其中,於步驟 (D)中,計算該至少一觸控點的位置係包括:在該γ方向上 係根據該至少一第一電極點及該至少一第二電極點之感應 值的比例、及該至少一具有相對區域最大感應值之電極點 的位置而計算;在該X方向上係根據該至少一第三電極點的 感應值與該至少一具有相對區域最大感應值之電極點的感 應值之差值及與該至少一具有相對區域最大感應值之電極 點的感應值之比例、以及該至少一具有相對區域最大感應 值之電極點的位置而計算。 5.如申請專利範圍第4項所述之方法,其中,該至少 一觸控點與該具有相對區域最大感應值之電極點在χ方向 上的距離、及Υ方向上的距離係分別由數值X1、Y1經由一 n = I^2, 2 a為該第一電 第一函數對應轉換後取得,其中,; 當中,〜垡(m),y2_ b(V2) , _ b(yi) VO VI + V2 VI + V2 極點至該第二電極點距離的一半’b為該第一電極點至該第 二電極點距離’ VI為第一電極點的感應值,V2為第二電極 點的感應值’ V3為第三電極點的感應值,v〇為具有相對區 域最大感應值之電極點的感應值,K為一常數值,該至少一 觸控點與該具有相對區域最大感應值之電極點在χ方向、及 Υ方向上的距離與數值XI、Υ1係為非線性之正比例關係, 該對應關係係由該第一函數對應轉換而成。 6.如申請專利範圍第1項所述之方法,其中,於步驟 (C)中’若該至少一具有相對區域最大感應值之電極點位於 201232351 該觸控面板x方向之邊界區域時,其相鄰之電極點包括乂方 向上之第一電極點及第二電極點、及γ方向上之第三電極201232351 VII. Patent application scope: 1. A method for judging multi-touch on a single-layer structure touch panel, the single-layer structure touch panel comprises a plurality of diamond matrix rows and respectively electrically connected to a control An electrode point of the circuit, the touch panel receiving at least one touch point, each electrode point correspondingly generating a sensing value according to the position and size of the at least one touch point, the method comprising the following steps: (A) The control circuit determines the electrode points whose sensed value exceeds a predetermined value; (B) the control circuit selects at least one electrode point having a maximum sensed value of the relative area from the electrode points whose sensed values exceed the predetermined value; The control circuit captures an inductance value of a plurality of electrode points adjacent to the at least one electrode point having a maximum sensed value of the relative region; and (D) the control circuit according to the at least one electrode point having a maximum sensed value of the relative region And sensing the value of the at least one touch point by the sensing value of the plurality of electrode points adjacent thereto. The method of claim 1, wherein the predetermined value in step (A) is an average value of the sensing values corresponding to the touch panel when the at least one touch point is received. 3. The method of claim 1, wherein in the step (C), if the at least one electrode having the maximum sensing value of the relative region is located in a boundary region of the touch panel Y direction, the phase The adjacent electrode points include a first electrode point and a second electrode point in the Y direction, and a third electrode point in the X direction 2012 15 201232351 4_, as in the method of claim 3, wherein, in the step ( In D), calculating the position of the at least one touch point includes: in the γ direction, a ratio according to the sensing value of the at least one first electrode point and the at least one second electrode point, and the at least one has a relative Calculating the position of the electrode point of the maximum sensing value of the region; and in the X direction, the difference between the sensing value of the at least one third electrode point and the sensing value of the at least one electrode point having the maximum sensing value of the relative region Calculating the ratio of the sensing value of the at least one electrode point having the maximum sensing value of the relative region and the position of the electrode point having the maximum sensing value of the relative region. 5. The method of claim 4, wherein the distance between the at least one touch point and the electrode point having the maximum sensed value of the opposite region in the x-direction and the distance in the x-direction are respectively X1, Y1 are obtained by converting n = I^2, 2 a for the first electric first function, wherein, where, ~垡(m), y2_ b(V2), _ b(yi) VO VI + V2 VI + V2 The half point of the pole to the second electrode point 'b is the distance from the first electrode point to the second electrode point' VI is the sensing value of the first electrode point, and V2 is the sensing value of the second electrode point 'V3 is the sensing value of the third electrode point, v〇 is the sensing value of the electrode point having the maximum sensing value of the relative area, K is a constant value, and the at least one touch point and the electrode point having the maximum sensing value of the opposite area The distances in the χ direction and the Υ direction are proportional to the numerical values XI and Υ1, and the corresponding relationship is converted by the first function. 