TW201230431A - Light-emitting device and method for manufacturing light-emitting device - Google Patents

Light-emitting device and method for manufacturing light-emitting device Download PDF

Info

Publication number
TW201230431A
TW201230431A TW100142860A TW100142860A TW201230431A TW 201230431 A TW201230431 A TW 201230431A TW 100142860 A TW100142860 A TW 100142860A TW 100142860 A TW100142860 A TW 100142860A TW 201230431 A TW201230431 A TW 201230431A
Authority
TW
Taiwan
Prior art keywords
light
electrode
support substrate
organic
electrodes
Prior art date
Application number
TW100142860A
Other languages
Chinese (zh)
Inventor
Shoji Mima
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201230431A publication Critical patent/TW201230431A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This invention provides a light-emitting device having a configuration without the necessity of performing a step of removing ink applied on an undesired portion in a case that a light-emitting layer is formed by a dispensing method. One aspect of the light-emitting device of this invention comprising a first and a second support substrates arranged facing each other; and a plurality of organic electroluminescence elements disposed between the first and second support substrates and connected in series, wherein: the plurality of organic electroluminescence elements are arranged in a predetermined arrangement direction; the light-emitting layer extends in the predetermined arrangement direction across the plurality of organic electroluminescence elements; each of the pair of electrodes has an extension part extending so as to protrude from the light-emitting layer in a width direction perpendicular to both of a thickness direction of the support substrate and the arrangement direction when viewed from one side of the thickness direction of the support substrate; and one of the pair of electrodes further has a connection part extending in the arrangement direction from the extension part up to the other electrode of the organic electroluminescence element adjacent in the arrangement direction and connected to the other electrode.

Description

201230431 六、發明說明: 【發明所屬之技術領域】 本發明係關於發光裝置及其製造方法。 【先前技術】 有機電激發光元件(以下,「電激發光」有時記載為 「EL」),是藉由施加電壓來發光之一種發光元件,係具備 一對電極與配置在該一對電極間之發光層。當將電壓施加 於一對電極時,電洞從陽極注入,並且電子從陰極注入。 此等電洞與電子在發光層結合而產生發光。 目前已有人探討一種串聯連接有複數個此種有機EL 元件之照明裝置(例如參照專利文獻丨)。以下係參照第 圖來忒明串聯連接有3個有機EL元件之照明裝置(來照 10圖(5))及其製造方法。 第10圖⑸卜在第!支樓基板3上與第2支撐基板 7之間,設置有串聯連接的3個有機EL元件b 3個有機 EL το件1,係沿著預定的排列配置方向χ配置在第】支撐 基板3上,並串聯連接。各有機EL元件1具備有一對電2 4’ 5、以及②置在該電極間之發光層6。以下係將—對電極 4, 5十之配置在靠近第1支撑基板3的-方電極記載為第i 電極4 ’將配置在較第1電極4遠離支撐基板3之另-方 電極s己載為第2電極5。此等第!及第2電極4,5中的一 =電極具有陽極的功能,另一方電極具有陰極的功能。考 量到元件特性和製造步驟的簡易性等,第1及第2電極4, 5 間不僅有發光層6,有時亦設置有與發光層6不同之預定 323693 4 201230431 層0 …各有機EL το件1的第!電極4,相互在排列配置方向 X隔著預定間隔離散地配置,故相互未電性連接。同樣地, f有機EL兀件1的第2電極5,相互在排列配置方向χ隔 著預定間隔而配置’故相互未電性連接。如此3個有機此 元件1的第1電極4彼此與第2電極5彼此,分別相互未 電性連接。 另方面,在排列配置方向X相鄰之有機此元件1 的第1電極4與第2電極5’係物理性接觸而呈電性連接。 藉此,複數個有機EL元件i構成串聯連接。具體而言,第 1電極4係以使排列配置方向χ之—方(以下有將「排列配 置方向X的一方」稱為「左方」之情形,將「排列配置方 向X的另方」稱為「右方」之情形)的端部(以下有稱為 左端部的情形)延伸存在至重疊於在左方相鄰之有機EL元 件1的第2電極5之右方的端部(以下有稱為右端部的情形) 之位置為止之方式來形成,並與在左方相鄰之有機虹元件 1的第2電極5呈電性連接。如此,在排列配置方向乂相 鄰之有機EL元件1的第1電極4與第2電極5呈電性連接, 猎此使複數個有機EL元件1構成串聯連接。 接著說明照明裝置的製造方法。首先在第1支樓基板 3上形成第1電極4。具體而言,於第2支撐基板3上,在 排列配置方向X隔著預定間隔離散地形成3個第i電極 4(參照第10圖(1))。 接著藉由預定的塗佈法,將含有成為發光層6之材料 323693 5 201230431 的印墨塗佈於第 乐丄支撐基板3上(參照第10圖(2))。一般 而言,塗佈法Φ,丄 ^ τ 由於難以選擇性地將印墨(ink)僅塗佈於 』望的邛位來形成圖案,所以在第1電極4間等之不必要 的雜亦會塗佈印墨。因此,在塗佈印墨後,必須進行將 要的部位之印墨予以去除之步驟(參照第10圖 (3)) 〇 Hp j 、、、去除’例如可藉由使用含有可溶解印墨之溶 ^的布或棉棒等來擦除印墨之方法,或是藉*雷射剝離法 等來進行。 接著預先在第2支撐基板7上形成第2電極5的圖案 (參照第10圖⑷)。然後以使第i支樓基板3上之第i電 極4的左端部與第2支擇基板7上之第2電極5的右端部 重疊之方式進行對位,來貼合第1支樓基板3與第2支撑 基板7。藉此可製作出具備串聯連接有3個有機乩元件之 發光裝置。 (先前技術文獻) (專利文獻) (專利文獻1)日本特表2008-508673號公報 【發明内容】 (發明所欲解決之課題) 上述先前技術中,由於需採用將塗佈於不必要部位之 印墨予以去除的㈣,所轉在好騎增加之問題。此 外,將塗佈於不必要部位之印墨予以去除時,會有雜質混 入於發光層之疑慮。 因此,本發明之目的在於提供一種當藉由塗佈法來形 323693 6 201230431 成發光層時,不需採用將塗佈於不必要部位之印墨予以去 除的步驟之構造的發光裝置(照明裝置)及其製造方法。 (用以解決課題之手段) 本發明的一項態樣係關於一種發光裝置,係具備有: 彼此相對向地配置之第1及第2支撐基板、以及設置在前 述第1及第2支撐基板間並且串聯連接之複數個有機電激 發光元件,該發光裝置之特徵為: 前述複數個有機電激發光元件沿著預定的排列配置 方向而配置, 各有機電激發光元件具備有一對電極以及設置在前 述一對電極間之發光層, 前述發光層跨及前述複數個有機電激發光元件,沿著 前述預定的排列配置方向延伸存在, 前述一對電極,在從前述支撐基板之厚度方向的一方 觀看時’於均垂直於前述支樓基板的厚度方向及前述排列 配置方向的任一方向之寬度方向,分別具有從發光層突出 地延伸存在之延伸存在部, 前述一對電極中之一方的電極,復具有:在前述排列 配置方向從延伸存在部延伸存在至在前述排列配置方向相 鄰之有機電激發光元件之另一方的電極為止並連接於該另 一方的電極之連接部。 此外,本發明的一項態樣係關於一種發光裝置,其中, 前述第1及第2支樓基板中的至少任一方為顯示可撓性之 基板。 323693 7 201230431 此外,本發明的一項態樣係關於一種發光裝置,其 中’前述顯示可撓性之基板為金屬薄膜。 此外,本發明的一項態樣係關於一種發光裝置,其 中,前述顯示可撓性之基板是由樹脂材料所構成之基板。 此外,本發明的一項態樣係關於一種發光裝置,復具 有接觸於前述電極而設置之輔助電極, 該輔助電極的薄片電阻較接觸於該輔助電極之電極 為低。 此外,本發明的一項態樣係關於一種發光裝置,其 中’前述辅助電極係接觸於前述一對電極中薄片電阻較高 者之電極而設置。 此外’本發明的一項態樣係關於一種發光裝置,其 中’在前述一對電極中僅薄片電阻較低者之電極具有前述 連接部。 此外’本發明的一項態樣係關於一種發光裝置,其 中,前述延伸存在部,係包含:從前述厚度方向的一方觀 看時’在前述寬度方向的一方從發光層突出地延伸存在之 第1延伸存在部;以及在前述寬度方向的另一方從發光層 突出地延伸存在之第2延伸存在部。 此外’本發明的一項態樣係關於一種發光裝置的製造 方法’係製造具備有:彼此相對向地配置之第1及第2支 樓基板、以及設置在前述第1及第2支撐基板間並且串聯 連接之複數個有機電激發光元件之發光裝置, 前述複數個有機電激發光元件沿著預定的排列配置 8 323693 201230431 方向而配置, 各有機電激發光元件具備有一對電極以及設置在前 述'~對電極間之發光層, 前述發光層跨及前述複數個有機電激發光元件,沿著 月'j述預定的排列配置方向延伸存在, 前述一對電極,在從前述支撐基板之厚度方向的一方 觀看時,在均垂直於前述支撐基板的厚度方向及前述排列 配置方向的任一方向之寬度方向,分別具有從發光層突出 地延伸存在之延伸存在部, 前述一對電極中之一方的電極,復具有:在前述排列 配置方向從刚述延伸存在部延伸存在至在前述排列配置方 向相鄰之有機電激發光元件之另一方的電極為止並連接於 該另一方的電極之連接部, 該發光裝置的製造方法,係關於包含有: 將含有成為如述發光層之材料的印墨,沿著前述預定 的排列配置方向,跨及配置在前述支撐基板上之複數個前 述電極而連續地塗佈,並藉由使塗佈後的塗膜固化的步驟 而形成發光層之步驟。換言之,本發明的發光裝置之製造 方法的一態樣係具備將含有成為前述發光層的材料之印墨 跨及於完成時配置有前述複數個有機EL元件的區域,而沿 著前述預定的排列配置方向連續地塗布,並將已塗布的塗 膜予以固化,藉此而形成發光廣的步驟。 此外,本發明的一項態樣係關於一種發光裝置的製造 方法,其中塗佈前述印墨之方法’為毛細管塗佈(cap coat) 9 323693 201230431 霧塗佈(spray coat)法或 法、狹縫塗佈(slitc〇at)法、喷 印刷法。 此外’本發明的一頊能 4樣係關於一種發光裝置的製造 方法,係包各有:藉由連續與厭i^ 1 ^ 1 輥壓法(R〇l 卜 to-Roll)來貼合 則第找基板與第2支撐基板之貼合步驟。 此外,本發明的—頊能 '樣係關於一種發光裝置的製造 方法,係匕g有.製備形成古今、+、^ ^1^ /成有剛述有機電激發光元件的一 部分之第1支樓基板之步驟; 製備形成有前述有機電激發光元件中扣除形成於前 述第1支撐基板上之-部分後_餘部分之第2支撐基板 之步驟;以及 藉由貼合前述第1支撐基板與第2支推基板來形成有 機電激發光元件之貼合步驟。 (發明之效果) 根據本發明,可實現-種當藉由塗佈法來形成發光層 時’不㈣⑽不0要部位之印墨予以去除的步驟 之構造的發光裝置及其製造方法。 【實施方式】 1)發光裝置的構成 以下首先參照圖示說明發光骏置之構成。本實施形態 之發光裝置,例如使用在照明裴置、液晶裝置及掃瞄器等 之光源。第1圖係示意顯示本發明之第1實施形態的發光 裝置11之俯視圖。發光裝置11係具備有:彼此相對向地 配置之第1及第2支樓基板12, 35、及設置在第1及第2 323693 10 201230431 支樓基板12,35間並串聯連接之複數個有機EL元件13。 第1 Η所示各有機EL元件13的其厚度方向ζ的一方 端部與另一方端部可分別接觸於第1及第2支撐基板 12’35來配置°例如可在第1或第2支縣板12, 35與各 有機EL το件13之間,中介存在黏著劑或密封劑。 預疋的排列配置方向χ係設定在垂直於第丨支撐基板 12的厚度方向ζ之方向。亦即’排列配置方向X係設定為 平行於第1支縣板i2的主面。本實施形態中,如第1 圖所示,複數個有機EL元件13係沿著預定的直線排列配 置,但亦可沿著預定的曲線排列配置。當複數個有機乩 疋件13沿著預定的曲線排列配置時,排列配置方向相當於 鈿述預定的曲線之切線方向。 設置在第1支撐基板丨2上之有機EL元件13的個數, 可因應設計來適當地設定。以下,在第丨實施形態中,係 說明設置有3個有機EL元件13之發光裝置11。 各有機EL元件13分別具備有一對電極14,15、以及 «•又置在s亥電極14, 15間之發光層16。一對電極14, 15中之 任一方電極具有作為有機EL元件13的陽極之功能,另一 方電極具有作為有機EL元件13的陰極之功能。以下係將 一對電極14, 15中之配置在靠近第丨支撐基板12的電極記 载為第1電極14,將配置在靠近第2支撐基板35之電極 記载為第2電極15。 於第1及第2電極14, 15間’設置有1層以上之預定 的層。於第1及第2電極14, 15間,至少設置有發光層16 11 323693 201230431 作為該1層以上之預定的層。 發光層16係跨及複數個有機EL元件13並沿著排列 配置方向X延伸存在。複數個有機EL元件13係共有1層 發光層16。亦即,本實施形態中,在串聯連接之複數個有 機EL元件13中,從排列配置方向X的一端(第1圖中為左 端)所設置之有機EL元件13的發光層16至排列配置方向 X的另一端(第1圖中為右端)所設置之有機EL元件13的 發光層16為止,沿著排列配置方向X所延伸存在之發光層 係連續且一體地形成。於第1及第2電極14, 15間,可設 置與發光層不同之預定的層。該預定的層,可跨及複數個 有機EL元件13並沿著排列配置方向X延伸存在。此外, 上述預定的層可因應每個有機EL元件13相間隔地形成。 此外,當藉由塗佈法來形成與發光層不同之預定的層時, 該預定的層,與發光層相同,較佳是跨及複數個有機EL 元件13並沿著排列配置方向X延伸存在。此係由於如後所 述可省略將形成於不必要的部位之層予以去除之步驟之故。 第1及第2電極14, 15 (—對電極),分別具有延伸存 在部17, 18。該延伸存在部17, 18,在從支撐基板12之厚 度方向Z的一方觀看(以下有稱為「俯視觀看」之情形)時, 在寬度方向Y從發光層16突出地延伸存在。所謂寬度方向 Y,為垂直於支撐基板的厚度方向Z且垂直於排列配置方向 X之方向。第1電極14的延伸存在部17係一體地形成於 第1電極14。此外,第2電極15的延伸存在部18 —體地 形成於第2電極15。構成各有機EL元件13之第1電極14 12 323693 201230431 與第2電極15(一對電極),在各有機乩元件i3内未互相 接觸。此外,各有機EL元件13中,是構成為俯視觀看時 第1電極14的延伸存在部17與第2電極15的延伸存在部 18不會重疊地配置。本實施形態中,第1電極14的延伸 存在# 17,在第1電極14中,從與第2電極15相對向之 P刀的左方鳊部(以下有稱為左端部的情形)往寬度方向y I伸存在。第2電極15的延伸存在部18,在第2電極 中,從與第1電極丨4相對向之部分的右方端部(以下有稱 為右端部的情形)往寬度方向Y延伸存在。因此,第1電極 14的延伸存在部17與第2電極15的延伸存在部18,於俯 視觀看時不會重疊,而呈電性絕緣。 ,1及第2電極14, 15 (一對電極)之一方的電極具有 連接°卩。該連接部係從延伸存在部朝排列配置方向χ延伸 存在至在排列配置方向χ相鄰之有機乩元件之另一方的電 °為 並連接於該另一方的電極。不僅限於第1及第2 ^極14, 15之一方的電極,另一方的電極亦可具有連接 ί5亦I7 對電極中之另一方的電極,亦可具有:從該 k伸存在σ卩朝排列配置方向χ延伸存在至在排列配置方向 X相鄰之有機EL元件之一方的電極為止,並連接於該一方 的電極之連接部。 本實施形態中,相當於第1及第2電極14, 15 (一對 電極)之一方的電極之第1電極14,係具有連接部19。亦 即’第1電極14具備^從第1電極14的延伸存在部17, 至配置在左方之有機EL元件之第2電極15(另—方的電極) 323693 13 201230431 的延伸存在部18為止,往左方延伸存在之連接部μ 如 此,第1電極14的連接部19,俯視觀看時與配置在左方 之有機EL元件之第2電極15(另一方的電極)的延伸存在 部18重疊,並在該重疊部分直接與第2電極15(另一方的 電極)連接。 俯視觀看時從發光層16往寬度方向γ延伸存在之延 伸存在部18,係設置在寬度方向Y的一方或另—方,但較 佳係設置在寬度方向Y的兩方。亦即,延伸存在部I? 較佳係包含有:俯視觀看時,以在前述寬度方向的一方從 發光層突出之方式延伸存在之第丨延伸存在部17a,i8a、 以及以在寬度方向Y的另一方從發光層16突出之方式延伸 存在之第2延伸存在部17b,18b。#由具備有俯視觀看時 從發光層16往寬度方向γ兩方延伸存在之延伸存在部17, 18 ’可在寬度方向γ兩方的端部連接相鄰之有 13的第1電極14與第2電極15。 此外,構成串聯連接之複數個有機EL元件13中,配 置在最左方之有機EL元件13的第丨電極14與配置在最右 2有機EL元件13的第2電極15,分別連接於與電力供 、,、°。卩(未Θ示)呈電性連接之配線。藉此可從電力供給部將 電力供給至構成串聯連接之複數财機EL元件13,使各 有機EL元件發光。 +各有機EL疋件13係從連接部被供電。本實施形態中, 藉由具備有俯視觀看時從發光層16往寬度方向¥兩方延伸 存在之延伸存在部17, 18,可從寬度方向γ兩方的端部對 323693 14 201230431 各有機EL 70件13進行供電。有機el元件13,距離被供 電的部位愈遠’愈因電壓降而使亮度降低。本實施形態中: 雖然在寬度方向γ愈遠離延伸存在部17,18,亦即愈是仅 於寬度方向Y的中央部,愈因電壓降而使亮度降低,但由 於從寬度方向γ兩㈣端部對各有機EL元件13進行供電, 故與從寬度方向γ之一方的端部進行供電之元件構成相 L可_電壓降㈣響’ Μ可抑制亮度不均(斑紋)。 2)發光裝置的製造方法 本實施形態之發光裝置的製造方法,其所製造之^ 裝置係具備有:彼此相對向地配置之第丨及第2支撐基板 以及設置在前述第丨及第2切基㈣並且串聯連接之本 Ϊ個有機電激發光元件,且前述複數個有機ELS件沿⑸ 疋的排列配置方向而配置,各有㈣元件具備有一對以 置在前述-對電_之發㈣,前述發光層跨及肯 2數個有機EL元件,沿著前述預定的排列配置方向⑹ 2 ’前述-對電極’在從前述支撐基板之厚度方向的一 觀看時,在均垂直於前述支撐基板的厚度方向及前述杂 2置方向的任-方向之寬度方向’分別具有從發光層多 出^伸存在之延伸存在部’前述―對電極中之一方的, =在前述_配置方向從延伸存在部延伸存在3 ^述排列配置方向相鄰之有機EL元件之另—方的電極 =並連接於該另-㈣電極之連接部,該發光裝置㈣ 法係包合有.將含有成為前述發光層之材料的印墨, 沿著前述默_聽置方向,跨及崎在前述第i以 323693 15 201230431 2支撐基板上之複數個前述電極而連續地塗佈,並藉由使 塗佈後的塗膜固化而形成發光層之步驟。 以下參照第2圖至第4圖來說明用以製造發光裝置之 方法首先製備第1支撐基板12。本步驟中,可製備預先 形成有驅動有機EL元件13之驅動電路(未圖示)之第i支 撐基板12。 接著在第1支撐基板12上形成第丨電極14的圖案(參 照第2圖)。例如可藉由濺鍍法或蒸鍍法,於第丨支撐基板 12上形成由成為後述陽極或陰極之材料所構成的導電體 膜,接著藉由微影餘刻將導電體膜形成為預定形狀的圖 案’藉此形成第1電極14的圖t。亦可不進行微影關步 驟’而藉由料蒸鍍料,僅在預定部位形成第丨電極14 的圖案。此外,亦可製備預先形成有第i電極14之第i 支撐基板12。 接著在第1支撐基板12上形成發光層16。例如可將 含有成為發光層16之材料的印墨,沿著預定的排列配置方 向並跨及第1支撐基板12上所置之複數個第丨電極14 連續地塗佈,並使塗佈後的塗膜固化。亦即,將含有成為 發光層16之材料的印墨,跨及完成時配置有複數個有機 EL元件13之區域並沿著排列配置方向χ連續地塗佈,並 藉由使塗佈後的塗膜固化而形成發光層16。 如前所述,於第1電極14上,有設置有與發光層16 不同之預定的層之情形。當藉由塗佈法來形成與發光層不 同之預定的層時,較佳是藉由與形成發光層之方法為相同 323693 16 201230431 的方法來形成與發光層不同之預定的層。亦即,較佳可將 含有成為與發光層不同之預定的層之材料的印墨,跨及完 成時配置有複數個有機EL元件13之區域並沿著排列配置 方向X連續地塗佈,並藉由使塗佈後的塗膜固化而形成與 發光層不同之預定的層。當藉由蒸鍍法等之乾式法來形成 與發光層不同之預定的層時’可將與發光層16不同之預定 的層,選擇性地僅形成於第1電極14上。 塗佈印墨之方法,可列舉出毛細管塗佈法、狹縫塗佈 法、喷務塗佈法、印刷法、喷墨法、噴嘴印刷法等,此等 之中,較佳為可有效率地塗佈大面積之毛細管塗佈法、狹 縫塗佈法、噴霧塗佈法及印刷法。 然後製備第2支撐基板35。本步驟中,可製備預先形 成有驅動有機EL元件13之驅動電路(未圖示)之第2 ^ 基板35。 接著在第2支撐基板35上形成第2電極κ &amp; 电炫15的圖案(參 照第4圖)。例如可藉由濺鍍法或蒸鍍法, 一 ^ 乐2支撐某·板 35上形成由成為後述陽極或陰極之材料所構成的、 膜’接著藉由微影蝕刻將導電體膜形成為預定形、導電體 藉此形成第2電極15的圖案。亦可不進行微影^ 而藉由遮罩蒸鍍法等’僅在預定部位形成第2人” 案。此外’亦可製備預先形成有第2電 極15的圖 板35。 D之第2支撐基 如上所述,本實施形態中,藉由將有機 除第2電極之部分形成於第1支撐基板上,來、鱼疋件中扣 I進行用以製 323693 17 201230431 備形成有有機EL元件的一部分之第1支撐基板之步驟。此 外,藉由將第2電極形成於第2支撐基板上,來進行用以 製備形成有有機EL元件中之扣除形成於前述第1支撐基板 上之一部分的剩餘部分之第2支撐基板之步驟。 (貼合步驟) 接著貼合第1支撐基板12與第2支撐基板35。貼合 時,係進行對位以使第1及第2電極14, 15中之任一方的 連接部與另一方的連接部重疊,然後貼合第1支撐基板12 與第2支撐基板35。為了使貼合時所接觸的部位密合,可 加熱第1支撐基板12或第2支撐基板35。此外,為了壓 著第1支撐基板12與第2支撐基板35,可使用滾輪或加 壓板等來貼合兩基板。此外,為了排出第1支撐基板12 與第2支撐基板35間的氣體,可在真空環境中貼合第1 支撐基板12與第2支撐基板35,並且在保持真空狀態下 進行密封。密封,可在貼合第1支撐基板12與第2支撐基 板35前,以俯視觀看時包圍串聯連接有複數個有機EL元 件的周圍之方式,將密封劑配置在第1支撐基板12或第2 支撐基板35上,並在貼合兩基板後使密封劑硬化來進行。 貼合第1支撐基板12與第2支撐基板35之步驟並無 特別限定,惟就生產性之觀點來看,較佳是藉由連續輥壓 法來進行。此時,由於需將發光裝置捲繞於輥,所以第1 支撐基板12及第2支撐基板35必須為顯示可撓性之基板。 (貼合裝置的構成例) 接著說明進行連續輥壓法之裝置(貼合裝置)。第5圖 18 323693 201230431 係用以說明貼合裝置71的構成例之概略圖。該圖中,箭頭 表示基板的運送方向。貼合裝置Η係具備··第1适出輥^ 73、第2送出輥ι 74、第1貼合粮76、第2貼合觀77、以 及捲取貼合後的發光裝置之播取輥78。 第1送出輥73與第2送出輥74係以相間離之方式配 置。本實施形態中,第1送出輥73係捲繞有形成有有機 EL元件的一部分之第丨支撐基板。本實施形態中,所謂有 機EL元件的一部分是指有機EL元件中之扣除第2電極15 後的剩餘部分。此外,第2送出親74係捲繞有有機el元 件中形成有扣除形成於前述第1支#基板上之—部分後的 剩餘部分之第2支撐基板。本實施形態中,所謂扣除形成 於第1支撐基板上之一部分後的剩餘部分,為第2電極。 第1貼合輥76與第2貼合輥77係隔著預定間隙而配 置。此外,貼合裝置71中,可因應必要而設置有辅助第ι 及第2支撐基板12, 35的運送,或是改變該輸送方向之i 個以上的辅助輥79等。 第1支撐基板12從第1送出輥73被送出。第2支樓 基板35從第2送出輥74被送出。此等被送出之第ι支^ 基板12與第2支撐基板35係在貼合之狀態下通過第 合輥76與第2貼合輥77之間的間隙而貼合,並藉由捲取 輥78來捲取。藉此製作出顯示裝置。此外,亦可在貼人第 1支標基板12與第2支撐基板35後,不藉由捲取親^以 捲取而將包含被貼合之第1支撐基板12與第2支撐義板 35之發光裝置進行裁切並以葉片狀態來回收。 323693 19 201230431 以下更詳細地說明第1支撐基板12、第2支撐基板 35及有機EL元件13的構成。 如前所述,於第1及第2電極14, 15間,不僅有發光 層16,復有設置有與發光層16不同之預定的層之情形。 設置在陰極與發光層之間的層,可列舉出電子注入層、電 子輸送層、電洞阻障層等。當在陰極與發光層之間設置有 電子注入層及電子輸送層兩者時,係將接觸於陰極之層稱 為電子注入層,將扣除該電子注入層之層稱為電子輸送層。 電子注入層具有改善電子從陰極的注入效率之功能。 電子輸送層具有改善電子從接觸於陰極側的表面之層的注 入之功能。電洞阻障層具有阻止電洞的輸送之功能。當電 子注入層及/或電子輸送層具有阻止電洞的輸送之功能時, 此等層有兼用作為電洞阻障層之情形。 設置在陽極與發光層之間之層,可列舉出電洞注入 層、電洞輸送層及電子阻障層等。當陽極與發光層之間設 置有電洞注入層與電洞輸送層兩者的層時,係將接觸於陽 極之層稱為電洞注入層,將扣除該電洞注入層之層稱為電 洞輸送層。 電洞注入層具有改善電洞從陽極的注入效率之功能。 電洞輸送層具有改善電洞從接觸於陽極側的表面之層的注 入之功能。電子阻障層具有阻止電子的輸送之功能。當電 洞注入層及/或電洞輸送層具有阻止電子的輸送之功能時, 此等層有兼用作為電子阻障層之情形。 有將電子注入層及電洞注入層總稱為電荷注入層之 20 323693 201230431 情形’將電子輸送層及電洞輸送層總稱為電荷輸送層之情 形0 本實施形態之有機EL元件所能夠採取之層構成的一 例如下所述。 a) 陽極/發光層/陰極 b) 陽極/電洞注入層/發光層/陰極 c) 陽極/電洞注入層/發光層/電子注入層/陰極 d) 陽極/電洞注入層/發光層/電子輸送層/電子注入 層/陰極 e) 陽極/電洞注入層/電洞輸送層/發光層/陰極 f) 陽極/電洞注入層/電洞輸送層/發光層/電子注入 層/陰極 g) 陽極/電洞注入層/電洞輸送層/發光層/電子輸送 層/電子注入層/陰極 h) 陽極/發光層/電子注入層/陰極 i) 陽極/發光層/電子輸送層/電子注入層/陰極 (在此,記號「/」係表示夾持記號「/」之各層鄰接 而積層。以下相同) 本實施形態之有機EL元件可具有2層以上的發光層。 上述a)至i)之層構成中的任一個中’當將由陽極與陰極所 夾持之積層體設為「構造單位A」時’可列舉出下列j)所 示之層構成作為具有2層發光層之有機EL元件的構成。2 個(構造單位A)的層構成可互為相同或不同。 j) 陽極/(構造單位A)/電荷產生層Z/(構造單位a)/ 323693 21 201230431 陰極 在此,所謂電荷產生層,為藉由施加電場而產生電洞 與電子之層。電椅產生層’例如可列舉出由氧化鈒、氧化 銦錫(Indium Tin Oxide :簡稱ΙΤ0)、氧化翻等所構成之 薄膜。 此外’當將「(構造單位A)/電荷產生層」設為「構造 單位B」時,可列舉出下列k)所示之層構成作為具有3層 以上的發光層之有機EL元件的構成。 k)陽極/(構造單位B)x/(構造單位A)/陰極 記號「X」表示2以上的整數,(構造單位β)χ表示積 層X段的構造單位Β之積層體。此外,複數個(構造單位 Β)的層構成可互為相同或不同。 亦可構成為不設置電荷產生層而直接積層複數廣發 光層之有機EL元件的構成。 從有機EL元件所射出之光,係通過第1及第2支樓 基板12, 35中的至少任一方往外部射出。因此,第1支撐 基板12及第1電極14、以及第2支撐基板35及第2電極 15中的至少任一方,是藉由顯示光穿透性之構件所構成。 &lt;支揮基板&gt; 第1支撐基板及第2支樓基板’較佳係採用在製造有 機EL元件之步驟中不會產生化學變化者,例如可使用玻 璃、塑膠、㊣分子薄膜、及唆板,以及積層此等而成者等。 可使用預先形成有驅動有機EL元件之驅動電路之膦動用 基板作為支撐基板。 323693 22 201230431 此外’當並非將有機EL元件形成於第1支撲基板及 第2支樓基板中的一方後再貼合第1支搏基板及第2支撐 基板,而是將有機EL元件的一部分分別形成於第1支撐基 板及第2支撐基板後再貼合第1支撐基板及第2支撐基板 來形成有機EL元件時(所謂層積法時),就密著性之觀點來 看,第1支撐基板12及第2支撐基板35中的至少任一方, 較佳是顧示可撓性之基板。 再者’當藉由連續輥壓法來貼合前述第1支撐基板及 第2支撐基板時,第1支撐基板12及第2支撐基板35中 的任一方,較佳是顯示可撓性之基板。本說明書中,所謂 顯示可撓性之基板,係意味著產生龜裂的曲率半徑為5〇mm 以下的基板。顯示可撓性之基板,較佳是產生龜裂的曲率 半徑為10mm以下之基板。 顯示可撓性之基板’較佳是由金屬膜或樹脂材料所構 成之基板。 金屬膜可列舉出由銅、鋁、鐵或含有此等金屬之合金 所構成之膜。由於金屬膜通常為不透光,所以當將金屬膜 應用在第1支撐基板及第2支撐基板中之一方的基板時, 另一方的基板係使用顯示光穿透性之基板。 由樹脂材料所構成之基板的樹脂,例如玎列舉出聚醚 砜(PES);聚對笨二曱酸乙二酯(pET)、聚萘二甲酸乙二酯 (PEN)等聚酯系樹脂;聚乙烯(PE)、聚丙烯(PP)、環狀聚烯 等聚烯煙系樹脂;聚醯胺系樹脂;聚碳酸酯系樹脂;聚 笨乙烯系樹脂;聚乙烯醇系樹脂;乙烯-乙酸乙烯酯共聚物 23 323693 201230431 之鹼化物;聚丙烯腈系樹脂;縮醛系樹脂;聚醯亞胺系樹 脂;環氧樹脂。此外,此等樹脂可單獨使用1種或組合2 種以上使用。由於第1支撐基板及第2支撐基板中的至少 一方必須使用顯示光穿透性之基板,所以由樹脂材料所構 成之基板’較佳是顯示光穿透性之基板。 第1支撐基板及第2支撐基板的厚度,可考量製造本 發明之照明裝置時的穩定性來適當地設定。第1支撐基板 及第2支撐基板的厚度,就可捲取純狀之觀點來看,較 佳為5至500 v m的範圍。 當第1支樓基板或第2支絲板使用無色透明的樹脂 材料時’於第1切基板或第2支撐基 有含有m財的任—項之氣體轉層。=成 氣體阻障層可含有m體阻障層的形成方法,例如 可使用電漿CVD法。 〈陽極&gt; 從發光層所射出之光通過陽極往外射出之構成的 L it件時’陽極係使用顯示光穿透性之電極。顯示片 ^性之電極,可使时屬氧化物、金屬硫化物及金屬等 ! 2佳係!用電傳導率及光穿透率高之材料。具體而 Γτ Η M 7用由乳化銦、氧化鋅、氧化錫、1Τ〇、氧化銦辞 (Induim Zinc 0xide :簡 構成之薄膜。此等之中:Z〇)、金、銘、銀、及峨 錫所構成之_。陽二t為使…™、或氧々 濺鐘法、離子蒸鍵法、^作!法,可列舉出真空蒸錢法, 、 鍛覆法等。此外,該陽極亦可使用 323693 24 201230431 聚苯胺或其衍生物、聚噻吩或其衍生物等有機透明導電性 樹脂。 陽極的膜厚,可考量所要求之特性及步驟簡易度等來 適當地設定,例如為1 Onm至10 g m,較佳為20 nm至1 # m, 更佳為50nm至500nm。 〈電洞注入層&gt; 構成電洞注入層之電洞注入材料,可列舉出氧化釩、 氧化鉬、氧化釕及氧化鋁等金屬氧化物,或是苯胺系化合 物、星爆型胺系化合物、酞菁系、非晶碳、聚苯胺及聚噻 吩衍生物等。 電洞注入層的成膜方法,例如可列舉出從含有電洞注 入材料之溶液所進行的成膜。例如可藉由預定的塗佈法塗 佈含有電洞注入材料之溶液而成膜,然後藉由將其固化而 形成電洞注入層。 從溶液中所進行的成膜中所使用之溶劑,可列舉出三 氯曱烷、氣化曱烷、二氯乙烷等氯系溶劑,四氫呋喃等醚 系溶劑,曱苯、二曱苯等芳香族烴系溶劑,丙酮、丁酮等 酮系溶劑,乙酸乙酯、乙酸丁酯、乙基溶纖劑乙酸酯等酯 系溶劑,以及水等。 電洞注入層的膜厚,可考量所要求之特性及步驟簡易 度等來適當地設定,例如為1 nm至1 # m,較佳為2nm至 500nm,更佳為 5nm 至 200nm。 &lt;電洞輸送層&gt; 構成電洞輸送層之電洞輸送材料,可列舉出聚乙烯咔 25 323693 201230431 唑或其衍生物、聚矽烷或其衍生物、侧鏈或主鏈具有芳香 族胺之聚矽氧烷衍生物、吡唑啉衍生物、芳胺衍生物、芪 衍生物、三苯基二胺衍生物、聚苯胺或其衍生物、聚噻吩 或其衍生物、聚芳胺或其衍生物、聚吡咯或其衍生物、聚 對伸苯乙烯或其衍生物、或是聚(2, 5-噻吩乙烯)或其衍生 物等。 此等之中,電洞輸送材料較佳為聚乙烯咔唑或其衍生 物、聚矽院或其衍生物、側鏈或主鏈具有芳香族胺之聚矽 氧院衍生物、聚苯胺或其衍生物、聚11塞吩或其衍生物、聚 芳胺或其衍生物、聚對伸苯乙烯或其衍生物、或是聚(2, 5-噻吩乙烯)或其衍生物等高分子電洞輸送材料,更佳為聚乙 烯咔唑或其衍生物、聚矽烷或其衍生物、側鏈或主鏈具有 芳香族胺之聚矽氧烷衍生物。為低分子的電洞輸送材料時, 較佳係分散於高分子黏結劑來使用。 電洞輸送層的成膜方法,例如可列舉出從含有電洞輸 送材料之溶液所進行的成膜。例如可藉由預定的塗佈法塗 佈含有電洞輸送材料之溶液並成膜,然後藉由將其固化而 形成電洞輸送層。使用低分子的電洞輸送材料時,可使用 於電洞輸送材料更混合有高分子黏結劑之溶液來進行成 膜。 從溶液中所進行的成膜中所使用之溶劑,例如可列舉 出三氯甲烷、氯化曱烷、二氣乙烷等氣系溶劑,四氫呋喃 等醚系溶劑,曱苯、二甲苯等芳香族烴系溶劑,丙酮、丁 酮等酮系溶劑,乙酸乙酯、乙酸丁酯、乙基溶纖劑乙酸酯 26 323693 201230431 等醋系溶劑等。 所混合之高分子黏結劑,較佳是合 送者,此外,較佳是使用對可見光之二二阻礙電荷輸 舉出聚碳酸醋、聚丙烯酸醋、聚丙烯酿、二 酸甲醋、聚笨乙烯、聚氯乙稀、聚砂氡“。聚甲基丙烯 電洞輸送層的膜厚,可考量所要求: 度等來適當地設定,例如為 1 nm至1 “ 籽 易 5〇〇.更佳為5nra^2()Qnm。 ’車父佳為2mn至 &lt;發光層&gt; 發光層通常主要是由發出榮 或是該有機物與辅助其之推雜及/或鱗光之有機物, 光效率或是改變發光波長而添;成。例如為了提高發 之有機物,可為低分子化合物’雜劑。發光層中所含有 對溶劑之溶解性較低分子化合物子化合物。一般而言, 於更適合於塗怖法,所以 阿之高分子化合物,由 物,高分子化合物較佳為含曰較佳係含有高分子化合 分子量為1〇3至1〇8之化,、遂聚苯乙歸換算 的數量平均 如可列舉出下列色° 。構成發光層之發光材料,例 系材料、摻雜劑系材:金屬錯合物系材料、高分子 (色素系材剩^ &gt; 色素系材料,例如可列舉 基丁一歸街生物化合物、&amp;戊丙f胺衍生物、四苯 吡唑並喹啉衍生物、二笨:二胺衍生物、噁二唑衍生物、 生物、^各街生物&quot;塞吩環街2生物、二苯乙烯亞芳衍 物、&quot;比啶環衍生物、芘酮 323693 27 201230431 衍生物、茈衍生物、低聚噻吩衍生物、噁二唑二聚物、吼 坐琳一聚物、喧σ丫咬酮衍生物、香豆素衍生物等。 (金屬錯合物系材料) 金屬錯合物系材料,例如可列舉出具有Tb、EU、Dy 等稀土類金屬或A1、Zn、Be、Ir、Pt等作為中心金屬,並 於配位基具有噁二唑、噻二唑、苯基吡啶、苯基笨並„米唑、 啥啉結構等金屬錯合物,例如可列舉出銥錯合物、翻錯合 物等之具有來自三重態激發狀態的發光之金屬錯合物、鋁 之經基喹啉錯合物、鈹之笨並羥基喹啉錯合物、鋅之苯並 噁唑錯合物、鋅之苯並噻唑錯合物、偶氮甲基錯合物、鋅 σ卜琳錯合物、銪菲羅林錯合物等。 (局分子系材料) 高分子系材料,可列舉出聚對伸苯乙烯衍生物、聚噻 吩街生物、聚對伸苯衍生物、料締生物、聚乙快衍生 物、聚f衍生物、聚乙料销生物、以及將如上述色素 系材料或金屬錯合物系發光材料進行高分子化者等。 —上述發光性材料中,發出藍色光之㈣,可縣出二 本乙烯亞芳衍生物、噁二唑衍 聚乙烯吁销生物、聚對伸 U丨㈣合物' :=r〜生物、聚對伸:衍: 此外,發出性綠色光之材料,。 物、香豆素衍生物、以及此等的:列舉出喹吖啶酮衍生 生物、聚㈣生物等。其中較佳為古&amp;錢伸笨乙歸衍 ’、'阿分子材料的聚對伸笨 201230431 乙烯衍生物、聚苐衍生物等。 此外,發出紅色光之材料的例子,可列舉出香豆素衍 生物、噻吩環衍生物、以及此等的聚合物、聚對伸苯乙烯 衍生物、聚π塞吩衍生物、聚苐衍生物等。其中較佳為高分 子材料的聚對伸苯乙烯衍生物、聚嗟吩衍生物、聚苐衍生 物等。 (播雜劑材料) 摻雜劑材料,例如可列舉出茈衍生物、香豆素衍生物、 紅榮烯衍生物、啥。丫咬酮衍生物、方酸菁(squarylium)衍 生物、σ卜淋衍生物、苯乙浠系色素、四並苯衍生物、σ比吐 酮衍生物、十環稀、吩°惡D秦酮等。此種發光層的厚度,通 常約為2nm至200nm。 發光層,例如可藉由從溶液中所進行的成膜來形成。 例如可藉由預定的塗佈法塗佈含有發光材料之溶液,然後 藉由將其固化而形成發光層。從溶液中所進行的成膜中所 使用之溶劑,可列舉出與從前述溶液中使電洞注入層成膜 時所使用的溶劑相同之溶劑。 &lt;電子輸送層&gt; 構成電子輸送層之電子輸送材料,可列舉出噁二唑衍 生物、蒽醌二曱烷或其衍生物、苯醌或其衍生物、萘醌或 其衍生物、蒽醌或其衍生物、四氰基蒽醌二曱烷或其衍生 物、苐酮衍生物、二苯基二氰基乙烯或其衍生物、聯苯醌 衍生物、或是8-經基啥淋或其衍生物的金屬錯合物、聚啥 啉或其衍生物、聚喹喔啉或其衍生物、聚第或其衍生物等。 29 323693 201230431 電子輪送層的成膜法,例如可列舉出蒸鍍法以及從溶 液中所進行的成膜等。在從溶液中進行成膜時,可併用高 分子黏結劑。 電子輸送層㈣厚’可考量所要求之特性及步驟簡易 度等來適當地設定,例如為1咖至1//m,較佳為—至 500nm,更佳為 5nm 至 200nm。 &lt;電子注入層&gt; 鼻成電子注入層之材料…”,』羋出驗金屬、赋工买貝隹 屬、含有驗金屬及驗土類金屬中之丨種以上的合金、驗金 屬或驗土類金屬的氧化物、_化物、碳酸鹽,或此 之混合物等。驗金屬、驗金屬的氧化物、自化物、及碳酸 鹽之例子,刊舉_、鈉、鉀m脑、氣化 鋰、氧化納、氟化納、氧化鉀、氟化鉀、氧化物、氣化飯 ^匕鉋、氟化錄、碳酸鐘等。此外,鹼土類金屬、驗土類 •:氧,物:“物、碳酸鹽之例子,可列舉出鎂、鈣、 、'、氧化鎂、氟化鎂、氧化鈣、氟化鈣、氧化鋇、氟 化鋇、氧化銷、氟化讲、石山• 乳化領氣 # 2芦以卜夕独 _。電子注入層,可由積 1_ 層體所構成,例如可列舉出LiF/Ca等。電 子可藉由蒸鍍法、濺鍍法、印刷法等來形成。電 子/入層的膜厚,較佳為lnm至。 &lt;陰極&gt; 層,較佳為功函數小,電子容易注入於發光 的嫩元件中外’在從陽極侧取光之構成 由於在陰極將來自發光層的光反射至陽 323693 30 201230431 極侧,所以陰極的材料,較佳為可見光反射率高之材料。 陰極,例如可使用鹼金屬、鹼土類金屬、過渡金屬及週期 表的13族金屬等。陰極的材料,例如可列舉出裡、納、鉀、 伽、铯、破、鎮、1弓、認、鋇、銘、銃、凱、鋅、紀、銦、 鈽、釤、銪、铽、鏡等金屬,上述金屬中之2種以上的合 金,上述金屬中之1種以上與金、銀、銘、銅、猛、欽、 始、鎳、鶴、錫中之1種以上的合金,或是石墨或石墨層 間化合物等。合金的例子,可列舉出鎮-銀之合金、鎮-銦 之合金、鎂-鋁之合金、銦-銀之合金、鋰-鋁之合金、鋰-鎂之合金、鐘-銦之合金、妈-銘之合金等。此外,陰極可 使用由導電性金屬氧化物及導電性有機物等所構成之透明 導電性電極。具體而言,導電性金屬氧化物可列舉出氧化 銦、氧化鋅、氧化錫、ΙΤ0、及ΙΖ0,導電性有機物可列舉 出聚苯胺或其衍生物,聚噻吩或其衍生物等。陰極可由積 層2層以上之積層體所構成。亦有會將電子注入層用作為 陰極的情形。 陰極的膜厚,可考量所要求之特性及步驟簡易度等來 適當地設計,例如為1 Onm至10 // m,較佳為20nm至1 # m, 更佳為50nm至500nm。 陰極的製作方法,可列舉出真空蒸鍍法、濺鍍法、以 及將金屬薄膜進行熱壓著之層積法等。 以上所說明之發光裝置11,在從俯視觀看時形成有發 光層16之區域往寬度方向Y突出之區域,藉由將相鄰之有 機EL元件13的第1電極14與第2電極15連接而使相鄰 31 323693 201230431 之有機EL元件13串聯連接,所以不需在有機EL元件13 間的區域將相鄰之有機El元件13的第1電極14與第2 電極15連接。因此,可在相鄰之有機EL元件13間的區域 形成發光層等,藉此,當藉由塗佈法來形成發光層時,玎 省略將形成於相鄰之有機El元件13間的區域之發光層予 以去除之步驟。因此,即使是相對不利於細微的圖案塗佈 之毛細管塗佈法等塗佈法,亦可簡單地製作串聯連接之複 數個有機EL元件13。 如此’當藉由塗佈法來形成發光層時,可省略將形成 於相鄰之有機EL元件13間的區域之發光層予以去除之步 •驟’所以可依據採用有塗佈法或層積法之連續輥壓法來進 仃連續生產以形成發光裝置,而能夠達到使用複數個有機 EL το件13之發光裝置的低成本化。 以上係說明製備形成有有機EL元件的一部分之第1 支芽基板並製備形成有扣除前述第1支撐基板上所形成 之部分後的部分之第2支撐基板後,再貼合第1支撐基 /、弟支撐基板之形態,但並不限定於此形態,例如可 將全部有mEL元件形成於第1支撐基板卩第2支撐基板中 的任一基板上’然後再貼合第1支撐基板與第2支撐基板。 匕外以上係δ兒明藉由連續親壓法僅進行貼合步驟之 开八4,但形成發光層等之步驟,亦可應用連續輥壓法。例 如在藉由連續輥壓法來形成發光層等後,先分別將第i支 撐基板及第2支撐基板捲取於輥,然後再使用第5圖所示 之貼合裝置,對此進行貼合步驟。此外,在形成發光層等 323693 32 201230431 後’亦可不將第1支撐基板及第2支撐基板捲取於輥,而 直接貼合此等第1支撐基板與第2支撐基板。 第6圖係示意顯示本發明之第2實施形態的發光裝置 31之圖。本實施形態之發光裝置31,僅有第1電極14與 第2電極15的形狀與前述第1實施形態之發光裝置n不 同。以下僅說明第2實施形態的第1電極14及第2電極 15 ’關於第2實施形態中與第1實施形態對應之部分,係 附加同一參照圖號並省略重複說明。 本實施形態中,除了第1電極14之外,第2電極15 亦具有連接部32。亦即第2電極15具有:至在排列配置 方向X相鄰之有機EL元件的第1電極14為止,在排列配 置方向X從延伸存在部延伸存在,並連接於該第1電極14 之連接部32。 因此,在排列配置方向X相鄰之一對有機EL元件13 中,配置在右方之有機EL元件13之第1電極14的連接部 19,從第1電極14的延伸存在部17往左方延伸存在,並 且配置在左方之有機EL元件13之第2電極15的連接部 32,從第2電極15的延伸存在部18往右方延伸存在。藉 由使此等第1電極14的連接部19與第2電極15的連接; 32重疊’而使相鄰的一對有機乩元件13的第ι電極η 與第2電極15連接。 第7圖係示意顯示第3實施形態的發光裝置41之圖。 本實施形態之發域置41,僅有第1電極14與第2電極 15的形狀與前述第1實施形態之發光裝置11不同。以下 323693 33 201230431 僅說明第3實施形態的第1電極π及第2電極15。關於 第3實施形態中與第1實施形態對應之部分,係附加同一 參照圖號並省略重複說明。 本實施形態中,第1電極14不具有連接部19,相反 地,第2電極15具有連接部42。亦即,第2電極15具有: 從其延伸存在部至排列配置方向X相鄰之有機El元件13 的第1電極14為止,在排列配置方向X延伸存在,並連接 於該第1電極14之連接部42。 第1圖所示之第1實施形態的發光裝置11中,僅是 第1電極14具有連接部19,相反地,第7圖所示之第3 實施形態的發光裝置41中,僅第2電極15具有連接部42。 當第1及第2電極14, 15中的僅有任一方具有連接部時, 可因應設計來適當地選擇哪個電極具有連接部,但較佳是 第1及第2電極14, 15 (—對電極)中之薄片電阻較低的電 極具有連接部。亦即,當第1電極14的薄片電阻較第2 電極15的薄片電阻為低時,較佳如第丨圖所示之第1實施 形態的發光裝置U僅第丨電極14具有連接部19。相反地, 當第2電極15的薄片電阻較第i電極14的薄片電阻為低 時,較佳如第7圖所示之第3實施形態的發光裝置41僅第 2電極15具有連接部42。 第1及第2電極14,15中的任一方’為了使從發光層 16所射出之光往外部射出,係藉由顯示光穿透性之構件所 構成一般而言’顯示光穿透性之構件的薄片電阻較顯示 非透光性之導電性構件為高。因此,第】及帛2電極&quot;’π 323693 34 201230431 中之顯示光穿龜之—方的電極 因此,通常較佳是僅非為顯示光缚月電随較高。 一方的電極具有連接部。 之一方的電極之另 驅動發衫置時,㈣魏所構 但藉由僅在由薄片電阻低的構二部亦會產生 力所產生之電壓降, 第8圖係示意顯示本發明第4 之圖。本實施形態之發光裝置51,復罝有 置之辅助電極。本實施形態置極所設 的有盔盥針、+、々盛 霄尤褒置51僅就輔助電極 4實施开ΓΓ ㈣之發光裝置不同。以下僅說明第 實施渺能#^ 第實 中胃於與前述各 曰之部分,係附加同一參照圖號並省略重複說 第8圖中,係對顯示輔助電極之區域施以影線處理。 輔助電極係接觸於第1電極14及第2電極15(-對電 )中 牵 /K _ j, 一方的電極而設置。例如當辅助電極接觸於第 1電極14及第2電極15而設置時n置有接觸於第1 電極14所设置之辅助電極與接觸於第2電極所設置之辅助 電極之2個輔助電極。 輔助電極’較佳是由薄片電阻較接觸於該輔助電極之 1極為低的構件所構成。輔助電極52,較佳係接觸於第1 電極14及第2電極15(-對電極)中之薄片電阻高的電極 而設置。如前所述,f 1及第2電極14, 15中的任一方’ 為了使從發光層16所射出之光往外部射出,係藉由顯示光 35 323693 201230431 穿透性成。_示光穿透性之_方的電極,其薄 片的電極為高。因此,較佳通常是使輔 助電極52接觸於第!及第2電極i4i5中之顯示出光穿透 性之電極而a置。第8圖所示之本實施形態的發光裝置51 中’係使獅電極52接觸於設置作為顯示光穿透性之電極 之第1電極14而設置。 輔助電極52 ’由於其薄片電阻較該輔助電極52所接 觸之電極為低’所以通常是不透明。當使不透明的輔助電 極52接觸&amp;光所穿透之電才亟而設置時,該輔助電極52有 會遮蔽光m形。因此,伽電極52較佳係設置在俯視 觀看時發光層16原理上不發光之區域。 發光層16 ’在俯視觀看時第1電極14與第2電極15 相對向之區域U下有時稱為對向區域)原理上可發光。因 此,所胡原理上不發光之區域,係相當於俯視觀看時扣除 第1電極14與第2電極15的對向區域之區域。因此,辅 助電極52較佳係設置在俯視觀看時扣除第(電極14與第 2電極15的對向區域之區域。 、考量到發及電壓降等,亦可將輔助電極形成於俯 視觀看時第1電極14與第2電極15的對向區域,例如可 將辅助電極形成於對向區域的周緣與對向區域。亦可將辅 助電極以純觀看時例如呈格子狀、長綠錢狀形成於 對向區域並且將形成於對向區域之辅助電極與形成於對 向區域的周緣之輔助電極連接。 輔助電極的材料,可適當地使用電傳導率高之材料, 323693 36 201230431 ΊΉ舉出A1 Ag、、au、ψ等。此外’辅助電極亦可使 用A1 Nd Ag-Pd-Cu等合金。輔助電極的厚度,可因應所 要求之薄片電阻等來適當地設定’例如為50nm至2000nm。 層所構成,或是為積射複數層之積層 體。例如以提升與第1支撐基板12(玻璃基板等)或第1電 極14CIT0薄膜等)之密著性,以及保護金屬表面免受氧或 水分的影響者等為目的,可將發揮預定功能之層積層於由 電傳導率焉之材料所構成之薄膜。例如可將藉由以、 Mo-Nb及Cr等所構成之薄膜來夾持由電傳導率高之材料所 構成之薄膜而成之積層體,用作為輔助電極。 前述各實施形態中,係顯示藉由複數個有機EL元件 構成1個串聯連接之發林置,但即使是藉由複數個有機 EL兀件構成複數個串聯連接之發光裝置,亦可適當地應用 本發明。此外,即使是併用串聯連接與並聯連接所構成之 發光裝置,亦可適當地應用本發明。 第9圖係示意顯示第5實施形態的發光裝置μ之圖。 本實施形態之發光裝置6卜為將2列的串聯連接予以並聯 連接之構成的發光褒置。各串聯連接,係由3個有機/ 元件所構成。2列的串聯連接係各個有機EL元件的電極之 一端彼此與另一端彼此電性連接而並聯連接。 在藉由複數個有機EL元件構成1個串聯連接之發光 裝置中,有機EL元件的數目愈增加,驅動元件之驅動 電壓愈高,但藉由採用並聯連接,可適度地抑制驅動源所 要求之供給電壓。 、 323693 37 201230431 (產業上的利用可能性) 本發明之發光裝置及其製造方法,可應用在顯示器或 照明裝置等技術領域。 【圖式簡單說明】 第1圖(1)及(2)係顯示本發明之第1實施形態的發光 裝置11之俯視圖。 第2圖(1)及(2)係用以說明發光裝置u的製造步驟 之圖。 第3圖(1)及(2)係用以說明發光裝置n的製造步驟 之圖。 第4圖(1)、(2)係用以說明發光裝置u的製造步驟 之圖。 第5圖係示意顯示貼合裝置η之圖。 第6圖(1)及(2)係示意顯示第2實施形態的發光裝置 31之圖。 第7圖(1)及(2)係示意顯示第3實施形態的發光裝置 41之圖。 第8圖(1)及(2)係示意顯示第4實施形態的發光裝置 51之圖。 第9圖係顯示第5實施形態的發光裝置61之圖。 第10圖⑴至(5)係用以說明以往之發光裝置2的製 造步驟之圖。 【主要元件符號說明】 1 ' 13 有機EL元件 38 323693 201230431 2、11、31、41、51、61 發光裝置 3 第1支撐基板 4、14 第1電極 5 &gt; 15 第2電極 6 ' 16 發光層 7 第2支撐基板 12 第1支撐基板 17、18 延伸存在部 17a、 18a 第1延伸存在部 17b、18b &gt;第2延伸存在部 19 、 32 、 42 連接部 35 第2支撐基板 52 輔助電極 71 貼合裝置 73 第1送出輥 74 第2送出輥 76 第1貼合親 77 第2貼合輥 78 捲取輥 79 輔助幸昆 39 323693201230431 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a light-emitting device and a method of fabricating the same. [Prior Art] An organic electroluminescence device (hereinafter, "Electrically Excited Light" is sometimes referred to as "EL") is a light-emitting element that emits light by applying a voltage, and has a pair of electrodes and is disposed on the pair of electrodes. The luminescent layer between the two. When a voltage is applied to a pair of electrodes, a hole is injected from the anode, and electrons are injected from the cathode. These holes are combined with electrons in the luminescent layer to produce luminescence. A lighting device in which a plurality of such organic EL elements are connected in series has been proposed (for example, refer to the patent document). Hereinafter, an illumination device in which three organic EL elements are connected in series (see Fig. 10 (5)) and a method of manufacturing the same will be described with reference to the drawings. Figure 10 (5) Bu is in the first! Between the support substrate 3 and the second support substrate 7, three organic EL elements b connected in series are provided, and three organic EL elements 1 are disposed on the first support substrate 3 along a predetermined arrangement direction. And connected in series. Each of the organic EL elements 1 is provided with a pair of electrodes 2'' and 2, and a light-emitting layer 6 interposed between the electrodes. In the following, the counter electrode 4, the fifth electrode is disposed on the side electrode adjacent to the first support substrate 3 as the i-th electrode 4', and is disposed on the other electrode s of the first electrode 4 away from the support substrate 3. It is the second electrode 5. These are the first! And one of the second electrodes 4, 5 has the function of an anode, and the other electrode has a function of a cathode. Considering the element characteristics and the ease of the manufacturing steps, the first and second electrodes 4 and 5 have not only the light-emitting layer 6 but also a predetermined 323693 4 201230431 layer 0 ... each organic EL τ. Item 1 of the first! The electrodes 4 are arranged discretely in the arrangement direction X therebetween with a predetermined interval therebetween, and thus are electrically connected to each other. Similarly, the second electrodes 5 of the f-organic EL element 1 are disposed so as to be disposed at a predetermined interval in the arrangement direction, so that they are not electrically connected to each other. The first electrodes 4 and the second electrodes 5 of the three organic elements 1 are electrically connected to each other. On the other hand, the first electrode 4 and the second electrode 5' of the organic element 1 adjacent to each other in the arrangement direction X are in physical contact with each other and are electrically connected. Thereby, a plurality of organic EL elements i constitute a series connection. Specifically, the first electrode 4 is referred to as a direction in which the arrangement direction is ( (hereinafter, one of the "arrangement direction X" is referred to as "left side", and the other side of the "arrangement direction X" is called The end portion of the case of the "right side" (hereinafter referred to as the left end portion) is extended to the right end portion of the second electrode 5 of the organic EL element 1 adjacent to the left side (hereinafter referred to as The position of the right end portion is formed so as to be electrically connected to the second electrode 5 of the organic rainbow element 1 adjacent to the left side. In this manner, the first electrode 4 and the second electrode 5 of the organic EL element 1 adjacent to each other in the arrangement direction are electrically connected to each other, and the plurality of organic EL elements 1 are connected in series. Next, a method of manufacturing the lighting device will be described. First, the first electrode 4 is formed on the first mesa substrate 3. Specifically, on the second support substrate 3, three i-th electrodes 4 are discretely formed at predetermined intervals in the arrangement direction X (see Fig. 10 (1)). Then, the ink containing the material 323693 5 201230431 which becomes the light-emitting layer 6 is applied onto the first card support substrate 3 by a predetermined coating method (see Fig. 10 (2)). In general, the coating method Φ, 丄^ τ is difficult to selectively apply ink to the desired 邛 position to form a pattern, so that unnecessary impurities such as between the first electrodes 4 are also The ink will be applied. Therefore, after the ink is applied, the step of removing the ink from the desired portion must be performed (refer to Fig. 10 (3)). 〇Hp j , , , and removal, for example, by using a solution containing a soluble ink. ^ cloth or cotton swab, etc. to erase the ink, or by the * laser stripping method. Next, a pattern of the second electrode 5 is formed on the second support substrate 7 in advance (see Fig. 10 (4)). Then, the left end portion of the i-th electrode 4 on the i-th board substrate 3 and the right end portion of the second electrode 5 on the second modified substrate 7 are aligned so as to be bonded to each other to bond the first mesa substrate 3 And the second support substrate 7. Thereby, a light-emitting device having three organic germanium elements connected in series can be produced. (Prior Art Document) (Patent Document 1) Japanese Patent Publication No. 2008-508673 (Draft of the Invention) (Problems to be Solved by the Invention) In the above prior art, it is necessary to apply it to an unnecessary portion. The ink is removed (4), and the problem of the increase in the good ride is increased. Further, when the ink applied to an unnecessary portion is removed, there is a fear that impurities are mixed in the light-emitting layer. Accordingly, it is an object of the present invention to provide a light-emitting device (lighting device) which does not require a step of removing an ink applied to an unnecessary portion when forming a light-emitting layer by a coating method. ) and its manufacturing method. (Means for Solving the Problem) The present invention relates to a light-emitting device including: first and second support substrates arranged to face each other; and first and second support substrates provided on the first and second support substrates a plurality of organic electroluminescence elements connected in series and connected in series, wherein the plurality of organic electroluminescence elements are arranged along a predetermined arrangement direction, and each of the organic electroluminescence elements is provided with a pair of electrodes and a setting In the light-emitting layer between the pair of electrodes, the light-emitting layer extends across the plurality of organic electroluminescent elements along the predetermined arrangement direction, and the pair of electrodes are in a thickness direction from the support substrate Each of the pair of electrodes is an extension portion extending from the light-emitting layer and extending in a direction perpendicular to the thickness direction of the support substrate and the arrangement direction. And having: extending from the extending portion to the arrangement direction in the foregoing arrangement direction O The organic light until the other excitation electrode of the element and connected to the connecting portion of the other one of the electrodes. Furthermore, an aspect of the invention is directed to a light-emitting device, wherein at least one of the first and second branch substrates is a flexible substrate. 323693 7 201230431 Further, an aspect of the invention relates to a light-emitting device, wherein the aforementioned substrate exhibiting flexibility is a metal thin film. Further, an aspect of the invention relates to a light-emitting device, wherein the substrate exhibiting flexibility is a substrate composed of a resin material. Further, an aspect of the present invention relates to a light-emitting device which is provided with an auxiliary electrode provided in contact with the electrode, and the sheet resistance of the auxiliary electrode is lower than that of the electrode contacting the auxiliary electrode. Further, an aspect of the present invention relates to a light-emitting device wherein the auxiliary electrode is provided in contact with an electrode of a pair of electrodes having a higher sheet resistance. Further, an aspect of the invention relates to a light-emitting device in which an electrode having only a lower sheet resistance among the pair of electrodes has the aforementioned connecting portion. Further, an aspect of the invention is directed to a light-emitting device, wherein the extending portion includes a first one that protrudes from the light-emitting layer when viewed from one of the thickness directions. And a second extending portion that extends from the other of the width directions and protrudes from the light emitting layer. Further, an aspect of the present invention relates to a method for manufacturing a light-emitting device, comprising: a first and a second branch substrate disposed to face each other; and a first and second support substrate disposed between the first and second support substrates And a plurality of light-emitting devices of the plurality of organic electroluminescence elements connected in series, wherein the plurality of organic electro-optic elements are arranged along a predetermined arrangement of 8 323693 201230431, each of the organic electroluminescence elements having a pair of electrodes and being disposed in the foregoing a light-emitting layer between the electrodes, wherein the light-emitting layer extends across the plurality of organic electroluminescent elements, and extends in a predetermined arrangement direction along the month, wherein the pair of electrodes are in a thickness direction from the support substrate When viewed from one side, each of the pair of electrodes is extended in a width direction which is perpendicular to the thickness direction of the support substrate and the direction in which the arrangement is arranged, and each of which is extended from the light-emitting layer. The electrode has a shape in which the arrangement direction is extended from the just-existing extending portion to the foregoing arrangement The other electrode of the adjacent organic electroluminescence element is connected to the connection portion of the other electrode, and the method for manufacturing the light-emitting device includes: printing the material containing the light-emitting layer as described above The ink is formed by continuously coating a plurality of the electrodes disposed on the support substrate along the predetermined arrangement direction, and forming a light-emitting layer by a step of curing the applied coating film. In other words, an aspect of the method of manufacturing a light-emitting device of the present invention includes a region in which an ink containing a material which is the light-emitting layer is disposed and a plurality of organic EL elements are disposed at the time of completion, along the predetermined arrangement. The arrangement direction is continuously applied, and the applied coating film is cured, thereby forming a step of broadly emitting light. Further, an aspect of the present invention relates to a method of manufacturing a light-emitting device, wherein a method of applying the ink is 'cap coat' 9 323693 201230431 spray coating method or method, narrow Slot coating method (slitc〇at) method, spray printing method. In addition, the present invention relates to a method for manufacturing a light-emitting device, each of which has a tie: by continuous and versatile 1^ 1 roll pressing method (R〇l b to-Roll) The step of bonding the first substrate to the second support substrate. In addition, the method of the present invention relates to a method for fabricating a light-emitting device, which is prepared by forming an ancient and modern, +, ^^1^ / forming a first branch of a part of the organic electroluminescent device. a step of forming a substrate; and preparing a second supporting substrate on which the portion of the organic electroluminescent device is formed by subtracting a portion of the first supporting substrate; and bonding the first supporting substrate with The second push substrate is used to form a bonding step of the organic electroluminescent device. (Effects of the Invention) According to the present invention, it is possible to realize a light-emitting device having a structure of a step of removing the ink of a portion where no (four) (10) is not removed when the light-emitting layer is formed by a coating method, and a method of manufacturing the same. [Embodiment] 1) Configuration of Light Emitting Device First, the configuration of a light emitting device will be described with reference to the drawings. The light-emitting device of the present embodiment is used, for example, as a light source such as an illumination device, a liquid crystal device, and a scanner. Fig. 1 is a plan view showing a light-emitting device 11 according to a first embodiment of the present invention. The light-emitting device 11 includes a plurality of first and second branch substrates 12 and 35 disposed to face each other, and a plurality of organic units disposed between the first and second 323693 10 201230431 branch substrates 12 and 35 and connected in series. EL element 13. The one end portion and the other end portion of each of the organic EL elements 13 in the thickness direction shown in FIG. 1 can be placed in contact with the first and second support substrates 12'35, respectively. For example, the first or second branch can be placed. An adhesive or a sealant is interposed between the county plates 12, 35 and each of the organic EL τ members 13. The pre-arranged arrangement direction is set in a direction perpendicular to the thickness direction of the second support substrate 12. That is, the arrangement direction X is set to be parallel to the main surface of the first branch plate i2. In the present embodiment, as shown in Fig. 1, a plurality of organic EL elements 13 are arranged along a predetermined straight line, but they may be arranged along a predetermined curve. When a plurality of organic crucibles 13 are arranged along a predetermined curve, the arrangement direction is equivalent to the tangential direction of the predetermined curve. The number of the organic EL elements 13 provided on the first support substrate 丨2 can be appropriately set in accordance with the design. Hereinafter, in the third embodiment, a light-emitting device 11 in which three organic EL elements 13 are provided will be described. Each of the organic EL elements 13 is provided with a pair of electrodes 14, 15, and a light-emitting layer 16 which is further disposed between the electrodes 14 and 15. One of the pair of electrodes 14, 15 has a function as an anode of the organic EL element 13, and the other electrode has a function as a cathode of the organic EL element 13. In the following, the electrode disposed adjacent to the second support substrate 12 among the pair of electrodes 14 and 15 is recorded as the first electrode 14, and the electrode disposed adjacent to the second support substrate 35 is referred to as the second electrode 15. One or more predetermined layers are provided between the first and second electrodes 14, 15 and 15'. Between the first and second electrodes 14 and 15, at least a light-emitting layer 16 11 323693 201230431 is provided as the predetermined layer of the one or more layers. The light-emitting layer 16 extends across a plurality of organic EL elements 13 and extends in the arrangement direction X. The plurality of organic EL elements 13 share one light-emitting layer 16. In the present embodiment, in the plurality of organic EL elements 13 connected in series, the light-emitting layer 16 of the organic EL element 13 provided at one end (the left end in the first drawing) in the arrangement direction X is arranged to the arrangement direction. The light-emitting layer extending along the arrangement direction X of the organic EL element 13 provided at the other end of the X (the right end in FIG. 1) is continuously and integrally formed. A predetermined layer different from the light-emitting layer may be provided between the first and second electrodes 14, 15. The predetermined layer may extend across the plurality of organic EL elements 13 and extend in the arrangement direction X. Further, the above predetermined layers may be formed at intervals in response to each of the organic EL elements 13. Further, when a predetermined layer different from the light-emitting layer is formed by a coating method, the predetermined layer is the same as the light-emitting layer, preferably spanning the plurality of organic EL elements 13 and extending along the arrangement direction X. . This is because the step of removing the layer formed at an unnecessary portion can be omitted as will be described later. The first and second electrodes 14, 15 (the counter electrode) have extension portions 17, 18, respectively. When the extending portions 17 and 18 are viewed from one of the thickness directions Z of the support substrate 12 (hereinafter referred to as "viewing in a plan view"), the extending portions 17 and 18 extend from the light-emitting layer 16 in the width direction Y. The width direction Y is a direction perpendicular to the thickness direction Z of the support substrate and perpendicular to the arrangement direction X. The extended portion 17 of the first electrode 14 is integrally formed on the first electrode 14. Further, the extended portion 18 of the second electrode 15 is integrally formed on the second electrode 15. The first electrode 14 12 323693 201230431 and the second electrode 15 (a pair of electrodes) constituting each of the organic EL elements 13 are not in contact with each other in each of the organic germanium elements i3. In the organic EL element 13, the extending portion 17 of the first electrode 14 and the extending portion 18 of the second electrode 15 are arranged so as not to overlap each other when viewed in a plan view. In the present embodiment, the extension of the first electrode 14 is #17, and the width of the left side of the P-blade (hereinafter referred to as the left end portion) facing the second electrode 15 in the first electrode 14 is wide. The direction y I stretches out. The extending portion 18 of the second electrode 15 extends in the width direction Y from the right end portion (hereinafter referred to as the right end portion) of the portion facing the first electrode 丨4 in the second electrode. Therefore, the extending portion 17 of the first electrode 14 and the extending portion 18 of the second electrode 15 are electrically insulated without overlapping when viewed from the top. The electrodes of one of the first electrode and the second electrode 14, 15 (a pair of electrodes) have a connection °. The connecting portion extends from the extending portion toward the array arrangement direction 至 to the other of the organic germanium elements adjacent to each other in the array arrangement direction, and is connected to the other electrode. The electrode is not limited to one of the first and second electrodes 14 and 15 , and the other electrode may have an electrode connected to the other of the λ5 and I7 counter electrodes, or may have an σ 卩 alignment from the k extension. The arrangement direction χ extends to the electrode of one of the organic EL elements adjacent to each other in the arrangement direction X, and is connected to the connection portion of the one electrode. In the present embodiment, the first electrode 14 corresponding to one of the first and second electrodes 14 and 15 (a pair of electrodes) has a connection portion 19. In other words, the first electrode 14 is provided from the extending portion 17 of the first electrode 14 to the extending portion 18 of the second electrode 15 (other electrode) 323693 13 201230431 of the left organic EL element. In the connection portion 19 that extends to the left, the connection portion 19 of the first electrode 14 overlaps with the extended portion 18 of the second electrode 15 (the other electrode) of the organic EL element disposed on the left side in plan view. And, the overlapping portion is directly connected to the second electrode 15 (the other electrode). The extending portion 18 extending from the light-emitting layer 16 in the width direction γ in plan view is provided in one or the other of the width direction Y, but is preferably provided in both of the width directions Y. In other words, the extending portion I? preferably includes a second extending portion 17a, i8a and a widthwise direction Y extending in a direction from the light emitting layer when viewed in a plan view. The other extending the second extending portion 17b, 18b from the light emitting layer 16 is formed. The extended portion 17 and 18' which are extended from the light-emitting layer 16 in the width direction γ when viewed in a plan view are connected to the first electrode 14 and the adjacent 13 which are adjacent to each other in the width direction γ. 2 electrode 15. Further, among the plurality of organic EL elements 13 which are connected in series, the second electrode 15 disposed on the leftmost organic EL element 13 and the second electrode 15 disposed on the rightmost organic EL element 13 are connected to the electric power Supply,,, °.卩 (not shown) is electrically connected wiring. Thereby, electric power can be supplied from the power supply unit to the plurality of financial EL elements 13 constituting the series connection, and the respective organic EL elements can be made to emit light. + Each of the organic EL elements 13 is supplied with power from the connection portion. In the present embodiment, by providing the extending portions 17 and 18 extending from the light-emitting layer 16 in the width direction in the plan view, the end portions of the width direction γ can be 323693 14 201230431 each organic EL 70 Piece 13 is powered. The farther the organic EL element 13 is from the portion to be powered, the lower the brightness due to the voltage drop. In the present embodiment, the distance from the extending portion 17 and 18 in the width direction γ, that is, the more the center portion in the width direction Y, the lower the brightness due to the voltage drop, but the two (four) ends from the width direction γ Since the power is supplied to each of the organic EL elements 13, the phase of the power supply from the one end of the width direction γ can be reduced by a voltage drop (four) ', and brightness unevenness (streak) can be suppressed. 2) Method of manufacturing a light-emitting device The method for manufacturing a light-emitting device according to the present embodiment includes a second and second support substrate that are disposed to face each other, and are provided on the first and second cuts a plurality of organic electroluminescent elements connected in series (4) and connected in series, and the plurality of organic ELS elements are arranged along the arrangement direction of (5) ,, and each of the (four) elements is provided with a pair to be placed in the aforementioned-to-electricity (four) The light-emitting layer spans a plurality of organic EL elements along the predetermined arrangement direction (6) 2 'the aforementioned-counter electrode' is perpendicular to the support substrate when viewed from a thickness direction of the support substrate The thickness direction and the width direction 'in any direction of the miscellaneous direction 2' respectively have one of the above-mentioned "electrode" extending from the light-emitting layer, and the extension is present in the aforementioned _disposition direction. The other portion of the organic EL element adjacent to the arrangement direction is extended to be connected to the connection portion of the other (four) electrode, and the light-emitting device (4) is included in the method. The ink of the material of the light-emitting layer is continuously coated along the plurality of electrodes on the support substrate of the ith 323693 15 201230431 2 along the aforementioned silent direction, and is coated by the plurality of electrodes. The subsequent coating film is cured to form a light-emitting layer. Hereinafter, a method for manufacturing a light-emitting device will be described with reference to Figs. 2 to 4 to first prepare a first support substrate 12. In this step, the i-th support substrate 12 on which the drive circuit (not shown) for driving the organic EL element 13 is formed in advance can be prepared. Next, a pattern of the second electrode 14 is formed on the first support substrate 12 (refer to Fig. 2). For example, a conductor film made of a material which is an anode or a cathode which will be described later can be formed on the second support substrate 12 by a sputtering method or a vapor deposition method, and then the conductor film can be formed into a predetermined shape by lithography. The pattern 'by this forms the map t of the first electrode 14. Alternatively, the pattern of the second electrode 14 may be formed only at a predetermined portion by the vapor deposition material without performing the photolithography step. Further, the i-th support substrate 12 on which the i-th electrode 14 is formed in advance may be prepared. Next, the light-emitting layer 16 is formed on the first support substrate 12. For example, the ink containing the material to be the light-emitting layer 16 can be continuously applied across the plurality of second electrodes 14 disposed on the first support substrate 12 in a predetermined arrangement direction and coated. The film is cured. In other words, the ink containing the material to be the light-emitting layer 16 is applied to the region in which a plurality of organic EL elements 13 are disposed, and is continuously applied in the arrangement direction, and is coated by coating. The film is cured to form the light-emitting layer 16. As described above, the first electrode 14 is provided with a predetermined layer different from the light-emitting layer 16. When a predetermined layer different from the light-emitting layer is formed by a coating method, it is preferable to form a predetermined layer different from the light-emitting layer by the same method as the method of forming the light-emitting layer 323693 16 201230431. In other words, it is preferable that the ink containing the material which is a predetermined layer different from the light-emitting layer is continuously applied over the area in which the plurality of organic EL elements 13 are disposed and arranged along the arrangement direction X, and A predetermined layer different from the light-emitting layer is formed by curing the applied coating film. When a predetermined layer different from the light-emitting layer is formed by a dry method such as a vapor deposition method, a predetermined layer different from the light-emitting layer 16 can be selectively formed only on the first electrode 14. Examples of the method of applying the ink include a capillary coating method, a slit coating method, a spray coating method, a printing method, an inkjet method, a nozzle printing method, etc., among which, it is preferable to be effective. A large-area capillary coating method, a slit coating method, a spray coating method, and a printing method are applied. Then, the second support substrate 35 is prepared. In this step, a second ^ substrate 35 in which a driving circuit (not shown) for driving the organic EL element 13 is formed in advance can be prepared. Next, a pattern of the second electrode κ & 15 is formed on the second support substrate 35 (refer to Fig. 4). For example, a film formed by a material which is an anode or a cathode which will be described later may be formed on a certain plate 35 by a sputtering method or a vapor deposition method, and then the conductive film is formed into a predetermined shape by photolithography etching. The shape and the conductor form a pattern of the second electrode 15 thereby. It is also possible to form a second person only by a mask deposition method, such as a mask deposition method, etc. Further, a pattern 35 in which the second electrode 15 is formed in advance may be prepared. The second support base of D may be prepared. As described above, in the present embodiment, the portion of the organic electrode other than the second electrode is formed on the first supporting substrate, and the fishing rod is fastened by the buckle I for making 323693. a step of supporting the first support substrate. Further, by forming the second electrode on the second support substrate, the remaining portion of the organic EL element formed on the first support substrate is removed. Step of supporting the second support substrate. (Coating step) Next, the first support substrate 12 and the second support substrate 35 are bonded together. When bonding, the alignment is performed so that the first and second electrodes 14 and 15 are One of the connection portions overlaps with the other connection portion, and then the first support substrate 12 and the second support substrate 35 are bonded together. The first support substrate 12 or the second support can be heated in order to make the contact portions at the time of bonding close. a substrate 35. Further, in order to press the first support substrate 12 and the second support substrate 35 can be bonded to each other by using a roller or a pressure plate, etc. Further, in order to discharge the gas between the first support substrate 12 and the second support substrate 35, the first one can be bonded in a vacuum environment. The support substrate 12 and the second support substrate 35 are sealed while being kept in a vacuum state, and the plurality of organic ELs are connected in series in a plan view before the first support substrate 12 and the second support substrate 35 are bonded together. The sealing agent is disposed on the first support substrate 12 or the second support substrate 35, and the sealant is cured after bonding the two substrates. The first support substrate 12 and the second support substrate are bonded together. The step of 35 is not particularly limited, but from the viewpoint of productivity, it is preferably carried out by a continuous rolling method. At this time, since the light-emitting device needs to be wound around the roller, the first supporting substrate 12 and the first (2) The support substrate 35 must be a flexible display substrate. (Configuration example of bonding device) Next, a device (bonding device) for performing a continuous rolling method will be described. Fig. 5 Fig. 18 323693 201230431 is a description of the bonding device 71. Schematic diagram of the configuration example In the figure, the arrow indicates the conveyance direction of the substrate. The bonding apparatus includes a first application roller 73, a second delivery roller 134, a first bonded grain 76, a second bonding view 77, and a roll. The first transfer roller 73 and the second delivery roller 74 are disposed to be spaced apart from each other. In the present embodiment, the first delivery roller 73 is wound with an organic EL. In the present embodiment, a part of the organic EL element refers to the remaining portion of the organic EL element after subtracting the second electrode 15. Further, the second delivery parent 74 is wound with an organic el A second support substrate on which a remaining portion of the portion formed on the first branch substrate is removed is formed in the element. In the present embodiment, the remaining portion after the portion formed on the first support substrate is subtracted is the second electrode. The first bonding roller 76 and the second bonding roller 77 are disposed with a predetermined gap therebetween. Further, in the bonding apparatus 71, it is possible to provide transportation for assisting the first and second support substrates 12, 35, or changing one or more auxiliary rollers 79 in the conveyance direction, as necessary. The first support substrate 12 is sent out from the first delivery roller 73. The second floor substrate 35 is sent out from the second delivery roller 74. The first substrate 12 to be fed and the second support substrate 35 are bonded together by a gap between the first roller 76 and the second bonding roller 77 in a state of being bonded, and by a take-up roller 78 to take. Thereby, a display device is produced. In addition, after the first and second support substrates 12 and the second support substrate 35 are attached, the first support substrate 12 and the second support substrate 35 may be attached without being wound by the winding member. The illuminating device is cut and recovered in a blade state. 323693 19 201230431 The configuration of the first support substrate 12, the second support substrate 35, and the organic EL element 13 will be described in more detail below. As described above, between the first and second electrodes 14, 15 not only the light-emitting layer 16, but also a predetermined layer different from the light-emitting layer 16 is provided. The layer provided between the cathode and the light-emitting layer may, for example, be an electron injection layer, an electron transport layer, a hole barrier layer or the like. When both the electron injecting layer and the electron transporting layer are provided between the cathode and the light emitting layer, the layer contacting the cathode is referred to as an electron injecting layer, and the layer deducting the electron injecting layer is referred to as an electron transporting layer. The electron injection layer has a function of improving the injection efficiency of electrons from the cathode. The electron transport layer has a function of improving the injection of electrons from the layer contacting the surface on the cathode side. The hole barrier layer has a function of preventing the transport of the holes. When the electron injecting layer and/or the electron transporting layer have a function of preventing the transport of holes, these layers can also be used as a hole barrier layer. Examples of the layer provided between the anode and the light-emitting layer include a hole injection layer, a hole transport layer, and an electron barrier layer. When a layer of both the hole injection layer and the hole transport layer is disposed between the anode and the light-emitting layer, the layer contacting the anode is referred to as a hole injection layer, and the layer deducting the hole injection layer is referred to as electricity. Hole transport layer. The hole injection layer has a function of improving the injection efficiency of the hole from the anode. The hole transport layer has a function of improving the injection of the hole from the layer contacting the surface on the anode side. The electron barrier layer has a function of preventing the transport of electrons. When the hole injection layer and/or the hole transport layer have a function of preventing electron transport, these layers can also be used as an electron barrier layer. The electron injection layer and the hole injection layer are collectively referred to as a charge injection layer. 20 323693 201230431 Case 'When the electron transport layer and the hole transport layer are collectively referred to as a charge transport layer, the organic EL element of the present embodiment can be layered. An example of the configuration is as follows. a) anode/light-emitting layer/cathode b) anode/hole injection layer/light-emitting layer/cathode c) anode/hole injection layer/light-emitting layer/electron injection layer/cathode d) anode/hole injection layer/light-emitting layer/ Electron transport layer / electron injection layer / cathode e) Anode / hole injection layer / hole transport layer / light-emitting layer / cathode f) Anode / hole injection layer / hole transport layer / light-emitting layer / electron injection layer / cathode g Anode/hole injection layer/hole transport layer/light-emitting layer/electron transport layer/electron injection layer/cathode h) anode/light-emitting layer/electron injection layer/cathode i) anode/light-emitting layer/electron transport layer/electron injection The layer/cathode (herein, the symbol "/" indicates that the layers of the holding mark "/" are adjacent to each other and laminated. The same applies to the above) The organic EL device of the present embodiment may have two or more light-emitting layers. In any one of the layer configurations of the above-mentioned a) to i), when the layered body held by the anode and the cathode is referred to as "structural unit A", the layer structure shown in the following j) is exemplified as having two layers. The structure of the organic EL element of the light-emitting layer. The layer composition of two (structural unit A) may be the same or different from each other. j) Anode / (structural unit A) / charge generating layer Z / (structural unit a) / 323693 21 201230431 Cathode Here, the charge generating layer is a layer which generates a hole and an electron by applying an electric field. The electric chair generating layer ′ is, for example, a film composed of yttrium oxide, indium tin oxide (Indium Tin Oxide: ΙΤ0), oxidized tumbling or the like. In addition, when the "(structural unit A) / charge generating layer" is referred to as "structural unit B", the layer structure shown in the following k) is exemplified as an organic EL element having three or more light-emitting layers. k) Anode / (structural unit B) x / (structural unit A) / cathode The symbol "X" represents an integer of 2 or more, and (structural unit β) χ represents a laminated body of the structural unit Β of the laminated X segment. Further, the plurality of layers (structural unit Β) may be identical or different from each other. Further, it is also possible to constitute a configuration in which an organic EL element in which a plurality of wide light-emitting layers are laminated without providing a charge generating layer. The light emitted from the organic EL element is emitted to the outside through at least one of the first and second branch substrates 12 and 35. Therefore, at least one of the first supporting substrate 12 and the first electrode 14, and the second supporting substrate 35 and the second electrode 15 is constituted by a member that exhibits light transmittance. &lt;Supporting substrate&gt; The first supporting substrate and the second supporting substrate 'are preferably used in the step of manufacturing the organic EL element, and for example, glass, plastic, positive molecular film, and germanium can be used. Board, and the accumulation of such a winner. As the support substrate, a phosphine substrate on which a driving circuit for driving the organic EL element is formed in advance can be used. 323693 22 201230431 In addition, when the organic EL element is not formed on one of the first slab substrate and the second slab substrate, the first and second support substrates are bonded together, and a part of the organic EL element is used. When the first support substrate and the second support substrate are respectively bonded to each other and then the first support substrate and the second support substrate are bonded to each other to form an organic EL element (in the case of a lamination method), the first one is adhered to. At least one of the support substrate 12 and the second support substrate 35 is preferably a flexible substrate. In the case where the first support substrate and the second support substrate are bonded together by the continuous roll pressing method, it is preferable that one of the first support substrate 12 and the second support substrate 35 is a flexible substrate. . In the present specification, the term "flexible substrate" means a substrate having a radius of curvature of 5 mm or less. The flexible substrate is preferably a substrate having a crack radius of curvature of 10 mm or less. The substrate </ RTI> showing flexibility is preferably a substrate composed of a metal film or a resin material. The metal film may be a film composed of copper, aluminum, iron or an alloy containing the metals. Since the metal film is generally opaque, when the metal film is applied to one of the first support substrate and the second support substrate, the other substrate is a substrate that exhibits light transmittance. The resin of the substrate composed of the resin material, for example, polyethersulfone (PES); polyester resin such as polyethylene terephthalate (pET) or polyethylene naphthalate (PEN); Polyolefin (PE), polypropylene (PP), polyalkylene resin such as cyclic polyene; polyamido resin; polycarbonate resin; polystyrene resin; polyvinyl alcohol resin; ethylene-acetic acid Vinyl ester copolymer 23 323693 201230431 alkali compound; polyacrylonitrile resin; acetal resin; polyimine resin; epoxy resin. In addition, these resins may be used alone or in combination of two or more. Since at least one of the first support substrate and the second support substrate must use a substrate that exhibits light transmittance, the substrate constituting the resin material is preferably a substrate that exhibits light transmittance. The thickness of the first support substrate and the second support substrate can be appropriately set in consideration of the stability in manufacturing the illumination device of the present invention. The thickness of the first support substrate and the second support substrate is preferably in the range of 5 to 500 v m from the viewpoint of being able to be wound into a pure shape. When the first base substrate or the second branch plate is made of a colorless and transparent resin material, the gas is transferred to the first substrate or the second support substrate. The gas barrier layer may contain a method of forming an m-body barrier layer, and for example, a plasma CVD method may be used. <Anode> When the light emitted from the light-emitting layer is emitted through the anode, the anode is used as an electrode for exhibiting light transmittance. Display the film of the electrode, can be oxides, metal sulfides and metals! 2 good! A material with high electrical conductivity and high light transmittance. Specifically, Γτ Η M 7 is composed of emulsified indium, zinc oxide, tin oxide, 1 Τ〇, and indium oxide (Induim Zinc 0xide: thin film. Among them: Z〇), gold, Ming, silver, and 峨The composition of tin. Yang 2 t is a vacuum evaporation method, a forging method, or the like, for example, a TM, or an oxygen splatter, an ion-steaming method, or a method. Further, as the anode, an organic transparent conductive resin such as 323693 24 201230431 polyaniline or a derivative thereof, or polythiophene or a derivative thereof can be used. The film thickness of the anode can be appropriately set in consideration of desired characteristics, ease of steps, and the like, and is, for example, 1 Onm to 10 g m, preferably 20 nm to 1 # m, more preferably 50 nm to 500 nm. <The hole injection layer> The hole injection material constituting the hole injection layer may, for example, be a metal oxide such as vanadium oxide, molybdenum oxide, ruthenium oxide or aluminum oxide, or an aniline compound or a starburst amine compound. Phthalocyanine, amorphous carbon, polyaniline and polythiophene derivatives. The film formation method of the hole injection layer may, for example, be a film formation from a solution containing a hole injection material. For example, a film containing a hole injecting material can be formed by a predetermined coating method, and then a hole injection layer can be formed by curing it. Examples of the solvent to be used for the film formation in the solution include a chlorine solvent such as trichlorosilane, vaporized decane or dichloroethane, an ether solvent such as tetrahydrofuran, or an aromatic such as toluene or diphenylbenzene. A hydrocarbon solvent, a ketone solvent such as acetone or methyl ketone, an ester solvent such as ethyl acetate, butyl acetate or ethyl cellosolve acetate, or water. The film thickness of the hole injection layer can be appropriately set in consideration of desired characteristics, ease of steps, and the like, and is, for example, 1 nm to 1 #m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. &lt;Cell transport layer&gt; The hole transport material constituting the hole transport layer may be exemplified by polyethylene hydrazine 25 323693 201230431 azole or a derivative thereof, polydecane or a derivative thereof, and an aromatic amine having a side chain or a main chain. a polyoxyalkylene derivative, a pyrazoline derivative, an arylamine derivative, an anthracene derivative, a triphenyldiamine derivative, a polyaniline or a derivative thereof, a polythiophene or a derivative thereof, a polyarylamine or a derivative, polypyrrole or a derivative thereof, polyparaphenylene or a derivative thereof, or poly(2,5-thiopheneethylene) or a derivative thereof. Among these, the hole transporting material is preferably polyvinyl carbazole or a derivative thereof, polypot or a derivative thereof, a polyoxane derivative having a side chain or a main chain having an aromatic amine, polyaniline or a polymer hole such as a derivative, poly 11-cephene or a derivative thereof, a polyarylamine or a derivative thereof, a poly-p-styrene or a derivative thereof, or a poly(2, 5-thiopheneethylene) or a derivative thereof The transport material is more preferably polyvinyl carbazole or a derivative thereof, polydecane or a derivative thereof, a polyoxyalkylene derivative having an aromatic amine in a side chain or a main chain. When transporting a material for a low molecular hole, it is preferably dispersed in a polymer binder for use. The film formation method of the hole transport layer is, for example, a film formation from a solution containing a hole transport material. For example, a solution containing a hole transporting material can be applied by a predetermined coating method and formed into a film, and then cured to form a hole transporting layer. When a low molecular hole transport material is used, a solution in which a hole transport material is further mixed with a polymer binder can be used for film formation. Examples of the solvent to be used for the film formation in the solution include a gas solvent such as chloroform, decane or dihaloethane, an ether solvent such as tetrahydrofuran, or an aromatic such as toluene or xylene. A hydrocarbon solvent, a ketone solvent such as acetone or methyl ethyl ketone, or a vinegar solvent such as ethyl acetate, butyl acetate or ethyl cellosolve acetate 26 323693 201230431. The mixed polymer binder is preferably a carrier. In addition, it is preferred to use a two-second barrier charge for visible light to extract polycarbonate, polyacrylic acid vinegar, polypropylene brewing, diacid methyl vinegar, and polystyrene. Ethylene, polyvinyl chloride, and polythene. The film thickness of the polymethacrylic hole transport layer can be appropriately set, such as 1 nm to 1 "seed 5 〇〇. Good for 5nra^2()Qnm. ‘Car father is 2mn to &lt;Light-emitting layer&gt; The light-emitting layer is usually mainly added by the emission or the organic matter and the organic matter which assists the doping and/or scale, the light efficiency or the change of the wavelength of the light. For example, in order to enhance the organic matter of the hair, it may be a low molecular compound &gt; The light-emitting layer contains a molecular compound sub-compound which is less soluble in a solvent. In general, it is more suitable for the coating method, so the polymer compound, the substance, and the polymer compound are preferably a ruthenium-containing compound, and the polymer compound has a molecular weight of from 1 to 3 to 1 〇8. The average number of conversions of styrene-polyphenylene can be as follows. The light-emitting material constituting the light-emitting layer, the example material, and the dopant material: a metal complex material, a polymer (a pigment-based material), a pigment-based material, and, for example, a butyl-based bio-compound, &amp;; penta-propylamine derivatives, tetraphenylpyrazole quinoline derivatives, diphenesis: diamine derivatives, oxadiazole derivatives, organisms, ^ various street organisms &quot; 塞 环环街2, stilbene Aromatic Derivatives, &quot;Bipyridyl Derivatives, Anthrone 323693 27 201230431 Derivatives, Anthracene Derivatives, Oligothiophene Derivatives, Oxadiazole Dimers, Azaleas, Polymers Derivatives, coumarin derivatives, etc. (Metal complex material) The metal complex material may, for example, be a rare earth metal such as Tb, EU or Dy or A1, Zn, Be, Ir, Pt, or the like. As the central metal, the ligand has a metal complex such as an oxadiazole, a thiadiazole, a phenylpyridine, a phenyl benzoxazole, or a porphyrin structure, and examples thereof include a ruthenium complex and a fault. a compound or the like having a luminescent metal complex derived from a triplet excited state, and a trans-quinoline complex of aluminum , 铍 并 并 hydroxyquinoline complex, zinc benzoxazole complex, zinc benzothiazole complex, azomethyl complex, zinc σ 琳 错 铕, 铕 罗 罗Lin complex, etc. (local molecular material) The polymer material may, for example, be a polyparaphenylene derivative, a polythiophene street organism, a polyparaphenylene derivative, a material-conducting organism, a poly-bend derivative, A poly-f-derivative, a poly-aluminum-spinning organism, and a polymer material such as the above-described dye-based material or metal-compound-based luminescent material. - Among the above-mentioned luminescent materials, blue light is emitted (four), and The present ethylene arylene derivative, oxadiazole-derived polyethylene is sold to the organism, and the poly-p-extension U 丨 (tetra) compound: :=r~ biological, poly-stretching: derivative: In addition, a material that emits green light, Coumarin derivatives, and the like: exemplified by quinacridone-derived organisms, poly(tetra) organisms, etc. Among them, it is preferred that the ancient &amp; Qian Shen Biaoyi Guiyan', 'a molecular material of the pair of stupid 201230431 An ethylene derivative, a polyfluorene derivative, etc. Further, examples of the material emitting red light include cocoa beans a derivative, a thiophene ring derivative, and the like, a polyparaxyl styrene derivative, a polyπ-phene derivative, a polyfluorene derivative, etc. Among them, a poly(p-styrene) derivative of a polymer material is preferred. Examples, polybenzazole derivatives, polyfluorene derivatives, etc. (dugmenting agent material) Examples of the dopant material include an anthracene derivative, a coumarin derivative, a red propylene derivative, and an anthracene. a derivative, a squarylium derivative, a sigmaline derivative, a pheneltidine dye, a tetraacene derivative, a sigbezepine derivative, a decene ring, a phenanthrene D-homoketone, etc. The thickness of the luminescent layer is usually about 2 nm to 200 nm. The luminescent layer can be formed, for example, by film formation from a solution. For example, a solution containing a luminescent material can be applied by a predetermined coating method, and then borrowed. A light-emitting layer is formed by curing it. The solvent used for film formation from the solution may be the same solvent as that used when forming the hole injection layer from the solution. &lt;Electron transport layer&gt; Examples of the electron transport material constituting the electron transport layer include an oxadiazole derivative, decane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, and hydrazine. Anthracene or a derivative thereof, tetracyanoquinone dioxane or a derivative thereof, an anthrone derivative, diphenyldicyanoethylene or a derivative thereof, a biphenyl hydrazine derivative, or an 8-aminopyrene Or a metal complex of a derivative thereof, a polyporphyrin or a derivative thereof, a polyquinoxaline or a derivative thereof, a polydipeptide or a derivative thereof, or the like. 29 323693 201230431 The film formation method of the electron transfer layer may, for example, be a vapor deposition method or a film formation from a solution. When the film is formed from a solution, a high molecular binder can be used in combination. The electron transport layer (4) thickness can be appropriately set in consideration of characteristics required for the steps and the ease of steps, etc., and is, for example, 1 coffee to 1//m, preferably - to 500 nm, more preferably 5 nm to 200 nm. &lt;Electron injection layer&gt; The material of the nose into the electron injection layer...", the metal, the metal, the metal, the metal, the metal, and the metal Oxides, _ compounds, carbonates, mixtures of such metals, etc. Examples of metals, metal oxides, auto-forms, and carbonates, _, sodium, potassium m brain, gasified lithium , sodium oxide, sodium fluoride, potassium oxide, potassium fluoride, oxides, gasification rice, planing, fluoride recording, carbonic acid clock, etc. In addition, alkaline earth metals, soil testing:: oxygen, substances: Examples of carbonates include magnesium, calcium, ', magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, barium fluoride, oxidized pin, fluorinated rice, stone mountain • emulsified collar gas# 2 Lu Yi Bu Xi alone _. The electron injecting layer may be composed of a 1_ layer body, and examples thereof include LiF/Ca and the like. The electrons can be formed by a vapor deposition method, a sputtering method, a printing method, or the like. The film thickness of the electron/input layer is preferably from 1 nm to Å. &lt;Cathode&gt; The layer preferably has a small work function, and electrons are easily injected into the light-emitting element. 'The light is taken from the anode side. Since the light from the light-emitting layer is reflected at the cathode to the anode side of the positive 323693 30 201230431, Therefore, the material of the cathode is preferably a material having a high visible light reflectance. As the cathode, for example, an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used. Examples of the material of the cathode include Li, Na, K, G, 铯, 破, 镇, 一弓, 认, 钡, Ming, 铳, Kay, Zinc, 纪, 铟, 钸, 钐, 铕, 铽, 镜The metal, the alloy of two or more of the above metals, one or more of the above metals, and one or more alloys of gold, silver, indium, copper, fierce, chin, ash, nickel, crane, and tin, or Graphite or graphite intercalation compounds, and the like. Examples of the alloy include a town-silver alloy, a town-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a clock-indium alloy, and a mother. - Ming alloy, etc. Further, as the cathode, a transparent conductive electrode composed of a conductive metal oxide, a conductive organic substance or the like can be used. Specific examples of the conductive metal oxide include indium oxide, zinc oxide, tin oxide, antimony 0, and antimony. The conductive organic substance may, for example, be polyaniline or a derivative thereof, or polythiophene or a derivative thereof. The cathode may be composed of a laminate having two or more layers. There are also cases where an electron injecting layer is used as a cathode. The film thickness of the cathode can be appropriately designed in consideration of desired characteristics, ease of steps, and the like, and is, for example, 1 Onm to 10 // m, preferably 20 nm to 1 # m, more preferably 50 nm to 500 nm. Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a lamination method in which a metal thin film is heat-pressed. In the light-emitting device 11 described above, the region in which the region in which the light-emitting layer 16 is formed in the plan view is protruded in the width direction Y, and the first electrode 14 of the adjacent organic EL element 13 is connected to the second electrode 15 Since the organic EL elements 13 adjacent to 31 323693 201230431 are connected in series, it is not necessary to connect the first electrode 14 of the adjacent organic EL element 13 to the second electrode 15 in the region between the organic EL elements 13. Therefore, a light-emitting layer or the like can be formed in a region between the adjacent organic EL elements 13, whereby when the light-emitting layer is formed by a coating method, the region to be formed between the adjacent organic EL elements 13 is omitted. The step of removing the luminescent layer. Therefore, even in a coating method such as a capillary coating method which is disadvantageous to a fine pattern coating, a plurality of organic EL elements 13 connected in series can be easily produced. Thus, when the light-emitting layer is formed by the coating method, the step of removing the light-emitting layer in the region between the adjacent organic EL elements 13 can be omitted, so that the coating method or the lamination can be used. The continuous rolling method of the method is continuously produced to form a light-emitting device, and the cost of the light-emitting device using a plurality of organic EL elements 13 can be reduced. In the above description, the first support substrate on which a part of the organic EL element is formed is prepared, and the second support substrate on which the portion formed on the first support substrate is removed is prepared, and then the first support base is bonded. The shape of the support substrate is not limited to this embodiment. For example, all of the mEL elements may be formed on any of the first support substrate and the second support substrate, and then the first support substrate and the first support substrate may be bonded. 2 support the substrate. Further, the above-mentioned δ 儿 明 is only subjected to the bonding step by the continuous pressure method, but the step of forming the luminescent layer or the like can be applied, and the continuous rolling method can also be applied. For example, after the light-emitting layer or the like is formed by the continuous rolling method, the i-th support substrate and the second support substrate are respectively wound up on a roll, and then the bonding device shown in FIG. 5 is used for bonding. step. Further, after forming the light-emitting layer or the like 323693 32 201230431, the first support substrate and the second support substrate may be directly bonded to the first support substrate and the second support substrate without being wound up on the roller. Fig. 6 is a view schematically showing a light-emitting device 31 according to a second embodiment of the present invention. In the light-emitting device 31 of the present embodiment, only the shapes of the first electrode 14 and the second electrode 15 are different from those of the light-emitting device n of the first embodiment. In the following, the first embodiment of the second embodiment and the second electrode of the second embodiment will be described with reference to the same reference numerals in the second embodiment, and the description thereof will not be repeated. In the present embodiment, in addition to the first electrode 14, the second electrode 15 also has a connection portion 32. In other words, the second electrode 15 has a connection portion extending from the extending portion in the arrangement direction X to the first electrode 14 of the organic EL element adjacent to each other in the arrangement direction X, and is connected to the connection portion of the first electrode 14. 32. Therefore, in the organic EL element 13 adjacent to the array arrangement direction X, the connection portion 19 of the first electrode 14 of the right organic EL element 13 is disposed from the extending portion 17 of the first electrode 14 to the left. The connection portion 32 of the second electrode 15 of the organic EL element 13 disposed on the left side is extended, and extends from the extending portion 18 of the second electrode 15 to the right. The first electrode η of the adjacent pair of organic germanium elements 13 is connected to the second electrode 15 by the connection of the connection portion 19 of the first electrode 14 to the second electrode 15 and 32 overlap. Fig. 7 is a view schematically showing the light-emitting device 41 of the third embodiment. In the hair growth region 41 of the present embodiment, only the shapes of the first electrode 14 and the second electrode 15 are different from those of the light-emitting device 11 of the first embodiment. Hereinafter, 323693 33 201230431 Only the first electrode π and the second electrode 15 of the third embodiment will be described. In the third embodiment, the portions corresponding to those in the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated. In the present embodiment, the first electrode 14 does not have the connection portion 19, and conversely, the second electrode 15 has the connection portion 42. In other words, the second electrode 15 has a first electrode 14 extending from the extending portion to the organic EL element 13 adjacent to each other in the arrangement direction X, and extends in the arrangement direction X, and is connected to the first electrode 14 Connection portion 42. In the light-emitting device 11 of the first embodiment shown in Fig. 1, only the first electrode 14 has the connection portion 19, and conversely, in the light-emitting device 41 of the third embodiment shown in Fig. 7, only the second electrode 15 has a connecting portion 42. When only one of the first and second electrodes 14, 15 has a connection portion, it is possible to appropriately select which electrode has a connection portion depending on the design, but it is preferable that the first and second electrodes 14 and 15 (-pair) The electrode having a lower sheet resistance in the electrode has a connection portion. In other words, when the sheet resistance of the first electrode 14 is lower than the sheet resistance of the second electrode 15, it is preferable that the light-emitting device U of the first embodiment shown in Fig. 1 has only the second electrode 14 having the connection portion 19. On the other hand, when the sheet resistance of the second electrode 15 is lower than the sheet resistance of the i-th electrode 14, it is preferable that the light-emitting device 41 of the third embodiment shown in Fig. 7 has only the second electrode 15 having the connecting portion 42. In order to cause the light emitted from the light-emitting layer 16 to be emitted to the outside, one of the first and second electrodes 14 and 15 is generally configured to exhibit light penetrability by a member that exhibits light transmittance. The sheet resistance of the member is higher than that of the conductive member exhibiting non-light transmittance. Therefore, the electrodes of the first and second electrodes &quot; π 323693 34 201230431 show the light-piercing turtles. Therefore, it is generally preferred that only the display of the moonlight is higher. One of the electrodes has a connection portion. When one of the electrodes is driven by the other, the voltage is lowered by the force generated by the Wei, but the force is generated by only the two parts having a low sheet resistance. FIG. 8 is a schematic view showing the fourth aspect of the present invention. Figure. In the light-emitting device 51 of the present embodiment, the auxiliary electrode is provided. In the present embodiment, the helmet pin, the +, and the 々 霄 霄 褒 51 are only different in the illuminating device in which the auxiliary electrode 4 is opened (4). In the following, only the parts of the first embodiment and the above-mentioned respective parts are denoted by the same reference numerals, and the overlapping is omitted. In Fig. 8, the area where the auxiliary electrodes are displayed is subjected to hatching. The auxiliary electrode is provided in contact with one of the first electrode 14 and the second electrode 15 (-to-electrode) with /K_j. For example, when the auxiliary electrode is placed in contact with the first electrode 14 and the second electrode 15, n is provided with two auxiliary electrodes which are in contact with the auxiliary electrode provided in the first electrode 14 and the auxiliary electrode provided in contact with the second electrode. The auxiliary electrode ' is preferably composed of a member having a sheet resistance which is extremely lower than that of the auxiliary electrode. The auxiliary electrode 52 is preferably provided in contact with an electrode having a high sheet resistance among the first electrode 14 and the second electrode 15 (-counter electrode). As described above, any one of the f 1 and the second electrodes 14 and 15 is made to transmit light by the display light 35 323693 201230431 in order to emit light emitted from the light-emitting layer 16 to the outside. The electrode of the light-transmitting layer has a high electrode. Therefore, it is preferable to make the auxiliary electrode 52 contact the first! And an electrode showing light transmittance in the second electrode i4i5 is placed a. In the light-emitting device 51 of the present embodiment shown in Fig. 8, the lion electrode 52 is placed in contact with the first electrode 14 provided as an electrode for displaying light transmittance. The auxiliary electrode 52' is generally opaque because its sheet resistance is lower than the electrode to which the auxiliary electrode 52 is in contact. When the opaque auxiliary electrode 52 is placed in contact with the light penetrated by the light, the auxiliary electrode 52 shields the light m-shape. Therefore, the gamma electrode 52 is preferably disposed in a region where the luminescent layer 16 does not emit light in principle when viewed from above. The light-emitting layer 16' may be illuminating in principle in a region U where the first electrode 14 and the second electrode 15 face each other in a plan view. Therefore, the region where the light does not emit light in principle is equivalent to the region where the opposing regions of the first electrode 14 and the second electrode 15 are subtracted in plan view. Therefore, it is preferable that the auxiliary electrode 52 is provided in a region in which the opposing portion (the opposing region of the electrode 14 and the second electrode 15 is subtracted in plan view), and the auxiliary electrode may be formed in a plan view. In the opposing region between the first electrode 14 and the second electrode 15, for example, the auxiliary electrode may be formed on the periphery and the opposing region of the opposing region. The auxiliary electrode may be formed in a lattice shape or a long green money in a pure view. The auxiliary electrode formed in the opposite region and the auxiliary electrode formed on the periphery of the opposite region are connected to the region. The material of the auxiliary electrode can be suitably used as a material having a high electrical conductivity, 323693 36 201230431 A A1 Ag, In addition, an alloy such as A1 Nd Ag-Pd-Cu may be used as the auxiliary electrode. The thickness of the auxiliary electrode may be appropriately set according to the required sheet resistance or the like, for example, 50 nm to 2000 nm. Or a laminated body that accumulates a plurality of layers, for example, to improve adhesion to the first support substrate 12 (glass substrate or the like) or the first electrode 14CIT0 film, and to protect the metal surface from oxygen or For the purpose of the influence of moisture, etc., it is possible to laminate a layer which exhibits a predetermined function to a film composed of a material having electrical conductivity. For example, a laminate obtained by sandwiching a film made of a material having a high electrical conductivity by a film made of Mo-Nb or Cr or the like can be used as an auxiliary electrode. In each of the above embodiments, a plurality of organic EL elements are used to form one of the series-connected hairline devices. However, even if a plurality of organic EL elements are used to form a plurality of light-emitting devices connected in series, the light-emitting device can be suitably applied. this invention. Further, the present invention can be suitably applied even if a light-emitting device comprising a series connection and a parallel connection is used in combination. Fig. 9 is a view schematically showing a light-emitting device μ of the fifth embodiment. The light-emitting device 6 of the present embodiment is a light-emitting device in which two rows of series connections are connected in parallel. Each series connection is composed of three organic/components. The tandem connection of two columns is one in which one ends of the electrodes of the respective organic EL elements are electrically connected to each other and connected in parallel. In a light-emitting device in which a plurality of organic EL elements are connected in series, the number of organic EL elements increases, and the driving voltage of the driving elements is higher. However, by using parallel connection, the driving source can be appropriately suppressed. Supply voltage. 323693 37 201230431 (Industrial Applicability) The light-emitting device and the method of manufacturing the same according to the present invention can be applied to technical fields such as a display or a lighting device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 (1) and (2) are plan views showing a light-emitting device 11 according to a first embodiment of the present invention. Fig. 2 (1) and (2) are diagrams for explaining the manufacturing steps of the light-emitting device u. Fig. 3 (1) and (2) are diagrams for explaining the manufacturing steps of the light-emitting device n. Fig. 4 (1) and (2) are diagrams for explaining the manufacturing steps of the light-emitting device u. Fig. 5 is a view schematically showing the bonding apparatus η. Fig. 6 (1) and (2) are diagrams schematically showing the light-emitting device 31 of the second embodiment. Fig. 7 (1) and (2) are diagrams schematically showing the light-emitting device 41 of the third embodiment. Fig. 8 (1) and (2) are diagrams schematically showing the light-emitting device 51 of the fourth embodiment. Fig. 9 is a view showing a light-emitting device 61 of the fifth embodiment. Fig. 10 (1) to (5) are views for explaining the manufacturing steps of the conventional light-emitting device 2. [Description of main component symbols] 1 ' 13 Organic EL element 38 323693 201230431 2, 11, 31, 41, 51, 61 Light-emitting device 3 First support substrate 4, 14 First electrode 5 &gt; 15 Second electrode 6 ' 16 Light-emitting Layer 7 second support substrate 12 first support substrates 17 and 18 extending portions 17a and 18a first extending portions 17b and 18b &gt; second extending portions 19, 32 and 42 connecting portions 35 second supporting substrate 52 auxiliary electrodes 71 Laminating device 73 First feeding roller 74 Second feeding roller 76 First bonding pro 77 Second bonding roller 78 Winding roller 79 Assisting Yukun 39 323693

Claims (1)

201230431 七、申請專利範圍: 1· 一種發光裝置,係具備有:彼此相對向地配置之第i 及第2支撐基板、以及設置在前述第1及第2支撐基板 間並且串聯連接之複數個有機電激發光元件,該發光裝 置之特徵為: 月1J述複數個有機電激發光元件沿著預定的排列配 置方向而配置, 各有機電激發光元件具備有一對電極、以及設置在 前述一對電極間之發光層, 前述發光層跨及前述複數個有機電激發光元件,沿 著前述預定的排列配置方向延伸存在, 前述一對電極’在從前述支撐基板之厚度方向的一 方觀看時’於均垂直於前述支撐基板的厚度方向及前述 排列配置方向的任一方向之寬度方向,分別具有從發光 層突出地延伸存在之延伸存在部, 前述一對電極中之一方的電極復具有:在前述排列 配置方向從前述延伸存在部延伸存在至在前述排列配 置方向相鄰之有機電激發光元件之另一方的電極為止 並連接於該另一方的電極之連接部。 2. 如申請專利範圍第1項所述之發光裝置,其中,前述第 1及第2支撐基板中的至少任一方為顯示可撓性之基 板。 3. 如申請專利範圍第2項所述之發光裝置,其中,前述顯 示可撓性之基板為金屬薄膜。 1 323693 201230431 4·如申請專利範圍第2項所述之發光裝置, &amp; 5. 示可橈性之基板是由樹脂材料所構成之絲 Μ逃顯 專利範圍第i項所述之發光1置;具有於 刚述電極而設置之辅助電極, 觸於 該輔助電極的薄片電阻較接觸於該辅助電極 極為低。 电 6·如申請專利範圍第5項所述之發光袭置,苴中, 助電極係接觸於前述-對電極中薄片電阻較=補 而設置。 €極 7. 如申請專利範圍第丨項所述之發光裝置,其中,吁、、 對電極中僅有薄片電阻較低之電極具有前述連接 一 8. 如申請專利範圍第丨項所述之發光裝置,其中,前 伸存在部係包含:從前料度方㈣—方觀看時 述寬度方向的一方從發光層突出地延伸存在之第1 伸存在部;以及在前述寬度方向的另—方從發光層^ 地延伸存在之第2延伸存在部。 尺 9· 一種發光裝置的製造方法,其製造之發光裝置具備有: 彼此相對向地配置之第1及第2支撐基板、以及設置在 前述第1及第2支撐基板間並且串聯連接之複數個有機 電激發光元件, 則述複數個有機電激發光元件沿著預定的排列配 置方向而配置, 各有機電激發光元件具備有一對電極以及設置在 前述一對電極間之發光層, 2 323693 201230431 前述發光層跨及前述複數個有機電激發光元件,沿 著前述預定的排列配置方向延伸存在, 前述一麵·電極,在從前述支撐基板之厚度方向的— 方觀看時於均垂直於前述支撐基板的厚度方向及前述 排列配置方向的任一方向之寬度方向,分別具有從發光 層突出地延伸存在之延伸存在部, 前述一對電極中之一方的電極復具有:在前述排列 配置方向從延伸存在部延伸存在至在前述排列配置方 向相鄰之有機電激發光元件之另一方的電極為止並連 接於該另一方的電極之連接部, 該發光裝置的製造方法之特徵為包含有:將含有成 為前述發光層之材料的印墨,沿著前述預定的排列配置 方向,跨及配置在前述第丨或第2支撐基板上之複數個 前述電極而連續地塗佈,並藉由使塗佈後的塗膜固化而 形成發光層之步驟。 10. 如申請專利範圍第9項所述之發光裝置的製造方法,其 中’塗佈前述印墨之方法,為毛細管塗佈法、狹縫塗佈 法、喷霧塗佈法或印刷法。 11. 如申請專利範圍第1〇項所述之發光裝置的製造方法, 其係包含有:藉由連續輥壓法(Roll-to-R〇ll)來貼合前 述第1支樓基板與第2支撐基板之貼合步驟。 12. 如申請專利範圍第9至11項中任一項所述之發光装置 的製造方法,其係包含有:製備形成有前述有機電激發 光元件的一部分之第1支撐基板之步驟, 323693 3 201230431 製備形成有前述有機電激發光元件中扣除形成於 前述第1支撐基板上之一部分後的剩餘部分之第2支撐 基板之步驟,以及 藉由貼合前述第1支撐基板與第2支撐基板來形成 有機電激發光元件之貼合步驟。 4 323693201230431 VII. Patent application scope: 1. A light-emitting device comprising: an i-th and a second support substrate disposed to face each other; and a plurality of the first and second support substrates disposed between the first and second support substrates and connected in series An electromechanical excitation device characterized in that: a plurality of organic electroluminescence elements are arranged along a predetermined arrangement direction, and each of the organic electroluminescence elements is provided with a pair of electrodes and is disposed on the pair of electrodes In the light-emitting layer, the light-emitting layer extends across the plurality of organic electroluminescent elements along the predetermined arrangement direction, and the pair of electrodes 'when viewed from one of the thickness directions of the support substrate Each of the pair of electrodes has an extending portion extending in a direction perpendicular to the thickness direction of the support substrate and the direction of the array arrangement direction, and one of the pair of electrodes has a plurality of electrodes arranged in the arrangement The arrangement direction extends from the aforementioned extended existence portion to the adjacent arrangement direction The organic light up the other excitation electrode of the element and connected to the connecting portion of the other electrode. 2. The light-emitting device according to claim 1, wherein at least one of the first and second support substrates is a flexible substrate. 3. The light-emitting device according to claim 2, wherein the flexible display substrate is a metal thin film. 1 323693 201230431 4. The illuminating device according to item 2 of the patent application, &amp; 5. The substrate exhibiting the smear is a luminescent material composed of a resin material The auxiliary electrode provided with the electrode just described, the sheet resistance contacting the auxiliary electrode is extremely lower than the contact with the auxiliary electrode. 6. The illuminating device described in claim 5, wherein the auxiliary electrode is in contact with the sheet-resistance in the counter electrode. The illuminating device of the invention of claim 2, wherein the electrode having only a lower sheet resistance among the electrodes and the counter electrode has the aforementioned connection - 8. The illuminating as described in the scope of claim In the apparatus, the front extension portion includes: a first extension portion that protrudes from the light-emitting layer when one of the width directions is viewed from a front-of-fourth (four)-side; and another light-emitting from the width direction The second extended portion exists in which the layer extends. Rule 9: A method of manufacturing a light-emitting device, comprising: first and second support substrates disposed to face each other; and a plurality of first and second support substrates disposed between the first and second support substrates and connected in series In the organic electroluminescence device, a plurality of organic electroluminescence devices are arranged along a predetermined arrangement direction, and each of the organic electroluminescence devices includes a pair of electrodes and a light-emitting layer provided between the pair of electrodes, 2 323693 201230431 The light-emitting layer extends across the plurality of organic electroluminescent elements along the predetermined arrangement direction, and the one surface electrode is perpendicular to the support when viewed from a thickness direction of the support substrate Each of the thickness direction of the substrate and the width direction of the array arrangement direction has an extending portion extending from the light-emitting layer, and one of the pair of electrodes has an extension in the arrangement direction. The existing portion extends to the organic electric excitation adjacent to the arrangement arrangement direction The other electrode of the element is connected to the connection portion of the other electrode, and the method of manufacturing the light-emitting device includes: arranging an ink containing a material serving as the light-emitting layer along the predetermined arrangement The step of continuously coating the plurality of electrodes disposed on the second or second support substrate, and forming a light-emitting layer by curing the applied coating film. 10. The method of manufacturing a light-emitting device according to claim 9, wherein the method of applying the ink is a capillary coating method, a slit coating method, a spray coating method, or a printing method. 11. The method of manufacturing a light-emitting device according to the first aspect of the invention, comprising: rolling the first branch substrate and the first by a continuous rolling method (Roll-to-R〇ll) 2 The bonding step of the support substrate. The method of manufacturing a light-emitting device according to any one of claims 9 to 11, further comprising: a step of preparing a first support substrate on which a part of the organic electroluminescent device is formed, 323693 3 201230431 A step of forming a second support substrate on which the remaining portion of the organic electroluminescent device is removed from a portion formed on the first support substrate, and bonding the first support substrate and the second support substrate are prepared A bonding step of forming an organic electroluminescent device. 4 323693
TW100142860A 2010-11-24 2011-11-23 Light-emitting device and method for manufacturing light-emitting device TW201230431A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260922A JP2012113916A (en) 2010-11-24 2010-11-24 Light-emitting device

Publications (1)

Publication Number Publication Date
TW201230431A true TW201230431A (en) 2012-07-16

Family

ID=46145915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100142860A TW201230431A (en) 2010-11-24 2011-11-23 Light-emitting device and method for manufacturing light-emitting device

Country Status (3)

Country Link
JP (1) JP2012113916A (en)
TW (1) TW201230431A (en)
WO (1) WO2012070574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692019B2 (en) 2013-03-29 2017-06-27 Dai Nippon Printing Co., Ltd. Element manufacturing method and element manufacturing apparatus utilizing differential pressure for covering a substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113918A (en) * 2010-11-24 2012-06-14 Sumitomo Chemical Co Ltd Light-emitting device
US8552440B2 (en) * 2010-12-24 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Lighting device
JP6612406B2 (en) * 2018-09-05 2019-11-27 パイオニア株式会社 Light emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085158A (en) * 1999-09-10 2001-03-30 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2003045674A (en) * 2001-08-02 2003-02-14 Seiko Instruments Inc Organic electroluminescent element
JP2004079300A (en) * 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd Light emitting element and its manufacturing method
GB2416621A (en) * 2004-07-27 2006-02-01 Cambridge Display Tech Ltd Laminated interconnects for opto-electronic device modules
JP5076331B2 (en) * 2006-02-22 2012-11-21 パナソニック株式会社 Organic EL panel
US8053260B2 (en) * 2006-11-17 2011-11-08 General Electric Company Large-area lighting systems and methods of making the same
JP2009001784A (en) * 2007-05-18 2009-01-08 Semiconductor Energy Lab Co Ltd Material for organic device, and light-emitting element, light-emitting device, electronic device, field effect transistor and semiconductor device each using material for organic device
JP4661971B2 (en) * 2009-05-27 2011-03-30 住友化学株式会社 Light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692019B2 (en) 2013-03-29 2017-06-27 Dai Nippon Printing Co., Ltd. Element manufacturing method and element manufacturing apparatus utilizing differential pressure for covering a substrate
TWI594474B (en) * 2013-03-29 2017-08-01 Dainippon Printing Co Ltd Device manufacturing method and device manufacturing device

Also Published As

Publication number Publication date
JP2012113916A (en) 2012-06-14
WO2012070574A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
TWI523295B (en) Organic light emitting device comprising flexible substrate and method for preparing thereof
JP5157440B2 (en) Manufacturing method of organic EL element
JP6052825B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US9258866B2 (en) Light-emitting device, electronic equipment, and method for producing light-emitting device
WO2007034647A1 (en) Process for producing organic electroluminescent element and organic electroluminescent display device
TW201043079A (en) Luminescent device
JP5652405B2 (en) Manufacturing method of organic EL element
JP5575353B2 (en) Method for manufacturing organic electroluminescence device
JP5104849B2 (en) Method for manufacturing organic electroluminescent element, organic electroluminescent element
JP2007059188A (en) Manufacturing method of organic electroluminescent element, and the organic electroluminescent element
TW201230431A (en) Light-emitting device and method for manufacturing light-emitting device
JP2007207469A (en) Method of manufacturing laminate, laminate, method of manufacturing organic electroluminescent element, organic electroluminescent element, and organic electroluminescent display device
JPWO2017056684A1 (en) Organic electroluminescence panel and manufacturing method thereof
TW201214823A (en) Light-emitting device
TW201146079A (en) Method for making a light emitting device
JP5092756B2 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent lighting device, and organic electroluminescent panel manufacturing device
KR20130135186A (en) Flexible electrode and method for preparing the same
JP5862439B2 (en) Organic semiconductor device and manufacturing method thereof
JP2017130408A (en) Light-emitting device
JP2008117689A (en) Method of forming functional laminated film, laminate thin film device, and organic electroluminescent display device
TW201230432A (en) Light-emitting device and method of making same
KR101806940B1 (en) Organic light emitting device and method for preparing the same
KR101410576B1 (en) Organic light emitting device
WO2016072246A1 (en) Organic electroluminescence element
JP5170102B2 (en) Method for manufacturing organic electronics element