TW201227004A - Polarizing plate, method of manufacturing the same, and liquid crystal display employing the same - Google Patents

Polarizing plate, method of manufacturing the same, and liquid crystal display employing the same Download PDF

Info

Publication number
TW201227004A
TW201227004A TW99145534A TW99145534A TW201227004A TW 201227004 A TW201227004 A TW 201227004A TW 99145534 A TW99145534 A TW 99145534A TW 99145534 A TW99145534 A TW 99145534A TW 201227004 A TW201227004 A TW 201227004A
Authority
TW
Taiwan
Prior art keywords
film
polarizing plate
protective film
cellulose ester
electrode
Prior art date
Application number
TW99145534A
Other languages
Chinese (zh)
Other versions
TWI519830B (en
Inventor
Hideyuki Sato
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to TW099145534A priority Critical patent/TWI519830B/en
Publication of TW201227004A publication Critical patent/TW201227004A/en
Application granted granted Critical
Publication of TWI519830B publication Critical patent/TWI519830B/en

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

The present invention provides a polarizing plate manufactured by a manufacturing method safe in work and less imposing a burden on the environment using protective films excellent in adhesion with a polarizer, and a method of manufacturing the same. Further, the present invention also provides a liquid crystal display using the polarizing plate and having both a large viewing angle and a high visibility (high contrast and so forth). The polarizing plate of the present invention made by holding both surfaces of the polarizer held with protective films is characterized in that at least one protective film is a protective film hydrophilized by either a plasma treatment or a corona treatment, and that the surface energy of the protective films before the hydrophilic treatment and the surface energy of the protective films after the hydrophilic treatment satisfy a predetermined relational expression.

Description

201227004 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種偏光板、其製造方法、及使用其之 液晶顯示裝置。更詳細言,其係關於一種使用在與偏光子 之接著性上優良之保護薄膜,並能以作業上安全且對環境 之負擔少之製法完成之偏光板。此外,本發明並關於一種 使用該偏光板,且同時兼具高視野角·高視認性之液晶顯 —.y-f- 不裝置。 【先前技術】 偏光板保護薄膜,已知有纖維素酯、聚對苯二甲酸乙 二醇酯(PET)、環烯烴聚合物(COP)、聚碳酸酯(PC )等之高分子薄膜。此外,已知有許多方法可將此等薄膜 以例如聚乙烯醇(PVA )爲代表之偏光子加以貼合。 偏光板保護薄膜,例如有纖維素醋薄膜,藉由其適度 之透濕性,可順利地進行與PVA偏光子之接著•乾燥,而 較其他之熱可塑性薄膜被更廣泛地使用。 然而,纖維素酯,由於其本身具有疏水性之故,其在 與P V A之接著步驟前’必須進行鹼水解化、電暈處理、或 電漿處理之親水化處理。 在此等親水化處理之中’鹼水解化係被最廣泛使用之 方法,惟因爲使用高溫·高濃度之鹼水溶液起見,其作業 性及環境適性就很惡劣。尤其’傳統上適用於λ /4板等之 光學薄膜之二乙醯基纖維素,就有在進行鹼水解化時,薄 -5- 201227004 膜之一部在鹼水解化液中溶離,從而析出者造成步驟上之 污染的問題點。因此,就必須在鹼水解化以外進行表面親 水化之步驟。 改變鹼水解化之表面親水化處理,例如有電暈處理· 電漿處理等,目前爲只已被廣泛地檢討(例如專利文獻1 及2參照)。 然而,以此等之方法賦予充分之親水性時,必須要強 度之條件來進行處理,故此時隨著薄膜分解就會伴隨著白 色異物之析出,從而導致步驟上之污染、或薄膜之霧度上 昇、以及隨之而來的液晶顯示裝置中之對比降低之問題。 尤其,與液晶晶胞相鄰接一側之保護薄膜,已知其在液晶 顯示裝置中,會對於正面對比產生很大的影響。 〔先行技術文獻〕 〔專利文獻〕 〔專利文獻1〕特開2000-3 5 67 1 4號公報 〔專利文獻2〕特開2002-82226號公報 【發明內容】 發明之揭示 發明所欲解決之課題 本發明之目的,有鑑於上述問題及狀況,而提供一種. 使用與偏光子之接著性爲優良之保護薄膜,在作業上安全 且對環境之負擔又少之製造方法所製之偏光板及其製造方 法,以及,使用該偏光板且兼具高視野角•高視認性(高 -6 - 201227004 對比等)之液晶顯示裝置。 解決課題之手段 本發明者們,基於上述課題,係提出以下手段加以解 決。 1. —種偏光板,其特徵爲在偏光子之雙面均以保護薄 膜夾住所成之偏光板中,至少單側之保護薄膜係經電漿處 理或電暈處理之任一者進行親水化處理之保護薄膜,該保 護薄膜在親水化處理前之表面能量係滿足下式(SI),且 該保護薄膜之親水化處理後之表面能量係滿足下式(s 11 ), 式(SI) : 0.25^ 7sh/YsP&lt; 1.5 式(SII ) : 1.5 ^ Ysh/7sp^ 4.0 惟’ Ysh係表示表面能量之氫結合成分、Ysp則係偶極 子成分。 2. 如前述第1項之偏光板,其中該經親水化處理之保 護薄膜表面之中心線平均粗度(Ra)之値係2.0·~· 1 0.0 n m 之範圍內者。 3. 如前述第1或第2項之偏光板,其中該保護薄膜係位 相差薄膜;且以下式(RI)所定義之面內位相差値r〇( 590)係30〜90nm之範圍內,又以下式(rii)所定義之厚 度方向之位相差値Rt ( 590 )係70〜300nm之範圍內者, 式(RI) '· R〇( 590) = (nx-ny) xd(nm) 式(RII) : Rt( 590) = {(nx+ny) /2-nz}xd(nm) 201227004 〔上式中,R〇( 590)係表示波長590nm中之薄膜內 之面內位相差値,Rt ( 5 90 )係5 90nm中之薄膜內之厚度方 向之位相差値:此外,d爲光學薄膜之厚度(nm) ,nx爲 5 9 0nm中之薄膜之面內最大折射率,亦稱爲遲相軸方向之 折射率;1^爲5 90nm中之薄膜面內與遲相軸呈直角方向之 折射率,nz則爲5 90nm中之厚度方向上之薄膜之折射率〕 〇 4.如前述第1〜3項中任一項之偏光板,其中該經親水 化處理之保護薄膜之內部霧度係0.1以下者。 5 .如前述第1〜4項中任一項之偏光板,其中該經親水 化處理之保護薄膜係含有纖維素酯之薄膜。 6. 如前述第1〜5項中任一項之偏光板,其中該經親水 化處理之保護薄膜係含有溶解度係數(SP値)爲12.0以上 13.0以下之纖維素酯者。 7. 如前述第1〜6項中任一項之偏光板,其中該經親水 化處理之保護薄膜係含有乙醯基取代度爲2.1以上而未達 2.5之二乙醯基纖維素之薄膜。 8. —種偏光板之製造方法,其特徵爲其係在偏光子之 雙面均以保護薄膜夾住所成之偏光板之製造方法,其具有 至少在單側之保護薄膜上,以電漿處理或電暈處理之任一 者進行親水化處理之步驟,又該保護薄膜在親水化處理前 之表面能量係滿足下式(SI ),且該保護薄膜之親水化處 理後之表面能量係滿足下式(SII), 式(SI) : 0.25$ Ysh/ysp&lt; 1.5 201227004 式(SII) : 1.5^ Ysh/Ysp ^4.0 惟’ γα係表示表面能量之氫結合成分、γ5ρ則係偶極 子成分。 9. 一種液晶顯示裝置,其特徵爲其係由液晶晶胞及配 置於其兩側之二片偏光板所成,且該偏光板之至少一片係 前述第1〜7項中任一項之偏光板,或以前述第8項之偏光 板之製造方法所製造之偏光板。 〔發明之效果〕 根據本發明之上述手段,就可以提供一種使用與偏光 子之接著性優良之保護薄膜,作業上安全且對環境之負擔 又少之製造方法所製之偏光板及其製造方法。此外,使用 該偏光板,還可以提供一種兼具高視野角.高視認性之液 晶顯不裝置。 再者’本發明效果之表現機構,其相關之知識及見解 ,例如有以下事項。 藉由親水化處理,如表面能量之氫結合成分(Ysh )及 偶極子成分(γ5ρ)之比(γ5ΐ1/γ3ρ)能滿足前述關係式(SII )之範圍時’則PVA之接著性良好。γ5ΐ1/γ8ρ,係表示在表 面能量之中’其氫結合成分之比率大小,一般而言,親水 化處理越進行則該値越大。 然而’在處理前之表面能量之氫結合成分(Ysh)及偶 極子成分(γ5ρ)之比(Ysh〇sp)欲調整成0.25以上之薄膜 有其困難’例如三乙醯基纖維素(TAC )或纖維素乙酸酯 201227004 丙酸酯(CAP)等,如在滿足上述關係式(SII)範圍前以 熱等對基材進行破壞,內部霧度就會上昇;又在處理前之 表面能量之氫結合成分(γη )及偶極子成分(γ5ρ )之比 (γ5ϋ/γ5Ρ)可調整成0.25以上之薄膜,例如二乙醯基纖維 素(DAC )等,則可不經基材之分解,在達到與鹼化相同 之表面能量狀態(滿足上述關係式(SII )之狀態)前可 進行表面加工,亦即,發現了親水化處理前之保護薄膜只 要滿足0.25S γ5ΐι/γ5ρ#即可。 此外,預先將富含氫結合成分表面施以電漿處理,可 以使其保持在膜物性之情形下進行親水化。電漿處理,則 由於有增加偏光板保護薄膜之表面凹凸之效果,可藉由固 定效果而對偏光子表面之接著性提昇產生貢獻。 然而,凹凸如過大時,其薄膜表面之霧度會上昇,而 導致液晶顯示裝置中之對比降低,惟如將表面粗度Ra (中 心線平均粗度)控制在適當之範圍(2 · 0〜1 0 · 0 nm )時, 就可將其控制在適當之對比。因此,藉由本發明之方法, 可使控制上述之適當表面粗度之範圍成爲可能。 【實施方式】 實施發明之最佳型態 本發明之偏光板,其特徵係在偏光子之雙面均以保護 薄膜夾住所成之偏光板中,至少單側之保護薄膜係經電漿 處理或電暈處理之任一者進行親水化處理之保護薄膜,該 保護薄膜在親水化處理前之表面能量係滿足前式(SI), -10- 201227004 且該保護薄膜之親水化處理後之表面能量係滿足前 S II )。其特徵係申請專利範圍第1項至第9項發明之 的技術上特徵。 本發明之實施態樣,基於本發明效果可獲得表現 點,前述經親水化處理之保護薄膜之表面之中心線平 度(Ra)之値,係以2.0〜10.〇nm之範圍內爲較佳。 ,前述親水化處理之保護薄膜,其較佳則係位相差薄 且前述式(RI )所定義之面內位相差値R〇 ( 5 90 )在 9 0nm之範圍內,前述(RII )所定義之厚度方向之位 値Rt( 590)在70〜300 nm之範圍內者爲較佳。進一步 述經親水化處理之保護薄膜之內部霧度,則以0. 1以 態樣爲較佳。 本發明中,該經親水化處理之保護薄膜,係以含 維素酯之薄膜爲較佳。此時,該經親水化處理之保護 ,係以含有溶解度係數(SP値)在12.0以上13.0以下 維素酯者爲較佳。此外,該經親水化處理之保護薄膜 乙醯基取代度係以含有2.1以上而未達2.5之二乙醯基 素之薄膜爲較佳。 本發明之偏光板,其適合使用於由液晶晶胞及在 側所配置之二片偏光板所成之液晶顯示裝置等。 以下,茲就本發明及其構成要素、及本發明之實 態·態樣等,加以詳細地說明。 〈保護薄膜之表面能量〉 式( 共同 之觀 均粗 此外 膜, 30〜 相差 ,前 下之 有纖 薄膜 之纖 ,其 纖維 其兩 施形 -11 - 201227004 其特徵爲構成本發明之偏光板之保護薄膜之至少一者 ,係經電漿處理或電暈處理之任一者進行親水化處理之保 護薄膜,該保護薄膜在親水化處理前之表面能量係滿足下 式(SI ),且該保護薄膜之親水化處理後之表面能量係滿 足下式(SII), 式(SI ) : 0.25 ^ Ysh/Ysp &lt;1.5 式(SII) : 1.5^ Ysh/Ysp^ 4.0 惟,爲表面能量之氫結合成分,YSP爲偶極子成分 〇 本發明中,該表面自由能量之、親水化處理前之表面 自由能量之氫結合成分及偶極子成分之比(Ysh/Ysp ),較 佳係0.28〜1.0之範圍內,最佳則係0.30〜0.50之範圍內。 親水化處理前之表面自由能量之氫結合成分及偶極子 成分之比(Ysh/Ysp )如較0.25爲小時,爲得到與親水性之 偏光子之充分的接著性起見,就必須以強度之條件來實施 電漿處理或電翬處理等之親水化處理步驟,已知此時在薄 膜表面會有熱破壞等,造成薄膜之透明性有顯著損害之情 形。 此外,親水化處理前之表面自由能量之氫結合成分及 偶極子成分之比(Ysh/ysp)如較1.5爲大時,在薄膜製造之 捲繞所得之捲筒形狀就會更差。親水化處理前之表面自由 能量之氫結合成分及偶極子成分之比(Ysh/Ysp)係以較0.5 爲小者爲最佳。 此外,親水化處理後之表面自由能量之氫結合成分及 -12- 201227004 偶極子成分之比(Ysh/Ysp ),較佳係1 .8〜3.5之範圍內, 最佳係2 · 0〜3 · 0之範圍內者。如較3.0爲小時,該液晶顯示 裝置之正面對比就可獲得改善。 使表面自由能量之氫結合成分及偶極子成分之比( γ5)ι/γ8ρ )產生變化之手段,例如有藉由:纖維素乙酸酯之 取代度之變化、取代基之碳數之變化、添加劑之構造或添 加量之變化’而進行者。利用將此等因素加以組合而使用 時’就可使表面自由能量之氫結合成分及偶極子成分之比 產生各種變化。 親水化處理後之表面自由能量(γ s h/γ s ρ )如較1 . 5爲小 時,其對於親水性之偏光子之接著性不完全,從而使得本 發明之效果之表現在實際上變得不完全。 親水化處理前或者後之表面自由能量(γ5ΐι/γ5ρ),如 較式(SI) 、S(II)之上限値爲大時,其薄膜之吸濕性會 變大,且在薄膜製造或親水化處理後之捲取步驟上之摩擦 係數會變大,將造成薄膜輥筒之捲筒形狀之重大缺陷。此 外,因溫度或濕度所致水分之出入亦變大,將會產生位相 差値或尺寸之環境變動增大之問題。在組裝於液晶顯示裝 置時,將產生視野角或面板之色變動變大之問題。 因此,爲防止上述問題之發生,並使該保護薄膜在親 水化處理前之表面能量能滿足前述式(SI),且該保護薄 膜在親水化處理後之表面能量能滿足前述式(SII )起見 ,就必須藉由保護薄膜之材料種類之選擇及親水化表面處 理條件等加以控制。而爲了控制親水化處理前或後之表面 -13- 201227004 自由能量(Ysh~sp),其更爲具體之達成手段,例如:將 纖維素乙酸酯之醯基取代率越增大時,則7511~51)會變越小 ;將纖維素乙酸酯進行取代之醯基之碳數越增大時,則 γ^/γ5ρ會變越小;又如將可塑劑之類的疏水性化合物之添 加量越增大時,則751)~!!1)會變越小。此外,親水化處理之 時間 '鹼濃度越增大時,則Ysh/Ysp之値會變越大。再者, 亦可將此等加以組合。 &lt;表面自由能量之測定&gt; 本發明中,薄膜之表面自由能量,係如下述進行測定 〇 將3種之標準液體:純水、硝基甲烷、二碘甲烷,與 被測定固體之接觸角,以協和界面科學株式會公司製:接 觸角計CA-V,進行5次測定,再由測定値之平均獲得其平 均接觸角。接著,另基於Young-Dupre之式及擴張Fowkes 之式,而計算得到固體之表面能量之3成分。201227004 SUMMARY OF THE INVENTION [Technical Field] The present invention relates to a polarizing plate, a method of manufacturing the same, and a liquid crystal display device using the same. More specifically, it relates to a polarizing plate which is excellent in workability and low in environmental burden, and which is excellent in adhesion to a polarizer. Further, the present invention relates to a liquid crystal display-.y-f- non-device which uses the polarizing plate and at the same time has a high viewing angle and high visibility. [Prior Art] A polarizing plate protective film is known as a polymer film such as cellulose ester, polyethylene terephthalate (PET), cycloolefin polymer (COP) or polycarbonate (PC). Further, there are known methods for attaching these films to a polarizer represented by, for example, polyvinyl alcohol (PVA). The polarizing plate protective film, for example, a cellulose vinegar film, can be smoothly dried and dried with the PVA polarizer by its moderate moisture permeability, and is more widely used than other thermoplastic films. However, the cellulose ester, since it is inherently hydrophobic, must undergo a hydrophilization treatment of alkali hydrolysis, corona treatment, or plasma treatment before the next step of P V A . Among these hydrophilization treatments, the alkali hydrolysis is the most widely used method, but its workability and environmental suitability are very poor due to the use of a high-temperature, high-concentration aqueous alkali solution. In particular, 'diacetyl cellulose, which is conventionally applied to an optical film such as a λ/4 plate, is precipitated in an alkali hydrolyzed solution when a base of the thin-5-201227004 film is alkali hydrolyzed. The problem that caused the pollution on the steps. Therefore, it is necessary to carry out the step of surface hydrophilization in addition to alkali hydrolysis. The surface hydrophilization treatment for changing the alkali hydrolysis, for example, corona treatment, plasma treatment, etc., has been widely reviewed (for example, refer to Patent Documents 1 and 2). However, when such a method is used to impart sufficient hydrophilicity, it is necessary to carry out the treatment under the condition of strength. Therefore, as the film is decomposed, it is accompanied by the precipitation of white foreign matter, thereby causing contamination on the step or haze of the film. The rise, and the consequent reduction in contrast in liquid crystal display devices. In particular, the protective film on the side adjacent to the liquid crystal cell is known to have a large influence on the front contrast in the liquid crystal display device. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] JP-A-2000-3 5 67 1 4 (Patent Document 2) JP-A-2002-82226 SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION In view of the above problems and circumstances, the present invention provides a polarizing plate manufactured by a manufacturing method which is excellent in workability and environmental burden, and which is excellent in adhesion to a polarizer. A manufacturing method, and a liquid crystal display device using the polarizing plate and having a high viewing angle and high visibility (high -6 - 201227004 contrast, etc.). Means for Solving the Problems The present inventors have proposed the following means to solve the above problems. 1. A polarizing plate characterized in that a polarizing plate is formed by sandwiching a protective film on both sides of a polarizer, and at least one of the protective films is hydrophilized by either plasma treatment or corona treatment. The protective film is treated, and the surface energy of the protective film before the hydrophilization treatment satisfies the following formula (SI), and the surface energy of the protective film after the hydrophilization treatment satisfies the following formula (s 11 ), wherein the formula (SI): 0.25^ 7sh/YsP&lt; 1.5 Formula (SII ) : 1.5 ^ Ysh/7sp^ 4.0 Only 'Ysh is the hydrogen-bonding component of surface energy and Ysp is a dipole component. 2. The polarizing plate according to the above item 1, wherein the surface line average roughness (Ra) of the surface of the hydrophilized protective film is in the range of 2.0·~·1 0.0 n m. 3. The polarizing plate of item 1 or 2, wherein the protective film is a phase difference film; and the in-plane phase difference 値r〇(590) defined by the following formula (RI) is in the range of 30 to 90 nm. Further, the phase difference 値Rt ( 590 ) in the thickness direction defined by the following formula (rii) is in the range of 70 to 300 nm, and the formula (RI) '· R 〇 ( 590 ) = (nx - ny) xd (nm) (RII) : Rt( 590) = {(nx+ny) /2-nz}xd(nm) 201227004 [In the above formula, R〇(590) represents the in-plane phase difference in the film at a wavelength of 590 nm, Rt ( 5 90 ) is a phase difference in the thickness direction of the film in 5 90 nm: in addition, d is the thickness (nm) of the optical film, and nx is the in-plane maximum refractive index of the film in 590 nm, which is also called The refractive index in the direction of the slow axis; 1^ is the refractive index of the film in the plane of the film at 5 90 nm in the direction perpendicular to the slow axis, and nz is the refractive index of the film in the thickness direction of 5 90 nm] 〇 4. As described above The polarizing plate according to any one of the items 1 to 3, wherein the hydrophilized protective film has an internal haze of 0.1 or less. The polarizing plate according to any one of the above items 1 to 4, wherein the hydrophilicized protective film is a film containing a cellulose ester. The polarizing plate according to any one of the items 1 to 5, wherein the hydrophilicized protective film contains a cellulose ester having a solubility coefficient (SP値) of 12.0 or more and 13.0 or less. 7. The polarizing plate according to any one of the preceding claims, wherein the hydrophilicized protective film comprises a film of ethylenediyl cellulose having a degree of substitution of 2.1 or more and less than 2.5. 8. A method for producing a polarizing plate, characterized in that it is a method for manufacturing a polarizing plate formed by protecting a film on both sides of a polarizer, which has a plasma treatment on at least one side of the protective film Or the step of hydrophilization treatment, or the surface energy of the protective film before the hydrophilization treatment satisfies the following formula (SI), and the surface energy of the protective film after the hydrophilization treatment satisfies Formula (SII), Formula (SI): 0.25$ Ysh/ysp&lt; 1.5 201227004 Formula (SII): 1.5^ Ysh/Ysp ^4.0 Only 'γα is a hydrogen-bonding component of surface energy, and γ5ρ is a dipole component. A liquid crystal display device characterized in that it is composed of a liquid crystal cell and two polarizing plates disposed on both sides thereof, and at least one of the polarizing plates is polarized light according to any one of the above items 1 to 7. A plate, or a polarizing plate manufactured by the method for producing a polarizing plate of the above item 8. [Effects of the Invention] According to the above-described means of the present invention, it is possible to provide a polarizing plate manufactured by a manufacturing method which uses a protective film excellent in adhesion to a polarizer, which is safe in operation and less burdensome on the environment, and a method for producing the same . Further, by using the polarizing plate, it is also possible to provide a liquid crystal display device which has both a high viewing angle and a high visibility. Further, the related knowledge and insights of the performance mechanism of the present invention include, for example, the following matters. By the hydrophilization treatment, if the ratio of the hydrogen coupling component (Ysh) of the surface energy and the dipole component (γ5ρ) (γ5ΐ1/γ3ρ) can satisfy the range of the above relational expression (SII), the adhesion of PVA is good. Γ5ΐ1/γ8ρ represents the ratio of the ratio of the hydrogen-binding component in the surface energy. Generally, the higher the hydrophilization treatment, the larger the enthalpy. However, 'the ratio of the hydrogen-binding component (Ysh) to the dipole component (γ5ρ) before the treatment (Ysh〇sp) is difficult to adjust to a film of 0.25 or more, for example, triethylenesulfonyl cellulose (TAC) Or cellulose acetate 201227004 propionate (CAP), etc., if the substrate is destroyed by heat or the like before satisfying the above relationship (SII), the internal haze will rise; and the surface energy before treatment The ratio of the hydrogen-bonding component (γη) and the dipole component (γ5ρ) (γ5ϋ/γ5Ρ) can be adjusted to a film of 0.25 or more, for example, diacetyl cellulose (DAC), etc., without being decomposed by the substrate, The surface energy processing can be performed before the surface energy state (the state satisfying the above relationship (SII)), that is, the protective film before the hydrophilization treatment is found to satisfy 0.25S γ5ΐι/γ5ρ#. Further, the surface of the hydrogen-rich component is subjected to plasma treatment in advance, and it can be hydrophilized while maintaining the film physical properties. In the plasma treatment, since the surface unevenness of the protective film of the polarizing plate is increased, it is possible to contribute to the adhesion improvement of the surface of the polarizing surface by the fixing effect. However, if the unevenness is too large, the haze of the film surface will rise, resulting in a decrease in contrast in the liquid crystal display device, but the surface roughness Ra (center line average roughness) is controlled to an appropriate range (2 · 0~) When 1 0 · 0 nm), it can be controlled to the appropriate contrast. Therefore, by the method of the present invention, it is possible to control the range of the appropriate surface roughness as described above. BEST MODE FOR CARRYING OUT THE INVENTION The polarizing plate of the present invention is characterized in that a polarizing plate is formed by sandwiching a protective film on both sides of a polarizer, and at least one of the protective films is subjected to plasma treatment or A protective film for hydrophilization treatment of any of the corona treatments, the surface energy of the protective film before the hydrophilization treatment satisfies the former formula (SI), -10-201227004 and the surface energy of the protective film after hydrophilization treatment The system satisfies the former S II ). The feature is the technical feature of the inventions of claims 1 to 9. According to an embodiment of the present invention, the performance point can be obtained based on the effect of the present invention, and the center line flatness (Ra) of the surface of the hydrophilicized protective film is in the range of 2.0 to 10. 〇 nm. good. The protective film of the hydrophilization treatment preferably has a poor phase difference and the in-plane phase difference 値R〇( 5 90 ) defined by the above formula (RI) is in the range of 90 nm, as defined by the above (RII). It is preferred that the thickness direction 値Rt ( 590) is in the range of 70 to 300 nm. Further, the internal haze of the hydrophilized protective film is preferably 0.1. In the present invention, the hydrophilized protective film is preferably a film containing a vitamin ester. In this case, the hydrophilization treatment is preferably carried out by containing a vitamin ester having a solubility coefficient (SP値) of from 12.0 to 13.0. Further, the hydrophilicity-treated protective film has a degree of substitution of ethyl ketone with a film containing 2.1 or more and less than 2.5 ethylene dibasic. The polarizing plate of the present invention is suitably used for a liquid crystal display device or the like which is formed of a liquid crystal cell and two polarizing plates disposed on the side. Hereinafter, the present invention and its constituent elements, and the actual aspects and the like of the present invention will be described in detail. <Surface energy of protective film> Formula (common view is coarse and further film, 30~ phase difference, fiber of fiber film of front and lower side, fiber of both of them -11 - 201227004, which is characterized by constituting the polarizing plate of the present invention At least one of the protective films is a protective film which is subjected to hydrophilization treatment by any of plasma treatment or corona treatment, and the surface energy of the protective film before the hydrophilization treatment satisfies the following formula (SI), and the protection The surface energy of the film after hydrophilization treatment satisfies the following formula (SII), formula (SI): 0.25 ^ Ysh/Ysp &lt; 1.5 Formula (SII): 1.5^ Ysh/Ysp^ 4.0 However, hydrogen bonding for surface energy The component, YSP is a dipole component. In the present invention, the surface free energy, the ratio of the hydrogen-bonding component and the dipole component of the surface free energy before the hydrophilization treatment (Ysh/Ysp) is preferably in the range of 0.28 to 1.0. In the range of 0.30 to 0.50, the ratio of the hydrogen-bonding component and the dipole component (Ysh/Ysp) of the surface free energy before the hydrophilization treatment is as small as 0.25, to obtain a hydrophilic photo-polarizer. Full of For the sake of sex, it is necessary to carry out a hydrophilization treatment step such as plasma treatment or electrothermal treatment under the condition of strength, and it is known that there is thermal damage on the surface of the film at this time, which causes a significant damage to the transparency of the film. Further, when the ratio of the hydrogen-bonding component and the dipole component (Ysh/ysp) of the surface free energy before the hydrophilization treatment is larger than 1.5, the shape of the roll obtained by winding the film is worse. The ratio of the hydrogen-bonding component and the dipole component (Ysh/Ysp) of the surface free energy before the treatment is preferably 0.5 or less. In addition, the hydrogen-bonding component of the surface free energy after hydrophilization treatment and -12 - 201227004 The dipole component ratio (Ysh/Ysp) is preferably in the range of 1.8 to 3.5, and the optimum is in the range of 2 · 0 to 3 · 0. If the ratio is 3.0, the liquid crystal display device The positive contrast can be improved. The means for changing the ratio of the hydrogen-bonding component and the dipole component of the surface free energy (γ5) ι / γ8ρ ), for example, by the change in the degree of substitution of cellulose acetate, The change in the carbon number of the substituent, Configuration change or increase the amount of the additives' are performed. When these factors are combined and used, the ratio of the hydrogen-bonding component and the dipole component of the surface free energy can be varied. The surface free energy (γ sh / γ s ρ ) after the hydrophilization treatment is less than 1.5, which is incomplete for the hydrophilic photon, so that the effect of the present invention actually becomes incomplete. The surface free energy (γ5ΐι/γ5ρ) before or after the hydrophilization treatment, if the upper limit 较 of the formula (SI) or S(II) is large, the hygroscopicity of the film becomes large, and the film is produced or hydrophilic. The coefficient of friction on the winding step after the treatment becomes large, which causes a major defect in the shape of the roll of the film roll. In addition, the ingress and egress of moisture due to temperature or humidity also increases, and there is a problem that the phase difference or the environmental variation of the size increases. When assembled in a liquid crystal display device, there is a problem that the viewing angle or the color shift of the panel becomes large. Therefore, in order to prevent the above problem from occurring, the surface energy of the protective film before the hydrophilization treatment can satisfy the above formula (SI), and the surface energy of the protective film after the hydrophilization treatment can satisfy the above formula (SII). See, it must be controlled by the choice of the material type of the protective film and the hydrophilization surface treatment conditions. In order to control the surface energy-13-201227004 free energy (Ysh~sp) before or after the hydrophilization treatment, a more specific means is achieved, for example, when the thiol substitution rate of cellulose acetate is increased, 7511~51) will become smaller; when the carbon number of the thiol group substituted with cellulose acetate is increased, γ^/γ5ρ will become smaller; and a hydrophobic compound such as a plasticizer will be used. The larger the amount of addition, the smaller 751)~!!1) will become. In addition, the time of the hydrophilization treatment 'when the alkali concentration increases, the Ysh/Ysp becomes larger. Furthermore, these can also be combined. &lt;Measurement of Surface Free Energy&gt; In the present invention, the surface free energy of the film is measured as follows. The contact angles of three standard liquids: pure water, nitromethane, and diiodomethane with the solid to be measured are measured. The average contact angle was obtained from the average of the measured enthalpy by the contact angle meter CA-V, manufactured by the Concord Interface Science and Technology Corporation. Next, based on the Young-Dupre formula and the expanded Fowkes equation, the three components of the surface energy of the solid are calculated.

Young-Dupre 之式:WSL=yL ( l+cos0 ) WSL :液體/固體間之附著能量 YL :液體之表面自由能量 0 :液體/固體之接觸角 擴張Fowkes之式: WSl = 2 { ( YSdYLd ) ,/2+ (YsPyLp) 1/2+ (YshYLh) 1/2} yL=yLd+YLp+YLh:液體之表面自由能量Young-Dupre type: WSL=yL ( l+cos0 ) WSL : liquid/solid adhesion energy YL : liquid surface free energy 0 : liquid / solid contact angle expansion Fowkes formula: WSl = 2 { ( YSdYLd ) , /2+ (YsPyLp) 1/2+ (YshYLh) 1/2} yL=yLd+YLp+YLh: surface free energy of liquid

Ys=YSd+7sp+YSh:固體之表面自由能量 -14- 201227004 γ&lt;)、γΡ、Yh:表面自由能量之分散、偶極子、氫結合 之各成分 標準液體之表面自由能量各成分値(mN/m ),如表5 所示係爲已知,因此由接觸角之値解出3元連立方程式, 即可求出固體表面之表面能量各成分値(Ysd、γ5ρ、Ysh ) &lt;內部霧度&gt; 本發明之親水化處理後之保護薄膜,其內部霧度係以 0.1以下爲較佳,更佳係0.05以下,最佳則係0.03以下。 爲使其正面對比能改良起見,必須使纖維素酯薄膜之 霧度降低,惟如將霧度分成薄膜內部者及表面者時,已知 其改善效果係以內部者爲大。 所謂內部之霧度,係指因薄膜內部之散亂因子所發生 之霧度,而內部,則指由薄膜表面起算5μηι以上之部分者 〇 此內部之霧度,係將薄膜折射率±0.05之折射率之溶 劑滴入於薄膜界面上,並在儘可能無視於薄膜表面之霧度 之狀態下’以霧度計進行測定者。 〈內部霧度測定裝置〉 霧度計(濁度計)(型式:NDH 2000,日本電色(股 )製) 光源,5V9W鹵素球,受光部,矽光電管(附有比視 -15- 201227004 感度過濾器)。 本發明中,係於該裝置中以薄膜折射率± 0.0 5之折射 率之溶劑作爲薄膜界面時,進行薄膜之霧度測定,且該値 係0.05以下者爲其特徵。測定,則依Jis K-7136進行測定 〇 內部霧度測定,係如以下進行者。茲參照圖1加以說 明。 首先,測定薄膜以外之測定器具之空白霧度1。 1. 於潔淨之載玻片上滴入甘油一滴(0.05ml)。此時 應注意液滴中沒有氣泡進入之情形。玻璃,則基於外觀上 潔淨亦可能髒污之緣故,一定要以洗潔劑洗淨後再使用( 圖1 ( a )參照)。 2. 於其上蓋上蓋玻片。即使不壓迫蓋玻片甘油會自行 展開。 3 .放置於霧度計上,測定空白霧度1。 接著以下列之順序,測定包含樣品之霧度2。 4.於載玻片上滴入甘油(0_05ml)(圖1(a)參照) 〇 5 ·於其上再蓋上測定樣品薄膜,且確定不會有氣泡進 入之情形(圖1 ( b )參照)。 6. 在樣品薄膜上滴入甘油(0.05ml )(圖1 ( c )參照 )0 7. 另於其上覆蓋蓋玻片(圖1 ( d)參照)。 8. 將上述所製作之層合體(由上方起爲:蓋玻片/甘油 -16- 201227004 /樣品薄膜/甘油/載玻片)放置於霧度計中測定其霧度2 ° 9.再藉由(霧度2)-(霧度1)=(本發明之纖維素酯 薄膜之內部霧度)而計算得到。 再者,纖維素酯薄膜,係於23°C 55% RH中’調濕5小 時以上之後再製作樣品,另外,上述霧度之測定’全部皆 以23°C 55% RH所進行者。 此外,上述測定所使用之玻璃、甘油,係如以下所示 者。Ys=YSd+7sp+YSh: surface free energy of solid-14- 201227004 γ&lt;), γΡ, Yh: dispersion of surface free energy, dipole, hydrogen bonding, standard surface free energy, each component 値 (mN /m ), as shown in Table 5, is known. Therefore, by solving the 3-element cubic equation from the contact angle, the surface energy components of the solid surface can be obtained (Ysd, γ5ρ, Ysh) &lt;Internal fog Degree The hydrophilic film after the hydrophilization treatment of the present invention has an internal haze of preferably 0.1 or less, more preferably 0.05 or less, and most preferably 0.03 or less. In order to improve the frontal contrast, it is necessary to lower the haze of the cellulose ester film. However, if the haze is divided into the inside of the film and the surface, it is known that the improvement effect is large. The internal haze refers to the haze caused by the scattering factor inside the film, while the internal refers to the haze of the inner part of the film from 5 μηι or more, which is the refractive index of the film ±0.05. The solvent of the refractive index is dropped on the interface of the film, and is measured by a haze meter in a state where the haze of the film surface is ignored as much as possible. <Internal haze measuring device> Haze meter (turbidity meter) (type: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) Light source, 5V9W halogen ball, light receiving unit, xenon phototube (with Vision -15-201227004) filter). In the present invention, when a solvent having a refractive index of a refractive index of the film of ± 0.0 5 is used as a film interface in the apparatus, the haze of the film is measured, and the enthalpy is 0.05 or less. The measurement was carried out in accordance with Jis K-7136. 〇 The internal haze measurement was carried out as follows. This will be explained with reference to Fig. 1. First, the blank haze 1 of the measuring instrument other than the film was measured. 1. Drop one drop of glycerol (0.05 ml) onto a clean glass slide. At this point, attention should be paid to the absence of air bubbles in the droplets. Glass, based on the appearance of clean and possibly dirty, must be washed with detergent before use (Figure 1 (a) reference). 2. Cover the cover with a cover slip. Even if you don't press the coverslip glycerin, it will expand on its own. 3. Place on a haze meter and measure the blank haze1. The haze 2 containing the sample was then determined in the following order. 4. Drop glycerin (0_05ml) onto the slide (see Figure 1(a) for reference) 〇5 · Cover the test sample film and make sure there are no bubbles entering (Figure 1 (b)) . 6. Drip glycerin (0.05 ml) onto the sample film (see Figure 1 (c) for reference). 0 7. Cover the coverslip on top of it (Figure 1 (d) Reference). 8. Place the laminate prepared above (from the top: cover slip / glycerin-16 - 201227004 / sample film / glycerin / slide) in a haze meter to determine its haze 2 ° 9. It is calculated from (haze 2) - (haze 1) = (internal haze of the cellulose ester film of the present invention). Further, the cellulose ester film was subjected to "moisture conditioning for 5 hours or more at 23 ° C 55% RH to prepare a sample, and the measurement of the above haze" was carried out at 23 ° C and 55% RH. Further, the glass and glycerin used in the above measurement are as follows.

玻璃:MICRO SLIDE GLASS S9213 MATSUNAMI 甘油:關東化學製鹿特級(純度&gt; 99.0% )折射率 1.47 &lt;纖維素酯&gt; 本發明之保護薄膜,其材料可使用各種習知之樹脂, 惟係以含有纖維素酯之薄膜爲較佳。此外,該保護薄膜, 係以含有乙醯基取代度爲2.1以上且未達2.5之二乙醯基纖 維素之薄膜,其薄膜能輕易地調整成:親水化處理前之表 面能量滿足前述式(SI ),且親水化處理後之表面能量滿 足前述式(SII),因此爲較佳者。 本發明之纖維素酯之原料之纖維素,其並無特別之限 制’惟例如有綿花籽絨、木材紙漿、洋麻等。此外,由此 等所製得之纖維素酯,可以各自任意之比例加以混合使用 〇 本發明所使用之纖維素酯,可依習知之方法加以製造 -17- 201227004 。具體而言’可以參考特開平1 0-45 804號公報所記載之方 法來進行合成。 市售品,例如有DAICEL公司之LM80、L20、L30、 L40、L50、伊士 曼化學 &amp;g2Ca398-3、Ca398-6、Ca398-10、Ca3 98-3 0、Ca3 94-60S 等乙醯基纖維素。 本發明之纖維素酯薄膜中所含之鈣及鎂之總量(ppm )及醋酸量(ppm ),係以滿足下述關係式(3 )者爲較佳 〇 關係式(3 ) : 1 S (醋酸量(ppm ) ) / (鈣及鎂之總 量(ppm) ) ^30 鈣及鎂,係包含於纖維素酯薄膜之原料的纖維素酯中 ,惟基於將纖維素酯製造過程中添加之酸觸媒(特別是硫 酸)加以中和•安定化起見,亦可以金屬氧化物、金屬氫 氧化物、金屬鹽(無機酸鹽、有機酸鹽)進行添加。此外 ,亦可在纖維素酯薄膜製膜時,以金屬氧化物、金屬氫氧 化物、金屬鹽(無機酸鹽、有機酸鹽)進行添加。又本發 明中所謂之纖維素酯薄膜中所含之鈣及鎂之總量(ppm ) ,係指此等之合計量者。 此外,纖維素酯在製造過程中,其反應溶劑或酯化劑 可使用醋酸酐、醋酸。未反應之醋酸酐,如以反應停止劑 (水、醇、醋酸等)可進行加水分解,並產生醋酸。本發 明中所謂之纖維素酯薄膜中所含之醋酸量(PPm ),係指 此等之殘存醋酸,或游離醋酸之總量。 上述關係式(3 )中,鈣及鎂之總量(ppm )/醋酸量 -18- 201227004 (ppm )係以1以上3 0以下者爲較佳。如較1小時,相對於 鈣及鎂量,其醋酸量過少’將會因爲鈣及鎂金屬鹽而導致 光散亂之產生’並使對比降低’從而並不理想。此外,如 較30爲大時,相對於鈣及鎂量,其醋酸將產生過剩量,而 在將纖維素酯貼合於偏光子後,將因爲醋酸而促進偏光子 之劣化,亦不理想。 纖維素酯薄膜中所含之鈣及鎂之總量,係以5〜 130ppm爲較佳,並以5〜80ppm爲更佳,另以5〜50ppm爲 最佳。 纖維素酯薄膜中所含之醋酸量,係以20〜5 OOppm爲較 佳,並以25〜2 5 0ppm爲更佳,另以30〜150ppm爲最佳。 纖維素酯薄膜中所含鈣及鎂之定量,可以習知方法進 行,舉例而言,可將乾燥之纖維素酯完全燃燒後,先將灰 分溶解於鹽酸中而進行前處理,接著再以原子吸光法進行 測定。測定値係以絕乾狀態之纖維素酯1 g中之鈣及鎂含量 ,且以P P m爲單位而獲得。 纖維素酯薄膜中所含之醋酸之定量,可以習知方法進 行,舉例而言,可使用以下之方法。將薄膜溶解於二氯甲 烷中,進一步加入甲醇進行再沈澱。將上澄液過濾,並將 該上澄液以氣體色層分析法加以測定,而獲得其醋酸量。 本發明所使用之纖維素酯之溶解度係數(SP値),基 於在親水化處理時所需要能量之大小、基材透明性之劣化 防止、因位相差或尺寸之溫濕度所致變動之防止等觀點, 係以12.0以上13.0以下者爲較佳。 -19- 201227004 SP値,在預測各種化學物質之親水性·疏水性上’係 非常重要之係數之一,其係藉由正則溶液理論中之莫爾蒸 發熱ΔΗ及莫爾體積V而加以定義者。此外,經驗上可就 SP値進行預測,亦可使用Hoy或Fedors、Small之係數而計 算求出。 本發明之SP値,其係使用可適用於係數豐富且範圍廣 泛之化合物之Fedors之係數而計算者。其單位係將莫爾體 積V除以凝集能量密度ΔΕ所得値之平方根(cm3/cal) 1/2 而使用者。關於Fedors之係數,在參考文獻:塗佈之基礎 科學原田勇次著稹書店( 1 977 )之P54〜57上有相關之 記載。 &lt;纖維素酯薄膜之添加劑&gt; 在本發明所使用之纖維素酯上,薄膜之親水化處理前 之表面能量,只要能滿足前述式(SI),且親水化處理後 之表面能量係滿足於前述式(SII)者,皆可加入配合其 用途之各種添加劑(加水分解防止劑、位相差調整劑、可 塑劑、紫外線吸收劑、抗氧化劑、酸捕捉劑、微粒子等) (加水分解防止劑) 加水分解防止劑,較佳例如有:具有1個以上1 2個以 下之吡喃糖構造或呋喃糖構造之至少1種,且其構造之0H 基之一部係經酯化之酯化合物之混合物。 -20- 201227004 具有1個以上12個以下之吡喃糖構造或呋喃糖構造之 至少1種,且其構造之OH基之全部或一部係經酯化之酯化 合物之酯化比例,其較佳例如在吡喃糖構造或呋喃糖構造 內’存在OH基爲70%以上者。 以下’茲將上述酯化合物,槪括亦稱爲糖酯化合物。 酯化合物,例如有以下所述者。 葡萄糖、半乳糖、甘露糖、果糖、木酮糖、或*** 糖 '乳糖、蔗糖、蔗果四糖、1F-果糖基蔗果四糖、水蘇 糖、甘露糖醇、乳糖醇、乳果糖、纖維二糖、麥芽糖、纖 維三糖、麥芽三糖、棉子糖或蔗果三糖。 此外,尙有:龍膽二糖、龍膽三糖、龍膽四糖、木酮 三糖、半乳糖苷蔗糖等。 此等之化合物之中,特別以同時具有吡喃糖構造及呋 喃糖構造之二者之化合物爲較佳。 其例如以蔗糖、蔗果三糖、蔗果四糖、1F-果糖基鹿 果四糖、水蘇糖等爲較佳,最佳係蔗糖。 寡糖之酯化合物,亦以具有1〜12個吡喃糖構造或口夫 喃糖構造之至少1種之化合物爲適合者。 此外,前述酯化合物,係將下述一般式(A)所示&amp; 吡喃糖構造或呋喃糖構造之至少1種,以1個以上12個以 進行縮合所成之化合物。惟,Rh〜Rl5、R2i〜R25,係表 示碳數2〜22之醯基或氫原子,m、η則各係0〜12之整數, 且m+n爲1〜12之整數。 -21 - 201227004 [化1] -般式{A} -fp-)srGlass: MICRO SLIDE GLASS S9213 MATSUNAMI Glycerol: Rotary grade (purity &gt; 99.0%) made by Kanto Chemical Co., Ltd. Refractive index 1.47 &lt;Cellulose ester&gt; The protective film of the present invention may be made of various conventional resins. A film of cellulose ester is preferred. In addition, the protective film is a film containing a diethylhydrazine-based cellulose having a degree of substitution of 2.1 or more and less than 2.5, and the film can be easily adjusted so that the surface energy before the hydrophilization treatment satisfies the above formula ( SI), and the surface energy after the hydrophilization treatment satisfies the above formula (SII), and therefore is preferable. The cellulose of the raw material of the cellulose ester of the present invention is not particularly limited. For example, there are cotton seed velvet, wood pulp, kenaf and the like. Further, the cellulose esters obtained by the above may be used in any ratio in any ratio. 纤维素 The cellulose ester used in the present invention can be produced by a conventional method -17-201227004. Specifically, the synthesis can be carried out by referring to the method described in JP-A-10-50-804. Commercial products such as LM80, L20, L30, L40, L50, Eastman Chemical &amp; g2Ca398-3, Ca398-6, Ca398-10, Ca3 98-3 0, Ca3 94-60S, etc. by DAICEL Cellulose. The total amount (ppm) of calcium and magnesium and the amount of acetic acid (ppm) contained in the cellulose ester film of the present invention are preferably in the following relationship (3). (3) : 1 S (Amount of acetic acid (ppm)) / (Total amount of calcium and magnesium (ppm)) ^30 Calcium and magnesium, which are contained in the cellulose ester of the raw material of the cellulose ester film, based on the addition of the cellulose ester in the manufacturing process. The acid catalyst (especially sulfuric acid) is neutralized and stabilized. Metal oxides, metal hydroxides, metal salts (mineral acid salts, organic acid salts) can also be added. Further, it may be added as a metal oxide, a metal hydroxide or a metal salt (mineral acid salt, organic acid salt) in the formation of a cellulose ester film. Further, the total amount (ppm) of calcium and magnesium contained in the cellulose ester film referred to in the present invention means the total amount of these. Further, in the production process of the cellulose ester, acetic anhydride or acetic acid may be used as the reaction solvent or the esterifying agent. Unreacted acetic anhydride, such as a reaction stop (water, alcohol, acetic acid, etc.), can be hydrolyzed to produce acetic acid. The amount of acetic acid (PPm) contained in the cellulose ester film referred to in the present invention means the total amount of residual acetic acid or free acetic acid. In the above relation (3), the total amount (ppm) of calcium and magnesium/the amount of acetic acid -18 - 201227004 (ppm) is preferably 1 or more and 30 or less. If it is less than 1 hour, the amount of acetic acid is too small relative to the amount of calcium and magnesium, which will result in the occurrence of light scattering due to calcium and magnesium metal salts, and the contrast is lowered, which is not preferable. Further, when it is larger than 30, an excessive amount of acetic acid is generated with respect to the amount of calcium and magnesium, and it is not preferable to promote deterioration of the polarizer due to acetic acid after the cellulose ester is bonded to the polarizer. The total amount of calcium and magnesium contained in the cellulose ester film is preferably from 5 to 130 ppm, more preferably from 5 to 80 ppm, and most preferably from 5 to 50 ppm. The amount of acetic acid contained in the cellulose ester film is preferably from 20 to 5,000 ppm, more preferably from 25 to 250 ppm, and most preferably from 30 to 150 ppm. The quantification of calcium and magnesium contained in the cellulose ester film can be carried out by a known method. For example, after the dried cellulose ester is completely burned, the ash is first dissolved in hydrochloric acid for pretreatment, followed by atomization. The absorbance method was used for the measurement. The calcium and magnesium contents in 1 g of the cellulose ester in an absolute dry state were measured and obtained in units of P P m . The quantification of the acetic acid contained in the cellulose ester film can be carried out by a known method. For example, the following method can be used. The film was dissolved in methylene chloride, and further methanol was added for reprecipitation. The supernatant liquid was filtered, and the supernatant liquid was measured by gas chromatography to obtain the amount of acetic acid. The solubility coefficient (SP値) of the cellulose ester used in the present invention is based on the amount of energy required for the hydrophilization treatment, the deterioration of the transparency of the substrate, the prevention of variation due to phase difference or temperature and humidity of the size, and the like. The viewpoint is preferably 12.0 or more and 13.0 or less. -19- 201227004 SP値, one of the most important factors in predicting the hydrophilicity and hydrophobicity of various chemical substances, which is defined by the Mohr evaporating heat ΔΗ and the Moir volume V in the regular solution theory. By. In addition, it is empirically possible to predict the SP値, and it can also be calculated using the coefficients of Hoy or Fedors and Small. The SP値 of the present invention is calculated using coefficients applicable to Fedors of a compound having a wide range of coefficients and a wide range. The unit is the user who divides the Moir volume V by the square root of the enthalpy (cm3/cal) 1/2 of the agglomerated energy density ΔΕ. About the coefficient of Fedors, in the reference: the basis of coating, there is a record on the P54~57 of the original Harada Yoshizumi bookstore (1 977). &lt;Additive of cellulose ester film&gt; In the cellulose ester used in the present invention, the surface energy before the hydrophilization treatment of the film satisfies the above formula (SI), and the surface energy after the hydrophilization treatment is satisfied. In the above formula (SII), various additives (water addition inhibitor, phase difference modifier, plasticizer, ultraviolet absorber, antioxidant, acid scavenger, fine particles, etc.) may be added in combination with the use thereof (hydrolysis preventing agent) The hydrolyzation preventing agent is preferably one having at least one of a pyranose structure or a furanose structure of one or more and 12 or less, and one of the 0H groups of the structure is an esterified ester compound. mixture. -20- 201227004 At least one of one or more 12 or less pyranose structures or furanose structures, and the esterification ratio of all or one of the OH groups of the structure thereof to the esterified ester compound is compared For example, in the pyranose structure or the furanose structure, the OH group is present in an amount of 70% or more. Hereinafter, the above ester compound is also referred to as a sugar ester compound. The ester compound is, for example, as described below. Glucose, galactose, mannose, fructose, xylulose, or arabinose 'lactose, sucrose, cane tetrasaccharide, 1F-fructose cane tetrasaccharide, stachyose, mannitol, lactitol, lactulose, Cellobiose, maltose, cellotriose, maltotriose, raffinose or canetriose. In addition, there are: gentian disaccharide, gentian trisaccharide, gentian tetrasaccharide, xylulose trisaccharide, galactoside sucrose and the like. Among these compounds, a compound having both a pyranose structure and a furanose structure is preferable. For example, sucrose, canetriose, canetetraose, 1F-fructose-based deer tetrasaccharide, stachyose, etc. are preferred, and sucrose is preferred. The oligosaccharide ester compound is also suitably a compound having at least one of a structure of 1 to 12 pyranose or a structure of a gaffodose. In addition, the ester compound is a compound obtained by condensing at least one of a pyranose structure or a furanose structure represented by the following general formula (A) and having one or more of them. However, Rh to Rl5 and R2i to R25 represent a fluorenyl group or a hydrogen atom having 2 to 22 carbon atoms, and m and η are each an integer of 0 to 12, and m + n is an integer of 1 to 12. -21 - 201227004 [化1] -General style {A} -fp-)sr

CH20R21 ch2or25 〇Rm ηCH20R21 ch2or25 〇Rm η

Rii〜Rl5、R21〜R25,其較佳係苯甲醯基、氣原子。 苯甲醯基,進一步係以具有取代基R26爲較佳,例如烷基 、鏈烯基、烷氧基、苯基,又進一步,此等之烷基、鏈烯 基、苯基亦可具有取代基者。 以下,茲舉出酯化合物之具體例子。 [化2]Rii~Rl5, R21~R25, which are preferably a benzamidine group or a gas atom. The benzamidine group is further preferably a substituent R26 such as an alkyl group, an alkenyl group, an alkoxy group or a phenyl group, and further, the alkyl group, the alkenyl group and the phenyl group may have a substitution. Base. Specific examples of the ester compound are given below. [Chemical 2]

R1= —C-CH3 平均取代度2.0 A-2R1=—C-CH3 average substitution degree 2.0 A-2

R1= —C-CH, 平均取代度7.0 -22- 201227004R1=—C-CH, average degree of substitution 7.0 -22- 201227004

[化3][Chemical 3]

A-6A-6

平均取代度5.0Average substitution rate 5.0

-23- 201227004 [化4] A-8-23- 201227004 [化4] A-8

R5= —C-CHS A-9R5= —C-CHS A-9

O R6« — C-CH3 A 一 10O R6« — C-CH3 A a 10

〇 R7= —C-CH3 A-11 [化5]〇 R7= —C-CH3 A-11 [Chemical 5]

o —C-CHj A 一 12o —C-CHj A a 12

〇 B9= —C-CHS -24- 201227004 A-13〇 B9= —C-CHS -24- 201227004 A-13

CH,OR10 R10OCH, OR10 R10O

H R10〇/CH2OR10 OR10 OR10 Η Ο R10= —C-CHa [化6] A-14H R10〇/CH2OR10 OR10 OR10 Η Ο R10= —C-CHa [Chemical 6] A-14

CH,OR11 OR11 HCH, OR11 OR11 H

OCH, A-15OCH, A-15

CH2OR12 CH,OR12 R12〇\?R12 HCH2OR12 CH, OR12 R12〇\?R12 H

CH2OR12 OR12 H 0 R12 =平均取代度8.0 A-16 CH2OR13 R130\9R1^CH2OR12 OR12 H 0 R12 = average degree of substitution 8.0 A-16 CH2OR13 R130\9R1^

-〇 CH2OR13 3R13 h/ 0 \h R130/1p-r 1 OR13 〇R13 H fCH2OR13 R13= 0 c - ch2— A 一 17-〇 CH2OR13 3R13 h/ 0 \h R130/1p-r 1 OR13 〇R13 H fCH2OR13 R13= 0 c - ch2— A-17

och3Och3

och3 och3 25- 201227004 [化7] A-18Och3 och3 25- 201227004 [化7] A-18

ο II R15= -^C A 一 19ο II R15= -^C A A 19

O R16= —C —CH2 A 二 20O R16= —C —CH2 A 2

R17: O II •c-ch3R17: O II • c-ch3

-26- 201227004 [化8] A-21-26- 201227004 [化8] A-21

A 一 22A one 22

π=1〜π=1~

a ο R19= —C-CH3 -27- 201227004 [化9] A-23a ο R19= —C-CH3 -27- 201227004 [Chem. 9] A-23

οο

όό

II C-CH3 28- 201227004 [化 10] A-24II C-CH3 28- 201227004 [Chem. 10] A-24

Η · OR21 〜β Ο ιι R21= —C-CH, Α一25Η · OR21 ~β Ο ιι R21= —C-CH, Α一25

ο II •C-CHο II • C-CH

Η · OR22 本發明之纖維素酯薄膜,其係以含有2〜20質量%水 解防止劑爲較佳,並以含有5〜1 5質量%爲最佳。 (位相差調整劑) 位相差調整劑,舉例而言,較佳可使用下述一般式( 1 )所示之酯系化合物。纤维素 · OR22 The cellulose ester film of the present invention preferably contains 2 to 20% by mass of a hydrolysis inhibitor, and preferably contains 5 to 15% by mass. (Phase phase difference adjusting agent) As the phase difference adjusting agent, for example, an ester compound represented by the following general formula (1) can be preferably used.

一般式(1 ) Β- ( G-A ) n-G-B -29- 201227004 (式中,B係羥基或羧酸殘基’ G係碳數2〜12之伸烷 基乙二醇殘基或碳數6〜12之芳基乙二醇殘基或碳數4〜12 之氧基伸烷基乙二醇殘基,A爲碳數4〜12之伸烷基二羧酸 殘基或碳數6〜12之芳基二羧酸殘基’此外’ η爲1以上之 整數)。 一般式(1 )中,由Β所示之羥基或羧酸殘基,及G所 示之伸烷基乙二醇殘基或氧基伸烷基乙二醇殘基或芳基乙 二醇殘基,及Α所示之伸烷基二羧酸殘基或芳基二羧酸殘 基所共同構成者,其可藉由與一般之酯系化合物爲相同反 應而製得。 一般式(1)所示之酯系化合物之羧酸成分,例如有 :醋酸、丙酸、酪酸、苯甲酸、對三級丁基苯甲酸、鄰苯 乙酸、間苯乙酸、對苯乙酸、二甲基苯甲酸、乙基苯甲酸 、正丙基苯甲酸、胺基苯甲酸、乙酸基苯甲酸、脂肪族酸 等’此等可爲各自1種或2種以上之混合物而使用者。 一般式(1)所示之酯系化合物之碳數2〜12之伸烷基 乙二醇成分’例如有:乙二醇、12_丙二醇、丨,3_丙二醇 、1,2-丁 —醇、1,3· 丁二醇、丨,2_丙二醇、2甲基丨,3丙二 醇、丨,4-丁二醇、〗,5-戊二醇、2,2-二甲基-1,3-丙二醇(新 戊基乙—醇)、2,2-二乙基- l,3-丙二醇(3,3_二羥甲基戊 院)、2·η· 丁基.2 -乙基- i,3丙二醇(3,3 -二羥甲基庚烷) 、3_甲基-I,5-戊二醇丨,6·己二醇、2,2,4_三甲基丨,3戊二醇 、2-乙基1,3-己二醇、2_甲基18•辛二醇、丨,9·壬二醇、 1,10-癸—醇、1,12-辛癸二醇等’此等之乙二醇’可爲I種 -30- 201227004 或2種以上之混合物而使用者。 其中,尤以碳數2〜12之伸烷基乙二醇,由於其與纖 維素酯之相溶性優良而爲最佳者。 此外,上述一般式(1)所示之酯系化合物之碳數4〜 12之氧基伸烷基乙二醇成分,例如有:二乙二醇、三乙二 醇、四乙二醇、二丙二醇、三丙二醇等,此等之乙二醇, 可爲1種或2種以上之混合物而使用者。 一般式(1)所示之酯系化合物之碳數4〜12之伸烷基 二羧酸成分’例如有:琥珀酸、順丁烯二酸、反丁烯二酸 、戊二酸、己二酸、壬二酸、癸二酸、十二烷二羧酸等, 此等可爲各自1種或2種以上之混合物而使用者。碳數6〜 12之伸芳基二羧酸成分,例如有:苯二甲酸、對苯二甲酸 、間苯二甲酸、2,6 -萘二羧酸' L4 —萘二羧酸等。 —般式(1)所示之酯系化合物,其數平均分子量, 較佳係3〇〇〜1500’最佳係400〜1〇〇〇之範圍爲適合者。此 外’其酸價爲0_5mgKOH/g以下,羥基價爲25mgKOH/g以 下;更佳則爲酸價〇.3mgK〇H/g以下,羥基價爲 1 5mgK〇H/g以下者。 以下’兹舉出一般式(1}所示之酯系化合物之具體 化合物。 -31 - 201227004 369:1 9 ul-】 ^—^—000X^X0000—^—^ £0 i—a «χο - 08H&quot;H°08 -5^ ^loooxo£ooooGeneral formula (1 ) Β-( GA ) nGB -29- 201227004 (wherein B-based hydroxyl or carboxylic acid residue 'G-based carbon alkyl 2 to 12 alkylene glycol residue or carbon number 6 to 12 An aryl glycol residue or an alkylene glycol residue having a carbon number of 4 to 12, and A is an alkyl dicarboxylic acid residue having a carbon number of 4 to 12 or an aryl group having a carbon number of 6 to 12. The dicarboxylic acid residue 'further' η is an integer of 1 or more). In the general formula (1), a hydroxyl group or a carboxylic acid residue represented by hydrazine, and an alkylene glycol residue or an alkyl group represented by G, an alkyl glycol residue or an aryl glycol residue And a combination of an alkylenedicarboxylic acid residue or an aryldicarboxylic acid residue represented by hydrazine, which can be obtained by the same reaction with a general ester compound. The carboxylic acid component of the ester compound represented by the general formula (1) includes, for example, acetic acid, propionic acid, butyric acid, benzoic acid, p-tert-butylbenzoic acid, o-phenylacetic acid, m-phenylacetic acid, p-phenylacetic acid, and Methyl benzoic acid, ethyl benzoic acid, n-propyl benzoic acid, amino benzoic acid, acetoxybenzoic acid, aliphatic acid, etc. can be used as a mixture of one or a mixture of two or more. The alkylene glycol component having a carbon number of 2 to 12 in the ester compound represented by the general formula (1) is, for example, ethylene glycol, 12-propylene glycol, hydrazine, 3-propylene glycol, and 1,2-butanol. , 1,3·butanediol, hydrazine, 2—propylene glycol, 2 methyl hydrazine, 3 propylene glycol, hydrazine, 4-butanediol, 〗, 5-pentanediol, 2,2-dimethyl-1,3 -propanediol (neopentylethyl), 2,2-diethyl-1,3-propanediol (3,3-dihydroxymethylpentanol), 2·η·butyl.2-ethyl-i , 3 propanediol (3,3-dihydroxymethylheptane), 3-methyl-I,5-pentanediol oxime, 6·hexanediol, 2,2,4-trimethylhydrazine, 3 pentane Alcohol, 2-ethyl1,3-hexanediol, 2-methyl18-octanediol, hydrazine, 9-decanediol, 1,10-nonanol, 1,12-octanediol, etc. These glycols can be used as a type I-30-201227004 or a mixture of two or more. Among them, an alkylethylene glycol having a carbon number of 2 to 12 is particularly preferred because it has excellent compatibility with a cellulose ester. Further, the ester compound of the above formula (1) has an alkyl group having a carbon number of 4 to 12, and examples thereof include diethylene glycol, triethylene glycol, tetraethylene glycol, and dipropylene glycol. And tripropylene glycol, etc., such ethylene glycol may be used as a mixture of one or a mixture of two or more. The alkylene dicarboxylic acid component having a carbon number of 4 to 12 in the ester compound represented by the general formula (1) is, for example, succinic acid, maleic acid, fumaric acid, glutaric acid, and hexanic acid. The acid, sebacic acid, sebacic acid, dodecanedicarboxylic acid, and the like may be used as a mixture of one or a mixture of two or more of them. Examples of the aryldicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, and 2,6-naphthalene dicarboxylic acid 'L4-naphthalene dicarboxylic acid. The ester compound represented by the general formula (1) has a number average molecular weight of preferably from 3 Å to 1,500 Å, and an optimum range of from 400 to 1 Å is suitable. Further, the acid value is 0-5 mgKOH/g or less, the hydroxyl value is 25 mgKOH/g or less, more preferably the acid value is 〇3 mgK〇H/g or less, and the hydroxyl value is 15 mgK〇H/g or less. The following is a specific compound of the ester compound represented by the general formula (1). -31 - 201227004 369:1 9 ul-] ^—^—000X^X0000—^—^ £0 i—a «χο - 08H&quot;H°08 -5^ ^loooxo£oooo

Mi 讼寸卜:Μ1ΛΙ^^-οοο~Ηϋ~Ηϋο 代 hunhoooqi^whuj-ouo^iunhuonhu^hoooo--3代 h°}-o0o~honhuowh0【h°oo0-^^ 9 £0 £0 X ,5 τω〈丫 6°o£bH°0&quot;H0508 --y7/ 《^―80Η&quot;Η3°&quot;5ΗΟΟΟΟ—^ £0 «χο 0—ω °8£050hhohuooo «Ιο Γ=\ OOOH-&quot;HOOT。 £ϋ s々:Ms δ: — 80*M3【H308 — 030-H.-H.H3^03Mi litigation: Μ1ΛΙ^^-οοο~Ηϋ~Ηϋο 代 hunhoooqi^whuj-ouo^iunhuonhu^hoooo--3 generation h°}-o0o~honhuowh0[h°oo0-^^ 9 £0 £0 X ,5 Ωω<丫6°o£bH°0&quot;H0508 --y7/ "^―80Η&quot;Η3°&quot;5ΗΟΟΟΟ—^ £0 «χο 0—ω °8£050hhohuooo «Ιο Γ=\ OOOH-&quot;HOOT. £ϋ s々: Ms δ: — 80*M3[H308 — 030-H.-H.H3^03

Ooortlo«xuou50— 8013*508 ο°ο£ϋΙΝϋο°0 ΐα ό 9—ωOoortlo«xuou50— 8013*508 ο°ο£ϋΙΝϋο°0 ΐα ό 9-ω

£u -32- 201227004 szr· Ms s«: Ms._l d£u -32- 201227004 szr· Ms s«: Ms._l d

969 : I 广 yT ooolxu£oooo \ ^—^10001x^x0000—^》 - £0 ^—^—000X0^X0000—0005&quot;HOOOO— olooo— £u ^—^ioooi£o^xoo£o£00^6^xotooo^xu£oo£o£uo^oo—^—^ oo-H-HOO--HOO^oo-ooo£-H8-&quot;HOO^o°— o, rό ^—^—ooo |~5”50~5~30|8 s/=° nlo 9 tacrMs I-1-1969 : I 广 yT ooolxu£oooo \ ^—^10001x^x0000—^》 - £0 ^—^—000X0^X0000—0005&quot;HOOOO— olooo— £u ^—^ioooi£o^xoo£o£00^ 6^xotooo^xu£oo£o£uo^oo—^—^ oo-H-HOO--HOO^oo-ooo£-H8-&quot;HOO^o°— o, rό ^—^—ooo |~ 5”50~5~30|8 s/=° nlo 9 tacrMs I-1-1

Ts 6—m s^τω ^ ^[OOOWIONXOOU^OOΓΊ c5-乂 ^^oool-so^OD^^ 0&quot;x°· «Χ0 000—χϋΝχοοου ,:丨 «Χ0 \J/ \_J 丨· --------- lT-—fflTs 6—ms^τω ^ ^[OOOWIONXOOU^OOΓΊ c5-乂^^oool-so^OD^^ 0&quot;x°· «Χ0 000—χϋΝχοοου ,:丨«Χ0 \J/ \_J 丨· ---- ----- lT--ffl

Sr Ms «XuSr Ms «Xu

«10 οϋοι£ϋΗϋ-οτ8 «Χ0 —«xoxool^oo οϋΟΙΗ&quot;5000 二 rtxo 6 c -33- 201227004 [化 13]«10 οϋοι£ϋΗϋ-οτ8 «Χ0 —«xoxool^oo οϋΟΙΗ&quot;5000 two rtxo 6 c -33- 201227004 [Chem. 13]

B-19B-19

OHOH

Mw : 437 本發明所使用之纖維素酯薄膜,其係以所含之位相差 調整劑爲纖維素酯薄膜之0.〗〜30質量%者爲較佳,並以 0.5〜10質量%含有者爲最佳。 (可塑劑) 本發明所使用之纖維素酯薄膜,可視需要而含有可塑 劑。 可塑劑’其並無特別之限制,惟較佳可選自:多價羧 -34- 201227004 酸酯系可塑劑、乙醇酸酯系可塑劑、苯二甲酸酯系可塑劑 、脂肪酸酯系可塑劑及多價醇酯系可塑劑、聚酯系可塑劑 、丙烯基系可塑劑等。 其中,如使用2種以上之可塑劑時,其係以至少丨種爲 多價醇酯系可塑劑爲較佳。 多價醇酯系可塑劑,其係2價以上之脂肪族多價醇及 單羧酸之酯所成之可塑劑,並以在分子內具有芳香環或環 烷基環者爲較佳。其較佳並係2〜20價之脂肪族多價醇酯 〇 本發明中,其較佳使用之多價醇係以下一般式(a) 所示者。 —般式(a) R1 - ( OH) η 惟,1^係η價之有機基,η爲2以上之正整數,〇Η基爲 醇性,及/或苯酚性羥基。 較佳之多價醇,其例如有下述者。 核糖醇、***糖醇、乙二醇、二乙二醇、三乙二醇 、四乙二醇、1,2-丙二醇、1,3-丙二醇、二丙二醇、三丙 二醇、1,2-丁 二醇、1,3-丁 二醇、1,4-丁二醇、二丁 二醇、 1,2,4-丁烷三醇、1,5-戊二醇、1,6-己二醇、己烷三醇、半 乳糖醇、甘露糖醇、3 -甲基戊烷-1,3,5 -三醇、四甲基乙二 醇、山梨糖醇、三羥甲基丙烷、三羥甲基乙烷、木糖醇等 〇 其中’尤以三乙二醇、四乙二醇、二丙二醇、三丙二 醇、山梨糖醇、三羥甲基丙烷、木糖醇爲較佳。 -35- 201227004 多價醇酯所使用之單羧酸,其並無特別 用習知之脂肪族單羧酸、脂環族單羧酸、芳 。又如使用脂環族單羧酸、芳香族單羧酸時 性,保留性可獲提昇之觀點而較佳。 多價醇酯所使用之羧酸,其可爲1種類 上進行混合者。此外,多價醇中之OH基, 化,亦可將其一部在Ο Η基之情形下保留。 以下,茲舉出多價醇酯之具體化合物。 之限制,可使 香族單羧酸等 ’其基於透濕 '亦可爲2種以 其可爲全部酯 -36- 201227004 [化 14]Mw : 437 The cellulose ester film used in the present invention is preferably a cellulose ester film containing 0. 〜 30% by mass, and 0.5 to 10% by mass. For the best. (Plasticizer) The cellulose ester film used in the present invention may contain a plasticizer as needed. The plasticizer' is not particularly limited, but is preferably selected from the group consisting of polyvalent carboxyl-34-201227004 acid ester-based plasticizer, glycolic acid ester plasticizer, phthalate plasticizer, and fatty acid ester system. A plasticizer, a polyvalent alcohol ester-based plasticizer, a polyester-based plasticizer, a propylene-based plasticizer, and the like. Among them, when two or more kinds of plasticizers are used, it is preferred that at least the polysaccharide is a polyvalent alcohol ester-based plasticizer. The polyvalent alcohol ester-based plasticizer is a plasticizer derived from an ester of a divalent or higher aliphatic polyvalent alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. It is preferably an aliphatic polyvalent alcohol ester having a valence of 2 to 20 〇 In the present invention, the polyvalent alcohol to be preferably used is as shown in the following general formula (a). - (a) R1 - (OH) η However, 1 is an organic group having an η valence, η is a positive integer of 2 or more, and a fluorenyl group is an alcoholic group and/or a phenolic hydroxyl group. Preferred polyvalent alcohols are, for example, those described below. Ribool, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butyl Alcohol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, Hexanetriol, galactitol, mannitol, 3-methylpentane-1,3,5-triol, tetramethyl glycol, sorbitol, trimethylolpropane, trimethylol Ethane, xylitol, etc., among which triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, xylitol are preferred. -35- 201227004 The monocarboxylic acid used in the polyvalent alcohol ester is not particularly known as an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid or a aryl group. Further, as the alicyclic monocarboxylic acid or aromatic monocarboxylic acid is used, the retention can be improved from the viewpoint of improvement. The carboxylic acid used for the polyvalent alcohol ester may be a mixture of one type. Further, the OH group in the polyvalent alcohol may be retained in the case of a thiol group. Hereinafter, specific compounds of polyvalent alcohol esters will be mentioned. The limitation can be such that the aromatic monocarboxylic acid or the like can be based on two types of permeation, and it can be all esters - 36 - 201227004 [Chem. 14]

Or0· (CH2)2-O-(CH2)j-O»(CH2)2-0-C- 4 5 Ο,Η,-Ο-Ο^ΟΗ,-ΟΗί-Ο-^Ο-ΟΛ ο ο 6 CBHi7-C-0-fcHj-CH2-0-^-C-CeH17 ο ο _ Ν~f ο ο Λ~· -o 十 ch2ch2ch2-oOr0· (CH2)2-O-(CH2)jO»(CH2)2-0-C- 4 5 Ο,Η,-Ο-Ο^ΟΗ,-ΟΗί-Ο-^Ο-ΟΛ ο ο 6 CBHi7- C-0-fcHj-CH2-0-^-C-CeH17 ο ο _ Ν~f ο ο Λ~· -o ten ch2ch2ch2-o

8 0~Γ 9 ο4η9 ~ C -ο -^· ch2ch2ch2 - ο C - c4h9 ο 3 ο 10 C8H17-C-〇-(cH2CH2CH2-〇-)pC-CeH17 -ο 十 ch2ch2ch2-o8 0~Γ 9 ο4η9 ~ C -ο -^· ch2ch2ch2 - ο C - c4h9 ο 3 ο 10 C8H17-C-〇-(cH2CH2CH2-〇-)pC-CeH17 -ο ten ch2ch2ch2-o

11 〇τ 12 CHi?H-°)r ί-〇 〇 ch3 〇 13 c4h9-c-o-^ch2ch—ο^—c-c4h, 〇 ch3 〇 14 c8h17-c-o-(ch2ch-o^-c-c8h17 ο CH3 ο 15 0^-—cH2?H_〇t-«〇 -37- 201227004 [化 15]11 〇τ 12 CHi?H-°)r ί-〇〇ch3 〇13 c4h9-co-^ch2ch-ο^-c-c4h, 〇ch3 〇14 c8h17-co-(ch2ch-o^-c-c8h17 ο CH3 ο 15 0^--cH2?H_〇t-«〇-37- 201227004 [化15]

Ο 17 o ή ch2-o-c-c4h9 CH片ΓΟ 17 o ή ch2-o-c-c4h9 CH film

CHa-〇-C-C4H9 O ch2-o-c-c4h9o 18 ο ch2-o-c-c8h17 CHjCH?-C-CH2-〇-C-C8H17I 〇 ch2-o-c-c8h17 IIoCHa-〇-C-C4H9 O ch2-o-c-c4h9o 18 ο ch2-o-c-c8h17 CHjCH?-C-CH2-〇-C-C8H17I 〇 ch2-o-c-c8h17 IIo

o 20 o II ch2-o-c CHaCH2-C-CH2-〇-C-CHa O ch2-o-c-ch, IIoo 20 o II ch2-o-c CHaCH2-C-CH2-〇-C-CHa O ch2-o-c-ch, IIo

ch2-oh o 38- 201227004 [化 16]Ch2-oh o 38- 201227004 [化16]

39- 201227004 [化 17] 3039- 201227004 [Chem. 17] 30

33 /&quot;Vc-O-fc^-CH-oi—〇-C-^^ O CH, 0 35 ^-&lt;:-ο-&lt;〇Η2-〇Η-〇Η2-〇^-^-^ o o c=o ό 乙醇酸酯系可塑劑,其並無特別之限制,惟係以使用 烷基酞醯烷基乙醇酸酯類爲較佳。 烷基酞醯烷基乙醇酸酯類,例如有:甲基酞醯甲基乙 醇酸酯、乙基酞醯乙基乙醇酸酯、丙基酞醯丙基乙醇酸酯 、丁基酞醯丁基乙醇酸酯、辛基酞醯辛基乙醇酸酯、甲基 酞醯乙基乙醇酸酯、乙基酞醯甲基乙醇酸酯、乙基酞醯丙 基乙醇酸酯、甲基酞醯丁基乙醇酸酯、乙基酞醯丁基乙醇 酸酯、丁基酞醯甲基乙醇酸酯、丁基酞醯乙基乙醇酸酯、 -40- 201227004 丙基酞醯丁基乙醇酸酯、丁基酞醯丙基2 醯辛基乙醇酸酯、乙基酞醯辛基乙醇酸酿 乙醇酸酯、辛基酞醯乙基乙醇酸醋等。 苯二甲酸酯系可塑劑,例如有:二z 二甲氧基乙基苯二甲酸酯、二甲基苯二年 二甲酸酯、二丁基苯二甲酸酯、二_2_乙3 、二辛基苯二甲酸酯、二環己基苯二甲酵 苯二甲酸酯等。 檸檬酸酯系可塑劑,例如有:檸檬酸 檸檬酸乙醯基三乙基、檸檬酸乙醯基三丁 脂肪酸酯系可塑劑,例如有:油酸了 乙醯基、癸二酸二丁基等。 磷酸酯系可塑劑,例如有:三苯基碳 基磷酸酯、甲苯酚基二苯基磷酸醋、辛基 二苯基聯苯基磷酸酯、三辛基磷酸酯、三 多價羧酸酯化合物,例如可由2價以. 2 〇價之多價羧酸與醇之酯所成者。此外, 係以2〜2 0價者爲較佳;芳香族多價殘酸 酸,則以3價〜20價者爲較佳。 多價羧酸係以下述之一般式(b )所5 一般式(b) R2 ( COOH) „ ( OH) n (惟’ R2係(m + η )價之有機基, 數,η爲0以上之整數,COOH基爲羥基, 酚性羥基) j醇酸酯 '甲基酞 ί、辛基酞醯甲基 ,基苯二甲酸酯、 1酸酯、二辛基苯 ^己基苯二甲酸酯 ί酯、二環己基對 丨乙醯基三甲基、 基等。 基、蓖麻酸甲基 丨酸酯、三甲苯酚 ;一苯基憐酸醋、 丁基磷酸酯等。 上’較佳係2價〜 脂肪族多價羧酸 ’脂環式多價殘 舌者。 m係2以上之正整 OH基爲醇性或苯 -41 - 201227004 多價羧酸酯化合物之分子量,其並無特別之限制,惟 係以分子量300〜1000之範圍爲較佳,並以350〜750之範 圍爲最佳。又基於保留性提昇之觀點,其係以大者爲較佳 ,另基於透濕性、纖維素酯之相溶性之觀點,其係以小者 爲較佳。 多價羧酸酯所使用之醇類,其可爲一種類,亦可爲二 種以上之混合者。 多價羧酸酯化合物之酸價,其係以lmgKOH/g以下者 爲較佳,並以〇.2mgKOH/g以下者爲最佳。藉由將酸價控 制在上述範圍內,由於位相差之環境變動亦可受到抑制之 故而較佳。 再者,酸價,係指要將樣品1 g中所含之酸(樣品中所 存在之羥基)加以中和時所必要之氫氧化鉀之毫克數。酸 價係依JIS K0070爲基準而測定者。 最佳之多價羧酸酯化合物,例如有:三乙基檸檬酸酯 、三丁基檸檬酸酯、乙醯基三乙基檸檬酸酯(ATEC )、 乙醯基三丁基檸檬酸酯(ATBC)、苯甲醯基三丁基檸檬 酸酯 '乙醯基三苯基檸檬酸酯、乙醯基三苄基檸檬酸酯、 酒石酸二丁酯、酒石酸二乙醯基二丁酯、偏苯三酸三丁酯 '均苯四甲酸四丁酯等。 (紫外線吸收劑) 紫外線吸收劑,其係基於將400nm以下之紫外線加以 吸收,而使耐久性獲得提昇爲目的,尤以波長37〇nm之穿 -42- 201227004 透率在1 0 %以下者爲較佳,更佳係5 %以下,最佳則係2 % 以下者。 所使用之紫外線吸收劑,其並無特別之限制,惟例如 有:氧基二苯甲酮系化合物、苯幷***系化合物、水楊酸 酯系化合物、二苯甲酮系化合物、氰基丙烯酸酯系化合物 、三嗪系化合物、鎳錯鹽系化合物、無機粉體等。 舉例而言,有:5 -氯- 2-(3,5 -二- sec -丁基-2-羥基苯基 )-2H-苯幷***、(2-2H-苯幷三.唑-2-基)-6-(直鏈及側 鏈十二烷基)-4 -甲基苯酚、2-羥基-4-苄基氧基二苯甲酮 、2,4-苄基氧基二苯甲酮等,此外,尙有:1'1\1;¥11^109 、TINUVIN 171 、 TINUVIN 234 、 TINUVIN 3 26 、 TINUVIN 3 27、TINUVIN 3 28等 TINUVIN 類,此等皆爲汽 巴•日本公司製之市售品,而爲較佳可使用者。 本發明可使用之較佳紫外線吸收劑,例如有:苯幷三 唑系紫外線吸收劑、二苯甲酮系紫外線吸收劑、三嗪系紫 外線吸收劑,最佳則有:苯幷***系紫外線吸收劑、二苯 甲酮系紫外線吸收劑。 此外’具有1,3,5三嗪環之化合物等之圓盤狀化合物, 其亦係作爲紫外線吸收劑而較佳可使用者。 本發明之偏光板保護薄膜,其係以含有2種以上紫外 線吸收劑爲較佳者。 此外,紫外線吸收劑’其亦以使用高分子紫外線吸收 劑爲較佳,並以特開平6- 1 4 843 0號記載之聚合物型式之紫 外線吸收劑爲最佳。 -43- 201227004 紫外線吸收劑之添加方法,係於甲醇、乙醇、丁醇等 醇類或二氯甲烷、醋酸甲基、丙酮、二氧雜戊環等有機溶 劑或此等之混合溶劑中,將紫外線吸收劑加以溶解後,添 加於摻雜物中,或直接在摻雜物組成中進行添加亦可。 如無機粉體之類無法在有機溶劑中進行溶解者,可在 有機溶劑及纖維素酯中,使用溶解器或砂磨機,於其分散 後再添加於摻雜物中。 紫外線吸收劑之使用量,係依紫外線吸收劑之種類、 使用條件等而有異,不可一槪而論,惟偏光板保護薄膜之 乾燥膜厚度爲30〜200μιη時,相對於偏光板保護薄膜,其 係以0.5〜10質量%爲較佳,並以0.6〜4質量%爲最佳。 (抗氧化劑) 抗氧化劑,亦可稱爲劣化防止劑。如將液晶畫面顯示 裝置放置於高濕高溫之狀態中,可能會導致纖維素酯薄膜 之劣化。 抗氧化劑,舉例而言,其可藉由纖維素酯薄膜中之殘 存溶劑fi之鹵素或磷酸系可塑劑之磷酸等,使纖維素酯薄 膜之分解變慢,而具有保護效果之故,係以在前述纖維素 酯薄膜中使之含有者爲較佳。 此種抗氧化劑,較佳例如受阻苯酚系之化合物,例如 有:2,6-二-t-丁基-ρ·甲酚、季戊四醇基-四〔3-(3,5-二-t-丁基-4-羥基苯基)丙酸酯〕、三乙二醇-雙〔3- (3-t· 丁 基-5·甲基-4-羥基苯基)丙酸酯〕、1,6-己二醇-雙〔3-( -44 - 201227004 3,5-二-t-丁基-4-羥基苯基)丙酸酯〕、2,4-雙-(η-辛基硫 )-6- (4-羥基-3,5 -二-t-丁基苯胺基)-1,3,5-三嗪、2,2-硫-二伸乙基雙〔3- ( 3,5-二-t-丁基-4-羥基苯基)丙酸酯 〕、十八烷基-3- ( 3,5-二-t-丁基-4-羥基苯基)丙酸酯、 N,N’-六伸甲基雙(3,5-二-t-丁基-4·羥基-氫化肉桂醯胺) 、1,3,5-三甲基-2,4,6-三(3,5-二-t-丁基-4-羥基苄基)苯 、三- (3,5-二-t-丁基-4-羥基苄基)-異氰脲酸酯等。 其中,尤以2,6 -二-t-丁基-P -甲酚、季戊四醇基-四〔 3- ( 3,5-二-t-丁基-4-羥基苯基)丙酸酯〕、三乙二醇-雙 〔3- (3-t -丁基-5-甲基-4 -羥基苯基)丙酸酯〕爲較佳。此 外,舉例而言,亦可將N,N'-雙〔3- ( 3,5-二-t-丁基-4-羥 基苯基)丙醯基〕聯氨等聯氨系之金屬非活性劑或三( 2,4-二-t-丁基苯基)亞磷酸酯等磷系加工安定劑加以倂用 〇 此等之化合物之添加量,相對於纖維素衍生物,係以 質量比例爲lppm〜1 .0%爲較佳,並以10〜ΙΟΟΟρρτη爲最佳 (酸捕捉劑) 纖維素酯由於在高溫下會因爲酸而促進其分解,故在 使用本發明之光學薄膜時,係以含有酸捕捉劑者爲較佳。 有用之酸捕捉劑,只要係可與酸反應並使酸成爲非活 性化之化合物即可,並無限制皆可使用,其中又以美國專 利第4,13 7,2〇1號說明書所記載之具有環氧基之化合物爲較 -45- 201227004 佳。關於此種酸捕捉劑,環氧基化合物在該技術領域中已 爲習知,包含:相對於各種聚乙二醇之二環氧丙基醚,尤 其是每1莫爾聚乙二醇,約可進行8〜40莫爾之環氧乙烷等 之縮合所衍生之聚乙二醇、甘油之二環氧丙基醚等、金屬 環氧基化合物(例如,在氯乙烯聚合物組成物中,與氯乙 烯聚合物組成物共同地,爲傳統上所利用者)、環氧基化 醚縮合生成物、雙苯酚A之二環氧丙基醚(亦即,4, V -二 羥基二苯基二甲基甲烷)、環氧基化不飽和脂肪酸酯(其 中’尤其是2〜22此碳原子之脂肪酸之4〜2個左右之碳原 子之烷基之酯(例如,丁基環氧基硬脂酸酯)等)、及各 種之環氧基化長鏈脂肪酸三甘油酯等(例如,環氧基化大 豆油等)之組成物所代表例示之環氧基化植物油及其他不 飽和天然油(此等又稱爲環氧基化天然甘油酯或不飽和脂 肪酸,此等之脂肪酸一般係含有12〜22個之碳原子)。此 外,市售之含環氧基環氧化物樹脂化合物,例如有EPON 8 1 5 C爲較佳使用者。 進一步,在上述以外可使用之酸捕捉劑,例如有:氧 雜環丁烷化合物或噁唑啉化合物、或鹼土類金屬之有機酸 鹽或乙醯基丙酮錯合物,以及在特開平5-194788號公報之 段落68〜105中所記載者。 此外,酸捕捉劑又稱爲酸掃去劑、酸捕獲劑、酸抓取 劑等,惟在本發明中,此等之稱呼並無差異皆爲可使用者 -46 - 201227004 (微粒子) 爲賦予其光滑性起見,其係以添加微粒子者爲較佳。 微粒子之1次平均粒子徑,例如有2 0 nm以下爲較佳, 更佳爲5〜16nm,最佳則爲5〜12nm。 此等之微粒子係以形成0.1〜5μηι之粒徑之2次粒子, 並包含於位相差薄膜中者爲較佳,其較佳之平均粒徑爲 0.1〜2μπι,更佳則爲0.2〜0·6μηι。藉此,可在薄膜表面形 成高度0.1〜Ι.Ομιη左右之凹凸,從而即可在薄膜表面上賦 予適當之光滑性。 微粒子之1次平均粒子徑之測定,係以穿透型電子顯 微鏡(倍率50萬〜200萬倍)進行粒子之觀察,然後再觀 察粒子1 〇 〇個,並測定其粒子徑以得到其平均値,即作爲1 次平均粒子徑之値。 微粒子之表現比重,例如係以70g/升以上爲較佳,更 佳係90〜20 Og/升,最佳則係1〇〇〜20 Og/升。表現比重越大 ,則可作成高濃度之分散液,而使其霧度、凝集物變佳爲 理想,此外,如本發明在調製高固態成分濃度之摻雜物時 ,其係最佳使用者。 針對纖維素酯之微粒子之添加量,相對於纖維素酯 100質量份,係以0.01質量份〜5.0質量份爲較佳,並以 0.05質量份〜1.0質量份爲更佳,另以0.1質量份〜〇.5質量 份爲最佳。添加量如越多時,其動摩擦係數優良,而添加 量越少時,則凝集物會變少。 此外’如將含有微粒子之摻雜物在流延支持體上使之 -47- 201227004 直接接觸而流延者,其可得到光滑性優良,且霧度低之薄 膜而較佳。 此外’流延後進行剝離、乾燥,並捲繞成輥筒狀後, 亦可設置硬塗層或反射防止層等之機能性薄膜。在加工或 出貨爲止之間’爲保護產品不致有髒污或靜電所產生之雜 質附著等情形,一般會進行包裝加工。 關於此包裝材料’只要能達成上述目的即可,並無特 別之限制,惟係以不妨礙殘存溶劑由薄膜揮發者爲較佳。 具體而言’有:聚乙烯、聚酯、聚丙烯、耐綸、聚苯乙烯 、紙' 各種不織布等。纖維如作成篩布狀者則最佳。 &lt;纖維素酯薄膜之製造方法&gt; 接著,關於本發明所使用之纖維素酯薄膜之製造方法 加以說明。 本發明所使用之纖維素酯薄膜,其可爲以溶液流延法 製造之薄膜,亦可爲以溶融流延法所製造之薄膜。 在溶液流延法中,本發明所使用之纖維素酯薄膜,其 製造係藉由:使纖維素酯及添加劑在溶劑產生溶解,而調 製摻雜物之步驟;使摻雜物在無限地移動之無端緣金屬支 持體上進行流延之步驟;將已流延之摻雜物作成網並乾燥 之步驟;由金屬支持體進行剝離之步驟;延伸或寬度保持 之步驟;進一步再乾燥之步驟;將已修飾之薄膜進行捲繞 之步驟,而進行者。 茲關於摻雜物之調製步驟加以說明。摻雜物中之纖維 -48- 201227004 素酯之濃度,其係以濃度高者,由於在金屬支持體上流延 後之乾燥負重可獲減低之故而較佳,惟纖維素酯之濃度如 過高時,則過濾時之負重會增加,將使過濾精度變差。爲 兼顧此二者之濃度,例如以1 0〜3 5質量%爲較佳,最佳則 係1 5〜2 5質量%者。 在摻雜物所使用之溶劑,可以單獨使用亦可2種以上 倂用,惟如將纖維素酯之良溶劑及貧溶劑加以混合而使用 時,其基於生產效率上之觀點爲較佳;又以良溶劑多者, 其基於纖維素酯之溶解性上之觀點爲較佳。 良溶劑及貧溶劑之混合比率之較佳範圍,係良溶劑爲 70〜98質量%,貧溶劑爲2〜30質量%者。所謂良溶劑、 貧溶劑,係指可將使用之纖維素酯單獨地進行溶解者爲良 溶劑,而單獨進行時會產生膨潤或不溶解之情形者稱爲貧 溶劑所定義者。 本發明所使用之良溶劑,其並無特別之限制,惟例如 有二氯甲院等之有機鹵素化合物或二氧雜戊環類、丙酮、 醋酸甲酯、乙醯醋酸甲酯等。其中,較佳係二氯甲烷或醋 酸甲基。 此外,本發明所使用之貧溶劑,其並無特別之限制, 惟例如有:甲醇、乙醇、η-丁醇、環己院、環己酮等爲較 佳可使用者。此外,在摻雜物中係以含有水爲〇.01〜2質 量%者爲較佳。 此外,在纖維素酯之溶解上所使用之溶劑’可於薄膜 製膜步驟中以乾燥由薄膜將除去之溶劑進行回收’並將其 -49- 201227004 再利用而使用。 在回收溶劑中,添加於纖維素酯中之添加劑,亦可微 量含有例如可塑劑、紫外線吸收劑、聚合物、單體成分等 ,惟即使含有此等者,較佳係進行再利用,有必要時或先 進行純化然後再利用。 在進行上述記載之摻雜物之調製時,纖維素酯之溶解 方法,例如可使用一般的方法。其可將加熱及加壓進行組 合,於常壓中加熱至沸點以上。 如於溶劑在常壓下之沸點以上,且加壓下溶劑不會沸 騰之範圍之溫度,一面加熱一面進行攪拌溶解時,由於可 防止凝膠或塊狀未溶解物之發生而較佳。 此外,在將纖維素酯與貧溶劑進行混合,並使之濕潤 或膨潤後,其係以進一步添加良溶劑進行溶解之方法爲較 佳使用者。 加壓,可將氮氣體等之非活性氣體壓入之方法,或利 用加熱而使溶劑之蒸氣壓上昇之方法而進行。加熱,係以 由外部進行者爲較佳,例如有套管型式者,其因溫度控制 容易而較佳。 添加溶劑之加熱溫度,其係以高者基於纖維素醋之溶 解性之觀點而較佳,惟加熱溫度如過高時,所需要之壓力 會變大而使生產性變差。 加熱溫度係以45〜120 °C爲較佳,60〜1 l〇t;爲更佳, 70 °C〜105 °C爲最佳。此外,壓力係於設定溫度下,溶劑 不會產生沸騰之前提下進行調整。 -50- 201227004 或者,亦可使用冷卻溶解法,藉此,就可使纖維素酯 溶解於醋酸甲酯等之溶劑中。 接著,將此纖維素酯溶液以濾紙等之適當過濾器材加 以過濾。過濾器材,爲使不溶物等除去起見,係以絕對過 濾精度小者爲較佳,惟如絕對過濾精度過小時,其會發生 過濾器材之篩孔容易堵塞之問題。 據此,絕對過濾精度係以〇.〇〇8mm以下之濾材爲較佳 ,0.001〜0.008mm之濾材爲更佳,0.003〜0.006mm之濾材 爲最佳。 濾材之材質,其並無特別之限制,可使用通常之濾材 ,惟聚丙烯、鐵氟龍(登錄商標)等之塑膠製之濾材、或 不鏽鋼等之金屬製濾材,其等由於不會發生纖維之脫落等 而較佳。 其較佳者,係藉由過濾,能將原料之纖維素酯所含之 不純物,特別是亮點異物加以除去、減低者爲理想。 亮點異物,係指將2片之偏光板以正交偏光狀態加以 配置,其間放置光學薄膜等’由一方之偏光板側照光’再 由另一方之偏光板側進行觀察時,可由相反之一側見到有 光漏出之小點(異物)’其係以徑爲0.0 1mm以上之亮點數 在200個/cm2以下者爲較佳。 其更佳係100個/cm2以下’最佳係50個/cm2以下’極佳 係0〜10個/cm2以下者。此外,0.01mm以下之亮點亦以少 者爲較佳。 摻雜物之過濾可依通常之方法進行’惟係以溶劑在常 -51 - 201227004 壓下之沸點以上,且加壓下溶劑不會沸騰之範圍之溫度, 一面加熱一面進行過濾之方法,其過濾前後之濾壓之差( 稱爲「差壓」)之上昇小而爲較佳者。 較佳之溫度係45〜120 °C,並以45〜70 °C爲更佳,且 以4 5〜5 5 °C爲最佳。 濾壓係以小者爲較佳。濾壓在1.6MP a以下者爲較佳, 1.2MPa以下者爲更佳,l.OMPa以下者爲最佳。 在此,茲就摻雜物之流延加以說明。 在流延(鑄造)步驟中之金屬支持體,係以其表面經 鏡面加工者爲較佳,金屬支持體,例如有以不鏽鋼帶或者 鑄件將表面進行電鍍加工之輥筒爲較佳使用者。 鑄造之寬度,可爲1〜4m者》流延步驟之金屬支持體 之表面溫度,係-50 °C〜未達溶劑之沸點之溫度者,其溫 度高者,因爲網之乾燥速度可變快而較佳,惟過高時網可 能會產生氣泡,而有平面性劣化之可能。 較佳之支持體溫度係0〜55°C,並以25〜50°C爲最佳 。或者;可藉由冷卻使網產生凝膠化,而在富含多數殘存 溶劑之狀態下’由輥筒加以剝離者亦爲較佳之方法。 控制金屬支持體之溫度之方法,其並無特別之限制, 惟例如有吹拂溫風或冷風之方法,或使溫水接觸於金屬支 持體之內側之方法。如使用溫水者,由於其熱之傳達能有 效率地進行之故,該金屬支持體之溫度在到達一定溫度前 所需之時間較短而較佳》如使用溫風時,可能會使用到較 目的溫度更高之溫度之風。 -52- 201227004 爲使纖維素酯薄膜能呈現良好之平面性起見,在由金 屬支持體將網進行剝離時之殘存溶劑量,其係以10〜150 質量%爲較佳,更佳係20〜40質量%或60〜130質量%, 最佳則係20〜30質量%或70〜120質量%者。 本發明中,殘存溶劑量係如下式所定義者。33 /&quot;Vc-O-fc^-CH-oi-〇-C-^^ O CH, 0 35 ^-&lt;:-ο-&lt;〇Η2-〇Η-〇Η2-〇^-^- ^ ooc = o 乙醇 A glycolate plasticizer, which is not particularly limited, but preferably an alkyl decyl glycolate is used. Alkyl decyl glycolic acid esters, for example, methyl hydrazine methyl glycolate, ethyl hydrazine ethyl glycolate, propyl hydrazide glycolate, butyl butyl butyl Glycolate, octyloctyl glycolate, methyl hydrazine ethyl glycolate, ethyl hydrazine methyl glycolate, ethyl propyl propyl glycolate, methyl butyl butyl Glycolate, ethyl butyl butyl glycolate, butyl hydrazine methyl glycolate, butyl hydrazine ethyl glycolate, -40- 201227004 propyl butyl butyl glycolate, butyl酞醯propyl 2 octyl octyl glycolate, ethyl octyl octyl glycolic acid glycolate, octyl hydrazine ethyl glycol vinegar, and the like. Phthalate-based plasticizers, for example: dizodimethoxyethyl phthalate, dimethylbenzene diphthalate, dibutyl phthalate, two_2_ Ethylene 3 , dioctyl phthalate, dicyclohexyl benzene phthalate and the like. The citric acid ester plasticizer is, for example, citric acid citrate triethyl citrate, acetyl citrate tributyl sulphate ester plasticizer, for example, oleic acid acetaminophen, azelaic acid dibutylate Base. Phosphate-based plasticizers, for example, triphenylcarbon phosphate, cresyl diphenyl phosphate, octyl diphenyl biphenyl phosphate, trioctyl phosphate, trivalent carboxylate compound For example, it can be formed from an ester of a polyvalent carboxylic acid and an alcohol having a valence of 2. Further, those having a price of from 2 to 20 are preferred, and those having an aromatic polyvalent residual acid of from 3 to 20 are preferred. The polyvalent carboxylic acid is represented by the following general formula (b): (5) R2 (COOH) „( OH) n (only the organic group of the R 2 system (m + η ), the number, η is 0 or more Integer, COOH group is hydroxyl, phenolic hydroxyl) j alkanoate 'methyl 酞 ί, octyl hydrazine methyl, phthalic acid ester, 1 acid ester, dioctyl benzene hexyl phthalic acid Ester oxime ester, dicyclohexyl p-acetylidene trimethyl, yl group, etc., ricinoleic acid methyl phthalate, trimethyl phenol; phenyl polic acid vinegar, butyl phosphate, etc. Is a valence of 2 valences ~ aliphatic polyvalent carboxylic acid 'alicyclic polyvalent residue. m series of 2 or more normal OH groups are alcoholic or benzene-41 - 201227004 molecular weight of polyvalent carboxylate compounds, which are not In particular, it is preferably in the range of molecular weight 300 to 1000, and preferably in the range of 350 to 750. Further, based on the viewpoint of retention improvement, it is preferably the larger one and the other is based on moisture permeability. The viewpoint of the compatibility of the cellulose ester is preferably a small one. The alcohol used for the polyvalent carboxylate may be one type or a mixture of two or more types. The acid value of the carboxylate compound is preferably 1 mgKOH/g or less, and most preferably 0.2 mgKOH/g or less. By controlling the acid value within the above range, environmental variation due to phase difference It is also preferable to suppress it. Further, the acid value refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid contained in the sample 1 g (the hydroxyl group present in the sample). The valence is determined based on JIS K0070. The most preferred polyvalent carboxylic acid ester compound is, for example, triethyl citrate, tributyl citrate, ethyltriethyl citrate (ATEC). , ethoxylated tributyl citrate (ATBC), benzhydryl tributyl citrate 'ethyl decyl triphenyl citrate, ethyl tribenzyl citrate, dibutyl tartrate, Dibutyl butyl tartrate, dibutyl trimellitate, tetrabutyl phthalate, etc. (UV absorber) Ultraviolet absorber, which is based on absorption of ultraviolet light of 400 nm or less, and durability For the purpose of improvement, especially at the wavelength of 37〇nm-42- 201227004 The penetration rate is below 10% Preferably, it is more preferably 5% or less, and most preferably less than 2%. The ultraviolet absorber to be used is not particularly limited, and examples thereof include an oxybenzophenone compound and a benzoquinone compound. An azole compound, a salicylate compound, a benzophenone compound, a cyanoacrylate compound, a triazine compound, a nickel stear salt compound, an inorganic powder, etc. For example, there is: 5-chloro - 2-(3,5-di-sec-butyl-2-hydroxyphenyl)-2H-benzotriazole, (2-2H-benzoquinone-3-oxazol-2-yl)-6- (straight chain And side chain dodecyl)-4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, etc. '1\1; ¥11^109, TINUVIN 171, TINUVIN 234, TINUVIN 3 26, TINUVIN 3 27, TINUVIN 3 28, etc. TINUVIN class, which are all commercially available from Ciba and Japan, and are preferred. User. Preferred ultraviolet absorbers which can be used in the present invention include, for example, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, and triazine-based ultraviolet absorbers, and most preferably: benzotriazole-based ultraviolet rays. Absorbent, benzophenone-based UV absorber. Further, a discotic compound such as a compound having a 1,3,5 triazine ring or the like is preferably used as an ultraviolet absorber. The polarizing plate protective film of the present invention preferably contains two or more kinds of ultraviolet absorbing agents. Further, the ultraviolet absorber ~ is preferably a polymer ultraviolet ray absorbing agent, and a polymer type ultraviolet ray absorbing agent described in JP-A-61-448. -43- 201227004 The method of adding the ultraviolet absorber is an alcohol such as methanol, ethanol or butanol or an organic solvent such as dichloromethane, methyl acetate, acetone or dioxolane or a mixed solvent thereof. After the ultraviolet absorber is dissolved, it may be added to the dopant or added directly to the dopant composition. If the inorganic powder or the like cannot be dissolved in an organic solvent, it may be added to the dopant after dispersing in an organic solvent or a cellulose ester using a dissolver or a sand mill. The amount of the ultraviolet absorber to be used varies depending on the type of the ultraviolet absorber, the conditions of use, and the like, and it cannot be ambiguous. However, when the thickness of the dried film of the polarizing plate protective film is 30 to 200 μm, the film is protected against the polarizing plate. It is preferably 0.5 to 10% by mass, and more preferably 0.6 to 4% by mass. (Antioxidant) An antioxidant is also called a deterioration inhibitor. If the liquid crystal display device is placed in a state of high humidity and high temperature, deterioration of the cellulose ester film may be caused. The antioxidant may, for example, be slowed down by decomposition of the cellulose ester film by a halogen of a residual solvent fi in the cellulose ester film or phosphoric acid of a phosphate-based plasticizer, and has a protective effect. It is preferred to include it in the above cellulose ester film. Such an antioxidant is preferably, for example, a hindered phenol-based compound such as 2,6-di-t-butyl-ρ·cresol or pentaerythritol-tetrakis[3-(3,5-di-t-butyl). 4-hydroxyphenyl)propionate], triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6- Hexanediol-bis[3-(-44 - 201227004 3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,4-bis-(η-octylsulfide)-6 - (4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2,2-sulfan-diethylidene bis[3-(3,5-di- T-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, N,N'- Hexamethylene bis(3,5-di-t-butyl-4.hydroxy-hydrocinnacinamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di -t-butyl-4-hydroxybenzyl)benzene, tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate, and the like. Among them, especially 2,6-di-t-butyl-P-cresol, pentaerythritol-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], Triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate] is preferred. Further, for example, a metal such as N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propanyl] hydrazine or the like may be inactive. a phosphorus-based processing stabilizer such as tris(2,4-di-t-butylphenyl)phosphite, or the like, which is added to the cellulose derivative in terms of mass ratio Lppm~1. 0% is preferred, and 10~ΙΟΟΟρρτη is the most preferable (acid scavenger). Since the cellulose ester promotes decomposition due to acid at a high temperature, when the optical film of the present invention is used, Those containing an acid scavenger are preferred. A useful acid scavenger is not limited as long as it is a compound which can react with an acid and makes the acid inactivated, and is described in the specification of U.S. Patent No. 4,137,2,1. The compound having an epoxy group is preferably -45-201227004. With regard to such acid scavengers, epoxy compounds are well known in the art and include: diglycidyl ethers relative to various polyethylene glycols, especially per 1 mole of polyethylene glycol, A polyethylene glycol derived from condensation of 8 to 40 moles of ethylene oxide or the like, a diglycidyl ether of glycerin, or the like, and a metal epoxy compound (for example, in a vinyl chloride polymer composition, In common with the vinyl chloride polymer composition, it is a conventionally used), an epoxylated ether condensation product, a di-epoxypropyl ether of bisphenol A (ie, 4, V-dihydroxydiphenyl) Dimethylmethane), an epoxy group of an unsaturated fatty acid ester (wherein an ester of an alkyl group of 4 to 2 or more carbon atoms of a fatty acid of 2 to 22 carbon atoms in particular) (for example, a butyl epoxy group) Epoxylated vegetable oils and other unsaturated natural exemplified by compositions of stearates, etc., and various epoxidized long-chain fatty acid triglycerides (for example, epoxidized soybean oil, etc.) Oil (this is also known as epoxidized natural glyceride or unsaturated fatty acid, such fat The system contains a generally 12~22 carbon atoms). Further, commercially available epoxy group-containing epoxide resin compounds such as EPON 8 15 C are preferred users. Further, an acid scavenger which can be used in addition to the above, for example, an oxetane compound or an oxazoline compound, an organic acid salt of an alkaline earth metal or an acetylacetone complex, and a 5-ethylidene complex Those described in paragraphs 68 to 105 of 194788. In addition, the acid scavenger is also called an acid scavenger, an acid scavenger, an acid scavenger, etc., but in the present invention, there is no difference in the designation of such a name - 46 - 201227004 (fine particles) For the sake of smoothness, it is preferred to add fine particles. The primary particle diameter of the primary particles is preferably, for example, 20 nm or less, more preferably 5 to 16 nm, and most preferably 5 to 12 nm. These fine particles are preferably formed into a secondary particle having a particle diameter of 0.1 to 5 μm, and are preferably contained in a phase difference film, and preferably have an average particle diameter of 0.1 to 2 μm, more preferably 0.2 to 0.6 μm. Thereby, irregularities of about 0.1 to Ι.Ομηη can be formed on the surface of the film, so that appropriate smoothness can be imparted to the surface of the film. The average particle diameter of the microparticles was measured by a transmission electron microscope (magnification of 500,000 to 2 million times), and then one particle was observed, and the particle diameter was measured to obtain an average enthalpy. , that is, as the average of the average particle diameter. The specific gravity of the microparticles is preferably, for example, 70 g/liter or more, more preferably 90 to 20 Og/liter, and most preferably 1 to 20 Og/liter. The larger the specific gravity, the higher the concentration of the dispersion, and the better the haze and the agglomerate. In addition, when the dopant of the high solid concentration is prepared according to the present invention, it is the best user. . The amount of the fine particles added to the cellulose ester is preferably 0.01 parts by mass to 5.0 parts by mass based on 100 parts by mass of the cellulose ester, more preferably 0.05 parts by mass to 1.0 part by mass, and further 0.1 parts by mass. ~ 〇. 5 parts by mass is the best. When the amount of addition is larger, the coefficient of dynamic friction is excellent, and when the amount of addition is small, the amount of aggregates is small. Further, if the dopant containing fine particles is directly contacted and cast on the casting support by -47 to 201227004, a film having excellent smoothness and low haze can be obtained. Further, after the casting, the film is peeled off, dried, and wound into a roll shape, and a functional film such as a hard coat layer or an antireflection layer may be provided. Packaging processing is generally carried out between processing or shipment to protect the product from dirt or static electricity. The packaging material 'is not particularly limited as long as the above object can be attained, but it is preferred that the film is volatilized without hindering the residual solvent. Specifically, there are: polyethylene, polyester, polypropylene, nylon, polystyrene, paper, various non-woven fabrics, and the like. It is best if the fiber is made into a sieve cloth. &lt;Method for Producing Cellulose Ester Film&gt; Next, a method for producing a cellulose ester film used in the present invention will be described. The cellulose ester film used in the present invention may be a film produced by a solution casting method or a film produced by a melt casting method. In the solution casting method, the cellulose ester film used in the present invention is produced by: dissolving a cellulose ester and an additive in a solvent to prepare a dopant; and moving the dopant infinitely a step of casting on the endless metal support; a step of forming the casted dopant into a web and drying; a step of stripping from the metal support; a step of extending or maintaining the width; and a step of further drying; The step of winding the modified film is carried out. The modulation steps of the dopants are described. The concentration of the fiber-48-201227004 ester in the dopant, which is higher in concentration, is better because the dry weight after casting on the metal support can be reduced, but the concentration of the cellulose ester is too high. When the filter is loaded, the load will increase, which will make the filter accuracy worse. In order to achieve the concentration of the two, for example, it is preferably from 10 to 35 mass%, and most preferably from 15 to 25 mass%. The solvent to be used for the dopant may be used singly or in combination of two or more kinds. However, when a good solvent of a cellulose ester and a poor solvent are used in combination, it is preferable from the viewpoint of production efficiency; In view of the solubility of the cellulose ester, it is preferred from the viewpoint of a good solvent. The preferred range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass of the good solvent and 2 to 30% by mass of the poor solvent. The term "good solvent" and "poor solvent" means that the cellulose ester to be used is dissolved as a good solvent, and if it is swollen or insoluble when it is separately carried out, it is defined as a poor solvent. The good solvent to be used in the present invention is not particularly limited, and examples thereof include an organohalogen compound such as a dichlorocarbendate or a dioxolane, acetone, methyl acetate, methyl acetate methyl acetate or the like. Among them, dichloromethane or acetic acid methyl group is preferred. Further, the poor solvent used in the present invention is not particularly limited, and for example, methanol, ethanol, η-butanol, cyclohexan, cyclohexanone or the like is preferable. Further, it is preferred that the dopant contains water in an amount of 〇.01 to 2% by mass. Further, the solvent 'used on the dissolution of the cellulose ester can be recovered by drying the solvent removed by the film in the film forming step, and reused -49-201227004. In the recovery solvent, the additive added to the cellulose ester may contain a trace amount of, for example, a plasticizer, a UV absorber, a polymer, a monomer component, etc., but it is necessary to reuse it even if it is contained therein. It can be purified first and then reused. In the case of preparing the above-described dopant, a method of dissolving the cellulose ester can be, for example, a general method. It can be combined with heating and pressurization and heated to a boiling point or higher at normal pressure. When the solvent is at a temperature equal to or higher than the boiling point of the normal pressure and the solvent does not boil under pressure, it is preferred to prevent the occurrence of gel or bulk undissolved matter while stirring and dissolving while heating. Further, after the cellulose ester is mixed with a poor solvent and moisturized or swollen, it is preferably a user by further adding a good solvent for dissolution. The pressurization can be carried out by a method in which an inert gas such as a nitrogen gas is injected, or a method in which the vapor pressure of the solvent is raised by heating. The heating is preferably carried out by an external person, for example, a sleeve type, which is preferable because of temperature control. The heating temperature of the solvent to be added is preferably from the viewpoint of the solubility of cellulose vinegar in the higher case, but if the heating temperature is too high, the pressure required is increased to deteriorate the productivity. The heating temperature is preferably 45 to 120 ° C, 60 to 1 l 〇 t; more preferably, 70 ° C to 105 ° C is optimal. In addition, the pressure is set at the set temperature and the solvent is lifted and adjusted before boiling. -50- 201227004 Alternatively, a cooling dissolution method may be used, whereby the cellulose ester may be dissolved in a solvent such as methyl acetate. Next, the cellulose ester solution is filtered with a suitable filter device such as filter paper. The filter device is preferably one in which the absolute filtration accuracy is small in order to remove the insoluble matter, but if the absolute filtration accuracy is too small, the sieve hole of the filter device may be easily clogged. Accordingly, the absolute filtration accuracy is preferably a filter material of 〇. 〇〇 8 mm or less, a filter material of 0.001 to 0.008 mm is more preferable, and a filter material of 0.003 to 0.006 mm is most preferable. The material of the filter material is not particularly limited, and a usual filter medium can be used, but a plastic filter material such as polypropylene or Teflon (registered trademark) or a metal filter material such as stainless steel, etc. It is preferable to fall off or the like. Preferably, it is preferred that the impurities contained in the cellulose ester of the raw material, particularly the bright foreign matter, are removed and reduced by filtration. A bright spot is a state in which two polarizing plates are arranged in a state of orthogonal polarization, and an optical film or the like is placed between the side of the polarizing plate and the other side of the polarizing plate. It is preferable to see a small dot (foreign matter) in which light leaks out. The number of bright dots having a diameter of 0.01 mm or more is preferably 200 or less. More preferably, it is 100 pieces/cm2 or less, and the 'best system is 50 pieces/cm2 or less'. It is preferably 0 to 10 pieces/cm2 or less. In addition, a bright spot of 0.01 mm or less is also preferable. The filtering of the dopant can be carried out according to the usual method, except that the solvent is heated at a temperature above the boiling point of the constant -51 - 201227004, and the solvent does not boil under pressure, and is heated while filtering. It is preferred that the difference in filtration pressure before and after filtration (referred to as "differential pressure") is small. The temperature is preferably 45 to 120 ° C, more preferably 45 to 70 ° C, and most preferably 4 5 to 5 5 ° C. The filter system is preferably smaller. The filtration pressure is preferably 1.6 MP a or less, more preferably 1.2 MPa or less, and most preferably 1.0 MPa or less. Here, the casting of the dopant will be described. The metal support in the casting (casting) step is preferably a mirror-finished surface, and a metal support such as a roll having a surface of a stainless steel strip or a casting is preferably used. The width of the casting can be 1~4m. The surface temperature of the metal support in the casting step is the temperature of -50 °C~ the boiling point of the solvent. The temperature is higher because the drying speed of the net can be fast. Preferably, however, if the grid is too high, bubbles may be generated and the planarity may be deteriorated. The preferred support temperature is 0 to 55 ° C and is preferably 25 to 50 ° C. Alternatively, the web may be gelled by cooling, and it is also preferred to be stripped by a roll in a state rich in a large amount of residual solvent. The method of controlling the temperature of the metal support is not particularly limited, and for example, there is a method of blowing warm air or cold air, or a method of bringing warm water into contact with the inside of the metal support. If warm water is used, the temperature of the metal support will be shorter and better before reaching a certain temperature because of the heat transfer. If using warm air, it may be used. A wind with a higher temperature than the target temperature. -52- 201227004 In order to make the cellulose ester film exhibit good planarity, the amount of residual solvent when the mesh is peeled off by the metal support is preferably 10 to 150% by mass, more preferably 20 ~40% by mass or 60 to 130% by mass, and most preferably 20 to 30% by mass or 70 to 120% by mass. In the present invention, the amount of residual solvent is as defined in the following formula.

殘存溶劑量(質量%) = { (M-N) /N} xlOO 再者,Μ係將網或薄膜於製造中或製造後之任意時點 所採取之樣品質量,Ν則係將Μ以1 1 5 °C進行1小時加熱後 之質量。 此外,纖維素酯薄膜之乾燥步驟中,其係以將網由金 屬支持體進行剝離,進一步乾燥,並使殘存溶劑量控制在 1質量%以下者爲較佳,更佳係0.1質量%以下,最佳則係 0〜0.01質量%以下者。 薄膜乾燥步驟中,一般係採用以輥筒乾燥方式(在上 下配置之多數輥筒上,使網交互地通過並乾燥之方式)或 拉幅方式,使網一面被搬運一面進行乾燥之方式者。 爲製作本發明所使用之纖維素酯薄膜起見,係將網之 兩端以夾子等加以固定之拉幅方式,在寬度方向(橫方向 )上延伸者爲最佳。剝離張力則以300N/m以下進行剝離者 爲較佳。 爲使網進行乾燥之手段,其並無特別之限制,一般而 言,可以熱風、紅外線、加熱輥筒、微波等進行,惟基於 簡便之觀點則以熱風進行者爲較佳》 網之乾燥步驟中之乾燥溫度,係以在4 0〜2 0 0 °C間, -53- 201227004 階段性地提高者爲較佳。 纖維素酯薄膜之膜厚度,並無特別之限\制,惟可使用 10〜200μιη。尤以膜厚度10〜ΙΟΟμηι者爲更佳。最佳則係 20 〜60μηι者。 本發明中,纖維素酯薄膜,係使用其寬度爲1〜4m者 。更佳係寬度1.4〜4m之者,最佳則係1.6〜3m者。如超過 4m時,搬送將產生困難。 爲在纖維素酯薄膜上,賦予下述所期望之位相差値R〇 、Rt起見,其係以搬送張力之控制,或藉由延伸操作之折 射率控制者爲較佳。 舉例而言,可藉由長方向上之張力降低或提高,而使 位相差値產生變動。 此外,其係以相對於薄膜之長方向(製膜方向)以及 與其在薄膜面內爲直交之方向,亦即寬度方向,逐次或同 時地進行2軸延伸或1軸延伸者爲較佳。 彼此直交之2軸方向之延伸倍率,係以各自最終在流 延方向上爲0.8〜1.5倍,寬度方向爲1.1〜2.5倍之範圍者 爲較佳,並以在流延方向上爲0.8〜1·〇倍,寬度方向爲1.2 〜2.0倍之範圍進行者爲較佳。 延伸溫度係以120〜200°C爲較佳’更佳係150〜200°C ,最佳則係超過1 50°C且在190°C以下進行延伸者。 薄膜中之殘存溶劑係以20〜0 %爲較佳,最佳則係1 5 〜0%進行延伸者。 具體而言,如在1 5 5 °C下殘存溶劑以1 1 %進行延伸’ -54- 201227004 或1 5 5 °c下殘存溶劑以2 %進行延伸者爲較佳。或者,在 160°C下殘存溶劑以1 1%進行延伸者爲較佳,或160°C下殘 存溶劑以未達1 %進行延伸者爲較佳。 將網加以延伸之方法,其並無特別之限制。舉例而言 ,有在多數之輥筒施加轉速差,然後利用該輥筒轉速差而 在縱方向上進行延伸之方法;將網之兩端以夾子或針固定 ’再將夾子或針之間隔於進行方向上擴散並朝縱方向加以 延伸之方法;同樣地,於橫方向擴散並朝橫方向加以延伸 之方法;或者,在縱橫方向上同時地擴散,並朝縱橫兩方 向加以延伸之方法等。當然,此等之方法,亦可組合而使 用。 此外,如以所謂拉幅法進行時,其係以線性驅動方式 將夾子部分進行驅動者,由於可滑順地進行延伸,並減少 破斷等危險性而較佳。 製膜步驟中之此等寬(方向)保持或橫方向之延伸, 其係以拉幅所進行者爲較佳,並可爲針拉幅或夾子拉幅。 本發明所使用之纖維素酯薄膜之遲相軸或進相軸係存 在於薄膜面內,如將與製膜方向所成之角定爲0 1時,則 θ 1係以-1°以上+ 1°以下者爲較佳,又以- 0.5°以上+ 0.5°以 下者爲更佳,並以-0.1°以上+ 0.Γ以下者爲最佳。 此0 1係定義爲配向角,0 1之測定,可使用自動複折 射計KOBRA-21 ADH (王子計測機器)進行。β 1如能滿足 上述之各種關係時,可在顯示畫面上獲得高亮度,協助抑 制或防止漏光,且在彩色液晶顯示裝置中獲得忠實的色彩 -55- 201227004 再現。 &lt;纖維素酯薄膜之物性&gt; 本發明所使用之纖維素酯薄膜之透濕度,係以40 °C、 90% RH下爲300〜1800g/m2 . 24h爲較佳,並以400〜 1 500g/m2· 24h爲更佳,又以 40 〜1 300g/m2· 24h爲最佳。 透濕度則係根據JIS Z 0208所記載之方法進行測定。 破斷伸度,係以5〜80%爲較佳,並以10〜50%爲最 佳。 可見光穿透率,係以90%以上爲較佳,並以93%以上 爲最佳。 此外,藉由在本發明之纖維素酯薄膜上,進一步塗佈 液晶層,就可進一步獲得廣泛範圍之位相差値。 &lt;位相差値&gt; 本發明所使用之纖維素酯薄膜之面內位相差値(R〇 ) 及厚度方向之位相差値(Rt),如作爲偏光子保護薄膜使 用時,其係以〇 S R〇、Rt S 70nm者爲較佳。更佳係0 S Ro S 30nm 且 0$ RtS 50nm,最佳則係0$ RoS 10nm 且 OS Rt 客 3 0 n m ° 本發明所使用之纖維素酯薄膜,其係以作爲位相差薄 膜使用爲較佳,此時一般係30SRoS100nm且70客Rt客 400nm,更佳係 35SRo$65nm 且 90SRtS180nm。此外, Rt之變動或分布之範圍如未達±50%者爲較佳,未達±30% -56- 201227004 者爲更佳,未達±20%者爲最佳。進一步,係以未達土15% 者爲較佳’未達±10%者爲更佳,未達±5%未達者爲最佳 ,又以未達±1%者爲極佳。其中,極隹中之極佳者係Rt不 變動者。 再者,位相差値Ro、Rt ’可依下式而求出。 R〇 = ( nx-ny) xdResidual solvent amount (% by mass) = { (MN) /N} xlOO Furthermore, the quality of the sample taken at any time during or after manufacture of the mesh or film is 1 1 1 5 ° C The mass after heating for 1 hour. Further, in the drying step of the cellulose ester film, it is preferred that the net is peeled off from the metal support and further dried, and the amount of the residual solvent is preferably 1% by mass or less, more preferably 0.1% by mass or less. The best is 0 to 0.01% by mass or less. In the film drying step, generally, a method in which the web is dried while being conveyed is carried out by means of a roll drying method (on a plurality of rolls arranged up and down, allowing the net to pass and dry alternately) or a tentering method. For the purpose of producing the cellulose ester film used in the present invention, it is preferred to stretch the web at both ends by a clip or the like in a widthwise direction (lateral direction). It is preferable that the peeling tension is performed at 300 N/m or less. There is no particular limitation on the means for drying the net. Generally, it can be carried out by hot air, infrared rays, heating rolls, microwaves, etc., but it is preferred to carry out hot air based on a simple viewpoint. The drying temperature in the middle is preferably between 4 0 and 200 ° C, and -53 to 201227004. The film thickness of the cellulose ester film is not particularly limited, but 10 to 200 μm can be used. Especially for film thickness 10~ΙΟΟμηι is better. The best is 20 ~ 60μηι. In the present invention, the cellulose ester film is used in a width of 1 to 4 m. More preferably, the width is 1.4 to 4 m, and the best is 1.6 to 3 m. If it exceeds 4m, the transportation will be difficult. In order to impart the desired phase difference 値R〇, Rt to the cellulose ester film, it is preferred to control the transfer tension or to control the refractive index by the stretching operation. For example, the phase difference 値 can be varied by reducing or increasing the tension in the long direction. Further, it is preferred that the two-axis extension or the one-axis extension be performed successively or simultaneously with respect to the longitudinal direction of the film (film formation direction) and the direction orthogonal to the film surface, that is, the width direction. The stretching ratio in the two-axis direction orthogonal to each other is preferably 0.8 to 1.5 times in the casting direction, and 1.1 to 2.5 times in the width direction, and 0.8 to 1 in the casting direction. It is preferable that the width is in the range of 1.2 to 2.0 times. The elongation temperature is preferably from 120 to 200 ° C, more preferably from 150 to 200 ° C, and most preferably from more than 150 ° C and extension at 190 ° C or lower. The residual solvent in the film is preferably from 20 to 0%, and most preferably from 1 to 5%. Specifically, it is preferred that the residual solvent is extended at 11% at - 15 ° C. - -54 - 201227004 or the residual solvent at 155 ° C is extended at 2%. Alternatively, it is preferred that the residual solvent is extended at 11 °C at 160 ° C, or the residual solvent at 160 ° C is preferably less than 1%. There is no particular limitation on the method of extending the net. For example, there is a method in which a difference in rotational speed is applied to a plurality of rollers, and then the longitudinal direction is extended by the difference in rotational speed of the roller; the ends of the mesh are fixed by clips or needles, and the clips or needles are spaced apart from each other. A method of diffusing in the direction and extending in the longitudinal direction; similarly, a method of diffusing in the lateral direction and extending in the lateral direction; or a method of simultaneously diffusing in the longitudinal and lateral directions and extending in both the longitudinal and lateral directions. Of course, these methods can also be combined and used. Further, when the so-called tenter method is used, it is preferable to drive the clip portion in a linear driving manner, and it is preferable to smoothly extend and reduce the risk of breakage. Such width (direction) retention or lateral extension in the film forming step is preferably carried out by tentering, and may be needle tenter or clip tenter. The slow phase axis or the phase axis of the cellulose ester film used in the present invention exists in the film surface. If the angle formed by the film forming direction is 0 1 , the θ 1 is -1° or more + It is preferable that it is 1° or less, and it is more preferably -0.5° or more + 0.5° or less, and it is preferably -0.1° or more + 0.Γ or less. This 0 1 system is defined as the alignment angle, and the measurement of 0 1 can be performed using an automatic folding refractometer KOBRA-21 ADH (Prince Measurement Machine). When β 1 satisfies the above various relationships, high brightness can be obtained on the display screen to help suppress or prevent light leakage, and a faithful color can be obtained in a color liquid crystal display device -55-201227004 reproduction. &lt;Physical properties of cellulose ester film&gt; The moisture permeability of the cellulose ester film used in the present invention is 300 to 1800 g/m 2 at 40 ° C and 90% RH. 24 h is preferred, and 400 to 1 is used. 500g/m2·24h is more preferable, and 40 to 1 300g/m2·24h is the best. The moisture permeability is measured in accordance with the method described in JIS Z 0208. The breaking elongation is preferably 5 to 80%, and preferably 10 to 50%. The visible light transmittance is preferably 90% or more, and preferably 93% or more. Further, by further coating the liquid crystal layer on the cellulose ester film of the present invention, a wide range of phase difference can be further obtained. &lt;Phase phase difference&gt; The in-plane phase difference 〇(R〇) of the cellulose ester film used in the present invention and the phase difference 値(Rt) in the thickness direction are used as a polarizer protective film. SR〇, Rt S 70nm is preferred. More preferably, it is 0 S Ro S 30 nm and 0$ RtS 50 nm, and the best is 0$ RoS 10 nm and OS Rt is 30 nm. The cellulose ester film used in the present invention is used as a phase difference film. Preferably, this is generally 30SRoS100nm and 70 passenger Rt 400nm, more preferably 35SRo$65nm and 90SRtS180nm. In addition, the range of variation or distribution of Rt is preferably less than ±50%, and less than ±30% -56-201227004 is better, and less than ±20% is optimal. Further, it is better to use 15% of the unearthed soil. It is better if it is less than ±10%, and it is best if it is less than ±5%, and it is excellent if it is less than ±1%. Among them, the extremely good ones are those whose Rt does not change. Further, the phase differences 値Ro and Rt' can be obtained by the following equation. R〇 = ( nx-ny) xd

Rt = ( ( nx + ny ) /2-nz) xd 其中,d係薄膜之厚度(η〇1 )、折射率nx (薄膜之面 內之最大折射率’亦稱爲遲相軸方向之折射率)、ny (在 薄膜面內與遲相軸成直角方向之折射率)、nz (厚度方向 之薄膜之折射率)》 位相差値(R〇 ) 、( Rt ),可使用自動複折射率計進 行測定。舉例而言,可使用KOBRA-21ADH (王子計測機 器(股)),在23°C、55% RH之環境下,以波長590nm來 求出。 &lt;表面親水化處理&gt; 本發明之偏光板,其特徵係偏光子之雙面,在保護薄 膜被夾住所成之偏光板中,至少單面之保護薄膜,係經過 電漿處理或電暈處理之任一者進行親水化處理之保護薄膜 〇 電漿處理或電暈處理之方法’可採用傳統上習知之各 種方法。本發明中,尤以採用電漿處理者爲最佳。 -57- 201227004 〈電漿處理〉 以下,茲就本發明之偏光板保護薄膜之表面親水化處 理方面,可適用之電漿處理,特別是大氣壓電漿處理,加 以說明。 可適用於本發明之電漿處理,例如有特開平11 -1 3 3 2 05號公報、特開2000- 1 8 5 3 62號公報、特開平11-61406 號公報、特開2000- 1 47209號公報、同2000- 1 2 1 804號公報 等所揭示之技術。 關於本發明所使用之大氣壓電漿處理方法,加以說明 〇 首先,就本發明上有用之大氣壓電漿處理方法及其裝 置加以說明。 本發明之電漿處理法,係於大氣壓或其附近之壓力下 ,對於放電空間(對向電極間)供給氣體,並在該放電空 間中施加高頻電壓,藉由使氣體成爲激態而爲電漿狀態, 並將偏光板保護薄膜暴露於此激態之電漿狀態之氣體中, 而進行表面處理,從而將此方法稱爲大氣壓電漿處理方法 (以下,亦稱爲電漿處理)。所謂電漿之照射,係指包含 在電漿處理中直接使偏光板保護薄膜表面暴露;以及,包 含將藉由電漿放電所形成之激態活性種吹到偏光板保護薄 膜表面之情形。在對向電極間所形成之放電空間中所施加 之高頻電壓,其可爲一種頻率之高頻’亦可爲二種或其以 上之頻率之高頻。在本發明所謂之高頻,係指具有至少 0.5kHz以上之頻率者。在本發明之高頻電源之頻率,一般 -58- 201227004 係50kHz以上,並以27MHz以下者爲較佳。 本發明中,大氣壓電漿處理,係於大氣壓或者其附近 之壓力下行之,所謂大氣壓或者其附近之壓力係指20〜 11 OkPa左右’爲得到本發明所記載之良好效果起見,其係 以93〜104kPa爲較佳。 本發明中,供給於對向電極間(放電空間)之氣體, 可使用氮、氫、氬、氮、一氧化碳、氨等各種氣體,惟基 於成本之觀點,係以使用氮氣50體積%以上者爲較佳。 本發明之大氣壓電漿處理係表面處理者,惟亦可含有 :接受藉由高頻電壓成爲激態之激態氣體及其能量,而成 爲電漿狀態或激態狀態,而形成薄膜之薄膜形成性氣體。 電漿照射時間可增長3秒,而使所投入之電漿能量增 大’從而使得水接觸角之減少成爲可能,惟欲使電漿能量 增大時,亦有可能產生基材薄膜發生熱破壞等之情形,並 不理想。 相反地,電漿照射時間如在3秒以下時,其對於基材 薄膜之破壞雖可被抑制,惟其與偏光子之接著性不完全, 而必須在電漿處理後進行鹼水解化之處理步驟(專利文獻 :特開2009-2 5603號公報)。 如以一種頻率之高頻電壓進行處理時(亦稱爲單頻率 高頻電壓施加方式),或以二種頻率之高頻電壓進行處理 時(亦稱爲2頻率高頻電壓施加方式),其電極可使用完 全相同者,且裝置本身亦無太大的不同。 其相異點,係高頻電源爲二個,且其上附帶有過濾器 -59- 201227004 ,進一步,其係由對向電極之兩個電極來施加高頻電壓者 0 本發明中如採有用之單頻率高頻電壓施加方式時,對 向電極之一者爲接地電極,另一者爲施加電極,而施加電 極上連接有高頻電源,且接地電極係以地線接地者。 茲使用圖,就單頻率高頻電壓施加方式及2頻率高頻 電壓施加方式之各自方式之電漿處理裝置(大氣壓電漿處 理裝置),在圖中進行說明。 圖〗,係表示本發明中,有用之單頻率高頻電壓施加 方式之電漿處理裝置一例之槪略圖。 以位於電漿放電容器130之內部之施加高頻電壓之施 加電極(角筒型電極)1 3 6,及位於其下側且將透明樹脂 薄膜F加以捲繞之輥筒型接地電極1 35,形成一對向電極。 施加電極136,可爲數個並排。氣體G,係由電漿放電容器 10之氣體供給口 152提供供給,再通過將氣體G均一化之篩 ,沿著施加電極1 3 6之間及施加電極與電漿放電容器1 3 1之 內壁通過,而以氣體G將對向電極間之放電空間13充滿。 以高頻電源21在施加電極136上施加高頻電壓,並使透明 樹脂薄膜F暴露於在放電空間1 3 2成爲激態之氣體G中,即 在該透明樹脂薄膜F上形成薄膜。所施加之高頻電壓之頻 率爲50kHz〜150MHz之範圍。本發明中,高頻電源之頻率 ,係以50kHz以上,27MHz以下者爲較佳。 如未達50kHz時,無法得到本發明之效果。此外,超 過150MHz之頻率,其放電形成將變得困難而必須要複雑 -60- 201227004 之設備,此外,因電位分布發生而須進行不均一處理,而 不適合大面積化處理等,因此並不適合本發明。 薄膜形成中,係由電極溫度調節手段160經過配管而 將電極加以加熱或冷卻。其會因爲電漿處理時之基材溫度 ,而所得之薄膜之物性或組成會產生變化,因此希望能對 此適當地加以控制。溫度調節之媒體,例如有蒸餾水、油 等之絕緣性材料爲較佳使用者。在電漿處理時,其係以在 寬度方向或長度方向上之基材溫度不均,儘可能不會出現 之情形下,均等地調節電極內部之溫度者爲較佳。 圖2,係表示本發明中,有用之2頻率高頻電壓施加方 式之電漿處理裝置之另一例之槪略圖。其係與圖1同樣地 ,在輥筒電極(第1電極)135及角筒型電極群(第2電極 )1 3 6之對向電極間(放電空間)1 3 2,以透明樹脂薄膜F 進行電漿處理者。 在輥筒電極(第1電極)135及角筒型電極群(第2電 極)136間之放電空間(對向電極間)132上,輥筒電極( 第1電極)135係由第1電極141以頻率ωι之高頻電壓Vi, 此外,角筒型電極群(第2電極)136則係由第2電源142以 頻率ω 2之高頻電壓V2,而施加所成者。 在輥筒電極(第1電極)135及第1電源141之間,係由 第1電源141使電流流向輥筒電極(第1電極)135而設置第 1過濾器1 43,該第1過濾器係設計成使第1電源1 4 1而來之 電流很難通過,而第2電源1 42則係設計成使電流很容易通 過者。此外,在角筒型電極群(第2電極)136及第2電源 -61 - 201227004 142之間’係由第2電源使電流流向第2電極而設置第2過爐 器144,第2過濾器144係設計成使第2電源142而來之電流 很難通過,且第1電源141而來之電流很容易通過者。在此 ,所謂很難通過,較佳係指電流僅在20%以下’最佳係指 在1 0 %以下者。相反地,所謂很容易通過’較佳係指係電 流之80%以上’最佳係指90%以上通過者。 本發明中,只要是具有上述性質之過濾器者即可,其 並無限制皆可使用。舉例而言’第1過濾器’可使用配合 第2電源之頻率之數1〇〜數萬PF之電容器,或者數μΗ左右 之線圈。第2過濾器,例如可使用配合第1電源之頻率之 1 ΟμΗ以上之線圈,介由此等之線圈或電容器而接地時,就 可以作爲過濾器而使用。 再者,本發明中,亦可將輥筒電極135作爲第2電極, 並將角筒型電極群13 6作爲第1電極。惟不管如何,第1電 極上皆連接著第1電源,且第2電極上皆連接著第2電源。 進一步,第1電源可較第2電源具有施加更大高頻電壓(V, &gt; V2 )之能力。此外,頻率則可具有ω , &lt; ω 2之能力者》 以氣體供給手段150之氣體供給裝置151所發生之氣體 G,可藉由控制流量而由給氣口 152導入至電漿處理容器 131內。放電空間132及電漿處理容器131內則以氣體G充滿 〇 透明樹脂薄膜F,可由未經圖示之原來的捲筒鬆開而 搬來,或由前步驟所搬來,再經由引導輥筒164將夾輥165 上伴隨著透明樹脂薄膜而來之空氣等加以遮斷,於輥筒電 -62- 201227004 極135接觸之情形下,一面捲繞一面移送到角筒型電極群 136之間,更由輥筒電極(第1電極)135與角筒型電極群 (第2電極)136之二者間施加電壓,使對向電極間(放電 空間)132上能發生放電電漿。透明樹脂薄膜F則在接觸輥 筒電極1 3 5之情形下,一面捲繞一面使電漿狀態之氣體能 進行照射。透明樹脂薄膜F,可經過夾輥1 66、引導輥筒 167»以未圖示之捲繞機進行捲繞,並移送到下一步驟。 經處理過之處理廢氣體G’則由排氣口 1 53排出。 電漿處理中,爲將輥筒電極(第1電極)135及角筒型 電極群(第2電極)136進行加熱或冷卻起見,其係藉由以 電極溫度調節手段1 60調節溫度之媒體,利用送液幫浦P經 過配管1 6 1送到兩電極,再由電極內側調節溫度。再者, 165及166係將電漿處理容器131與外界加以隔絕之隔絕板 〇 本發明中,所施加之高頻電壓,可爲斷續之脈波,亦 可爲連續之正弦波,就施加電壓波形而言,其並無限制, 惟係以施加高能之高頻電壓,使其形成強固薄膜之正弦波 者爲較佳。 本發明中,施加於第1電極之高頻電壓之頻率係1 kHz 〜200kHz,且施加於前述第2電極之高頻電壓之頻率則係 以800kHz以上者爲較佳。 此時之電力密度係以1〜50W/cm2 (在此,分母之cm2 係放電所發生之面積)。爲較佳,更佳係1 .2〜30W/cm2。 本發明所使用之電漿處理裝置中,有用之高頻電源例 -63- 201227004 如有:100kHz 氺(HAIDEN硏究所製),200kHz、800kHz 、2MHz、13.56MHz、2 7 M Hz 及 1 5 0M H z (皆爲 P EARL 工業 製)等。再者,*記號係HAIDEN硏究所脈衝高頻電源( 連續狀態下l〇〇kHz)。 本發明中,必須採用施加此種電壓,且能保持下述之 均一輝光放電狀態之電極之電漿處理裝置。 圖3,係表示如圖示之輥筒電極之導電性之金屬質母 材及其上所被覆之介電體構造之一例之斜視圖。 圖3中,輥筒電極35a係導電性之金屬質母材35A及其 上所被覆之介電體35B。其內部係呈現中空之套管形並能 進行溫度調節者。 圖4,係表示圖1及2所示角筒型電極之導電性之金屬 質母材及其上所被覆之介電體構造之一例之斜視圖。 圖4中,角筒型電極3 6a,相對於導電性之金屬質母材 3 6A,係具有與圖3相同之介電體36B之被覆,該電極之構 造係金屬質之管狀物,其係成爲套管狀,並可在放電中進 行溫度調節者。 再者,角筒型電極之數目,係以沿著較上述輥筒電極 之圓周更大之圓周上而多數設置,又該電極之放電面積係 對向於輥筒電極35之全角筒型電極面之面積和。 如圖4所示之角筒型電極36a,其可爲圓筒型電極,惟 角筒型電極由於相較於圓筒型電極而言,其具有放電範圍 (放電面積)之擴大效果之故,在本發明中係較佳使用者 -64- 201227004 圖3及圖4中,輥筒電極35 a及角筒型電極36a,係各自 在導電性之金屬質母材35A及36A上,將介電體35B及3 6B 之陶瓷加以溶射後,再使用無機化合物之封孔材料進行封 孔處理者。陶瓷介電體可以單層而被覆1mm左右。在溶射 上所使用之陶瓷材,例如有氧化鋁·氮化矽等爲較佳使用 者,其中又以氧化鋁因容易進行加工之故,而爲最佳使用 者。此外,介電體層,亦可爲藉由玻璃襯裏而設置無機材 料之襯裏處理介電體。 導電性之金屬質母材3 5 A及36A,例如有:鈦或鈦合 金、銀、白金、不鏽鋼、鋁、鐵等之金屬等、或鐵與陶瓷 之複合材料或鋁與陶瓷之複合材料,又基於後述之理由, 其係以銶或駄合金爲最佳。 2個之電極間之距離(電極間隙),其導電性之金屬 質母材上所設置之介電體之厚度,係考慮施加電壓之大小 、所利用電漿之目的等而加以決定,惟在電極之一面如設 置介電體時’其介電體表面與導電性之金屬質母材表面之 最短距離’或在上述電極之二者均設置介電體時,其介電 體表面間之距離’均基於均一放電之觀點,係以0.1〜 2 0 m m爲較佳,最佳則係〇 . 5〜2 m m。 電漿處理容器10或31,其係以pyreX (登錄商標)玻 璃製之處理容器等爲較佳使用者,如能獲得電極之絕緣時 ’其亦可使用金屬製者。舉例而言,可在鋁或不鏽鋼之構 架內面張貼聚醯亞胺樹脂等,或亦可在該金屬構架上進行 陶瓷溶射而獲得絕緣性者。圖1中,其係以將平行之兩電 -65- 201227004 極之兩側面(靠近到基材面爲止),以上述材質之物加以 覆蓋者爲較佳。 在本發明之電漿處理方法之電極中,電極之至少與基 材相鄰接之一側之JIS B 0601所規定表面粗度之最大高度 (Rmax )係以調整至Ιμιη以下者,其基於可獲得本發明所 記載之效果之觀點而較佳,更佳爲表面粗度之最大値爲 0.8μιη以下,最佳則爲〇.7μπι以下所調整者。藉由如此地將 介電體被覆電極之介電體表面加以硏磨加工等方法,可將 介電體之厚度及電極間之溝槽保持在一定之狀態,並可使 放電狀態安定化,進一步避免掉熱收縮差或殘存應力所致 變形或破裂,且可大幅度地提升其高精度及耐久性。又介 電體表面之硏磨加工,係以至少在與基材相鄰接之一側之 介電體進行者爲較佳。進一步,依JIS Β 060 1所規定之中 心線平均表面粗度(Ra ),其越大則表面積將增大且接著 性提昇,又基於因光散亂所致液晶顯示裝置中之正面對比 之降低可獲防止等之觀點,其係以2.0〜lO.Onm爲較佳, 更佳則係2.0〜5.0 n m。 本發明所使用之介電體被覆電極中,可承受大電力之 其他較佳型態,例如有耐熱溫度在1 〇〇 °C以上者。更佳係 120°C以上,最佳則係150°C以上。此外,上限則在50(TC 。再者,所謂耐熱溫度,係指係指不發生絕緣破壊,在可 正常地放電之狀態中,可耐住最高之溫度。此種耐熱溫度 ,可藉由將上述之陶瓷溶射、或以泡混入量爲相異之層狀 玻璃襯裏所設置之介電體來適用,或就下述金屬質母材與 -66- 201227004 介電體之線熱膨張係數之差之範圍內的材料,適當地選擇 其方式,再適當地進行組合後,即有可能達成。 本發明中,必須採用施加此種電壓,且能保持均一之 輝光放電狀態之電極之電漿處理裝置。 本發明中,係對於對向電極間施加電力,且在第2電 極上供給1〜50W/Cm2之電力密度,並使放電氣體成爲激態 而產生電漿者。其較佳係1.2〜30W/cm2。 在此,關於高頻電源之施加法,其可採用稱爲連續型 態之連續正弦波狀之連續發振型態,或採用稱爲脈衝型態 、且將ΟΝ/OFF以斷續進行之斷續發振型態之任一者皆可 ,惟係以至少第2電極側進行連續正弦波,其爲緻密且優 質之電漿處理者而較佳。 本發明中之放電條件,係於相對向之第1電極與第2電 極之放電空間中,施加高頻電壓,且該高頻電壓,其較佳 係至少具有:第1之頻率ω!之電壓成分,及較前述第1之 頻率0!更高之第2之頻率ω2之電壓成分,彼此重疊之成分 者。 則述局頻電壓'其係由第1之頻率ωι之電壓成分,及 較前述第1之頻率01更高之第2之頻率ω2之電壓成分,彼 此重疊之成分而成,其波形係於頻率ω!之正弦波上,以 較其更高之頻率之正弦波加以重疊而成之ω !之正弦波 之波形。並未限制於正弦波之重疊波形,可爲二者均爲脈 衝波,或一者爲正弦波、另一者爲脈衝波。此外,亦可進 —步具有第3之電壓成分。然而,在本發明中,與單頻率 -67- 201227004 高頻電壓施加方式爲相同地’至少第2電極側爲連續正弦 波者,可得到更緻密且優良之膜。 本發明中,所謂放電開始電壓,係指在實際之電漿處 理時使用之放電空間(電極之構成等)及反應條件(氣體 條件等)中可引起放電之最低電壓者。放電開始電壓’會 因爲放電空間中所供給之氣體種類或電極之介電體種等而 或多或少變動,惟其與放電氣體單獨之放電開始電壓作大 略相同之考慮即可。 藉由將上述之高頻電壓施加於對向電極間(放電空間 )中,就可推定引起了可進行電漿處理之放電,且已發生 了高品質之電漿處理所必須之高密度電漿。 本發明中,將高頻電壓施加於放電空間中之具體方法 ,可使用一種電漿處理裝置(大氣壓電漿處理裝置),其 係在構成對向電極之第1電極上,連接第1電源,以施加既 爲頻率ω,且爲電壓乂1之第1之高頻電壓;且在第2電極上 ,連接第2電源,以施加既爲頻率〇2且爲電壓V2之第2之 局頻電壓。 由這樣二種高頻電源所施加之高頻電壓,其重點在於 其係爲藉由第1之頻率ωι方面.使具有高放電開始電壓之 放電氣體,開始進行放電上所必要,此外,在第2之頻率 ω2方面.則爲提高電漿密度並形成緻密且優良之薄膜上所 必要者。 本發明中,其較佳者係使用第1電源而由第1電極施加 1〜200kHz左右之高頻電壓,此外,並使用第2電源而由第 -68- 201227004 2電極施加800k Hz〜15 MHz左右之高頻電壓。 進一步,本發明所使用之電漿處理裝置之第1電源, 其較佳者係具有施加較第2電源爲大之高頻電壓之能力者 〇 此外,本發明中之另一放電條件,例如有在對向第1 電極及第2電極之間,施加高頻電壓,且該高頻電壓,係 將第1之高頻電壓V,及第2之高頻電壓V2加以重疊者,又如 將放電開始電壓作爲IV時, 其係滿足Vi 2 IV &gt; 乂2或V, &gt; IV 2 v2。且最佳者,係滿 足 V, &gt; IV &gt; v2。 關於高頻及放電開始電壓之定義,以及,如何將上述 高頻電壓施加於對向電極間(放電空間)之具體方法,均 與上述相同。 在此,本發明所謂之高頻電壓(施加電壓)與放電開 始電壓,係指以下述方法進行測定者。 高頻電壓V^v2(單位:kV/mm )之測定方法: 先設置各電極部之高頻探針(P6015A),將該高頻探 針連接於示波器(Tektronix公司製,TDS30 1 2B ),再測 定電壓。 放電開始電壓IV (單位:kV/mm )之測定方法: 在電極間供給放電氣體,使該電極間之電壓增大,然 後將開始放電之電壓稱爲放電開始電壓IV。測定器係與上 述高頻電壓測定爲相同者。 本發明中,藉由採取施加高電壓之放電條件,例如氮 -69- 201227004 氣之類,其雖爲高放電開始電壓之放電氣體’如放電氣體 開始,其仍能以高密度維持安定之電漿狀態,且形成高性 能之薄膜。 如依上述測定且放電氣體爲氮氣體時,其放電開始電 壓IV爲3.7kV/mm左右,因此,上述之關係中,藉由將第1 之高頻電壓以VigSJkV/mm施加時,就可使氮氣體成爲激 態,而作成電漿狀態。 放電氣體,例如有氮、氦、氬等之稀有氣體、空氣、 氫等,此等可單獨作爲放電氣體,或混合使用者皆可,惟 使用氮氣體,相較於使用氯或氬等稀有氣體而言,由於可 得到高經濟性之放電氣體之故而最佳。放電氣體之量,相 對於供給至放電空間之全部氣體量,係以含有70〜100體 積%爲較佳。 本發明所使用之電漿處理裝置(大氣壓電漿處理裝置 )中所設置之高頻電源,其雖與前述爲相同者,惟第1電 源(高頻電源)與第2電源(高頻電源)可因頻率而作出 下述之區別。 第1電源, 高頻電源述號 製造商 頻率 A1 神鋼m機 3kHz A2 神鋼電機 5kHz A3 春曰電機 15kHz A4 神鋼電機 50kHz A5 HAIDEN硏究所 100kHz A6 PEARL工業 -70- 200kHz 201227004 再者,*記號係HAIDEN硏究所脈衝高頻電源(·連續 型態下100kHz)❶ 此外,第2電源(高頻電源),例如有 高頻電源述號 製造商 頻率 B 1 PEARL工業 800kHz B2 PEARL工業 2MHz B3 PEARL工業 1 3.56MHz B4 PEARL工業 27MHz B5 PEARL工業 150MHz 等之市售品,皆爲較佳可使用者。 上述之對向電極之至少一者之電極,係以具有膜厚度 控制手段,且在前述對向電極間,具有供給放電氣體之氣 體供給手段者爲較佳。進一步,並以具有能控制電極溫度 之電極溫度控制手段者爲較佳。 此外,在圖1、2之電極上雖未表示金屬母材及介電體 ,惟與圖3及4相同地,其當然在電極之金屬母材上被覆有 同樣之介電體。 〈電暈處理〉 在表面親水化處理之中,電暈處理(又稱「電暈放電 處理」)係最廣爲人知之方法,可依傳統上習知之任一方 法,例如有特公昭48-5043號公報、同47-5 1 905號公報、特 開昭47 -2 8 067號公報、同49-8 3 7 67號公報、同5 1 -4 1 770號 公報、同5 1 - 1 3 1 576號公報等所揭示之方法而達成。電暈 -71 - 201227004 處理中所使用之電υ處理機,例如可適用現在作爲塑膠薄 膜等之表面改質之手段所使用之各種市售電暈處理機,其 中又以SOFTAL公司之具有多刃電極之電暈處理機,其係 以多片電極所構成,且進一步在電極間以將空氣送入之構 造而形成,由於其可進行薄膜之加熱防止或除去在薄膜表 面出現之低分子等,因此其能量效率極高,又因爲其可進 行高電輦處理之故,係本發明中極爲有用之電暈處理機。 電張處理之條件,會因爲所使用薄膜之種類、黏著劑 之種類及所使用之電暈處理機之種類等而有異,惟其係以 每1次處理時,能量密度在20〜400W· min/m2左右爲較佳 。又相較於高能量之處理而言,如以儘可能低能量進行處 理者,其可就處理保護膜之劣化、保護膜中之充塡物之表 面溢漏等加以抑制,在接著力之提昇上相當有效。又如一 次處理而不完全時,只要經過二次以上之多次處理後,就 可使接著力進一步獲得提昇。 爲了將本發明之纖維素酯薄膜用於偏光板之保護薄膜 等目的上,必須將纖維素酯薄膜之至少單側之表面能量控 制在適當之範圍內,因此,應進行前述之表面處理。 &lt;偏光板&gt; 使用本發明之經親水化處理之偏光板保護薄膜之偏光 板,其可使用於液晶顯示裝置中。 本發明之偏光板,其係將上述本發明之偏光板保護薄 膜,貼合於偏光子之至少一面上所成之偏光板。本發明之 -72- 201227004 液晶顯示裝置,係至少在一側之液晶晶胞面上,將本發明 之偏光板,隔著黏著層加以貼合者。 本發明之偏光板可根據一般之方法進行製作。其較佳 係將本發明之保護薄膜之偏光子側,在上述說明之經親水 化處理、且浸漬延伸於碘溶液中所製作之偏光子之至少一 面上,使用完全鹼化型聚乙烯醇水溶液加以貼合者。 在另一面上亦可使用該纖維素酯薄膜,或其他之偏光 板保護薄膜以進行貼合者。 舉例而言,市售之纖維素酯薄膜(例如,柯尼卡美樂 達 KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、 KC8UY 、 KC4UY 、 KC4UE 、 KC8UE 、 KC8UY-HA 、 KC8UX-RHA 、 KC8UXW-RHA-C 、 KC8UXW-RH A-NC 、 KC4UXW-RHA-NC、以上柯尼卡美樂達光學(股)製)皆 爲較佳可使用者。 在液晶顯示裝置之表面側所使用之偏光板保護薄膜, 其除了防眩層或澄清硬塗層之外,係以具有反射防止層、 帯電防止層、防污層、背塗層者爲較佳。 所謂偏光板之主要構成要素之偏光子,係指僅使一定 方向之偏波面之光通過之元件,現在已知之代表性偏光子 ’係聚乙嫌醇系偏光薄膜’其有在聚乙烯醇系薄膜上使碘 染色者及使二色性染料進行染色者。 偏光子’可由聚乙烯醇水溶液進行製膜,並使其一軸 延伸而染色’或於染色後進行一軸延伸,較佳係再以硼化 合物經耐久性處理而使用者。偏光子之膜厚度係以5〜 -73- 201227004 30μιη爲較佳,並以ι〇〜2〇μιη爲最佳。 此外,特開2003-248123號公報、特開2003-342322號 公報等所記載者,係伸乙基單位之含量1〜4莫爾%、聚合 度2000〜4000、鹼化度99.0〜99.99莫爾%之伸乙基變性聚 乙烯醇爲較佳可使用者。 其中,又以熱水切斷溫度66〜73 °C之伸乙基變性聚乙 烯醇薄膜,係較佳可使用者。 使用此種伸乙基變性聚乙烯醇薄膜之偏光子,其除了 偏光性能及耐久性能均極優良外,色斑亦少,而爲大型液 晶顯示裝置上最佳可使用者。 如上所製得之偏光子,一般而言,係於其雙面或單面 上貼合保護薄膜而作成偏光板使用者。在貼合時所使用之 接著劑,例如有PVA系之接著劑或胺基甲酸酯系之接著劑 等,其中又以PVA系之接著劑爲較佳可使用者。 &lt;液晶顯不裝置〉 藉由在液晶顯示裝置中使用本發明之偏光板,即可製 作各種視認性優良之液晶顯示裝置° 本發明之偏光板可使用於STN、TN、OCB、HAN、VA (MVA ' PVA ) 、IPS、OCB等各種驅動方式之液晶顯示裝 置中。 較佳者,係VA ( MVA,PVA )型液晶顯示裝置。 其中,尤其是在畫面爲30型以上之大畫面液晶顯示裝 置,不論其環境變動少,漏光降低’色斑、正面對比等方 -74- 201227004 面,可製得其視認性均極優良之液晶顯示裝置。 〔實施例〕 以下茲舉出實施例具體地說明本發明,惟本發明並不 限於此等之範圍。 &lt;纖維素酯薄膜1 0 1之製作&gt; 〈微粒子分散液〉 微粒子(AerosilR812日本Aerosil(股)製)11質量份 乙醇 89質量份 將上述以溶解器進行5〇分鐘之攪拌混合後,以均質器 進行分散。 〈微粒子添加液〉 在加入有二氯甲烷之溶解筒中,添加CE-1 ( DAICEL 公司二乙醯基纖維素:L20 ),加熱使其完全溶解後,將 其以安積濾紙(股)製之安積濾紙N 〇 · 2 4 4進行過濾。將過 濾後之纖維素酯溶液一面充分地攪拌,一面徐徐地在其上 添加微粒子分散液。進一步,以超微磨碎機進行分散,使 二次粒子之粒徑能成爲所定之大小。再將其以日本精線( 股)製之FINE MET NF進行過濾,而調製微粒子添加液❶ 二氯甲烷 99質量份 L20 4質量份 微粒子分散液 Η質量份 -75- 201227004 使用L20,調製下述組成之主摻雜物液。 首先,在加壓溶解筒中添加二氯甲烷及乙醇。在加有 溶劑之加壓溶解筒中,將L20 —面攪拌一面投入。再將其 加熱,一面攪拌一面完全地溶解,進一步添加表1所記載 之添加劑二種,使其溶解。將其安積濾紙(股)製之安積 濾紙No. 244進行過濾,而調製主摻雜物液。 在主摻雜物液1 〇〇質量份中加入2質量份之微粒子添加 液,以Inline混合器(TORAY靜止型管內混合機 Hi-混合 器,SWJ )充分地進行混合,接著,使用帶流延裝置,在 寬度2m之不鏽鋼帶支持體上均一地進行流延。不鏽鋼帶支 持體上,使溶劑蒸發至殘存溶劑量達110%爲止,再由不 鏽鋼帶支持體將其剝離。在剝離時可施加張力使縱(MD )延伸倍率成爲1.02倍而延伸,接著,在設定於160°C下 以拉幅將網兩端部固定住,使寬度(TD)方向之延伸倍率 達1.25倍,從而所延伸之延伸開始時之殘存溶劑爲30%者 。延伸後,在其寬度能維持之情況下保持數秒,使寬度方 向之張力緩和後放開其寬度之保持,接著在設定於1 2 5 °C 之乾燥區中,搬運30分鐘使之乾燥’而製作成寬度1.5m’ 且在端部具有寬度lcm、高度8 μηι之滾邊的膜厚度40 μιη之 本發明之纖維素酯薄膜1〇1。 -76- 201227004 〈主摻雜物液之組成〉 二氯甲烷 3 00質量份 乙醇 30質量份 L20 1 00質量份 添加劑A (化合物A - 5 ) 7質量份 添加劑B (化合物B -1 ) 6質量份 〈纖維素酯薄膜102〜104之製作〉 添加劑除如表1所載進行變更以外,其餘均同樣地進 行操作,而製作纖維素酯薄膜1 02〜1 04。 &lt;纖維素酯薄膜105之製作&gt; 在使用之纖維素酯爲CE-2 (伊士曼化學公司之Ca394-6 0 S )中,除添加劑A、B係如表1所述變更以外,其餘均 同樣地進行操作,而製作纖維素酯薄膜1 05。 &lt;纖維素酯薄膜106之製作&gt; 在使用之纖維素酯爲CE-3 (伊士曼化學公司之Ca3 98-30 )中’除添加劑A、B係如表1所述變更以外,其餘均同 樣地進行操作,而製作纖維素酯薄膜106。 &lt;纖維素酯薄膜107之製作&gt; 在使用之纖維素酯爲CE-4 (伊士曼化學公司之Ca394-60S及Ca3 98-6之5 0對5 0混合物)中,除添加劑a、B係如表 -77- 201227004 1所述變更以外,其餘均同樣地進行操作,而製作纖維素 酯薄膜107。 &lt;纖維素酯薄膜108之製作&gt; 在使用之纖維素酯爲CE-5(DAICEL公司之LM80)中 ,除添加劑A、B係如表1所述變更以外,其餘均同樣地進 行操作,而製作纖維素酯薄膜108。 &lt;纖維素酯薄膜109之製作&gt; 在使用之纖維素酯爲CE-6(DAICEL公司之LT35)中 ,除添加劑A、B係如表1所述變更以外,其餘均同樣地進 行操作,而製作纖維素酯薄膜109 » &lt;纖維素酯薄膜1 10之製作&gt; 在使用之纖維素酯爲CE-7 (伊士曼化學公司之 CAP 141-20 )中,除添加劑A、B係如表1所述變更以外, 其餘均同樣地進行操作,而製作纖維素酯薄膜1 1 〇。 &lt;纖維素酯薄膜111之製作&gt; 在使用之纖維素酯爲CE-8 (乙醯基取代度1.56,丙醯 基取代度0.90,總取代度2.46之纖維素乙酸酯丙酸酯)中 ,除添加劑A、B係如表1所述變更以外,其餘均同樣地進 行操作,而製作纖維素酯薄膜111。 -78- 201227004 【i】 位相差 +J 125 g 117 104 125 1 118 1 1 —225 1 另 L—120 I 125 S in in § § in in 寸 CN3 ΙΛ m “ , η r sh/ γ sp 0.33 I 0.49 I 0.26 0.39 0.27 0.28 ! 0.29 L〇-34 o s o CQ 〇 m 5- 28.0 o 0¾ 另 124.8 I 29.6 [30.5 I 29.2 27.6 34.8 | 33.5 I 32.2 JS ΙΛ 9.2 110.3 1 a&gt; 卜 卜 &lt;7i tH 00 in 〇〇 to 00 CO o in in CO CO 6.9 1 添加劑B 化合物Β -14 BDP 化合物B —17 EPEG 化合物B-14 化合物B-14 化合物B—14 化合物B —14 化合物B -14 化合物B_14 化合物B-14 1 添加劑A 化合物A—5 TPP PETB 化合物16 化合物A—5 化合物A_5 化合物A—5 化合物A_5 |化合物A — 5 1 1化合物A-5 化合物A_5 SP値 1 _1 CM CM C'i | 12.2 I ·—&lt; C3 | 12.0 1 1 12,4.] 12.7 CO r·^ in i-H 00 f-H 収代度 Μ 键^ 2.41 2.41 ; _1 1 2·41 1 1 2.4i 1 2.43 | 2.48 | | 2.28 | 1 2·15 1 | 2.88 I i 2.66 2.46 | o.oo l | o.oo | 0.00 0.00 0.00 | o.oo | 0.00 0.00 0.00 | 1 0.74 ,0.90 2,41 i 3 eg CN3 L.2.-41 J | 2.43 1 | 2.48 | | 2.28 | 1 215 1 | 2.88 | 1.92 1.56 醋綿 1 CO «Ή 1 U3 i ω 1 (N 1 CO CO 1 U3 寸 i CX2 {〇 1 CD 1 s c- 1 Cx3 00 1 U3 LJ 纖維素酯 薄膜No. 1 f-H 102 g S i-H 105 &lt;Ώ g 107 Q〇 o σ&gt; o 110 111 - i -79- 201227004 再者,表中之下述簡稱之化合物,係如以下所示者。 TPP :三苯基磷酸酯 BDP :聯苯基二苯基磷酸酯 PETB :季戊四醇四苯甲酸酯 EPEG :乙基酞醯乙基乙醇酸酯 &lt;偏光板之製作&gt; 將製得之纖維素酯薄膜101〜111,依表2〜表4所記載 之條件,使用圖1記載之裝置進行親水化處理,再根據下 述來製作偏光板。 -80- 201227004Rt = ( ( nx + ny ) / 2-nz) xd where the thickness of the d-type film (η 〇 1 ) and the refractive index nx (the maximum refractive index in the plane of the film) are also referred to as the refractive index in the direction of the slow axis ), ny (refractive index in the direction perpendicular to the slow axis in the film plane), nz (refractive index of the film in the thickness direction), phase difference 〇(R〇), (Rt), automatic complex refractometer The measurement was carried out. For example, it can be obtained at a wavelength of 590 nm in an environment of 23 ° C and 55% RH using KOBRA-21ADH (Prince Measurement Machine (Unit)). &lt;Surface Hydrophilization Treatment&gt; The polarizing plate of the present invention is characterized in that both sides of the polarizer are in a polarizing plate in which the protective film is sandwiched, and at least one side of the protective film is subjected to plasma treatment or corona. The method of performing the hydrophilization treatment of the hydrophilic film, the plasma treatment or the corona treatment can be carried out by various methods conventionally known. In the present invention, it is particularly preferable to use a plasma processor. -57-201227004 <Purch Treatment> Hereinafter, the surface treatment of the polarizing plate protective film of the present invention can be applied to plasma treatment, particularly atmospheric piezoelectric slurry treatment. For the plasma treatment of the present invention, for example, Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The technique disclosed in Japanese Laid-Open Patent Publication No. 2000-121, No. 804, and the like. The atmospheric piezoelectric slurry processing method used in the present invention will be described. First, the atmospheric piezoelectric slurry processing method and apparatus useful in the present invention will be described. In the plasma treatment method of the present invention, a gas is supplied to a discharge space (between the counter electrodes) at a pressure of or near atmospheric pressure, and a high-frequency voltage is applied to the discharge space, whereby the gas is excited. In the plasma state, the polarizing plate protective film is exposed to the gas in the excited state of the plasma, and the surface treatment is performed, so that this method is called an atmospheric piezoelectric slurry treatment method (hereinafter, also referred to as plasma treatment). The irradiation of the plasma means that the surface of the protective film of the polarizing plate is directly exposed during the plasma treatment; and the case where the excitatory active species formed by the discharge of the plasma is blown onto the surface of the protective film of the polarizing plate. The high-frequency voltage applied in the discharge space formed between the counter electrodes may be a high frequency of one frequency or a high frequency of two or more frequencies. The term "high frequency" as used in the present invention means a frequency having a frequency of at least 0.5 kHz or more. In the frequency of the high-frequency power source of the present invention, generally -58 - 201227004 is 50 kHz or more, and preferably 27 MHz or less. In the present invention, the atmospheric piezoelectric slurry treatment is carried out at atmospheric pressure or a pressure in the vicinity thereof, and the atmospheric pressure or the pressure in the vicinity thereof refers to about 20 to 11 OkPa. In order to obtain the good effects described in the present invention, it is 93 to 104 kPa is preferred. In the present invention, various gases such as nitrogen, hydrogen, argon, nitrogen, carbon monoxide, and ammonia can be used as the gas to be supplied between the counter electrodes (discharge space), but 50% by volume or more of nitrogen gas is used from the viewpoint of cost. Preferably. The surface treatment of the atmospheric piezoelectric slurry treatment system of the present invention may include: forming an optical film state or an excited state by receiving an excimer gas which is excited by a high-frequency voltage and an energy state, and forming a film of a thin film. Sex gas. The plasma irradiation time can be increased by 3 seconds, and the energy of the plasma is increased, which makes it possible to reduce the contact angle of the water. However, if the energy of the plasma is increased, there is a possibility that the substrate film is thermally destroyed. The situation is not ideal. On the contrary, when the plasma irradiation time is less than 3 seconds, the damage to the substrate film can be suppressed, but the adhesion to the polarizer is incomplete, and the treatment step of alkali hydrolysis after the plasma treatment must be performed. (Patent Document: JP-A-2009-2 5603). When processing at a high frequency voltage of one frequency (also referred to as a single frequency high frequency voltage application method) or when processing at a high frequency voltage of two frequencies (also referred to as a 2-frequency high frequency voltage application method), The electrodes can be used identically and the device itself is not much different. The difference is that there are two high-frequency power sources, and a filter-59-201227004 is attached thereto, and further, a high-frequency voltage is applied from two electrodes of the counter electrode. In the single-frequency high-frequency voltage application method, one of the counter electrodes is a ground electrode, and the other is an application electrode, and a high-frequency power source is connected to the application electrode, and the ground electrode is grounded by a ground. A plasma processing apparatus (atmospheric piezoelectric slurry processing apparatus) for each of a single-frequency high-frequency voltage application method and a two-frequency high-frequency voltage application method will be described with reference to the drawings. Fig. is a schematic view showing an example of a plasma processing apparatus of a single-frequency high-frequency voltage application method which is useful in the present invention. An application electrode (corner type electrode) 136 which is applied with a high-frequency voltage inside the plasma discharge vessel 130, and a roller-type ground electrode 1 35 which is located on the lower side thereof and which winds the transparent resin film F, A pair of electrodes is formed. The electrodes 136 can be applied in a number of side by side. The gas G is supplied from the gas supply port 152 of the plasma discharge vessel 10, and then passed through a sieve for homogenizing the gas G, along the application electrode 136 and between the application electrode and the plasma discharge vessel 1 31. The wall passes, and the discharge space 13 between the counter electrodes is filled with the gas G. A high-frequency voltage is applied to the application electrode 136 by the high-frequency power source 21, and the transparent resin film F is exposed to the gas G which is excited in the discharge space 132, that is, a film is formed on the transparent resin film F. The frequency of the applied high frequency voltage is in the range of 50 kHz to 150 MHz. In the present invention, the frequency of the high-frequency power source is preferably 50 kHz or more and 27 MHz or less. If it is less than 50 kHz, the effect of the present invention cannot be obtained. In addition, at a frequency exceeding 150 MHz, it is difficult to form a discharge, and it is necessary to retrace the device of -60-201227004. In addition, since the potential distribution occurs, uneven processing is required, and it is not suitable for large-area processing, and thus is not suitable for this. invention. In the film formation, the electrode is heated or cooled by the electrode temperature adjusting means 160 through a pipe. It is desirable that the physical properties or composition of the resulting film may vary due to the temperature of the substrate during plasma treatment, and therefore it is desirable to appropriately control this. Temperature-regulating media, such as insulating materials such as distilled water and oil, are preferred users. In the case of plasma treatment, it is preferable to uniformly adjust the temperature inside the electrode in the case where the temperature of the substrate in the width direction or the length direction is not uniform and it is not possible to occur as much as possible. Fig. 2 is a schematic view showing another example of a plasma processing apparatus for a two-frequency high-frequency voltage application method which is useful in the present invention. In the same manner as in Fig. 1, the roller electrode (first electrode) 135 and the corner electrode group (second electrode) 136 are opposed to each other (discharge space) 1 3 2 as a transparent resin film F. Perform plasma processing. In the discharge space (between the counter electrodes) 132 between the roller electrode (first electrode) 135 and the corner tube type electrode group (second electrode) 136, the roller electrode (first electrode) 135 is composed of the first electrode 141. The high-frequency voltage Vi of the frequency ω1 is applied, and the corner-type electrode group (second electrode) 136 is applied by the second power source 142 with the high-frequency voltage V2 of the frequency ω 2 . Between the roller electrode (first electrode) 135 and the first power source 141, a current is supplied to the roller electrode (first electrode) 135 by the first power source 141, and a first filter 1 is provided. The first filter is provided. It is designed such that the current from the first power source 1 4 1 is difficult to pass, and the second power source 1 42 is designed to make the current easy to pass. Further, between the corner-shaped electrode group (second electrode) 136 and the second power source -61 - 201227004 142, a second power source is supplied to the second electrode by the second power source, and the second filter 144 is provided, and the second filter is provided. The 144 system is designed such that the current from the second power source 142 is hard to pass, and the current from the first power source 141 is easily passed. Here, it is difficult to pass, and it is preferable that the current is only 20% or less, and the best is less than 10%. Conversely, it is easy to pass the '80% or more' of the preferred system current, and the best means more than 90% of the passers. In the present invention, any filter having the above properties may be used without limitation. For example, the 'first filter' may be a capacitor having a frequency of 1 〇 to tens of thousands of PFs matching the frequency of the second power source, or a coil of about several μΗ. The second filter can be used as a filter, for example, when a coil of a frequency equal to or higher than the frequency of the first power source is used, and the coil or the capacitor is grounded. Further, in the present invention, the roller electrode 135 may be used as the second electrode, and the corner-tube electrode group 13 6 may be used as the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode. Further, the first power source can have a higher applied high frequency voltage (V, &gt; V2) than the second power source. In addition, the frequency can have ω, &lt;Capacity of ω 2 The gas G generated by the gas supply device 151 of the gas supply means 150 can be introduced into the plasma processing container 131 from the air supply port 152 by controlling the flow rate. In the discharge space 132 and the plasma processing container 131, the transparent resin film F is filled with the gas G, and can be removed by the original reel (not shown), or moved by the previous step, and then guided roller. 164, the air or the like accompanying the transparent resin film on the nip roller 165 is blocked, and when the roller is in contact with the electrode 135-201227004, the film is transferred to the corner-type electrode group 136 while being wound. Further, a voltage is applied between the roller electrode (first electrode) 135 and the square barrel electrode group (second electrode) 136, so that discharge plasma can be generated between the opposing electrodes (discharge space) 132. The transparent resin film F is wound while being in contact with the roller electrode 1 3 5 so that the gas in the plasma state can be irradiated. The transparent resin film F can be wound by a nip roller 166, a guide roll 167» by a winder (not shown), and transferred to the next step. The treated waste gas body G' is discharged from the exhaust port 153. In the plasma treatment, in order to heat or cool the roll electrode (first electrode) 135 and the corner electrode group (second electrode) 136, the medium is adjusted by the electrode temperature adjusting means 160. The feed pump P is sent to the two electrodes through the pipe 161, and the temperature is adjusted from the inside of the electrode. Furthermore, 165 and 166 are used to isolate the plasma processing container 131 from the outside. In the present invention, the applied high-frequency voltage may be an intermittent pulse wave or a continuous sine wave. The voltage waveform is not limited, but it is preferable to apply a high-frequency high-frequency voltage to form a sine wave of a strong film. In the present invention, the frequency of the high-frequency voltage applied to the first electrode is 1 kHz to 200 kHz, and the frequency of the high-frequency voltage applied to the second electrode is preferably 800 kHz or more. The power density at this time is 1 to 50 W/cm 2 (here, the area where the denominator has a carbon dioxide discharge). Preferably, it is preferably 1.2 to 30 W/cm2. In the plasma processing apparatus used in the present invention, a high-frequency power source is useful as an example of -63-201227004: 100 kHz (made by HAIDEN Research Institute), 200 kHz, 800 kHz, 2 MHz, 13.56 MHz, 2 7 M Hz, and 1 5 0M H z (all are P EARL industrial systems) and so on. Furthermore, the * mark is the pulse high frequency power supply of the HAIDEN Research Institute (continuous state l 〇〇 kHz). In the present invention, it is necessary to use a plasma processing apparatus which applies such a voltage and which can maintain an electrode of a uniform glow discharge state described below. Fig. 3 is a perspective view showing an example of a conductive metal base material of the roller electrode as shown and a dielectric structure covered thereon. In Fig. 3, the roller electrode 35a is a conductive metal base material 35A and a dielectric body 35B coated thereon. The interior is a hollow sleeve shape and can be temperature regulated. Fig. 4 is a perspective view showing an example of a conductive metal base material of the prismatic electrode shown in Figs. 1 and 2 and a dielectric structure covered thereon. In Fig. 4, the corner-type electrode 36a has a dielectric body 36B similar to that of Fig. 3 with respect to the conductive metal base material 36A. The structure of the electrode is a metal tubular body. It is sleeve-shaped and can be temperature-regulated during discharge. Further, the number of the corner-type electrodes is mostly disposed along a circumference larger than the circumference of the roller electrode, and the discharge area of the electrode is opposite to the full-angle cylindrical electrode surface of the roller electrode 35. The area and. The angle-type electrode 36a shown in FIG. 4 can be a cylindrical electrode, but the angle-type electrode has an effect of expanding the discharge range (discharge area) compared to the cylindrical electrode. In the present invention, a preferred user-64-201227004, in FIG. 3 and FIG. 4, the roller electrode 35a and the corner-tube electrode 36a are respectively electrically conductive on the metal base materials 35A and 36A. After the ceramics of the bodies 35B and 3 6B are sprayed, the sealing material of the inorganic compound is used for sealing. The ceramic dielectric body can be covered by a single layer and is about 1 mm. The ceramic material used for the dispersion, for example, alumina or tantalum nitride, is preferably used, and among them, alumina is preferably used because it is easy to process. Further, the dielectric layer may be a lining-treated dielectric body provided with an inorganic material by a glass lining. The conductive metal base materials 3 5 A and 36A are, for example, titanium or titanium alloy, silver, platinum, stainless steel, aluminum, iron or the like, or a composite material of iron and ceramic or a composite material of aluminum and ceramic. Further, based on the reason described later, it is preferable to use niobium or tantalum alloy. The distance between the electrodes (electrode gap), the thickness of the dielectric provided on the conductive metal base material, is determined by considering the magnitude of the applied voltage, the purpose of the plasma used, etc., but One of the surfaces of the electrode, such as the shortest distance between the surface of the dielectric body and the surface of the conductive metal base material when the dielectric is disposed, or the distance between the surfaces of the dielectric body when the dielectric is provided on both of the electrodes 'Based on the viewpoint of uniform discharge, it is preferably 0.1 to 20 mm, and the best is 〇 5 to 2 mm. The plasma processing vessel 10 or 31 is preferably a processing container made of pyreX (registered trademark) glass, etc., and if the insulation of the electrode can be obtained, it can also be made of metal. For example, a polyimide or the like may be attached to the inner surface of an aluminum or stainless steel frame, or ceramics may be sprayed on the metal frame to obtain insulation. In Fig. 1, it is preferable to cover the two sides of the parallel two-electrode-65-201227004 (near the substrate surface) with the above materials. In the electrode of the plasma processing method of the present invention, the maximum height (Rmax) of the surface roughness specified by JIS B 0601 on at least one side of the electrode adjacent to the substrate is adjusted to Ιμηη or less, based on It is preferable to obtain the effect described in the present invention, and it is more preferable that the maximum roughness of the surface roughness is 0.8 μm or less, and the optimum is adjusted to 〇.7 μm or less. By honing the surface of the dielectric body of the dielectric-coated electrode in this way, the thickness of the dielectric body and the trench between the electrodes can be kept constant, and the discharge state can be stabilized, further It avoids deformation or cracking caused by poor heat shrinkage or residual stress, and can greatly improve its high precision and durability. Further, the honing of the surface of the dielectric body is preferably performed on at least one of the dielectrics adjacent to the substrate. Further, according to the average surface roughness (Ra) of the center line specified in JIS 060 060 1, the larger the surface area is, the more the surface area will increase and the adhesion is improved, and the front surface contrast in the liquid crystal display device due to light scattering is reduced. The viewpoint of prevention or the like can be obtained, and it is preferably 2.0 to 10 nm. More preferably 2.0 to 5.0 nm. Other preferred embodiments of the dielectric-coated electrode used in the present invention can withstand large electric power, for example, those having a heat-resistant temperature of 1 〇〇 ° C or higher. More preferably, the temperature is above 120 ° C, and the best is above 150 ° C. In addition, the upper limit is 50 (TC. In addition, the so-called heat-resistant temperature means that no insulation breakage occurs, and in the state where it can be normally discharged, the highest temperature can be withstood. This heat-resistant temperature can be The above-mentioned ceramic spray, or a dielectric body provided by a layered glass lining having a different bubble mixing amount, or the difference between the thermal expansion coefficients of the following metal base material and the dielectric of -66-201227004 dielectric The material within the range can be appropriately selected and then combined, and it is possible to achieve it. In the present invention, it is necessary to use a plasma processing apparatus which applies such a voltage and can maintain a uniform glow discharge state of the electrode. In the present invention, electric power is applied between the opposing electrodes, and a power density of 1 to 50 W/cm 2 is supplied to the second electrode, and the discharge gas is excited to generate a plasma. Preferably, it is 1.2 to 30 W. /cm2 Here, regarding the application method of the high-frequency power source, it is possible to adopt a continuous sinusoidal continuous oscillation type called a continuous type, or a pulse type, and ΟΝ/OFF to be intermittent. Intermittent vibration mode Any one of them may be continuous sinusoidal waves on at least the second electrode side, which is preferably a dense and high-quality plasma processor. The discharge conditions in the present invention are relative to the first electrode and the first electrode. A high-frequency voltage is applied to the discharge space of the two electrodes, and the high-frequency voltage preferably has at least a voltage component of the first frequency ω! and a second component higher than the first frequency 0! The voltage component of the frequency ω2 overlaps with each other. The local frequency voltage is a voltage component of the first frequency ωι and the second frequency ω2 higher than the first frequency 01. A waveform formed by overlapping components, whose waveform is on a sine wave of frequency ω!, which is a sine wave whose sine wave is superimposed with a higher frequency, and is not limited to the overlap of sine waves. The waveform may be a pulse wave, or one is a sine wave, and the other is a pulse wave. Further, the voltage component of the third may be further advanced. However, in the present invention, with a single frequency - 67- 201227004 High-frequency voltage application method is the same 'at least the second electrode In the present invention, the discharge start voltage is a discharge space (electrode composition, etc.) and reaction conditions (gas conditions, etc.) used in actual plasma processing. The lowest voltage that can cause the discharge. The discharge start voltage 'will change more or less because of the type of gas supplied in the discharge space or the type of dielectric material of the electrode, but it is roughly the same as the discharge start voltage of the discharge gas alone. The same consideration can be given. By applying the above-mentioned high-frequency voltage to the counter electrode (discharge space), it is estimated that the discharge which can be subjected to the plasma treatment is caused, and a high-quality plasma treatment station has occurred. In the present invention, a specific method of applying a high-frequency voltage to the discharge space may be a plasma processing apparatus (atmospheric piezoelectric slurry processing apparatus) which is attached to the first electrode constituting the counter electrode. First, a first power source is connected to apply a first high frequency voltage which is a frequency ω and is a voltage 乂1; and a second power source is connected to the second electrode to be applied Board 〇2 rate and is the second voltage V2 of the voltage frequency. The high-frequency voltage applied by the two kinds of high-frequency power sources is mainly required to start the discharge by the discharge gas having the high discharge start voltage by the first frequency ωι, and further, The frequency of 2 is ω2. It is necessary to increase the plasma density and form a dense and excellent film. In the present invention, it is preferable to apply a high-frequency voltage of about 1 to 200 kHz from the first electrode using the first power source, and to apply 800 k Hz to 15 MHz from the -68-201227004 2 electrode using the second power source. High frequency voltage left and right. Further, the first power source of the plasma processing apparatus used in the present invention preferably has a capability of applying a higher frequency voltage than the second power source. Further, another discharge condition in the present invention, for example, A high-frequency voltage is applied between the first electrode and the second electrode, and the high-frequency voltage is superposed on the first high-frequency voltage V and the second high-frequency voltage V2. When the starting voltage is IV, it satisfies Vi 2 IV &gt; 乂 2 or V, &gt; IV 2 v2. And the best, the full V, &gt; IV &gt; v2. The definition of the high frequency and discharge start voltage, and the specific method of applying the above high frequency voltage to the counter electrode (discharge space) are the same as described above. Here, the high-frequency voltage (applied voltage) and the discharge starting voltage in the present invention mean those measured by the following method. Measurement method of high-frequency voltage V^v2 (unit: kV/mm): First, a high-frequency probe (P6015A) of each electrode portion is provided, and the high-frequency probe is connected to an oscilloscope (TDS30 1 2B, manufactured by Tektronix Co., Ltd.). Then measure the voltage. Measurement method of discharge start voltage IV (unit: kV/mm): A discharge gas is supplied between the electrodes to increase the voltage between the electrodes, and then the voltage at which the discharge starts is referred to as a discharge start voltage IV. The measuring device is the same as the above-described high-frequency voltage measurement. In the present invention, by adopting a discharge condition in which a high voltage is applied, for example, a nitrogen-69-201227004 gas or the like, which is a discharge gas of a high discharge start voltage, such as a discharge gas, it can maintain a stable power at a high density. It is in a slurry state and forms a high performance film. When the discharge gas is a nitrogen gas, the discharge start voltage IV is about 3.7 kV/mm. Therefore, in the above relationship, when the first high-frequency voltage is applied at VigSJkV/mm, The nitrogen gas is in an excited state and is made into a plasma state. The discharge gas may be, for example, a rare gas such as nitrogen, helium or argon, air, hydrogen or the like, which may be used as a discharge gas alone or as a mixed user, but a nitrogen gas is used as compared with a rare gas such as chlorine or argon. In general, it is optimal because a highly economical discharge gas can be obtained. The amount of the discharge gas is preferably from 70 to 100% by volume based on the total amount of gas supplied to the discharge space. The high-frequency power source provided in the plasma processing apparatus (atmospheric piezoelectric slurry processing apparatus) used in the present invention is the same as the above, but the first power source (high-frequency power source) and the second power source (high-frequency power source) The following differences can be made due to frequency. 1st power supply, high frequency power supply No. manufacturer frequency A1 Kobelco m machine 3kHz A2 Kobelco motor 5kHz A3 Chunyu motor 15kHz A4 Kobelco motor 50kHz A5 HAIDEN research institute 100kHz A6 PEARL industrial -70- 200kHz 201227004 Furthermore, * mark system HAIDEN Research Institute pulsed high-frequency power supply (·100kHz in continuous mode) ❶ In addition, the second power supply (high-frequency power supply), for example, high-frequency power supply manufacturer frequency B 1 PEARL industrial 800kHz B2 PEARL industrial 2MHz B3 PEARL industry 1 3.56MHz B4 PEARL industrial 27MHz B5 PEARL industrial 150MHz and other commercial products, are preferred users. It is preferable that the electrode of at least one of the counter electrodes described above has a film thickness control means and a gas supply means for supplying a discharge gas between the counter electrodes. Further, it is preferable to have an electrode temperature control means capable of controlling the electrode temperature. Further, although the metal base material and the dielectric body are not shown in the electrodes of Figs. 1 and 2, it is a matter of course that, similarly to Figs. 3 and 4, the metal base material of the electrode is coated with the same dielectric material. <Corona treatment> Among the surface hydrophilization treatments, corona treatment (also called "corona discharge treatment") is the most widely known method, and can be any conventionally known method, for example, there is a special public 48- Japanese Patent Publication No. 5043, Japanese Patent Publication No. 47-5 1 905, Japanese Patent Application Laid-Open No. SHO-47-8-067, No. 49-8 3 7 67, the same as 5 1 - 4 1 770, and 5 1 - 1 3 This was achieved by the method disclosed in the No. 576 publication. Corona-71 - 201227004 The electric pick-up machine used in the treatment, for example, can be applied to various commercially available corona treatment machines which are now used as a means for surface modification of plastic films, etc., among which SOFTAL has a multi-blade The electrode corona treating machine is composed of a plurality of electrodes, and is further formed by a structure in which air is fed between the electrodes, and since the film can be heated to prevent or remove low molecules appearing on the surface of the film, Therefore, its energy efficiency is extremely high, and because it can perform high power treatment, it is a corona treatment machine which is extremely useful in the present invention. The conditions of the electro-tension treatment may vary depending on the type of film used, the type of adhesive, and the type of corona treatment machine used, but the energy density is 20 to 400 W·min per treatment. Approximately /m2 is preferred. Moreover, compared with the treatment of high energy, if the treatment is performed with the lowest possible energy, it can suppress the deterioration of the protective film, the surface leakage of the filler in the protective film, and the like, and the adhesion is improved. It is quite effective. If the processing is not complete once, the subsequent force can be further improved as long as the processing is performed twice or more. In order to use the cellulose ester film of the present invention for a protective film of a polarizing plate or the like, it is necessary to control the surface energy of at least one side of the cellulose ester film to an appropriate range, and therefore, the surface treatment as described above should be carried out. &lt;Polarizing Plate&gt; A polarizing plate using the hydrophilized polarizing plate protective film of the present invention can be used in a liquid crystal display device. The polarizing plate of the present invention is a polarizing plate formed by bonding the above-mentioned polarizing plate protective film of the present invention to at least one side of a polarizer. In the liquid crystal display device of the present invention, the polarizing plate of the present invention is bonded to the polarizing plate of the present invention at least on one side of the liquid crystal cell surface. The polarizing plate of the present invention can be produced according to a general method. Preferably, the polarizing side of the protective film of the present invention is used on at least one side of the polarizing agent prepared by hydrophilizing and immersing in the iodine solution, and a fully alkalized polyvinyl alcohol aqueous solution is used. Fit to fit. The cellulose ester film or other polarizing plate protective film may also be used on the other side for bonding. For example, commercially available cellulose ester films (eg, Konica Minolta KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC4UE, KC8UE, KC8UY-HA, KC8UX-RHA, KC8UXW-RHA- C, KC8UXW-RH A-NC, KC4UXW-RHA-NC, and above Konica Minolta Optical Co., Ltd. are all preferred users. A polarizing plate protective film used on the surface side of a liquid crystal display device, which is preferably provided with an antireflection layer, a antimony preventing layer, an antifouling layer, and a back coat layer in addition to an antiglare layer or a clear hard coat layer. . The polarizer of the main constituent elements of the polarizing plate refers to a component that passes only light of a polarized surface in a certain direction, and a representative polarizer of the present invention is known as a polyethyl alcohol-based polarizing film. Those who dye iodine on the film and dye the dichroic dye. The polarizer ' can be formed by a polyvinyl alcohol aqueous solution and stretched by one axis to be dyed' or subjected to one-axis stretching after dyeing, and is preferably subjected to durability treatment by a boron compound. The film thickness of the polarizer is preferably from 5 to -73 to 201227004 30 μιη, and is preferably ι 〇 to 2 〇 μιη. In addition, as described in JP-A-2003-248123, JP-A-2003-342322, etc., the content of the ethyl group is 1 to 4 mol%, the degree of polymerization is 2000 to 4000, and the degree of alkalinity is 99.0 to 99.99. The % ethylenic modified polyvinyl alcohol is preferably a user. Among them, an ethylenically modified polyvinyl alcohol film having a hot water cut-off temperature of 66 to 73 ° C is preferably used. The use of such a polarized photopolymer of an ethylenic modified polyvinyl alcohol film is excellent in polarization performance and durability, and has a small number of spots, and is optimal for a large liquid crystal display device. The polarizer obtained as described above is generally used as a polarizing plate user by attaching a protective film to both sides or one side thereof. The binder to be used in the bonding is, for example, a PVA-based adhesive or a urethane-based adhesive. Among them, a PVA-based adhesive is preferably used. &lt;Liquid crystal display device&gt; By using the polarizing plate of the present invention in a liquid crystal display device, various liquid crystal display devices having excellent visibility can be produced. The polarizing plate of the present invention can be used for STN, TN, OCB, HAN, VA. (MVA 'PVA), IPS, OCB, etc. in various liquid crystal display devices. Preferably, it is a VA (MVA, PVA) type liquid crystal display device. In particular, in the case of a large-screen liquid crystal display device having a screen size of 30 or more, the liquid crystal display device having a small amount of environmental change can be reduced, and the light leakage can be reduced to a color spot, a front contrast, or the like, and a liquid crystal having excellent visibility can be obtained. Display device. [Examples] Hereinafter, the present invention will be specifically described by way of Examples, but the present invention is not intended to be limited thereto. &lt;Production of Cellulose Ester Film 1 0 1&gt; <Microparticle Dispersion Liquid> Microparticles (manufactured by Aerosil R812, manufactured by Nippon Aerosil Co., Ltd.), 11 parts by mass of ethanol, 89 parts by mass, and the above-mentioned solubilizer was stirred and mixed for 5 minutes, and then The homogenizer is dispersed. <Microparticle-added liquid> Add CE-1 (diacetyl cellulose: DA20 from DAICEL) to a dissolving cylinder containing methylene chloride, heat it to completely dissolve it, and then store it in an anti-filter paper (stock) Filter paper N 〇 · 2 4 4 for filtration. The filtered cellulose ester solution was thoroughly stirred while gradually adding a fine particle dispersion thereto. Further, the dispersion is carried out by an attritor to make the particle size of the secondary particles a predetermined size. Further, it was filtered by FINE MET NF manufactured by Nippon Seisakusho Co., Ltd. to prepare fine particle addition liquid 二氯甲烷 dichloromethane 99 parts by mass L20 4 parts by mass of fine particle dispersion Η part by mass - 75 - 201227004 Using L20, the following was prepared. The main dopant liquid composed. First, dichloromethane and ethanol were added to a pressurized dissolution vessel. In a pressurized dissolution vessel to which a solvent is added, the L20 is stirred while being placed on the surface. Further, the mixture was heated, dissolved completely while stirring, and further added with the additives described in Table 1 to be dissolved. The filter paper No. 244 made of the filter paper (strand) was filtered to prepare a main dopant liquid. 2 parts by mass of the fine particle addition liquid was added to 1 part by mass of the main dopant liquid, and the mixture was sufficiently mixed with an Inline mixer (TORAY static in-line mixer Hi-mixer, SWJ), and then, a belt flow was used. The device was uniformly cast on a stainless steel belt support having a width of 2 m. On the stainless steel belt support, the solvent was evaporated until the residual solvent amount reached 110%, and then peeled off by the stainless steel belt support. When peeling, tension can be applied to extend the MD (MD) stretching ratio by 1.02 times. Then, the both ends of the net are fixed by tentering at 160 ° C, and the width (TD) direction is extended to 1.25. Times, so that the residual solvent at the beginning of the extended extension is 30%. After stretching, it is kept for a few seconds while maintaining its width, the tension in the width direction is relaxed, and the width is maintained, and then it is dried in a drying zone set at 1 2 5 ° C for 30 minutes. A cellulose ester film 1〇1 of the present invention having a film thickness of 40 μm and a width of 1 cm and a height of 8 μm was formed at a width of 1.5 m'. -76- 201227004 <Composition of main dopant liquid> Dichloromethane 300 parts by mass ethanol 30 parts by mass L20 100 parts by mass Additive A (Compound A - 5 ) 7 parts by mass of additive B (Compound B -1 ) 6 Mass Parts <Preparation of Cellulose Ester Films 102 to 104> The additives were treated in the same manner except that the additives were changed as shown in Table 1, to prepare a cellulose ester film 102 to 104. &lt;Production of Cellulose Ester Film 105&gt; In the case where the cellulose ester used was CE-2 (Ca394-6 0 S from Eastman Chemical Co., Ltd.), except that the additives A and B were changed as described in Table 1, The rest were operated in the same manner to produce a cellulose ester film 105. &lt;Preparation of cellulose ester film 106&gt; In the case where the cellulose ester used was CE-3 (Ca3 98-30 of Eastman Chemical Co., Ltd.), except for the additives A and B, as described in Table 1, the rest were changed. The cellulose ester film 106 was produced by performing the same operation. &lt;Preparation of cellulose ester film 107&gt; In the case where the cellulose ester used is CE-4 (the mixture of 50 to 50 of Ca394-60S and Ca3 98-6 of Eastman Chemical Company), in addition to the additive a, The B-series was subjected to the same operation as described in Table-77-201227004, and the cellulose ester film 107 was produced. &lt;Production of Cellulose Ester Film 108&gt; The cellulose ester used was CE-5 (LM80 of DAICEL Co., Ltd.), and the same operations were carried out except that the additives A and B were changed as described in Table 1. A cellulose ester film 108 was produced. &lt;Production of Cellulose Ester Film 109&gt; The cellulose ester used was CE-6 (LT35 of DAICEL Co., Ltd.), and the same operations were carried out except that the additives A and B were changed as described in Table 1. And making cellulose ester film 109 » &lt;Production of cellulose ester film 1 10&gt; In the case where the cellulose ester used was CE-7 (CAP 141-20 of Eastman Chemical Co., Ltd.), except that the additives A and B were changed as described in Table 1, The rest were operated in the same manner to produce a cellulose ester film 1 1 〇. &lt;Production of Cellulose Ester Film 111&gt; The cellulose ester used was CE-8 (vinyl acetate substitution degree 1.56, propylene group substitution degree 0.90, total substitution degree 2.46 cellulose acetate propionate) The cellulose ester film 111 was produced in the same manner except that the additives A and B were changed as described in Table 1. -78- 201227004 [i] Phase difference +J 125 g 117 104 125 1 118 1 1 —225 1 Another L—120 I 125 S in in § § in in inch CN3 ΙΛ m “ , η r sh/ γ sp 0.33 I 0.49 I 0.26 0.39 0.27 0.28 ! 0.29 L〇-34 oso CQ 〇m 5- 28.0 o 03⁄4 Another 124.8 I 29.6 [30.5 I 29.2 27.6 34.8 | 33.5 I 32.2 JS ΙΛ 9.2 110.3 1 a&gt;&lt;7i tH 00 in 〇〇to 00 CO o in in CO CO 6.9 1 Additive B Compound Β -14 BDP Compound B-17 EPEG Compound B-14 Compound B-14 Compound B-14 Compound B-14 Compound B-14 Compound B_14 Compound B-14 1 Additive A Compound A-5 TPP PETB Compound 16 Compound A-5 Compound A_5 Compound A-5 Compound A_5 | Compound A — 5 1 1 Compound A-5 Compound A_5 SP値1 _1 CM CM C' i | 12.2 I ·— &lt; C3 | 12.0 1 1 12,4.] 12.7 CO r·^ in iH 00 fH Acceptance Μ Key ^ 2.41 2.41 ; _1 1 2·41 1 1 2.4i 1 2.43 | 2.48 | | 2.28 | 1 2· 15 1 | 2.88 I i 2.66 2.46 | o.oo l | o.oo | 0.00 0.00 0.00 | o.oo | 0.00 0.00 0.00 | 1 0.74 ,0.90 2,41 i 3 eg CN3 L.2.-41 J | 2.43 1 | 2.48 | | 2.28 | 1 215 1 | 2.88 | 1.92 1.56 vinegar 1 CO «Ή 1 U3 i ω 1 (N 1 CO CO 1 U3 inch i CX2 {〇1 CD 1 s c- 1 Cx3 00 1 U3 LJ Cellulose ester film No. 1 fH 102 g S iH 105 &lt;Ώ g 107 Q〇 o σ&gt; o 110 111 - i -79- 201227004 Further, the compounds referred to below in the table are as follows. TPP: triphenyl phosphate BDP: biphenyl diphenyl phosphate PETB: pentaerythritol tetrabenzoate EPEG: ethyl hydrazine ethyl glycolate &lt;Preparation of polarizing plate&gt; The obtained cellulose ester films 101 to 111 were subjected to hydrophilization treatment using the apparatus described in Fig. 1 under the conditions described in Tables 2 to 4, and a polarizing plate was produced as follows. . -80- 201227004

備註 實施例 實施例 實施例 比較例 實施例 蜀 κ 實施例 1實施例1 1比較例1 I實施例I |比較例| 丨實施例I |比較例I |實施例I 丨比較例J 1實施例1 丨比較例I 1實施例1 m 闺 R 實施例 l比較例i 比較例 比較例1 比較例丨 比較例I 1比較例1 比較例1 比較例1 比較例 Η 雜!:ΰ 蹯聒 &lt;] 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 &lt;1 〇 〇 〇 〇 〇 X X X X X X X X PVA 接著性 〇 〇 〇 X 〇 〇 0 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 &lt;3 〇 〇 〇 X X X &lt;3 X X X 脚踩 nit 车雖 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 X 〇 X 〇 X 〇 〇 〇 〇 〇 X X 〇 〇 〇 X 〇 〇 〇 (S o 00 &lt;〇 in in i〇 CO σ&gt; 00 ΙΛ 卜 in 00 00 00 to 卜 i£&gt; 卜 in CD 〇&gt; •H i£&gt; 00 yr CM 0¾ Oi 0〇 CO 00 吋 CQ — eg CVJ tc CO 00 to o 卜 in cn 親水化處理後 內部 霧度 eg 〇 s o s o s o S ο S Ο s ο S o g o 艺 o s o S 〇 g o S 〇 s o in 〇 rH o g o s o s o s o in in O eg CO o CM CNJ o 2 ο o If) CO 〇 (O CO o &lt;η ΙΟ ο γ Sh/ γ sp s CO I_2.56 &lt;〇 in »H 卜 rH 1 2.48 00 σ&gt; CVJ in 卜 in rH 2 CO eg CN5 CO CVJ 00 I—1 CO Gi 00 〇c CO § CO &lt;n CO | 2.60 1 § rH to | 3.82 1 00 o σ&gt; o 5 ο •H in »H 0.86 | pH σ3 ο a. M pH 00 o o 00 o ο rH 05 rr CO «C CM oc oc (〇 a CO 00 cc 0¾ 卜 o eg CO 00 5C 90 卜 CO CO a σ&gt; o oo 00 卜 卜 — 卜 00 Tf Μ CQ 2 a in in ιη »Η 5 eg 00 cvj (D in «H CO CNJ &lt;〇 卜 •-H CO ιη ¢^3 § 2 s rH i〇 CNJ 00 OJ s CO Oi eg 卜 &lt;NJ Csj &lt;N ci o 2 — SI (D 2 CNJ CQ σ&gt; CO s 卜 in σ&gt; 2 CO OJ in — 卜 oo CvJ 處理時間 (秒) CO LO — rH CO d ιη ^•4 CO — 1 1 in 1 in 1 in 1 cn CO d ΙΛ rH »-h ΙΛ d 1 o CO CO CO o CO in 1 親水化處理 丨電漿條件1 m 撕 itWnfl 6pT 1電漿條件1 進 嵌 too ΙρΓ CS m 嵌 w C*-&gt; 迕 m 綠 tfimtl pr 1電漿條件3 1電暈處理 1鹼化處理 丨電漿條件1 丨鹼化處理 1電漿條件i 1鹼化處理 丨電漿條件1 1鹼化處理 ί m 餓 itimfl pr 丨電漿條件i i T«&quot;H m 软 tfimfl tpr 1電漿條件i 1 電漿條件1 鹼化處理1 電漿條件1 1 電漿條件i I 電漿條件2 1 CO #: m « #: m 嵌 m 綠 9 電漿條件3 1 電暈處理 1 魈d «Ζ mm 籍職 〇 — — •ή ο — rH o fH o rH eg 〇 s «H CO 〇 00 ο s ο 〇 in o CO o τΉ 〇0 ο 00 ο 0¾ ο 0¾ ο σ&gt; ο σ&gt; o o r*H f—Η 偏光板 No. s cq s CO s S CN) in s g CVJ cvj CO Oi s o &lt;N CVJ CO in 卜 00 05 ο CVJ e^J — CNJ eg &lt;N co CSJ ΙΛ CSJ CO &lt;N 卜 00 σ&gt; CNJ -81 - 201227004 【表3】 親水化處理 闻頻電源No. 電源供應 氣體之主成分 電漿條件1 1 6kV 氮+氫 電漿條件2 2 3W/cm2 氮+氫 電漿條件3 3 3 W/cm2 氮+氫 電暈處理 以20W/m2/分之條件施加電暈放電處理。電暈放電處理,係使用 具有SOFTAL公司之多刃電極之電暈處理機,且處理條件係於 所設定能量之40W · min/m2中,進行2次處理。 鹼化處理 於55°C、2.0規定之氫氧化鈉水溶液中浸漬90秒後,進行水洗。 進一步再於120°C之溫風中乾燥5分鐘 【表4】 高頻電源 電源供應 1 100 kHz HEIDEN硏究所製 2 13.56 MHz PEARL工業製 3 27MHz PEARL工業製 將厚度120μπι之聚乙烯醇薄膜進行一軸延伸(溫度110 °C,延伸倍率5倍)。再將其浸漬於碘0.075 g、碘化鉀5g 、水100g所成之水溶液中60秒,接著,又浸漬於碘化鉀6g 、硼酸7.5g、水100g所成之68t之水溶液中。將其進行水 洗、乾燥,而製得偏光子。 接著,根據下述步驟1〜5,將偏光子及前述纖維素酯 薄膜1 〇 1〜1 1 1,及內側貼上作爲偏光板保護薄膜之柯尼卡 美樂達光學(股)製柯尼卡美樂達KC8UY,而製作偏光板 步驟1 :將纖維素酯薄膜101〜111,以表2〜表4所記 載之條件進行親水化處理。 -82- 201227004 步驟2 :將前述偏光子浸漬於固態成分2質量%之聚乙 烯醇接著劑槽中1〜2秒。 步驟3 :將步驟2中附著於偏光子之過剩接著劑,輕輕 地加以擦拭除去,再將其放置於步驟1經過親水化處理之 纖維素酯薄膜之上,進一步再放置內側纖維素酯薄膜。 步驟4:將步驟3所層合之纖維素酯薄膜101〜111及偏 光子及內側纖維素酯薄膜,以壓力20〜3 ON/cm2、搬送速 度約爲2m/分進行貼合。 步驟5 :在80 °C之乾燥機中,將步驟4所製作之偏光子 及纖維素酯薄膜1 〇 1〜1 1 1及裏面側纖維素酯薄膜,加以貼 合,再將樣品以2分鐘進行乾燥,而製作偏光板201〜229 &lt;液晶顯示裝置之製作&gt; 如下所述,製作用以進行正面對比測定之液晶面板, 並評價其作爲液晶顯示裝置之特性》 將事先貼在SONY製40型顯示器KLV-40V2500雙面之 偏光板剝下,再將上述製作之偏光板201〜229各自貼於液 晶晶胞之玻璃面之雙面上。 此時,該偏光板之貼合方向,係本發明之纖維素酯薄 膜之面在液晶晶胞側,並且,使吸收軸朝向與事先貼合之 偏光板在同一之方向上,而各自製作液晶顯示裝置。 就此液晶顯示裝置評價其正面對比之比値。其結果, 示於表2中。 -83- 201227004 《評價項目、評價方法》 使用所製得之纖維素酯薄膜,進行以下之評價。 (表面自由能量) 薄膜之表面自由能量,係如下述進行測定。 將三種之標準液體:純水、硝基甲烷、二碘甲烷,與 被測定固體之接觸角,以協和界面科學株式會公司製:接 觸角計CA-V進行5次測定,再由測定値之平均獲得平均接 觸角》接著,再基於Young-Dupre之式及擴張Fowkes之式 ,計算得到固體之表面能量之三成分。Remarks Examples Embodiments Comparative Examples Examples 蜀 κ Example 1 Example 1 1 Comparative Example 1 I Example I | Comparative Example | 丨 Example I | Comparative Example I | Example I 丨 Comparative Example J 1 Example 1 丨Comparative Example I 1 Example 1 m 闺R Example 1 Comparative Example i Comparative Example Comparative Example 1 Comparative Example 丨 Comparative Example 1 1 Comparative Example 1 Comparative Example 1 Comparative Example 比较 Comparative Example Η Miscellaneous!: ΰ 蹯聒 &lt; ] 〇〇〇〇〇〇〇〇〇〇〇〇〇〇&lt;1 〇〇〇〇〇XXXXXXXX PVA Continuity 〇〇X 〇〇0 〇〇〇〇〇〇〇〇〇X 〇&lt;3 〇〇 〇XXX &lt;3 XXX foot nit car although 〇〇〇〇〇〇〇〇X 〇X 〇X 〇X 〇〇〇〇〇XX 〇〇〇X 〇〇〇(S o 00 &lt;〇in in i〇 CO σ&gt; 00 ΙΛ 卜 in 00 00 00 to 卜 i£&gt; 卜 in CD 〇&gt; •H i£&gt; 00 yr CM 03⁄4 Oi 0〇CO 00 吋CQ — eg CVJ tc CO 00 to o 卜 in cn Internal haze after hydrophilization eg 〇sososo S ο S Ο s ο S ogo art oso S 〇go S 〇so in 〇rH ogososos o in in O eg CO o CM CNJ o 2 ο o If) CO 〇(O CO o &lt;η ΙΟ ο γ Sh/ γ sp s CO I_2.56 &lt;〇in »H 卜rH 1 2.48 00 σ&gt; CVJ In 卜 in rH 2 CO eg CN5 CO CVJ 00 I—CO Gi 00 〇c CO § CO &lt;n CO | 2.60 1 § rH to | 3.82 1 00 o σ&gt; o 5 ο •H in »H 0.86 | pH Σ3 ο a. M pH 00 oo 00 o ο rH 05 rr CO «C CM oc oc (〇a CO 00 cc 03⁄4 卜o eg CO 00 5C 90 卜CO CO a σ> o oo 00 Bu Bu - 00 Tf Μ CQ 2 a in in ιη »Η 5 eg 00 cvj (D in «H CO CNJ &lt;〇卜•-H CO ιη ¢^3 § 2 s rH i〇CNJ 00 OJ s CO Oi eg 卜&lt;NJ Csj &lt ;N ci o 2 — SI (D 2 CNJ CQ σ&gt; CO s 卜 in σ&gt; 2 CO OJ in — oo CvJ processing time (seconds) CO LO — rH CO d ιη ^•4 CO — 1 1 in 1 in 1 in 1 cn CO d ΙΛ rH »-h ΙΛ d 1 o CO CO CO o CO in 1 Hydrophilization treatment 丨 Plasma conditions 1 m Tear itWnfl 6pT 1 Plasma condition 1 Insertion intoo ΙρΓ CS m Embedding w C*- &gt; 迕m green tfimtl pr 1 plasma condition 3 1 corona treatment 1 alkalization treatment 丨 plasma condition 1 hydrazine treatment 1 plasma condition i 1 alkali Treatment of 丨 plasma conditions 1 1 alkalization ί m hungry iimfl pr 丨 plasma condition ii T«&quot;H m soft tfimfl tpr 1 plasma condition i 1 plasma condition 1 alkalization 1 plasma condition 1 1 plasma Condition i I Plasma condition 2 1 CO #: m « #: m Embedded m Green 9 Plasma condition 3 1 Corona treatment 1 魈d «Ζ mm 职〇———— ή ο — rH o fH o rH eg 〇 s «H CO 〇00 ο s ο 〇in o CO o τΉ 〇0 ο 00 ο 03⁄4 ο 03⁄4 ο σ&gt; ο σ&gt; oor*H f—Η Polarizer No. s cq s CO s S CN) in sg CVJ Cvj CO Oi so &lt;N CVJ CO in 00 05 ο CVJ e^J — CNJ eg &lt;N co CSJ ΙΛ CSJ CO &lt;N 卜 00 σ&gt; CNJ -81 - 201227004 [Table 3] Hydrophilization treatment Power No. Main component of power supply gas Plasma condition 1 1 6kV Nitrogen + Hydrogen plasma condition 2 2 3W/cm2 Nitrogen + Hydrogen plasma condition 3 3 3 W/cm2 Nitrogen + Hydrogen corona treatment at 20W/m2/min The condition is applied by a corona discharge treatment. For the corona discharge treatment, a corona treatment machine having a multi-edge electrode of SOFTAL Co., Ltd. was used, and the treatment conditions were 40 W · min/m 2 of the set energy, and the treatment was performed twice. The alkalization treatment was immersed in an aqueous sodium hydroxide solution of 2.0 °C at 55 ° C for 90 seconds, and then washed with water. Further drying in a warm air of 120 ° C for 5 minutes [Table 4] High-frequency power supply 1 100 kHz HEIDEN Research Institute 2 13.56 MHz PEARL Industrial 3 27 MHz PEARL industrial production of 120 μm thick polyvinyl alcohol film One-axis extension (temperature 110 °C, extension ratio 5 times). Further, this was immersed in an aqueous solution of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. It was washed with water and dried to obtain a polarizer. Next, according to the following steps 1 to 5, the polarizer and the cellulose ester film 1 〇1 to 1 1 1, and the inside are attached to Konica Minolta Optical Co., Ltd. as a polarizing plate protective film. Cameron KC8UY, and a polarizing plate was produced. Step 1: The cellulose ester films 101 to 111 were hydrophilized under the conditions described in Tables 2 to 4. -82- 201227004 Step 2: The aforementioned polarizer was immersed in a 2% by mass solid polyethylene glycol adhesive bath for 1 to 2 seconds. Step 3: The excess adhesive attached to the polarizer in step 2 is gently wiped and removed, and then placed on the hydrophilized cellulose ester film in step 1, and the inner cellulose ester film is further placed. . Step 4: The cellulose ester films 101 to 111 and the polarizer and the inner cellulose ester film laminated in the step 3 were bonded at a pressure of 20 to 3 ON/cm 2 and a conveying speed of about 2 m/min. Step 5: In a dryer at 80 ° C, the polarizer prepared in step 4 and the cellulose ester film 1 〇1~1 1 1 and the inner side cellulose ester film are attached, and the sample is further 2 minutes. Drying was carried out to produce polarizing plates 201 to 229 &lt;Production of Liquid Crystal Display Device&gt; As described below, a liquid crystal panel for front side contrast measurement was produced and evaluated as a characteristic of a liquid crystal display device. The 40-type display KLV-40V2500 double-sided polarizing plate is peeled off, and the polarizing plates 201 to 229 prepared above are respectively attached to both sides of the glass surface of the liquid crystal cell. In this case, the bonding direction of the polarizing plate is such that the surface of the cellulose ester film of the present invention is on the liquid crystal cell side, and the absorption axis is oriented in the same direction as the polarizing plate to be bonded in advance, and each of the liquid crystal cells is formed. Display device. The liquid crystal display device was evaluated for its positive contrast ratio. The results are shown in Table 2. -83-201227004 "Evaluation Items and Evaluation Methods" The following evaluations were carried out using the obtained cellulose ester film. (Surface free energy) The surface free energy of the film was measured as follows. The contact angles of the three standard liquids: pure water, nitromethane, and diiodomethane with the solid to be measured were measured 5 times by the contact angle meter CA-V, and then determined by the contact angle meter CA-V. The average contact angle is obtained on average. Then, based on the Young-Dupre formula and the expanded Fowkes equation, the three components of the surface energy of the solid are calculated.

Young-Dupre之式:WSl=yL ( l+cos0 ) WSL :液體/固體間之附著能量 γί :液體之表面自由能量 0 :液體/固體之接觸角 擴張Fowkes之式:Young-Dupre's style: WSl=yL ( l+cos0 ) WSL : liquid/solid adhesion energy γί : liquid surface free energy 0 : liquid/solid contact angle Expanded Fowkes style:

Wsl= 2{ ( 7sdyLd) ,/2+ (YspYLp) 1/2+ (yshyLh) 1/2} YL=7Ld+YLp+YLh:液體之表面自由能量 Ys=rSd+Ysp+YSh:固體之表面自由能量 γ&lt;*、γρ、:表面自由能量之分散、偶極子、氫結合 之各成分 標準液體之表面自由能量各成分値(mN/m ),由於 如1表5所示係已知之故,藉由接觸角之値可解出3元連立方 程式’然後求出固體表面之表面能量各成分値(Ysd、Ysf -84- 201227004 ' Ysh )。 【表5】 標準液體之表面 自由能各成分値(mN/m) yLd yLd yLh 純水 0 30.4 42.4 硝基甲烷 17.7 18.3 0 二碘甲烷 0 51 0 (位相差) 位相差値R〇及Rt,係以下式而求得。 R〇 = ( nx-ny) XdWsl= 2{ ( 7sdyLd) , /2+ (YspYLp) 1/2+ (yshyLh) 1/2} YL=7Ld+YLp+YLh: surface free energy of liquid Ys=rSd+Ysp+YSh: surface freedom of solid Energy γ &lt;*, γρ,: surface free energy dispersion, dipole, hydrogen bonding, standard surface free energy, each component 値 (mN / m), as shown in Table 5, is known From the contact angle, the 3-element cubic equation can be solved, and then the surface energy components 固体 (Ysd, Ysf -84 - 201227004 ' Ysh ) of the solid surface are obtained. [Table 5] Surface free energy of standard liquids 各(mN/m) yLd yLd yLh Pure water 0 30.4 42.4 Nitromethane 17.7 18.3 0 Diiodomethane 0 51 0 (phase difference) Phase difference 〇R〇 and Rt, It is obtained by the following formula. R〇 = ( nx-ny) Xd

Rt= ( ( nx+ ny) /2-nz) xd 其中,d係薄膜之厚度(nm)、折射率nx (遲相軸方 向之折射率)、ny (在薄膜面內與遲相軸成直角方向之折 射率)、nz (厚度方向中之薄膜之折射率)。 位相差値R〇及Rt,係使用自動複折射率計KOBRA-2 1 ADH (王子計測機器(股)),在23°C、55% RH之環境 下,以波長590nm求出。 (內部霧度値) 所製作之纖維素酯薄膜,係於23°C 55 % RH之環境下, 經5小時以上之調濕後,再以下述方法評價其內部霧度値 (圖1參照)。 首先,測定薄膜以外之測定器具之空白霧度1。 1·在潔淨之載玻片上滴上甘油~滴(0.05ml)。此時 -85- 201227004 應注意液滴中不會有氣泡進入之情形。由於玻璃即使以目 視判定爲潔淨,仍可能爲髒污之故,應以洗潔劑洗淨後使 用(圖1參照)。 2. 在其上蓋上蓋玻片。不須施壓於蓋玻片甘油會自行 散布。 3. 裝上霧度計,測定該空白霧度1。 接著,以下列之順序,測定包含樣品在內之霧度2。 4. 於載玻片上滴上甘油(〇.〇5ml)(圖1(a)參照) 5 .於其上將測定樣品薄膜在氣泡不會進入之情形下蓋 上(圖1 ( b )參照) 6. 在樣品薄膜上滴上甘油(0.05ml )(圖1 ( c )參照 ) 7. 在其上蓋上蓋玻片(圖1 ( d)參照)。 8. 將上述製作之層合體(由上開始爲:蓋玻片/甘油/ 樣品薄膜/甘油/載玻片)放置於霧度計上並設定成霧度2。 9. 算出(霧度2 )-(霧度1 )=(本發明之纖維素酯薄 膜之內部霧度)。Rt= ( ( nx+ ny) /2-nz) xd where the thickness (nm) of the d-type film, the refractive index nx (the refractive index in the direction of the slow axis), and ny (the direction perpendicular to the slow phase axis in the film plane) Refractive index), nz (refractive index of the film in the thickness direction). The phase difference 〇R〇 and Rt were determined by using an automatic complex refractometer KOBRA-2 1 ADH (Oji Scientific Instruments), at a wavelength of 590 nm in an environment of 23 ° C and 55% RH. (Internal haze 値) The cellulose ester film produced was subjected to humidity conditioning for 5 hours or more in an environment of 23 ° C and 55 % RH, and then the internal haze was evaluated by the following method (refer to Fig. 1). . First, the blank haze 1 of the measuring instrument other than the film was measured. 1. Apply glycerin ~ drops (0.05 ml) to a clean glass slide. At this time -85- 201227004 It should be noted that there will be no air bubbles entering the droplets. Since the glass may be dirty even if it is visually judged to be dirty, it should be washed with detergent and used (see Figure 1 for reference). 2. Cover the cover with a cover slip. Glycerin is dispensed without applying pressure to the coverslip. 3. Install a haze meter and measure the blank haze1. Next, the haze 2 including the sample was measured in the following order. 4. Apply glycerin (〇.〇5ml) to the slide (see Figure 1(a) for reference). 5. The sample film will be covered on the slide without the bubble entering (Figure 1 (b)) 6. Apply glycerin (0.05ml) to the sample film (see Figure 1 (c) for reference). 7. Place a cover slip on it (Figure 1 (d) Reference). 8. Place the laminate prepared above (from the top: cover slip/glycerin/sample film/glycerin/slide) on a haze meter and set the haze to 2. 9. Calculate (haze 2) - (haze 1) = (internal haze of the cellulose ester film of the present invention).

依上述測定所使用之玻璃、甘油,係如以下所示。 玻璃:MICRO SLIDE GLASS S9213 MATSUNAMI 甘油:關東化學製鹿特級(純度&gt; 99.0% )折射率 1.47 (表面粗度Ra) 薄膜之表面粗度(Ra),係依Veeco公司製 Wyco進 -86- 201227004 行測定。 (親水化處理後之步驟污染) 以目視觀察所製作之纖維素酯薄膜(寬度:BSOmm ,長度:7800m之輥筒)之親水化處理後之步驟,並以下 述之基準評價該歩驟污染之程度。 〇:未觀察到步驟污染。 X:可在親水化裝置表面或者鹼化液中觀察到白色異 (PVA接著性) 就所製得之偏光板,使其在23°C、相對濕度55%之環 境下,用手將接著面剝下,再以目視觀察該材料被破壊及 剝離性之程度,再以下述之基準評價其接著性。 〇:材料(基材)發生破壊。 △: 一部分材料(基材)發生破壊,惟偏光板保護薄 膜與偏光子之界面上有剝離面積存在。 X:在偏光板保護薄膜與偏光子之界面上可進行剝離 (液晶顯示裝置之正面對比之比) 關於液晶顯示裝置,測定其各自之正面對比。正面對 比之測定,係以ELDIM公司製之正面對比測定裝置(EZ-contrast )而進行,而測定其白顯示時及黑顯示時之光量 。測定結果’則根據其正面對比之値,如下所述評價其優 -87- 201227004 劣而劃分等級。 〇:正面對比之比=3 000 : 1以上 △:正面對比之比=2 9 9 9 : 1〜2 0 0 0 : 1 X :正面對比之比=1 999 : 1以下 以上之各種評價結果,均整理揭示於前掲之表1及表2 中〇 產業上可利用性 如表1及表2之結果所明白揭示者,本發明之實施例, 相較於比較例而言,其內部霧度値、表面粗度Ra、PVA接 著性、及正面對比均明顯地較爲優良。此外,即使在鹼水 解化可能會引起步驟污染之薄膜上,亦可藉由本發明之上 述手段,而提供與偏光子之接著性優良,且作業上安全又 對環境之負擔少之製法所完成之偏光板。此外,本發明同 時還提供一種使用該偏光板,同時兼具高視野角•高視認 性之液晶顯示裝置。 【圖式簡單說明】 〔圖1〕係表示內部霧度値評價方法之順序之模式圖 ;(a)爲將甘油滴入至載玻片上之狀態。(b)爲在甘油 上載置樣品薄膜之狀態。(c )爲在樣品薄膜上將甘油滴 入之狀態。(d )爲在甘油上載置蓋玻片之狀態。 〔圖2〕係表示單頻率高頻電壓施加方式之電漿處理 裝置一例之槪略圖。 -88- 201227004 〔圖3〕係表示2頻率高頻電壓施加方式之電漿處理裝 置一例之槪略圖。 〔圖4〕係表示輥筒電極之導電性之金屬質母材及其 上所被覆介電體之構造一例之斜視圖。 〔圖5〕角筒型電極之導電性之金屬質母材及其上所 被覆介電體之構造一例之斜視圖。 【主要元件符號說明】 F :基材 G :放電氣體 G':激態放電氣體 P :送液幫浦 130:大氣壓電漿處理裝置 131:大氣壓電漿處理容器 1 3 2 :放電空間 135 :輥筒電極(第1電極) 136 :角筒型電極群(第2電極) 1 4 0 :電場施加手段 1 4 1 :第1電源 1 4 2 :第2電源 1 4 3 :第1過濾器 1 4 4 :第2過濾器 150 :氣體供給手段 151 :氣體發生裝置 -89- 201227004 1 5 2 :給氣口 1 5 3 :排氣口 160 :電極溫度調節手段 161 :配管 164 :引導輥筒 167 :引導輥筒 1 6 5 :夾輥 1 66 :夾輥 1 6 8 :隔絕板 1 6 9 :隔絕板 -90The glass and glycerin used in the above measurement are as follows. Glass: MICRO SLIDE GLASS S9213 MATSUNAMI Glycerin: Kanto Chemical Deer Grade (Purity > 99.0%) Refractive Index 1.47 (Surface Thickness Ra) Surface roughness (Ra) of the film, according to Wyco, Veeco, Inc. -86-201227004 Line measurement. (Step of contamination after hydrophilization treatment) The steps of the hydrophilization treatment of the produced cellulose ester film (width: BSOmm, length: 7800 m) were visually observed, and the contamination was evaluated on the basis of the following criteria. degree. 〇: No step contamination was observed. X: A polarizing plate which can be obtained by observing a white difference (PVA adhesion) on the surface of a hydrophilizing device or an alkalizing solution, and allowing it to be placed by hand under an environment of 23 ° C and a relative humidity of 55%. After peeling off, the degree of breakage and peelability of the material was visually observed, and the adhesion was evaluated on the basis of the following criteria. 〇: The material (substrate) is broken. △: A part of the material (substrate) was broken, but there was a peeling area at the interface between the polarizing plate protective film and the polarizer. X: Peeling at the interface between the polarizing plate protective film and the polarizer (the ratio of the front contrast of the liquid crystal display device) Regarding the liquid crystal display device, the respective front contrasts were measured. The front contrast measurement was performed by a front contrast measuring device (EZ-contrast) manufactured by ELDIM Co., Ltd., and the amount of light during white display and black display was measured. The measurement results are evaluated according to their positive comparisons, and their grades are evaluated as follows. 〇: ratio of front contrast = 3 000 : 1 or more △: ratio of front contrast = 2 9 9 9 : 1 to 2 0 0 0 : 1 X : ratio of front contrast = 1 999 : 1 or more of various evaluation results, The disclosures are disclosed in Tables 1 and 2 of the preceding paragraph. The industrial applicability is as disclosed in the results of Tables 1 and 2, and the internal haze of the embodiment of the present invention is compared with the comparative example. Surface roughness Ra, PVA adhesion, and frontal contrast are all significantly better. Further, even in the case of a film which may cause contamination of the step by alkali hydrolysis, it is also possible to provide a method which is excellent in adhesion to a polarizer and which is safe in operation and less burden on the environment by the above-described means of the present invention. Polarizer. Further, the present invention also provides a liquid crystal display device which uses the polarizing plate and which has both a high viewing angle and a high visibility. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] is a schematic view showing the procedure of the internal haze 値 evaluation method; (a) is a state in which glycerin is dropped onto a glass slide. (b) is a state in which a sample film is placed on glycerin. (c) is a state in which glycerin is dropped on the sample film. (d) is a state in which a cover glass is placed on glycerin. Fig. 2 is a schematic diagram showing an example of a plasma processing apparatus for a single-frequency high-frequency voltage application method. -88-201227004 [Fig. 3] is a schematic diagram showing an example of a plasma processing apparatus for a two-frequency high-frequency voltage application method. Fig. 4 is a perspective view showing an example of a structure of a conductive metal base material and a dielectric body covering the roller electrode. Fig. 5 is a perspective view showing an example of a structure of a conductive metal base material of a corner-type electrode and a dielectric body coated thereon. [Description of main component symbols] F: Substrate G: Discharge gas G': Excimer discharge gas P: Liquid supply pump 130: Atmospheric piezoelectric slurry treatment device 131: Atmospheric piezoelectric slurry treatment container 1 3 2 : Discharge space 135: Roller Cartridge electrode (first electrode) 136: corner tube type electrode group (second electrode) 1 4 0 : electric field application means 1 4 1 : first power source 1 4 2 : second power source 1 4 3 : first filter 1 4 4: second filter 150: gas supply means 151: gas generating means - 89 - 201227004 1 5 2 : air supply port 1 5 3 : exhaust port 160: electrode temperature adjusting means 161 : piping 164 : guiding roller 167 : guiding Roller 1 6 5 : nip roll 1 66 : nip roll 1 6 8 : insulation plate 1 6 9 : insulation plate - 90

Claims (1)

201227004 七、申請專利範圍: 1. 一種偏光板,其特徵爲在偏光子之雙面均以保護 薄膜夾住所成之偏光板中,至少單側之保護薄膜係經電漿 處理或電暈處理之任一者進行親水化處理之保護薄膜,該 保護薄膜在親水化處理前之表面能量係滿足下式(SI ), 且該保護薄膜之親水化處理後之表面能量係滿足下式( SII ), 式(SI ) : 0.25 ^ Ysh/Ysp &lt; 1.5 式(SII) : 1.5^ Ysh/Ysp^ 4.0 惟,γ s h係表示表面能量之氫結合成分、γ s p則係偶極 子成分。 2. 如申請專利範圍第1項之偏光板,其中該經親水化 處理之保護薄膜表面之中心線平均粗度(Ra )之値係2.0 〜10.Onm之範圍內者》 3 .如申請專利範圍第1或第2項之偏光板,其中該保 護薄膜係位相差薄膜;且以下式(RI )所定義之面內位相 差値Ro ( 5 90 )係30〜90nm之範圍內,又以下式(RII )所 定義之厚度方向之位相差値Rt ( 590)係70〜300nm之範圍 內者, 式(RI ) : Ro ( 5 9 0 ) = ( nx-ny ) xd ( nm ) 式(RII) : Rt ( 5 9 0 ) ~ { ( nx + ny) /2-nz} xd ( nm ) 〔上式中,R〇 (590)係表示波長5 9 0nm中之薄膜內 之面內位相差値,Rt( 590)係590nm中之薄膜內之厚度方 向之位相差値;此外,d爲光學薄膜之厚度(nm ) ,ηχ爲 -91 - 201227004 5 9 Onm中之薄膜之面內最大折射率,亦稱爲遲相軸方向之 折射率;ny爲590nm中之薄膜面內與遲相軸呈直角方向之 折射率,nz則爲5 90nm中之厚度方向上之薄膜之折射率〕 〇 4. 如申請專利範圍第1〜3項中任一項之偏光板,其 中該經親水化處理之保護薄膜之內部霧度係〇. 1以下者。 5. 如申請專利範圍第1〜4項中任一項之偏光板,其 中該經親水化處理之保護薄膜係含有纖維素酯之薄膜。 6 ·如申請專利範圍第1〜5項中任一項之偏光板,其 中該經親水化處理之保護薄膜係含有溶解度係數(S P値) 爲12.0以上13.0以下之纖維素酯者。 7-如申請專利範圍第1〜6項中任一項之偏光板,其 中該經親水化處理之保護薄膜係含有乙醯基取代度爲2.1 以上而未達2.5之二乙醯基纖維素之薄膜。 8. —種偏光板之製造方法,其特徵爲其係在偏光子 之雙面均以保護薄膜夾住所成之偏光板之製造方法,其具 有至少在單側之保護薄膜上,以電漿處理或電暈處理之任 一者進行親水化處理之步驟,又該保護薄膜在親水化處理 前之表面能量係滿足下式(SI),且該保護薄膜之親水化 處理後之表面能量係滿足下式(SII), 式(SI) : 0.25^ Ysh/Ysp&lt; 1.5 式(SII ) : 1 · 5 ^ γ8ΐι/γ5ρ ^ 4.0 惟,γη係表示表面能量之氫結合成分、γ5ρ則係偶極 子成分。 -92- 201227004 9· 一種液晶顯不 配置於其兩側之二片I 係如申請專利範圍第1 請專利範圍第8項之偏 裝置,其特徵爲其係由液晶晶胞及 !光板所成,且該偏光板之至少一片 〜7項中任一項之偏光板,或以如申 板之製造方法所製造之偏光板。 -93-201227004 VII. Patent application scope: 1. A polarizing plate characterized in that a polarizing plate is formed by sandwiching a protective film on both sides of a polarizer, and at least one of the protective films is subjected to plasma treatment or corona treatment. Any one of the protective film of the hydrophilization treatment, the surface energy of the protective film before the hydrophilization treatment satisfies the following formula (SI), and the surface energy of the protective film after the hydrophilization treatment satisfies the following formula (SII), Formula (SI ) : 0.25 ^ Ysh/Ysp &lt; 1.5 Formula (SII) : 1.5^ Ysh/Ysp^ 4.0 However, γ sh is a hydrogen-bonding component of surface energy and γ sp is a dipole component. 2. For the polarizing plate of claim 1, wherein the center line average roughness (Ra) of the surface of the hydrophilized protective film is within the range of 2.0 to 10. Onm. 3 . The polarizing plate of the first or second aspect, wherein the protective film is a phase difference film; and the in-plane phase difference 値Ro (5 90 ) defined by the following formula (RI) is in the range of 30 to 90 nm, and the following formula The phase difference in the thickness direction defined by (RII) 値Rt ( 590) is in the range of 70 to 300 nm, and the formula (RI ) : Ro ( 5 9 0 ) = ( nx-ny ) xd ( nm ) (RII) : Rt ( 5 9 0 ) ~ { ( nx + ny) / 2-nz} xd ( nm ) [In the above formula, R 〇 (590) represents the in-plane phase difference in the film at a wavelength of 590 nm, Rt(590) is the phase difference in the thickness direction of the film in 590 nm; in addition, d is the thickness (nm) of the optical film, and ηχ is the in-plane maximum refractive index of the film in -91 - 201227004 5 9 Onm, It is called the refractive index in the direction of the slow axis; ny is the refractive index in the plane of the film at 590 nm in the direction perpendicular to the slow axis, and nz is the refraction of the film in the thickness direction of 5 90 nm. The polarizing plate according to any one of claims 1 to 3, wherein the hydrophilized protective film has an internal haze of 1 or less. 5. The polarizing plate according to any one of claims 1 to 4, wherein the hydrophilized protective film contains a film of a cellulose ester. The polarizing plate according to any one of claims 1 to 5, wherein the hydrophilized protective film contains a cellulose ester having a solubility coefficient (S P値) of 12.0 or more and 13.0 or less. The polarizing plate according to any one of claims 1 to 6, wherein the hydrophilized protective film contains a diethyl hydrazide having a degree of substitution of 2.1 or more and less than 2.5. film. 8. A method for producing a polarizing plate, characterized in that it is a method for manufacturing a polarizing plate formed by protecting a film on both sides of a polarizer, which has a plasma treatment on at least one side of the protective film Or the step of hydrophilization treatment, or the surface energy of the protective film before the hydrophilization treatment satisfies the following formula (SI), and the surface energy of the protective film after the hydrophilization treatment satisfies Formula (SII), Formula (SI): 0.25^ Ysh/Ysp&lt;1.5 Formula (SII): 1 · 5 ^ γ8ΐι/γ5ρ ^ 4.0 However, γη represents a hydrogen-bonding component of surface energy and γ5ρ is a dipole component. -92- 201227004 9· A two-piece I system in which the liquid crystal display is not disposed on both sides thereof is a partial device of Patent Application No. 1 of the Patent Application No. 8, which is characterized in that it is composed of a liquid crystal cell and a light plate. And a polarizing plate of any one of the at least one of the polarizing plates, or a polarizing plate manufactured by a manufacturing method such as a method. -93-
TW099145534A 2010-12-23 2010-12-23 A polarizing plate, a method for manufacturing the same, and a liquid crystal display device using the same TWI519830B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099145534A TWI519830B (en) 2010-12-23 2010-12-23 A polarizing plate, a method for manufacturing the same, and a liquid crystal display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099145534A TWI519830B (en) 2010-12-23 2010-12-23 A polarizing plate, a method for manufacturing the same, and a liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
TW201227004A true TW201227004A (en) 2012-07-01
TWI519830B TWI519830B (en) 2016-02-01

Family

ID=46933079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099145534A TWI519830B (en) 2010-12-23 2010-12-23 A polarizing plate, a method for manufacturing the same, and a liquid crystal display device using the same

Country Status (1)

Country Link
TW (1) TWI519830B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625631B2 (en) 2012-10-11 2017-04-18 Konica Minolta, Inc. Optical compensation film, polarizing plate, and liquid crystal display device
TWI684513B (en) * 2013-04-26 2020-02-11 日東電工股份有限公司 Polarized film and its manufacturing method, optical film and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625631B2 (en) 2012-10-11 2017-04-18 Konica Minolta, Inc. Optical compensation film, polarizing plate, and liquid crystal display device
TWI684513B (en) * 2013-04-26 2020-02-11 日東電工股份有限公司 Polarized film and its manufacturing method, optical film and image display device

Also Published As

Publication number Publication date
TWI519830B (en) 2016-02-01

Similar Documents

Publication Publication Date Title
TWI417585B (en) A retardation film, a manufacturing method of a polarizing film, and a liquid crystal display device
TWI391428B (en) Retardation film, and polarizing plate and display device using the same
JP6015469B2 (en) Optical film roll, polarizing plate, and liquid crystal display device
JP5218659B2 (en) Polarizing plate, manufacturing method thereof, and liquid crystal display device using the same
JP5440407B2 (en) Polarizing plate, liquid crystal display device, and method for producing cellulose acetate film
TWI490560B (en) A polarizing plate manufacturing method, a polarizing plate using the same, and a liquid crystal display device
JPWO2006121026A1 (en) Cellulose ester film, polarizing plate and liquid crystal display device
JP2011053645A (en) Cellulose acetate film, polarizing plate and liquid-crystal display device
JP6086117B2 (en) Manufacturing method of polarizing plate
TW201002766A (en) Cellulose ester film
JP2011123401A (en) Sheet polarizer and liquid crystal display device using the same
TW201227004A (en) Polarizing plate, method of manufacturing the same, and liquid crystal display employing the same
JP5845702B2 (en) Method for producing retardation film
JP2008268918A (en) Retardation film and manufacturing method thereof, polarizer using retardation film, and display device
JP5962002B2 (en) Polarizing plate and display device using the same
JP5637207B2 (en) Retardation film and method for producing retardation film
JP2005314613A (en) Cellulose acylate film, and optical film and image display device using the same
JP2008107778A (en) Optical film and manufacturing method therefor, polarizer protective film and polarizer using the same, and liquid crystal display
JP2006233043A (en) Method for preparing dope for optical film, method for producing optical film by using the preparation method, optical film, and polarizing plate using the optical film
JP2013142786A (en) Retardation film, polarizer and liquid-crystal display
JP2017088715A (en) Optical film
TW201226452A (en) Cellulose ester film, and polarizing plate and liquid crystal display device using the same
JP2005290347A (en) Cellulose acylate film, optical film and image display device using the same
JP2005031614A (en) Method for manufacturing optical compensation film, optical compensation film, polarizing plate and liquid crystal display device
WO2015083480A1 (en) Glass laminate and liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees