TW201227422A - Finger-stall for touch panel - Google Patents

Finger-stall for touch panel Download PDF

Info

Publication number
TW201227422A
TW201227422A TW99146737A TW99146737A TW201227422A TW 201227422 A TW201227422 A TW 201227422A TW 99146737 A TW99146737 A TW 99146737A TW 99146737 A TW99146737 A TW 99146737A TW 201227422 A TW201227422 A TW 201227422A
Authority
TW
Taiwan
Prior art keywords
finger sleeve
touch screen
finger
carbon nanotube
conductive layer
Prior art date
Application number
TW99146737A
Other languages
Chinese (zh)
Other versions
TWI421736B (en
Inventor
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99146737A priority Critical patent/TWI421736B/en
Publication of TW201227422A publication Critical patent/TW201227422A/en
Application granted granted Critical
Publication of TWI421736B publication Critical patent/TWI421736B/en

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to a finger-stall for touch panel. The finger-stall for touch panel includes a tube and an inputting tip. The inputting tip includes a supporter and a conductive layer. The conductive layer includes a plurality of graphenes. The conductive layer is electrically connected with a finger when the finger-stall for touch panel is used.

Description

201227422 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種觸摸屏輸入指套。 【先前技術】 [0002] 近年來,伴隨著移動電話與觸摸導航系統等各種電子設 備的高性能化和多樣化的發展,在液晶等顯示設備的前 面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電 子設備的使用者通過觸摸屏,一邊對位於觸摸屏背面的 0 顯示設備的顯示内容進行視覺確認,一邊按壓觸摸屏來 進行操作。由此’可以操作電子設備的各種功能。 [〇〇〇3] 對於電容式觸摸屏,需要通過觸摸筆或者手指觸摸螢幕 進行操作。當用手指操作時,手指上的油潰很容易在觸 摸屏上留下印記’弄髒觸摸屏。 【發明内容】 [0004]有鑒於此,確有必要提供一種觸摸屏輸入指套,該觸摸 屏輸入指套在使用時不會破壞觸摸屏。201227422 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a touch screen input finger sleeve. [Prior Art] [0002] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted in front of a display device such as a liquid crystal are gradually increasing. . The user of such an electronic device visually confirms the display content of the 0 display device located on the back of the touch panel through the touch screen, and presses the touch panel to operate. Thus, various functions of the electronic device can be operated. [〇〇〇3] For a capacitive touch screen, you need to touch the screen with a touch pen or a finger to operate. When operating with a finger, the oil on the finger can easily leave a mark on the touch screen 'staining the touch screen. SUMMARY OF THE INVENTION [0004] In view of the above, it is indeed necessary to provide a touch screen input finger cuff that does not damage the touch screen when in use.

Q _5]-種觸摸屏輸人指套,其包括:—手指套筒;一輸入端 ,所述輸入端設置於該手指套筒;其中,所述輸入端包 括-支推體及設置在該支撑體表面的導電層,所述導電 層包括複數個;5 .輯,在使料,所料電層與手指導 電性連接》 _]與先賴《目啸,树明提供的職屏具有以下優點 首先才曰套在使用時,利用輸入端向觸摸屏輸入資訊 不會對觸摸屏造成破壞;其次,由於輸入端與觸摸屏 099146737 表單編號A0101 0992080305-0 201227422 的接觸面積較小,可以靈敏的操作較小的按鍵;再次, 由於該觸摸屏指套在使用時可以套在一個手指上操作, 無需兩隻手同時操作觸摸屏,可以實現一隻手操作觸摸 屏;最後,由於輸入端的材料包括複數個石墨烯,石墨 烯具有較大的比表面積,在與觸摸屏接觸時可以產生較 大的接觸電容,操作靈敏度高。 【實施方式】 [0007] 下面將結合附圖及具體實施例對本發明觸摸屏輸入指套 作進一步的詳細說明。 [0008] 請參見圖1,本發明第一實施例提供一種觸摸屏輸入指套 10,其包括一手指套筒12及一輸入端14,所述輸入端14 與手指套筒12可拆卸的相互連接在一起,整體上呈一端 封閉另一端敞開形態,所述輸入端14位於該封閉端處, 使用時使人的手指能夠與該輸入端14電連接。 [0009] 所述手指套筒12的材料為柔性材料,可以為柔性導電材 料,也可以為柔性絕緣材料。所述柔性絕緣材料包括樹 脂、橡膠、塑膠和柔性纖維。所述柔性導電材料可以為 導電南分子材料’也可以為在柔性絕緣材料中加入金屬 顆粒形成的導電材料。所述手指套筒12為一筒狀結構, 可以係兩端都敞開的,也可以係一端封閉另一端敞開的 。如果手指套筒12的材料為絕緣材料,那麼需要將輸入 端14以與手指能夠接觸的方式安裝在手指套筒12上。當 手指套筒12的兩端敞開狀態下,將輸入端14直接固定在 手指套筒12的一端即可,此時手指可以直接與輸入端14 接觸;當手指套筒12的一端封閉狀態下,需要在封閉端 099146737 表單編號A0101 第4頁/共61頁 0992080305-0 201227422 處開設至少一通孔,將輸入端14設置在該封閉端内壁面 • 或者外壁面上,此時手指可以直接接觸於輸入端14或者 通過該孔接觸於輸入端14。本實施例中,所述手指套筒 12為兩端敞開的,所述手指套筒12係用於將輸入端“固 定在操作觸摸屏的手指上並使手指與輸入端14電連接, 其内徑的大小由手指的粗細決定,一般略小於手指的直 徑,手指套筒12本身具有一定的彈性,可以固定在手指 上。手指套筒12的壁厚可以選擇為〇. j毫米至2毫米。 〇 闺所述輸入端14用於傳導觸摸屏螢幕寒手指之間的電流, 從而使觸摸屏輸入指套10向觸摸屏輸入信號^所述輸入 端14的形狀不限,可以為球形、錐形、擴球形或其他不 規則形狀。所述輸入端14可以通過卡扣、過盈配合等機 械方式或者熱壓、黏結劑等物理化學方式固定於所述手 指套筒12H本實_巾,所錄八賴通過黏結 劑與手指套筒12固定。所述輸入端14按照與手指套仙 的位置關係可以分為第一部分142及第二部分144。所述 Ο 第—部分位於手指套筒12的内部,用於與手指相互接觸 。所述第二部分144位於手指套m2的外部,用於向觸摸 屏輸入信號。所述第-部分142與手指接觸的表面可以呈 有-定的曲面,使使用者的手指的指腹與該曲面接觸時' 具有更好的觸感。所述第二部分144可具有—尖端或凸起 結構,便於操作較小的按鍵。可選擇地,在輸入端"與 手指套筒12相接觸的側面還可以包括_縫隙16,該縫隙 16用於容納手指甲,使人在使用該觸摸屏輸人指套時更 加舒適。 099146737 表單編號A0101 0992080305-0 201227422 [0011] [0012] 本實施例中,所述輸入端14包括一支棣體146及設置於支 撑體146表面的導電層148。支揮體146可以為空心結構 ,也可以為實心結構。所述支撐體146的材料不限,可以 由硬性材料或柔性材料製成。當該支撐體146的材料選擇 硬性材料時,其可以為陶究、玻璃、樹脂、石英、塑膝 等中的一種或幾種。當支撐體146選擇柔性材料時其可 以為樹脂、橡膠、塑勝或柔性纖維等中的—種或幾種。 所述支樓體146還可以為導電高分子材料,導電高分子材 料具有較高的介電常數,用作支擇體146時,可以使輸入 端14本身具有較大的電容。所述導電高分子材料可以為 聚苯胺、聚吡咯或聚噻吩。所述支撐體146還可以為呈有 較高介電常數的液體,如水、離子溶液。當支揮體146採 用液體時,可以使輸人賴具有_定的纽,該觸摸屏 輸入指套1G與聰屏接觸時,不會對螢幕造成劃傷。當 支標體146為空心結構時’可以使該輸入端14的質量較輕 且可以節省材料。當支撐體146的材料為柔性材料時, 輸入端14可以具有一定的柔性,對觸摸屏具有一定的保 護作用’且輪人端14具有的耐彎折性能,可以提高 輸入端14的壽命。同時,由於輸入端14具有一定的柔性 ,可以通過觸摸壓力來控制輸入端14與觸摸屏之間的接 觸面積的大小,從而控制輸入信號。 所述導電層148為由導電材料構成,其作為用於傳導觸摸 屏螢幕與手指之間的電流,從而使觸摸屏輸入指套1〇向 觸摸屏輸入信號。即,使用時,觸摸屏輸入指套10的導 電層148與使用者手指電連接。 099146737 表單編號A0101 第6頁/共61頁 0992080305-0 201227422 [0013] ❹ Ο 所述導電層148可以為一石墨烯層。請參見圖2,石墨烯 係由複數個六元環型的碳原子構成的片層狀結構。石墨 烯覆蓋在支撐體146的表面構成石墨烯層,該石墨烯層中 的石墨烯通過凡得瓦力相互連接。該石墨烯層中的石墨 烯的排列方式可以為相互交疊設置、並列設置或者相互 重合設置。石墨烯具有良好的導電性能,其在室溫下傳 遞電子的速度非常快。所述石墨烯的厚度小於等於100奈 米,本實施例中,石墨烯的厚度為〇. 5奈米至100奈米。 所述石墨烯層的厚度為單層石墨烯的厚度至1毫米。本實 施例中,採用化學分散法製備石墨烯材料。化學分散法 係將氧化石墨與水按照lmg : lmL的比例混合,用超聲波 振盪至溶液清晰無顆粒狀物質,加入適量肼在100°C回流 24h ,產生黑色顆粒狀沉澱,過濾、烘乾即得石墨烯粉 末。制得石墨稀之後,將支撐體14 6放入石墨稀粉末中, 由於石墨烯為奈米材料,本身具有一定的黏附力,可以 黏附在支撐體146的表面,形成導電層148。可以理解, 石墨烯也可以通過黏結劑固定於支撐體146的表面。石墨 烯係奈米材料,具有較高的比表面積,作為導電層148使 用時,導電層148與觸摸屏直接接觸,由於石墨烯的比表 面積較大,可以與觸摸屏之間產生較大的電容,故,可 以使該觸摸屏輸入指套10具有較高的靈敏度。且,石墨 烯較光滑,具有較小的摩擦係數,在使用時不會對觸摸 屏的榮幕造成傷害。 所述導電層148還可以為一奈米碳管結構,該奈米碳管結 構包括複數個均勻分佈的奈米碳管。該奈米碳管可以為 099146737 表單編號A0101 第7頁/共61頁 0992080305-0 [0014] 201227422 單壁奈米碳管、雙壁奈米碳管、多壁奈米碳管中的一種 或幾種。該奈米碳管結構可以為一由奈米碳管構成的純 奈米碳管結構。所述奈米碳管結構中的奈米碳管之間可 以通過凡得瓦力緊密結合。該奈米碳管結構中的奈米碳 管為無序或有序排列。這裏的無序排列指奈米碳管的排 列方向無規律,這裏的有序排列指至少奈米數奈米碳管 的排列方向具有一定規律。具體地,當奈米碳管結構包 括無序排列的奈米碳管時,奈米碳管可以相互纏繞或者 各向同性排列;當奈米碳管結構包括有序排列的奈米碳 管時,奈米碳管沿一個方向或者複數個方向擇優取向排 列。奈米碳管結構中的奈米碳管之間存在間隙,故,奈 米碳管結構包括複數個微孔。所述微孔的孔徑小於等於 10微米。所述奈米碳管結構的厚度為100奈米~1毫米。由 於奈米碳管結構中每個奈米碳管具有較大的比表面積, 奈米碳管結構具有較大的比表面積,在其與觸摸屏接觸 時,可以產生較大的接觸電容,可以使該觸摸屏輸入指 套10具有較高的靈敏度。且,奈米碳管比較光滑,具有 較小的摩擦係數,在使用時不會對觸摸屏的螢幕造成傷 害。 [0015] 請參見圖3,所述奈米碳管結構可以為一奈米碳管陣列, 該奈米碳管陣列設置於支撐體146的表面。該奈米碳管陣 列中的奈米碳管的根部固定於支撐體146的表面,奈米碳 管的端部朝向遠離支撐體146的表面的方向延伸。所述碳 納奈米管陣列中的奈米碳管與支撐體146的表面角度不限 ,優選地,奈米碳管沿支撐體146表面的法線方向延伸。 099146737 表單編號A0101 第8頁/共61頁 0992080305-0 201227422 所述奈米碳管陣列中的奈米碳管根部之間的距離大於等 於0小於等於1微米。所述奈米碳管陣列中的奈米碳管端 部之間的距離大於等於0小於等於1微米。所述奈米碳管 陣列中相鄰的奈米碳管之間存在間隙。 [0016] ❹ 請參見圖4,所述奈米碳管結構可以為一奈米碳管層,該 奈米碳管層包括包括至少一層奈米碳管膜,該奈米碳管 膜包覆在支撐體146的表面。當奈米碳管結構包括奈米層 奈米碳管膜時,該奈米層奈米碳管膜可層疊設置或者並 列設置。請參見圖5,所述奈米碳管膜可以為一奈米碳管 拉膜。該奈米碳管拉膜為從奈米碳管陣列中直接拉取獲 得的一種奈米碳管膜。每一奈米碳管膜係由若干奈米碳 管組成的自支撐結構。所述若干奈米碳管為基本沿同一 方向擇優取向排列。所述擇優取向係指在奈米碳管膜中 大多數奈米碳管的整體延伸方向基本朝同一方向。而且 ❹ ,所述大多數奈米礙管的整體延伸方向基本平行於奈米 碳管膜的表面。進一步地,所述奈米碳管膜中多數奈米 碳管係通過凡得瓦力首尾相連。具體地,所述奈米碳管 膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米 碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾 相連。當然,所述奈米碳管膜中存在少數隨機排列的奈 米碳管,這些奈米碳管不會對奈米碳管膜中大多數奈米 碳管的整體取向排列構成明顯影響。所述自支撐為奈米 碳管膜不需要大面積的載體支撐,而只要相對兩邊提供 支撐力即能整體上懸空而保持自身膜狀狀態,即將該奈 米碳管膜置於(或固定於)間隔一固定距離設置的兩個 099146737 表單編號A0101 第9頁/共61頁 0992080305-0 201227422 支撐體上時,位於兩個支撐體之間的奈米碳管膜能夠懸 空保持自身膜狀狀態。所述自支撐主要通過奈米碳管膜 中存在連續的通過凡得瓦力首尾相連延伸排列的奈米碳 管而實現。所述奈米碳管拉膜的厚度為0.5奈米~100微米 ,寬度與拉取該奈米碳管拉膜的奈米碳管陣列的尺寸有 關,長度不限。所述奈米碳管拉膜的具體結構及其製備 方法請參見范守善等人於民國96年2月12日申請的,於民 國99年7月11日公告的第1327177號中國民國公告專利。 為節省篇幅,僅引用於此,但所述申請所有技術揭露也 應視為本發明申請技術揭露的一部分。 [0017] 當所述奈米碳管結構採用奈米碳管拉膜時,其可以包括 層疊設置的複數層奈米碳管拉膜,且相鄰兩層奈米碳管 拉膜中的奈米碳管之間沿各層中奈米碳管的軸向形成的 交叉角度不限,奈米碳管拉膜之間或一個奈米碳管拉膜 之中的相鄰的奈米碳管之間具有間隙,從而在奈米碳管 結構中形成複數個微孔,使奈米碳管結構具有更大的比 表面積,所述微孔的孔徑約小於10微米。 [0018] 請參見圖6,所述奈米碳管膜還可以為一奈米碳管絮化膜 。所述奈米碳管絮化膜為通過一絮化方法形成的奈米碳 管膜。該奈米碳管絮化膜包括相互纏繞且均勻分佈的奈 米碳管。所述奈米碳管之間通過凡得瓦力相互吸引、纏 繞,形成網路狀結構。所述奈米碳管絮化膜各向同性。 所述奈米碳管絮化膜的長度和寬度不限。由於在奈米碳 管絮化膜中,奈米碳管相互纏繞,故該奈米碳管絮化膜 具有很好的柔韌性,且為一自支撐結構,可以彎曲折疊 099146737 表單編號A0101 第10頁/共61頁 0992080305-0 201227422 成任意形狀而不破裂。所述奈米碳管絮化膜的面積及厚 度均不限,厚度為1微米~1毫米。所述奈米碳管絮化膜及 其製備方法請參見范守善等人於民國96年5月11曰申請的 ,於民國97年11月16日公開的第200844041號台灣公開 專利申請“奈米碳管薄膜的製備方法”。為節省篇幅, 僅引用於此,但上述申請所有技術揭露也應視為本發明 申請技術揭露的一部分。 [0019] θQ_5]-type touch screen input finger sleeve, comprising: - a finger sleeve; an input end, the input end is disposed on the finger sleeve; wherein the input end comprises a support body and is disposed on the support a conductive layer on the surface of the body, the conductive layer comprises a plurality of; 5, in the material, the electrical layer of the material and the finger are electrically connected _] and the first screen of the screen provided by Xiao Ming, Shu Ming has the following advantages Firstly, when the device is used, inputting information to the touch screen by using the input terminal does not cause damage to the touch screen. Secondly, since the input area and the touch screen 099146737 form number A0101 0992080305-0 201227422 have a small contact area, the operation can be sensitively small. Button; again, since the touch screen finger sleeve can be operated on one finger when using, the touch screen can be operated by one hand without two hands simultaneously; finally, since the material of the input end includes a plurality of graphene, graphene It has a large specific surface area and can generate a large contact capacitance when it is in contact with the touch screen, and has high operational sensitivity. [Embodiment] The touch panel input finger of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1 , a first embodiment of the present invention provides a touch screen input finger sleeve 10 including a finger sleeve 12 and an input end 14 . The input end 14 and the finger sleeve 12 are detachably connected to each other. Together, the one end is closed at one end and the other end is open, and the input end 14 is located at the closed end, so that a finger can be electrically connected to the input end 14 when in use. [0009] The material of the finger sleeve 12 is a flexible material, which may be a flexible conductive material or a flexible insulating material. The flexible insulating material includes resins, rubber, plastics, and flexible fibers. The flexible conductive material may be a conductive south molecular material' or a conductive material formed by adding metal particles to the flexible insulating material. The finger sleeve 12 has a cylindrical structure and may be open at both ends, or may be closed at one end and open at the other end. If the material of the finger sleeve 12 is an insulating material, the input end 14 needs to be mounted on the finger sleeve 12 in a manner that is in contact with the fingers. When the two ends of the finger sleeve 12 are open, the input end 14 can be directly fixed to one end of the finger sleeve 12, and the finger can directly contact the input end 14; when one end of the finger sleeve 12 is closed, At least one through hole is required at the closed end 099146737 Form No. A0101 Page 4 / 61 page 0992080305-0 201227422, and the input end 14 is disposed on the inner wall surface of the closed end or the outer wall surface, and the finger can directly contact the input. End 14 is in contact with input 14 through the aperture. In this embodiment, the finger sleeve 12 is open at both ends, and the finger sleeve 12 is used for “fixing the input end to the finger of the operation touch screen and electrically connecting the finger to the input end 14 , and the inner diameter thereof. The size of the finger is determined by the thickness of the finger, generally slightly smaller than the diameter of the finger, and the finger sleeve 12 itself has a certain elasticity and can be fixed on the finger. The wall thickness of the finger sleeve 12 can be selected from 毫米.j mm to 2 mm. The input terminal 14 is configured to conduct current between the touch screen screen cold finger, so that the touch screen input finger sleeve 10 inputs a signal to the touch screen. The shape of the input end 14 is not limited, and may be spherical, tapered, spherical or Other irregular shapes. The input end 14 can be fixed to the finger sleeve 12H by a mechanical method such as a snap, an interference fit, or a hot pressing, a bonding agent, etc. The agent is fixed to the finger sleeve 12. The input end 14 can be divided into a first portion 142 and a second portion 144 according to the positional relationship with the finger sleeve. The first portion is located inside the finger sleeve 12, The second portion 144 is located outside the finger sleeve m2 for inputting a signal to the touch screen. The surface of the first portion 142 in contact with the finger may have a curved surface to make the user's finger The finger pad has a better tactile sensation when in contact with the curved surface. The second portion 144 may have a tip or raised structure for facilitating operation of a smaller button. Alternatively, at the input end "with a finger sleeve The side of the 12-phase contact may further include a slit 16 for accommodating the fingernail, which makes the person more comfortable when using the touch screen to input the finger cot. 099146737 Form No. A0101 0992080305-0 201227422 [0011] [0012] In an embodiment, the input end 14 includes a body 146 and a conductive layer 148 disposed on the surface of the support body 146. The support body 146 may be a hollow structure or a solid structure. The material of the support body 146 is not The material may be made of a hard material or a flexible material. When the material of the support body 146 is selected from a hard material, it may be one or more of ceramics, glass, resin, quartz, plastic knee, etc. When the flexible material is selected, it may be one or several kinds of resin, rubber, plastic or flexible fiber, etc. The branch body 146 may also be a conductive polymer material, and the conductive polymer material has a high dielectric. The constant, when used as the supporting body 146, can make the input terminal 14 itself have a large capacitance. The conductive polymer material can be polyaniline, polypyrrole or polythiophene. The support body 146 can also be A liquid with a high dielectric constant, such as water or an ionic solution. When the body 146 is used as a liquid, the input can be made to have a certain value. When the touch screen input finger 1G is in contact with the screen, the screen is not scratched. Injury. When the support body 146 is a hollow structure, the input end 14 can be made lighter in weight and material can be saved. When the material of the support body 146 is a flexible material, the input end 14 can have a certain flexibility, and has a certain protective effect on the touch screen, and the bending end performance of the wheel end 14 can improve the life of the input end 14. At the same time, since the input terminal 14 has a certain flexibility, the contact area between the input terminal 14 and the touch screen can be controlled by the touch pressure to control the input signal. The conductive layer 148 is composed of a conductive material for conducting current between the touch screen screen and the finger, thereby causing the touch screen input finger 1 to input a signal to the touch screen. That is, in use, the conductive layer 148 of the touch screen input finger cuff 10 is electrically connected to the user's finger. 099146737 Form No. A0101 Page 6 of 61 0992080305-0 201227422 [0013] The conductive layer 148 may be a graphene layer. Referring to Fig. 2, graphene is a lamellar structure composed of a plurality of six-membered ring carbon atoms. The graphene is coated on the surface of the support 146 to constitute a graphene layer, and the graphene in the graphene layer is connected to each other by van der Waals force. The graphene in the graphene layer may be arranged in an overlapping manner, juxtaposed, or overlapped with each other. Graphene has good electrical conductivity and it transmits electrons very quickly at room temperature. The thickness of the graphene is less than or equal to 100 nm. In the present embodiment, the thickness of the graphene is from 0.5 nm to 100 nm. The thickness of the graphene layer is a thickness of a single layer of graphene to 1 mm. In this embodiment, a graphene material is prepared by a chemical dispersion method. The chemical dispersion method combines graphite oxide and water in a ratio of 1 mg: 1 mL, and shakes with ultrasonic waves until the solution is clear and free of particulate matter. After adding an appropriate amount of hydrazine at 100 ° C for 24 hours, a black granular precipitate is produced, which is filtered and dried. Graphene powder. After the graphite is made thin, the support 14 6 is placed in the graphite thin powder. Since the graphene is a nano material, it has a certain adhesion force and can adhere to the surface of the support 146 to form the conductive layer 148. It can be understood that the graphene can also be fixed to the surface of the support 146 by a binder. The graphene-based nano-material has a high specific surface area. When used as the conductive layer 148, the conductive layer 148 is in direct contact with the touch screen. Since the specific surface area of the graphene is large, a large capacitance can be generated between the touch screen and the touch screen. The touch screen input finger sleeve 10 can have higher sensitivity. Moreover, graphene is smoother and has a lower coefficient of friction, and does not cause damage to the touch screen's screen when used. The conductive layer 148 may also be a carbon nanotube structure comprising a plurality of uniformly distributed carbon nanotube tubes. The carbon nanotube can be 099146737 Form No. A0101 Page 7 / Total 61 Page 0992080305-0 [0014] 201227422 One or several of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes Kind. The carbon nanotube structure may be a pure carbon nanotube structure composed of a carbon nanotube. The carbon nanotubes in the carbon nanotube structure can be tightly bonded by van der Waals force. The carbon nanotubes in the carbon nanotube structure are disordered or ordered. The disordered arrangement here means that the arrangement direction of the carbon nanotubes is irregular, and the ordered arrangement here means that the arrangement direction of at least the nanometer carbon nanotubes has a certain regularity. Specifically, when the carbon nanotube structure includes a disordered arrangement of carbon nanotubes, the carbon nanotubes may be entangled or isotropically arranged; when the carbon nanotube structure comprises an ordered arrangement of carbon nanotubes, The carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. There is a gap between the carbon nanotubes in the carbon nanotube structure, so the carbon nanotube structure includes a plurality of micropores. The pores have a pore diameter of 10 μm or less. The carbon nanotube structure has a thickness of 100 nm to 1 mm. Since each of the carbon nanotubes in the carbon nanotube structure has a large specific surface area, the carbon nanotube structure has a large specific surface area, and when it is in contact with the touch screen, a large contact capacitance can be generated, which enables the The touch screen input finger cuff 10 has a higher sensitivity. Moreover, the carbon nanotubes are relatively smooth and have a small coefficient of friction, which does not cause damage to the screen of the touch screen during use. [0015] Referring to FIG. 3, the carbon nanotube structure may be an array of carbon nanotubes disposed on a surface of the support 146. The root of the carbon nanotube in the carbon nanotube array is fixed to the surface of the support 146, and the end of the carbon nanotube extends in a direction away from the surface of the support 146. The surface angle of the carbon nanotubes in the carbon nanotube array and the support 146 is not limited. Preferably, the carbon nanotubes extend along the normal direction of the surface of the support 146. 099146737 Form No. A0101 Page 8 of 61 0992080305-0 201227422 The distance between the roots of the carbon nanotubes in the carbon nanotube array is greater than 0 and less than or equal to 1 micron. The distance between the ends of the carbon nanotubes in the array of carbon nanotubes is greater than or equal to 0 and less than or equal to 1 micrometer. There is a gap between adjacent carbon nanotubes in the array of carbon nanotubes. [0016] Referring to FIG. 4, the carbon nanotube structure may be a carbon nanotube layer, and the carbon nanotube layer includes at least one layer of carbon nanotube film coated on the carbon nanotube film. The surface of the support 146. When the carbon nanotube structure includes a nano-layer carbon nanotube film, the nano-layer carbon nanotube film may be stacked or arranged in parallel. Referring to Fig. 5, the carbon nanotube film may be a carbon nanotube film. The carbon nanotube film is a carbon nanotube film obtained by directly drawing from a carbon nanotube array. Each nanocarbon film is a self-supporting structure composed of a number of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along substantially the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall extension direction of the majority of the nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. Specifically, each of the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film is connected end to end with a vanadium tube in the extending direction. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube membrane, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) ) Two 099146737 with a fixed distance setting Form No. A0101 Page 9 / Total 61 Page 0992080305-0 201227422 When supporting the support, the carbon nanotube film between the two supports can be suspended to maintain its own film state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film. The thickness of the carbon nanotube film is 0.5 nm to 100 μm, and the width is related to the size of the carbon nanotube array for pulling the carbon nanotube film, and the length is not limited. For the specific structure of the carbon nanotube film and its preparation method, please refer to Fan Shoushan and others who applied for it on February 12, 1996. The Republic of China announced the patent No. 1327177 announced on July 11, 1999. To save space, reference is made only to this, but all technical disclosures of the application are also considered as part of the disclosure of the present application. [0017] When the carbon nanotube structure adopts a carbon nanotube film, it may include a plurality of layers of carbon nanotube film laminated, and the nanometer in the adjacent two layers of carbon nanotube film The angle of intersection between the carbon tubes along the axial direction of the carbon nanotubes in each layer is not limited, and there is between the carbon nanotubes of the carbon nanotubes or between adjacent carbon nanotubes in a carbon nanotube film. The gap, thereby forming a plurality of micropores in the carbon nanotube structure, allows the carbon nanotube structure to have a larger specific surface area, and the pore size of the micropores is less than about 10 microns. [0018] Referring to FIG. 6, the carbon nanotube film may also be a carbon nanotube flocculation film. The carbon nanotube flocculation membrane is a carbon nanotube membrane formed by a flocculation method. The carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The carbon nanotubes are attracted and entangled by van der Waals to form a network structure. The carbon nanotube flocculation membrane is isotropic. The length and width of the carbon nanotube film are not limited. Since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded. 099146737 Form No. A0101 No. 10 Page / Total 61 pages 0992080305-0 201227422 into any shape without breaking. The area and thickness of the carbon nanotube film are not limited, and the thickness is from 1 μm to 1 mm. The carbon nanotube flocculation membrane and the preparation method thereof are described in Fan Shoushan et al., May 11, 1996, published in the Republic of China on November 16, 1997, Taiwan Patent Application No. 200844041, Taiwan Patent Application "Nano Carbon" Method for preparing tube film". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the present application. [0019] θ

請參見圖7,所述奈米碳管膜還可以為通過碾壓一奈米碳 管陣列形成的奈米碳管碾壓膜。該奈米碳管碾壓膜包括 均勻分佈的奈米碳管,奈米碳管沿同一方向或不同方向 擇優取向排列。奈米碳管也可以係各向同性的。所述奈 米碳管碾壓膜中的奈米碳管相互部分交疊,並通過凡得 瓦力相互吸引,緊密結合。所述奈米碳管碾壓膜中的奈 米碳管與形成奈米碳管陣列的生長基底的表面形成一夾 角万,其中,召大於等於0度且小於等於15度(0 β 15 °)。依據碾壓的方式不同,該奈米碳管碾壓膜中的奈米 碳管具有不同的排列形式。當沿同一方向碾壓時,奈米 碳管沿一固定方向擇優取向排列。可以理解,當沿不同 方向碾壓時,奈米碳管可沿複數個方向擇優取向排列。 該奈米碳管碾壓膜厚度不限,優選為為1微米〜1毫米。該 奈米碳管碾壓膜的面積不限,由碾壓出膜的奈米碳管陣 列的大小決定。當奈米碳管陣列的尺寸較大時,可以碾 壓制得較大面積的奈米碳管碾壓膜。所述奈米碳管碾壓 膜及其製備方法請參見范守善等人於民國96年6月29日申 請的,於民國99年12月21日公告的第1334851號台灣公 099146737 表單編號Α0101 第11頁/共61頁 0992080305-0 201227422 告專利“奈米碳管薄膜的製備方法”。為節省篇幅,僅 引用於此,但上述申請所有技術揭露也應視為本發明申 請技術揭露的一部分。 [0020] 所述奈米碳管結構還可以包括至少一奈米碳管線狀結構 ,該至少一奈米碳管線狀結構設置於支撐體146的表面。 所述奈米碳管線狀結構在支撐體146表面的設置方式不限 。請參見圖8,當奈米碳管結構為一根奈米碳管線狀結構 150時,該奈米碳管線狀結構150螺旋纏繞於支撐體146 的表面。請參見圖9,當奈米端_管結構包括奈米根奈米破 管線狀結構150時,該奈米根奈米碳管線狀結構150可以 相互交叉或編織形成一網狀結構,該網狀結構包覆在支 撐體146的表面。所述奈米碳管線狀結構150包括至少一 根奈米碳管線,該奈米碳管線包括複數個均勻分佈的奈 米碳管。所述奈米碳管線可以為由奈米碳管組成的純結 構。該奈米碳管線中相鄰奈米碳管間存在間隙,故該奈 米碳管線具有大量孔隙,孔隙的尺寸約小於1 0微米。請 參見圖10,當奈米碳管線狀結構150包括奈米根奈米碳管 線152時,該奈米根奈米碳管線152可以相互平行設置。 請參見圖11,當奈米碳管線狀結構150包括奈米根奈米碳 管線1 5 2時,該奈米根奈米碳管線1 5 2可以相互螺旋纏繞 。奈米碳管線狀結構150中的奈米碳管線152可以通過黏 結劑相互固定。 [0021] 所述奈米碳管線1 52可以為非扭轉的奈米碳管線或扭轉的 奈米碳管線。該非扭轉的奈米碳管線1 5 2為將奈米碳管拉 膜通過有機溶劑處理得到。請參閱圖12,該非扭轉的奈 099146737 表單編號A0101 第12頁/共61頁 0992080305-0 201227422 来碳管線152包括複數個沿奈米碳管線長度方向排列並首 尾相連的奈米碳管。優選地,該非扭轉的奈米碳管線包 括複數個奈米碳管片段,該複數個奈米碳管片段之間通 過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相 互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳 管片段具有任意的長度、厚度、均勻性及形狀。該非扭 轉的奈米碳管線長度不限,直徑為0. 5奈米~1 00微米。 [0022] Ο ο 所述扭轉的奈米碳管線152為採用一機械力將所述奈米碳 管拉膜兩端沿相反方向扭轉獲得。請參閱圖13,該扭轉 的奈米碳管線152包括複數個繞条米碳管線軸向螺旋排列 的奈米碳管。優選地,該扭轉的奈米碳管線1 ;5 2包括複數 個奈米碳管片段,該複數個奈米碳管片段之間通過凡得 瓦力首尾相連,每一奈米碳管片段包括複數個相互平行 並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段 具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米 碳管線152長度不限,直徑為0. 5奈米〇〇微米。所述奈 米碳管線及其製備方法請參見范守善等人於民國91年11 月05日申請的,於民國97年11月21日公告的第130 3239 號台灣公告專利“一種奈米碳管繩及其製造方法,,,專 利權人:鴻海精密工業股份有限公司,以及於民國98年7 月21曰公告的第1312337號台灣公告專利“奈米碳管絲 及其製作方法”,專利權人:鴻海精密工業股份有限公 司。為節省篇幅,僅引用於此,但上述申請所有技術揭 露也應視為本發明申請所揭露的一部分。 [0023] 所述導電層148還可以為一奈米碳管複合材料層,該奈米 099146737 表單編號Α0101 第13頁/共61頁 0992080305-0 201227422 碳S複合材料層為上述奈米碳管結構與導電材料所形成 的複合材料。所述奈米碳管複合材料層中的奈米碳管結 構保持其結構不變。該奈米碳管結構中的每一根奈米碳 管表面均包覆-導電材料層。奈米碳管複合材料層中: 包覆有導電材料層的奈米碳管之間存在間隙,故,奈米 碳管複合材料層包括複數個微孔。所述微孔的孔徑小於 等於5«。所述導電材料層的作用為使奈米碳管結構具 有較好的導電性能。所述導電材料層的材料為金屬或合、 金,所述金屬可以為銅、銀或金。該導電層的厚度為 1〜20奈米。本實施例中,該導電層的材料為銀厚度約 為5奈米。 [0024]Referring to Fig. 7, the carbon nanotube film may also be a carbon nanotube rolled film formed by rolling an array of carbon nanotubes. The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are arranged in the same direction or in different directions. The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotube rolled film partially overlap each other and are attracted to each other by the van der Waals force, and are tightly bonded. The carbon nanotubes in the carbon nanotube rolled film form an angle with the surface of the growth substrate forming the carbon nanotube array, wherein the sum is greater than or equal to 0 degrees and less than or equal to 15 degrees (0 β 15 °) . The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. When rolled in the same direction, the carbon nanotubes are arranged in a preferred orientation along a fixed direction. It will be appreciated that when compacted in different directions, the carbon nanotubes may be arranged in a preferred orientation along a plurality of directions. The thickness of the carbon nanotube rolled film is not limited, and is preferably 1 μm to 1 mm. The area of the carbon nanotube rolled film is not limited, and is determined by the size of the carbon nanotube array that is rolled out of the film. When the size of the carbon nanotube array is large, a large area of the carbon nanotube rolled film can be crushed. The carbon nanotube rolling film and the preparation method thereof can be found in Fan Shoushan et al., which was applied on June 29, 1996, in the Republic of China on December 21, 1999, No. 1334851 Taiwanese public 099146737 Form No. 1010101 No. 11 Page / Total 61 pages 0992080305-0 201227422 Patent "Method for preparing nano carbon tube film". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present invention. [0020] The carbon nanotube structure may further include at least one nano carbon line structure, and the at least one nano carbon line structure is disposed on a surface of the support body 146. The arrangement of the nanocarbon line-like structure on the surface of the support body 146 is not limited. Referring to FIG. 8, when the carbon nanotube structure is a nanocarbon line-like structure 150, the nanocarbon line-like structure 150 is spirally wound around the surface of the support 146. Referring to FIG. 9, when the nanoend tube structure includes the nanogen nano-breaking line structure 150, the nano-nano carbon line-like structure 150 may cross or weave to form a network structure. The structure is coated on the surface of the support 146. The nanocarbon line-like structure 150 includes at least one nanocarbon line including a plurality of uniformly distributed carbon nanotubes. The nanocarbon line may be a pure structure composed of a carbon nanotube. There is a gap between adjacent carbon nanotubes in the nanocarbon pipeline, so the nanocarbon pipeline has a large number of pores, and the pore size is less than about 10 micrometers. Referring to Fig. 10, when the nanocarbon line-like structure 150 includes the nanogen nanotube carbon line 152, the nanogen nm carbon line 152 may be disposed in parallel with each other. Referring to Fig. 11, when the nanocarbon line-like structure 150 includes the nanogen nanocarbon line 152, the nanogen nm carbon line 152 can be spirally wound with each other. The carbon nanotubes 152 in the nanocarbon line-like structure 150 may be fixed to each other by an adhesive. [0021] The nanocarbon line 152 may be a non-twisted nanocarbon line or a twisted nanocarbon line. The non-twisted nanocarbon line 152 is obtained by treating a carbon nanotube membrane with an organic solvent. Referring to Figure 12, the non-twisted nai 099146737 Form No. A0101 Page 12 of 61 0992080305-0 201227422 The carbon line 152 includes a plurality of carbon nanotubes arranged along the length of the nanocarbon line and connected end to end. Preferably, the non-twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by van der Waals, and each of the carbon nanotube segments comprises a plurality of mutually parallel and A carbon nanotube that is tightly bonded by van der Waals. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米至1 00微米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nm ~ 1 00 microns. [0022] The twisted nanocarbon line 152 is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 13, the twisted nanocarbon line 152 includes a plurality of carbon nanotubes arranged axially helically around the strip of carbon. Preferably, the twisted nanocarbon line 1 ; 5 2 comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by van der Waals, each carbon nanotube segment comprising a plurality A carbon nanotube that is parallel to each other and tightly coupled by van der Waals. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〇〇微米。 The twisted nano carbon line 152 is not limited in length, a diameter of 0.5 nanometers 〇〇 micron. The nano carbon pipeline and its preparation method can be found in Fan Shoushan et al., which was filed on November 5, 1991. The Taiwan Patent No. 130 3239, published on November 21, 1997, is a Taiwanese patent. And its manufacturing method,, the patentee: Hon Hai Precision Industry Co., Ltd., and the Taiwan Announcement Patent No. 1312337 announced in the Republic of China on July 21, 1998, "Nano Carbon Tube and Its Manufacturing Method", Patentee : Hon Hai Precision Industry Co., Ltd.. To save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the disclosure of the present application. [0023] The conductive layer 148 may also be a nano carbon. Tube composite layer, the nano 099146737 Form No. 101 0101 Page 13 / 61 page 0992080305-0 201227422 The carbon S composite layer is a composite material formed by the above carbon nanotube structure and a conductive material. The carbon nanotube structure in the composite layer maintains its structure. The surface of each carbon nanotube in the carbon nanotube structure is coated with a layer of conductive material. In the layer of nanocarbon tube composite: There is a gap between the carbon nanotubes coated with the conductive material layer. Therefore, the carbon nanotube composite material layer includes a plurality of micropores. The pore size of the micropores is less than or equal to 5 «. The conductive material layer functions to The carbon nanotube structure has better electrical conductivity. The material of the conductive material layer is metal or alloy, and the metal may be copper, silver or gold. The thickness of the conductive layer is 1 to 20 nm. In an embodiment, the conductive layer is made of a silver having a thickness of about 5 nm.

由於奈米碳管與大多數金屬之間的潤濕性不好可選擇 地,在奈米碳管和導電材料層之間可進一步包括一潤濕 層。所述潤濕層的作用為使導電層與奈米碳管更好的結 合。制濕層的材料可以為錄、把或鈦等與奈米碳管潤 濕性好的金屬或它們的合金,該潤濕層的厚度為卜1〇奈 米。 不 [0025] 可選擇地,為使潤濕層和導電層更好的結合,在潤濕層 和導電材料層之間可進一步包括一 過渡層。該過渡層的Since the wettability between the carbon nanotubes and most of the metals is not preferable, a wetting layer may be further included between the carbon nanotubes and the conductive material layer. The wetting layer acts to better bond the conductive layer to the carbon nanotubes. The material of the wetted layer may be a metal such as a recording, a handle or a titanium or the like which is wettable with a carbon nanotube, or an alloy thereof, and the thickness of the wetted layer is a ruthenium. Alternatively, in order to better bond the wetting layer and the conductive layer, a transition layer may be further included between the wetting layer and the conductive material layer. The transition layer

材料可以為與潤濕層材料及導電層材料均能較好結合的 材料,該過渡層的厚度為1〜10奈米。 [0026] 所述奈米碳管複合材料層中,奈米碳管結構與導電材料 複合之後,奈米碳管複合材料層具有更好的導電性能, 用作輸入端14的導電層148,在與觸摸屏接觸時傳輸電荷 099146737 的速度較快,故, 表單編號A0101 可以提高觸摸屏輪入指套1〇的反應速 第14頁/共61頁 0992080305-0 201227422 度。由於奈米碳管複合材料層中包括複數個微孔,使奈 米碳官複合材料層具有較大的比表面積,在與觸摸屏接 觸時可以產生較大的接觸電容,故可以提高觸摸屏的靈 敏度。 [0027] 請參見圖14,所述導電層148還可以為一奈米碳管高分子 複合材料層構成’該奈米碳管高分子複合材料層由高分 子基體124以及分散於該高分子基體丨24内的複數個奈米 碳管122組成。該複數個奈米碳管122均勻分散於高分子 〇 基體124内,並且相互連接形成導電網路。由於奈来碳管 122具有非常大的比表面積,以及較高的導電性,採用齐 米碳管122與高分子基體124構成的高分子複合材料構^ 的導電層148具有更大的比表面積《該導電層ι48在使用 時,由於導電層148具有較大的比表面積,就可以存儲更 多的從使用者的手部傳導來的靜電荷,從而提高了導電 層148與觸摸屏之間的接觸電容?在使用日,,該摻雜有卉 米碳管122的高分子複合材料構成的導電層148與觸摸屏'' 〇 構成的單位面積上的電容較大,從而更加靈敏。另外, 由於奈米碳管122係中空結構,其具有非常小的質量,’ 特殊的化學鍵結構使得奈米碳管122又具有非常言,其 的強 以及模量。除此之外,奈米碳管122還具有非常好的柔又 性,施加外力後可以很好的恢復形狀。故,採用奈米、韌 管m與高分子基體124形成的高分子複合材料構 電層148 ’更具有較輕的質量,以及較高的耐刮擦度… 而具有較長的使用壽命。採用分散的奈米碳管從 间刀子基體124中構成的高分子複合材料構成的導電層; 099146737 表單編號AOloi 第15頁/共頁 0"2〇8〇3〇5-〇 201227422 148,還有部分奈米碳管122從筆頭的外表面露頭,從而 更好的與觸摸屏接觸。 [0028] 該高分子基體1 2 4的材料可以包括熱塑性聚合物或熱固性 聚合物的一種或奈米種。優選地,所述高分子基體124為 柔性材料構成,所述柔性的高分子基體124的材料為矽橡 膠、聚氨脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯 、聚丁二烯及聚丙烯腈等中的一種或幾種的組合。本實 施例中,所述柔性高分子基體124為一矽橡膠。 [0029] 所述奈米碳管高分子材料層中的奈米碳管可以以一奈米 碳管結構的形式存在。所述奈米碳管結構的結構與上述 的奈米碳管結構的結構相同。依據奈米碳管結構與基體 材料的複合方式的不同,該奈米碳管高分子複合結構的 具體結構包括以下三種情形: [0030] 第一種情形,所述奈米碳管結構為一奈米碳管陣列,該 奈米碳管陣列包括複數個並列設置的奈米碳管,高分子 基體材料填充於奈米碳管陣列中的相鄰的奈米碳管之間 的縫隙中。請參見圖15,高分子基體124可以將整個奈米 碳管陣列154包覆,高分子基體124的表面到奈米碳管陣 列154的表面小於等於10微米,此時奈米碳管高分子複合 材料層的表面仍具有導電性。請參見圖16,所述奈米碳 管陣列154中的奈米碳管122可以從高分子基體124中露 頭,奈米碳管122露出高分子基體124的長度小於等於10 微米。 [0031] 第二種情形,請參閱圖17,所述奈米碳管高分子複合材 099146737 表單編號A0101 第16頁/共61頁 0992080305-0 201227422 Ο [0032] 料包括一奈米碳管層158以及一高分子基體124滲透於該 奈米碳管層158中。該奈米碳管層158中具有大量的孔隙 ,該高分子基體124滲透於該奈米碳管層158的孔隙中。 奈米碳管層158可以全部被包覆在高分子基體124中,此 時,高分子基體124的表面到奈米碳管層158的表面的距 離小於等於10微米,此時奈米碳管高分子複合材料層的 表面仍具有導電性。奈米碳管層158中的部分奈米碳管也 可以從高分子材料中暴露出來。當該奈米碳管層158包括 複數個奈米碳管膜時,該複數個奈米碳管膜可以層疊設 置。 ο 第三種情形,請參見圖18,當該奈米碳管結構包括單個 奈米碳管線狀結構時,高分子基體124可以滲透於該奈来 碳管線狀結構中的奈米碳管線152之間,形成奈米碳管複 合線狀結構160。該奈米碳管複合線狀結構160中,高分 子基體124也可以將整個奈米碳管線狀結構包覆,高分子 基體124的表面到奈米碳管線狀結構的表面的厚度小於等 於10微米,此時奈米碳管高分子複合材料層的表面仍具 有導電性。該奈米碳管複合線狀結構160折疊或盤繞後設 置於支撐體146的表面形成導電層148。當奈米碳管結構 包括複數個奈米碳管複合線狀結構160時,該複數個奈米 碳管複合線狀結構160可以平行緊密設置、交叉設置或編 織後形成於支撐體146的表面。 請參見圖19,所述導電層148還可以為一石墨烯高分子複 合材料層130。該石墨烯高分子複合材料層130通過由石 墨烯128分散於柔性高分子基體124材料中形成的石墨烯 099146737 表單編號Α0101 第17頁/共61頁 0992080305-0 [0033] 201227422 高分子複合材料構成。所述石墨烯在所述柔性高分子基 體中的體積百分比為1〇%~60%。所述石墨烯128的厚度為 0. 5奈米至100奈米。石墨烯128具有良好的導電性能, 其在室溫下傳遞電子的速度非常快。石墨烯128還具有較 大的比表面積。故,採用石墨烯128與柔性高分子基體 124構成的石墨烯高分子複合材料層130也具有很大的比 表面積和導電性,故採用上述石墨烯高分子複合材料層 130構成的導電層148也與觸摸屏構成的單位面積上的電 容較大,並具有較好的導電性,該導電層148具有更高的 靈敏度。 [0034] 請參考圖20至圖23,本發明·第二實施例提供一種觸摸屏 輸入指套,其包括一手指套筒22及輸入端24。所述手指 套筒22和輸入端24由絕緣材料一體成形,進而呈一端封 閉另一端敞開的筒狀結構,所述封閉端作為輸入端24。 同時,所述手指套筒22和輸入端24的表面上設有一導電 層248,所述導電層248將手指套筒22的内表面至少一部 分和輸入端24的外表面導電性連接。所述導電層248與手 指套筒22的設置關係可以包括以下幾種情況:其一,如 圖20所示的手指套筒22,所述導電層248的設置方式可以 係覆蓋手指套筒22的整個内表面和外表面,並在手指套 筒22敞開的一端使内表面的導電層248和外表面的導電層 248電連接;其二,如圖21所示的手指套筒22,所述導電 層248覆蓋整個外表面和部分内表面,並在手指套筒22敞 開的一端使内表面的導電層248和外表面的導電層248電 連接。其三,如圖22所示,所述手指套筒22包括至少一 099146737 表單編號A0101 第18頁/共61頁 0992080305-0 201227422 〇 剛 個通孔220,導電層248設置於手指套筒22的外表面,並 覆蓋手指套筒22的端部和該至少一個通孔220,使用者的 手指放入手指套筒22後,通過該複數個通孔220可以實現 與導電層248的電連接;其四,如圖23所示,所述導電層 248分別位於手指套筒2222的封閉端的内表面和外表面, 所述手指套筒22包括至少一個通孔,一導電連接部240設 置於該至少一個通孔中,使位於内表面的導電層248和位 於外表面的導電層248電連接。 當然,所述導電層248與所述手指套筒22的設置關係不限 於上述幾種方式,只需滿足使用者手指放入手指套筒22 後,可以與輸入端24的導電層248電連接即可。 [0036] 所述手指套筒22和輸入端24的材料與第一實施例所提供 的手指套筒12的材料相同。 [0037] 〇 所述導電層248的材料與第一實施例提供的導電層148的 材料相同。導電層2 4 8可以通過黏結劑1機械卡扣、熱炫 、螺合等方式設置於手指套筒22的表面。 [0038] 請參見圖24,本發明第三實施例提供一觸摸屏輸入指套 30,該觸摸屏輸入指套30包括一手指套筒32及一輸入端 34。本實施例與第二實施例的主要區別在於,所述手指 套筒32和輸入端34全部由導電材料構成,所述導電材料 為一自支撐結構,其自身可保持一指套形狀,從而形成 所述觸摸屏輸入指套30。該觸摸屏輸入指套30用於套設 手指的部位為手指套筒32,觸摸屏輸入指套30的端部用 於接觸觸摸屏,為輸入端34。 099146737 表單編號A0101 第19頁/共61頁 0992080305-0 201227422 [0039] [0040] [0041] 所述觸摸屏輪人指_轉料可以為第―實施例中 ^石墨烯複合材料層、上述奈米碳管層或上述奈米 尚分子複合材料層。The material may be a material which can be well combined with the wetting layer material and the conductive layer material, and the transition layer has a thickness of 1 to 10 nm. [0026] In the carbon nanotube composite layer, after the carbon nanotube structure is combined with the conductive material, the carbon nanotube composite layer has better conductivity and is used as the conductive layer 148 of the input terminal 14 When the contact with the touch screen is in contact with the charge 099146737, the speed of the form number A0101 can increase the response speed of the touch screen wheel into the finger cover. Page 14/61 page 0992080305-0 201227422 degrees. Since the carbon nanotube composite layer includes a plurality of micropores, the carbon carbon composite layer has a large specific surface area, and a large contact capacitance can be generated when the touch panel is in contact with the touch screen, so that the sensitivity of the touch screen can be improved. [0027] Referring to FIG. 14, the conductive layer 148 may also be a carbon nanotube polymer composite layer. The carbon nanotube polymer composite layer is composed of a polymer matrix 124 and dispersed in the polymer matrix. The plurality of carbon nanotubes 122 in the crucible 24 are composed of a plurality of carbon nanotubes 122. The plurality of carbon nanotubes 122 are uniformly dispersed in the polymer matrix 124 and interconnected to form a conductive network. Since the carbon nanotubes 122 have a very large specific surface area and high electrical conductivity, the conductive layer 148 of the polymer composite structure composed of the carbon nanotubes 122 and the polymer matrix 124 has a larger specific surface area. When the conductive layer ι48 is in use, since the conductive layer 148 has a large specific surface area, more static charges conducted from the user's hand can be stored, thereby improving the contact capacitance between the conductive layer 148 and the touch screen. ? On the day of use, the conductive layer 148 composed of the polymer composite material doped with the carbon nanotube 122 and the touch panel "'" have a larger capacitance per unit area, which is more sensitive. In addition, since the carbon nanotube 122 is a hollow structure, it has a very small mass, and the special chemical bond structure makes the carbon nanotube 122 have a strong, strong and modulus. In addition, the carbon nanotubes 122 have a very good softness and can restore the shape well after applying an external force. Therefore, the polymer composite layer 148' formed by using the nanometer, the toughness tube m and the polymer matrix 124 has a lighter mass and a higher scratch resistance... and has a longer service life. a conductive layer composed of a polymer composite material composed of a dispersed carbon nanotube from a knives base 124; 099146737 Form No. AOloi Page 15 / Total Page 0" 2〇8〇3〇5-〇201227422 148, and A portion of the carbon nanotube 122 emerges from the outer surface of the tip to better contact the touch screen. [0028] The material of the polymer matrix 1 24 may include one or a nano species of a thermoplastic polymer or a thermosetting polymer. Preferably, the polymer matrix 124 is made of a flexible material, and the material of the flexible polymer matrix 124 is ruthenium rubber, polyurethane, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene. And a combination of one or more of polyacrylonitrile and the like. In this embodiment, the flexible polymer matrix 124 is a tantalum rubber. [0029] The carbon nanotubes in the carbon nanotube polymer material layer may exist in the form of a carbon nanotube structure. The structure of the carbon nanotube structure is the same as that of the above-described carbon nanotube structure. Depending on the composite mode of the carbon nanotube structure and the matrix material, the specific structure of the nanocarbon tube polymer composite structure includes the following three cases: [0030] In the first case, the carbon nanotube structure is one The carbon nanotube array comprises a plurality of carbon nanotubes arranged side by side, and the polymer matrix material is filled in a gap between adjacent carbon nanotubes in the carbon nanotube array. Referring to FIG. 15, the polymer matrix 124 can coat the entire carbon nanotube array 154, and the surface of the polymer matrix 124 to the surface of the carbon nanotube array 154 is less than or equal to 10 micrometers. The surface of the material layer is still electrically conductive. Referring to Fig. 16, the carbon nanotubes 122 in the carbon nanotube array 154 may be exposed from the polymer matrix 124, and the carbon nanotubes 122 may be exposed to the polymer matrix 124 to a length of 10 μm or less. [0031] In the second case, please refer to FIG. 17, the carbon nanotube polymer composite 099146737 Form No. A0101 Page 16 / 61 page 0992080305-0 201227422 Ο [0032] The material includes a carbon nanotube layer 158 and a polymer matrix 124 are infiltrated into the carbon nanotube layer 158. The carbon nanotube layer 158 has a large number of pores, and the polymer matrix 124 penetrates into the pores of the carbon nanotube layer 158. The carbon nanotube layer 158 may be entirely coated in the polymer matrix 124. At this time, the distance from the surface of the polymer matrix 124 to the surface of the carbon nanotube layer 158 is 10 μm or less, and the carbon nanotubes are high at this time. The surface of the molecular composite layer is still electrically conductive. Some of the carbon nanotubes in the carbon nanotube layer 158 can also be exposed from the polymer material. When the carbon nanotube layer 158 includes a plurality of carbon nanotube films, the plurality of carbon nanotube films may be laminated. ο In the third case, referring to FIG. 18, when the carbon nanotube structure includes a single nanocarbon line-like structure, the polymer matrix 124 can penetrate the nanocarbon line 152 in the nematic carbon line structure. During the formation, a carbon nanotube composite linear structure 160 is formed. In the carbon nanotube composite linear structure 160, the polymer matrix 124 may also coat the entire nanocarbon line-like structure, and the surface of the polymer matrix 124 has a thickness of 10 μm or less on the surface of the nanocarbon line-like structure. At this time, the surface of the carbon nanotube polymer composite layer is still electrically conductive. The carbon nanotube composite wire structure 160 is folded or coiled and placed on the surface of the support 146 to form a conductive layer 148. When the carbon nanotube structure includes a plurality of carbon nanotube composite linear structures 160, the plurality of carbon nanotube composite linear structures 160 may be formed in parallel, closely arranged or woven to form a surface of the support 146. Referring to FIG. 19, the conductive layer 148 may also be a graphene polymer composite material layer 130. The graphene polymer composite material layer 130 is formed by graphene 099146737 formed by dispersing graphene 128 in a flexible polymer matrix 124. Form No. 1010101 Page 17/61 Page 0992080305-0 [0033] 201227422 Polymer composite material composition . The volume percentage of the graphene in the flexible polymer matrix is from 1% to 60%. The thickness of the graphene 128 is from 0.5 nm to 100 nm. Graphene 128 has good electrical conductivity and it transfers electrons very quickly at room temperature. Graphene 128 also has a relatively large specific surface area. Therefore, the graphene polymer composite material layer 130 composed of the graphene 128 and the flexible polymer matrix 124 also has a large specific surface area and conductivity, so the conductive layer 148 composed of the above graphene polymer composite material layer 130 is also used. The capacitance per unit area formed by the touch screen is large and has good conductivity, and the conductive layer 148 has higher sensitivity. Referring to FIG. 20 to FIG. 23, a second embodiment of the present invention provides a touch screen input finger sleeve including a finger sleeve 22 and an input end 24. The finger sleeve 22 and the input end 24 are integrally formed of an insulating material, and thus have a cylindrical structure in which one end is closed at one end, and the closed end serves as an input end 24. At the same time, a surface of the finger sleeve 22 and the input end 24 is provided with a conductive layer 248 that electrically connects at least a portion of the inner surface of the finger sleeve 22 to the outer surface of the input end 24. The arrangement relationship between the conductive layer 248 and the finger sleeve 22 may include the following cases: First, the finger sleeve 22 shown in FIG. 20, the conductive layer 248 may be disposed to cover the finger sleeve 22 The entire inner and outer surfaces, and at the open end of the finger sleeve 22, electrically connect the conductive layer 248 of the inner surface to the conductive layer 248 of the outer surface; and second, the finger sleeve 22 as shown in FIG. 21, the conductive Layer 248 covers the entire outer surface and a portion of the inner surface, and electrically connects the conductive layer 248 of the inner surface to the conductive layer 248 of the outer surface at the open end of the finger sleeve 22. Thirdly, as shown in FIG. 22, the finger sleeve 22 includes at least one 099146737 form number A0101 page 18 / 61 page 0992080305-0 201227422 〇 a through hole 220, the conductive layer 248 is disposed on the finger sleeve 22 An outer surface covering the end of the finger sleeve 22 and the at least one through hole 220. After the user's finger is placed in the finger sleeve 22, electrical connection with the conductive layer 248 can be achieved through the plurality of through holes 220; Fourth, as shown in FIG. 23, the conductive layer 248 is respectively located on the inner surface and the outer surface of the closed end of the finger sleeve 2222, the finger sleeve 22 includes at least one through hole, and a conductive connection portion 240 is disposed on the at least one In the via hole, the conductive layer 248 on the inner surface and the conductive layer 248 on the outer surface are electrically connected. Of course, the relationship between the conductive layer 248 and the finger sleeve 22 is not limited to the above manners, and only needs to be electrically connected to the conductive layer 248 of the input terminal 24 after the user's finger is placed in the finger sleeve 22. can. [0036] The material of the finger sleeve 22 and the input end 24 is the same as that of the finger sleeve 12 provided by the first embodiment. [0037] The material of the conductive layer 248 is the same as the material of the conductive layer 148 provided by the first embodiment. The conductive layer 248 can be disposed on the surface of the finger sleeve 22 by mechanically snapping, heat-shrinking, screwing, or the like of the bonding agent 1. Referring to FIG. 24, a third embodiment of the present invention provides a touch screen input finger sleeve 30. The touch screen input finger sleeve 30 includes a finger sleeve 32 and an input end 34. The main difference between this embodiment and the second embodiment is that the finger sleeve 32 and the input end 34 are all made of a conductive material, and the conductive material is a self-supporting structure, which can maintain a shape of a finger sleeve, thereby forming The touch screen is input to the finger cuff 30. The portion of the touch screen input finger sleeve 30 for arranging the finger is a finger sleeve 32, and the end of the touch screen input finger sleeve 30 is for contacting the touch screen as the input end 34. 099146737 Form No. A0101 Page 19 / Total 61 Page 0992080305-0 201227422 [0040] [0041] The touch screen wheel human finger_transfer may be the first embodiment of the graphene composite layer, the above nanometer A carbon tube layer or a layer of the above-described nano-molecular composite material.

奈米碳管高分子複合材料層可以包括-高分子基體及— 奈米碳管層。所述奈以管層可以由至少_層奈米石炭管 拉膜組成。當奈米唉管層包括_層奈米碳管拉膜時該 奈米碳管㈣在垂直於奈米碳管延伸的方向可以發生: 變後’再復原’此過程不會破壞奈米碳管拉膜的結構〔 當奈米碳管層包括至少兩層相互垂直的奈米碳管拉膜時 ,奈米碳管層在各個方向可轉轉變,再復原,此過 程不會破壞奈米料拉膜的結構。由於奈米碳管拉膜的 上述性質’當高分子基體採用彈性㈣時,所述觸摸屏 輸入指套30可以具有較大的彈性,在應用時更加方便, 對使用者手指的粗細沒有要求,且更容易固定於使用者 的手指上。 請參見圖25,本發明第四實施例提供一種觸摸屏輸入指 套40,該觸摸屏輸入指套4|)由一手指套筒42構成,該手 指套筒42由複數個經線424和複數個緯線426編織形成。 所述經線424為導電絲,複數個經線424的一端相互連接 於一結點4240 ’複數個經線424從該結點4240延伸出。 所述結點4240組成一尖端,作為觸摸屏輸入指套4〇的輸 入端4 4。所述緯線4 2 6為閉合線’用於將該複數個經線 424固定。所述經線424和緯線426的直徑小於1毫米,優 選地,所述經線424和緯線426的直徑大於等於1〇微米小 於等於1毫米。相鄰的兩個緯線426之間的距離小於等於1 099146737 表單編號A0101 第20頁/共61頁 0992080305-0 201227422 毫米。所述經線424為導電材料,為奈米碳管線狀結構或 者奈米碳管複合線狀結構。所述緯線426的材料可以為導 電材料或絕緣材料。所述導電材料可以為金屬。所述絕 緣材料可以為塑膠、尼龍、橡膠、樹脂或纖維。優選地 ,所述緯線4 2 6的材料為柔性材料,以使觸摸屏輸入指套 40具有一定的柔韌性。 [0042] 請參見圖26,本發明第五實施例提供一種觸摸屏輸入指 套50,其包括一手指套筒52及一輸入端54。本實施例與 〇 第一實施例的主要區別在於,輸入端54全部由導電材料 構成。 [0043] 所述輸入端54可以由第一實施例中所述之奈米碳管層、 奈米碳管線狀結構、奈米$炭管高分子複合材料層或一石 墨烯高分子複合材料層構成。所述奈米碳管結構、奈米 碳管高分子複合材料層或石墨烯高分子複合材料層可以 通過各種變形,如捲曲、團聚、盤繞等方式構成輸入端 54所具有的形狀。 〇 [0044] 當輸入端54包括奈米碳管層時,該奈米碳管層可以團聚 形成輸入端54。所述輸入端54可以為空心結構,也可以 為實心結構。此時,輸入端54由複數個相互纏繞的奈米 碳管組成。由於奈米碳管層包括複數個奈米碳管膜,奈 米碳管膜表面具有一定的黏性,所以當奈米碳管層團聚 形成輸入端54之後,可以保持輸入端54的形狀。當奈米 碳管層包括奈米碳管拉膜或奈米碳管碾壓膜時,奈米碳 管之間首尾相連,從而使輸入端54具有較好的導電性。 099146737 表單編號A0101 第21頁/共61頁 0992080305-0 201227422 [0045] [0046] 清參見圖27,當輸人端54包括―根奈^營線狀結構i5〇 時,該奈米碳管線狀結構丨5〇可•繞形成輪人⑽,為 使奈米碳管線狀結構150保持該輸入端54的形狀,可以在 奈米碳管線狀結構15G盤繞後形成的縫隙處塗覆黏結劑, 該黏結劑可以係導電黏結劑,也可以係非導電的黏結劑 ,優選地,該黏結劑為導電黏結劑,本實施例中選用導 電銀膝。請參見圖28,當輪人端54包括奈米根奈米碳管 線狀結構150時,每根奈米碳管線狀結構15〇可環繞一周 形成-圓環’相鄰的兩個圓環緊密結合’且每根奈^碳 管線狀結構15〇組成的圓環的半徑依次逐漸減小,從而組 成-具有圓錐形狀的輸人端54。相鄰的奈米碳管線狀結 構組成的圓環之間通過黏結劑固定。 當輸入端54包括奈米碳管層或奈米碳管線散結構時為 使該奈米碳管層或該奈米碳管線狀結構保持該輸入端Μ 的形狀,該奈米碳管層或該奈米碳管線狀結構可以通過 在一預定溫度下進行熱處理的步驟在真空環境下或保護 氣體存在的條件下進行熱處理使其固定形狀使奈米碳 管層或奈米碳管線狀結構保持住該輸入端54的固定形狀 所需要的預定溫度可為600〜2000攝氏度,優選的該預 疋溫度為16〇〇〜;17〇〇攝氏度。由於奈米碳管層或奈米碳 管線狀結構中的奈米碳管通過凡得瓦力相互結合,該熱 處理過程’對所述由於凡得瓦力作用而相互連接在一起 的奈米碳管可起到一焊接效果,並使其保持住預定形狀 。所述熱處理過程可採用通以加熱電流或高溫加熱兩種 方式進行: 099146737 表單編號A0101 第22頁/共61頁 0992080305-0 201227422 [0047] (1) 對於通以加熱電流方式,可直接向該固定形狀的奈米 礙管層或奈米碳管線狀結構通入一加熱電流,並維持一 段時間。該加熱電流的大小可依奈米碳管層的厚度和面 積而定或者根據奈米碳管線狀結構的直徑和長度而定, 其應保證使奈米碳管層或奈米碳管線狀結構的溫度達到 所述預定溫度。在通以加熱電流進行熱處理的過程中, 若熱處理維持的時間過長,則會導致奈米碳管層或奈米 碳管線狀結構自身缺陷的增大以及碳的流失,故該維持 的時間以不超過4小時為佳。 Ο [0048] (2) 對於高溫加熱方式,可將固定形狀的奈米碳管層或奈 米碳管線狀結構置入具有一預定溫度之高溫環境,如石 墨爐中,並維持一段時間,所述維持時間依溫度的高低 而定。例如在約2000攝氏度的預定溫度下進行熱處理, 維持約0. 5~1小時即可。 [0049] Ο [0050] 通過上述處理方式,奈米碳管層或奈米碳管線狀結構可 以保持一固定形狀而不變形,故,輸入端54可以由純的 奈米碳管結構構成。 當輸入端54包括一奈米碳管複合材料層時,該奈米碳管 複合材料層包括一奈米碳管層時,該奈米碳管層的設置 方式與輸入端54由奈米碳管層構成時的設置方式一致; 當奈米碳管複合材料層包括一根或奈米根奈米碳管奈米 碳管線狀結構時,該奈米碳管線狀結構的設置方式與輸 入端54由奈米碳管線狀結構構成時的設置方式一致。 [0051] 請參見圖29,本發明第六實施例提供一種觸摸屏輸入指 099146737 表單編號Α0101 第23頁/共61頁 0992080305-0 201227422 套60,該觸摸屏輸入指套60包括一手指套筒62及一輸入 端64。 [0052] 所述手指套筒62為一指環,其具有一環形結構,該手指 套筒62用於套設在手指上。所述指環的形狀不限,只需 滿足觸摸屏輸入指套60通過該指環可以固定於使用者的 手指上即可。所述指環可以為一圓環結構或者一C型結構 。所述指環的材料為導電材料,可以為金屬、合金或導 電聚合物。 [0053] 所述輸入端64固定於手指套筒62上,由於手指套筒62為 一環狀結構,輸入端64固定於該環狀結構圓周上的一突 出結構。所述輸入端64與手指套筒62電連接,可以通過 焊接、機械連接方式或者導電膠固定於手指套筒62上。 所述輸入端64的結構與第一實施例提供的輸入端14的結 構相同,或者與第五實施例提供的輸入端54的結構相同 〇 [0054] 本發明提供的觸摸屏輸入指套具有以下優點:其一,所 述觸摸屏輸入指套在使用時,可通過輸入端的導電層與 手指電連接,利用輸入端向觸摸屏可輸入資訊,故不會 弄髒觸摸屏;其二,本發明的導電層,即與觸摸屏接觸 部分的材料(如奈米碳管、石墨烯或其複合材料)硬度 和摩擦係數均較小,不易對觸摸屏造成破壞;其三,由 於輸入端與觸摸屏的接觸面積可以很好的控制,可以靈 敏的操作較小的按鍵;其四,由於該觸摸屏指套在使用 時可以套在一個手指上操作,相對於輸入筆操作,無需 兩隻手同時操作觸摸屏,可以實現一隻手操作觸摸屏。 099146737 表單編號A0101 第24頁/共61頁 0992080305-0 201227422 [0055] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0056] 圖1為本發明第一實施例提供的觸摸屏輸入指套的剖面示 意圖。 0 [0057] 圖2為本發明第一實施例中觸摸屏輸入指套的導電層所採 用的石墨烯的結構示意圖。 [0058] 圖3係本發明第一實施例中觸摸屏輸入指套採用奈米碳管 陣列設置於支撐體表面作為導電層的結構示意圖。 [0059] 圖4係本發明第一實施例中觸摸屏輸入指套採用奈米碳管 層設置於支撐體表面作為導電層的結構示意圖。 [0060] 圖5係本發明第一實施例中觸摸屏輸入指套的導電層所採 Q 用的奈米碳管拉膜的掃描電鏡照片。 [0061] 圖6係本發明第一實施例中觸摸屏輸入指套的導電層所採 用的奈米碳管絮化膜的掃描電鏡照片。 [0062] 圖7係本發明第一實施例中觸摸屏輸入指套的導電層所採 用的奈米碳管碾壓膜的掃描電鏡照片。 [0063] 圖8係本發明第一實施例中觸摸屏輸入指套採用一根奈米 碳管線狀結構設置於支撐體表面作為導電層的結構示意 圖。 0992080305-0 099146737 表單編號A0101 第25頁/共61頁 201227422 [0064] 圖9係本發明第一實施例中觸摸屏輸入指套採用奈米根奈 米碳管線狀結構設置於支撐體表面作為導電層的結構示 意圖。 [0065] 圖1 0係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的包括奈米根相互平行的奈米碳管線的奈米碳管線 狀結構的結構示意圖。 [0066] 圖11係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的包括奈米根相互纏繞的奈米碳管線的奈米碳管線 狀結構的結構示意圖。 [0067] 圖1 2係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的非扭轉的奈米碳管線的掃描電鏡照片。 [0068] 圖1 3係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的扭轉的奈米碳管線的掃描電鏡照片。 [0069] 圖1 4係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的奈米碳管高分子複合材料的結構示意圖。 [0070] 圖15係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的高分子材料包覆奈米碳管陣列形成的高分子複合 材料的結構示意圖。 [0071] 圖16係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的高分子材料填充於奈米碳管陣列的縫隙中形成的 高分子複合材料的結構示意圖。 [0072] 圖1 7係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的奈米碳管層與高分子材料形成的高分子複合材料 099146737 表單編號A0101 第26頁/共61頁 0992080305-0 201227422 [0073] [0074] [0075]Ο [0076] [0077] [0078] ❹ [0079] [0080] [0081] 的結構不意圖。 圖1 8係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的奈米碳管線狀結構與高分子材料形成的高分子複 合材料的結構示意圖。 圖19係本發明第一實施例中觸摸屏輸入指套的導電層所 採用的石墨烯高分子複合材料的結構示意圖。 圖2 0為本發明第二實施例提供的觸摸屏輸入指套的結構 示意圖。 圖21為本發明第三實施例第一種情況提供的觸摸屏輸入 指套的結構示意圖。 圖22為本發明第三實施例第二種情況提供的觸摸屏輸入 指套的結構示意圖。 圖23為本發明第三實施例第三種情況提供的觸摸屏輸入 指套的結構示意圖。 圖24為本發明第三實施例第四種情況提供的觸摸屏輸入 指套的結構示意圖。 圖25為本發明第四實施例提供的觸摸屏輸入指套的結構 示意圖。 圖26為本發明第五實施例提供的觸摸屏輸入指套的結構 示意圖。 圖27為本發明第五實施例提供的由一根奈米碳管線狀結 構構成的輸入端的結構示意圖。 099146737 表單編號Α0101 第27頁/共61頁 0992080305-0 [0082] 201227422 [0083] 圖28為本發明第五實施例提供的由奈米根奈米碳管線狀 結構構成的輸入端的結構不意圖。 [0084] 圖29為本發明第六實施例提供的觸摸屏輸入指套的結構 示意圖。 【主要元件符號說明】 [0085] 觸摸屏輸入指套:10,20,30,40,50,60 [0086] 手指套筒:12,22,32,42,52,62 [0087] 輸入端:14,54,64 [0088] 第一部分:142,542 [0089] 第二部分:144,544 [0090] 縫隙:16,56 [0091] 支撐體:146 [0092] 導電層:148,248,348 [0093] 奈米碳管線狀結構:150 [0094] 奈米碳管線:152 [0095] 奈米碳管:122 [0096] 高分子基體:124 [0097] 奈米碳管陣列:154 [0098] 高分子基體:1 5 6 [0099] 奈米破管層:158 099146737 表單編號A0101 第28頁/共61頁 0992080305-0 201227422The carbon nanotube polymer composite layer may include a polymer matrix and a carbon nanotube layer. The tube layer may be composed of at least a layer of carbon nanotubes. When the nanotube layer comprises a layer of carbon nanotubes, the carbon nanotubes (4) can occur in a direction perpendicular to the extension of the carbon nanotubes: After the 're-recovery' process, the carbon nanotubes are not destroyed. Structure of the film [When the carbon nanotube layer comprises at least two layers of mutually perpendicular carbon nanotube film, the carbon nanotube layer can be converted and restored in all directions, and the process does not destroy the nano-material pull. The structure of the membrane. Due to the above properties of the carbon nanotube film, when the polymer substrate is elastic (four), the touch screen input finger sleeve 30 can have greater elasticity, is more convenient in application, and has no requirement on the thickness of the user's finger, and It is easier to fix on the user's finger. Referring to FIG. 25, a fourth embodiment of the present invention provides a touch screen input finger sleeve 40. The touch screen input finger sleeve 4|) is composed of a finger sleeve 42 composed of a plurality of warp threads 424 and a plurality of weft threads. 426 braided. The warp threads 424 are conductive filaments, and one end of the plurality of warp threads 424 are connected to each other at a node 4240. A plurality of warp threads 424 extend from the node 4240. The node 4240 constitutes a tip which serves as the input end 44 of the touch screen input finger cot 4 . The weft 4 26 is a closed line 'for fixing the plurality of warp threads 424. The warp 424 and the weft 426 have a diameter of less than 1 mm, and preferably, the warp 424 and the weft 426 have a diameter greater than or equal to 1 〇 micrometer and less than 1 mm. The distance between two adjacent wefts 426 is less than or equal to 1 099146737 Form No. A0101 Page 20 of 61 0992080305-0 201227422 mm. The warp 424 is a conductive material and is a nano carbon line structure or a carbon nanotube composite line structure. The material of the weft 426 may be a conductive material or an insulating material. The conductive material may be a metal. The insulating material may be plastic, nylon, rubber, resin or fiber. Preferably, the material of the weft 4 26 is a flexible material to impart a certain flexibility to the touch screen input finger sleeve 40. Referring to FIG. 26, a fifth embodiment of the present invention provides a touch screen input finger sleeve 50 including a finger sleeve 52 and an input end 54. The main difference between this embodiment and the first embodiment is that the input terminals 54 are all composed of a conductive material. [0043] The input end 54 may be the carbon nanotube layer, the nano carbon line structure, the nanometer carbon tube polymer composite layer or the graphene polymer composite layer described in the first embodiment. Composition. The carbon nanotube structure, the carbon nanotube polymer composite layer or the graphene polymer composite layer may be formed into a shape of the input end 54 by various deformations such as curling, agglomeration, coiling, and the like. [0044] When the input 54 includes a carbon nanotube layer, the carbon nanotube layer can be agglomerated to form an input 54. The input end 54 can be a hollow structure or a solid structure. At this time, the input end 54 is composed of a plurality of intertwined carbon nanotube tubes. Since the carbon nanotube layer includes a plurality of carbon nanotube membranes, the surface of the carbon nanotube membrane has a certain viscosity, so that when the carbon nanotube layer is agglomerated to form the input end 54, the shape of the input end 54 can be maintained. When the carbon nanotube layer comprises a carbon nanotube film or a carbon nanotube film, the carbon nanotubes are connected end to end, so that the input terminal 54 has good conductivity. 099146737 Form No. A0101 Page 21/61 Page 0992080305-0 201227422 [0046] [0046] Referring to FIG. 27, when the input end 54 includes a "Ning Ning" line-like structure i5〇, the nanocarbon line shape The structure 丨5〇 can be formed to form a wheel man (10). In order to maintain the shape of the input end 54 of the nanocarbon line-like structure 150, a bonding agent can be applied at a gap formed after the nano carbon line-like structure 15G is wound. The bonding agent may be a conductive adhesive or a non-conductive adhesive. Preferably, the adhesive is a conductive adhesive. In this embodiment, a conductive silver knee is used. Referring to FIG. 28, when the wheel end 54 includes the nanogen nano carbon line structure 150, each nano carbon line structure 15〇 can be formed around the circumference of the ring. And the radius of the ring composed of each of the carbon-carbon line-like structures 15 依次 is gradually reduced, thereby constituting - the input end 54 having a conical shape. Adjacent to the carbon nanotube-like structure, the rings are fixed by a binder. When the input end 54 includes a carbon nanotube layer or a nanocarbon pipeline bulk structure, the carbon nanotube layer or the nanocarbon line-like structure maintains the shape of the input port ,, the carbon nanotube layer or the The nanocarbon line-like structure may be heat-treated by a heat treatment step at a predetermined temperature in a vacuum atmosphere or in the presence of a shielding gas to fix the shape to hold the carbon nanotube layer or the nanocarbon line-like structure. The predetermined temperature required for the fixed shape of the input end 54 may be 600 to 2000 degrees Celsius, and preferably the pre-twist temperature is 16 〇〇 to 17 degrees Celsius. Since the carbon nanotubes in the carbon nanotube layer or the nanocarbon line-like structure are combined with each other by van der Waals force, the heat treatment process 'the carbon nanotubes connected to each other due to the effect of van der Waals force It can achieve a welding effect and keep it in a predetermined shape. The heat treatment process can be carried out by heating current or high temperature heating: 099146737 Form No. A0101 Page 22 / Total 61 Page 0992080305-0 201227422 [0047] (1) For the heating current mode, directly to the The fixed shape of the nano-tube layer or the nano-carbon line-like structure is supplied with a heating current for a period of time. The heating current may be determined by the thickness and area of the carbon nanotube layer or according to the diameter and length of the nanocarbon line structure, which should ensure the carbon nanotube or nanocarbon line structure. The temperature reaches the predetermined temperature. In the process of heat treatment by heating current, if the heat treatment is maintained for a long time, the defect of the carbon nanotube layer or the nanocarbon line-like structure itself and the loss of carbon may be caused, so the maintenance time is No more than 4 hours is preferred. 2 [0048] (2) For the high-temperature heating method, a fixed-shaped carbon nanotube layer or a nanocarbon line-like structure may be placed in a high-temperature environment having a predetermined temperature, such as a graphite furnace, and maintained for a period of time. The maintenance time depends on the temperature. 5〜1小时即可。 For example, the heat treatment is carried out at a predetermined temperature of about 2000 degrees Celsius, maintaining about 0.5 to 1 hour. [0050] By the above treatment, the carbon nanotube layer or the nanocarbon line-like structure can maintain a fixed shape without deformation, so that the input end 54 can be composed of a pure carbon nanotube structure. When the input end 54 includes a carbon nanotube composite layer, when the carbon nanotube composite layer comprises a carbon nanotube layer, the arrangement of the carbon nanotube layer and the input end 54 are formed by a carbon nanotube layer The arrangement is the same when the composition is made; when the carbon nanotube composite layer comprises one or a nano-nano carbon nanotube nano-carbon line structure, the arrangement of the nano-carbon line-like structure and the input end 54 are made of nano The arrangement of the carbon line-like structure is the same. Referring to FIG. 29, a sixth embodiment of the present invention provides a touch screen input finger 099146737, a form number Α 0101, a 23th page, a total of 61 pages 0992080305-0, a 201227422 set 60, the touch screen input finger sleeve 60 includes a finger sleeve 62 and An input 64. [0052] The finger sleeve 62 is a finger ring having an annular structure, and the finger sleeve 62 is for being sleeved on a finger. The shape of the finger ring is not limited, and only the touch screen input finger sleeve 60 can be fixed to the user's finger through the finger ring. The ring may be a ring structure or a C structure. The material of the finger ring is a conductive material and may be a metal, an alloy or a conductive polymer. [0053] The input end 64 is fixed to the finger sleeve 62. Since the finger sleeve 62 has an annular structure, the input end 64 is fixed to a protruding structure on the circumference of the annular structure. The input end 64 is electrically connected to the finger sleeve 62 and can be fixed to the finger sleeve 62 by soldering, mechanical connection or conductive adhesive. The structure of the input terminal 64 is the same as that of the input terminal 14 provided by the first embodiment, or the structure of the input terminal 54 provided by the fifth embodiment is the same. [0054] The touch screen input finger cot provided by the present invention has the following advantages. In one case, the touch screen input finger sleeve can be electrically connected to the finger through the conductive layer of the input end during use, and the input screen can input information to the touch screen, so the touch screen is not soiled; secondly, the conductive layer of the present invention, That is, the material in contact with the touch screen (such as carbon nanotubes, graphene or composite materials thereof) has a small hardness and friction coefficient, which is not easy to cause damage to the touch screen; thirdly, the contact area between the input end and the touch screen can be very good. Control, can sensitively operate smaller buttons; Fourth, since the touch screen finger sleeve can be operated on one finger when used, relative to the input pen operation, two hands can be operated simultaneously without touching the touch screen, and one hand operation can be realized touch screen. 099146737 Form No. A0101 Page 24 of 61 0992080305-0 201227422 [0055] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0056] FIG. 1 is a cross-sectional view of a touch screen input finger cot according to a first embodiment of the present invention. 2 is a schematic structural view of graphene used in a conductive layer of a touch screen input finger sleeve according to a first embodiment of the present invention. 3 is a schematic structural view showing a touch panel input finger sleeve in a first embodiment of the present invention, wherein a carbon nanotube array is disposed on a surface of a support as a conductive layer. 4 is a schematic view showing the structure of the input screen of the touch screen in which the carbon nanotube layer is disposed on the surface of the support as a conductive layer in the first embodiment of the present invention. 5 is a scanning electron micrograph of a carbon nanotube film for use in a conductive layer of a touch screen input finger cover according to a first embodiment of the present invention. [0060] FIG. 6 is a scanning electron micrograph of a carbon nanotube flocculation film used for a conductive layer of a touch screen input finger sleeve in the first embodiment of the present invention. 7 is a scanning electron micrograph of a carbon nanotube rolled film used for a conductive layer of a touch screen input finger sleeve in the first embodiment of the present invention. 8 is a schematic view showing a structure in which a touch panel input finger sleeve is disposed on a surface of a support body as a conductive layer by using a nano carbon line-like structure in the first embodiment of the present invention. 0992080305-0 099146737 Form No. A0101 Page 25 / Total 61 Pages 201227422 [0064] FIG. 9 is a first embodiment of the present invention, the touch screen input finger sleeve is arranged on the surface of the support body as a conductive layer by using a nanocarbon nano-line structure. Schematic diagram of the structure. 10 is a schematic view showing the structure of a nanocarbon pipeline structure including a nano carbon line in which nanoroots are parallel to each other, which is used for the conductive layer of the touch screen input finger cover in the first embodiment of the present invention. 11 is a schematic view showing the structure of a nanocarbon line-like structure including a nano carbon line in which a nanowire is intertwined, which is used for a conductive layer of a touch screen input finger cover in the first embodiment of the present invention. 1 is a scanning electron micrograph of a non-twisted nanocarbon line used for the conductive layer of the touch screen input finger sleeve in the first embodiment of the present invention. Figure 13 is a scanning electron micrograph of a twisted nanocarbon line employed by the conductive layer of the touch screen input finger cot in the first embodiment of the present invention. [0069] FIG. 14 is a schematic structural view of a carbon nanotube polymer composite material used for a conductive layer of a touch screen input finger sleeve according to a first embodiment of the present invention. 15 is a schematic structural view of a polymer composite material formed by a polymer material coated carbon nanotube array used for a conductive layer of a touch screen input finger sleeve according to a first embodiment of the present invention. 16 is a schematic structural view of a polymer composite material formed by filling a polymer material in a conductive layer of a touch screen input finger sleeve in a gap of a carbon nanotube array in the first embodiment of the present invention. [0072] FIG. 1 is a polymer composite material formed by a carbon nanotube layer and a polymer material used for a conductive layer of a touch screen input finger sleeve according to a first embodiment of the present invention. 099146737 Form No. A0101 Page 26 of 61 0992080305-0 201227422 [0075] [0075] [0078] [0078] [0080] The structure of [0081] is not intended. Fig. 18 is a structural schematic view showing a polymer composite material formed by a nanocarbon line-like structure and a polymer material used for a conductive layer of a touch panel input finger sleeve in the first embodiment of the present invention. Fig. 19 is a structural schematic view showing a graphene polymer composite material used for a conductive layer of a touch screen input finger sleeve in the first embodiment of the present invention. FIG. 20 is a schematic structural diagram of a touch screen input finger sleeve according to a second embodiment of the present invention. FIG. 21 is a schematic structural diagram of a touch screen input finger sleeve according to a first aspect of the third embodiment of the present invention. FIG. 22 is a schematic structural diagram of a touch screen input finger sleeve according to a second aspect of the third embodiment of the present invention. FIG. 23 is a schematic structural diagram of a touch screen input finger sleeve according to a third aspect of the third embodiment of the present invention. FIG. 24 is a schematic structural diagram of a touch screen input finger sleeve according to a fourth aspect of the third embodiment of the present invention. FIG. 25 is a schematic structural diagram of a touch screen input finger sleeve according to a fourth embodiment of the present invention. FIG. 26 is a schematic structural diagram of a touch screen input finger sleeve according to a fifth embodiment of the present invention. Figure 27 is a schematic view showing the structure of an input end composed of a nanocarbon line-like structure according to a fifth embodiment of the present invention. 099146737 Form No. Α0101 Page 27 of 61 0992080305-0 [0082] FIG. 28 is a schematic diagram showing the structure of an input end composed of a nanogen nanocarbon line-like structure according to a fifth embodiment of the present invention. 29 is a schematic structural diagram of a touch screen input finger sleeve according to a sixth embodiment of the present invention. [Main component symbol description] [0085] Touch screen input finger sleeve: 10, 20, 30, 40, 50, 60 [0086] Finger sleeve: 12, 22, 32, 42, 52, 62 [0087] Input: 14 , 54, 64 [0088] Part 1: 142, 542 [0089] Part 2: 144, 544 [0090] Slot: 16, 56 [0091] Support: 146 [0092] Conductive layer: 148, 248, 348 [ 0093] Nanocarbon line structure: 150 [0094] Nano carbon line: 152 [0095] Nano carbon tube: 122 [0096] Polymer matrix: 124 [0097] Carbon nanotube array: 154 [0098] High Molecular Substrate: 1 5 6 [0099] Nano-breaking layer: 158 099146737 Form No. A0101 Page 28 / Total 61 Page 0992080305-0 201227422

[0100] 奈米碳管複合線狀結構:160 [0101] 石墨稀 :128 [0102] 石墨烯高分子複合材料層:130 [0103] 通孔: 220 [0104] 導電連接部:240 [0105] 網格: 322 [0106] 經線: 324 , 424 [0107] 緯線: 326 , 426 [0108] 結點: 3240 , 4240 099146737 表單編號A0101 第29頁/共61頁 0992080305-0Nano carbon tube composite linear structure: 160 [0101] Graphite thin: 128 [0102] Graphene polymer composite material layer: 130 [0103] Through hole: 220 [0104] Conductive connection: 240 [0105] Grid: 322 [0106] Warp: 324, 424 [0107] Weft: 326, 426 [0108] Node: 3240, 4240 099146737 Form No. A0101 Page 29 / Total 61 Page 0992080305-0

Claims (1)

201227422 七、申請專利範圍: 1 . 一種觸摸屏輸入指套,其包括: 一手指套筒; 一輸入端,所述輸入端設置於該手指套筒;其改良在於, 所述輸人端包括-支撐體及設置在該支糾表面的導電層 ,所述導電層包括複數個石墨烯,在使用時,所述導電層 與手指電連接。 .如申請專利範圍第1項所述之觸摸屏輸入指套,其中,所 述輸入端由複數個石墨稀組成,該複數個石墨稀通過凡得 瓦力相互連接。 .如申請專利範圍第1項所述之觸摸屏輸入指套,其中,所 述石墨稀層it過黏結劑g)定於切體的表面。 .如申請專利範圍第1項所述之觸摸屏輸入指套其中所 述石墨烯的厚度小於等於1〇〇奈米。 如申請專利範圍第1項所述之觸摸屏輸入指套,其中,所 述手心套筒的材料為柔性絕緣材料所述柔性絕緣材料為 樹脂、橡膠'塑膠或柔性纖維广 如”月專利範圍第i項所述之觸摸屏輸入指套,其中,所 边手指套筒的材料為柔性導電材料,所述柔性導電材料包 括所述紐㈣和分佈在所«性材射的金屬顆粒。 如申請專利範圍第!項所述之觸摸屏輸入指套,其中,所 ^輪入%SI疋於所述手指套筒的—端,所述輸人端包括一201227422 VII. Patent application scope: 1. A touch screen input finger sleeve, comprising: a finger sleeve; an input end, the input end is disposed on the finger sleeve; and the improvement is that the input end comprises a support And a conductive layer disposed on the surface of the support, the conductive layer comprising a plurality of graphenes, the conductive layer being electrically connected to the fingers in use. The touch screen input finger sleeve of claim 1, wherein the input end is composed of a plurality of graphite thinner portions, and the plurality of graphite thin particles are connected to each other by a vantage force. The touch screen input finger cot according to claim 1, wherein the graphite thin layer is over the bonding agent g) and is disposed on the surface of the cut body. The touch screen input finger cover of claim 1, wherein the thickness of the graphene is less than or equal to 1 nanometer. The touch screen input finger sleeve according to claim 1, wherein the material of the palm sleeve is a flexible insulating material, the flexible insulating material is a resin, a rubber plastic or a flexible fiber is widely used. The touch screen input finger sleeve according to the invention, wherein the material of the finger sleeve is a flexible conductive material, and the flexible conductive material comprises the neon (four) and the metal particles distributed on the material. The touch screen input finger sleeve of the item, wherein the wheel is inserted into the end of the finger sleeve, and the input end includes a ,—部f和—第二部分,所述第一部分位於手指套筒内部 ,所述第二部分位於手指套筒的外部。 申》月專利扼圍第7項所述之觸摸屏輸人指套,其中,所 099146737 表單編號Α0ΗΗ 第30頁/共61頁 0992080305-0 201227422 述第一部分與手指接觸的表面具有一曲面,所述第二部分 包括一尖端。 9 .如申請專利範圍第7項所述之觸摸屏輸入指套,其中,所 述輸入端與手指套筒相互接觸的側面包括一縫隙。 10.如申請專利範圍第1項所述之觸摸屏輸入指套,其中,所 述支撐體為一空心結構。 . 一種觸摸屏輸入指套,其包括:a portion f and a second portion, the first portion being located inside the finger sleeve and the second portion being located outside the finger sleeve. The touch screen input finger sleeve described in item 7 of the monthly patent application, wherein the 099146737 form number Α0ΗΗ page 30/61 page 0992080305-0 201227422 the first part of the surface in contact with the finger has a curved surface, The second part includes a tip. 9. The touch screen input finger cot of claim 7, wherein the side of the input end in contact with the finger sleeve comprises a slit. 10. The touch screen input finger sleeve of claim 1, wherein the support body is a hollow structure. A touch screen input finger cot comprising: 12 13 14 15 099146737 —手指套筒,該手指套筒為-端封閉另—端敞開的筒狀結 構’其包括一内表面及一外參面; —導電層,所述導電層設置餘手指套筒的表面上,所述導 電層將手指套筒的内表面至少一部分和手指套外表面導電 性連接’所述導電層位於手指套筒封閉端的部分為輸入端 ’所述導電層包括複數個石墨烯。 如申請專利範圍第11項所述之觸摸屏輸入指套,其中,所 述導電層覆蓋手指套筒的整個内表面和外表面,所述導電 層在手指套筒敞開的一端電連接。 如申請專利範圍第11項所述之觸摸屏輸入指套,其中,所 述導電層覆蓋手指套筒的整個外表面和部分内表面所述 導電層在手指套筒敞開的一端電連接。 如申請專利範圍第11項所述之觸摸屏輸入指套,其中,所 述手指套筒包括至少-個通孔’所述導電層覆蓋手指套筒 的外表面和該複數個通孔。 如申請專利範圍第11項所述之觸摸屏輸入指套,其中,所 述手指套筒包括至少一個通孔,所述導電層覆蓋手指套筒 的内表面和外表面,所述至少一個通孔内設置有一導電連 接。P ’該導電連接部使位於手指套筒内表面的導電層和位 表單編號S 31頁/共61頁 0992080305-0 201227422 於手指套筒外表面的導電層電連接。 099146737 表單編號A0101 第32頁/共61頁 0992080305-012 13 14 15 099146737 - a finger sleeve which is a - end closed tubular structure of the other end - which comprises an inner surface and an outer surface; - a conductive layer, the conductive layer is provided with a finger sleeve On the surface of the barrel, the conductive layer electrically connects at least a portion of the inner surface of the finger sleeve and the outer surface of the finger sleeve. The portion of the conductive layer at the closed end of the finger sleeve is an input end. The conductive layer includes a plurality of graphite layers. Alkene. The touch screen input finger cot of claim 11, wherein the conductive layer covers the entire inner surface and the outer surface of the finger sleeve, and the conductive layer is electrically connected at an open end of the finger sleeve. The touch screen input finger cot of claim 11, wherein the conductive layer covers the entire outer surface of the finger sleeve and a portion of the inner surface of the finger sleeve is electrically connected at an open end of the finger sleeve. The touch screen input finger cot of claim 11, wherein the finger sleeve includes at least one through hole. The conductive layer covers an outer surface of the finger sleeve and the plurality of through holes. The touch screen input finger sleeve of claim 11, wherein the finger sleeve includes at least one through hole, the conductive layer covering an inner surface and an outer surface of the finger sleeve, the at least one through hole A conductive connection is provided. The conductive connection of P ′ causes the conductive layer on the inner surface of the finger sleeve to be electrically connected to the conductive layer on the outer surface of the finger sleeve, and the number of the form No. S 31 of the 0992080305-0 201227422. 099146737 Form No. A0101 Page 32 of 61 0992080305-0
TW99146737A 2010-12-30 2010-12-30 Finger-stall for touch panel TWI421736B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99146737A TWI421736B (en) 2010-12-30 2010-12-30 Finger-stall for touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99146737A TWI421736B (en) 2010-12-30 2010-12-30 Finger-stall for touch panel

Publications (2)

Publication Number Publication Date
TW201227422A true TW201227422A (en) 2012-07-01
TWI421736B TWI421736B (en) 2014-01-01

Family

ID=46933244

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99146737A TWI421736B (en) 2010-12-30 2010-12-30 Finger-stall for touch panel

Country Status (1)

Country Link
TW (1) TWI421736B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200844804A (en) * 2007-05-04 2008-11-16 Sutech Trading Ltd Stylus and portable electronic device using the same
US20090078478A1 (en) * 2007-09-24 2009-03-26 Jonathan Newman Finger tip stylus
TW200923733A (en) * 2007-11-19 2009-06-01 Inventec Appliances Corp Stylus pen applicable to capacitive touch panel

Also Published As

Publication number Publication date
TWI421736B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
CN102053735B (en) Touch screen input fingerstall
US9557858B2 (en) Inputting fingertip sleeve
CN102023729B (en) Touch control pen
CN102053739B (en) Touch screen input finger stall
CN102023730B (en) Touch screen input fingerstall
TWI421736B (en) Finger-stall for touch panel
TWI468994B (en) Finger-stall for touch panel
TWI426422B (en) Finger-stall for touch panel
TWI510973B (en) Finger-stall for touch panel
TWI426421B (en) Finger-stall for touch panel
TWI510975B (en) Finger-stall for touch panel
TWI505142B (en) Finger-stall for touch panel
CN102053734B (en) Stylus
CN102043490B (en) Touch screen input finger tab
TW201227434A (en) Touch pen
CN102053738B (en) Touch screen input finger guard
CN102053736B (en) Touch screen input finger stall
CN102053733A (en) Stylus
TWI505143B (en) Touch pen
TWI507927B (en) Touch pen
TWI420352B (en) Touch pen
TWI438654B (en) Touch pen
TWI420353B (en) Touch pen
TW201227430A (en) Touch pen