6. The method according to claim 1, wherein in the step (C), if the at least one electrode having the maximum sensing value of the relative region is located at the boundary region of the x-direction of the touch panel in 201232351, Adjacent electrode points include a first electrode point and a second electrode point in the 乂 direction, and a third electrode in the γ direction 7.如申請專利範圍第6項所述之方法,其中,於步驟 (D)中,計算該至少一觸控點的位置係包括:在該χ方向上 係根據該至少一第一電極點及該至少一第二電極點之感應 值的比例、及該至少一具有相對區域最大感應值之電極點 的位置而計算;在該γ方向上係根據該至少一第三電極點的 感應值與該至少一具有相對區域最大感應值之電極點的感 應值之差值及與該至少一具有相對區域最大感應值之電極 點的感應值之比例、以及該至少一具有相對區域最大感應 值之電極點的位置而計算。 8.如申請專利範圍第7項所述之方法,其中,該至少 一觸控點與該具有相對區域最大感應值之電極點在χ方向 上的距離、及Υ方向上的距離係分別由數值pi、Q1經由一 第二函數對應轉換後取得,其中,,0=α_ρ2,當 - 〇K(V0 - F3) F〇 ' 3·為該第一電極 中,= ,Ρ2 ㈣ VX + V2 VI + V2 點至該第一電極點距離的一半,b為該第一電極點至該第二 電極點距離,VI為第一電極點的感應值,V2為第二電極點 的感應值’ V3為第三電極點的感應值,Vo為具有相對區域 最大感應值之電極點的感應值’K為一常數值,該至少一觸 控點與該具有相對區域最大感應值之電極點在χ方向、及γ 201232351 方向上的距離與數值P1、Q1係為非線性之正比例關係,該 對應關係係由該第二函數對應轉換而成。 9.如申凊專利範圍第1項所述之方法,其中,於步驟 (C)中,若該至少一具有相對區域最大感應值之電極點位於 該觸控面板之非邊界區域時,其相鄰之電極點包括位於該 至少一具有相對區域最大感應值之電極點左上方之第四電 極點,位於該至少一具有相對區域最大感應值之電極點位 置右上方之第五電極點,位於該至少一具有相對區域最大 感應值之電極點位置右下方第六電極點,位於該至少一具 有相對區域最大感應值之電極點位置左下方之第七電極 點。 10·如申凊專利範圍第9項所述之方法,其中,於步驟 (D)中,計算該至少一觸控點的位置係包括:在X方向上係 根據該第四電極點與該第五電極點之感應值的平均值及該 第六電極點與該第七電極點之感應值的平均值之比例、以 及該至少一具有相對區域最大感應值之電極點的位置而計 算;在Y方向上係根據該第五電極點與該第六電極點之感應 值的平均值及該第七電極點與該第四電極點之感應值的平 均值之比例、以及該至少一具有相對區域最大感應值之電 極點的位置而計算。 11.如申請專利範圍第1〇項所述之方法,其中,該至 少一觸控點與該具有相對區域最大感應值之電極點在χ方 向上的距離、及Y方向上的距離係分別由數值Ml、N1經由 一第三函數轉換後取得,其中,M1 = M2-M3 2 m = N2-N3 2 201232351 N2 = —+ (K4 + F5) + (F6 + F7) 當中,7. The method of claim 6, wherein, in the step (D), calculating the position of the at least one touch point comprises: in the χ direction, according to the at least one first electrode point and Calculating a ratio of the sensing value of the at least one second electrode point and a position of the at least one electrode point having a maximum sensing value of the relative region; and in the γ direction, according to the sensing value of the at least one third electrode point a difference between an inductance value of at least one electrode point having a maximum sensed value of a relative region and a ratio of an inductance value of the electrode point having the maximum sense value of the at least one region, and the electrode point having the maximum sense value of the relative region Calculated by the location. 8. The method of claim 7, wherein the distance between the at least one touch point and the electrode point having the maximum sensed value of the opposite region in the x-direction and the distance in the x-direction are respectively Pi and Q1 are obtained by a second function corresponding conversion, wherein, 0=α_ρ2, when -〇K(V0 - F3) F〇' 3· is the first electrode, = , Ρ 2 (4) VX + V2 VI + The distance from the V2 point to the first electrode point is half, b is the distance from the first electrode point to the second electrode point, VI is the sensing value of the first electrode point, and V2 is the sensing value of the second electrode point 'V3 is the first The sensing value of the three electrode points, where Vo is a constant value of the electrode point having the maximum sensing value of the relative region, wherein the at least one touch point and the electrode point having the maximum sensing value of the opposite region are in the χ direction, and γ 201232351 The distance in the direction and the values P1 and Q1 are in a non-linear proportional relationship, and the corresponding relationship is converted by the second function. 9. The method of claim 1, wherein in the step (C), if the at least one electrode having the maximum sensing value of the relative region is located in the non-boundary region of the touch panel, the phase The adjacent electrode point includes a fourth electrode point located at a left upper side of the at least one electrode point having a maximum sensing value of the opposite area, and a fifth electrode point located at a right upper side of the at least one electrode point position having a maximum sensing value of the opposite area, where the And at least one sixth electrode point on the lower right side of the electrode point position having the maximum sensing value of the opposite region, and the seventh electrode point located at the lower left side of the electrode point position having the maximum sensing value of the opposite region. The method of claim 9, wherein in the step (D), calculating the position of the at least one touch point comprises: in the X direction, according to the fourth electrode point and the first Calculating the ratio of the average value of the sensing values of the five electrode points and the average value of the sensing values of the sixth electrode point and the seventh electrode point, and the position of the electrode point having the maximum sensing value of the relative region; The direction is based on an average value of the sensing values of the fifth electrode point and the sixth electrode point and a ratio of an average value of the sensing values of the seventh electrode point and the fourth electrode point, and the at least one has a relative area maximum Calculated by sensing the position of the electrode point. 11. The method of claim 1, wherein the distance between the at least one touch point and the electrode point having the maximum sensed value of the opposite region in the x-direction and the distance in the Y direction are respectively The values M1 and N1 are obtained by a third function conversion, where M1 = M2-M3 2 m = N2-N3 2 201232351 N2 = —+ (K4 + F5) + (F6 + F7) —,\n 一 b(V4 + V5) ’7) (F4 + F5) + (F6+F7) M3 =-+V6) , (V4 + V7) + (V5 + y6) ,b為該第一電極 點及該第二電極點之間距,V4為第四電極點的感應值,^ 為第五電極點的感應值,V6為第六電極點的感應值,¥7為 第七電極點的感應值,該至少一觸控點與該具有相對區域 最大感應值之電極點在X方向、及γ方向上的距離與數值 Ml、N1係為非線性之正比例關係,該對應關係係由該第三 函數對應轉換而成。 12. 如申請專利範圍第u項所述之方法,其中,χ方向 與Υ方向為正交。 13. —種單層結構觸控面板裝置,包含: 一觸控面板’具有一表面,係用以接收有至少一個觸 控點; 複數個電極點’以菱形矩陣排列而設置於該表面上, 每一電極點係根據該至少一觸控點之位置及大小而對應產 生一感應值;以及 一控制電路’其係電性連接至該等複數個電極點; 其中’該控制電路判斷感應值超過一預定值之該等電 極點’並由該等感應值超過該預定值的電極點中選取至少 一具有相對區域最大感應值之電極點,且操取與該至少一 具有相對區域最大感應值之電極點相鄰之複數個電極點的 感應值’據以根據與該至少一具有相對區域最大感應值之 201232351 電極點及與其相鄰之複數個電極點的感應值來計算該至少 一觸控點的位置。 14.如申請專利範圍第13項所述之單層結構觸控面板 裝置,其中,每一電極點距該至少一觸控點之位置越近, 其所對應產生之感應值越大,越遠則對應產生之感應值越 小,其關係屬於非線性函數關係。 八、圖式(請見下頁): ·—,\n a b(V4 + V5) '7) (F4 + F5) + (F6+F7) M3 =-+V6) , (V4 + V7) + (V5 + y6) , b is the first electrode The distance between the point and the second electrode point, V4 is the sensing value of the fourth electrode point, ^ is the sensing value of the fifth electrode point, V6 is the sensing value of the sixth electrode point, and ¥7 is the sensing value of the seventh electrode point And the distance between the at least one touch point and the electrode point having the maximum sensing value of the relative region in the X direction and the γ direction is proportional to the value M1 and N1, and the corresponding relationship is the third function. Corresponding conversion. 12. The method of claim 5, wherein the χ direction is orthogonal to the Υ direction. 13. A single-layer touch panel device comprising: a touch panel having a surface for receiving at least one touch point; and a plurality of electrode dots arranged on the surface in a diamond matrix Each of the electrode points correspondingly generates an inductive value according to the position and size of the at least one touch point; and a control circuit is electrically connected to the plurality of electrode points; wherein the control circuit determines that the sensing value exceeds a predetermined value of the electrode points ′ and selecting at least one electrode point having a maximum sensed value of the relative region from the electrode points whose sensed values exceed the predetermined value, and fetching the maximum sensed value with the at least one relative region The sensing value of the plurality of electrode points adjacent to the electrode point is calculated according to the sensing value of the at least one 201232351 electrode point having the maximum sensing value of the opposite region and the plurality of electrode points adjacent thereto to calculate the at least one touch point s position. The single-layer touch panel device of claim 13, wherein the closer the position of each electrode point is to the at least one touch point, the greater the induced value is, the farther it is. The smaller the induced value corresponding to the corresponding one, the lesser the relationship is in the nonlinear function relationship. Eight, schema (see next page): 2020
TW100102338A 2011-01-21 2011-01-21 Method and device for recognizing multi-touch on touch panel with single layer structure TW201232351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100102338A TW201232351A (en) 2011-01-21 2011-01-21 Method and device for recognizing multi-touch on touch panel with single layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100102338A TW201232351A (en) 2011-01-21 2011-01-21 Method and device for recognizing multi-touch on touch panel with single layer structure

Publications (2)

Publication Number Publication Date
TW201232351A true TW201232351A (en) 2012-08-01
TWI446237B TWI446237B (en) 2014-07-21

Family

ID=47069577

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102338A TW201232351A (en) 2011-01-21 2011-01-21 Method and device for recognizing multi-touch on touch panel with single layer structure

Country Status (1)

Country Link
TW (1) TW201232351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467457B (en) * 2012-08-06 2015-01-01 Chunghwa Picture Tubes Ltd Touch panel and driving method thereof
TWI608400B (en) * 2016-10-28 2017-12-11 矽統科技股份有限公司 Method for touch detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467457B (en) * 2012-08-06 2015-01-01 Chunghwa Picture Tubes Ltd Touch panel and driving method thereof
TWI608400B (en) * 2016-10-28 2017-12-11 矽統科技股份有限公司 Method for touch detection

Also Published As

Publication number Publication date
TWI446237B (en) 2014-07-21

Similar Documents

Publication Publication Date Title
WO2017045375A1 (en) Touch sensing electrode, and touch sensing method and device
TW201241722A (en) Sensor, dual-mode touch module and dual-mode touch electronic device
TW201246042A (en) Display device with touch panel
TWI360772B (en) Capacitive touch pad and touch point detecting met
CN101661361A (en) Multipoint touch detection system
TW200928933A (en) Method for calibrating coordinates of touch screen
US20150062071A1 (en) Method for detecting touch points of touch panel
TW201120717A (en) Touch display device and touch sensing device
TW200939099A (en) A system for displaying images
CN103455227B (en) Capacitive touch screen and display device
TWI493403B (en) Heat sensitive touch panel, detecting method thereof, and manufacturing method thereof
TWM423302U (en) Sensor, dual-mode touch module and dual-mode touch type electronic device
TWM424538U (en) Apparatus for identifying multipoint zoom movement
JP2018510427A (en) Method for correcting sensitivity of touch input device for detecting touch pressure and computer-readable recording medium
CN103076930A (en) Touch panel
TW201409300A (en) Touch electrode device and a method of manufacturing the same
TW201241689A (en) Sensing structure of touch panel
TWI360770B (en) Object detection for a capacitive ito touchpad
TW201232351A (en) Method and device for recognizing multi-touch on touch panel with single layer structure
CN102855043B (en) A kind of single conductive layer multi-point identification capacitor screen
TW201344544A (en) Touch panel device having a divided ITO layer for reducing loading
CN102419654A (en) Wiring structure of induction layer
US9256313B2 (en) Touch point detecting device and the touch point detecting method thereof
TW201409296A (en) Touch control electrode module and touch device thereof
TWM369505U (en) Resistance touch panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees