TW201227428A - Touch pen - Google Patents

Touch pen Download PDF

Info

Publication number
TW201227428A
TW201227428A TW99146743A TW99146743A TW201227428A TW 201227428 A TW201227428 A TW 201227428A TW 99146743 A TW99146743 A TW 99146743A TW 99146743 A TW99146743 A TW 99146743A TW 201227428 A TW201227428 A TW 201227428A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
pen
carbon
pen tip
stylus
Prior art date
Application number
TW99146743A
Other languages
Chinese (zh)
Other versions
TWI438654B (en
Inventor
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99146743A priority Critical patent/TWI438654B/en
Publication of TW201227428A publication Critical patent/TW201227428A/en
Application granted granted Critical
Publication of TWI438654B publication Critical patent/TWI438654B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a touch pen for touch panel. The touch pen for touch panel includes a holder and a contact body. The contact body is flexible and conductivity. The contact body is used to contact the touch panel and forms an electric capacity therebetween. The contact body is a bundle structure including a plurality of carbon nanotube yarns parallel to each other.

Description

201227428 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種觸控筆,尤其涉及一種應用於觸摸屏的 觸控筆。 [0002] 〇 【先前技術】 近年來,伴隨著移動電話與觸摸導航系統等各種電子設 備的高性能化和多樣化的發展,在液晶等顯示設備的前 面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電 子設備的使用者通過觸摸屏,一邊對位於觸摸屏背面的 顯示設備的顯示内容進行視覺確認,一邊利用手指或筆 等方式按壓觸摸屏來進行操作。由此,可以操作電子設 備的各種功能。 [0003] 按照觸摸屏的工作原理和傳輸介質的不同,先前的觸摸 屏分為四種類型,分別為電阻式、電容式、紅外線式以 及表面聲波式。其中電容式觸摸屏因敏感度較高、所需 觸碰力度較小而應用較為廣泛。 〇 [0004] 先前的電容式觸摸屏包括一個透明導電層,該透明導電 層連接有複數電極》使用時,通常採用手指或者一個觸 控筆觸摸電容屏的表面,觸摸物與透明導電層之間形成 一接觸電容,通過外接電路感測觸摸點與觸摸屏表面的 透明導電層的各個電極之間的電信號,從而可以判斷出 觸摸點在觸摸屏上的位置。先前觸控筆的筆尖為了獲得 良好的導電性,一般由金屬材質製成。然而,通過金屬 材質製成的觸控筆的筆頭,硬度較高,容易對觸摸屏造 成損傷,並且其與觸摸屏接觸時的接觸電容以及靈敏度 099146743 表單編號A0101 第3頁/共56頁 0992080311-0 201227428 仍有待改進。 【發明内容】 [0005] 有鑒於此,提供一種使用時與觸摸屏之間接觸電容大、 具有較高靈敏度,並且對觸摸屏傷害較小的觸控筆實為 必要。 [0006] 一種觸控筆,包括筆桿和筆頭,所述筆頭具有柔性及導 電性。所述筆頭使用時與觸摸屏之間形成接觸電容。所 述筆頭為由複數奈米碳管線平行成束組成的束狀結構。 [0007] —種觸控筆,包括筆桿和筆頭,所述筆頭具有柔性及導 電性,所述筆頭使用時與觸摸屏之間形成接觸電容。所 述筆頭為由複數奈米碳管複合線組成的束狀結構。 [0008] 與先前技術比較,由於奈米碳管具有非常好的導電性、 較大的比表面積以及較好的柔性,使得本發明觸控筆的 筆頭與電容式觸摸屏接觸時,在單位接觸面積上的接觸 電容較大,具有較高的靈敏度。另外,由於奈米碳管比 金屬的摩擦係數更小,所以該筆頭不易損傷觸摸屏。 【實施方式】 [0009] 下麵將結合附圖及具體實施例對本發明觸摸屏觸控筆作 進一步的詳細說明。 [0010] 請參閱圖1,本發明第一實施例提供一種用於觸摸屏的觸 控筆100。該觸控筆100包括筆桿110以及設置於該筆桿 110—端的筆頭120。所述筆頭120具有柔性和導電性。 [0011] 本發明觸控筆100的筆桿110的作用主要係為用戶提供操 作筆頭120時的把持部位。當所述觸控筆100為靠人體導 099146743 表單編號A0101 第4頁/共56頁 0992080311-0 201227428 電性來達成觸控操作的筆時,所述筆桿 干1 1 0需要具有將人 手上的靜電荷傳遞至筆頭12G的功能,即所述筆桿11〇* 要與筆頭12G電連接。當所述觸控並非靠人體導= 性來達成觸控操作的筆時,如在签 羋仵110内設置—與所诚 Ο [⑻ 12] ❹ [0013] 筆頭120電連接的電容性導體的電容以㈣ΠΗ)’所述 筆桿11G與筆頭12G之間不必-定要導電性連接,只 證筆頭12G與觸摸屏之間能夠形成接觸電容即可。可以理 解為’本發明觸控筆100的筆捍11〇的#料、結構、护狀 以及與筆賴0之_連接方式射⑽據實際需要去選 擇或者改變。本實施射,讀人體靜電_控筆⑽並 以筒狀金屬筆桿110為例,來重點說明本發明觸控筆⑽ 的筆頭120結構。 請參見圖2,所述筆桿11()為空心筒狀結#1具有_個固 定端114。筆桿11G的固定端114内部設置有内螺紋用於 安裝所述筆頭12〇,所述筆頭12〇擰入所述筆桿ιι〇的固 定端114。當筆頭120摔入所述筆桿11〇的固定端114時, 筆頭120與所述筆桿110電連接。可以理解,筆頭12〇與 筆桿110的連接方式不限於此’可以根據筆桿11〇和筆頭 120的形狀、結構以及材料在先前技術中的各種連接方式 中選擇適當的方式’只要能夠保證筆桿11()與筆頭12〇電 連接即可。 請參見圖3,所述筆頭120由一個支撐體κι以及一個觸碰 材料層125構成。該觸碰材料層125設置於所述支樓體 121的外表面。所述支撑體121為柔性材料構成,所述觸 碰材料層125為具有柔性的導電材料構成。筆頭12〇的形 099146743 表單編號A0101 第5頁/共56頁 0992080311-0201227428 VI. Description of the Invention: [Technical Field] The present invention relates to a stylus, and more particularly to a stylus applied to a touch screen. [0002] 先前 [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted in front of a display device such as a liquid crystal are gradually formed. increase. The user of such an electronic device visually confirms the display content of the display device located on the back surface of the touch panel by the touch panel, and presses the touch panel to operate by a finger or a pen. Thereby, various functions of the electronic device can be operated. [0003] According to the working principle of the touch screen and the transmission medium, the previous touch screens are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic waves. Among them, the capacitive touch screen is widely used due to its high sensitivity and small touch force. 0004 [0004] The previous capacitive touch screen includes a transparent conductive layer connected with a plurality of electrodes. In use, a finger or a stylus is usually used to touch the surface of the capacitive screen, and a touch object and a transparent conductive layer are formed. A contact capacitor senses an electrical signal between the touch point and each electrode of the transparent conductive layer on the surface of the touch screen through an external circuit, so that the position of the touch point on the touch screen can be determined. In order to obtain good conductivity, the tip of the previous stylus is generally made of metal. However, the tip of the stylus made of metal has a high hardness, which is liable to damage the touch screen, and the contact capacitance and sensitivity when it comes into contact with the touch screen. 099146743 Form No. A0101 Page 3 of 56 Page 9292080311-0 201227428 Still needs improvement. SUMMARY OF THE INVENTION [0005] In view of the above, it is necessary to provide a stylus having a large contact capacitance with a touch screen during use, having high sensitivity, and having less damage to the touch screen. A stylus pen includes a pen holder and a pen tip, the pen tip being flexible and electrically conductive. The tip of the pen forms a contact capacitance with the touch screen when in use. The pen tip is a bundle structure composed of a plurality of nano carbon pipes in parallel. [0007] A stylus pen includes a pen holder and a pen tip, the pen tip having flexibility and electrical conductivity, and the pen tip forming a contact capacitance with the touch screen when in use. The writing head is a bundle structure composed of a plurality of carbon nanotube composite wires. [0008] Compared with the prior art, since the carbon nanotube has very good electrical conductivity, large specific surface area, and good flexibility, the contact area of the stylus pen of the present invention is in contact with the capacitive touch screen. The contact capacitance on the upper part is large and has high sensitivity. In addition, since the carbon nanotube has a smaller coefficient of friction than metal, the tip is less likely to damage the touch screen. [Embodiment] The touch screen stylus of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1, a first embodiment of the present invention provides a touch control pen 100 for a touch screen. The stylus 100 includes a pen holder 110 and a pen tip 120 disposed at the end of the pen holder 110. The tip 120 has flexibility and electrical conductivity. [0011] The function of the pen 110 of the stylus pen 100 of the present invention is mainly to provide a user with a gripping position when the pen tip 120 is operated. When the stylus 100 is a pen that is touch-operated by the body of the human body 099146743, the form number A0101, the fourth page, or the 56 page of the 0992080311-0 201227428, the pen holder 1 1 0 needs to have a hand on the hand. The static charge is transmitted to the function of the pen tip 12G, that is, the pen holder 11〇* is to be electrically connected to the pen tip 12G. When the touch is not a pen that achieves a touch operation by the human body, as in the signature 110, a capacitive conductor electrically connected to the pen head 120 is [[8] 12] ❹ [0013] The capacitor is not necessarily-conductively connected between the pen 11G and the pen tip 12G, and only the contact capacitance can be formed between the pen tip 12G and the touch screen. It can be understood that the material, structure, and shape of the pen 11 of the stylus pen 100 of the present invention and the connection mode (10) with the pen ray 0 are selected or changed according to actual needs. In the present embodiment, the human body static electricity control pen (10) is read and the cylindrical metal pen holder 110 is taken as an example to focus on the structure of the pen head 120 of the stylus pen (10) of the present invention. Referring to Fig. 2, the pen holder 11() has a hollow cylindrical knot #1 having a fixed end 114. The fixed end 114 of the pen holder 11G is internally provided with an internal thread for mounting the pen tip 12, and the pen tip 12 is screwed into the fixed end 114 of the pen holder. When the pen tip 120 falls into the fixed end 114 of the pen holder 11 ,, the pen tip 120 is electrically connected to the pen tip 110. It can be understood that the manner in which the pen tip 12 〇 is connected to the pen holder 110 is not limited to this 'the appropriate manner can be selected according to the shape, structure and material of the pen holder 11 〇 and the pen tip 120 in various connection manners in the prior art' as long as the pen holder 11 can be secured ( ) It can be connected with the 12-inch pen. Referring to Fig. 3, the pen tip 120 is composed of a support body κι and a touch material layer 125. The touch material layer 125 is disposed on an outer surface of the branch body 121. The support body 121 is made of a flexible material, and the contact material layer 125 is made of a flexible conductive material. The shape of the pen 12〇 099146743 Form number A0101 Page 5 of 56 0992080311-0

A 201227428 狀可以根據實際需要設計,可以為球狀,錐狀,圓臺狀 等等,本實施例中筆頭〗2〇為圓錐狀。由於筆頭12〇具有 柔性,在使用時,可以通過壓力控制筆頭12〇與觸摸屏之 間的接觸面積,從而控制觸控筆1〇與觸摸屏之間的接觸 電容的大小。 [0014] [0015] 所述支撐體121具有一固定部122和一主體124,所述固 定部122和所述主體124可以為一體成型的整體實心結構 所述固疋部122的外表面設有外螺紋,正好與所述筆桿 110的固定端114的内螺紋相西配,從而可以將筆頭12〇 固定於筆桿11 〇的固定端丨!4。所述主體124的形狀可根 據實際需要設計,可以為球狀,錐狀,圓臺狀等等。所 述主體124用於设置所述觸碰材料層125,所述觸碰材料 層125可以將主體124全部覆蓋,也可以部分覆蓋。所述 觸碰材料層125至少部分覆蓋所述固定部122和主體124 的連接處,從而當筆頭120安裝在筆桿11〇的固定端114 後,觸碰材料層125與筆桿110電連接。 所述支撐體121為柔性南分:子材料構成,所述柔性高分子 材料可以為矽橡膠、聚氨脂、聚丙烯酸乙酯、聚丙烯酸 丁酯、聚苯乙烯、聚丁二烯及聚丙烯腈等中的一種或幾 種的組合。所述支撐體121還可以由具有較高介電常數的 柔性聚合物材料組成,該高介電常數的柔性聚合物材料 可以為膠態。所述支撐體121還可以為導電高分子材料, 導電高分子材料具有較高的介電常數,用作支揮體121時 ’可以使筆頭120本身具有較大的電容。所述導電高分子 材料可以為聚苯胺、聚吡咯或聚噻吩。本實施例中,所 099146743 表單編號A0101 第6頁/共56頁 0992080311-0 201227428 述支撐體121的材料為矽橡膠。 [0016] 請參見圖4,所述支撐體121還可以為一個空心結構的支 撐體121。可以在所述主體124的内部形成一個封閉空間 126,從而製成一個空心結構的筆頭120。當該支撐體 121為空心結構時,其壁厚可以選擇為0. 1毫米至2毫米。 當該支撐體121為空心結構時,該筆頭120的柔韌性可以 得到進一步提高。 [0017] 請參見圖5,所述觸碰材料層125可以為螺旋帶狀形成於 0 所述主體124的外表面。該螺旋帶狀的觸碰材料層125的 螺旋半徑沿著筆尖向著筆桿110的方向逐漸增大。具體地 ,所述主體124的外表面可以設置有螺旋狀溝槽,該螺旋 狀溝槽的螺旋半徑由主體124的端部向固定部122螺旋延 伸,並且螺旋半徑由小到大。所述觸碰材料層125可以設 置在上述螺旋狀溝槽内,並且觸碰材料層125的厚度大於 溝槽深度,從而使得所述觸碰材料層125凸出於主體124 的外表面,用於與觸摸屏接觸。由於螺旋帶狀的觸碰材 〇 料層125的螺旋半徑由筆頭120的筆尖向筆桿的方向逐漸 增大。使用時,隨著壓力的增大,筆頭120的彎曲程度增 大,觸碰材料層125與觸摸屏基板接觸的面積也逐漸增大 。從而可以控制與觸摸屏之間的接觸面積的大小,從而 控制筆劃的粗細。由於所述螺旋帶狀的觸碰材料層125僅 部分包覆了主體124的表面,相對於完全包覆主體124表 面,比較節省原材料。可以理解,所述主體124的表面也 可以不設置螺旋溝槽,直接將螺旋帶狀的觸碰材料層125 設置於所述主體124的表面,並且由主體的端部向固定部 099146743 表單編號A0101 第7頁/共56頁 0992080311-0 201227428 122螺旋延伸,並且螺旋半徑沿著筆尖向著筆桿110的方 向由小到大。 [0018] 所述觸碰材料層125用於與觸摸屏的表面接觸,並與之形 成接觸電容。通過與觸摸屏接觸面積的變化而實現接觸 電容的變化,從而使得觸摸屏能夠感知出筆劃的粗細。 該觸碰材料層125的厚度可以為1微米至2毫米,該觸碰材 料層125具有導電性。為了增大該觸碰材料層125的比表 面積,該觸碰材料層125可以為:奈米碳管,石墨烯;奈 米碳管與柔性高分子構成的複合材料;石墨烯與柔性高 分子構成的複合材料;或者係奈米碳管與金屬構成的複 合材料構成。下面將分別介紹:奈米碳管均勻分散在柔 性高分子基體中形成的複合材料,奈米碳管結構設置於 柔性高分子基體的表面形成的複合材料,奈米碳管結構 中的每個奈米碳管表面包覆一層導電層形成的複合材料 ,以及石墨烯均勻分散在柔性高分子基體中或者設置於 柔性高分子基體表面形成的複合材料。 [0019] 請參見圖6,所述觸碰材料層125可以由一種奈米碳管高 分子複合材料構成。該奈米碳管高分子複合材料由柔性 高分子基體24以及分散於該柔性高分子基體24内的複數 奈米碳管22組成。該複數奈米碳管22均勻分散於所述柔 性rfj分子基體24内5並且相互連接形成導電網路。為了 實現奈米碳管22在柔性高分子基體24内形成導電網路, 該奈米碳管22的質量百分含量應大於5%。由於奈米碳管 22具有非常大的比表面積,以及較高的導電性。該筆頭 120在使用時,由於觸碰材料層125具有較大的比表面積 099146743 表單編號A0101 第8頁/共56頁 0992080311-0 201227428 广α 、存儲更多的從使用者的手部傳導來的靜電荷, 從而提高7 I , 碩12〇與觸摸屏之間的接觸電容。另外,該 "τ米碳音22的高分子複合材料構成的觸碰材料層 敏、觸摸屏構成的單位面積上的電容較大’從而更加靈 :且’由於奈米碳管22係中空結構,其具有非常小 =質I,其特殊的化學鍵結構使得奈米碳管22又具有非 韦Π»的強度以及彈性模量。除此之外,由於奈米碳管22 Ά非常大的長比(大於i刚:1),奈米碳管22還具 有非常好的⑽性,施加外力後可以报好的恢復形狀。 S此,採用奈米碳管22與柔泰高分子基體24形成的高分 子複合材料構成的筆頭12〇,具有較輕韵質量,以及較高 的耐刮擦度,從而具有較長的使用壽命。採用分散的奈 米碳管22設置於柔性高分子基體24中構成的高分子複合 材料構成的筆頭120,還可以有部分奈米碳管22從高分子 基體24的外表面露頭,從而更好的與觸摸屏接觸,另外 由於該奈米碳管複合材料相對於金屬更柔軟,因此還 不易損傷觸摸屏。 乂 \ [0020]所述柔性高分子基體24為具有一定厚度的片材,厚度為^ 微米至2毫米之間》所述柔性高分子基體24為柔性高分子 材料構成,該柔性材料導電性不限,只要具有柔性即可 。所述柔性高分子基體24的材料為柔性高分子材料,如 矽橡膠、聚氨脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚笨 乙烯、聚丁二烯及聚丙烯腈等中的一種或幾種的組合^ 本實施例中,所述柔性高分子基體24的材料為矽橡膠。 [0021] 請參閱圖7,所述觸碰材料層125還可以由— 個具有整體 099146743 表單編號A0I01 第9頁/共56頁 〇99208〇311-〇 201227428 結構的奈米碳管結構12設置於柔性高分子基體24的表面 形成。請參閱圖8,所述具有整體結構的奈米碳管結構12 還可以靠近柔性高分子基體24的表面設置於該柔性高分 子基體24之中構成。所謂所述奈米碳管結構12靠近柔性 高分子基體24的表面設置於所述柔性高分子基體24之中 ,係指該奈米碳管結構12在其厚度方向上完全或者部分 包埋於柔性高分子基體24中,並且當奈米碳管結構12完 全包埋於柔性高分子基體24中時,奈米碳管結構12到所 述柔性高分子基體24的一個表面的距離要小於等於10微 米’從而保證該觸碰·材料層12 5係導電的。 [0022] 所述奈米碳管結構12為一自支撐結構。所謂“自支撐結 構”即該奈米碳管結構無需通過一支撐體支撐·,也能保 持自身特定的形狀。該自支撐結構的奈米碳管結構12包 括複數奈米碳管22,該複數奈米碳管22通過凡得瓦力相 互吸引,從而使奈米碳管結構12具有特定的形狀。由於 該奈米碳管結構12具有自支撐性,在不通過支撐體支撐 時仍可保持層狀或線狀結構。該奈米碳管結構12中奈米 碳管22之間具有大量間隙,從而使該奈米碳管結構12具 有大量孔隙,所述柔性高分子基體24滲入該孔隙中,與 所述奈米碳管結構12緊密結合。 [0023] 在所述奈米碳管高分子複合材料中,所述柔性高分子基 體24填充於奈米碳管結構12中的孔隙當中。柔性高分子 基體24與奈米碳管結構12中的奈米碳管22緊密結合。柔 性高分子基體24包裹整個奈米碳管結構12。奈米碳管結 構12在柔性高分子基體24中保持層狀結構。柔性高分子 099146743 表單編號A0101 第10頁/共56頁 0992080311-0 201227428 [0024] [0025] ΟA 201227428 shape can be designed according to actual needs, and can be spherical, tapered, rounded, etc. In this embodiment, the tip of the pen is 圆锥2〇. Since the pen tip 12 is flexible, in use, the contact area between the pen tip 12 and the touch screen can be controlled by pressure, thereby controlling the contact capacitance between the stylus pen 1 and the touch screen. [0015] The support body 121 has a fixing portion 122 and a main body 124. The fixing portion 122 and the main body 124 may be integrally formed with an integral solid structure. The outer surface of the solid portion 122 is provided. The external thread is aligned with the internal thread of the fixed end 114 of the sheath 110 so that the tip 12〇 can be fixed to the fixed end 丨4 of the sheath 11 。. The shape of the main body 124 can be designed according to actual needs, and can be spherical, tapered, rounded, or the like. The body 124 is used to set the touch material layer 125, and the touch material layer 125 may cover the whole body 124 or may partially cover it. The layer of touch material 125 at least partially covers the junction of the fixing portion 122 and the body 124 such that the touch material layer 125 is electrically connected to the sheath 110 after the tip 120 is mounted on the fixed end 114 of the sheath 11A. The support body 121 is composed of a flexible south sub-material: the flexible polymer material may be tantalum rubber, polyurethane, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene, and polypropylene. A combination of one or more of nitriles and the like. The support body 121 may also be composed of a flexible polymer material having a relatively high dielectric constant, and the high dielectric constant flexible polymer material may be in a colloidal state. The support body 121 may also be a conductive polymer material. The conductive polymer material has a high dielectric constant, and when used as the support body 121, the pen head 120 itself has a large capacitance. The conductive polymer material may be polyaniline, polypyrrole or polythiophene. In this embodiment, the 099146743 form number A0101 page 6 / 56 page 0992080311-0 201227428 The material of the support body 121 is ruthenium rubber. [0016] Referring to FIG. 4, the support body 121 may also be a support structure 121 of a hollow structure. A closed space 126 may be formed in the interior of the body 124 to form a hollow structure of the tip 120. 1毫米至2毫米。 When the support body 121 is a hollow structure, the wall thickness can be selected from 0.1 mm to 2 mm. When the support body 121 has a hollow structure, the flexibility of the pen tip 120 can be further improved. Referring to FIG. 5, the touch material layer 125 may be formed in an spiral strip shape on the outer surface of the body 124. The spiral radius of the spiral strip-shaped touch material layer 125 gradually increases in the direction of the pen tip 110 toward the sheath 110. Specifically, the outer surface of the main body 124 may be provided with a spiral groove whose spiral radius extends spirally from the end of the main body 124 toward the fixing portion 122, and the spiral radius is small to large. The touch material layer 125 may be disposed within the spiral groove and the thickness of the touch material layer 125 is greater than the groove depth such that the touch material layer 125 protrudes from the outer surface of the body 124 for Contact with the touch screen. The spiral radius of the spiral strip-shaped contact material layer 125 is gradually increased from the tip of the pen tip 120 toward the sheath. In use, as the pressure increases, the degree of bending of the tip 120 increases, and the area in which the touch material layer 125 contacts the touch screen substrate also gradually increases. Thereby, the size of the contact area with the touch screen can be controlled, thereby controlling the thickness of the stroke. Since the spiral strip-shaped touch material layer 125 only partially covers the surface of the main body 124, the raw material is saved compared to completely covering the surface of the main body 124. It can be understood that the surface of the main body 124 may not be provided with a spiral groove, and the spiral strip-shaped touch material layer 125 is directly disposed on the surface of the main body 124, and the end portion of the main body is fixed to the fixed portion 099146743. Page 7/56 pages 0992080311-0 201227428 122 The spiral extends and the radius of the spiral varies from small to large along the tip of the pen toward the sheath 110. [0018] The touch material layer 125 is for contacting the surface of the touch screen and forming a contact capacitance therewith. The change in contact capacitance is achieved by a change in the contact area with the touch screen, so that the touch screen can sense the thickness of the stroke. The touch material layer 125 may have a thickness of from 1 micrometer to 2 millimeters, and the touch material layer 125 is electrically conductive. In order to increase the specific surface area of the touch material layer 125, the touch material layer 125 may be: a carbon nanotube, a graphene; a composite material composed of a carbon nanotube and a flexible polymer; and a graphene and a flexible polymer. Composite material; or a composite of carbon nanotubes and metal. The following will introduce the composite material formed by uniformly dispersing the carbon nanotubes in the flexible polymer matrix, and the carbon nanotube structure is arranged on the surface of the flexible polymer matrix to form a composite material, and each nanotube in the carbon nanotube structure The surface of the carbon nanotube is coated with a conductive layer, and the graphene is uniformly dispersed in the flexible polymer matrix or a composite material formed on the surface of the flexible polymer matrix. Referring to FIG. 6, the touch material layer 125 may be composed of a carbon nanotube high molecular composite material. The carbon nanotube polymer composite is composed of a flexible polymer matrix 24 and a plurality of carbon nanotubes 22 dispersed in the flexible polymer matrix 24. The plurality of carbon nanotubes 22 are uniformly dispersed in the flexible rfj molecular matrix 24 and interconnected to form a conductive network. In order to achieve the formation of a conductive network in the flexible polymer matrix 24 of the carbon nanotubes 22, the mass percentage of the carbon nanotubes 22 should be greater than 5%. Since the carbon nanotube 22 has a very large specific surface area and high conductivity. When the pen tip 120 is in use, since the touch material layer 125 has a large specific surface area 099146743, the form number A0101, page 8 / total 56 page 0992080311-0 201227428 wide α, stores more from the user's hand. The static charge increases the contact capacitance between the 7 I and the 12-inch touch screen. In addition, the layered touch material composed of the polymer composite material of the "T-meter carbon sound 22" and the capacitance per unit area formed by the touch panel are larger, and it is more flexible: and because the carbon nanotube 22 is a hollow structure, It has a very small = mass I, and its special chemical bond structure allows the carbon nanotube 22 to have the strength and modulus of elasticity of the non-Wei». In addition, due to the very large length ratio of the carbon nanotube 22 (greater than i: 1:), the carbon nanotube 22 has a very good (10) property, and the shape can be recovered after applying an external force. S, the tip 12 of the polymer composite material formed by the carbon nanotube 22 and the soft polymer matrix 24 has a lighter quality and a higher scratch resistance, thereby having a longer service life. . A pen tip 120 composed of a polymer composite material composed of a dispersed carbon nanotube 22 disposed in the flexible polymer matrix 24 may have a portion of the carbon nanotube 22 outcrops from the outer surface of the polymer matrix 24, thereby being better. Contact with the touch screen, and because the carbon nanotube composite is softer than metal, it is not susceptible to damage to the touch screen. [0020] The flexible polymer matrix 24 is a sheet having a thickness of between 2 micrometers and 2 millimeters. The flexible polymer matrix 24 is composed of a flexible polymer material, and the flexible material is not electrically conductive. Limit, as long as it is flexible. The material of the flexible polymer matrix 24 is a flexible polymer material, such as one of ruthenium rubber, polyurethane, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene, and polyacrylonitrile. Combination of several types In the embodiment, the material of the flexible polymer matrix 24 is ruthenium rubber. [0021] Referring to FIG. 7, the touch material layer 125 may also be disposed on a carbon nanotube structure 12 having an overall structure of 099146743 Form No. A0I01, Page 9/56, 〇99208〇311-〇201227428. The surface of the flexible polymer matrix 24 is formed. Referring to FIG. 8, the carbon nanotube structure 12 having a unitary structure may be disposed adjacent to the surface of the flexible polymer matrix 24 disposed in the flexible polymer matrix 24. The surface of the carbon nanotube structure 12 disposed adjacent to the flexible polymer matrix 24 is disposed in the flexible polymer matrix 24, meaning that the carbon nanotube structure 12 is completely or partially embedded in the thickness direction thereof. In the polymer matrix 24, and when the carbon nanotube structure 12 is completely embedded in the flexible polymer matrix 24, the distance from the surface of the carbon nanotube structure 12 to one surface of the flexible polymer matrix 24 is 10 μm or less. 'Thereby ensuring that the touch/material layer 12 is electrically conductive. [0022] The carbon nanotube structure 12 is a self-supporting structure. The so-called "self-supporting structure" means that the carbon nanotube structure does not need to be supported by a support body, and can maintain its own specific shape. The self-supporting structure of the carbon nanotube structure 12 includes a plurality of carbon nanotubes 22 which are mutually attracted by the van der Waals force so that the carbon nanotube structure 12 has a specific shape. Since the carbon nanotube structure 12 is self-supporting, a layered or linear structure can be maintained without being supported by the support. The carbon nanotube structure 12 has a large amount of gaps between the carbon nanotubes 22, so that the carbon nanotube structure 12 has a large number of pores, and the flexible polymer matrix 24 penetrates into the pores, and the nanocarbon The tube structure 12 is tightly coupled. [0023] In the carbon nanotube polymer composite, the flexible polymer matrix 24 is filled in pores in the carbon nanotube structure 12. The flexible polymer matrix 24 is intimately bonded to the carbon nanotubes 22 in the carbon nanotube structure 12. The flexible polymeric matrix 24 encases the entire carbon nanotube structure 12. The carbon nanotube structure 12 maintains a layered structure in the flexible polymer matrix 24. Flexible Polymer 099146743 Form No. A0101 Page 10 of 56 0992080311-0 201227428 [0024] 00

G 基體24的表面到奈米碳管結㈣的垂直 於等於10微米。 穴於〇微未小 米t管結構12可以為奈^管拉膜、奈求碳管陣 1、不米碳管絮化膜或奈米碳管碾壓膜。 請參閱圖9,料奈米碳管_駿奈米料陣列中直接 拉取獲得的—種奈米碳管膜。m碳管輯係由若 干奈米碳管組成的自支撐結構。所述若干“碳管為基 本沿同-方向擇優取向排列'所述擇優取向係指在奈米 碳管膜中大多數奈来碳管的整體延伸方向基本 向。而且,所述大多數奈米碳㈣整體延伸方向基本平 行於奈米碳管膜的表面。進—步地,所述奈米碳管膜中 大多數奈米碳㈣通過凡得瓦力首尾相連。具體地,所 述奈米碳管膜中基本朝同—方向延伸的大多數奈米碳管 中每-奈米碳管與在延伸方向上相鄰的奈米碳管通過凡 得瓦力首尾相連。纽,奈米碳管料存在少數隨 機排列的奈米碳管,這”宇碳管不會對奈米碳管膜中 大多數奈米碳管的整體取向排列構成明顯影響。所述自 支撐為奈米碳管膜不需要大面積的載體支撐而只要相 對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態 ,即將該奈米碳管膜置於(或固定於)間隔—固定距離 設置的兩個支撐體上時’位於兩個支撐體之間的奈米碳 管膜能夠懸空保持自身膜狀狀態。所述自支撐主要通過 奈米碳管膜中存在連續的通過凡得瓦力首尾相連延伸排 列的奈米碳管而實現。所述奈米碳管拉膜的厚度為〇. 5奈 米〜100微米’寬度與拉取該奈米碳管拉膜的奈米碳管陣 099146743 表單編號A0101 第11頁/共56頁 0992080311-0 201227428 列的尺寸有關,長度不限.該奈米碳管拉膜的製備方法 請參見范守善等人於民國96年2月12日申請的於民謂 年8月16日公開的第961 0501 6號台灣公開專利申請“奈 米峻管膜結構及其製備方法,’,巾請人:滅海精密工業 股份有限公司。為節省篇幅,僅引用於此,但上述申請 所有技術揭露也應視為本發明申請技術揭露的一部分。 由於上述奈米碳管拉膜中的奈米碳管基本定向排列當 採用上述奈米碳管拉膜構成的奈米碳管結構12應用於所 述筆頭120的觸碰材料層125時,該觸碰材料層125中, 奈米碳管可以沿著筆頭丨20佝筆桿u Q的方向定向排列, 從而提高了筆頭120向筆桿110方向的導電性,使得觸控 筆100具有更好的回應速度。 [0026] 所述奈米碳管結構12還可以為一個奈米碳管陣列。請參 閱圖10,該奈米碳管陣列設置於柔性高分子基體24中, 該奈米碳管陣列中的複數奈米碳管22具有相同的排列方 向。所述奈米碳管陣列中的奈杀磕管22與柔性高分子基 : .:..... .: 體24的表面角度不限,優選地,奈米碳管22沿柔性高分 子基體2 4表面的法線方向延伸。所述奈米碳管陣列中的 奈米碳管22根部之間的距離大於〇小於等於丨微米。從而 在奈米碳管陣列中形成複數間隙,所述柔性高分子基體 24填充於到奈米碳管陣列的間隙當中,柔性高分子基體 24與奈米碳管陣列中的奈米碳管22緊密結合。柔性高分 子基體24的表面到奈米碳管陣列的表面小於等於微米 ,此時奈米碳管高分子複合材料層的表面仍具有導電性 。請參見圖11 ’所述奈米碳管陣列中的奈米碳管22可以 099146743 表單編號A0101 第頁/共56頁 0992080311-0 201227428 從高分子基體24中露頭,奈米碳管22露出高分子基體24 表面的長度小於等於10微米。 [0027] 睛參閱圖1 2,所述奈米碳管絮化膜為通過一絮化方法形 成的奈米碳管膜,該奈米碳管絮化膜包括相互纏繞且均 勻分佈的奈米碳管。奈米碳管的長度大於1〇微米,優選 Ο 為200〜900微米。所述奈米碳管之間通過凡得瓦力相互残 引、纏繞,形成網路狀結構◊所述奈米碳管絮化骐各向 同性。所述奈米碳管絮化膜中的奈米碳管為均勻分佈° 無規則排列,形成大量的孔隙結構,孔隙尺寸約小於 微米。所述奈米碳管絮化臈的長度和寬度不限。請參閱 圖12,由於在奈米碳管絮化膜中,奈米碳管相互纏繞, 因此該奈米碳管絮化膜具有很好的柔韌性,且為—自支 撐結構,可以彎曲折疊成任意形狀而不破裂。所述齐米 碳管絮化膜的面積及厚度均不限,厚度為丨微米毫米、 優選為100微米。所述奈米碳管絮化膜及其製備方法4參 見范守善等人於民國96年5月11日申請的,於民國= ο 11月16日公開的第200844041號台灣公開專利申靖“太 米碳管薄膜的製備方法”,申請人:鴻海精密工業股= 有限公司。為節省篇幅,僅引用於此,但上述申靖所有 技術揭露也應視為本發明申請技術揭露的一部分。 [0028] 所述奈米碳管碾壓膜為通過碾壓一奈米碳管陣列带成 奈米碳管膜。該奈米碳管碾壓膜包括均勻分佈的齐米 管’奈米碳管沿同一方向或不同方向擇優取向排列。' 米碳管也可以係各向同性的《所述奈米碳管碾壓膜中的 奈米碳管相互部分交疊,並通過凡得瓦力相互吸^ 、 099146743 表單編號Α0101 第13頁/共56頁 0992080311~0 201227428 山、D 〇,使彳于该奈米碳管結構具有很好的柔韌性,可以 弓曲折豐成任意形狀而^破裂。且由於奈米碳管礙壓膜 中的不米妷官之間通過凡得瓦力相互吸引,緊密結合, 使不来奴s碾壓膜為—自支撑的結構。所述奈米碳管礙 壓膜可通過—奈米營陣列獲得。所述奈米碳管碾 壓膜中的奈米碳官與形成奈米碳管陣列的生長基底的表 面形成—夾角厂其中1大於等於0度且小於等於15度 (Q Q 1 η 〇 \ ),該失角点與施加在奈米碳管陣列上的壓 有關壓力越大’該夾角越小,優選地,該奈米碳管 礦墨膜巾的奈米碳管平行於難長基底排列 。依據碾壓 的方式不同’ $奈米碳管碾壓财的奈米後管具有不同 的排列形式。請參關13,當沿同—方向媒壓時奈米 碳管沿-固定方向擇優取向排列。請參關14,當沿不 同方向礙壓時,奈米碳管沿不同方向擇優取向排列。當 從不米碳官陣列的上方垂直碾壓奈米碳管陣列時,奈米 奴官㈣膜係各向同性的。奪树#碾顧中奈米碳 管的長度大於50微米。 [0029] 該奈米碳管磐膜的面積和厚度不限,可根據實際需要 選擇’如被加熱物體所要加熱的時間。該奈米碳管礙壓 膜的面積與奈米碳管陣_尺寸基本㈣。該奈米碳管 礙壓膜厚度與奈米碳管陣列的高度以及礙壓的壓力有關 ’可為1微米〜1毫米。可以理解’奈米碳管陣列的高度越 大而施加的Μ力越小,職備的奈米碳管㈣膜的厚度 越大’反之,奈米碳管陣_高度越小而施加的麼力越 大’則製備的奈米碳管碾_的厚度越小。所述奈求碳 099146743 表單編號Α0101 第14頁/共56頁 0992080311-0 201227428 管碾壓膜之中的相鄰的奈米碳管之間具有一定間隙,從 而在奈米碳管碾壓膜中形成複數孔隙,孔隙的尺寸約小 於ίο微米。所述奈米碳管碾壓膜及其製備方法請參見范 守善等人於民國96年6月29日申請的,於民國98年1月1 曰公開的第200900348號台灣公開專利申請“奈米碳管 薄膜的製備方法”,申請人:鴻海精密工業股份有限公 司。為節省篇幅,僅引用於此,但上述申請所有技術揭 露也應視為本發明申請技術揭露的一部分。 [0030] 所述奈米碳管結構12還可以由一個或複數奈米碳管線152 構成。當所述奈米碳管結構12為一個奈米碳管線152組成 時,該一個奈米碳管線152可以彎折設置於所述柔性高分 子基體24的表面,形成一個具有一定面積的平面形狀的 奈米碳管結構12。請參見圖15,當奈米碳管結構12包括 複數根奈米碳管線152時,該複數根奈米碳管線152可以 相互平行設置。請參見圖16,當奈米碳管結構12包括複 數根奈米碳管線152時,該複數根奈米碳管線152還可以 相互交叉形成網狀的奈米碳管結構12。該奈米碳管線152 可以為非扭轉的奈米碳管線或者係扭轉的奈米碳管線。 [0031] 請參閱圖17,所述非扭轉的奈米碳管線包括複數沿奈米 碳管線長度方向排列並首尾相連的奈米碳管。優選地, 該非扭轉的奈米碳管線包括複數奈来碳管片段,該複數 奈米碳管片段之間通過凡得瓦力首尾相連,每一奈米碳 管片段包括複數相互平行並通過凡得瓦力緊密結合的奈 米碳管。該奈米碳管片段具有任意的長度、厚度、均勻 性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0. 5 099146743 表單編號A0101 第15頁/共56頁 0992080311-0 201227428 奈米〜100微米。 [0032] 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 拉膜兩端沿相反方向扭轉獲得。請參閱圖18,該扭轉的 奈米碳管線包括複數繞奈米碳管線轴向螺旋排列的奈米 碳管。優選地,該扭轉的奈米碳管線包括複數奈米碳管 片段,該複數奈米碳管片段之間通過凡得瓦力首尾相連 ,每一奈米碳管片段包括複數相互平行並通過凡得瓦力 緊密結合的奈米碳管。該奈米碳管片段具有任意的長度 、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限 ,直徑為0. 5奈米〜100微米。所述奈米碳管線及其製備方 法請參見范守善等人於民國91年11月05日申請的,於民 國97年11月21日公告的第1303239號台灣公告專利 “一 種奈米碳管繩及其製造方法”,專利權人:鴻海精密工 業股份有限公司,以及於民國98年7月21日公告的第 1 31 2337號台灣公告專利“奈米碳管絲及其製作方法”, 專利權人:鴻海精密工業股份有限公司。為節省篇幅, 僅引用於此,但上述申請所有技術揭露也應視為本發明 申請所揭露的一部分。 [0033] 進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米 碳管線。在揮發性有機溶劑揮發時產生的表面張力的作 用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通 過凡得瓦力緊密結合,使扭轉的奈米碳管線的直徑及比 表面積進一步減小,從而使其密度及強度進一步增大。 [0034] 由於該奈米碳管線為採用有機溶劑或機械力處理上述奈 米碳管拉膜獲得,該奈米碳管拉膜為自支撐結構,故該 099146743 表單編號A0101 第16頁/共56頁 0992080311-0 201227428 [0035]The surface of the G substrate 24 is perpendicular to the carbon nanotube junction (four) equal to 10 microns. The hole is not small. The rice t-tube structure 12 can be a negative tube, a carbon tube array, a carbon nanotube film or a carbon nanotube film. Referring to Figure 9, the carbon nanotube film obtained by directly pulling the nano carbon tube _ Junnai material array. The m carbon tube series is a self-supporting structure composed of several carbon nanotubes. The plurality of "carbon tubes are arranged substantially in the same direction-oriented preferred orientation", wherein the preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film are substantially oriented in the overall direction of extension. Moreover, the majority of the nanometers The carbon (4) overall extension direction is substantially parallel to the surface of the carbon nanotube film. Further, most of the nanocarbon (4) in the carbon nanotube film is connected end to end by van der Waals force. Specifically, the nanometer In the carbon nanotube film, most of the carbon nanotubes extending in the same direction - the carbon nanotubes and the carbon nanotubes adjacent in the extending direction are connected end to end by van der Waals. New Zealand, carbon nanotubes There are a small number of randomly arranged carbon nanotubes, which do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area support of the carrier, and as long as the support force is provided on both sides, the whole film can be suspended and maintained in a self-membranous state, that is, the carbon nanotube film is placed (or fixed). When the spacer-fixed distance is provided on the two supports, the carbon nanotube film located between the two supports can be suspended to maintain its own membranous state. The self-supporting is mainly achieved by the presence of a continuous arrangement of carbon nanotubes in the carbon nanotube film through the end-to-end extension of the van der Waals force. The thickness of the carbon nanotube film is 〇. 5 nm~100 μm' width and the carbon nanotube array drawn by the carbon nanotube film 099146743 Form No. A0101 Page 11 / 56 Page 0992080311- 0 201227428 The size of the column is related to the length. The preparation method of the carbon nanotube film is as described in Fan Shoushan et al. on February 12, 1996. Yu Min said that the 961 0501 6 was published on August 16th. No. Taiwan open patent application "Nei Junjun membrane structure and its preparation method, ', towel please: Huhai Precision Industry Co., Ltd.. To save space, only quoted here, but all the technical disclosure of the above application should also be considered A part of the disclosed technology of the present invention. The carbon nanotube structure 12 in the above-mentioned carbon nanotube film is substantially aligned. When the material layer 125 is touched, in the touch material layer 125, the carbon nanotubes can be aligned along the direction of the pen 丨 20 佝 the rod u Q , thereby improving the conductivity of the pen 120 in the direction of the pen 110, so that the stylus 100 has a better response speed [0026] The carbon nanotube structure 12 may also be an array of carbon nanotubes. Referring to FIG. 10, the carbon nanotube array is disposed in a flexible polymer matrix 24, and the plurality of carbon nanotube arrays The carbon nanotubes 22 have the same arrangement direction. The naphthalene tube 22 and the flexible polymer base in the carbon nanotube array are: ......: The surface angle of the body 24 is not limited, preferably The carbon nanotubes 22 extend along the normal direction of the surface of the flexible polymer matrix 24. The distance between the roots of the carbon nanotubes 22 in the array of carbon nanotubes is greater than 〇 less than or equal to 丨 micron. A plurality of gaps are formed in the carbon tube array, and the flexible polymer matrix 24 is filled in the gaps of the carbon nanotube array, and the flexible polymer matrix 24 is tightly bonded to the carbon nanotubes 22 in the carbon nanotube array. The surface of the molecular matrix 24 to the surface of the carbon nanotube array is less than or equal to micrometer, and the surface of the carbon nanotube polymer composite layer is still electrically conductive. See Figure 11 for the carbon nanotube array. Meter carbon tube 22 can be 099146743 Form number A0101 Page / Total 5 6 page 0992080311-0 201227428 From the outcrop of the polymer matrix 24, the length of the surface of the carbon nanotube 22 exposed to the polymer matrix 24 is less than or equal to 10 μm. [0027] Referring to Figure 12, the carbon nanotube film In order to form a carbon nanotube membrane by a flocculation method, the carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The length of the carbon nanotubes is greater than 1 μm, preferably Ο 200° 900 micrometers. The carbon nanotubes are mutually entangled and entangled by van der Waals force to form a network structure, and the carbon nanotube flocculation enthalpy is isotropic. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and randomly arranged to form a large number of pore structures, and the pore size is less than about micrometer. The length and width of the carbon nanotube flocculation crucible are not limited. Referring to FIG. 12, since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure which can be bent and folded into Any shape without breaking. The area and thickness of the zirconium carbon nanotube flocculation film are not limited, and the thickness is 丨 micrometers, preferably 100 micrometers. The carbon nanotube flocculation membrane and the preparation method thereof are as follows: Fan Shoushan et al. applied for on May 11, 1996, Yuminguo = ο November 16th, Taiwanese public patent Shen Jing "Tai Mi Preparation method of carbon tube film, Applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the above-mentioned technical disclosures of Shenjing should also be regarded as part of the technical disclosure of the present application. [0028] The carbon nanotube rolled film is formed into a carbon nanotube film by rolling a carbon nanotube array. The carbon nanotube rolled film comprises uniformly distributed zirconium tubes, wherein the carbon nanotubes are arranged in the same direction or in different directions. 'The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotubes are partially overlapped and mutually attracted by van der Waals. 099146743 Form No. 1010101 Page 13 / A total of 56 pages 0992080311~0 201227428 Mountain, D 〇, so that the carbon nanotube structure has good flexibility, can be bent into any shape and cracked. And because the carbon nanotubes in the barrier film are attracted to each other through the van der Waals force, they are tightly combined, so that the slab is a self-supporting structure. The carbon nanotube barrier film can be obtained by an array of nanocapsules. The carbon carbon in the carbon nanotube film is formed on the surface of the growth substrate forming the carbon nanotube array - wherein the angle is greater than or equal to 0 degrees and less than or equal to 15 degrees (QQ 1 η 〇 \ ), The greater the pressure associated with the pressure applied to the array of carbon nanotubes, the smaller the angle. Preferably, the carbon nanotubes of the carbon nanotube film are aligned parallel to the difficult substrate. Depending on the way the crushing is done, the nanotubes of the carbon nanotubes are packed in different arrangements. Please refer to step 13. When the median pressure is along the same direction, the carbon nanotubes are arranged in a preferred orientation along the fixed direction. Please refer to step 14. When the pressure is blocked in different directions, the carbon nanotubes are arranged in different directions. The nano-membrane system is isotropic when the nanotube array is vertically crushed from above the array of carbon-free. The tree length of the nanotube is more than 50 microns. [0029] The area and thickness of the carbon nanotube film are not limited, and the time to be heated as the object to be heated may be selected according to actual needs. The area of the carbon nanotubes impeding the membrane is basically the same as the size of the carbon nanotube array (4). The carbon nanotube barrier film thickness may be from 1 micrometer to 1 millimeter depending on the height of the carbon nanotube array and the pressure at which the pressure is impeded. It can be understood that the larger the height of the carbon nanotube array is, the smaller the applied force is, and the thicker the carbon nanotube (four) film is, the smaller the thickness of the carbon nanotube array is. The larger the 'the smaller the thickness of the prepared carbon nanotube mill_. The carbon is 099146743 Form No. 1010101 Page 14 / Total 56 Page 0992080311-0 201227428 There is a gap between adjacent carbon nanotubes in the tube rolling film, so that it is in the carbon nanotube film A plurality of pores are formed, the pores having a size of less than about ί. The carbon nanotube rolling film and the preparation method thereof are described in Fan Shoushan et al., which was filed on June 29, 1996, and published in the Republic of China on January 1, 1998. Method for preparing tube film", applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application. [0030] The carbon nanotube structure 12 may also be composed of one or a plurality of nanocarbon lines 152. When the carbon nanotube structure 12 is composed of a nano carbon line 152, the one carbon carbon line 152 may be bent and disposed on the surface of the flexible polymer substrate 24 to form a planar shape having a certain area. Nano carbon tube structure 12. Referring to Fig. 15, when the carbon nanotube structure 12 includes a plurality of carbon nanotube lines 152, the plurality of nanocarbon lines 152 may be disposed in parallel with each other. Referring to Fig. 16, when the carbon nanotube structure 12 includes a plurality of nanocarbon lines 152, the plurality of nanocarbon lines 152 may also cross each other to form a network of carbon nanotube structures 12. The nanocarbon line 152 can be a non-twisted nanocarbon line or a twisted nanocarbon line. [0031] Referring to FIG. 17, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length of the nanocarbon pipeline and connected end to end. Preferably, the non-twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments comprises a plurality of parallel and pass each other The silicon carbide tightly combined with the carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The length of the non-twisted nano carbon line is not limited, and the diameter is 0. 5 099146743 Form No. A0101 Page 15 of 56 0992080311-0 201227428 Nano ~ 100 microns. [0032] The twisted nanocarbon pipeline is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Fig. 18, the twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged in an axial spiral arrangement around the carbon nanotubes. Preferably, the twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass each other The silicon carbide tightly combined with the carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. The nano carbon pipeline and its preparation method can be found in Fan Shoushan et al., which was filed on November 5, 1991. The Taiwan Patent No. 1303239 announced on November 21, 1997, "a carbon nanotube rope and The manufacturing method", the patentee: Hon Hai Precision Industry Co., Ltd., and the Taiwan Announcement Patent No. 1 31 2337 announced on July 21, 1998, "Nano Carbon Tube and Its Manufacturing Method", Patentee : Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the present application. Further, the twisted nanocarbon line may be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the diameter of the twisted nanocarbon pipeline and The specific surface area is further reduced, thereby further increasing its density and strength. [0034] Since the nanocarbon pipeline is obtained by treating the above carbon nanotube film with an organic solvent or mechanical force, the carbon nanotube film is a self-supporting structure, so the 099146743 Form No. A0101 Page 16 of 56 Page 0992080311-0 201227428 [0035]

GG

[0036] ❹ 099146743 奈米碳管線也為自支撐結構。另外,由於該奈米碳管線 中相鄰奈米碳管間存在間隙,故該奈米碳管線具有大量 孔隙’孔隙的尺寸約小於1 〇微米。 明參見圖19,本實施例中,所述觸碰材料層j25還吁以為 上述奈米碳管結構12與導電材料所形成的多孔奈米破管 複合材料構成。所述多孔奈米碳管複合材料中的奈米碳 官結構12保持其結構不變,該奈米碳管結構12中的每〆 根奈米碳管22表面均包覆一導電材料層226。所述多孔’T' 米碳管複合材料中的包覆有導電材枓層2 2 6的奈米礞管2 2 之間存在間隙,因此,該多孔奈来碟管氣舍材料包枯複 數微孔225。所述微孔225的孔徑小於等於5微米。 所述導電材料層226可以為一導電聚合物層,該導電聚合 物層的材料可以為聚笨胺、聚吡咯、聚噻吩、聚乙炔、 聚對苯及聚對苯撐乙烯中的一種或幾種*所述導電聚合 物層的厚度優選為30奈米〜150奈米之間。本實施例中’ 所述導電聚合物層的厚度為50奈米〜90奈米。所述導電聚 合物層在所述的奈米碳管與導電聚合物材料構成的複合 膜中的質量百分含量優選為20%〜80%。本實施例中,所述 導電聚合物層為聚苯胺層,且所述導電聚合物層包覆在 上述的無序奈米碳管網狀結構表面。聚笨胺的介電係數 比較高,因此該多孔奈米碳管複合材料也具有較高的介 電係數,從而使得由該多孔奈米碳管複合材料構成的筆 頭120在與觸摸屏接觸時具有較大的電容。 所述導電材料層226的材料還可以為單質金屬或金屬合金 ,所述單質金屬可以為銅、銀或金。該導電材料層226的 表單編珑Α0101 第Π頁/共56頁 0992080311-0 [0037] 201227428 厚度為1 ~ 2 0奈米。本貫施例中’該導電材料層2 2 6的材料 為銀,厚度約為5奈米。 [0038] 可選擇地,在奈米碳管22和導電材料層226之間可進一步 包括一潤濕層。所述潤濕層的作用為使導電材料層226與 奈米碳管22更好的結合。該潤濕層的材料可以為鎳、鈀 或鈦等與奈米碳管22潤濕性好的金屬或它們的合金,該 潤濕層的厚度為1〜10奈米。 [0039] 可選擇地,為使潤濕層和導電材料層226更好的結合,在 潤濕層和導電材料層之間可進一步包括一過渡層。該過 渡層的材料可以為與潤濕層材料及導電層材料均能較好 結合的材料,該過渡層的厚度為1~10奈米。 [0040] 所述奈米碳管複合材料層中,奈米碳管結構12與導電材 料複合之後,該多孔奈米碳管複合材料具有更好的導電 性能,在與觸摸屏接觸時傳輸電荷的速度較快,因此, 可以提高觸摸屏觸控筆10的反應速度。由於多孔奈米碳 管複合材料層中包括複數微孔225,使多孔奈米碳管複合 材料具有較大的比表面積,從而可以更多地存儲由使用 者的手傳遞過來的靜電荷,從而在與觸摸屏接觸時可以 產生較大的接觸電容,因此可以提高觸摸屏的靈敏度。 [0041] 可以理解,本發明第一實施例的筆頭120的觸碰材料層 1 2 5,還可以由純奈米碳管組成。該筆頭1 2 0表面的觸碰 材料層125可以由上述奈米碳管結構12包裹於所述主體 124的表面形成。具體地,可以將奈米碳管結構12纏繞在 所述主體124的外表面,並由粘結劑與主體124粘結在一 099146743 表單編號Α0101 第18頁/共56頁 0992080311-0 201227428 使不米衩f結構1 2至少部分覆蓋所述固定部1 22 j而與筆# 11Q電連接。由於奈米碳管結構U中的奈米 ^具有較大的比表面積’該奈求碳管結構邮具有較 ㈣比表@積°當所述奈米碳管結構12與娜屏接觸時 ° '產生較大的接觸電容’使該觸控筆1〇具有較高的 靈敏度另外,奈米碳管比較光滑,具有較小的摩擦係 數’在使用時不會對觸摸屏的榮幕造成傷害。 [0042] Ο Ο μ參見圖20 ’所述觸碰材料層125還可以通過由石墨稀28 分散:所述柔性高分子基體24材料中形成的石墨稀高分 子複《材料構成。該石獅28均勻分散於所述柔性高分 子土體24中。所述石墨烯高分子複合材料中,還可以有 心石墨稀24還可讀所述柔性高分子基體财露頭, 從而露出所述觸碰材料層125的表面。所述石墨稀28在該 柔1±两刀子基體24中的體積百分比為丨⑽^至6〇%。請參見 圖21 ’所述石墨稀28係由複數六元環型的碳原子構成的 片層狀結構。所述石墨烯28的厚度小於等於100奈米,本 實施例中’石墨烯28的厚度為〇.5奈米至1〇〇奈米。石墨 烯28具有良好的導電性能,其在室溫下傳遞電子的速度 非常快。石墨烯28還具有較大的比表面積,並具有柔性 。因此’採用石墨烯28與柔性高分子基體24構成的石墨 烯高分子複合材料也具有很大的比表面積和導電性,因 此採用上述材料構成的筆頭120也與觸摸屏構成的單位面 積上的電容較大,並具有較好的導電性,該筆頭12〇具有 更高的靈敏度》 [0043] 本實施例中’採用化學分散法製備石墨烯28的原材料。 099146743 表單編號Α0101 第19頁/共56頁 0992080311-0 201227428 化學分散法係將氧化石墨與水按照1 mg : 1 mL的比例混合 ,用超聲波振盪至溶液清晰無顆粒狀物質,加入適量肼 在100°C回流24h,產生黑色顆粒狀沉澱,過濾、烘乾即 得石墨烯粉末。採用分散的石墨烯28設置於柔性高分子 基體24中構成的石墨烯高分子複合材料構成的筆頭120, 還可有部分石墨烯28從筆頭的外表面露頭,從而更好的 與觸摸屏接觸。並且,石墨烯28較光滑,具有較小的摩 擦係數,在使用時不會對觸摸屏的螢幕造成傷害。 [0044] 請參見圖22,本發明第一實施例中的觸碰材料層125還可 以由所述石墨烯28覆蓋在柔性高分子基體24的表面構成 石墨烯層280形成。該石墨烯層280的厚度為100奈米到1 微米。該石墨烯層280中的石墨烯28的排列方式可以為相 互交疊設置、並列設置或者相互重合設置。石墨烯具有 良好的導電性能,其在室溫下傳遞電子的速度非常快。 所述石墨烯層280的厚度為單層石墨烯的厚度至1毫米。 本實施例中,採用化學分散法製備石墨烯材料。化學分 散法係將氧化石墨與水按照lmg : lmL的比例混合,用超 聲波振盪至溶液清晰無顆粒狀物質,加入適量肼在100°C 回流24h,產生黑色顆粒狀沉澱,過濾、烘乾即得石墨烯 粉末。制得石墨烯28之後,將柔性高分子基體24放入石 墨烯粉末中,由於石墨烯28為奈米材料,本身具有一定 的粘附力,可以粘附在柔性高分子基體24的表面,形成 石墨烯層280。可以理解,石墨稀28也可以通過粘結劑固 定於柔性高分子基體24的表面形成石墨烯層280。 [0045] 可以理解,所述觸碰材料層1 25還可以由所述石墨烯28直 099146743 表單編號A0101 第20頁/共56頁 0992080311-0 201227428 接覆蓋在主體124的表面形成的石墨稀材料層構成。該石 墨烯材料層的厚度為100奈米到1微米。該石墨烯層中的 石墨烯的排列方式可以為相互交疊設置、並列設置或者 相互重合設置。石墨烯具有良好的導電性能,其在室溫 下傳遞電子的速度非常快。所述石墨烯的厚度為0. 5奈米 至100奈米。 [0046] Ο 請參見圖23,本發明第二實施例提供一種觸控筆200,該 觸控筆200包括筆桿110以及筆頭220。本實施例與第一 實施例的觸控筆100的主要區別在於,該觸控筆2〇〇的筆 頭220為由同一種材料構成的實.心結構。所述筆頭22〇的 材料可以選自上述第一實施例中組成觸碰材料層125的材 料中除了純石墨烯以外的任一材料,觸碰材料層125的具 體材料可以參見第一實施例的詳細記栽,這裏不再贅述 Ο[0036] ❹ 099146743 The nano carbon line is also a self-supporting structure. In addition, due to the gap between adjacent carbon nanotubes in the nanocarbon pipeline, the nanocarbon pipeline has a large number of pores. The pore size is less than about 1 〇 micrometer. Referring to Fig. 19, in the present embodiment, the touch material layer j25 is also composed of a porous nano tube-breaking composite material formed of the above-mentioned carbon nanotube structure 12 and a conductive material. The carbon carbon structure 12 in the porous carbon nanotube composite material maintains its structure, and the surface of each of the carbon nanotube tubes 22 in the carbon nanotube structure 12 is coated with a conductive material layer 226. There is a gap between the nano-tubes 2 2 of the porous 'T' carbon nanotube composite material coated with the conductive material layer 2 2 6 , and therefore, the porous nano-tube tube gas house material has a plurality of micro-packages Hole 225. The pores 225 have a pore diameter of 5 μm or less. The conductive material layer 226 may be a conductive polymer layer, and the conductive polymer layer may be one or more of polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, and polyparaphenylene ethylene. The thickness of the conductive polymer layer is preferably between 30 nm and 150 nm. In the present embodiment, the thickness of the conductive polymer layer is from 50 nm to 90 nm. The conductive polymer layer preferably has a mass percentage of 20% to 80% in the composite film composed of the carbon nanotube and the conductive polymer material. In this embodiment, the conductive polymer layer is a polyaniline layer, and the conductive polymer layer is coated on the surface of the disordered carbon nanotube network structure. The polystyrene has a relatively high dielectric constant, so the porous carbon nanotube composite also has a high dielectric constant, so that the tip 120 composed of the porous carbon nanotube composite material has a better contact with the touch screen. Large capacitance. The material of the conductive material layer 226 may also be an elemental metal or a metal alloy, and the elemental metal may be copper, silver or gold. The form of the conductive material layer 226 is compiled from 0 to 10 pages. Page 92 0992080311-0 [0037] 201227428 The thickness is 1 ~ 20 nm. In the present embodiment, the material of the conductive material layer 2 26 is silver and has a thickness of about 5 nm. Alternatively, a wetting layer may be further included between the carbon nanotube 22 and the conductive material layer 226. The wetting layer functions to better bond the layer of conductive material 226 to the carbon nanotubes 22. The material of the wetting layer may be a metal such as nickel, palladium or titanium which is wettable with the carbon nanotube 22 or an alloy thereof, and the wetting layer has a thickness of 1 to 10 nm. Alternatively, in order to better bond the wetting layer and the conductive material layer 226, a transition layer may be further included between the wetting layer and the conductive material layer. The material of the transition layer may be a material which can be well combined with the material of the wetting layer and the material of the conductive layer, and the thickness of the transition layer is 1 to 10 nm. [0040] In the carbon nanotube composite layer, after the carbon nanotube structure 12 is combined with the conductive material, the porous carbon nanotube composite material has better electrical conductivity and transmits charge at the time of contact with the touch screen. Faster, therefore, the reaction speed of the touch screen stylus 10 can be increased. Since the porous carbon nanotube composite layer includes a plurality of micropores 225, the porous carbon nanotube composite material has a large specific surface area, so that the electrostatic charge transmitted by the user's hand can be stored more, thereby When the touch screen is in contact, a large contact capacitance can be generated, so that the sensitivity of the touch screen can be improved. [0041] It can be understood that the touch material layer 152 of the pen tip 120 of the first embodiment of the present invention may also be composed of a pure carbon nanotube. The touch material layer 125 on the surface of the tip 120 may be formed by wrapping the above-described carbon nanotube structure 12 on the surface of the body 124. Specifically, the carbon nanotube structure 12 may be wound around the outer surface of the body 124 and bonded to the body 124 by an adhesive at 099146743 Form No. 1010101 Page 18/56 Page 0992080311-0 201227428 The rice bran structure 1 2 at least partially covers the fixing portion 1 22 j and is electrically connected to the pen # 11Q. Since the nano-carbon nanotube structure U has a large specific surface area, the carbon nanotube structure has a higher ratio than the above table. When the carbon nanotube structure 12 is in contact with the Na-screen, °' Producing a large contact capacitance makes the stylus 1 〇 have higher sensitivity. In addition, the carbon nanotubes are smoother and have a smaller coefficient of friction, which does not cause damage to the touch screen. [0042] 触 Ο μ Referring to FIG. 20' The touch material layer 125 may also be composed of a graphite thin-layered "material" formed by dispersing graphite: 28 in the material of the flexible polymer matrix 24. The stone lion 28 is uniformly dispersed in the flexible high molecular soil 24. In the graphene polymer composite material, the flexible graphite matrix may also be readable, thereby exposing the surface of the touch material layer 125. The volume percentage of the graphite thinner 28 in the flexible 1±two-blade base 24 is 丨(10)^ to 6〇%. Referring to Fig. 21', the graphite thin 28 series is a lamellar structure composed of a plurality of six-membered ring carbon atoms. The thickness of the graphene 28 is 100 nm or less, and the thickness of the graphene 28 in the present embodiment is 0.5 nm to 1 nm. Graphene 28 has good electrical conductivity and it delivers electrons very rapidly at room temperature. Graphene 28 also has a large specific surface area and is flexible. Therefore, the graphene polymer composite material composed of the graphene 28 and the flexible polymer matrix 24 also has a large specific surface area and conductivity. Therefore, the tip 120 formed of the above material is also compared with the capacitance per unit area formed by the touch panel. Large, and has good conductivity, the tip 12 〇 has higher sensitivity. [0043] In the present embodiment, the raw material of the graphene 28 is prepared by a chemical dispersion method. 099146743 Form No. 1010101 Page 19 of 56 0992080311-0 201227428 Chemical Dispersion Method Mix the graphite oxide with water in a ratio of 1 mg : 1 mL, shake it with ultrasonic waves until the solution is clear and free of particulate matter, and add an appropriate amount of 肼 at 100 After refluxing for 24 h at ° C, a black granular precipitate was produced, and the graphene powder was obtained by filtration and drying. The pen tip 120 composed of the graphene polymer composite material composed of the dispersed graphene 28 disposed in the flexible polymer matrix 24 may have a portion of the graphene 28 outcrops from the outer surface of the pen tip to better contact the touch screen. Moreover, the graphene 28 is relatively smooth and has a small friction coefficient, and does not cause damage to the screen of the touch screen during use. Referring to FIG. 22, the touch material layer 125 in the first embodiment of the present invention may be formed by covering the surface of the flexible polymer substrate 24 with the graphene layer 28 to form a graphene layer 280. The graphene layer 280 has a thickness of from 100 nanometers to 1 micrometer. The graphenes 28 in the graphene layer 280 may be arranged in an overlapping manner, juxtaposed, or overlapped with each other. Graphene has good electrical conductivity and it delivers electrons very quickly at room temperature. The graphene layer 280 has a thickness of a single layer of graphene to a thickness of 1 mm. In this embodiment, a graphene material is prepared by a chemical dispersion method. The chemical dispersion method mixes graphite oxide and water in a ratio of 1 mg: 1 mL, and oscillates with ultrasonic waves until the solution is clear and free of particulate matter. After adding an appropriate amount of hydrazine at 100 ° C for 24 hours, a black granular precipitate is produced, which is filtered and dried. Graphene powder. After the graphene 28 is obtained, the flexible polymer matrix 24 is placed in the graphene powder. Since the graphene 28 is a nano material, it has a certain adhesion and can adhere to the surface of the flexible polymer matrix 24 to form. Graphene layer 280. It can be understood that the graphite thinner 28 can also be fixed to the surface of the flexible polymer matrix 24 by a binder to form the graphene layer 280. [0045] It can be understood that the touch material layer 125 can also be covered by the graphene 28 straight 099146743 form number A0101 page 20 / 56 page 0992080311-0 201227428 to cover the graphite thin material formed on the surface of the body 124 Layer composition. The layer of the graphene material has a thickness of from 100 nm to 1 μm. The graphene in the graphene layer may be arranged in an overlapping manner, juxtaposed, or overlapped with each other. Graphene has good electrical conductivity and it delivers electrons very quickly at room temperature. The thickness of the graphene is from 0.5 nm to 100 nm. Referring to FIG. 23, a second embodiment of the present invention provides a stylus 200 that includes a pen holder 110 and a pen tip 220. The main difference between the embodiment and the stylus 100 of the first embodiment is that the stylus pen 220 is a solid core structure composed of the same material. The material of the tip 22〇 may be selected from any material other than pure graphene in the material constituting the touch material layer 125 in the first embodiment, and the specific material of the touch material layer 125 may be referred to the first embodiment. Detailed record, no more details here.

[0047] G 當本發明第二實施例中的觸控筆2Q()的筆頭娜為純奈求 碳管組成時,其可以採用,模的方法氣成。具體地,可 將第一實施例中的奈米碳管結構12作為原材料,放置於 -模具中-將其熱壓成型’從而獲得—種由純奈米碳管 組成的筆頭220。由於所述奈米碳管結構12係由複數奈米 碳管通過凡得瓦力相互連接形成的完整結構並且還包 括大量的微孔。因此,採用純奈米碳管組成的筆頭也包 括大量的微孔。由於奈米碳管具有很好的導電性,以及 柔性’使得該筆頭220也具有較好的導電性和柔性。筆頭 220存在大量的微孔’微孔的直經小於1〇微米從而使得 該筆頭220具有較大的筆表面積,從而能夠存铸更多的電 099146743 表單編號A0101 第21頁/共56頁 0992080311-0 201227428 荷’具有較大的電容。另外’為了提高筆頭22q到筆桿 U〇之間料電能力’還可以㈣錢奈米碳管纟且成的筆 頭220中的奈米碳管沿著筆頭22〇向筆 > 件11 〇的方向,也 就係筆桿110的轴向排列,由於夸半維一 灭官的軸向具有較高 的導電性’從而該筆頭220向筆桿11()沾+ 的方向上具有較高 的導電性,從而該筆頭220具有更好的回應速度。所述夺 米碳管可以為單壁,雙壁或多壁奈米碳管,優選為多壁 奈米礙管。 [0048] [0049] 請參見圖24,本實施例中,該筆頭220的形狀除了第一實 施例中所述的任-雜外,射以通料料電材料组 裝成毛筆形狀。所述毛筆狀筆糊的材料可為複數奈米 碳管線狀結構25彙集成束狀形成。所述複數奈米碳其線 狀結構25可以通過枯結劑相互枯在一起形成所述筆=22〇 。所述筆頭220具有一個固定部222,以及—個觸碰部 224。所述固定部222用於固定所述筆頭220於筆桿11〇 觸碰部224用於接觸觸摸屏。 .. - .... : -ί· 具體地,上述每個:奈米碳管線狀結.構25都有'-個固定端 252,以及一個與所述固定端252遠離的觸碰端254。所 述複數奈米碳管線狀結構25的固定端252都相互對齊並通 過粘結劑粘附在一起,從而形成所述固定部222。所述複 數奈米碳管線狀結構25的長度分佈具有一定的規律,由 筆頭220的中心轴沿著筆頭的半徑向外,依次減小。上述 分佈規律保證了筆頭為毛筆形狀。所述複數奈米碳管線 狀結構25遠離固定端252的部分為觸碰端254,複數奈米 碳管線狀結構2 5的觸碰端2 5 4通過粘結劑粘附在—起後开^ 099146743 表單編號Α0101 第22頁/共56頁 0992080311-0 201227428 成筆頭220的觸碰部224。本實施例中,所述筆頭22〇的 固定部222直接***筆桿11()固定端U4,並通過導電枯 結劑將筆頭220粘附在筆桿11〇的固定端丨丨咎^ [0050] Ο[0047] When the stylus pen 2Q() of the second embodiment of the present invention is composed of a pure carbon tube, it can be formed by a method of molding. Specifically, the carbon nanotube structure 12 of the first embodiment can be placed as a raw material in a mold - which is thermoformed to obtain a tip 220 composed of a pure carbon nanotube. Since the carbon nanotube structure 12 is a complete structure formed by interconnecting a plurality of carbon nanotubes by van der Waals force and also includes a large number of micropores. Therefore, the tip made of pure carbon nanotubes also includes a large number of micropores. Since the carbon nanotube has good electrical conductivity and flexibility, the tip 220 also has good electrical conductivity and flexibility. The pen tip 220 has a large number of micropores. The micropores are less than 1 micron in diameter, so that the pen tip 220 has a larger pen surface area, so that more electricity can be cast. 099146743 Form No. A0101 Page 21 of 56 0992080311- 0 201227428 The load has a large capacitance. In addition, in order to improve the power supply capability between the writing head 22q and the pen holder U〇, it is also possible to (4) the carbon nanotubes of the carbon nanotubes and the carbon nanotubes in the pen head 220 are oriented along the pen head 22 toward the pen > That is, the axial arrangement of the sheath 110 is high in conductivity in the direction of the pen tip 11 () due to the high conductivity in the axial direction of the pendulum. The pen tip 220 has a better response speed. The carbon nanotubes may be single-walled, double-walled or multi-walled carbon nanotubes, preferably multi-walled nano-tubes. [0049] Referring to FIG. 24, in the present embodiment, the shape of the pen tip 220 is assembled into a brush shape in addition to the materials described in the first embodiment. The material of the brush-like pen paste may be formed by assembling a plurality of carbon-carbon line-like structures 25 into a bundle. The plurality of nanocarbons have a linear structure 25 which can be dried together by a binder to form the pen = 22 〇. The pen tip 220 has a fixing portion 222 and a contact portion 224. The fixing portion 222 is for fixing the pen head 220 to the pen holder 11 触 contact portion 224 for contacting the touch screen. .. - .... : - ί · Specifically, each of the above: the carbon carbon line junction. The structure 25 has a '- fixed end 252, and a touch end 254 away from the fixed end 252 . The fixed ends 252 of the plurality of nanocarbon line-like structures 25 are aligned with each other and adhered together by an adhesive to form the fixing portion 222. The length distribution of the plurality of nanocarbon line-like structures 25 has a certain regularity, and the central axis of the pen tip 220 is outwardly decreased along the radius of the pen tip. The above distribution rule ensures that the writing head is in the shape of a brush. The portion of the plurality of carbon-carbon line-like structures 25 away from the fixed end 252 is the touch end 254, and the touch end of the plurality of carbon-carbon line-like structures 25 is adhered by the adhesive. 099146743 Form No. 1010101 Page 22 of 56 0992080311-0 201227428 The touch portion 224 of the writing head 220. In this embodiment, the fixing portion 222 of the pen head 22 is directly inserted into the fixed end U4 of the pen holder 11 and adheres the pen tip 220 to the fixed end of the pen holder 11 by a conductive drying agent. [0050]

G 該奈米碳管線狀結構25可以為圖17中的非扭轉的奈求碳 管線’或’中的扭轉的奈米碳H該奈米碳管線狀 結構25還可以為在上述非扭轉的奈米碳管線和扭轉的奈 米碳管線的基礎上形成的奈米碳管複合線。該奈米碳管 複合線為聚合物材料滲入奈米碳管線的奈米碳管之間的 間隙中組成,所述聚合物可包括聚丙烯腈(p〇iyac — rylonitrile,PAN)、聚乙烯醇(p〇lyvinyi Μ, h〇l,PVA)、聚丙烯(p〇iypr〇pylene,pp)、聚苯 乙烯(Polystyrene,PS)、聚氣乙烯(p〇lyviny卜 chlorid,PVC)及聚對苯二甲酸乙二酶(p〇lyethyl_ ene terephthalate,PET)中的任意一種或任意組合 。上述奈米碳管複合線的製備方法可以參看參見范守善 等人於民國99年7月9日申請的,申請號為991 22581號台 灣專利申請“奈米碳管複合結構的製備方法,,,申請人 :鴻海精密工業股份有限公司。為節省篇幅,僅引用於 此’但上述申請所有技術揭露也應視為本發明申請技術 揭露的一部分。 [0051] 另外’上述奈米碳管複合線還可以為奈米碳管具有扭轉 或者非扭轉結構的奈米碳管金屬複合線,該奈米碳管金 屬複合線為在上述非扭轉的奈米碳管線和扭轉的奈米碳 管線的基礎上形成的奈米碳管金屬複合線,上述奈米碳 管金屬複合線中的奈米碳管的排列趨勢與所述非扭轉的 099146743 表單編號A0101 第23頁/共56頁 0992080311-0 201227428 奈米$炭管線和扭轉的奈米碳管線相同,全部奈米碳管或 者部分奈米碳管的表面包覆有金屬材料層。上述奈米碳 管金屬複合線的結構以及製備方法可以參看范守善等人 於民國97年月7日申請,民國98年9月16日公開的,公開 號為200939249的台灣專利申請“絞線的製備方法”, 申請人:鴻海精密工業股份有限公司。還可以參看范守 善等人於民國97年3月07日申請的,民國98年9月16日公 開的,公開號為200938481的台灣專利申請“絞線”, 申請人:鴻海精密工業股份有限公司,僅引用於此,但 上述申請所揭露的技術内容也應視為本發明申請技術揭 露的一部分。 [0052] 請參見圖25,本發明第三實施例提供一種觸控筆300,該 觸控筆300包括筆桿110以及筆頭320。本實施例與第一 實施例的主要區別在於,所述筆頭320為同一種材料構成 的空心結構。該筆頭320具有一個固定部322以及一個觸 碰部324。所述固定部322用於將筆頭320固定於所述筆 桿110,所述觸碰部324用於接觸觸摸屏。 [0053] 所述固定部322和所述觸碰部324可以一體成型組成所述 筆頭320。所述固定部322為外表面設有外螺紋,其外螺 紋正好與所述筆桿110的固定端114的内螺紋相匹配,從 而可以將筆頭120固定於筆桿110的固定端114。所述觸 碰部324為柔性導電材料圍成,觸碰部324定義一個封閉 空間32 6。所述柔性導電材料環繞該封閉空間326形成一 個中空的觸碰部324。該觸碰部324的形狀不限,可以根 據實際需要設計,可以為球狀,錐狀,圓臺狀等等。本 099146743 表單編號A0101 第24頁/共56頁 0992080311-0 201227428 [0054] [0055] Ο [0056]G The nanocarbon line-like structure 25 may be a twisted nanocarbon H in the non-twisted carbon line ' or ' in FIG. 17 . The nano carbon line structure 25 may also be in the above-mentioned non-twisted nai A carbon nanotube composite line formed on the basis of a carbon carbon pipeline and a twisted nanocarbon pipeline. The carbon nanotube composite wire is composed of a polymer material infiltrated into a gap between carbon nanotubes of a carbon carbon line, and the polymer may include polyacrylonitrile (p〇iyac-rylonitrile, PAN), polyvinyl alcohol. (p〇lyvinyi Μ, h〇l, PVA), polypropylene (p〇iypr〇pylene, pp), polystyrene (PS), polystyrene (p〇lyviny chlorid, PVC) and polyparaphenylene Any one or any combination of p〇lyethyl_ene terephthalate (PET). For the preparation method of the above-mentioned carbon nanotube composite line, refer to Fan Shoushan et al., filed on July 9, 1999 in the Republic of China, application No. 991 22581, Taiwan Patent Application "Preparation method of nano carbon tube composite structure,,, application Person: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited. However, all the technical disclosures of the above application should also be regarded as part of the technical disclosure of the present application. [0051] In addition, the above-mentioned carbon nanotube composite wire can also be a carbon nanotube metal composite wire having a twisted or non-twisted structure for a carbon nanotube, the carbon nanotube metal composite wire being formed on the basis of the above-mentioned non-twisted nano carbon pipeline and twisted nanocarbon pipeline Nano carbon tube metal composite wire, the arrangement trend of the carbon nanotubes in the above-mentioned carbon nanotube metal composite wire and the non-twisted 099146743 Form No. A0101 Page 23 / Total 56 Page 0992080311-0 201227428 Nano $ charcoal The pipeline is the same as the twisted nanocarbon pipeline, and the surface of all the carbon nanotubes or part of the carbon nanotubes is coated with a metal material layer. The structure of the above-mentioned carbon nanotube metal composite wire is For the preparation method, please refer to the application of Fan Shoushan et al. on the 7th of the Republic of China on the 7th of the Republic of China, published on September 16, 1998, the Taiwan Patent Application No. 200939249, the preparation method of the stranded wire. Applicant: Hon Hai Precision Industry Co., Ltd. The company can also refer to the application of Fan Shoushan and others in the Republic of China on March 07, 1997. The Taiwan patent application “Twisted Line” published on September 16, 1998, with the publication number 200938481, applicant: Hon Hai Precision Industry Co., Ltd. The company is only referred to herein, but the technical content disclosed in the above application is also considered to be part of the disclosure of the present application. [0052] Referring to FIG. 25, a third embodiment of the present invention provides a stylus 300, the touch The control pen 300 includes a pen holder 110 and a pen tip 320. The main difference between the present embodiment and the first embodiment is that the pen tip 320 is a hollow structure of the same material. The pen tip 320 has a fixing portion 322 and a touch portion 324. The fixing portion 322 is for fixing the pen head 320 to the pen holder 110, and the touch portion 324 is for contacting the touch screen. [0053] the fixing portion 322 and the touch The 324 may be integrally formed to form the pen tip 320. The fixing portion 322 is provided with an external thread for the outer surface, and the external thread is just matched with the internal thread of the fixed end 114 of the pen holder 110, so that the pen tip 120 can be fixed to the pen holder. The fixed end 114 of the 110. The touch portion 324 is surrounded by a flexible conductive material, and the contact portion 324 defines a closed space 32. The flexible conductive material surrounds the closed space 326 to form a hollow contact portion 324. The shape of the touch portion 324 is not limited, and may be designed according to actual needs, and may be spherical, tapered, rounded, etc. This 099146743 Form No. A0101 Page 24 / Total 56 Page 0992080311-0 201227428 [0054] [0055 ] Ο [0056]

[0057] [0058] [0059] [0060] 099146743 實施例中,構成所述筆頭320的固定部322以及觸碰部 324的柔性導電材料與第一實施例中的觸碰材料層125的 材料完全相同。所述觸碰材料層125的具體材料已經在第 一實施例中得到了詳細的記載,這裏不再贅述。 另外,所述筆頭320的封閉空間326中還可以加入具有較 高介電常數的液體,如水、離子溶液。用於提高所述筆 頭320的觸控部324的電容。 與先前技術比較,由於奈米碳管具有非常好的導電性、 較大的比表面積以及較好的柔性,使得本發明觸控筆的 筆頭與電容式觸摸屏接觸時,在單位接觸面積上的接觸 電容較大,具有較高的靈敏度。另外,由於奈米碳管比 金屬的摩擦係數更小,所以該筆頭不易損傷觸摸屏。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施例提供的觸控筆的結構示意圖。 圖2為本發明第一實施例提供的觸控筆的筆桿的結構示意 圖。 圖3為本發明第一實施例觸控筆的筆頭的的剖示圖。 圖4為本發明第一實施例觸控筆的空心結構的筆頭的示意 圖。 表單編號Α0101 第25頁/共56頁 0992080311-0 201227428 [0061] 圖5為本發明第一實施例的觸控筆的具有螺旋帶狀觸碰材 料層的筆頭的結構示意圖。 [0062] 圖6為本發明第一實施例提供的觸控筆的筆頭使用的奈米 碳管高分子複合材料的示意圖。 [0063] 圖7為本發明第一實施例提供的觸控筆的筆頭所使用的一 種具有奈米碳管結構的奈米碳管複合材料的結構示意圖 〇 [0064] 圖8為本發明第一實施例提供的觸控筆的筆頭所使用的另 一種具有奈米碳管結構的奈米碳管複合材料的結構示意 圖。 [0065] 圖9為本發明第一實施例提供的觸控筆的筆頭所使用的奈 米碳管拉膜的掃描電鏡照片。 [0066] 圖10為圖8中的奈米碳管結構為奈米碳管陣列時,觸控筆 的筆頭的觸碰材料層的結構示意圖。 [讎7] 圖11為奈米碳管陣列中的奈米碳管露出柔性高分子基體 的表面的觸碰材料層的結構'示意圖。 [0068] 圖12為本發明第一實施例提供的觸控筆的筆頭所使用的 一種奈米碳管絮化膜的掃描電鏡照片。 [0069] 圖13為本發明第一實施例提供的觸控筆的筆頭所採用的 一種包括沿同一方向擇優取向排列的奈米碳管的奈米碳 管碾壓膜的掃描電鏡照片。 [0070] 圖14為本發明第一實施例提供的觸控筆的筆頭所使用的 另一種包括沿不同方向擇優取向排列的奈米碳管的奈米 099146743 表單編號A0101 第26頁/共56頁 0992080311-0 201227428 [0071] [0072] [0073] Ο [0074] [0075] [0076] G [0077] [0078] [0079] [0080] 碳管碾壓膜的掃描電鏡照片。 圖1 5係本發明第一實施例提供的觸控筆的筆頭所使用複 數根平行設置奈米碳管線形成的奈米碳管結構設置於柔 性高分子基體表面形成的觸碰材料層的示意圖。 圖16係本發明第一實施例的觸控筆的筆頭所使用複數根 交叉設置奈米碳管線形成的奈米碳管結構設置於柔性高 分子基體表面形成的觸碰材料層的示意圖。 圖17為本發明第一實施例提供的觸控筆的筆頭所使用的 一種非扭轉的奈米碳管線的掃描電鏡照片。 圖18為本發明第一實施例提供的觸控筆的筆頭所使用的 一種扭轉的奈米碳管線的掃描電鏡照片。 圖19為本發明第一實施例提供的觸控筆的筆頭使用的由 奈米碳管和導電材料形成的多孔奈米碳管複合材料的結 構示意圖。 圖20為本發明第一實施例提供的觸控筆的筆頭使用的石 墨烯高分子複合材料的結構示意圖。 圖21為本發明第一實施例提供的觸控筆的筆頭所使用的 石墨稀的結構不意圖。 圖22為本發明第一實施例提供的觸控筆的觸碰材料層的 一種結構示意圖。 圖23為本發明第二實施例的觸控筆的結構示意圖。 圖24為本發明第二實施例的觸控筆的筆頭的結構示意圖 099146743 表單編號A0101 第27頁/共56頁 0992080311-0 201227428 [0081] 圖25為本發明第三實施例的觸控筆的結構示意圖。 【主要元件符號說明】 [0082] 觸控筆:100,200,300, [0083] 奈米碳管結構:12 [0084] 筆桿:110 [0085] 固定端:11 4 [0086] 筆頭:120,220,320, [0087] 支撐體:121 [0088] 固定部:122,222,322 [0089] 主體:124 [0090] 觸碰材料層:125 [0091] 封閉空間:126,326 [0092] 奈米碳管:22 [0093] 柔性高分子基體:24 [0094] 奈米碳管線狀結構:25 [0095] 石墨烯:28 [0096] 奈米碳管線:152 [0097] 觸碰部:224,324 [0098] 微孔:22 5 099146743 表單編號A0101 第28頁/共56頁 0992080311-0 201227428 [0099] [0100] [0101] [0102] 導電材料層:226 固定端:252 觸碰端:254 石墨烯層:280 Ο ❹ 099146743 表單編號Α0101 第29頁/共56頁 0992080311-0[0060] [0060] In the embodiment, the flexible conductive material constituting the fixing portion 322 of the pen tip 320 and the touch portion 324 and the material of the touch material layer 125 in the first embodiment are completely completed. the same. The specific material of the touch material layer 125 has been described in detail in the first embodiment and will not be described again. In addition, a liquid having a relatively high dielectric constant such as water or an ionic solution may be added to the enclosed space 326 of the pen tip 320. It is used to increase the capacitance of the touch portion 324 of the pen tip 320. Compared with the prior art, since the carbon nanotube has very good electrical conductivity, large specific surface area and good flexibility, the contact of the tip of the stylus pen of the present invention with the capacitive touch screen is in contact with the unit contact area. Large capacitance and high sensitivity. In addition, since the carbon nanotube has a smaller coefficient of friction than metal, the tip is less likely to damage the touch screen. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a stylus according to a first embodiment of the present invention. FIG. 2 is a schematic structural view of a pen holder of a stylus according to a first embodiment of the present invention. 3 is a cross-sectional view showing a tip of a stylus according to a first embodiment of the present invention. Fig. 4 is a schematic view showing a writing head of a hollow structure of a stylus according to a first embodiment of the present invention. Form No. Α0101 Page 25 of 56 0992080311-0 201227428 [0061] FIG. 5 is a schematic structural view of a stylus having a spiral strip-shaped touch material layer according to a first embodiment of the present invention. 6 is a schematic view of a carbon nanotube polymer composite material used in a tip of a stylus according to a first embodiment of the present invention. 7 is a schematic structural view of a carbon nanotube composite material having a carbon nanotube structure used in a tip of a stylus according to a first embodiment of the present invention. [0064] FIG. 8 is the first embodiment of the present invention. A schematic structural view of another carbon nanotube composite material having a carbon nanotube structure used in the tip of the stylus provided by the embodiment. 9 is a scanning electron micrograph of a carbon nanotube film used in a tip of a stylus according to a first embodiment of the present invention. 10 is a schematic structural view of a touch material layer of a stylus pen when the carbon nanotube structure of FIG. 8 is a carbon nanotube array. [Fig. 11] Fig. 11 is a schematic view showing the structure of a contact material layer in which a carbon nanotube in a carbon nanotube array exposes a surface of a flexible polymer substrate. 12 is a scanning electron micrograph of a carbon nanotube flocculation film used in the tip of a stylus according to a first embodiment of the present invention. 13 is a scanning electron micrograph of a carbon nanotube rolled film comprising a carbon nanotube arranged in a preferred orientation in the same direction, which is used in the tip of the stylus according to the first embodiment of the present invention. [0070] FIG. 14 is another nanometer 099146743 used in the tip of the stylus according to the first embodiment of the present invention, including the carbon nanotubes arranged in different directions. Form No. A0101 Page 26 of 56 0992080311-0 201227428 [0073] [0073] [0075] [0078] [0078] [0080] [0080] A scanning electron micrograph of a carbon tube rolled film. Fig. 15 is a schematic view showing a layer of a touch material formed on a surface of a flexible polymer substrate by using a plurality of carbon nanotube tubes formed by parallelly disposed nanocarbon tubes in a tip of a stylus according to a first embodiment of the present invention. Fig. 16 is a schematic view showing a layer of a touch material formed on a surface of a flexible polymer substrate by a plurality of carbon nanotube tubes formed by a cross-setting nanocarbon line of a stylus according to a first embodiment of the present invention. Figure 17 is a scanning electron micrograph of a non-twisted nanocarbon pipeline used in the tip of a stylus according to a first embodiment of the present invention. Figure 18 is a scanning electron micrograph of a twisted nanocarbon line used in the tip of a stylus according to a first embodiment of the present invention. Fig. 19 is a schematic view showing the structure of a porous carbon nanotube composite material formed of a carbon nanotube and a conductive material used in the tip of the stylus pen according to the first embodiment of the present invention. 20 is a schematic structural view of a graphite polymer composite material used in a tip of a stylus according to a first embodiment of the present invention. Fig. 21 is a schematic view showing the structure of the graphite thin used in the tip of the stylus pen according to the first embodiment of the present invention. FIG. 22 is a schematic structural diagram of a touch material layer of a stylus according to a first embodiment of the present invention. FIG. 23 is a schematic structural diagram of a stylus according to a second embodiment of the present invention. Figure 24 is a schematic view showing the structure of a stylus pen according to a second embodiment of the present invention. 099146743 Form No. A0101 Page 27 of 56 0992080311-0 201227428 [0081] FIG. 25 is a stylus of a third embodiment of the present invention Schematic. [Main component symbol description] [0082] Stylus: 100,200,300, [0083] Nano carbon tube structure: 12 [0084] Pen holder: 110 [0085] Fixed end: 11 4 [0086] Note: 120, 220,320, [0087] Support: 121 [0088] Fixing portion: 122, 222, 322 [0089] Main body: 124 [0090] Touching material layer: 125 [0091] Closed space: 126, 326 [0092] Carbon tube: 22 [0093] Flexible polymer matrix: 24 [0094] Nano carbon line structure: 25 [0095] Graphene: 28 [0096] Nano carbon line: 152 [0097] Touch: 224, 324 [0098] Micropores: 22 5 099146743 Form No. A0101 Page 28 / Total 56 Page 0992080311-0 201227428 [0100] [0102] [0102] Conductive material layer: 226 Fixed end: 252 Touch end: 254 Graphene layer: 280 Ο ❹ 099146743 Form number Α 0101 Page 29 / Total 56 page 0992080311-0

Claims (1)

201227428 七、申晴專利範圍: 種觸控筆’包括筆桿和筆頭,所述筆頭具有柔性及導電 所述筆頭使用時與觸摸屏之間形成接觸電容,其改良 在於’所述筆頭為由複數奈米碳管⑽成的束狀結構。 .如申:專利犯圍第!項所述的觸控筆其中,所述複數奈 乂反S線均具有―個固定端以及—遠離所述固定端的觸碰 端。 3.如申請專利範圍第2項所述的觸控筆,其中’所述複數奈 米碳管線的固定端相互對齊並通過枯結劑枯附在一起,形 成一個固定部。 .如申明專利範圍第3項所述的觸控筆,其中,所述複數奈 米碳管線的長度分佈,由筆頭的中心軸沿著筆頭的棟向 外依次減小。 5.如申凊專利範圍第4項所述的觸控筆,其中,所述筆頭為 毛筆形狀。 .如申咐專利範圍第3項所述的游控筆,其中,所述筆頭通 與所述筆頭電連接。 7. 2申請專利範圍第㈣所述的觸控筆,其中,所述奈米碳 管線為複數奈米碳管通過凡得瓦力首尾相連組成。 如申叫專利範圍第7項所述的觸控筆,其中,所述複數奈 米碳管繞所述奈米碳管線的轴向螺旋排列。 9 .如申料利範圍第7項所述的觸控筆,其中,所述複數奈 米礙官平行於所述奈米碳管線的長度方向排列。 10.如申請專利範圍第W所述的觸控筆,其中,所述筆桿為 099146743 表單編號A0101 第3〇頁/共56頁 0992080311-0 201227428 11 . 12 . 13 . Ο 14 . 金屬材料製成的空心詞狀結構。 如申請專利範圍第10項所述的觸控筆,其中,所述筆桿具 有一固定端,固定端内部設置有内螺紋,所述筆頭通過所 述内螺紋固定於所述固定端。 一種觸控筆,包括筆桿和筆頭,所述筆頭具有柔性及導電 性,所述筆頭使用時與觸摸屏之間形成接觸電容,其改良 在於,所述筆頭為由複數奈米碳管複合線組成的束狀結構 〇 如申請專利範圍第12項所述的觸控筆,其中,所述奈米碳 管複合線為聚合物材料滲入奈米碳管線的奈米碳管之間的 間隙中組成。 如申請專利範圍第12項所述的觸控筆,其中,所述奈米碳 管複合線為奈米碳管金屬複合線。 Ο 099146743 表單編號Α0101 第31頁/共56頁 0992080311-0201227428 VII, Shen Qing patent range: A stylus 'includes a pen and a pen tip, the pen tip has flexibility and conductivity. The tip of the pen forms a contact capacitance with the touch screen when used, and the improvement is that the pen tip is composed of a plurality of nanometers. The carbon tube (10) has a bundle structure. Such as Shen: Patent guilty! In the stylus of the above aspect, the plurality of inverted S lines each have a fixed end and a touch end away from the fixed end. 3. The stylus according to claim 2, wherein the fixed ends of the plurality of carbon nanotubes are aligned with each other and adhered together by a binder to form a fixing portion. The stylus according to claim 3, wherein the length distribution of the plurality of carbon nanotubes is sequentially decreased from the central axis of the pen tip to the outer side of the pen tip. 5. The stylus according to claim 4, wherein the pen tip is in the shape of a brush. The travel pen according to the third aspect of the invention, wherein the pen tip is electrically connected to the pen tip. 7. The stylus according to the fourth aspect of the invention, wherein the nano carbon pipeline is composed of a plurality of carbon nanotubes connected end to end by a van der Waals force. The stylus according to claim 7, wherein the plurality of carbon nanotubes are spirally arranged around the axial direction of the nanocarbon line. 9. The stylus according to claim 7, wherein the plurality of nanometers are arranged parallel to the length direction of the nanocarbon line. 10. The stylus according to claim W, wherein the pen is 099146743 Form No. A0101 Page 3/56 pages 0992080311-0 201227428 11 . 12 . 13 . Ο 14 . Made of metal material Hollow word structure. The stylus according to claim 10, wherein the pen has a fixed end, and the fixed end is internally provided with an internal thread, and the pen tip is fixed to the fixed end by the internal thread. A stylus pen includes a pen holder and a pen tip, wherein the pen tip has flexibility and conductivity, and the pen tip forms a contact capacitance with the touch screen when used, and the improvement is that the pen tip is composed of a plurality of carbon nanotube composite wires. The stylus according to claim 12, wherein the carbon nanotube composite wire is composed of a polymer material infiltrated into a gap between the carbon nanotubes of the carbon nanotube line. The stylus according to claim 12, wherein the carbon nanotube composite wire is a carbon nanotube metal composite wire. Ο 099146743 Form number Α0101 Page 31 of 56 0992080311-0
TW99146743A 2010-12-30 2010-12-30 Touch pen TWI438654B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99146743A TWI438654B (en) 2010-12-30 2010-12-30 Touch pen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99146743A TWI438654B (en) 2010-12-30 2010-12-30 Touch pen

Publications (2)

Publication Number Publication Date
TW201227428A true TW201227428A (en) 2012-07-01
TWI438654B TWI438654B (en) 2014-05-21

Family

ID=46933250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99146743A TWI438654B (en) 2010-12-30 2010-12-30 Touch pen

Country Status (1)

Country Link
TW (1) TWI438654B (en)

Also Published As

Publication number Publication date
TWI438654B (en) 2014-05-21

Similar Documents

Publication Publication Date Title
CN102023729B (en) Touch control pen
JP5680730B2 (en) Touch pen
CN102053740B (en) Stylus
JP5491448B2 (en) Touch pen
TWI420354B (en) Touch pen
TW201227428A (en) Touch pen
TWI459245B (en) Touch pen
CN102053733B (en) Stylus
TWI420352B (en) Touch pen
TWI505143B (en) Touch pen
CN102053734B (en) Stylus
TWI507927B (en) Touch pen
TWI420353B (en) Touch pen
TWI468994B (en) Finger-stall for touch panel
TWI426422B (en) Finger-stall for touch panel
TWI510973B (en) Finger-stall for touch panel
CN102096483B (en) Touch control pen
TWI510975B (en) Finger-stall for touch panel
TWI426421B (en) Finger-stall for touch panel
TWI505142B (en) Finger-stall for touch panel
TWI421736B (en) Finger-stall for touch panel