TW201226479A - Method of manufacturing a printable composition of a liquid or gel suspension of diodes - Google Patents

Method of manufacturing a printable composition of a liquid or gel suspension of diodes Download PDF

Info

Publication number
TW201226479A
TW201226479A TW100131619A TW100131619A TW201226479A TW 201226479 A TW201226479 A TW 201226479A TW 100131619 A TW100131619 A TW 100131619A TW 100131619 A TW100131619 A TW 100131619A TW 201226479 A TW201226479 A TW 201226479A
Authority
TW
Taiwan
Prior art keywords
diodes
solvent
microns
propanol
diode
Prior art date
Application number
TW100131619A
Other languages
Chinese (zh)
Other versions
TWI534211B (en
Inventor
Mark D Lowenthal
William Johnstone Ray
Neil O Shotton
Richard A Blanchard
Mark Allan Lewandowski
Brad Oraw
Jeffrey Baldridge
Eric Anthony Perozziello
Original Assignee
Nthdegree Tech Worldwide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nthdegree Tech Worldwide Inc filed Critical Nthdegree Tech Worldwide Inc
Publication of TW201226479A publication Critical patent/TW201226479A/en
Application granted granted Critical
Publication of TWI534211B publication Critical patent/TWI534211B/en

Links

Abstract

An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.

Description

201226479 六、發明說明: 【版權聲明與許可】 此專利文件之一部分揭示内容含有受版權保護之材 料。版權所有者不反對任何人傳真複製專利與商標局 (Patent and Trademark Office )專利檔案或記錄中出現之該 專利文件或s亥專利揭示内容’但在其他任何情況下均保留 所有版權。以下聲明應適用於此文件、如下文所述之資料 及内容,以及其圖式:Copyright © 2010-201 1,NthDegree Technologies Worldwide 公司。 【交又申請】 本申請案為William Johnstone Ray等發明人在2〇 1 〇年 9 月 1 日申請之題為「printable Composition of a Liquid or201226479 VI. Description of the invention: [Copyright Notice and Permit] One of the patent documents reveals that the content contains copyrighted material. The copyright owner has no objection to the facsimile reproduction by anyone of the Patent and Trademark Office's patent file or the disclosure of the patent document or the disclosure of the patent, but in all other cases, all copyrights are reserved. The following statement shall apply to this document, the materials and content as described below, and its schema: Copyright © 2010-201 1, NthDegree Technologies Worldwide. [Handing over and applying] This application was filed by the inventor of William Johnstone Ray on September 1st, 2nd, 1st, entitled "printable Composition of a Liquid or

Gel Suspension of Di〇des」之美國臨時專利申請案第 61/379,225號之轉化案且主張其優先權,該專利申請案與本 申請案共同讓渡,且其全部内容以引用方式併入本文中, 具有如同在本文中闡述其全文一般之相同完全效力且針對 所有共同揭示之標的物主張優先權。 本申明案為Willi am Johnstone Ray等發明人在2〇1〇年 9 月 1 日中請之題為「Light Emitting,Ph〇t〇v〇ltaiCand0ther Electronic Apparatus」之美國臨時專利申請案第6i/379,284 號之轉化案且主張其優先權,該專利t請案與本申請案共 同讓渡,且其全部内容以引用方式併入本文中,具有如同 在本文中闡述其全文一般之相同完全效力且針對所有共同 揭示之標的物主張優先權。 4 201226479 本申叫案為William Johnstone Ray等發明人在2010年 9 月 3 日申請之題為「printable c〇mp〇siti〇n 〇rThe disclosure of U.S. Provisional Patent Application Serial No. 61/379,225, the entire disclosure of which is hereby incorporated by reference in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire content , having the same full validity as the full text of the text as set forth herein, and claiming the subject matter of all common disclosures. This application is the US Provisional Patent Application No. 6i/379,284, entitled "Light Emitting, Ph〇t〇v〇ltaiCand0ther Electronic Apparatus", which was invented by Willi am Johnstone Ray et al. on September 1, 2002. The claim of claim is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in All subject matter disclosed together asserts priority. 4 201226479 This application is called "printable c〇mp〇siti〇n 〇r" by the inventor of William Johnstone Ray et al. on September 3, 2010.

Gel Suspension of Diodes and Method of Making Same」之美 國臨時專利申請案第61/379,83〇號之轉化案且主張其優先 權,該專利申請案與本申請案共同讓渡,且其全部内容以 引用方式併入本文中,具有如同在本文中闡述其全文一般 之相同完全效力且針對所有共同揭示之標的物主張優先 權。 本申3月案為William Johnstone Ray等發明人在2010年 9 月 3 日申請之題為rUghtEmitting,ph〇t〇v〇ltaicand〇ther Electronic Apparatus」之美國臨時專利申請案第61/379,82〇 唬之轉化案且主張其優先權,該專利申請案與本申請案共 同讓渡,且其全部内容以引用方式併入本文中,具有如同 在本文中闡述其全文一般之相同完全效力且針對所有共同 揭示之標的物主張優先權。 本申凊案為William Johnstone Ray等發明人在2007年 5 月 31 日申請之題為「Meth〇d〇fManufacturingAddressabie and Static Electronic Displays」之美國專利申請案第 11/756,616號之部分接續申請案且主張其優先權,該專利申 請案與本申請案共同讓渡,且其全部内容以引用方式併入 本文中’具有如同在本文中闡述其全文一般之相同完全效 力且針對所有共同揭示之標的物主張優先權。 本申請案為William Johnstone Ray等發明人在2009年 11 月 22 日申請之題為 r Method of ManufacturingThe conversion of the US Provisional Patent Application No. 61/379,83, the entire disclosure of which is hereby incorporated by reference in its entirety in The citations are hereby incorporated by reference in their entirety to the extent of the disclosure of the entire disclosure of the disclosure of the disclosure of the disclosure of the entire disclosure. The March case of this application is the US Provisional Patent Application No. 61/379, 82 filed by the inventor of William Johnstone Ray et al. on September 3, 2010 entitled rUghtEmitting, ph〇t〇v〇ltaicand〇ther Electronic Apparatus. This patent application is hereby incorporated by reference in its entirety in its entirety herein in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in The subject matter that is jointly revealed advocates priority. This application is part of a continuation application of U.S. Patent Application Serial No. 11/756,616, filed on May 31, 2007, to the entire entire entire entire entire entire entire entire entire entire content The priority of the present application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety herein in priority. This application was filed on November 22, 2009 by the inventor of William Johnstone Ray and entitled r Method of Manufacturing

S 5 201226479S 5 201226479

Addressable and Static Electronic Displays, PowerAddressable and Static Electronic Displays, Power

Generating and Other Electronic Apparatus」之美國專利申 請案第12/601,268號之部分接續申請案且主張其優先權, 美國專利申請案第12/601,268號為William Johnstone Ray 等發明人在2007年5月31日申請之題為「Method of Manufacturing Addressable and Static Electronic Displays j 之美國專利申請案第1 1/756,616號之部分接續申請案且主 張其優先權,且為William Johnstone Ray等發明人在2008 年 5 月 30 曰申請之題為「Method of Manufacturing Addressable and Static Electronic Displays, PowerPart of the U.S. Patent Application Serial No. 12/601,268, the entire disclosure of which is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire content Part of the continuation application of US Patent Application Serial No. 1 1/756, 616, entitled "Method of Manufacturing Addressable and Static Electronic Displays j", and claims its priority, and inventors such as William Johnstone Ray on May 30, 2008曰Application titled "Method of Manufacturing Addressable and Static Electronic Displays, Power

Generating and Other Electronic Apparatus」之國際申請案 PCT/US2008/65237遵循35 U_S.C.第371章節之美國國家階 段申請案且主張其優先權,國際申請案PCT/ljS2008/65237 主張2〇07年5月31日申請之美國專利申請案第u/756,616 號之優先權’該等申請案與本申請案共同讓渡,且其全部 内容以引用方式併入本文中,具有如同在本文中闡述其全 文一般之相同完全效力且針對所有共同揭示之標的物主張 優先權。 本申請案亦為William Johnstone Ray等發明人在2〇1! 年5月31日申請之題為「Addressable 〇r以以泌The international application PCT/US2008/65237 of the Generating and Other Electronic Apparatus follows the US National Phase Application of Section 35 of the U.S.C. Section 371 and claims its priority. The international application PCT/ljS2008/65237 claims 2〇07 5 Priority to U.S. Patent Application Serial No. U.S. Patent Application Serial No. Serial No. No. No. No. No. No. No. No. No. No. No. Generally, the same full effect is claimed and priority is claimed for all commonly disclosed subject matter. This application is also filed by William Instron Ray et al. on May 31, 2011.

Emitting or Electronic Apparatus」之美國專利申請案第 13/i 49,68丨號之部分接續申請案且主張其優先權,美國專利 申請案第13/149,681號為WilHam Johnst〇ne Ray等發明人 在2007年5 β 31日申請且在2〇11年7月5日頒佈為美國 6 201226479 專利弟 US 7,972,031 B2 號之題為「Addressable or StaticPart of the U.S. Patent Application Serial No. 13/i 49,68, the entire disclosure of which is incorporated herein by reference. Application dated 5 β 31 and issued on July 5, 2011 to US 6 201226479 Patent US 7,972,031 B2 entitled “Addressable or Static

Light Emitting or Electronic Apparatus」之美國專利申請案 第1 1/756,619號之接續申請案且主張其優先權,該等申請 案與本申請案共同讓渡,且其全部内容以引用方式併入本 文中’具有如同在本文中闡述其全文一般之相同完全效力 且針對所有共同揭示之標的物主張優先權。本申請案為</ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 'There is a claim that is the same as the full validity of the text as set forth herein and claims the subject matter of all common disclosures. This application is

William Johnstone Ray等發明人在2009年11月22日申請 之題為「Addressable or Static Light Emitting,Power Generating or Other Electronic Apparatus」之美國專利申請 案第12/601,271號之部分接續申請案且主張其優先權,美 國專利申請案第12/601,271號為William johnstone Ray等 發明人在2007年5月31日申請之題為rAddressable 〇rU.S. Patent Application Serial No. 12/601,271, entitled "Addressable or Static Light Emitting, Power Generating or Other Electronic Apparatus", filed on November 22, 2009, by the s. US Patent Application No. 12/601,271, filed on May 31, 2007 by the inventor of William johnstone Ray, entitled rAddressable 〇r

Static Light Emitting or Electronic Apparatus」之美國專利 ..申請案第1 1/756,619號之部分接續申請案且主張其優先 權,且為William Johnstone Ray等發明人在2〇〇8年5月3〇 曰申请之題為「Addressable or Static Light Emitting, Power Generating or Other Electronic Apparatus」之國際申請案 PCT/US2008/65230遵循35U.S.C·第371章節之美國國家階 段申請案且主張其優先權,國際申請案pCT/US2〇〇8/6523〇 主張2007年5月31曰申請之美國專利申請案第1 1/756,6i9 號之優先權,該等申請案與本申請案共同讓渡,且其全部 内容以引用方式併入本文中,具有如同在本文中闡述其全 文一般之相^全效力且針對所冑共同揭*之標的物主張 優先權。 7 201226479 本申請案亦與隨其同時申請之下列專利申請案有關, 忒等申清案與本申請案共同讓渡,且其全部内容以引用方 式併入本文中,具有如同在本文中闡述其全文一般之相同 凡全效力且針對所有共同揭示之標的物主張優先權:^) Mark D. Lowenthal等發明人在2〇11年8月31曰申請之題 為「Printable Composition of a Liquid 〇r ㈤ Suspensi〇n 〇fU.S. Patent Application Serial No. 1 1/756,619, the entire disclosure of which is incorporated herein by reference in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire content The international application PCT/US2008/65230, entitled "Addressable or Static Light Emitting, Power Generating or Other Electronic Apparatus", follows the US National Phase Application of 35 USC Section 371 and claims its priority, international application pCT/US2〇〇8/6523〇 claims priority to U.S. Patent Application Serial No. 1 1/756,6, filed on May 31, 2007, which is hereby incorporated herein in The subject matter is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety herein 7 201226479 This application is also related to the following patent applications that are filed at the same time, and the application of the application is hereby incorporated by reference in its entirety herein in its entirety in The full text is generally the same as all the objects of common disclosure and claims: ^) Mark D. Lowenthal and other inventors applied for "Printable Composition of a Liquid 〇r (5) on August 31, 2011 Suspensi〇n 〇f

Diodes」之美國專利申請案第________號;(2 ) Mark D.US Patent Application No. ________ of Diodes; (2) Mark D.

Lowenthal等發明人在2011年8月31曰申請之題為「Ug}uThe inventor of Lowenthal et al. applied for the title "Ug}u on August 31, 2011.

Emitting, Power Generating or Other Electronic Apparatus」 之美國專利中請案第________號八3)' Mark D. Lowenthal 等發明人在2011年8月31日申請之題為「Method 〇f Manufacturing a Light Emitting, Power Generating or OtherEmitting, Power Generating or Other Electronic Apparatus" in US Patent Application No. ________ VIII 3)' Mark D. Lowenthal et al., filed on August 31, 2011, entitled "Method 〇f Manufacturing a Light Emitting , Power Generating or Other

Electronic Apparatus」之美國專利申請案第________號;(4)US Patent Application No. ________ of the Electronic Apparatus; (4)

Mark D. Lowenthal等發明人在2011年8月31曰申請之題 為「Diode For a Printable Composition」之美國專利申請案 第________號;(5 ) Mark D. Lowenthal等發明人在2011年 8 月 31 日申請之題為「Diode For a Printable Composition」 之美國專利中請案第________號;以及(6 ) Mark D.Mark D. Lowenthal et al., US Patent Application No. ________ entitled "Diode For a Printable Composition", filed on August 31, 2011; (5) Mark D. Lowenthal et al. US Patent Application No. ________ entitled "Diode For a Printable Composition", filed on the 31st of the month; and (6) Mark D.

Lowenthal等發明人在2011年8月31曰申請之題為 r Printable Composition of a Liquid or Gel Suspension of Two-Terminal Integrated Circuits and Apparatus」之美國專 利申請案第________號。 【發明所屬之技術領域】 本發明大體關於發光及光電技術’且尤其關於懸浮於 8 201226479 液體或膠體中且能夠經印刷之發光或光電二極體或其他二 端積體電路組成物,以及製造懸浮於液體或膠體中之發 光、光電或其他二極體或二端積體電路之組成物的方法。 【先前技術】 具有發光二極體(「led」)之照明器件通常需要使用積 體電路製程步驟在半導體晶圓上形成LED。所得LED實質 上呈平面且相當大,寬200微米或200微米以上之量級。 每一此種LED為二端器件,通常在lED之同一側上具有兩 個金屬知以為LED之p型部分與n型部分提供歐姆接觸 (〇hmie )。接著通常經由機械製程(諸如鑛切)將 LED晶圓分成個別LED。接著將個別㈣置於反射外殼 中:且將接線個別地附接至led之兩個金屬端中之各者。 此製耘耗時、勞動密集且昂貴,使得基於L印之照明器件 對於多數消費者應用而言一般過於昂貴。 田接&gt;1樣&amp;里生成盗件(諸如光電面板)亦通常需要使 積體電路製程步驟在半導ρ θ π# _ ^ ^ 千等體晶圓或其他基板上形成光電 。接著封裝且組裝所得晶圓或其他基板以形成光電 程亦耗時、勞動密集…,使得光電器件在 無弟二方資助或無其他政府 p ^ m ^ 府政勵下廣泛使用亦過於昂貴。 已運用各種技術試圖 新型二極體或其他半導體2用於發光或能量生成目的的 經有機分子官能化或封端:。舉例而言,已提出可印刷 之量子點以形成圖可混溶於有機樹脂及溶劑中 (P,)時發光。各種形:在該等圖形經第二光激: 战益件之方法亦已使用半導體奈米 9 201226479 粒子,諸如處於的丨Λ 地&quot;、约1.0 rim至約100 nm (十分之一微米)範 圍内之粒子進行。s T 另—方法已利用大量分散於溶劑-黏合劑 載劑中之矽粉,i φ 再1f利用所得矽粉膠態懸浮液形成印刷電 曰曰體中之活性層。另一不同方法已使用形成於晶圓上 之極平坦之AlInGaP LED結構,其中各LED具有至晶圓上 之兩個相鄰LED中之每一者的脫離光阻銷,且接著取玫各 LED以形成所得器件。 /、他返L已使用「鎖與鑰(lock and key )」流體自組裝, 其中將梯形二極體置放於溶劑中,接著將其傾注於具有用 以將梯形二極體捕獲且固持於適當位置之匹配之梯形孔之 基板上。然而,溶劑中之梯形二極體並非懸浮及分散於溶 劑内。反之,梯形二極體快速沈降成相互黏附之二極體塊, 無法維持懸浮或分散於溶劑内,且在臨用前須要活性音波 處理或攪拌。溶劑中之此種梯形二極體不能用作能夠儲 存、封裝或用作墨水之基於二極體之墨水,且進—步不適 用於印刷製程中。 此等方法均未利用真正分散且懸浮於液體或膠體介質 中,諸如以形成墨水之含有二端積體電路或其他半導體器 件之液體或膠體,其中該二端積體電路懸浮成粒子,完成 半導體器件且其能夠起作用,且該含有二端積體電路或其 他半導體器件之液體或膠體可使用印刷製程在非惰性大氣 空氣環境中形成裂置或系統。 對於基於LED之器件以及光電器件而言,此等基於二 極體之技術的新近發展仍過於複雜且昂貴而無法達成商業 201226479 上可行性。因此,仍須要經設計成在併入之組件以及製造 簡便性方面成本較低的發光及/或光電裝置,亦仍需要使用 成本較低且較穩固之製程製造該等發光或光電器件,從而 產生可供廣泛使用且為消費者及商業所接受之基於led之 照明器件以及光電面板的方法。因此,對能夠經印刷以形 成基於LED之器件及光電器件的完成之能夠起作用之二極 體或其他二端積體電路的液體或膠體懸浮液、形成該等基 於LED之器件及光電件之印刷方法以及所得之印刷之基 於LED之器件及光電器件仍有各種需求。 土 【發明内容】 例示性具體實例提供-種「二極體墨水」,即㈣諸如 經由例如網版印刷或快乾印刷術印刷的二極體或其他二端 積體電路的液體或膠體懸浮液及分散液。如下文所更詳細 描述’二極體自身在包括於二極體墨水組成物中之前為完 全成形之半導體器件,其在通雷拉At执+仏 、仗通逼時能夠起作用以發光(在 具體化為LED時)或在曝霞士, &amp;隹曝露於先源時提供電力(在具體化 為光電-極體時)。例示性方沾》4 A &amp; 丁 J 1彳丁 r生万去亦包含製造二極體墨水之方 法,如下文所更詳細論述,該方 必万去使複數個二極體分散及 懸浮於溶劑及黏性樹脂或聚合物'3 σ初此合物中,且可印刷該二 極體墨水以製造基於LED之器件及光電器件。亦揭示藉由 印刷該種二極體墨水而形成之例示性袭置及系統。 雖然描述内容集中於作我_ '為—種類型之二端積體電路的 二極體,然而熟習此項技術者 孜術者應瞭解可等效地替換成其他 類型之半導體器件以形成更声、$ 3 一 更廣,乏稱作「半導體器件墨水」 201226479 =:::!該等變化應視作等效且處於本發明範嘴内。 4壬何對「二極體」之提及應理解為意謂且包 可種類之任何二端積體電路’諸如電阻器、電感器、 電M、RFID電路 '感測器、壓電器件等,以及可使用兩 個翊子或電極操作之任何其他積體電路。 'j T u實例提供-種組成物,其包含:複數個 二極體;第一溶劑;以及黏度調節劑。 在一例示性具體實例中,第一溶劑包含至少一種選自 由以下組成之群的溶劑:水;醇,諸如曱醇、乙醇、正丙 醇(包括1-丙醇、2_丙醇(異丙醇曱氧基_2_丙醇)、 丁醇(包括1-丁醇、2-丁醇(異丁醇))、戊醇(包括卜戍 醇、2-戊醇、3-戊醇)、辛醇、正辛醇(包括丨_辛醇、2辛 醇、3-辛醇)、四氫糠醇、環己醇、松香醇;醚,諸如曱基 乙基醚 '***、乙基丙基醚及聚醚;酯,諸如乙酸乙酯、 己二酸二甲酯、丙二醇單甲醚乙酸酯、戊二酸二甲酯、丁 二酸二甲酯、乙酸甘油酯;二醇,諸如乙二醇、二乙二醇、 聚乙二醇、丙二醇、二丙二醇' 二醇喊、二醇峻乙酸g旨; 石炭酸酯,諸如碳酸伸丙酯;甘油類,諸如甘油;乙腈、四 氫呋喃(THF )、二曱基曱醯胺(DMF )、N-曱基甲醯胺 (NMF )、二曱亞颯(DMSO );及其混合物。第一溶劑可以 例如約0.3重量%至5 0重量%或6 0重量%之量存在。 在各個例示性具體實例中,複數個二極體中之各二極 體具有約20微米至30微米之直徑及約5微米至1 5微米之 高度;或具有約1〇微米至50微米之直徑及約5微米至25 12 201226479 祕米之阿度,或具有各自為約10微米至50微米之寬度及 長度以及約5微米至25微米之高度;或具有各自為約2〇 U米至3 0微來之寬度及長度以及約5微米至1 $微米之高 度複數個一極體可為例如發光二極體或光電二極體。 例示性組成物可進一步包含複數個實質上光學透明且 化學惰性之粒子,其尺寸範圍介於約微米與約50微米 之間且以約〇.1重量%至2.5重量%之量存在。另—例示性 組成物可進一步包含複數個實質上光學透明且化學惰性之 粒子,其尺寸範圍介於約1〇微米與約3〇微米之間且以約 0.1重量%至2.5重量。/。之量存在。 在一例示性具體實例中,黏度調節劑包含至少—種選 自由^下組成之群的黏度調節劑:黏土,諸如鋰蒙脫石= 土、%潤土黏土(garamite clay)、有機改質黏土;醋及多 醣’諸如瓜爾膝(guar gum)、三仙膠;纖维素及改質纖維 素’諸如羥曱基纖維素、甲基纖維素、乙基纖維素、丙基 f基纖維素、甲氧基纖維素、甲氧基甲基纖維素、甲氧基 丙基甲基纖維素、經丙基甲基纖維素、㈣基纖維素、經 :戢、隹素乙基無乙基纖維素、纖維素趟、纖維素乙縫、 聚葡萄知糖;聚合物,諸如丙烯酸酯及(曱基)丙_酸 物及共聚^二醇,諸如乙二醇、二乙二醇、聚乙一醇、 丙二㈣、二㈣乙酸酷;煙霧狀二氧 =例質尿素;及其混合物。黏度調節劑 ΰ 〇、”、·30重量%至5重量%或約°.1。重量%至3重量 %之量存在。 王J里里 13 201226479 組成物進-步包含不同於第一溶劑之第二溶劑。第 二溶劑以例如約0·1重量%至60重量%之量存在。 在-例示性具體實例中,第—溶劑包含正丙醇、異丙 醇、二丙二醇、二乙二醇、丙二醇、κ甲氧基_2_丙醇、卜 辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約5 之量存在;黏度調節劑包含曱氧基丙基 以ΓοΓ舌祕月日或經丙基甲基纖維素樹月旨或其混合物’且 丙醇里至5·0重量%之量存在;且第二溶劑包含正 丙二丙二醇、二乙二醇、丙二醇、“曱氧基-2- 6醇、四氫糠醇或環已醇,或其混合物,且 以約0.3重量%至5〇重量%之量存在。 在另—例示性具體實例中’第—溶劑包含正丙醇、異 丙醇、二丙二醇、一产一辟 ^ ^ 吞 〜 一乙—知、丙二醇、1-甲氧基-2-丙醇、 =:于乙醇eg氫糠醇或環己醇’或其混合物,且以約5 重里/〇至30重量%之量存在;黏度調節劑包含曱氧基丙基 曱基纖維素樹脂或經丙基甲基纖維素樹脂或其混合物,且 以約1.0重量%至旦β ’重里之董存在;且第二溶劑包含正 丙醇、異丙醇、二兩_ * _ 电 —丙一知、二乙二醇、丙二醇、Ι-f氧基 丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且 〇·2重量%至重量%之量存在’·且其t組成物之其 餘部分進一步包含水。 /另一例示性具體實例中,第一溶劑包含正丙醇、異 丙•、二丙二醇、二乙二醇、丙二醇、&quot;氧基·2·丙醇:、 卜辛醇、乙醇、四氫糠醇或環己醇,或其混合物,且以約 14 201226479 40重量%至60重量°/〇之量存在;黏度調節劑包含甲氧基丙 基曱基纖維素樹脂或羥丙基曱基纖維素樹脂或其混合物, 且以約0.10重量%至I·5重量%之量存在;且第二溶劑包含 正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-曱氧基 -2-丙醇、卜辛醇、乙醇、四氫糠醇或環己醇,或其混合物, 且以約4 0重量%至6 0重量%之量存在。 製備組成物之例示性方法可包含:混合複數個二極體 與第一溶劑;將第一溶劑與複數個二極體之混合物添加至 黏度調節劑中;添加第二溶劑;及在空氣氛圍中混合複數 個二極體、第一溶劑、第二溶劑及黏度調節劑約2 5至3 0 分鐘。例示性方法可進一步包含自晶圓釋放複數個二極 體,且自晶圓釋放複數個二極體之步驟包含例如蝕刻晶圓 之背面’研磨且拋光晶圓之背面,或自晶圓背面雷射剝離。 在各個例示性具體實例中,組成物在約2 5 °C下具有實 質上介於約50 cps與約25,000 cps之間的黏度,或在約25°C 下具有實質上介於約100 cps與約25,000 cps之間的黏度, 或在約25°C下具有實質上介於約1,000 cps與約1〇,〇〇〇 cps 之間的黏度,或在約25°C下具有實質上介於約10,000 cps 與約25,000 cps之間的黏度。 在各個例示性具體實例中,複數個二極體中之各二極 體可包含GaN且其中複數個二極體中之各二極體之GaN部 分為實質上六角形、正方形、三角形、矩形、葉形、星形 或超環形。在一例示性具體實例中,複數個二極體之各二 極體之發光或光吸收區域可具有選自由以下組成之群的表 15 201226479 面紋理:複數個圓環、複數個實質 行條紋、星形圖案及其混合物。、邊梯形、複數個平 在-例示性具體實例中, 在二極體之第-側上具有第一金屬端二τ之各二極體 側(背面)上具有第二金屬端子,且第一::極體之第二 之高度各自為約微米 與第一端子 複數個二極例示性具體實例中, ^ 2〇 30 土丄)徽米之尚度,日热去 體在第―側上具有複數個帛^ 巾之各二極 -個第二“屬端子且在第-側上具有 屬端子之拉知子’第二金屬端子之接點與複數個第一金 #點在南度上間隔約2微米至5微米。在一例示 性具體貫例中,複數個 的古 千_之各弟一金屬端子 微^ W·5微米至2微米且第二金屬端子之高度為約1 /' 微米。在另一例示性具體實例中,複數個二極體 之又二極體具有約10微米至5〇微米之直徑及5微米至 25微,米之高度,且複數個二極體中之各二極體在第一侧上 -有複數個第一金屬端子且在第一侧上具有一二 端子,笛_ 列 ^ —金屬端子之接點與複數個第一金屬端子之接點 在问度上間隔約1微米至7微米。 在另—例示性具體實例中,.複數個二極體中之各二極 體具有至少—個金屬導孔結構於二極體之第一側上之至少 個P+型或n+型GaN層與二極體之第二側(背面)之間延 伸。金屬導孔結構包含例如中心導孔、周邊導孔或周圍導 孔。 16 201226479 在各個例不性具體實例中,複數個二極體中之各二極 之任何尺寸均小於約3〇微米。在$ —例示性具體實例 中一極體具有約20微米至30微米之直徑及約5微米至 15微米之高度;或約1〇微米至5〇微米之直徑及約$微米 至25微米之高度;或在側向上實質上為六角形,具有約 U米至5 0祕米之相對面對面量測之直徑,及約$微米至2 5 微米之高度;或在側向上實質上為六角形,具有約2〇微米 至30,米之相對面對面量測之直徑,&amp;約5微米至15微 米之门度,或具有各自為約1〇微米至5〇微米之寬度及長 :乂及約5微米至25微米之高度;或具有各自為約2〇微 米至30微米之寬度及長度以及約5微米至15微米之高度。 在各個例示性具體實例中,複數個二極體中之各二極體之 側面的高度小於約10微来。在另一例示性具體實例中,複 數個一極祖中之各二極體之側面的高度為約2.5微米至6微 米。在另一例示性具體實例中,複數個二極體令之各二極 體之側面實質上為S形且終止於彎曲點。 在各個例示性具體實例中,黏度調節劑進一步包含黏 著黏度調節劑。黏度調節劑在乾燥或固化時可實質上圍繞 複數個二極體中之各二極體周邊形成聚合物或樹脂網格或 結構。組成物例如在濕潤時可為視覺上不透明的而在乾燥 或固化時為實質上光學透明的。組成物之接觸角可大於約 25+度或大於約4〇度。組成物之相對蒸發率可小於1, 該蒸發率係相對於乙酸丁醋而言,後者之蒸發率為卜使 組成物之方法可包含在基底上或在轉接至基底之第一導體U.S. Patent Application No. ________, filed on August 31, 2011, by the inventor of the present application, entitled "R Printable Composition of a Liquid or Gel Suspension of Two-Terminal Integrated Circuits and Apparatus". TECHNICAL FIELD OF THE INVENTION The present invention relates generally to illuminating and optoelectronic technologies and, more particularly, to luminescent or photodiode or other two-terminal integrated circuit compositions that are suspended in a liquid or colloid of 201222479 and that can be printed, and A method of illuminating, photovoltaic or other composition of a diode or a two-terminal integrated circuit suspended in a liquid or gel. [Prior Art] An illumination device having a light-emitting diode ("led") generally requires an integrated circuit process step to form an LED on a semiconductor wafer. The resulting LED is substantially planar and relatively large, on the order of 200 microns or more. Each such LED is a two-terminal device, typically having two metals on the same side of the lED to provide an ohmic contact (〇hmie) between the p-type portion and the n-type portion of the LED. The LED wafer is then typically divided into individual LEDs via a mechanical process such as a metal cut. Individual (four) are then placed in the reflective housing: and the wires are individually attached to each of the two metal ends of the led. This system is time consuming, labor intensive and expensive, making L-based lighting devices generally too expensive for most consumer applications. It is also generally necessary to have the integrated circuit process steps to form a photo-electricity on a semiconductor wafer or other substrate of a semi-conducting ρ θ π # _ ^ ^ 千 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 It is also time consuming and labor intensive to package and assemble the resulting wafer or other substrate to form an optoelectronic process, making the optoelectronic device too expensive to use widely in the absence of other parties or without other government governments. Various techniques have been employed to attempt to functionalize or cappicate organic molecules by novel diodes or other semiconductors 2 for luminescence or energy generation purposes: For example, printable quantum dots have been proposed to form light-emitting when the pattern is miscible in an organic resin and a solvent (P,). Various shapes: in the second light of the pattern: the method of warfare has also used semiconductor nano 9 201226479 particles, such as in the 丨Λ &,, about 1.0 rim to about 100 nm (one tenth of a micron) The particles in the range are carried out. s T another method has utilized a large amount of tantalum powder dispersed in a solvent-adhesive carrier, i φ 1f to form an active layer in the printed electrode body using the resulting colloidal suspension of tantalum powder. Another different approach has used an extremely flat AlInGaP LED structure formed on a wafer, where each LED has a detached photoresist pin to each of two adjacent LEDs on the wafer, and then each LED is taken To form the resulting device. /, he returned to L has used the "lock and key" fluid self-assembly, in which the trapezoidal diode is placed in a solvent, and then poured into the trap to capture and hold the trapezoidal diode Match the trapezoidal holes on the substrate in place. However, the trapezoidal diode in the solvent is not suspended and dispersed in the solvent. On the contrary, the trapezoidal diode rapidly settles into mutually adhered diode blocks, which cannot be suspended or dispersed in the solvent, and requires active sonication or agitation before use. Such a trapezoidal diode in a solvent cannot be used as a diode-based ink capable of being stored, packaged, or used as an ink, and is not suitable for use in a printing process. None of these methods utilize liquids or colloids that are truly dispersed and suspended in a liquid or colloidal medium, such as a two-terminal integrated circuit or other semiconductor device that forms an ink, wherein the two-terminal integrated circuit is suspended into particles to complete the semiconductor. The device and its functioning, and the liquid or colloid containing the two-terminal integrated circuit or other semiconductor device can use a printing process to form a crack or system in a non-inert atmospheric air environment. For LED-based devices and optoelectronic devices, the recent development of such diode-based technologies is still too complex and expensive to achieve commercial 201226479 feasibility. Accordingly, there is still a need for an illuminating and/or optoelectronic device that is designed to be less costly in terms of incorporated components and ease of manufacture, and still requires the use of lower cost and more robust processes for fabricating such illuminating or optoelectronic devices, thereby A method of producing LED-based lighting devices and photovoltaic panels that are widely available and acceptable to consumers and businesses. Thus, a liquid or colloidal suspension of a diode or other two-terminal integrated circuit capable of being printed to form a completed LED-based device and a photovoltaic device, forming the LED-based device and the photovoltaic device The printing method and the resulting printed LED-based devices and optoelectronic devices still have various needs. FIELD OF THE INVENTION [Illustration] An exemplary embodiment provides a "diode ink", ie, (iv) a liquid or colloidal suspension such as a diode or other two-terminal integrated circuit printed via, for example, screen printing or fast-dry printing. And dispersion. As described in more detail below, 'the diode itself is a fully formed semiconductor device prior to inclusion in the diode ink composition, which is capable of functioning to illuminate when the Tolera At When it is embodied as an LED) or when it is exposed to the source, it is supplied with electricity (in the case of a photoelectric-polar body). The exemplary method of 4 D &D; J 1 彳 r r 生 万 also includes the method of manufacturing the diode ink, as discussed in more detail below, the party must disperse and suspend the plurality of diodes The solvent and the viscous resin or polymer '3 σ initial composition, and the diode ink can be printed to manufacture LED-based devices and optoelectronic devices. An exemplary attack and system formed by printing such a diode ink is also disclosed. Although the description focuses on the diodes of the two-terminal integrated circuit of the type I am a skilled person, those skilled in the art should understand that they can be equivalently replaced with other types of semiconductor devices to form a louder sound. $3 is more extensive and is called "semiconductor device ink" 201226479 =:::! These changes should be considered equivalent and within the scope of the present invention. 4. Any reference to "diode" should be understood to mean any two-terminal integrated circuit such as resistors, inductors, electric M, RFID circuit sensors, piezoelectric devices, etc. And any other integrated circuit that can be operated with two dice or electrodes. The 'j T u example provides a composition comprising: a plurality of diodes; a first solvent; and a viscosity modifier. In an exemplary embodiment, the first solvent comprises at least one solvent selected from the group consisting of: water; alcohols such as decyl alcohol, ethanol, n-propanol (including 1-propanol, 2-propanol (isopropyl) Alcoholoxy-2-propanol), butanol (including 1-butanol, 2-butanol (isobutanol)), pentanol (including diterpene alcohol, 2-pentanol, 3-pentanol), Octanol, n-octanol (including hydrazine-octanol, 2-octanol, 3-octanol), tetrahydrofurfuryl alcohol, cyclohexanol, rosin alcohol; ether, such as mercaptoethyl ether 'ether, ethyl propyl ether And polyether; esters, such as ethyl acetate, dimethyl adipate, propylene glycol monomethyl ether acetate, dimethyl glutarate, dimethyl succinate, glycerol acetate; glycols, such as ethylene Alcohol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol 'diol ketone, diol succinic acid g; charcoal esters, such as propyl carbonate; glycerol, such as glycerol; acetonitrile, tetrahydrofuran (THF) Dimercaptodecylamine (DMF), N-mercaptocarboxamide (NMF), diterpenoid (DMSO); and mixtures thereof. The first solvent may, for example, be from about 0.3% to about 50% by weight Or in an amount of 60% by weight. In each exemplary embodiment, each of the plurality of diodes has a diameter of from about 20 microns to 30 microns and a height of from about 5 microns to 15 microns; or A diameter of from about 1 micron to 50 microns and from about 5 microns to 25 12 201226479 Mito, or having a width and length of from about 10 microns to 50 microns and a height of from about 5 microns to 25 microns; or For a width and length of from about 2 U meters to about 30 micrometers and a height of from about 5 micrometers to about 1 micrometer, the plurality of one poles may be, for example, a light emitting diode or a photodiode. The exemplary composition may further comprise a plurality of substantially optically transparent and chemically inert particles having a size ranging between about microns and about 50 microns and present in an amount of from about 0.1% to about 2.5% by weight. The additional exemplary composition can further comprise A plurality of substantially optically transparent and chemically inert particles having a size ranging between about 1 Å and about 3 Å and present in an amount of from about 0.1% to about 2.5 % by weight. In an exemplary embodiment Medium viscosity adjuster package At least - a viscosity modifier selected from the group consisting of: clay, such as hectorite = earth, garamite clay, organically modified clay; vinegar and polysaccharides such as guar gum ), Sanxianjiao; cellulose and modified cellulose 'such as hydroxydecyl cellulose, methyl cellulose, ethyl cellulose, propyl f-based cellulose, methoxy cellulose, methoxymethyl Cellulose, methoxypropylmethylcellulose, propylmethylcellulose, (tetra)cellulose, phthalocyanine, alizarin ethyl ethylcellulose, cellulose oxime, cellulose sulphide, poly Grapes; polymers, such as acrylates and (mercapto) propionics and copolymers, such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene (tetra), di(tetra) acetic acid; Dioxane = morphological urea; and mixtures thereof. The viscosity modifier ΰ 〇, ", · 30% by weight to 5% by weight or about °. 1% by weight to 3% by weight. Wang Jerry 13 201226479 Composition step-by-step contains a different solvent than the first solvent The second solvent is present in an amount of, for example, about 0.1% by weight to 60% by weight. In an exemplary embodiment, the first solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol. , propylene glycol, κ methoxy-2-propanol, octanoicol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of about 5; the viscosity modifier comprises a methoxy propyl group to ΓοΓ The tongue is present in the amount of propylmethylcellulose or its mixture 'and the amount of propanol to 5.0% by weight; and the second solvent comprises n-propylene dipropylene glycol, diethylene glycol, propylene glycol, Alkoxy-2-6 alcohol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 0.3% by weight to about 5% by weight. In another exemplary embodiment, the first solvent includes n-propanol, isopropanol, dipropylene glycol, a product, a product, a propylene glycol, a 1-methoxy-2-propanol group, =: in ethanol eg hydroquinol or cyclohexanol' or a mixture thereof, and is present in an amount of from about 5 liters to about 30% by weight; the viscosity modifier comprises methoxypropyl propyl cellulose resin or propyl group a cellulose-based resin or a mixture thereof, and is present in a weight of about 1.0% by weight to a weight of β'; and the second solvent comprises n-propanol, isopropanol, two or more _* _ electro-propan-known, two-two Alcohol, propylene glycol, fluorenyl-f-propoxyl alcohol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and in an amount of from 2% by weight to 3% by weight, and its t composition The remainder of the water further contains water. In another exemplary embodiment, the first solvent comprises n-propanol, isopropyl, dipropylene glycol, diethylene glycol, propylene glycol, &quot;oxy-2, propanol:, octyl alcohol, ethanol, tetrahydrogen a sterol or cyclohexanol, or a mixture thereof, and present in an amount of from about 40 201226479 40% by weight to 60% by weight; the viscosity modifier comprises methoxypropyl fluorenyl cellulose resin or hydroxypropyl fluorenyl cellulose a resin or a mixture thereof, and is present in an amount of from about 0.10% by weight to about 5% by weight; and the second solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-decyloxy- 2-propanol, octyl alcohol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 40% by weight to 60% by weight. An exemplary method of preparing a composition can include: mixing a plurality of diodes with a first solvent; adding a mixture of the first solvent and the plurality of diodes to the viscosity modifier; adding a second solvent; and in an air atmosphere Mixing a plurality of diodes, a first solvent, a second solvent, and a viscosity modifier for about 25 to 30 minutes. The exemplary method can further include releasing a plurality of diodes from the wafer, and the step of releasing the plurality of diodes from the wafer includes, for example, etching the back side of the wafer 'grinding and polishing the back side of the wafer, or Shot peeling. In various exemplary embodiments, the composition has a viscosity substantially between about 50 cps and about 25,000 cps at about 25 ° C, or substantially between about 100 at about 25 ° C. a viscosity between cps and about 25,000 cps, or a viscosity between about 1,000 cps and about 1 〇, 〇〇〇cps at about 25 ° C, or substantially at about 25 ° C. Viscosity between about 10,000 cps and about 25,000 cps. In various exemplary embodiments, each of the plurality of diodes may include GaN and wherein the GaN portions of each of the plurality of diodes are substantially hexagonal, square, triangular, rectangular, Leaf shape, star shape or super ring shape. In an exemplary embodiment, the illuminating or light absorbing regions of each of the plurality of diodes may have a surface selected from the group consisting of: 201226479 face texture: a plurality of rings, a plurality of substantial line stripes, Star pattern and its mixture. a side trapezoid, a plurality of flat-example embodiments, having a second metal terminal on each of the diode sides (back side) having the first metal end two τ on the first side of the diode, and first The height of the second pole of the polar body is about a micrometer and the first terminal is a plurality of two poles. In the specific example, ^ 2〇30 soil 丄) is the degree of the rice, and the heat removal body has the first side. Each of the two poles of the plurality of wipes - the second "terminal is the terminal and has the terminal of the puller on the first side" the contact of the second metal terminal and the plurality of first gold # points are spaced apart on the south 2 micrometers to 5 micrometers. In an exemplary specific example, a plurality of metal terminals each have a metal terminal of micrometers of 5 micrometers to 2 micrometers and a height of the second metal terminal of about 1⁄2 micrometer. In another illustrative embodiment, the plurality of diodes have a diameter of about 10 microns to 5 microns and a height of 5 microns to 25 microns, and a plurality of diodes. The pole body is on the first side - there are a plurality of first metal terminals and one or two terminals on the first side, flute _ column ^ - gold The junction of the terminal and the plurality of first metal terminals are spaced apart by about 1 micrometer to 7 micrometers in question. In another exemplary embodiment, each of the plurality of diodes has at least - The metal via structure extends between at least one P+ type or n+ type GaN layer on the first side of the diode and a second side (back side) of the diode. The metal via structure includes, for example, a central via hole and a periphery. Guide hole or surrounding guide hole. 16 201226479 In each of the examples, any of the plurality of diodes has a size less than about 3 μm. In the exemplary embodiment, the one pole has a diameter of from about 20 microns to 30 microns and a height of from about 5 microns to 15 microns; or a diameter of from about 1 micron to 5 microns and a height of from about $ microns to 25 microns; or substantially hexagonal in the lateral direction, The diameter of the relative face-to-face measurement of about U meters to 50 mils, and the height of about $micron to 25 microns; or substantially hexagonal in the lateral direction, having a relative face-to-face amount of about 2 〇 micrometers to 30 meters. Measured diameter, &amp; a gate length of about 5 microns to 15 microns, or Each having a width and length of from about 1 micron to 5 micron: 乂 and a height of from about 5 microns to 25 microns; or having a width and length of from about 2 microns to 30 microns and a height of from about 5 microns to 15 microns In various exemplary embodiments, the height of the sides of each of the plurality of diodes is less than about 10 micro. In another illustrative embodiment, each of the plurality of diodes The height of the sides is from about 2.5 microns to about 6 microns. In another exemplary embodiment, the plurality of diodes have sides of each of the diodes that are substantially S-shaped and terminate in a bending point. In an embodiment, the viscosity modifier further comprises an adhesion viscosity modifier. The viscosity modifier, when dried or cured, can form a polymer or resin mesh or structure substantially around the perimeter of each of the plurality of diodes. The composition may be visually opaque when wet, and substantially optically clear when dried or cured. The contact angle of the composition can be greater than about 25+ degrees or greater than about 4 degrees. The relative evaporation rate of the composition may be less than 1, the evaporation rate being relative to the acetic acid vinegar, the evaporation rate of the latter being such that the composition may be included on the substrate or on the first conductor transferred to the substrate.

17 S 201226479 上印刷組成物。 在一例示性具體實例中,複數個:極體中之各二極體 包3至少一種選自由以下組成之群的無機半導體··石夕、坤 化嫁(GaAs)、氮化鎵(GaN)、Gap、InAiGap、inAiGap、The composition was printed on 17 S 201226479. In an exemplary embodiment, a plurality of: each of the diode packages 3 in the polar body is at least one selected from the group consisting of inorganic semiconductors, such as Shi Xi, Kunhua (GaAs), and gallium nitride (GaN). , Gap, InAiGap, inAiGap,

AlInGaAs、InGaNAs及A1InGASb。在另—例示性具體實例 中複數個一極體中之各二極體包含至少__種選自由以下 組成之群的有機半導體:π共輛聚合物、聚(乙炔)、聚(。比 各)聚(噻吩)、聚苯胺、聚噻吩、聚(對苯硫醚)、聚(對伸 苯基伸乙婦基)(PPV) &amp; PPV衍生物、聚(3_烧基嗟吩)、 聚。引哚、聚祐、聚t坐、聚甘菊環、聚1乎、聚(妨)、聚蔡、 聚苯胺'聚苯胺衍生物、聚噻吩、聚噻吩衍生物、聚吡咯、 聚》比略衍生物、聚料替、聚苯并料衍生物、聚對伸 苯基、聚對伸苯基衍生物、聚乙炔、》乙炔衍生物、聚二 乙炔'聚二乙炔衍生物、聚對伸苯基伸乙烯基'聚對伸苯 基伸乙烯基衍生4勿、萘、聚萘衍生物、聚異苯并噻吩 (polyisothianaphthene,PITN )、伸雜芳基為噻吩、呋喃或 比·^之聚伸雜芳基伸乙烯基(ParV )、聚苯硫醚(pps )、聚 迫萘(polyperinaphthalene,PPN)、聚酞菁(pphc),及其 衍生物、其共聚物及其混合物。 另例示性具體實例提供一種組成物,其包含:複數 個一極體,第一溶劑;及黏度調節劑;其中該組成物在約 25 C下之黏度實質上為約1〇〇 cps至約25,〇〇〇 cps。另—例 不性具體實例提供一種組成物,其包含:複數個二極體, 複數個—極體中之各二極體之任何尺寸均小於約5 〇微米; 201226479 第一溶劑;不同於第一溶劑之第二溶劑;及黏度調節劑; 其中該組成物在約25T:下之黏度實質上為約5〇 cps至約 25.000 cps。另一例示性具體實例提供—種組成物其包含 任何尺寸均小於約50微米之複數個二極體;及黏度調節 劑,以使組成物在約25°C下之黏度實質上為約1〇〇 cps至約 20.000 CPS。另一例示性具體實例提供一種組成物,其包含: 複數個二極體;選自由以下組成之群的第一溶劑:正丙醇、 丙醇、一丙一醇、二乙二醇、丙二醇、i•甲氧基丙醇、 “辛醇、乙醇、四氫糠醇、環己醇及其混合物;選自由以下 組成之群的黏度調節劑:甲氧基丙基甲基纖維素樹脂、經 丙基甲基纖維素樹脂及其混合物;及不同於第一溶劑之第 :溶劑,I亥第二溶劑選自由以下組成之群:正丙醇、異丙 醇、二丙二醇、二乙二醇、丙二醇、L甲氧基_2·丙醇、L 辛醇、乙醇、四氫糠醇、環己醇及其混合物。 另一例示性具體實例提供一種裝置,其包含:複數個 -極體;1少痕量之第一溶劑;及至少部分圍繞複數個二 虽體中之各二極體的聚合物或樹脂膜。在—例示性且體 例中’聚合物或樹脂膜包含厚度為約1〇nmi3〇〇nm ::維素樹脂。在另一例示性具體實例中,聚合物或樹脂 膜包含曱氧基丙基曱某_罐考_枯+ , 土甲基義、.隹素树月曰或羥丙基甲基纖維素樹 曰!其混合物。”置可進-步包含至少痕量之不同於第 一〉谷劑之第二溶劑。 第 例示性具體實例中,聚合物或樹脂膜包含固化、 乾無或聚合之黏度調㈣,該黏度調節劑選自由以下組成AlInGaAs, InGaNAs, and A1InGASb. In another exemplary embodiment, each of the plurality of diodes includes at least one organic semiconductor selected from the group consisting of: π-host polymer, poly(acetylene), poly(. Poly(thiophene), polyaniline, polythiophene, poly(p-phenylene sulfide), poly(p-phenylene phenylene) (PPV) &amp; PPV derivatives, poly(3_alkyl porphin), poly .引哚,聚佑, poly t sitting, polyglycy ring, poly 1 , poly (make), polycaline, polyaniline 'polyaniline derivative, polythiophene, polythiophene derivative, polypyrrole, poly" derivative , polybutadiene, polybenzene derivative, poly-p-phenylene, poly-p-phenylene derivative, polyacetylene, acetylene derivative, polydiacetylene 'polydiacetylene derivative, poly-p-phenylene extended ethylene Poly-p-phenylene-extended vinyl-derived 4, naphthalene, polynaphthalene derivatives, polyisothianaphthene (PITN), heteroaryl groups are thiophene, furan or poly(ethylene) Base (ParV), polyphenylene sulfide (pps), polyperinaphthalene (PPN), polyphthalocyanine (pphc), and derivatives thereof, copolymers thereof, and mixtures thereof. Another illustrative embodiment provides a composition comprising: a plurality of monopoles, a first solvent; and a viscosity modifier; wherein the composition has a viscosity of from about 1 〇〇 cps to about 25 at about 25 C. , 〇〇〇cps. Another example is a composition comprising: a plurality of diodes, each of the plurality of diodes having a size of less than about 5 μm; 201226479 first solvent; different from the first a second solvent of a solvent; and a viscosity modifier; wherein the composition has a viscosity of from about 5 〇 cps to about 25.000 cps at about 25 T:. Another illustrative embodiment provides a composition comprising a plurality of diodes of any size less than about 50 microns; and a viscosity modifier such that the composition has a viscosity of about 1 在 at about 25 ° C. 〇cps to about 20.000 CPS. Another illustrative embodiment provides a composition comprising: a plurality of diodes; a first solvent selected from the group consisting of n-propanol, propanol, monopropanol, diethylene glycol, propylene glycol, i•methoxypropanol, “octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier selected from the group consisting of methoxypropyl methylcellulose resin, propyl a methylcellulose resin and a mixture thereof; and a solvent different from the first solvent: the second solvent is selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, L-methoxy-2-propanol, L-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof. Another illustrative embodiment provides a device comprising: a plurality of - polar bodies; a first solvent; and a polymer or resin film at least partially surrounding each of the plurality of dipoles. In an exemplary embodiment, the polymer or resin film comprises a thickness of about 1 〇nmi3〇〇nm. :: Vitamin resin. In another illustrative embodiment, the polymer The resin film contains methoxypropyl hydrazine, _can test _ dry +, earth methyl sulphate, sulphate saponin or hydroxypropyl methylcellulose tree 曰! a mixture thereof. The amount is different from the first solvent of the first agent. In a first exemplary embodiment, the polymer or resin film comprises a viscosity-adjusting (four) curing, dry or polymerization, and the viscosity adjusting agent is selected from the group consisting of

S 19 201226479 諸如鐘蒙脫石黏土、膨潤土黏 黏土;聰及多酷’諸如瓜爾膠、三仙膠;纖唯素及 維素’諸如經甲基纖維素、甲基纖維素貝義 基甲基纖維素、甲氧A鳙 丄纖、准素、丙 y “ 乳基纖維素、甲氧基曱基纖維素、甲氧 基1甲基纖維素、㈣基甲基纖維素1甲基㈣^ 毯乙土纖維素、乙基羥乙基纖維素、纖維素醚、纖维辛乙 醚二葡萄胺糖;聚合物,諸如丙稀酸醋及(甲基)丙=: 聚合物及共聚物;二醇,諸如乙二醇'二乙二醇、;乙: 私 帛—丙-醇、二醇醚、二醇醚乙酸酯;煙霧狀 二氧切、二氧切粉;改質尿素;及其混合物。 例示性裝置可進-步包含複數個實質上光學透明且化 學惰性之粒子’複數個實質上光學透明且化學惰性之粒子 中之各惰性粒子介於約10微米與約5〇微米之間;其中聚 合物或樹脂膜進一步至少部分圍繞複數個實質上光學透明 真化學惰性之粒子中之各惰性粒子。 例示性裝置可進一步包含:基底;一或 /端子之第一導體;至少一個耦接至—或多 介電層;及一或多個耦接至第二端子且耦接 &gt;導體。在一例示性具體實例中,複數個二 〆個二極體具有耦接至至少一個第二導體之 操觅至少一個第一導體之第二端子。在另一 刎中,第一部分複數個二極體具有耦接至至 雜之第一端子及耦接至至少一個第二導體之 其中第二部分複數個二極體具有耦接至至少 多個耦接至第 個第一導體之 至介電層的第 極體中之至少 第—端子及耦 例示性具體實 少一個第—導 第二端子,且 一個第二導體 20 201226479 之弟鸲子及耦接至至少一個第一導體 性裝置可進—牛6人&gt; 舳千例不 _ , ^ 步匕3 .耦接至一或多個第一導體且耦接至 至^固弟二導體之介面電路,該介面電路進一步可搞接 牛勺各個例不性具體實例中,一或多個第一導體可進一 m-電極’其包含第一匯流排及自第一匯流排延 之’:複數個延長導體;及第二電極,其包含第二匯流 第匯机排延伸之第二複數個延長導體。第二複數 個延長導體可與第一複數個延長導體相間錯雜。一或多個 第二導體可進一步耗接至第二複數個延長導體。 在各個例示性具體實例中,該裝置可摺疊且可彎曲。 該裝置可為實質上平坦的且總厚度小於約3麵。裝置可用 刀模切割且摺疊成所選形狀。裝置之複數個二極體的平均 表面積濃度可為每平方公分約25個至5〇,〇〇〇個二極體。在 各個例示性具體實例中,裝置不包括散熱片或散熱片組件。 在另-例示性具體實例中,裝置包含:基底;複數個 二極體,複數個二極體中之各二極體具有第一端子及第二 料,複數個二極體中之各二極體的任何尺寸均小於約5〇 微米;實質上圍繞複數個二極體中之各二極體之膜,該膜 包含聚合物或樹脂且厚度為約1〇 11„1至3〇〇 nm; 一或多個 轉接至第一複數個第一端子之第一導體;輕接至一或多個 第一導體之第一介電層;及一或多個耦接至第一複數個第 二端子之第二導體。 在另一例示性具體實例中,裝置包含:基底;一或多S 19 201226479 Such as montmorillonite clay, bentonite clay; Cong and Duo cool 'such as guar gum, Sanxian gum; fibrin and vitamins such as methyl cellulose, methyl cellulose berylyl methyl Cellulose, methoxy A, cellulose, gamma y "milk-based cellulose, methoxy decyl cellulose, methoxy 1 methyl cellulose, (tetra) methyl cellulose 1 methyl (tetra) ^ blanket Ethyl cellulose, ethyl hydroxyethyl cellulose, cellulose ether, fiber octyl ether diglucosamine; polymers such as acrylic acid and (meth) propyl =: polymers and copolymers; diol , such as ethylene glycol 'diethylene glycol, B: private propylene-alcohol, glycol ether, glycol ether acetate; smog-type dioxy-cut, dioxy-cut powder; modified urea; and mixtures thereof The exemplary device can further comprise a plurality of substantially optically transparent and chemically inert particles of each of the plurality of substantially optically transparent and chemically inert particles between about 10 microns and about 5 microns; Wherein the polymer or resin film further at least partially surrounds a plurality of substantially optically transparent, chemically inert particles Each of the inert particles may further comprise: a substrate; a first conductor of one or / terminal; at least one coupled to - or a multi-dielectric layer; and one or more coupled to the second terminal and coupled &lt;Conductor. In an exemplary embodiment, the plurality of two diodes have a second terminal that is coupled to the at least one second conductor to operate the at least one first conductor. In another, the first portion The plurality of diodes have a first terminal coupled to the first terminal and a second portion coupled to the at least one second conductor, wherein the plurality of diodes are coupled to the at least plurality of first conductors At least a first terminal and a coupling of the first pole of the dielectric layer are substantially less than one first conductive second terminal, and a second conductor 20 201226479 is coupled to the at least one first conductive The device can be advanced to 6 people> 舳 thousand cases are not _ , ^ step 匕 3. Coupled to one or more first conductors and coupled to the interface circuit of the two conductors, the interface circuit can further engage One or more of the specific examples of the case The first conductor may enter an m-electrode 'which includes a first bus bar and a 'from the first bus bar': a plurality of elongate conductors; and a second electrode comprising a second plurality of second bus bar extensions Extending the conductor. The second plurality of elongated conductors may be misaligned with the first plurality of elongated conductors. The one or more second conductors may be further consuming to the second plurality of elongated conductors. In various exemplary embodiments, the apparatus may Folded and bendable. The device can be substantially flat and have a total thickness of less than about 3. The device can be cut with a die and folded into a selected shape. The average surface area concentration of the plurality of diodes of the device can be about a square centimeter. 25 to 5 〇, a diode. In various exemplary embodiments, the device does not include a heat sink or heat sink assembly. In another exemplary embodiment, the device includes: a substrate; a plurality of diodes Each of the plurality of diodes has a first terminal and a second material, and each of the plurality of diodes has a size of less than about 5 μm; substantially surrounding the plurality of diodes body a film of each of the diodes, the film comprising a polymer or a resin and having a thickness of about 1 〇 11 „1 to 3 〇〇 nm; one or more first conductors transferred to the first plurality of first terminals; a first dielectric layer connected to the one or more first conductors; and one or more second conductors coupled to the first plurality of second terminals. In another illustrative embodiment, the device comprises: a substrate; one or more

S 21 201226479 個第一導體,輕接至一或多個第一導體之介電層;—或多 個第一導體,複數個二極體,該複數個二極體中之各二極 體的任何尺寸均小於約50微米,第一部分該複數個二:體 以正向偏壓定向輕接至一或多㈣第一導體且搞&amp;至—或多 個第二導體’且複數個二極體中之至少一個二極體以反向 偏壓定向柄接至-或多個第―導體且輕接至—或多個第二 導體;及實質上圍繞複數個二極體中之各二極體的膜,該 膜包含聚合物或樹脂且厚度為約1〇 nm至3〇〇 nm。 在各個例示性具體實例t,二極體包含:直徑為約2〇 微米至30微米且高度為約2 5微米至7微米之發光或光吸 收區域;在第.-側上搞接至發光區域之第一端子,該第— 端子之尚度為I勺1微米至6微米;及在與第一側相對之第 二側上耦接至發光區域的第二端子,該 約丨微米至6微米。 同度為 在另一例示性具體實例中,二極體包含:直徑為約6 微米至3〇微米且高度為約1微米至7微米之發光或光吸收 區域二在第-侧上耦接至發光區域的第一端子,該第一端 子之问度為約1微米至6微米;及在與第一侧相對之第二 側上耦接至發錢域的第二端子,該第二端子之高度為約i 微米至6微米;其中該二極體在側向上實質上為六角形, 具有約10微米至50微米之相對面對面量測之直徑及約5 微米至25微米之高度’且其中二極體之各側面之高度小於 约10微米’二極體之各側面具有實質上s形彎曲且終止於 彎曲點。 22 201226479 在另-例示性具體實例令,二極體包含:直徑為約6 微米至30微米且高度為約}微米至7微米之發光或光吸收 區域;在第一側上耦接至發光區域的第—端子,該第一端 子之高度為約1微米至6微米;及在與第一側相對之第二 側上耦接至發光區域的第二端子,該第二端子之高度為約】 微米至6微米;其中該二極體具有各自為約1〇微米至π 微米之寬度及長度以及約5微米至25微米之高度,且其中 二極體之各側面之高度小於約1〇微米,二極體之各側面具 有實質上S形彎曲且終止於彎曲點。 在各個例示性具體實例中,二極體包含:直徑為約6 微米至30微米且高度為約2.5微米至7微米之發光或光吸 收區域;在第一側上耦接至發光區域的第一端子,該第一 端子之高度為約3微米至6微米;及在與第一側相對之第 一側上耦接至發光區域的第二端子’該第二端子之高戶為 約3微米至6微米;其中該二極體具有各自為約1〇微=至 3〇微米之寬度及長度以及約5微米至15微米之高度,且其 中二極體之各側面之高度小於約10微米,二極體之各侧= 具有實質上S形彎曲且終止於彎曲點。 在另-例示性具體實例中,二極體包含:直徑為約2〇 微米至30微米且高度為2.5微米至7微米之發光或光吸收 區域;在f一側上@隔開且周邊輕接至發光區域的複數個 第-端子,複數個第-端子中之各第一端子的高度為約〇 5 微米至2微米·,以及在第-側上令心耗接至發光區域之台 面區域的-個第二端子,該^端子之高度為1微米至8 23 201226479 微米。 在另一例示性具體實例中,_S 21 201226479 first conductors connected to one or more dielectric layers of the first conductor; or a plurality of first conductors, a plurality of diodes, and each of the plurality of diodes Any size less than about 50 microns, the first portion of the plurality of two: the body is lightly coupled to one or more (four) first conductors in a forward bias direction and engages with or to a plurality of second conductors and a plurality of diodes The at least one diode in the body is steered to the - or the plurality of first conductors in a reverse bias and is lightly coupled to the plurality of second conductors; and substantially surrounds each of the plurality of diodes A film of a body comprising a polymer or resin and having a thickness of from about 1 〇 nm to about 3 〇〇 nm. In each exemplary embodiment t, the diode comprises: a luminescent or light absorbing region having a diameter of from about 2 Å to 30 microns and a height of from about 25 microns to 7 microns; the splicing to the illuminating region on the . a first terminal having a degree of I to 1 μm to 6 μm; and a second terminal coupled to the light emitting region on a second side opposite to the first side, the micron to 6 μm . In the other exemplary embodiment, the diode comprises: a light-emitting or light-absorbing region 2 having a diameter of about 6 micrometers to 3 micrometers and a height of about 1 micrometer to 7 micrometers coupled to the first side to the first side a first terminal of the light emitting region, the first terminal having a degree of about 1 micrometer to 6 micrometers; and a second terminal coupled to the sending domain on a second side opposite to the first side, the second terminal The height is from about i microns to 6 microns; wherein the diode is substantially hexagonal in the lateral direction, having a relative face-to-face diameter of about 10 microns to 50 microns and a height of about 5 microns to 25 microns' and wherein The height of each side of the pole body is less than about 10 microns. Each side of the diode has a substantially s-shaped bend and terminates at a point of curvature. 22 201226479 In another exemplary embodiment, the diode comprises: a luminescent or light absorbing region having a diameter of from about 6 microns to 30 microns and a height of from about { microns to 7 microns; coupled to the illuminating region on the first side a first terminal having a height of about 1 micrometer to 6 micrometers; and a second terminal coupled to the light emitting region on a second side opposite the first side, the height of the second terminal being about Micron to 6 micrometers; wherein the diodes each have a width and length of from about 1 micron to π micrometers and a height of from about 5 micrometers to 25 micrometers, and wherein the height of each side of the diode is less than about 1 micron. Each side of the diode has a substantially S-shaped bend and terminates at a point of curvature. In various exemplary embodiments, the diode comprises: a luminescent or light absorbing region having a diameter of between about 6 microns and 30 microns and a height of between about 2.5 microns and 7 microns; a first coupling to the illuminating region on the first side a terminal having a height of about 3 micrometers to 6 micrometers; and a second terminal coupled to the light emitting region on a first side opposite the first side, the second terminal having a height of about 3 micrometers to 6 microns; wherein the diodes have a width and length of about 1 〇 micro= to 3 〇 micron and a height of about 5 micrometers to 15 micrometers, and wherein the height of each side of the diode is less than about 10 micrometers, Each side of the pole body = has a substantially S-shaped bend and terminates at a bend point. In another exemplary embodiment, the diode comprises: a luminescent or light absorbing region having a diameter of from about 2 microns to 30 microns and a height of from 2.5 microns to 7 microns; @ spaced apart and peripherally attached on the f side a plurality of first terminals to the light-emitting region, a height of each of the plurality of first terminals is about 〇5 μm to 2 μm, and the core is consumed on the first side to the mesa region of the light-emitting region a second terminal having a height of from 1 micron to 8 23 201226479 micrometers. In another illustrative embodiment, _

τ —極體包含:具有台面阿 域之發光或光吸收區域,兮二而「丄 另口面G …… ☆ ^亥口面區域之高度為0.5微米至2 微米且直徑為約6微米至22微米. t 々, 卞,在第一側上間隔開且耦 接至發光區域且周邊耦桩祸 遭耦接至台面區域之複數個第一端子, 複數個第一端子中之各筮一唑工 ^ 谷弟柒子的高度為約〇·5微米至2微 米;以及在第一侧上中心搞接 耦接至發先區域之台面區域的一 個第二端子,該第二端子之高度為8微米 二極體之側向尺寸為約1〇微米 ” 米至25微米。 ““且南度為約5微 在另一例示性具體實例中,__ 貝』T —極體包含:直徑為約2〇 微米至30微米且高度為2.5微米至7微米之發光或光吸收 區域;在第-側上間隔開且周邊㈣至發光區域之複數個 第-端子,各第-端子之高度為約〇 5微米至2微米;以及 在第-側上中心搞接至發光區域之台面區域的一個第二端 子,該第二端子之高度為3料半C C , 门没马·3 U未至6微米;其中該二極體 在側向上貫質上為六角形,呈古奶0Λ 〇、月办具有約2〇至30微米之直徑及 約5微米至15微米之高度,其中二極體之各側面的高度小 於約Η)微米’二極體之各側面具有實質上s形彎曲且終止 於彎曲點。 在另一例示性具體實例中,二極體包含:具有台面區 域之發光或光吸收區域’該台面區域之高度為〇5微米至2 «且直徑為約至22_;在第—側上間隔開且麵 接至發光區域且周邊耦接至台面區域之複數個第一端子, 24 201226479 複數個第—端子中之各第一端子之高度為約0.5微米至2微 米;以及在第—側上中心耦接至發光區域之台面區域之L 個第二端子,該第二端子之高度為1微米纟8微米,p 二金屬端子具有—個接點,且第二端子之一個接點與 個第一金屬端子之接點在高度上間隔約丨微米至7微米. ,中二極體在側向上實質上為六角形,具有約1〇微^至' Μ 微米之直徑及約5微米至25微米之高度,其中二極體之各 側面之高度小於約15微米,二極體之各侧面具有實 形彎曲且終止於彎曲點。 製備供印刷之二極體液體或膠體懸浮液的例示性方法 包含:將黏度調節劑添加至第一溶劑中之複數個二極體 中’及此合複數個二極體、第一溶劑及黏度調節劑以形成 含複數個二極體之液體或膠體懸浮液。 〆 在另-例示性具體實例中,製備供印刷之二極體液體 或膠體懸浮液之方法包含:冑第二溶劑添加至第—溶劑中 之複數個二極體中,笛— 弟一浴劑不同於第一溶劑;將黏度調 節劑添加至複數個二極體、第—溶劑及第二溶劑中;將複 數個實貝上化學惰性的粒子添加至複數個二極體、第一溶 劑二第二溶劑及黏度調節劑中;及混合複數個二極體、第 /合剑帛一浴齊J、黏度調節劑及複數個實質上化學惰性 的粒子直至在約25。(:下量測之黏度為至少約1〇〇厘泊(〒) 為止以形成含複數個二極體之液體或膠體懸浮液。 在另-例示性具體實例中,製備供印刷之二極體液體 或膠體懸浮液之方法包含:將黏度調節劑添加至複數個二τ—Polar body consists of: a luminescence or light absorbing region with a mesa, and a 丄 丄 丄 丄 G ☆ ☆ ☆ 亥 亥 亥 亥 亥 之 之 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 0.5 0.5 0.5 0.5 0.5 0.5 0.5 a plurality of first terminals spaced apart from each other on the first side and coupled to the light-emitting region and coupled to the mesa region, and each of the plurality of first terminals ^ The height of the scorpion scorpion is about 5 micrometers to 2 micrometers; and a second terminal on the first side is coupled to the mesa region of the first region, the height of the second terminal is 8 micrometers The lateral dimension of the diode is from about 1 micron" to 25 microns. "" and the south is about 5 micro. In another exemplary embodiment, the __Bei" T-pole comprises: a luminescent or light absorbing region having a diameter of about 2 〇 micrometers to 30 micrometers and a height of 2.5 micrometers to 7 micrometers. a plurality of first terminals spaced apart on the first side and peripherally (four) to the light-emitting region, each of the first terminals having a height of about 微米5 μm to 2 μm; and a center on the first side that is connected to the light-emitting area a second terminal of the region, the height of the second terminal is 3 materials and a half CC, and the gate is not 3 U to 6 μm; wherein the diode is hexagonal in the lateral direction, and is 0. The monthly office has a diameter of about 2 〇 to 30 μm and a height of about 5 μm to 15 μm, wherein the height of each side of the diode is less than about Η). The sides of the diode have substantially s-bend and End at the bending point. In another illustrative embodiment, the diode comprises: a luminescent or light absorbing region having a mesa region having a height of 〇5 μm to 2 « and a diameter of about 22 _; spaced apart on the first side And a plurality of first terminals that are connected to the light-emitting region and have a peripheral portion coupled to the mesa region, 24 201226479 a height of each of the plurality of first terminals is about 0.5 micrometers to 2 micrometers; and a center on the first side L second terminals coupled to the mesa region of the light emitting region, the height of the second terminal being 1 micrometer 纟 8 micrometers, p two metal terminals having one contact, and one contact of the second terminal The contacts of the metal terminals are spaced apart by a height of about 丨 microns to 7 μm. The middle diodes are substantially hexagonal in the lateral direction, having a diameter of about 1 μm to Μ μm and about 5 μm to 25 μm. Height, wherein the height of each side of the diode is less than about 15 microns, and the sides of the diode have a solid bend and terminate at a bend point. An exemplary method of preparing a liquid or colloidal suspension for printing includes: adding a viscosity modifier to a plurality of diodes in the first solvent' and the plurality of diodes, the first solvent, and the viscosity The conditioning agent forms a liquid or colloidal suspension comprising a plurality of diodes. In another exemplary embodiment, the method of preparing a liquid or colloidal suspension for printing includes: adding a second solvent to a plurality of diodes in the first solvent, a flute-dione bath Different from the first solvent; adding a viscosity modifier to the plurality of diodes, the first solvent and the second solvent; adding a plurality of chemically inert particles on the solid shell to the plurality of diodes, the first solvent Two solvents and a viscosity modifier; and a plurality of diodes, a single bath, a viscosity modifier, and a plurality of substantially chemically inert particles up to about 25. (The viscosity measured below is at least about 1 centipoise (〒) to form a liquid or colloidal suspension containing a plurality of diodes. In another exemplary embodiment, a diode for printing is prepared A method of liquid or colloidal suspension comprising: adding a viscosity modifier to a plurality of

S 25 201226479 極體、第一溶劑及第二溶劑中 其中複數個二極體中,夂_4 —吩同於第一溶劑: 50微米且高度為約 才為約10微米至 …… 微米,·將複數個實質上化- 惰性的拉子添加至複數個二極體、第-溶劑、第: 黏度調節劑中,jt中遴鉍伽者册 4 第一洛劑及 …η 貫質上化學惰性的粒子令之各 粒子之任何尺寸為約1〇微米至約微 、 個二極體、第一溶劑、第一…’以及混合複數 ^第一岭劑、黏度調節劑及 質上化學惰性的粒子直至在肖饥下量測之 =泊(,)為止以形成含複數個二極體之液體或= 之方法包含: 一溶劑與黏度 在一例示性具體實例中,製造電子器件 沈積一或多個第一導體;以及沈積懸浮於第 調節劑之混合物中之複數個二極體。 在另-例示性具體實例中’方法包含:在光學透射性 基底之第一側上沈積懸浮於第一溶劑與黏度調節劑之混合 物中之複數個二極體,複數個二極體十之各二極體在第一 側上具有複數個第一端子且在第一側上具有一個第二端 子,複數個二極體中之各二極體的側向尺寸為約1〇微米至 50微米且高度為5微米至25微米;沈積一或多個柄接至第 一端子之第一導體;沈積至少一個耦接至—或多個第一導 體之介電層;沈積一或多個耦接至第二端子之第二導體; 以及在光學透射性基底之第二側上沈積第一磷光體層。 在另一例示性具體實例中,方法包含:在基底之第— 側上沈積一或多個第一導體;在一或多個第一導體上沈積 26 201226479 芯浮於第一洛劑與黏度調節劑之混合物中之複數個二極 體,複數個二極體中之各二極體在第一側上具有第一端子 且在第二側上具有第二端子,複數個二極體中之各二極體 的側向尺寸為% 10微米至50微米且高度為5微米至25微 米,在複數個二極體及一或多個第一導體上沈積至少一個 ;丨包層,在介電層上沈積一或多個光學透射性第二導體; 以及沈積第一磷光體層。 , 在另例示性具體實例中,組成物包含:複數個二端 積體電路,複數個二端帛體電路中之各二端積體電路的任 何=寸均小於約75微米;第一溶劑;不同於第一溶劑之第 /合剡,以及黏度調節劑;其中該組成物在約 广會併 I P I黏 又貝上為約50 CPS至約25,000 cps。在各個例示性具體實 複數個一端積體電路包含選自由以下組成之群的一 端積體電路:二極體、發光二極體、光電二極體、電阻器、 :感斋、電容.器、RFID積體電路、感測器積體電路以 電積體電路。 在另一例示性具體實例中 二奸镥μ 〇 3 .丞底,银致個 :積體電路’複數個二端積體電路中之各二端積體電路 何尺寸均小於約75微米;至少痕量之第—溶劑;實質 :繞複數個二極體中之各二極體的膜,該膜包含甲基纖 、素樹脂且具有約10 nm至300 nm之厚戶· ’ 至溢奴/ 心年度,一或多個耦接 數個二端積體電路之第一導體;叙接至一或多個第一 電路:第第IS層;以及一或多_接至複數個二端積體S 25 201226479 In the polar body, the first solvent and the second solvent, among the plurality of diodes, 夂_4 is exemplified by the first solvent: 50 μm and the height is about 10 μm to... μm, Adding a plurality of substantially inert-inert sliders to a plurality of diodes, a solvent-based, a viscosity modifier, a chemical inertness in the Jt. The particles are such that any size of the particles is from about 1 micron to about micro, a dipole, a first solvent, a first... and a plurality of first ridges, a viscosity modifier, and a chemically inert particle. The method of forming a liquid containing a plurality of diodes or = until the measurement of poise (or) under the hunger hunger comprises: a solvent and viscosity. In an exemplary embodiment, one or more depositions of the fabricated electronic device a first conductor; and a plurality of diodes deposited in the mixture of the conditioning agent. In another exemplary embodiment, the method comprises: depositing a plurality of diodes suspended in a mixture of a first solvent and a viscosity modifier on a first side of the optically transmissive substrate, each of the plurality of diodes The diode has a plurality of first terminals on the first side and a second terminal on the first side, and each of the plurality of diodes has a lateral dimension of about 1 〇 to 50 μm and a height of from 5 micrometers to 25 micrometers; depositing one or more first conductors connected to the first terminal; depositing at least one dielectric layer coupled to the one or more first conductors; depositing one or more couplings to a second conductor of the second terminal; and depositing a first phosphor layer on the second side of the optically transmissive substrate. In another exemplary embodiment, the method includes depositing one or more first conductors on a first side of the substrate; depositing on one or more first conductors 26 201226479 core floating on the first agent and viscosity adjustment a plurality of diodes in the mixture of the plurality of diodes, each of the plurality of diodes having a first terminal on the first side and a second terminal on the second side, each of the plurality of diodes The lateral dimension of the diode is from 10 micrometers to 50 micrometers and the height is from 5 micrometers to 25 micrometers, and at least one of the plurality of diodes and the one or more first conductors is deposited; the cladding layer is on the dielectric layer Depositing one or more optically transmissive second conductors thereon; and depositing a first phosphor layer. In another exemplary embodiment, the composition comprises: a plurality of two-terminal integrated circuits, wherein each of the two-terminal integrated circuits of the plurality of two-terminal body circuits has a size of less than about 75 microns; the first solvent; It is different from the first solvent and the viscosity modifier; wherein the composition is about 50 CPS to about 25,000 cps on a wide and IPI stick. Each of the exemplary specific real-numbered one-end integrated circuits includes an integrated circuit selected from the group consisting of: a diode, a light-emitting diode, a photodiode, a resistor, a sensing device, a capacitor, and The RFID integrated circuit and the sensor integrated circuit are formed by a quadrature circuit. In another exemplary embodiment, two 镥 镥 〇 丞 丞 , , , 银 银 银 银 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : a trace amount of the first solvent - the essence: a film of each of the plurality of diodes, the film comprising a methyl fiber, a resin, and having a thickness of about 10 nm to 300 nm · 'to the slave / One or more first conductors coupled to a plurality of two-terminal integrated circuits; connected to one or more first circuits: an first IS layer; and one or more _ connected to a plurality of two-terminal integrated bodies

27 S 201226479 在另一例示性具體實例中,組成物包含 積體電路,複數個-4山接脚+助山 立而 禝數個一翊積體電路中之各二端積體電路的任 可尺寸均小於約75微米;第一溶劑,·不同於第一溶劑之第 二溶劑,·複數個實質上化學惰性的粒子,其尺寸範圍介於 約1 0微米至約1 Q 〇 Μ半 q ' — 、力 链未之間且以約0.1重量Q/。至2·5重量% 之量存在;以及黏度調節劑;其令該組成物在約抑下之。 黏度貫質上為約50 cps至約25,〇〇〇 cps。 本發明之多種其他優勢及特徵經由下列對本發明及其 具體實例之詳細描述、申請專利範圍以及隨附圖式將容易 地變得顯而易見。 【實施方式】 在連同隨附圖式一起考慮時參閱下列揭示内容後,將 更容易地瞭解本發明之目的、特徵及優勢,其中在各個視 圖中,使用相同參考數字來標識相同組件,且其中在各個 ㈣中’利用帶有字母字符之參考數字來標識;斤選組件具 體實例之其他類型、示例或變化形式。 雖然本發明容許有呈多種不同形式之具體實例,但僅 其特定例示性具體實例展示於圖式中且在本文中將加以詳 細描述,應瞭解本發明揭示内容應被視作本發明原理之例 證而非意欲將本發明限於所說明之特定具體實例。就此而 言,在詳細說明#合本發明《至少一個具體實例之前,應 瞭解本發明在其應用方面並非限於上下文所闡述、圖式^ 所說明或如實施例中所述的組件之構造細節及配置。符合 本發明之方法及裝置能夠達成其他具體實例且能夠以各種 28 201226479 方式實踐及進行。亦應瞭解,本文所用之措辭及術語以及 下文所包括之抽象名詞(abstract)係出於描述之目的,而 不應被認為具限制性。 本發明之例示性具體實例提供二極體1 〇 〇、1 〇 〇 A、 100B、l〇〇c、l〇〇D、100E、1 〇〇F、i〇〇G、100H、1〇〇1、i〇0j、 100K、100L(在本文及圖中統稱作「二極體loo-iooL」)之 液體及/或膠體分散液及懸浮液,其能夠經印刷且在本文中 可4效地稱作「二極體墨水」,應瞭解「二極體墨水」意謂 且係指二極體或其他二端積體電路(諸如例示性二極體 1 00-100L )之液體及/或膠體懸浮液。如下文所更詳細描述, 二極體100-100L自身在包括於二極體墨水組成物中之前為 完全成形之半導體器件,其在通電時能夠起作用以發光(在 具體化為LED時)或在曝露於光源時提供電力(在具體化 為光電二極體時)。本發明之例示性方法亦包含製造二極體 墨水之方法,如下文所更詳細論述,該二極體墨水分散及 懸浮複數個二極體1 0 0 -1 0 0 L於溶劑及黏性樹脂或聚合物混 合物中,其中二極體100-100L或其他上端積體電路在室溫 (25°C )或冷藏條件(5°C至10°C )下維持分散及懸浮達較長 時段,諸如一或多個月,對於較高黏度、較呈膠體狀之組 成物及冷凍誘導之膠體狀組成物尤其如此,且該液體或膜 體懸浮液能夠經印刷以製造基於LED之器件及光電5|件。 雖然描述内容集中於作為一種類型二端積體電路之二極體 100-100L,但熟習此項技術者應瞭解可等效地替換為其他類 型之半導體器件以形成更廣泛稱作「半導體器件黑 ° 土 A」之27 S 201226479 In another illustrative embodiment, the composition includes an integrated circuit, a plurality of -4 mountain pins + a mountain-supporting circuit, and a plurality of two-terminal integrated circuits in the circuit. The size is less than about 75 microns; the first solvent, a second solvent different from the first solvent, and a plurality of substantially chemically inert particles having a size ranging from about 10 microns to about 1 Q 〇Μ half q ' — The force chain is not between and is about 0.1 weight Q/. It is present in an amount of up to 5% by weight; and a viscosity modifier; which causes the composition to be reduced. The viscosity is about 50 cps to about 25, 〇〇〇 cps. The various other advantages and features of the invention are apparent from the description of the appended claims appended claims The objects, features, and advantages of the present invention will be more fully understood from the aspects of the invention. In each (four), 'the use of reference numerals with alphabetic characters to identify; other types, examples or variations of specific examples of components. The present invention is to be construed as being limited to the details of the embodiments of the invention. It is not intended to limit the invention to the particular embodiments disclosed. In this regard, it is to be understood that the invention is not limited to the details of the application and the construction details of the components as described in the context or as described in the embodiments. Configuration. The method and apparatus consistent with the present invention can achieve other specific examples and can be practiced and carried out in various ways. It is also to be understood that the phraseology and terminology used herein, and the abstract, Illustrative embodiments of the present invention provide diodes 1 〇〇, 1 〇〇A, 100B, l〇〇c, l〇〇D, 100E, 1 〇〇F, i〇〇G, 100H, 1〇〇1 Liquid and/or colloidal dispersions and suspensions of i〇0j, 100K, 100L (collectively referred to herein as "diode loo-iooL"), which can be printed and can be referred to herein in four ways. For "diode ink", it should be understood that "diode ink" means liquid and/or colloidal suspension of a diode or other two-terminal integrated circuit (such as the exemplary diode 1 00-100L). liquid. As described in more detail below, the diode 100-100L itself is a fully formed semiconductor device prior to inclusion in the diode ink composition that can function to illuminate when energized (when embodied as an LED) or Power is provided when exposed to a light source (when embodied as a photodiode). Exemplary methods of the present invention also include methods of making a diode ink, as discussed in more detail below, the diode ink dispersing and suspending a plurality of diodes 1 0 0 -1 0 0 L in a solvent and a viscous resin Or a polymer mixture in which the diode 100-100L or other upper end integrated circuit maintains dispersion and suspension for a longer period of time at room temperature (25 ° C) or refrigerated conditions (5 ° C to 10 ° C), such as This is especially true for one or more months for higher viscosity, colloidal compositions and freeze induced colloidal compositions, and the liquid or film suspension can be printed to produce LED based devices and optoelectronics 5| Pieces. Although the description focuses on the diode 100-100L as a type of two-terminal integrated circuit, those skilled in the art will appreciate that it can be equivalently replaced with other types of semiconductor devices to form a more widely known "semiconductor device black. ° Earth A"

S 29 201226479 物,該等其他類型之半導體器件諸如(但不限於)任何類 型之電晶it (場效電晶體(FET)、金屬氧化物半導體場效 電晶體(MOSFET)、接面場效電晶體(JFET)、雙極接面電 b曰體(B JT )等)、二端交流開關(diac )、三端雙向可控矽 元件(triac)、矽控整流器等。 一極體墨水(或半導體器件墨水)可經沈積、印刷或 以其他方式塗覆以形成下文更詳細論述之各種產品中之任 一者’諸如裝置300、300A、300B 700B、720、730、740、750、760、 、300C、300D、700、700A、 770具體實例或系統35〇、 375、800、8 10,或可經沈積、印刷或以其他方式塗覆至任 何種類之任何產品或以形成任何種類之任何產品,包括用 於產品封裝之標牌或標記,諸如消費產品、個人產品 '商 業產ασ、工業產品、建築產品、建設產品等。 圖1為說明例示性第一二極體丨〇〇具體實例之透視 圖。圖2為說明例示性第一二極體丨〇〇具體實例之平面圖 (或俯視圖)。圖3為說明例示性第一二極體丨〇 〇具體實例 之截面圖(穿過圖2之1 〇-1 〇’平面)。圖4為說明例示性 第二二極體100Α具體實例之透視圖。圖5為說明例示性第 二二極體100Α具體實例之平面圖(或俯視圖)。圖6為說 明例示性第三二極體100Β具體實例之透視圖。圖7為說明 例不性第三二極體i 〇〇Β具體實例之平面圖(或俯視圖)。 圖8為說明例示性.第四二極體1〇〇c具體實例之透視圖。圖 9為說明例示性第四二極體1〇〇c具體實例之平面圖(或俯 視圖)。圖10為說明例示性第二、第三及/或第四二極體 30 201226479 ΙΟΟΑ、100B、100C具體實例之橫截面圖(穿過圖5、7、9 之20-20’平面)。圖11為說明例示性第五及第六二極體 1 00D、100E具體實例之透視圖。圖!2為說明例示性第五 及第六二極體100D、100E具體實例之平面圖(或俯視圖)。 圖1 3為說明例示性第五二極體1 〇〇d具體實例之橫截面圖 (穿過圖12之40-40'平面)。圖14為說明例示性第六二極體 100E具體實例之横截面圖(穿過圖12之4〇_4〇,平面)。圖 15為說明例示性第七二極體i〇〇F具體實例之透視圖。圖 16為說明例示性第七二極體1〇〇F具體實例之平面圖(或俯 視圖)。圖1 7為說明例示性第七二極體J 〇〇F具體實例之橫 截面圖(穿過圖16之42_42,平面圖18為說明例示性第 八二極體100G具體實例之透視圖。圖19為說明例示性第 八二極體100G具體實例之平面圖(或俯視圖)。圖2〇為說 明例不性第八二極體1〇〇G具體實例之橫截面圖(穿過圖b 之43-43’平面)。圖21為說明例示性第十二極體ιοοκ具體 實例之透視圖。圖22為說明例示性第十二極體1 00K具體 實例之橫戴面圖(穿過圖21之47-47,平面)。圖23為說明 例示f第十一極體100L具體實例之透視圖。圖24為說 月例不性第十—二極體100L具體實例之橫截面圖(穿過圖 23之48,,平面)。第九、第十二及第十三二極體麵、 1001及l〇〇j目舰-咖 體霄例之橫截面圖分別說明於圖44、5〇及 66中,作為對例示性製造製程之說明的一部分。圖110為 例不性第二二極體100A具體實例之掃描電子顯微照S 29 201226479, these other types of semiconductor devices such as, but not limited to, any type of electro-crystal (FET), metal-oxide-semiconductor field-effect transistor (MOSFET), junction field effect Crystal (JFET), bipolar junction b (b JT), etc., two-terminal AC switch (diac), three-terminal bidirectional controllable triac, triac, etc. A polar ink (or semiconductor device ink) can be deposited, printed, or otherwise coated to form any of a variety of products discussed in more detail below, such as devices 300, 300A, 300B 700B, 720, 730, 740 , 750, 760, 300C, 300D, 700, 700A, 770 specific examples or systems 35〇, 375, 800, 8 10, or may be deposited, printed or otherwise applied to any product of any kind or to form Any product of any kind, including signs or markings for product packaging, such as consumer products, personal products 'commercial production alpha σ, industrial products, construction products, construction products, etc. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view showing an exemplary first diode crucible. 2 is a plan view (or top view) illustrating an exemplary first diode crucible. Fig. 3 is a cross-sectional view showing an exemplary first diode 丨〇 ( (through the 1 〇-1 〇 ' plane of Fig. 2). 4 is a perspective view illustrating an exemplary second diode 100 Α embodiment. Figure 5 is a plan (or top view) illustrating an exemplary second diode 100. Figure 6 is a perspective view showing an exemplary third diode 100. Fig. 7 is a plan view (or a plan view) showing an example of an example third inconsistency. Figure 8 is a perspective view illustrating an exemplary fourth diode 1c. Figure 9 is a plan view (or a top view) illustrating an exemplary fourth diode 1c embodiment. Figure 10 is a cross-sectional view (through the 20-20' plane of Figures 5, 7, and 9) illustrating an exemplary second, third, and/or fourth diode 30 201226479 ΙΟΟΑ, 100B, 100C. Figure 11 is a perspective view illustrating an exemplary fifth and sixth diodes 00D, 100E. Figure! 2 is a plan view (or a plan view) illustrating a specific example of the exemplary fifth and sixth diodes 100D, 100E. Figure 13 is a cross-sectional view illustrating an exemplary fifth diode 1 〇〇d embodiment (through the 40-40' plane of Figure 12). Figure 14 is a cross-sectional view (through the 〇4〇, plane of Figure 12) illustrating an exemplary sixth diode 100E embodiment. Figure 15 is a perspective view illustrating an exemplary seventh diode body 〇〇F. Figure 16 is a plan view (or a top view) illustrating an exemplary seventh diode 1F embodiment. Figure 17 is a cross-sectional view illustrating an exemplary seventh diode J 〇〇F (through the 42-42 of Figure 16, the plan view 18 is a perspective view illustrating an exemplary eighth diode 100G embodiment. Figure 19 To illustrate a plan view (or top view) of an exemplary eighth diode 100G embodiment, FIG. 2A is a cross-sectional view illustrating a specific example of an eighth diode 1 〇〇G (through the figure 43- 43' plane. Fig. 21 is a perspective view illustrating an exemplary twelfth polar body ιοοκ. Fig. 22 is a cross-sectional view illustrating an exemplary twelfth polar body 100K (through the figure 47) - 47, plane). Fig. 23 is a perspective view illustrating a specific example of the eleventh polar body 100L. Fig. 24 is a cross-sectional view showing a specific example of the eleventh polar body 100L (through the Fig. 23) 48, plane). The cross-sectional views of the ninth, twelfth and thirteenth diodes, the 1001 and the ljj ship-cavage examples are illustrated in Figures 44, 5 and 66, respectively. As a part of the description of the exemplary manufacturing process, FIG. 110 is a scanning electron micrograph of a specific example of the second diode 100A.

111為複數個例千从&amp; M “丨生第二二極體1 00A具體實例之掃描電子111 is a plurality of examples of thousands of &amp; M "scanning electrons of the second diode 1 00A specific example

S 31 201226479 顯微照片。 在透視圖及平面圖(或俯視圖)圖丨、2、4-9、U、12、 15、16、18、19、21及23巾,省去對外部純化層135之說 明以提供關於其他下伏層及結構的視圖,言亥等下伏層及結 構否則將由該鈍化層135覆“因此不可見在圖31〇、 13、14、17、20、22、24、44、50、57、62、63 及 66-69 橫截面圖中說明純化们35,且熟f電子技術者應瞭解,所 製造之二極體100-100L —般將包括至少一個該種鈍化層 135。另外’參考圖卜69、74、76-85及87_103,熟習此項 技術者亦應瞭解,各圖係出於描述及說明之目的,而非按 比例繪製。 如下文所更詳細描述,例示性第一至第十三二極體具 體實例IGG-IOOL主要在以下方面有所不同:可使用之基板 105及晶圓150、15〇A之形狀、材料、摻雜及其他組成;所 製造之二極體發光區域形狀;導孔(13〇、m、132、133、 134 ' 136)之深度及位置(諸如淺或「盲」、深或「貫穿」、 中心、周邊及周圍);在第—側(頂面或前面)上具有第— 端子125或具有第一端子及第二端子125、127 ;為形成第 一端子125或第二端子127之背面(第二側)金屬化層(122) 的使用及尺寸;其他接點金屬之形狀、範圍及位置;且亦 可在其他特徵.之形狀或位置方面有所不同,如下文所更詳 細描述。製造例示性二極!| 10(M〇〇L之例到生^法及方法 變化形式亦描述於下文中。一或多個例示性二極體 100-100L 亦可自 Tempe,Arizona,USA 之 NthDegree 32 201226479S 31 201226479 Photomicrograph. In perspective and plan view (or top view), 2、, 2, 4-9, U, 12, 15, 16, 18, 19, 21, and 23, the description of the external purification layer 135 is omitted to provide additional relief. The layer and structure views, the underlying layers and structures of Yan Hai will otherwise be covered by the passivation layer 135 "and thus are not visible in Figures 31〇, 13, 14, 17, 20, 22, 24, 44, 50, 57, 62, Purifications 35 are illustrated in the cross-sectional views of 63 and 66-69, and those skilled in the art should understand that the fabricated diode 100-100L will generally include at least one such passivation layer 135. In addition, 'Ref. , 74, 76-85, and 87_103, those skilled in the art should understand that the drawings are for the purpose of description and description, and are not drawn to scale. Diode specific examples IGG-IOOL differs mainly in the following aspects: the shape, material, doping and other composition of the substrate 105 and the wafers 150, 15A, which can be used; the shape of the diode light-emitting region to be fabricated; Depth and position of the guide holes (13〇, m, 132, 133, 134 ' 136) (such as shallow or "blind", deep or " "through", center, periphery, and surroundings); having a first terminal 125 or having a first terminal and a second terminal 125, 127 on the first side (top or front); forming a first terminal 125 or a second terminal 127 The use and size of the back side (second side) metallization layer (122); the shape, extent and location of other contact metals; and may vary in shape or position of other features, as described in more detail below description. Create an exemplary two pole! 10 (M〇〇L example to method and method variations are also described below. One or more exemplary diodes 100-100L may also be from Tempe, Arizona, USA NthDegree 32 201226479

Technologies Worldwide公司得到且可經由其獲得。 參考圖1至24,例示性二極體100_1001^吏用基板1〇5 形成,諸如重摻雜之η +型或ρ +型基板1〇5,例如重摻雜之 型或Ρ +型矽基板,其可為矽晶圓或可為更複雜之基板或 晶圓,諸如包含例如(但不限於)絕緣體上之矽基板(1〇5) (「SOI」),或藍寶石(106)晶圓15〇Α上之氮化鎵(GaN) 基板105 (圖11至20中所說明)。亦可等效地使用其他類 型之基板(及/或形成或具有基板之晶圓)丨〇5,包括例如(但 不限於)Ga、GaAs、GaN、SiC、Si02、藍寶石、有機半導 體等,且如下文所更詳細論述。因此,對基板1〇5或1〇5A 之提及應廣泛地理解為亦包括任何類型之基板,諸如n +型 或p +型矽、n+型或p +型GaN,諸如使用矽晶圓15〇形成之 n +型或p +型矽基板或在藍寶石晶圓ι〇5Α上製造之n+型或 P +型GaN (下文參考圖11_20及38-50所述)。在圖21至 24中所說明之具體實例中,在製造期間移除基板後,可忽 略至無基板105、105A (及緩衝層145)保留(在適當位置 留下複合GaN異質結構,下文更詳細論述),且可使用例如 (但不限於)任一基板1 〇 5、1 0 5 A。在使用石夕具體化時,基 板105通常具有&lt;111&gt;或&lt;11〇&gt;晶體結構或定向,儘管可等 效·地使用其他結晶結構。通常在發基板1 0 5上製造視情況 存在之緩衝層14 5 (諸如氮化铭或氮化石夕)以有助於後續製 造具有不同晶格常數的GaN層。 在缓衝層145上,諸如經由磊晶成長來製造GaN層以 形成複合GaN異質結構,一般性說明為n+型GaN層110、 33 201226479 I子井區185及p +型GaN層115。在其他具體實例中,不 使用或可能不使用緩衝層145 ’諸如當在GaN基板105上 (或直接在藍寶石(106)晶圓105A上)製造複合GaN異 質結構U+型GaN層110、量子井區185及p +型GaN層115) 時’如圖1 5 -1 7中作為更特定可選方案所說明。熟習電子技 術者應瞭解’可能存在多個量子井(内部)及可能多個含 夕種摻雜劑之P+型、n+型、其他GaN層,且可能存在含各 種掺雜劑中之任一者之非GaN層以形成發光(或光吸收) 區域140’其中n+型GaN層11〇、量子井區185及p +型GaN 層115僅具說明性且僅提供對形成一或多個發光(或光吸 收)區域140之複合GaN異質結構或任何其他半導體結構 之概括性或簡要描述。熟習電子技術者亦應瞭解,諸如對 於使用p+型石夕或GaN基板105而言,n+型GaN層u〇及 p +型GaN層115之位置可能相同或可能等效地顛倒,且可 使用其他組成及材料形成一或多個發光(或光吸收)區域 140 (其中多者描述於下文中),且所有該等變化處於本發 明之範疇内。雖然參考GaN作為用以形成發光或光吸收區 域140的一組具有不同化合物、摻雜劑及結構之例示性材 料進行描述,但熟習此項技術者應瞭解可等效地使用任何 其他適合之半導體材料且其處於本發明之範疇内。另外, 熟習此項技術者應瞭解任何對GaN之提及不應視作「純」 GaN,而應理解為意謂且包括所有各種其他可用以形成發光 或光吸收區域140及/或允許發光或光吸收區域14〇沈積之 化合物.、摻雜劑及層,包括任何中間非GaN層。 34 201226479 亦應注意,雖然論述各種二極體(:極體⑽祖) 中有多個二極體中矽及GaN可能為或為所選半導體,但可 等效地使用其他無機或有機+導體且其處於本發明範缚 内。無機半導體之實例包括(但不限於):石夕、錯及其混合 物;二氧化鈦、二氧化矽、氧化鋅、氧化銦錫、氧化銻錫 及其混合物;第II-VI族半導體,其為含至少一種二價金屬 (鋅、鎘、汞及鉛)及至少一種二價非金屬(氧、硫、硒及 碲)之化合物’諸如氧化鋅、硒化鎘、硫化鎘、硒化汞及 其混合物;第m-ν族半導體,其為含至少一種三價金屬 (鋁、鎵、銦及鉈)與至少一種三價非金屬(氮、磷、砷及 錄)之化合物’諸如石申化鎵、罐化銦及其混合物;以及第 1¥族半導體,包括氫封端之發、碳、鍺及α-錫,及其組合。 ;除㈣發光/光吸收區域14〇 (例如,沈積於基板1〇5 (。者々n + ^或p+型石夕)上或沈積於石夕晶圓15〇或藍寶石 (1〇6)晶圓鹰上之GaN(1〇1)上的_異質結構)之 外複數個一極體1 〇〇_ 100L亦可包含任何類型之半導體元 件、材料或化合物,諸如矽、砷化鎵(GaAs)、氮化鎵(GW), 或任何無機或有機半導體材料,且呈任何形式,包括例如 (但不限於)GaP、InA1GaP、InA1Gap、AUnGaAs、ΐη〜Ν^、 GASb另外,用以製造二端積體電路之晶圓亦可為任 何類型或種類,例如(但不限於)矽、、㈣、藍寳 石、碳化梦。 本發明之範疇因此應理解為涵蓋半導體基板上之任何 蟲晶或化合物半導體’包括(但不限於)使用半導體基板 35 1 201226479Available from and available to Technologies Worldwide. Referring to FIGS. 1 through 24, an exemplary diode 100_1001 is formed using a substrate 1〇5, such as a heavily doped n+ type or ρ+ type substrate 1〇5, such as a heavily doped or germanium + type germanium substrate. It may be a germanium wafer or may be a more complex substrate or wafer, such as, for example, but not limited to, a germanium substrate ("1") ("SOI"), or a sapphire (106) wafer 15 A gallium nitride (GaN) substrate 105 (illustrated in Figures 11 through 20) is mounted on it. Other types of substrates (and/or wafers having or having substrates) can also be used equivalently, including, for example, but not limited to, Ga, GaAs, GaN, SiC, SiO 2 , sapphire, organic semiconductors, etc., and As discussed in more detail below. Thus, reference to substrate 1〇5 or 1〇5A is to be broadly understood to also include any type of substrate, such as n+ type or p+ type germanium, n+ type or p+ type GaN, such as using germanium wafer 15 . The n + type or p + type germanium substrate formed by ruthenium or n + type or P + type GaN fabricated on sapphire wafer ( 5 ( (described below with reference to FIGS. 11-20 and 38-50). In the specific examples illustrated in Figures 21 through 24, after removal of the substrate during fabrication, negligible to the absence of substrate 105, 105A (and buffer layer 145) remains (remaining composite GaN heterostructure in place, as described in more detail below) Discussion), and for example, but not limited to, any of the substrates 1 〇 5, 1 0 5 A can be used. The substrate 105 typically has a &lt;111&gt; or &lt;11&gt; crystal structure or orientation when embodied in Shishi, although other crystal structures may be used equivalently. A buffer layer 14 5 (such as Nitride or Nitride), as the case may be, is typically fabricated on the emitter substrate 105 to facilitate subsequent fabrication of GaN layers having different lattice constants. On the buffer layer 145, a GaN layer is formed, such as by epitaxial growth, to form a composite GaN heterostructure, generally illustrated as an n+ type GaN layer 110, a 33 201226479 I sub well region 185, and a p + type GaN layer 115. In other embodiments, buffer layer 145 is not used or may not be used, such as when a composite GaN heterostructure U+-type GaN layer 110, quantum well region is fabricated on GaN substrate 105 (or directly on sapphire (106) wafer 105A) The 185 and p + -type GaN layers 115) are illustrated in Figure 1-5-7 as a more specific alternative. Those skilled in the art should understand that there may be multiple quantum wells (internal) and possibly multiple P + - type, n+-type, other GaN layers, and may have any of various dopants. a non-GaN layer to form a light-emitting (or light-absorbing) region 140' wherein the n+-type GaN layer 11A, the quantum well region 185, and the p+-type GaN layer 115 are illustrative only and provide only one or more illuminations (or A general or brief description of the composite GaN heterostructure of the region 140 or any other semiconductor structure. Those skilled in the art should also appreciate that, for example, for the use of p+ type lithium or GaN substrate 105, the n+ type GaN layer u〇 and p + type GaN layer 115 may be the same or may be equivalently inverted, and other The composition and materials form one or more luminescent (or light absorbing) regions 140 (some of which are described below), and all such variations are within the scope of the present invention. While reference GaN is described as a set of exemplary materials having different compounds, dopants, and structures for forming luminescent or light absorbing regions 140, those skilled in the art will appreciate that any other suitable semiconductor can be used equivalently. Materials and they are within the scope of the invention. In addition, those skilled in the art will appreciate that any reference to GaN should not be considered "pure" GaN, but rather is meant to include and encompass all of the various other things that may be used to form the illuminating or light absorbing region 140 and/or to allow illumination or The light absorbing region 14 〇 deposited compound, dopant and layer, including any intermediate non-GaN layer. 34 201226479 It should also be noted that although it is discussed that a plurality of diodes in a plurality of diodes (the polar body (10) ancestor) may be or may be selected semiconductors, other inorganic or organic + conductors may be equivalently used. And it is within the scope of the invention. Examples of inorganic semiconductors include, but are not limited to: Shi Xi, Wrong and mixtures thereof; Titanium dioxide, cerium oxide, zinc oxide, indium tin oxide, antimony tin oxide, and mixtures thereof; Group II-VI semiconductors, which contain at least a divalent metal (zinc, cadmium, mercury, and lead) and at least one compound of a divalent non-metal (oxygen, sulfur, selenium, and tellurium) such as zinc oxide, cadmium selenide, cadmium sulfide, mercury selenide, and mixtures thereof; a m-ν group semiconductor which is a compound containing at least one trivalent metal (aluminum, gallium, indium, and antimony) and at least one trivalent nonmetal (nitrogen, phosphorus, arsenic, and ruthenium), such as stellite gallium, can Indium and mixtures thereof; and Group 1 semiconductors, including hydrogen terminated hair, carbon, ruthenium and alpha-tin, and combinations thereof. In addition to (4) luminescence/light absorbing region 14 〇 (for example, deposited on substrate 1〇5 (. 々n + ^ or p+ type Shi Xi) or deposited on Shi Xi wafer 15 〇 or sapphire (1 〇 6) crystal In addition to the _heterostructure on the GaN (1〇1) on the round eagle, the plurality of monopoles 1 100 100L may also contain any type of semiconductor component, material or compound, such as germanium, gallium arsenide (GaAs). , gallium nitride (GW), or any inorganic or organic semiconductor material, and in any form, including, for example, but not limited to, GaP, InA1GaP, InA1Gap, AUnGaAs, ΐη~Ν^, GASb, in addition, to manufacture a two-terminal product The wafer of the bulk circuit can also be of any type or type, such as, but not limited to, germanium, (iv), sapphire, carbonization dreams. The scope of the invention is therefore to be understood to cover any insect crystal or compound semiconductor on a semiconductor substrate, including but not limited to the use of a semiconductor substrate 35 1 201226479

LED 製造之此項技術中已知或即將知曉之任何種類之任何 或光電半導體。 在各個例示性具體實例中,n+型或p +型基板ι〇5傳導 電流’該電流如所說明流至n +型⑽層UQe再次應注意, 發光或光吸收區域14〇之所說明之各個層中之任一者可等 效地顛倒或不同排序’諸如顛倒所說明之n+型與p +型GaN 層11〇、115之位置。電流路徑亦穿過形成一或多個導孔 (130)之金屬層(其亦可用以提供介於n+型或㈣基板 與n+型GaN層11〇之間的極薄(約25埃)缓衝層⑷的 電旁路(electrical bypass))。下文描述提供與導電層之其 他連接的其他類型之導孔131_134及136。一或多個金屬層 120 (說明為兩個(或兩個以上)各別沈積之金屬層 及12〇B)(其亦可用於形成導孔(13〇、131、132、133、i34、 136))提供與p +型GaN層us、與第二其他金屬層12〇b(諸 如用以形成「凸塊」或突出結構之模用金屬)、與形成各個 二極體loo-iool之第一電端子(或接點)125或第二端子 127之金屬層120A、120B的歐姆接觸。如下文所論述亦可 使用其他金屬層。對於所說明之例示性二極體1 〇〇、i 〇〇 A、 100B、100C具體實例,電端子125可為在製造期間形成於 二極體100、100A、100B、.100C上唯一之歐姆金屬端子以 用於後續電力(電壓)輸送(對於LED應用)或接收(對 於光電應用),n+型或P +型基板105用以提供二極體1〇〇、 100A、100B、100C之第二電端子以用於電力輸送或接收。 應注意’電端子125與n+型或p+型基板1〇5處於二極體 36 201226479 100、100A、100B、100C各自之相對側(即頂面(第一侧) 與底面(或背面、第二側))上,而非處於同一侧上。作為 此等二極體100、100A、100B、100C具體實例之可選方案 且如對於其他例示性二極體具體實例所說明,在二極體(例 如二極體100D、100F、100G、100J)之第二側(背面)上 使用金屬層122形成視情況存在之第二歐姆金屬端子127。 作為圖2 1及22中所說明之二極體1 00K具體實例之可選方 案’在一極體100K之第二側(背面)上使用金屬層122形 成第一歐姆金屬端子125,接著翻轉或反轉二極體ιοοκ以 供使用。作為圖23及24中對於例示性二極體1 〇〇l所說明 之另一可選方案,第一端子125與第二端子127皆處於二 極體100L之同一第一側(頂面)上。尤其使用氮化矽鈍化 層1 3 5 (或任何其他等效鈍化層)以達成電絕緣、環境穩定 及可能其他結構完整性。不作單獨說明,如下文所論述, 在製造期間沿二極體100-100L之側面形成複數個渠溝 丄55,其用以使二極體loo-ίο〇l在晶圓15〇、i5〇a上彼此Any of the optoelectronic semiconductors of any kind known or to be known in the art of LED fabrication. In various exemplary embodiments, the n+ type or p + type substrate ι 5 conducts a current 'this current as illustrated to flow to the n + type (10) layer UQe again to be noted, each of the illuminating or light absorbing regions 14 Either of the layers can be equivalently reversed or otherwise ordered 'such as reversing the position of the n+ type and p+ type GaN layers 11 〇, 115 as illustrated. The current path also passes through a metal layer forming one or more vias (130) (which can also be used to provide an extremely thin (about 25 angstroms) buffer between the n+ or (4) substrate and the n+ type GaN layer 11〇 Electrical bypass of layer (4). Other types of vias 131-134 and 136 that provide additional connections to the conductive layer are described below. One or more metal layers 120 (illustrated as two (or more) separately deposited metal layers and 12 〇 B) (which may also be used to form vias (13〇, 131, 132, 133, i34, 136) )) providing with the p + -type GaN layer us, and the second other metal layer 12 〇 b (such as a mold metal for forming a "bump" or protruding structure), and forming the first of the respective diode loo-iool An ohmic contact of the electrical terminals (or contacts) 125 or the metal layers 120A, 120B of the second terminals 127. Other metal layers can also be used as discussed below. For the illustrated exemplary diodes 1 i, i 〇〇 A, 100B, 100C, the electrical terminal 125 can be the only ohmic metal formed on the diodes 100, 100A, 100B, .100C during fabrication. Terminals for subsequent power (voltage) delivery (for LED applications) or reception (for optoelectronic applications), n+ or P + type substrate 105 for providing second power of diodes 1 , 100A, 100B, 100C Terminals for power delivery or reception. It should be noted that the 'electrical terminal 125 and the n+ type or p+ type substrate 1〇5 are on opposite sides of the diode 36 201226479 100, 100A, 100B, 100C (ie, the top surface (first side) and the bottom surface (or back side, second Side)), not on the same side. As an alternative to the specific examples of such diodes 100, 100A, 100B, 100C and as illustrated for other exemplary diode embodiments, in a diode (eg, diodes 100D, 100F, 100G, 100J) A second ohmic metal terminal 127, as the case may be, is formed on the second side (back side) using a metal layer 122. As an alternative to the embodiment of the diode 1 00K illustrated in Figures 2 1 and 22, the first ohmic metal terminal 125 is formed using the metal layer 122 on the second side (back side) of the pole body 100K, followed by flipping or Reverse the diode ιοοκ for use. As another alternative illustrated in FIGS. 23 and 24 for the exemplary diode 1 〇〇1, the first terminal 125 and the second terminal 127 are both on the same first side (top surface) of the diode 100L. . In particular, a tantalum nitride passivation layer 1 3 5 (or any other equivalent passivation layer) is used to achieve electrical insulation, environmental stability, and possibly other structural integrity. Without being separately described, as discussed below, a plurality of trenches 55 are formed along the sides of the diode 100-100L during fabrication, which are used to make the diodes loo- ίο〇l on the wafers 15〇, i5〇a On each other

分離(單體化)且用以使二極體l〇〇_l〇〇L與晶圓i5〇、i50A 之其餘部分分離。 圖1-24亦說明一或多個發光(或光吸收)區域ι4〇 (其 &quot;兒明為GaN異質結構(n+型GaN層11〇、量子井區185及 P +型GaN層115))之各種形狀及形態因數(f〇rm fact〇r) 以及基板1 05及/或複合GaN異質結構之各種形狀及形態因 數中之一些形狀及形態因數。亦如所說明,雖然例示性二 極體100-100L在x-y平面上實質上為六角形(具有彎曲或Separated (monomerized) and used to separate the diodes l〇〇_l〇〇L from the rest of the wafers i5〇, i50A. 1-24 also illustrate one or more illuminating (or light absorbing) regions ι4 〇 (which is a GaN heterostructure (n+ GaN layer 11 量子, quantum well region 185, and P + GaN layer 115)) Various shapes and form factors (f〇rm fact〇r) and some shapes and form factors of various shapes and form factors of the substrate 105 and/or the composite GaN heterostructure. As also illustrated, although the exemplary diode 100-100L is substantially hexagonal in the x-y plane (with bends or

S 37 201226479 拱形側面12 1、凹出或凸入(或兩者,形成更複雜之s形形 狀),如下文所更詳細論述),以提供每個矽晶圓更大之器 件密度’但其他二極體形狀及形態視作等效且處於所主張 之本發明範疇内,諸如正方形、圓形、卵圓形、橢圓形、 矩形、二角形、八角形、環形等。亦如例示性具體實例中 所說明,六角形側面121亦可略微彎曲或呈拱形,諸如凸 出(圖1、2、4、5 )或凹入(圖6_9 ),以便在自晶圓釋放 且懸洋於液體中時,二極體i 〇〇_丨〇〇L可避免彼此黏著或黏 附。另外’對於裝置 300、300A、300B、300C、300D、700、 700A、700B、720、730、740、750、760、770 製造,使用 厚度相對較小之二極體i 〇〇_丨〇〇L以防止個別晶粒(個別二 極體1 00-1 00L )在其側面或側緣(丨2丨)上豎立。亦如例示 性具體實例中所說明,六角形側面121亦可略微彎曲或呈 拱形以在各側面12 1之中心或中心部分周圍凸出而周邊/側 向凹入,從而形成更複雜之s形形狀(重疊之雙「s」形狀), 產生比杈尖銳或突出之頂點i丨4 (圖丨丨至24 ),以便在自晶 圓釋放且懸浮於液體中時,二極體i 〇〇_丨〇〇L亦可避免彼此 黏著或黏附且可在相對於另一二極體滾動或移動時彼此推 開。一極體1 00-1 00L之不同於平坦表面型態的變化(亦即 非平坦表面型態)亦有助於防止晶粒在懸浮於液體或膠體 中時彼此黏著。再次’亦對於裝置300、3〇〇A、3〇〇B、3〇〇c、 300D、700、700A、700B、720、730、740、750、760、770 製造,厚度或高度相對較小之二極體1〇〇_1〇〇L (或二極體 10 0K及i〇〇L之發光區域)(與其側向尺寸(直徑或寬度/ 38 201226479 、 長度)相比)趨轸防止個別晶粒(個別二極體i 00-1 〇〇L ) 在其侧面或侧緣(1 2 1 )上豎立。 亦說明發光(或光吸收)區域140 ( n+型GaN層11.0、 1子井區185及p +型GaN層115)之各種形狀及形態因數, 其中圖1-3說明實質上圓形或圓盤形發光(或光吸收)區域 140(n+型GaN層11〇、量子井區185及p +型GaN層115 ), 且圖4及5說明實質上圓環形(或超環形)發光(或光吸 收)區域140(n+型GaN層110、量子井區ι85及p+型GaN 層115),其中第二金屬層i2〇B延伸至超環狀體中心(且可 忐提供反射表面)。在圖6及7中,發光(或光吸收)區域 140 ( n+型GaN層11〇、量子井區185及p+型GaN層115) 具有實質上圓形内(側)表面及實質上葉形的外(側)表 面’而在圖8及9中,發光(或光吸收)區域14〇 ( n+型 GaN層11〇、量子井區185及p+型GaN層U5)亦具有實 質上圓死5内(側)表面,而外(側)表面實質上為星形。 在圖11-24中,一或多個發光(或光吸收)區域14〇具有實 貪上六角形(側)表面(其可能或可能不延伸至晶粒周圍) 且可能具有(至少部分具有)實質上圓形或橢圓形内(側) 表面。在未單獨說明之其他例示性具體實例中,可能存在 多個發光(或光吸收)區域14〇,其在晶粒上可為連續的或 可間隔開。可建構具有圓形内表面之一或多個發光(或光 吸收)區域140 ( n+型GaN層110、量子井區ι85&amp;ρ +型 GaN層11 5 )的此專各種組通以提向光輸出(對於[ED應 用而言)及光吸收(對於光電應用而言)之潛能。如下文S 37 201226479 Arched side 12 1. Concave or convex (or both, forming a more complex s-shaped shape, as discussed in more detail below) to provide greater device density for each tantalum wafer' Other diode shapes and configurations are considered equivalent and within the scope of the claimed invention, such as square, circular, oval, elliptical, rectangular, digonal, octagonal, toroidal, and the like. As also illustrated in the illustrative embodiments, the hexagonal side 121 may also be slightly curved or arched, such as convex (Figs. 1, 2, 4, 5) or recessed (Fig. 6-9) for release from the wafer. When suspended in a liquid, the diodes i 〇〇 丨〇〇 丨〇〇 L can avoid sticking or sticking to each other. In addition, for the manufacture of devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, a relatively small thickness of the diode i 〇〇 丨〇〇 丨〇〇 L is used. To prevent individual crystal grains (individual diodes 1 00-1 00L) from standing on their sides or side edges (丨2丨). As also illustrated in the illustrative embodiments, the hexagonal side 121 may also be slightly curved or arched to project around the center or central portion of each side surface 12 1 while being peripherally/laterally concave, thereby forming a more complex s Shape (overlapping double "s" shape), producing a sharper or more prominent apex i丨4 (Fig. 24) so that when released from the wafer and suspended in the liquid, the diode i 〇〇 _丨〇〇L can also avoid sticking or sticking to each other and can push away from each other when rolling or moving relative to the other diode. The variation of the monopole 1 00-1 00L from the flat surface pattern (i.e., the non-flat surface pattern) also helps prevent the grains from sticking to each other when suspended in a liquid or colloid. Again 'also for devices 300, 3〇〇A, 3〇〇B, 3〇〇c, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, with a relatively small thickness or height Diode 1〇〇_1〇〇L (or the light-emitting area of the diodes 10 0K and i〇〇L) (compared to its lateral dimensions (diameter or width / 38 201226479, length)) tends to prevent individual crystals The granules (individual diodes i 00-1 〇〇L ) are erected on their sides or side edges (1 2 1 ). Various shapes and form factors of the illuminating (or light absorbing) region 140 (n+ type GaN layer 11.0, 1 subwell region 185, and p+ GaN layer 115) are also illustrated, wherein FIGS. 1-3 illustrate substantially circular or circular Shaped luminescent (or light absorbing) regions 140 (n+-type GaN layer 11 量子, quantum well region 185, and p + -type GaN layer 115), and Figures 4 and 5 illustrate substantially circular (or super-annular) luminescence (or light) The absorption region 140 (n+-type GaN layer 110, quantum well region ι85, and p+-type GaN layer 115), wherein the second metal layer i2〇B extends to the center of the super-annular body (and can provide a reflective surface). In FIGS. 6 and 7, the light-emitting (or light-absorbing) region 140 (n+-type GaN layer 11A, quantum well region 185, and p+-type GaN layer 115) has a substantially circular inner (side) surface and a substantially leaf shape. The outer (side) surface' and in FIGS. 8 and 9, the illuminating (or light absorbing) region 14 〇 (n+ type GaN layer 11 〇, quantum well region 185, and p + GaN layer U5) also has a substantially circular The (side) surface, while the outer (side) surface is substantially star-shaped. In Figures 11-24, one or more of the illuminating (or light absorbing) regions 14 〇 have a solid hexagonal (side) surface (which may or may not extend around the die) and may have (at least partially) A substantially circular or elliptical inner (side) surface. In other illustrative embodiments not separately illustrated, there may be multiple illuminating (or light absorbing) regions 14 that may be continuous or spaced apart on the die. The various combinations of one or more of the circular inner surface or the plurality of illuminating (or light absorbing) regions 140 (n+ type GaN layer 110, quantum well region ι85 &amp; ρ + type GaN layer 11 5 ) may be constructed to enhance the light The potential of the output (for [ED applications] and light absorption (for optoelectronic applications). As below

S 39 201226479 所更詳細論述,n+型GaN層110或p+型GaN層115中任一 者之内表面及/或外表面亦可具有例如(但不限於)各種表 面紋理或表面幾何形狀中之任一者。 在一例示性具體實例中,第—端子125(或二極體1〇〇κ 之第二端子127)包含一或多個金屬層12〇Α、120Β且具有 凸塊或突出結構,以使二極體1〇〇_1〇〇L之一顯著部分由一 或多個絕緣或介電層覆蓋(在由第—導體31〇或31〇八與n + 型或P+型矽基板1〇5(或與由金屬層122形成之第二端子, 或與由金屬層128形成之第二端子)形成電接觸之後),同 時為一或多個其他導電層(諸如下文論述之第二導體32〇) 與電端子125接觸提供充足結構。另.外,端子125之凸塊 或突出結構可能亦可為除側自121之彎曲度及側面i2i之 厚度(高度)之外影響二極體1〇〇_1〇〇L於二極體墨水内旋 轉及其隨後在所製造之裝置300、3〇〇a、3〇〇b、3()()(:、3()()d、 700、700A、700B、720、730、740 ' 750、760 ' 770 令之 定向(頂部朝上(正向偏壓)或底部朝上(反向偏壓))的 複數個因素中之一者。 參考圖 11-22,例示性二極體 10〇d、1〇〇e、1〇〇F i〇〇g、 100K以各種組合說明若干其他及視情況存在之特徵。如所 說明,通常由模用金屬製造之形成凸塊或突出結構的金屬 層120B之週緣實質上為橢圓形(或卵圓形)(及圖η中之 實質上六角形)而非實質上圓形,儘管端子125之其他形 狀及形態因數亦處於本發明範疇内。另外,形成凸塊或突 出結構之金屬層120B可具有兩個或兩個以上延長延伸件 40 201226479 - 124’ 其在裝置 30〇、300A、300B、300C、300D、700、700A、 70 0B、720、73 0、740、750、760、770 製造中用於若干其 他目的’諸如有助於與第二導體320形成電接觸及有助於 絕緣介電質315(及/或第一導體31〇)遠離端子125(金屬 層12〇B或金屬122 )流動。橢圓形形態因數亦可允許沿形 成凸塊或突出結構之橢圓形金屬層12〇B之長軸側自發光 (或光吸收)區域14〇另外發光(或光吸收)或向發光(或 光吸收)區域14 0另外發光(或光吸收)。對於所選具體實 例而言’與p +型GaN層115形成歐姆接觸之亦可在多個步 驟中沈積為多層之金屬層l2〇A在p +型GaN層115上亦具 有延長延伸件’其在圖11、12、15、16、18及19中說明為 奇曲之金屬接點延伸件126,有助於向p +型GaN層Π 5傳 導電流,同時允許(而非過度阻遏)發光(或光吸收)區 域140發光或光吸收之潛能。可等效地使用無數其他形狀 之金屬接點延伸件12 6,諸如網格圖案、其他曲邊形狀等。 雖然未單獨說明,但在圖1 _ i 〇及2 i _24中所說明之其他具 體實例中亦可使用該等延長金屬接點延伸件。亦可使用其 他晶種或反射金屬層,如下文所更詳細描述。 圖11 -22中亦說明除先前所描述之在所製造之二極體 100、100A、100B、100C中延伸穿過緩衝層145且進入美 板105中但並非比較深地進入或穿過基板1〇5中之周邊(亦 即偏心)比較淺或「盲」導孔130之外其他類型之導孔結 構(131、132、133、134、136 )。如圖 13 (及圖 44、66 ) 中所說明,中心(或位於中心)之比較深之「貫穿 7」守 1匕S 39 201226479 discusses in more detail that the inner and/or outer surface of any of the n+ type GaN layer 110 or the p+ type GaN layer 115 may also have, for example, but not limited to, various surface textures or surface geometries. One. In an exemplary embodiment, the first terminal 125 (or the second terminal 127 of the diode 1 〇〇 κ) includes one or more metal layers 12 〇Α, 120 Β and has a bump or protruding structure to enable A significant portion of the polar body 1〇〇_1〇〇L is covered by one or more insulating or dielectric layers (in the first conductor 31〇 or 31〇8 and the n+ type or P+ type germanium substrate 1〇5 ( Or after forming a second contact with the metal layer 122, or with a second terminal formed by the metal layer 128, while being one or more other conductive layers (such as the second conductor 32 下文 discussed below) Contact with the electrical terminal 125 provides a sufficient structure. In addition, the bump or protruding structure of the terminal 125 may also affect the diode 1〇〇_1〇〇L in the diode ink except for the curvature of the side 121 and the thickness (height) of the side surface i2i. Internal rotation and its subsequent fabrication in the device 300, 3〇〇a, 3〇〇b, 3()()(:, 3()()d, 700, 700A, 700B, 720, 730, 740 '750 One of the multiple factors of 760 ' 770 orientation (top up (forward bias) or bottom up (reverse bias)). Referring to Figures 11-22, an exemplary diode 10〇 d, 1〇〇e, 1〇〇F i〇〇g, 100K illustrate several other and optionally characteristics in various combinations. As illustrated, metal layers of bumps or protruding structures, typically made of mold metal, are formed. The periphery of 120B is substantially elliptical (or oval) (and substantially hexagonal in Figure η) rather than substantially circular, although other shapes and form factors of terminal 125 are within the scope of the present invention. The metal layer 120B forming the bump or protruding structure may have two or more elongated extensions 40 201226479 - 124' which are in the device 30〇, 30 0A, 300B, 300C, 300D, 700, 700A, 70 0B, 720, 73 0, 740, 750, 760, 770 are used in manufacturing for several other purposes 'such as helping to make electrical contact with the second conductor 320 and helping The insulating dielectric 315 (and/or the first conductor 31A) flows away from the terminal 125 (metal layer 12A or metal 122). The elliptical form factor may also allow an elliptical metal layer to be formed along the bump or protruding structure. The long-axis side self-illuminating (or light absorbing) region of 12 〇B 〇 additionally emits light (or absorbs light) or additionally illuminates (or absorbs light) into the illuminating (or light absorbing) region 140. For the selected specific example 'The metal layer l2A which is formed in ohmic contact with the p + -type GaN layer 115 and which may be deposited as a plurality of layers in a plurality of steps also has an elongated extension on the p + -type GaN layer 115. It is in FIGS. 11, 12, 15 Metal contact extensions 126, illustrated in 16, 18, and 19, are shown to help conduct current to the p + -type GaN layer , 5 while allowing (but not excessively repressing) illuminating (or light absorbing) regions 140 to illuminate. Or the potential of light absorption. Equivalent use of numerous other shapes of metal joint extensions 12 6 Such as grid patterns, other curved shapes, etc. Although not separately illustrated, such extended metal contact extensions may also be used in other embodiments illustrated in Figures 1 - i 〇 and 2 i _24. Other seed or reflective metal layers, as described in more detail below. Figures 11-22 also illustrate the extension of the buffer layer 145 and entry into the fabricated diodes 100, 100A, 100B, 100C, as previously described. In the US plate 105, but not deeper into or through the periphery of the substrate 1〇5 (ie, eccentric), other types of via structures other than the shallow or “blind” via 130 (131, 132, 133, 134) , 136). As shown in Figure 13 (and Figures 44 and 66), the center (or at the center) is relatively deep.

S 41 201226479 131延伸完全穿過基板1〇5,且用以與n+型GaN層110形 成歐姆接觸且在第二側(背面)金屬層丨22與η +型GaN層 11 0之間傳導電流(或以其他方式形成電接觸)。如圖22中 所說明,中心(或位於中心)之深度較小或較淺之「貫穿」 導孔136延伸完全穿過複合GaN異質結構(115、185、11〇 ), 且用以與n+型GaN層u 〇形成歐姆接觸且在第二側(背面) 金屬層122與n+型GaN層11〇之間傳導電流(或以其他方 式形成電接觸)。如圖14中所說明,中心(或位於中心) 之比較淺或盲導孔132 (亦稱為「盲」導孔132 )延伸穿過 緩衝層145且進入基板1〇5中,且其用以與#型GaN層110 形成歐姆接觸且在n+型GaN層11〇與基板1〇5之間傳導電 流(或以其他方式形成電接觸)。如圖丨5 _丨7及4 9 _ 5 〇中所 說明,周圍之比較深或貫穿導孔133沿側面121 (儘管由鈍 化層135覆蓋)自n+型GaN層11〇延伸且延伸至二極體1〇〇F 之第一側(背面),在此具體實例中二極體1 〇〇F亦包括第 一側(背面)金屬層122,完全圍繞基板1〇5之側面,且其 用以與n+型GaN層11 〇形成歐姆接觸且在第二側(背面) 金屬層122與n+型GaN層11〇之間傳導電流(或以其他方 式形成電接觸)。如圖18-20中所說明,周邊之比較深之「貫 穿」導孔134.延伸完全穿過基板1Q5,且其用以與n+型 層110形成歐姆接觸且在第二側(背面)金屬層122與n+ 型―層110之間傳導電流(或以其他方式形成電接觸)β 在不使用第二側(背面)金屬層122的具體實例中,該等 貫穿導孔結構(Ul、n3' 1S4、η6)可用以與導體310Α 42 201226479 形成電接觸(在裝置 30〇、300A、300B、3 00C、3 00D、720、 730、760中)且在導體310A與n+型GaN層110之間傳導 電流(或以其他方式形成電接觸)。此等貫穿導孔結構 (m、133、134、1;36)在製造期間,在經由背面研磨及拋 光或雷射剝離(下文參考圖64及65所論述)單體化二極 體後暴露於二極體110D、l〇〇F、l〇〇G、100K之第二側(背 面)上,且可保持暴露或可由第二側(背面)金屬層122 覆盖(且與第二側(背面)金屬層122形成電接觸)(如圖 6 6中所說明)。 貝牙導孔結構(131、133、134、136)比此項技術中 已知之典型導孔窄得多。貫穿導孔結構(m、133、m) 之深度(延伸穿過基板1〇5之高度)大致為約7微米至9 微米’且貫穿導孔結構136之深度(延伸穿過複合GaN異 質結構之高度)大致為約2微米至4微米’且其寬度為約3 微来至5微米,與傳統導孔約30微米或大於30微米之寬 度比較。 圖、π、18、20_22、66及68中亦說明視情況存 在的形成第二端子或接點127或第一端子125 (二極體 ιοοκ)之第二側(背面)金屬層lz2。該第二端子或接點 127例如(但不限於)可用以有助於電流諸如經由各種貫穿 導匕、。構(13 1、13 3、13 4、13 6 )傳導至 n+ 型 GaN 層 11 〇, 及/或有助於與導體31 0A形成電接觸。 多考圖21 -22,例示性二極體1 00K說明若干其他及視 匱况存在之特徵。圖22說明製造層橫截面,以說明如何製 43 201226479 造例示性二極體1 00K ;接著翻轉或反轉例示性二極體1OOK 以使其如圖2 1中所說明正面向上,以用於例示性裝置300、 300A、300B ' 300C、300D、720、730、760 具體實例中’ 其中光穿過上部n+型GaN層110發射(在LED具體實例 中)。因此,第一端子125由第二側(背面)金屬122形成, n+型GaN層110與p +型GaN層115之定向同樣可顛倒(在 圖21中n+型GaN層110現為上層)(相較於其他具體實例 100-100J),其中第二端子127由一或多個金屬層ι2〇Β形 成。說明極少甚至無基板1〇5、105A或緩衝層145,其在製 造期間已經實質上移除,在適當位置留下複合GaN異質結 構(p +型GaN層115、量子井區185及p +型GaN層11 5 ), 且可能亦移除一定量的其他GaN層或基板。側面或側緣 (12 1 )比其他所說明之具體實例相對較薄(或厚度較小), 在例示性具體實例中為10微米以下,或更尤其為約2微米 至8微米,或更尤其為約2微米至6微米,或更尤其為約2 微米至4微米,或更尤其為25微米至3 5微米,或為約3 微米,亦用以防止個別二極體10〇K在裝置3〇〇、3〇〇A、 3〇〇B、300C、300D、720、730、760製造期間在其側面或 側緣(12 1 )上豎立。 形成第一端子125之第二側(背面)金屏122比較厚, 在例示性具體實例中為約3微米至6微米,或4 5微米^約 5.5微米,或約5微米,以使二極體1〇〇κ之高度為約Η微 米至15微米,或12微米至14微米,或約13微米,以允 許介電層315沈積且與第二導體320接觸,且呈例如(但 44 201226479 不限於)長軸為约丨4微米且短軸為約6微米之橢圓形形 狀形成第—端子125之第二側(背面)金屬亦不延 伸越過整個背面以便於背面對準及二極體100K單體化。第 知子127由金屬層j 2〇B形成,且在例示性具體實例中, 厚度,般亦為約3微米至6微米,或厚度為4·5微米至約 5.5微米,或厚度為約5微米。亦如所說明,絕緣(鈍化) 層135Α亦用以使金屬層12〇β與導孔136電絕緣或電隔 離且可以獨立於圍繞周邊沈積鈍化(氮化物)層135的 步驟沈積’因此說明為135Α。在例示性具體實例中,二極 胜100Κ之寬度(一般呈六角形之形狀的面與面之間的距離 而非頂點與頂點之間的距離)為例如(但不限於)約10微 米至50微米,或更尤其為約2〇微米至3〇微米或更尤其 為、勺22微米至28微米,或,更尤其為約25微米至”微米, 或更尤其為約25.5微米至26.5微米,或更尤其為約26微 米。未作單獨說明’在製造第二端子127過程中亦可包括 金屬層12GA。在製造二極體i⑻κ期間(且在其他例示性 -極體100-100L具體實例中),頂部⑽層(說明為ρ +型 GaN層115 ’但亦可為其他類型之_層,如圖Μ中所說 明)亦可經極薄之光學反射金屬層(在圖25中說明為銀層 1〇3)及/或光學透射性金屬I (未作單獨說明)(諸如厚产 約100埃之鎳_金或鎳_金_鎳)金屬化且與其形 入又 有助於歐姆接觸形成(且可能提供朝向n+型GaN層11〇二 ==:些接著與其他⑽層一起諸如在:成-S 41 201226479 131 extends completely through the substrate 1〇5 and is used to form an ohmic contact with the n+ type GaN layer 110 and conduct current between the second side (back) metal layer 22 and the n + type GaN layer 11 0 ( Or otherwise form an electrical contact). As illustrated in Figure 22, the center (or at the center) has a smaller or shallower "through" via 136 that extends completely through the composite GaN heterostructure (115, 185, 11 〇) and is used with the n+ type. The GaN layer u 〇 forms an ohmic contact and conducts current (or otherwise forms an electrical contact) between the second side (back) metal layer 122 and the n+ type GaN layer 11 。. As illustrated in Figure 14, a shallow or blind via 132 (also referred to as a "blind" via 132) at the center (or at the center) extends through the buffer layer 145 and into the substrate 1〇5, and is used to The #-type GaN layer 110 forms an ohmic contact and conducts current (or otherwise forms electrical contact) between the n+ type GaN layer 11A and the substrate 1A5. As illustrated in FIGS. 5 _ 丨 7 and 4 9 _ 5 ,, the surrounding deep or through-via 133 extends along the side 121 (although covered by the passivation layer 135) from the n+-type GaN layer 11 且 and extends to the dipole The first side (back side) of the body 〇〇F, in this embodiment the diode 1 〇〇F also includes a first side (back) metal layer 122, completely surrounding the side of the substrate 1 〇 5, and it is used An ohmic contact is formed with the n+ type GaN layer 11 and a current is conducted (or otherwise formed into electrical contact) between the second side (back) metal layer 122 and the n+ type GaN layer 11?. As illustrated in Figures 18-20, the relatively deep "through" vias 134. extend completely through the substrate 1Q5 and are used to form an ohmic contact with the n+ type layer 110 and a metal layer on the second side (back side) 122. Conducting current (or otherwise forming electrical contact) between the n+ type and the layer 110. In the specific example in which the second side (back) metal layer 122 is not used, the through via structures (Ul, n3' 1S4) , η6) may be used to make electrical contact with the conductor 310Α 42 201226479 (in the devices 30〇, 300A, 300B, 300C, 3 00D, 720, 730, 760) and conduct current between the conductor 310A and the n+ type GaN layer 110 (or otherwise form electrical contact). These through-via structures (m, 133, 134, 1; 36) are exposed during fabrication after singulation of the diode via backgrinding and polishing or laser stripping (discussed below with reference to Figures 64 and 65) The second side (back side) of the diode 110D, l〇〇F, l〇〇G, 100K, and may remain exposed or may be covered by the second side (back) metal layer 122 (and with the second side (back) Metal layer 122 forms an electrical contact) (as illustrated in Figure 6 6). The shell-to-bottom structure (131, 133, 134, 136) is much narrower than the typical vias known in the art. The depth through the via structure (m, 133, m) (the height extending through the substrate 1〇5) is approximately 7 μm to 9 μm and extends through the via structure 136 (extending through the composite GaN heterostructure) The height is approximately from about 2 microns to 4 microns and the width is from about 3 micrometers to 5 micrometers, as compared to a conventional via having a width of about 30 microns or greater than 30 microns. The second side (back) metal layer lz2 forming the second terminal or contact 127 or the first terminal 125 (diode ιοοκ) as described above is also illustrated in the figures, π, 18, 20_22, 66 and 68. The second terminal or contact 127 can be used, for example, but not limited to, to facilitate current flow, such as via various through guides. The structure (13 1 , 13 3 , 13 4 , 13 6 ) is conducted to the n + -type GaN layer 11 〇 and/or contributes to making electrical contact with the conductor 31 0A. Multi-Picture 21-22, the exemplary diode 1 00K illustrates the characteristics of several other and visual conditions. Figure 22 illustrates a cross-section of the fabrication layer to illustrate how to make an exemplary diode 1 00K at 201226479; then flip or reverse the exemplary diode 1OOK to face up as illustrated in Figure 21 for Exemplary devices 300, 300A, 300B '300C, 300D, 720, 730, 760 are in particular 'where light is emitted through the upper n+ type GaN layer 110 (in the LED embodiment). Therefore, the first terminal 125 is formed by the second side (back surface) metal 122, and the orientation of the n + -type GaN layer 110 and the p + -type GaN layer 115 can be reversed as well (the n + -type GaN layer 110 is now the upper layer in FIG. 21) Compared to other specific examples 100-100J), wherein the second terminal 127 is formed of one or more metal layers ι2. There is little or no substrate 1〇5, 105A or buffer layer 145 that has been substantially removed during fabrication, leaving a complex GaN heterostructure in place (p + -type GaN layer 115, quantum well region 185, and p + type) The GaN layer 11 5 ), and possibly also a certain amount of other GaN layers or substrates, may also be removed. The side or side edges (12 1 ) are relatively thinner (or less thick) than the other illustrated embodiments, in the illustrative embodiments, 10 microns or less, or more particularly about 2 microns to 8 microns, or more particularly From about 2 microns to 6 microns, or more specifically from about 2 microns to 4 microns, or more specifically from 25 microns to 35 microns, or about 3 microns, also to prevent individual diodes 10〇K from being in device 3 〇〇, 3〇〇A, 3〇〇B, 300C, 300D, 720, 730, 760 are erected on their sides or side edges (12 1 ) during manufacture. The second side (back) gold screen 122 forming the first terminal 125 is relatively thick, in the illustrative embodiment, from about 3 microns to 6 microns, or 45 microns to about 5.5 microns, or about 5 microns, to make the poles The height of the body 〇〇κ is from about Ημm to 15 microns, or from 12 microns to 14 microns, or about 13 microns, to allow the dielectric layer 315 to be deposited and in contact with the second conductor 320, and is for example (but 44 201226479 not Limited to an elliptical shape having a major axis of about 4 μm and a minor axis of about 6 μm. The second side (back) of the first terminal 125 does not extend over the entire back surface to facilitate back alignment and diode 100K Physicalization. The ikozi 127 is formed of a metal layer j 2 〇 B, and in an exemplary embodiment, has a thickness, typically from about 3 microns to 6 microns, or a thickness of from 4. 5 microns to about 5.5 microns, or a thickness of about 5 microns. . As also illustrated, the insulating (passivation) layer 135 is also used to electrically or electrically isolate the metal layer 12A from the via 136 and may be deposited independently of the step of depositing a passivation (nitride) layer 135 around the perimeter. 135Α. In an exemplary embodiment, the width of the dipole to 100 ( (the distance between the face and the face of the generally hexagonal shape rather than the distance between the apex and the apex) is, for example, but not limited to, about 10 microns to 50. Micrometers, or more specifically from about 2 micrometers to 3 micrometers or more, spoons from 22 micrometers to 28 micrometers, or, more specifically, from about 25 micrometers to "micrometers, or, more specifically, from about 25.5 micrometers to 26.5 micrometers, or More particularly about 26 microns. Not separately stated 'the metal layer 12GA may also be included in the fabrication of the second terminal 127. During the fabrication of the diode i(8)κ (and in other exemplary-polar bodies 100-100L specific examples) The top (10) layer (illustrated as a ρ + -type GaN layer 115 'but may be other types of layers, as illustrated in FIG. 2 ) may also be subjected to an extremely thin optically reflective metal layer (illustrated as a silver layer in FIG. 25 ) 1〇3) and/or optically transmissive metal I (not separately stated) (such as nickel-gold or nickel-gold-nickel with a thickness of about 100 angstroms) metallized and shaped to facilitate ohmic contact formation ( And it is possible to provide a layer of n + -type GaN 11 〇 ==: some then along with the other (10) layers As in: Cheng -

45 S 201226479 參考圖23及24,例示性第十一二極體1 〇〇L具體實例 與所有其他所說明之二極體1〇〇_1 00K具體實例的不同之處 在於在二極體100L之同一側(上面或頂面)上具有第一及 第二端子125、127。當用於例示性裝置7〇〇、700A、700B、 74〇、75〇、770具體實例中時,光將穿過(下部)n+型GaN 層110’通常穿過實質上光學透明之基底3 〇5 A發射(在led 具體實例中)或吸收(對於光電具體實例而言),如圖8〇 82 中所s兒明。由於在二極體1 〇〇L之同一側(上面或頂面)上 具有第一及第二端子125、127,所以此例示性二極體丨〇〇L 不使用任何第二側(背面)金屬122,且一般不需要任何先 前所論述之各種導孔結構。說明極少甚至無基板1〇5、1〇5八 或緩衝層145,其亦在製造期間已經實質上移除,在適當位 置上留下複合GaN異質結構(p+型GaN層i丨5、量子井區 185及p +型(3心層115),且可能亦移除一定量的其他 側面或侧緣(121 )亦比其他所說明之具體實例相對較薄(写 厚度較小)’在例示性具體實例中為約2微米至4微米,呈 更尤其2.5微米至3·5微米’或約3微米,亦用以防止個另 一極體 100L 在裝置 700、700A、700B、740、75 0、770 ! 造期間在其側面或側緣(121)上賢立。未作單獨說明,4 製造二極n腿期間(及在其他例示性二極體綱_1〇〇 具體實例中)’頂部GaN層(說明為p +型㈣層ιΐ5, ^ 亦可為其他類狀GaN.層,如圖25 t所說明)亦可經極$ 之光學反射金屬層(在圖25中說明為銀層ι〇3)及/或光占 透射性金屬層(未作單獨說明)(諸如厚度約1〇〇埃之錦 46 201226479 '* 金或鎳金_鎳)金屬化且與其形成合金,以有助於歐姆接觸 形成(且可能提供朝向n+型GaN層110之光反射),其中 一些接著與其他GaN層一起諸如在形成GaN台面期間移 除。 如圖23及24中所說明,GaN台面(p +型GaN層115 及里子井層1 8 5 ) —般呈非典型形狀,有點類似於頂部經修 平之三角形(例如,藉由自六角形或圓形提供複數個(三 個)劃出部分而形成)’以在n+型GaN層11〇之上表面上 為金屬接點12 8 (說明三個金屬接點12 8 )提供空間,該等 金屬接點128在二極體l〇〇L之上面或頂面上形成第二端子 1 27。在各個例示性具體實例中,GaN台面之高度一般為約 〇·5微求至ι·5微米,或更尤其為〇 8微米至1 2微米,或更 尤其為0·9至1.1微米,或更尤其為約! .〇微米。金屬接點 128可由導孔金屬形成,高度約為約〇·75微米至I」微米, 或局度更尤其為約0.9微米至1.1微米,或高度更尤其為約 微米,諸如約1〇〇埃之鈦、5〇〇 nm之鋁、500 nm之鎳 及100 nm之金,且寬度為約2·5至3·5微米(徑向量測)。 在各個例示性具體實例中,由金屬層120Α及120Β形成之 第—端子125形狀類似於GaN台面但小於GaN台面,其高 度—般為約4微米至8微米,或更尤其為5微米至7微米, 或更尤其為約6微米,以允許沈積與金屬接點丨28接觸之 第導體310A且允許沈積介電層315,繼而第一端子125 與第一導體320接觸(圖80-82中所說明)。在此例示性具 體貫例中,由金屬層120A及120B形成之第一端子125亦 47 201226479 經鈍化(13 5 ),該站几认, ’矛、提供絕緣及保護以免接觸第一導 體3 10之外,亦可用以有 守 有助於弟一如子125之結構完整性, 適用於抵禦印刷製程中斛斤丄 ^ &amp;加之各種力。在例示性具體實 例中,二極體100L之寬度(一 ^ 叙呈/、角开》之形狀之面與面 之間的距離而非頂點與頂點之間的距離)為約Μ微米至5〇 微米《更尤其為約20微米至30微米,或更尤其為約22 微米至28微米,戎#女、甘去认 Α更尤其為約25微米至27微米,或更尤 其為約25.5微米至26S _ 主26.5微米,或更尤其為約26微米。在 例示性具體實例中,_太 &gt; 一本體100L之尚度一般為約8微米至 15微米’或更尤其為9微半$ 1?叫 . 门慽木至12斂未,或更尤其為約1 〇 5 微米至11.5微米。 ^應注意,二端器件之尺寸更一般可為較大的,諸如直 徑(寬度或長度’視形狀而定,亦為面對面量測)為約 微米至75微米,且高度為約5至25微米。 圖25為穿過一部分複合GaN異質結構(或台面) U+型GaN層110、量子井區185、p +型GaN層115)及金 屬層120A、120B之橫截面圖,其說明複合GaN異質結構 之外表面及/或内表面(例如,p +型GaN層115或n+型GaN 層110或其他銀或鏡面層(1〇3)之表面)的視情況呈現之 幾何形狀及紋理。圖25中所說明之各種特徵中之任一者可 用作各種例示性二極體l〇〇_l〇〇L中之任一者的可選方案。 如圖1-24中所說明,複合GaN異質結構之外表面及/或内 表面可比較平滑。如圖25中所說明,複合GaN異質結構之 各種外表面及/或内表面中之任一者可製造成具有各種紋 48 201226479 理、幾何形狀、鏡面、反射器 人^、他录面處理中之任一者。 舉例而言(但不加以限制),福人 w GaN異質結構之外表面(上 表面或頂表面)(說明為n+型㈣層U0)傷刻以提供 表面㈣㈣112(說明為_狀圓錐形或錐形結構),諸 如以減少内部反射且提高-炻辨 奴冋一極體100-1〇〇1具體實例内之光 提取。另外,複合GaN異質結構之外表45 S 201226479 Referring to Figures 23 and 24, the exemplary eleventh dipole 1 〇〇L specific example differs from all other illustrated diodes 1 〇〇 1 00K specific examples in the diode 100L The first and second terminals 125, 127 are on the same side (upper or top). When used in the exemplary device 7〇〇, 700A, 700B, 74〇, 75〇, 770 embodiments, light will pass through the (lower) n+ type GaN layer 110', typically through a substantially optically transparent substrate 3 5 A emission (in the specific case of led) or absorption (for the specific example of optoelectronics), as shown in Figure 8〇82. Since the first and second terminals 125, 127 are on the same side (upper or top) of the diode 1 〇〇L, this exemplary diode 丨〇〇L does not use any second side (back) Metal 122, and generally does not require any of the various via structures previously discussed. There is little or no substrate 1〇5, 1〇5-8 or buffer layer 145, which has also been substantially removed during fabrication, leaving a complex GaN heterostructure in place (p+ type GaN layer i丨5, quantum well) Zone 185 and p + type (3 core layer 115), and possibly also removing a certain amount of other sides or side edges (121) are also relatively thinner than the other illustrated examples (small write thickness) 'in the exemplary In the specific example, it is about 2 micrometers to 4 micrometers, more specifically 2.5 micrometers to 3.5 micrometers or about 3 micrometers, and is also used to prevent the other polar body 100L from being in devices 700, 700A, 700B, 740, 75 0, 770! During construction, it stands on its side or side edge (121). Not separately stated, 4 during the manufacture of the two-pole n-leg period (and in other exemplary diodes, in the specific example) 'top GaN The layer (described as p + type (four) layer ιΐ5, ^ can also be other GaN. layer, as illustrated in Figure 25 t) can also be optically reflective metal layer (in Figure 25 is illustrated as silver layer ι〇) 3) and / or light occupies the transmissive metal layer (not separately stated) (such as the thickness of about 1 〇〇 之 46 46 201226479 '* gold or nickel gold _ nickel) The alloying and alloying thereof to facilitate ohmic contact formation (and possibly providing light reflection towards the n+ type GaN layer 110), some of which are then removed along with other GaN layers, such as during formation of GaN mesas. As illustrated in Fig. 24, the GaN mesas (p + -type GaN layer 115 and the lining well layer 1 8 5 ) are generally atypical in shape, somewhat similar to the top-triangled triangle (for example, by providing a complex number from a hexagon or a circle) (three) drawn portions are formed) to provide space for the metal contacts 12 8 (illustrating three metal contacts 12 8 ) on the upper surface of the n + -type GaN layer 11 ,, the metal contacts 128 are The second terminal 127 is formed on the upper or top surface of the diode l 〇〇 L. In each of the illustrative embodiments, the height of the GaN mesas is generally from about 5 μm to about 5 μm, or more particularly 〇 8 μm to 12 μm, or more particularly 0·9 to 1.1 μm, or more particularly about 〇 μm. The metal contact 128 may be formed of a via metal having a height of about 〇·75 μm to I” Micron, or degree, more particularly from about 0.9 microns to 1.1 microns, or more particularly About micrometers, such as about 1 angstrom titanium, 5 〇〇 nm aluminum, 500 nm nickel, and 100 nm gold, and have a width of about 2.5 to 3.5 micrometers (radial measurement). In an exemplary embodiment, the first terminal 125 formed by the metal layers 120 Α and 120 形状 is shaped like a GaN mesa but smaller than a GaN mesa, generally having a height of about 4 to 8 μm, or more specifically 5 to 7 μm. Or more particularly about 6 microns to allow deposition of the first conductor 310A in contact with the metal contact 28 and permit deposition of the dielectric layer 315, which in turn contacts the first conductor 320 (illustrated in Figures 80-82) . In this exemplary embodiment, the first terminal 125 formed by the metal layers 120A and 120B is also passivated (13 5 ). The station recognizes that the 'spear, provides insulation and protection from contact with the first conductor 3 10 In addition, it can also be used to protect the structure of the brother as a child 125, suitable for resisting the printing process, and the various forces. In an exemplary embodiment, the width of the diode 100L (the distance between the face and the face of the shape of the shape of the angle / the angle is not the distance between the vertex and the apex) is about Μ micron to 5 〇. Micron "more particularly from about 20 microns to 30 microns, or more particularly from about 22 microns to 28 microns, more specifically from about 25 microns to 27 microns, or more particularly from about 25.5 microns to 26S, especially from about 25 microns to about 28 microns. _ Master 26.5 microns, or more especially about 26 microns. In an exemplary embodiment, _Too> a body 100L typically has a range of from about 8 microns to 15 microns or more specifically 9 microns and a half of a dollar. About 1 〇 5 microns to 11.5 microns. It should be noted that the size of the two-terminal device is more generally larger, such as diameter (width or length 'depending on shape, also for face-to-face measurement) from about micrometers to 75 micrometers, and height is about 5 to 25 micrometers. . 25 is a cross-sectional view through a portion of a composite GaN heterostructure (or mesa) U+-type GaN layer 110, a quantum well region 185, a p+-type GaN layer 115), and metal layers 120A, 120B illustrating a composite GaN heterostructure The geometry and texture of the outer surface and/or the inner surface (eg, the surface of the p+-type GaN layer 115 or the n+-type GaN layer 110 or other silver or mirror layer (1〇3)) as appropriate. Any of the various features illustrated in Figure 25 can be used as an alternative to any of the various exemplary diodes l〇〇_l〇〇L. As illustrated in Figures 1-24, the outer and/or inner surface of the composite GaN heterostructure can be relatively smooth. As illustrated in Figure 25, any of the various outer and/or inner surfaces of the composite GaN heterostructure can be fabricated to have various textures, such as textures, geometries, mirrors, reflectors, and other recordings. Either. By way of example and not limitation, the outer surface (upper surface or top surface) of the B. GaN heterostructure (described as n+ type (four) layer U0) is wound to provide surface (4) (four) 112 (illustrated as a _-shaped conical or cone Shape structure), such as to reduce internal reflection and improve the light extraction in a specific instance of the polar body 100-1〇〇1. In addition, the composite GaN heterostructure is external

丹、w衣面(例如p+型GaN 層115或n+型GaN層110夕志品、 〇之表面)可經遮蓋且蝕刻或以盆 他方式製造成具有各種幾何結構,亦例如(但不限於)弯 隆形或透鏡形狀116;超環狀體、蜂巢或華夫餅乾(讀⑷ 形狀118;條紋113或其他幾何形狀(例如六角形、三角形 等)117。另外,側面121亦可包括各種鏡面或反射器丨〇9, 諸如介電反射器(例如Si〇2/Si3N4)或金屬反射器。多種表 面處理及反射器已描述於例如Fujii等人之美國專利第 7,7〇4,763號(2〇10年4月27日頒予)、Chu等人之美國專 利第7,897,42〇號(2011年3月!日頒予)、Kang#^之美 國專利申請公開案第2010/02950 14 A1號(2010年1 i月2'5 曰公開)及Shiim之美國專利第7,825,425號(2〇1〇年η 月2日頒予)中,上述所有專利均以引用方式併入本文中。 其他表面紋理及幾何形狀說明於圖丨04_丨〇8中。 繼續參考圖25,複合GaN異質結構(或更一般,二極 體100-100L)之内表面亦可製造成具有各種紋理、幾何形 狀、鏡面、反射器或其他表面處理中之任一者。如所說明, 舉例而言(但不加以限制),反射層103可用於諸如藉由使 用在製造期間(在製造金屬層102A、102B之前)塗覆之銀 49 201226479 層而提供朝向二極體100_100L之暴露表面向外之光反射且 提高光提取,該反射層103可為平滑(111)或具有帶紋理 (107)表面。亦舉例而言(但不加以限制),複合異質 結構之内表面亦可為平滑的或諸如藉由使用可為例如漫= η型InGaN材料之其他層1〇8而具有帶紋理表面。另外^此 等各種視情況呈現之表面幾何形狀及紋理中之任一者可單 獨使用或彼此組合使用,諸如具有外表面紋理U2與内表= 紋理(107)及/或反射層1〇3之複漫射結構。亦可出於其他 原因使用各種視情況存在之層,諸如在層1〇8巾使用〇型Dan, w clothing (such as p + -type GaN layer 115 or n + -type GaN layer 110, the surface of the crucible) can be covered and etched or potted to have various geometric structures, such as (but not limited to) A torus or lens shape 116; a toroid, a honeycomb or a waffle (read (4) shape 118; stripes 113 or other geometric shapes (eg, hexagons, triangles, etc.) 117. Additionally, side 121 may also include various mirrors or Reflector 丨〇 9, such as a dielectric reflector (e.g., Si 〇 2 / Si 3 N 4 ) or a metal reflector. A variety of surface treatments and reflectors have been described, for example, in U.S. Patent No. 7,7,4,763 to Fujii et al. U.S. Patent No. 7,897,42, issued to Chu et al., issued on March 27, 2011, issued on May 31, 2011, and the disclosure of U.S. Patent Application Publication No. 2010/02950. All of the above patents are incorporated herein by reference in its entirety by reference to U.S. Patent No. 7,825,425, issued to theU.S. The geometry is illustrated in Fig. 04_丨〇 8. With continued reference to Fig. 25, the composite GaN heterostructure Or more generally, the inner surface of the diode 100-100L) can also be fabricated to have any of a variety of textures, geometries, mirrors, reflectors, or other surface treatments. As illustrated, for example (but not Restrictively, the reflective layer 103 can be used to provide outward reflection of light toward the exposed surface of the diode 100_100L and enhance light, such as by using a layer of silver 49 201226479 applied during fabrication (before the metal layer 102A, 102B is fabricated). For extraction, the reflective layer 103 can be smooth (111) or have a textured (107) surface. Also by way of example, but not limiting, the inner surface of the composite heterostructure can also be smooth or can be used, for example, by use. For example, the other layers of the n-type InGaN material have a textured surface. Alternatively, any of the various surface geometries and textures presented as such may be used alone or in combination with each other, such as having an outer surface. Texture U2 and inner surface = texture (107) and / or complex diffusing structure of reflective layer 1 〇 3. It is also possible to use various layers depending on the situation for other reasons, such as the use of layers in layers 1 〇 8

InGaN材料以提供較佳之歐姆接觸,與可能使用或可能不使 用之任何表面處理無關。 二極體1〇〇撕之所有尺寸一般小於約45〇微米,且 所有尺寸更尤其小於約200微求,且所有尺寸更尤其小於 約1〇〇微米,且所有尺寸更尤其小於5〇微米。在所說明之 例示性具體實例中,二極體之寬度_般大致為約 W微米至50微米,或寬度更尤其為約2〇微米至儿微米, 且高度為約5微米至25微米’或高度更尤其為5微米至二 微米,或直徑為約25微米至28微米(側面對側面而非頂 點對頂點量測)且高度為1〇微求至15微米。在例示性且 體貫例中,:極體包括形成凸塊或突出結構之 金屬層120Β4 122在内的高度(亦即,包括_異質結構 =側面121之高度)視具體實例而定大致為約2微米至η 微米’或更尤其為約2微来至4微米,或更尤其為7微米 至U微米’或更尤其為8微米至u微米,或更尤其為9 50 201226479 . 微米至1 〇微米’或更尤其小於1 〇微米至3 0微米,而形成 凸塊或突出結構之金屬層120Β之咼度一般大致為約3微米 至7微米。由於二極體之尺寸經工程改造成處於器件製造 期間之所選容許度範圍内,所以可例如(但不限於)使用 光學顯微鏡(其亦可包括量測軟體)、掃描電子顯微鏡(SEM ) 或Horiba LA-920 (例如,在粒子處於稀溶液中,其可處於 二極體墨水或任何其他液體或膠體中時使用夫朗和裝繞射 (Fraunhofer diffracti〇n)及光散射來量測粒徑(及粒徑分 佈))來量測二極體之尺寸。二極體100_100L之所有尺寸或 其他量測值應視作複數個二極體10〇_1〇〇L之平均值(例如 平均值及/或中值)’且將視所選具體實例而顯著變化(例如 二極體110-100了或100尺或1〇〇L 一般將皆具有不同之各別 尺寸)。 - 二極體l〇0_10〇L可使用當前已知或將來開發之任何半 導體製造技術來製造。圖26-66說明製造例示性二極體 1 00-100L之複數個例示性方法且說明若干其他例示性二極 體100H、1001及i00J (在橫截面上)。熟習此項技術者應 暸解,製造一極體1〇〇_1〇〇£之各個步驟中之多個步驟可按 各種次序中之任一者進行,在其他次序中可省去或納入, 且可產生除所說明之結構之外的諸多二極體結構。舉例而 言,圖38-44說明在視情況存在或不存在第二側(背面)金 屬層122下分別包括中心及周邊貫穿(或深)導孔i3i及 134的一極體100H之形成(組合二極體及i〇〇G之特 徵而圖45·5〇說明在視情況存在或不存在第二側(背面)InGaN materials provide better ohmic contact regardless of any surface treatment that may or may not be used. All dimensions of the diode 1 tear are generally less than about 45 micrometers, and all dimensions are more particularly less than about 200 micro-fines, and all dimensions are more particularly less than about 1 micron, and all dimensions are more particularly less than 5 micrometers. In the illustrated exemplary embodiment, the width of the diode is generally from about W microns to 50 microns, or more specifically from about 2 microns to about 5 microns, and the height is from about 5 microns to 25 microns. The height is more particularly from 5 micrometers to two micrometers, or from about 25 micrometers to 28 micrometers in diameter (side-to-side rather than apex versus vertex) and height is from 1 to 15 micrometers. In an exemplary and physical example, the height of the pole body including the metal layer 120Β4 122 forming the bump or the protruding structure (ie, including the height of the heterostructure = side 121) is approximately about the specific example. 2 microns to η microns ' or more especially from about 2 micro to 4 microns, or more particularly from 7 microns to U microns ' or more especially from 8 microns to u microns, or more especially from 9 50 201226479 . Micron to 1 〇 The micron' or more particularly less than 1 〇 micron to 30 micron, and the metal layer 120 形成 forming the bump or protruding structure generally has a twist of about 3 microns to 7 microns. Since the dimensions of the diode are engineered to be within a selected tolerance range during device fabrication, for example, but not limited to, using an optical microscope (which may also include measurement software), a scanning electron microscope (SEM), or Horiba LA-920 (for example, using particle and diffraction (Fraunhofer diffracti〇n) and light scattering to measure particle size when the particles are in a dilute solution, which can be in a diode ink or any other liquid or colloid (and particle size distribution)) to measure the size of the diode. All dimensions or other measurements of the diode 100_100L shall be considered as the average of the plurality of diodes 10〇_1〇〇L (eg average and/or median)' and will be significant depending on the particular example selected Variations (eg, diodes 110-100 or 100 feet or 1 〇〇L will generally have different individual sizes). - The diode l〇0_10〇L can be fabricated using any semiconductor fabrication technique currently known or developed in the future. Figures 26-66 illustrate a plurality of exemplary methods of fabricating exemplary diodes 00-100L and illustrate several other exemplary diodes 100H, 1001 and i00J (in cross-section). Those skilled in the art will appreciate that multiple steps in the various steps of making a polar body may be performed in any of a variety of orders, and may be omitted or incorporated in other orders, and A number of diode structures other than the illustrated structure can be produced. For example, FIGS. 38-44 illustrate the formation of a pole body 100H including central and peripheral through (or deep) vias i3i and 134, respectively, in the presence or absence of a second side (back) metal layer 122, as appropriate. The characteristics of the diode and i〇〇G and Figure 45·5〇 illustrates the presence or absence of the second side (back) as appropriate

S 51 201226479 金屬層122下包括周圍導孔133之二極體i〇〇I的形成’且 其可與其他所說明之製造步驟組合以包括中心或周邊貫穿 導孔13 1及13 4 ’例如以形成二極體1 〇 〇 j?。 圖26、27及29-37為說明根據本發明之教示製造二極 體100、100A、100B、iooc之例示性方法的橫截面圖’其 中圖26-29說明在晶圓15〇層級上製造且圖30_37說明在二 極體100、100A、100B ' l〇〇c層級上製造。所說明之各個 製造步驟亦可用以形成其他二極體1〇〇d_i〇〇l,圖26-32適 用於任何二極體l〇〇_1〇〇L,視所選基板i〇5、i〇5A而定。 圖26及圖27為具有二氧化矽(或「氧化物」)層ι9〇之晶 圓150 (諸如矽晶圓)之橫截面圖。圖28為具有蝕刻成網 格圖案之二氧化矽層190之矽晶圓15〇的平面圖(或俯視 圖)。氧化物層190 (厚度一般為約微米)沈積或生長 於晶圓150上,如圖26所示。如圖27中所說明,經由如 此項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,已 移除部分氧化物層190,留下呈網格圖案(亦稱為「路狀物 (street )」)之氧化物ι9〇,如圖28中所說明。 圖29為具有緩衝層145、二氧化矽(或「氧化物」)層 190及GaN層(在一例示性具體實例中,通常蟲晶生長或 沈積至約1.25微米至2.50微米之厚度,儘管較小或較大之 厚度亦處於本發明範相)之晶圓15〇 (諸如石夕晶圓)的橫 截面圖,該等GaN層係說明為氧化物19 ”S 51 201226479 The formation of the diodes i 〇〇 I of the surrounding vias 133 under the metal layer 122 and which may be combined with other described manufacturing steps to include the center or perimeter through the vias 13 1 and 13 4 'eg Form a diode 1 〇〇j?. 26, 27 and 29-37 are cross-sectional views illustrating an exemplary method of fabricating a diode 100, 100A, 100B, iooc in accordance with the teachings of the present invention, wherein FIGS. 26-29 illustrate fabrication on a 15 〇 level of a wafer and Figure 30_37 illustrates fabrication on the level of diodes 100, 100A, 100B 'l〇〇c. The various manufacturing steps described can also be used to form other diodes 1〇〇d_i〇〇l, and Figures 26-32 are applicable to any diode l〇〇_1〇〇L, depending on the selected substrate i〇5, i 〇 5A depends on. Figures 26 and 27 are cross-sectional views of a wafer 150 having a layer of cerium oxide (or "oxide"), such as a germanium wafer. Figure 28 is a plan (or top) view of a tantalum wafer 15 of a ceria layer 190 having a grid pattern etched. An oxide layer 190 (typically about microns in thickness) is deposited or grown on wafer 150 as shown in FIG. As illustrated in Figure 27, a portion of the oxide layer 190 has been removed via a suitable or standard mask and/or photoresist layer and etch as known in the art, leaving a grid pattern (also known as a "road" The oxide ι9〇 of the "street") is as illustrated in FIG. 29 is a buffer layer 145, a hafnium oxide (or "oxide") layer 190, and a GaN layer (in an exemplary embodiment, typically the crystallites are grown or deposited to a thickness of between about 1.25 microns and 2.50 microns, although A cross-sectional view of a wafer 15 (such as a Shihwa wafer) having a small or large thickness is also in the present invention. The GaN layers are described as oxides 19"

工1夕晶GaN 195 ’以及如上所述形成複合G 里 旦 &quot;負、構之型層 110、I子井區185及p +型GaN層115。如卜张一 如上所不,將緩衝 52 201226479 層M5 (諸如氮化鋁或氮化矽且厚度一般為約25埃)沈積 於矽晶圓150上以有助於後續GaN沈積。使用生長或沈積 於氧化物190上之多晶GaN 195降低通常具有單晶結構之 複合GaN異質結構(n+型〇&amp;]^層110、量子井區ι85及p+ 型GaN層11 5 )中之應力及/或應變(例如因與矽晶圓 之熱失配所致)。處於本發明範疇内使該應力及/或應變降低 之其他等效方法例如(但不限於)包括使矽晶圓15〇及/或 綾衝層145所選區域之表面變粗糙,以使相應GaN區域不 為單晶體,或在矽晶圓150中蝕刻渠溝以使得在整個晶圓The composite GaN 195 ' and the composite G-Rid &quot; negative, structured layer 110, I sub-well region 185 and p + -type GaN layer 115 are formed as described above. As in the above, a buffer 52 201226479 layer M5 (such as aluminum nitride or tantalum nitride and typically about 25 angstroms thick) is deposited on the germanium wafer 150 to facilitate subsequent GaN deposition. The polycrystalline GaN 195 grown or deposited on the oxide 190 is used to reduce the composite GaN heterostructure (n+ type 〇&amp;) layer 110, quantum well region ι85, and p+ type GaN layer 11 5 having a single crystal structure. Stress and/or strain (eg due to thermal mismatch with tantalum wafers). Other equivalent methods for reducing the stress and/or strain within the scope of the present invention include, for example, but not limited to, roughening the surface of selected regions of the germanium wafer 15 and/or buffer layer 145 to enable the corresponding GaN The area is not a single crystal, or the trench is etched in the germanium wafer 150 to make the entire wafer

I 5 0上亦不存在連續之G aN晶體《在其他例示性製造方法 中’諸如當使用其他基板,諸如藍寶石晶圓l5〇A上之GaN (基板1 05 )時,可省去該路狀物形成及應力降低製造步驟。 為形成複合GaN異質結構的GaN沈積或生長可經由如此項 技術中已知或即將知曉之任何所選製程來提供及/或可為器 件製造者所專有。在一例示性具體實例中,包含n+型GaN 層110、量子井區185及p +型GaN層115之複合GaN異質 結構可自例如(但不限於)Walnut,California,USA之Blue Photonics公司及其他供應商獲得。 圖30為根據本發明之教示具有緩衝層及複合GaN 異質結構(n+型GaN層110、量子井區185及p +型GaN層 II 5 )之基板1 〇5之橫截面圖,其說明晶圓i 50之一極小部 分(諸如圖29之區域191 )以說明單個二極體i〇〇_100L之 製造。經由此項技術中已知之適當或標準遮罩及/或光阻層 及蝕刻,複合GaN異質結構(n+型GaN層11 〇、量子井區There is also no continuous G aN crystal on I 50 "in other exemplary manufacturing methods" such as when using other substrates, such as GaN (substrate 1 05) on sapphire wafers L5A, this path can be omitted Material formation and stress reduction manufacturing steps. GaN deposition or growth to form a composite GaN heterostructure can be provided by any selected process known or to be known in the art and/or can be proprietary to the device manufacturer. In an exemplary embodiment, the composite GaN heterostructure comprising the n+ type GaN layer 110, the quantum well region 185, and the p+ type GaN layer 115 can be from, for example, but not limited to, Blue Photonics, Inc. of Walnut, California, USA, and others. The supplier gets it. 30 is a cross-sectional view of a substrate 1 〇 5 having a buffer layer and a composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and p+-type GaN layer II 5) in accordance with the teachings of the present invention, illustrating wafers A very small portion of i 50 (such as region 191 of Figure 29) to illustrate the fabrication of a single diode i 〇〇 100L. Composite GaN heterostructure (n+-type GaN layer 11 量子, quantum well region) via appropriate or standard mask and/or photoresist layer and etching known in the art

S 53 201226479 185及p+型GaN層115)經蝕刻以形成GaN台面結構a?, 如圖31及32中所說明,其中圖32說明具有相對較傾斜之 側面的GaN台面結構187A,其可能會有助於光產生及/或 吸收。亦可建構其他GaN台面結構187,諸如部分或實質 上超環形之GaN台面結構187,如圖1〇、13、14、17、2〇'、 22 39 44及66中所說明。在蚀刻GaN台面(亦經由此項 技術中已知或即將知曉之適當或標準遮罩及/或光阻層及蝕 刻)後,進行(淺或盲)導孔蝕刻,如圖33中所說明,形 成穿過GaN層及緩衝層145且進入矽基板105中之比較淺 之渠溝1 8 6。 亦經由此項技術中已知之適當或標準遮罩及/或光阻層 及蝕刻,接著沈積金屬化層,形成與p+型GaN層115之金 屬接點12〇Α且形成導孔130,如圖34中所說明。在例示性 具體實例中’沈積若干層金屬,第一層或初始層與ρ+型GaN 層Π5形成歐姆接觸,其通常包含各自約5〇埃至2〇〇埃之 兩個金屬層(鎳層’繼而金層),繼而在約450至500 °C下 於含約20%氧氣及80%氮氣之氧化氛圍中退火,使得鎳上 升至頂部成為氧化鎳層,且形成與p +型GaN層11 5具有比 較優良之歐姆接觸的金屬層(作為12〇A之一部分)。作為 另一實施例’在製造二極體l〇〇L期間(及在其他例示性二 極體100-100K具體實例中),頂部GaN層(說明為p +型 GaN層11 5,但亦可為其他類型之GaN層,如圖25中所說 明)亦可經極薄之光學反射金屬層(在圖25中說明為銀層 103 )及/或光學透射性金屬層(未作單獨說明)(諸如厚度 54 201226479 ίου螟之鎳_金或鎳金-鎳) —1…穴六叩成合金,以 有助於歐姆接觸形成(且可能提供朝向#型,GaN層^之 光反射)#令—些接著與其他GaN層一起諸如在形成G— 台面期間移除。亦可沈積另-金屬化層,諸如以形成較厚 之互連金屬從而塑造且完全形成金屬層i2〇A “列如用於電 流分佈)及形成導$ &gt; V 30。在另一例示性具體實例(圖45_5〇 中所έ兑明)中,盘η +划p。,厂 一 P i GaN層115形成歐姆接觸之金屬接 點120A可在GaN台之前形成,繼而進行⑽台面 钱刻、導孔㈣等。諸多其他金屬化製程及構成金屬層應 用之相應材料亦處於本發明範嘴内,其中不同製造設 ::吏用不同製程及材料選擇。舉例而言(但不加以限 制)’任一或兩個金屬層17心叮%丄 ,.^ ^ ^ 2〇八及120B可藉由沈積鈦以形成 各度通吊為50埃至200埃之溆基思十曰你a 料丰 、黏者層或日日種層,繼而沈積2 i未至4微米之鎳層及金薄 ..^ ^ 或快閃層」(金「快閃層」 居度為約5〇埃至500埃之層)、沈積3微米至5微米之 鋁,繼而沈積鎳(約〇·5微米 「快閃厗 々义 “物理乳相沈積或電鍍)及金 陝門層」,或藉由沈積鈇, 於12 、,而沈積金,繼而沈積鎳(對 ,厚度通常為3微米至5與#1 由沙籍扣 至5微水)’繼而沈積金,或藉 :、’繼而沈積鎳’繼而沈積金等而形成。另外 成凸塊:突出結構之金屬層12〇Β之高度亦可變化 : 性具體貫例中通常介於約3.$ 不 105之厚度而定(例如,約二.之間’視基板 約…、 微来至8微米之G•相對於 倣未之扑以使所得二極體1〇〇_ 句之高度及形態因數。 八有只貝上均S 53 201226479 185 and p + -type GaN layer 115) are etched to form a GaN mesa structure a?, as illustrated in FIGS. 31 and 32, wherein FIG. 32 illustrates a GaN mesa structure 187A having a relatively inclined side, which may have Helps light generation and / or absorption. Other GaN mesa structures 187, such as partially or substantially super-annular GaN mesa structures 187, may also be constructed, as illustrated in Figures 1, 、 13, 13, 17, 17, 2', 22 39 44, and 66. After etching the GaN mesas (also known or known as standard or masks and/or photoresist layers and etching), a (shallow or blind) via etch is performed, as illustrated in FIG. A shallow trench 1 8 6 is formed through the GaN layer and buffer layer 145 and into the germanium substrate 105. The vias 130 are also formed and formed by the appropriate or standard mask and/or photoresist layer and etching known in the art, followed by deposition of a metallization layer to form a via 130 with the p+ type GaN layer 115, as shown in FIG. As explained in 34. In an exemplary embodiment, a plurality of layers of metal are deposited, the first layer or the initial layer forming an ohmic contact with the p + -type GaN layer Π 5, which typically comprises two metal layers each having a thickness of about 5 Å to 2 Å (nickel layer 'Continue the gold layer, and then anneal at about 450 to 500 ° C in an oxidizing atmosphere containing about 20% oxygen and 80% nitrogen, so that the nickel rises to the top to become a nickel oxide layer, and forms a p + -type GaN layer 11 5 A metal layer (as part of 12〇A) with a relatively good ohmic contact. As another embodiment ' during the fabrication of the diode L (and in other exemplary diode 100-100K specific examples), the top GaN layer (illustrated as a p + -type GaN layer 11 5 , but also Other types of GaN layers, as illustrated in FIG. 25, may also pass through an extremely thin optically reflective metal layer (illustrated as silver layer 103 in FIG. 25) and/or an optically transmissive metal layer (not separately illustrated) (not separately illustrated) Such as thickness 54 201226479 ί υ螟 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆 欧姆These are then removed along with other GaN layers, such as during formation of the G-mesa. A further metallization layer may also be deposited, such as to form a thicker interconnect metal to shape and fully form the metal layer i2A "column as used for current distribution" and form a derivative $&gt; V30. In another exemplary In a specific example (Fig. 45_5), the disk η + is p. The metal contact 120A of the ohmic contact formed by the factory-P i GaN layer 115 can be formed before the GaN stage, and then (10) the mesa, Guide holes (4), etc. Many other metallization processes and corresponding materials constituting the application of the metal layer are also in the mouth of the present invention, wherein different manufacturing facilities:: different processes and material selection. For example (but not limited) Any or two metal layers 17 叮%丄, .^ ^ ^ 2〇8 and 120B can be formed by depositing titanium to form a degree of 50 angstroms to 200 angstroms. Adhesive layer or day-to-day seed layer, followed by deposition of 2 i to 4 micron nickel layer and gold thin .. ^ ^ or flash layer" (gold "flash layer" residence is about 5 〇 to 500 angstroms Layer), depositing 3 microns to 5 microns of aluminum, followed by deposition of nickel (about 〇 · 5 microns "flash 厗々 “" physical emulsion deposition or Electroplating) and Jinshanmen layer, or by depositing yttrium, depositing gold at 12, and then depositing nickel (pair, usually 3 microns to 5 and #1 from sand to 5 micro water)' Depositing gold, or by: "and then depositing nickel" and then depositing gold and the like. In addition, the height of the metal layer 12〇Β of the protruding structure may also vary: the specific case is usually between about 3. and not the thickness of 105 (for example, about two. , G to 8 μm G • Relative to the imitation of the imitation of the resulting diode 1〇〇 _ sentence height and form factor.

S 55 201226479 1對於後Λ將一極體1〇ίΜ·彼此單體化及自晶圓15〇 早體化,經由此項枯汫由口 I ^ 曰W 150 卸中已知之適當或標準遮罩及/ 層及Ί虫刻,如圖3 5另甘从κι 4光阻 如圈35及其他圖4〇及钟中所說明 極體100-100L周邊拟屮乍嚷, 固,·兒谷一 周邊形成渠 &gt;冓155 (例如,亦如圖2 及9中所說明)。準、菩彳 渠溝155之寬度一般為約3微米 且其深度為1〇微米至12微米。接著亦使用此項技術/已 知之適當或標準遮罩及/或光阻層及名虫刻,如圖% 明,諸如藉由例如(但不限於)電浆增強化學氣相:: PECVD)乳化石夕來生長或沈積氮化物純化層n _ 約0.35微米至u微米之厚度,繼而沈積光阻且進行兹刻 步驟以移除不必要之氮化石夕區域。在其他例示性具體實例 中:該等單體化渠溝之側壁可能經鈍化或可能未經純化。 接者經由此項技術中已知之適當或標準遮罩及/或光阻層及 姓刻’形成具有凸塊或突出結構之金屬層mB,其通;具 有3微米至5微米之高度,如圖37中所說明。在一例示性 八體實例巾|屬層12〇B之形成以若干步驟,使用金屬晶 種層’繼而使用電錄或剝離製程再沈積金屬’移除抗钮劑 並清潔晶種層區域來進行。除後續自晶圓15〇單體化二極 體(在此狀況下,二極體1〇〇、1〇〇A、1〇〇B、1〇〇c)以外, 如下文所述,以其他方式完成二極體1〇〇、1〇〇A、、 l〇〇C,且應注意,此等完成之二極體1〇〇、i〇qa、、 iooc在各二極體100、100A、1〇〇B、1〇〇c之上表面上僅具 有個金屬接點或端子(第一端子125 )。作為可選方案, 可如下文所述且如上文參考其他例示性二極體所提及,可 56 201226479 製造第二側(背面)金屬層122以形成第二端子丨27。 圖38_44說明製造二極體100_100L之另一例示性方 法’其中圖38說明在晶圓15〇a層級上製造且圖39-44說 明在二極體100_100L層級上製造。圖38為具有基板1〇5 且具有複合GaN異質結構(n+型GaN層110、量子井區185 及P +型GaN層115 )之晶圓150A的橫截面圖。在此例示 性具體實例中,於藍寶石(106 )(藍寶石晶圓15〇Α之藍寶 石(106 ))上生長或沈積比較厚之GaN層(以形成基板 105)’繼而沈積或生長GaN異質結構(n+型GaN層11〇、 量子井區185及p+型GaN層115 )。 圖39為具有第三台面敍刻之複合GaN異質結構之基板 105的橫截面圖,其說明晶圓15〇a之一極小部分(諸如圖 3 8之£域1 92 )以說明單個二極體(例如二極體1 0QH、1 οοκ ) 之製造。經由此項技術中已知之適當或標準遮罩及/或光阻 層及蝕刻,蝕刻複合GaN異質結構(n+型層11〇、量 子井區185及p +型GaN層115)以形成GaN台面結構i87b。 在GaN台面蝕刻之後,亦經由此項技術中已知或即將知曉 之適當或標準遮罩及/或光阻層及蝕刻,進行(貫穿或深) 導孔渠溝及單體化渠溝蝕刻,如圖40中所說明,形成一或 多個穿過GaN異質結構之非台面部分(…型層 且穿過GaN基板105至晶圓15〇A之藍寶石(ι〇6)θ的比較 深之導孔渠溝188且形成上文所述之單體化渠溝155。如所 說明,形成中心導孔渠溝1S8及複數個周邊導孔渠溝188。 對於二極體ιοοκ具體實例,亦可在台面結構i87B中心處S 55 201226479 1 For the rear Λ 一 一 一 一 一 彼此 彼此 彼此 彼此 彼此 彼此 彼此 彼此 彼此 彼此 彼此 单体 彼此 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体 单体And / layer and worms engraved, as shown in Figure 3 5, another from the κι 4 photoresist such as circle 35 and other Figure 4 〇 and the bell to illustrate the polar body 100-100L peripheral 屮乍嚷, solid, · 谷谷一 periphery Forming a channel &gt; 155 (for example, as also illustrated in Figures 2 and 9). The width of the quasi-bamboo channel 155 is typically about 3 microns and its depth is from 1 micron to 12 microns. Next, this technique/known suitable or standard mask and/or photoresist layer and name insects are also used, such as by, for example, but not limited to, plasma enhanced chemical vapor:: PECVD) The fossils are grown or deposited with a nitride purification layer n _ about 0.35 microns to a thickness of u microns, followed by deposition of photoresist and a step of etching to remove unnecessary nitriding regions. In other exemplary embodiments, the sidewalls of the singulated channels may be passivated or may not be purified. The contact is formed by a suitable or standard mask and/or photoresist layer and a surname formed in the art to form a metal layer mB having a bump or a protruding structure, which has a height of 3 micrometers to 5 micrometers, as shown in the figure. As explained in 37. In an exemplary eight-body example, the formation of the genus layer 12B is performed in several steps using a metal seed layer 'then using an electro-recording or stripping process to redeposit the metal' to remove the resist and clean the seed layer region. . Except for the subsequent 15 singularized diodes from the wafer (in this case, the diodes 1〇〇, 1〇〇A, 1〇〇B, 1〇〇c), as described below, other The method completes the diodes 1〇〇, 1〇〇A, and l〇〇C, and it should be noted that the completed diodes 1〇〇, i〇qa, and iooc are in the respective diodes 100, 100A, There are only one metal contact or terminal (first terminal 125) on the upper surface of 1〇〇B, 1〇〇c. As an alternative, the second side (back) metal layer 122 can be fabricated to form the second terminal 丨 27 as described below and as mentioned above with reference to other exemplary diodes. Figures 38-44 illustrate another exemplary method of fabricating a diode 100_100L where Figure 38 illustrates fabrication on the 15a level of the wafer and Figures 39-44 illustrate fabrication on the level of the diode 100-100L. 38 is a cross-sectional view of a wafer 150A having a substrate 1〇5 and having a composite GaN heterostructure (n+-type GaN layer 110, quantum well region 185, and P+-type GaN layer 115). In this illustrative embodiment, a relatively thick GaN layer (to form a substrate 105) is grown or deposited on sapphire (106) (sapphire wafer 15 sapphire (106)) and then a GaN heterostructure is deposited or grown ( The n + -type GaN layer 11 , the quantum well region 185 , and the p + -type GaN layer 115 ). 39 is a cross-sectional view of a substrate 105 having a third mesa-detailed composite GaN heterostructure, illustrating a very small portion of the wafer 15A (such as the field 1 92 of FIG. 38) to illustrate a single diode. (For example, manufacturing of diodes 10QH, 1 οοκ). The composite GaN heterostructure (n+ type layer 11 〇, quantum well region 185, and p + type GaN layer 115) is etched to form a GaN mesa structure via a suitable or standard mask and/or photoresist layer and etching known in the art. I87b. After GaN mesa etching, (through or deep) via trenches and singulation trenches are also etched through appropriate or standard masks and/or photoresist layers and etching known or to be known in the art. As illustrated in FIG. 40, one or more relatively deep guides are formed through the non-mesa portion of the GaN heterostructure (the sapphire (ι6) θ passing through the GaN substrate 105 to the wafer 15A. The channel 188 and the unidirectional channel 155 described above are formed. As illustrated, the central via trench 1S8 and the plurality of peripheral via trenches 188 are formed. For the specific example of the diode ιοοκ, Countertop structure i87B center

S 57 201226479 進行淺或盲導孔姓刻’而不形成任何周邊導孔或渠溝。 接著亦經由此項技術中已知之適當或標準遮罩及/或光 阻層及蝕刻,沈積金屬化層,形成中心貫穿導孔丨3丨及複 數個周邊貫穿導孔I34,其亦與n+型GaN層11〇形成歐姆 接觸,如圖41中所說明》在例示性具體實例中,沈積若干 層金屬以形成貫穿導孔131、134。舉例而言,可濺鍍鈦及 鎢以塗佈渠溝1 8 8之側面及底部,形成晶種層,繼而用鏟 錄,形成實心金屬導孔1 3 1、1 3 4。 接著亦經由此項技術中已知之適當或標準遮罩及/或光 阻層及蝕刻,沈積金屬化層,形成與p +型GaN層115形成 歐姆接觸之金屬層120A,如圖42中所說明》在例示性具體 實例中,可如先前所述沈積若干層金屬以形成金屬層 且與P +型GaN層115形成歐姆接觸。接著亦使用此項技術 ^已知之適當或標準遮罩及/或光阻層及蝕刻’如圖们中所 說明,諸如藉由例如(但不限於)電躁增強化學氣相沈積 (PECVD )氮化發或氮氧化妙來生長或沈積氮化物純化層 135’ 一般達約0.35微米至1〇微米之厚度,繼而沈積光阻 且進行㈣步驟以移除不必要之氮切區域。接著經由此 項技術中已知之適當或標準遮罩及/或光阻層及蝕刻,形成 具有凸塊或突出結構之金屬層i細,如圖44中所說明。在 示性具體實例中,亦如上文所述,金屬層12〇b之形成 以右干步驟’使用金屬晶種層,繼而使用電鍍或剝離製程 再沈積金屬,移除抗蝕劑並清潔晶種層區域來進行。 續自晶圓150A單體化二極冑(在此狀況下,二極體二二 58 201226479 » *以夕卜如下文所述,以其他方式完成二極體1 00H ’且應注 意’此等完成之二極體100H在各二極體1〇〇H之上表面上 亦僅具有一個金屬接點或端子(亦為第一端子125)。同樣 作為可選方案,可如下文所述且如上文參考其他例示性二 極體所提及’可製造第二側(背面)金屬層122以形成第 二端子127。 圖45-50說明製造二極體1〇〇1〇〇L之另一例示性方 法’其中圖45說明在晶圓15〇或15〇A層級上製造且圖46_5〇 說明在二極體100_100L層級上製造。圖45為具有緩衝層 145、複合GaN異質結構(n+型GaN層11〇、量子井區 及P+型GaN層115)及與p +型GaN層形成歐姆接觸之金屬 化層(金屬層120A)之基板105的橫截面圖。如上所述, 當基板1〇5為矽(例如,使用矽晶圓15〇)時通常製造緩衝 層145,且對於其他基板(諸如GaN基板1〇5)而言,可省 去緩衝層145。另外,藍寶石1〇6說明為可選方案,諸如對 於生長或沈積於藍寶石晶圓15〇A上之厚GaN基板1〇5。亦 如上所述,在製造二極體之較早步驟中,在GaN異質結構 (n+型GaN層110、量子井區ι85及卩+型GaN層115 )沈積 或生長後,而非在較遲步驟中,沈積金屬層119 (作為用於 後續沈積金屬層120A之晶種層舉例而言,金屬層119 可為鎳與金快閃層,其總厚度為約幾百埃,或可經極薄之 光學反射金屬層(在圖25中說明為銀層103)及/或光學透 射性金屬層(諸如厚度為約1〇〇埃之鎳_金或鎳_金_鎳)金 屬化且與其形成合金,以有助於歐姆接觸形成(且可能提 59 201226479 供朝向n+型GaN層110之光反射),其中一些接著與其他 GaN層一起,諸如在GaN台面形成期間移除。 圖4 6為具有緩衝層、第四台面触刻之複合〇 aN異質名士 構及與P+型GaN層形成歐姆接觸之金屬化層(金屬層119) 之基板的橫截面圖’其說明晶圓1 50或1 50A之一極小部分 (諸如圖45之區域193 ),以說明單個二極體(例如二極體 1 0 01 )之製造。經由此項技術中已知之適當或標準遮罩及/ 或光阻層及蝕刻’蝕刻複合GaN異質結構(n+型GaN層 110、量子井區185及p +型GaN層U5)(連同金屬層119 一起)以形成GaN台面結構187C(連同金屬層llg&gt; —起)。 在GaN台面银刻之後,亦經由此項技術中已知或即將知曉 之適當或標準遮罩及/或光阻層,沈積金屬化層(使用先前 所述之任何製程及金屬,諸如鈦及鋁,繼而退火)以形成 金屬層120A且亦形成與n+型GaN層11〇具有歐姆接觸之 金屬層I29,如圖47中所說明。 在金屬化之後’亦經由此項技術中已知或即將知曉之 適當或標準遮罩及/或光阻層及蝕刻,如圖48中所說明,穿 過GaN異質結構之非台面部分(n+型GaN層11 〇 )且穿過 或比較深地進入基板105中(例如如先前所述,穿過GaN 基板105.至晶圓150A之藍寶石(1〇6)或穿過一部分矽基 板105 )進行單體化渠溝蝕刻,且形成上文所述之單體化渠 溝 155 〇 接著亦經由此項技術中已知之適當或標準遮罩及/或光 阻層及蝕刻,在渠溝155内沈積金屬化層,形成貫穿或深 60 201226479 之周圍導孔133 (圍繞二極體(1001.)之整個外圍或側圍提 供導電性)’其亦與n+型GaN層110形成歐姆接觸,如圖 49中所說明。在例示性具體實例中,亦可沈積若干層金屬 以形成周圍貫穿導孔133。舉例而言,可濺鍍鈦及鎢以塗佈 渠溝155之側面及底部’形成晶種層,繼而用鍍錦,形成 實心金屬周圍導孔133。 接著再次亦使用此項技術中已知之適當或標準遮罩及/ 或光阻層及蝕刻’如圖50中所說明,諸如藉由例如(但不 限於)電漿增強化學氣相沈積(PECVD )氮化梦來生長或 沈積氮化物鈍化層135, 一般達約0_35微米至1.0微米之厚 度,繼而沈積光阻且進行蝕刻步驟以移除不必要之氮化矽 區域。接著經由此項技術中已知之適當或標準遮罩及/或光 阻層及蝕刻,如先前所述形成具有凸塊或突出結構之金屬 層120B,如圖50中所說明。除後續自晶圓15〇或boa單 體化二極體(在此狀況下’二極體1001)以外,如下文所 述,以其他方式完成二極體1001 ,且應注意,此等完成之 —極體1 001在各二極體丨001之上表面上亦僅具有一個金屬 接點或端子(亦為第一端子125)。同樣作為可選方案,可 如下文所述且如上文參考其他例示性二極體所提及,可製 第一側(背面)金屬層丨22以形成第二端子127。 圖51-57、67及68說明在圖45中所說明之在晶圓15〇 或150A層級上製造之後製造二極體100K之另一例示性方 法。圖11為具有緩衝層、第五台面蝕刻之複合GaN異質結 構187D及與叶型GaN層形成歐姆接觸之金屬化層之基板 61 1 201226479 的橫截面圖。如上所述,t基板1G5為⑦(例如,使用石夕 晶圓150 )時通常製造緩衝層145,且對於其他基板(諸如 GaN基板105)而言,可省去緩衝層145。另外,藍寶石⑽ 說明為可選方案,諸如對於生長或沈積於藍f石晶圓i5〇a 上之厚GaN基板1〇5,在該狀況下可省去緩衝層i45。亦如 上所述,在製造二極體之較早步驟中,在GaN異質結構( 型GaN層11〇、量子井區185及时型GaN層li5)沈積或 生長後,而非在較遲步驟中,沈積金屬層119 (作為用於後 、·只沈積金屬層1 2 0 A之晶種層)。舉例而言,金屬層11 9可 為鎳與金快閃層,其總厚度為約幾百埃,或可經極薄之光 學反射金屬層(在圖25中說明為銀層103)及/或光學透射 性金屬層(諸如厚度為約1〇〇埃之鎳、鎳_金或鎳金-鎳) 巫屬化且與其形成合金,以有助於與p +型GaN層11 5形成 歐姆接觸(且可能提供朝向n+型GaN層11 〇之光反射), 其中一些接著與其他GaN層一起,諸如在GaN台面形成期 間移除。經由此項技術中已知之適當或標準遮罩及/或光阻 層及姓刻,蝕刻複合GaN異質結構(n+型GaN層u〇、量 子井區185及p+型GaN層U5)(連同金屬層119 一起)以 形成深度為約1微米之GaN台面結構187D(連同金屬層ιΐ9 一起)’其一般具有超環形形狀,内圓直徑為約14微米且 外部一般六角形之直徑為約26微‘米(側面對側面量測)。 在GaN台面餘刻(187D )後’亦經由此項技術中已知 或即將知曉之適當或標準遮罩及/或光阻層及蝕刻,進行盲 或淺導孔渠溝蝕刻,如圖52中所說明,形成進入GaN異質 62 201226479 、cr構之非台面部分(n+型GaN層丄丨〇 )中之比較淺之中心 導孔渠溝2 11。如所說明,形成深度為約2微米且直徑為6 微米之圓形中心導孔渠溝2丨i。 接著經由此項技術中已知之適當或標準遮罩及/或光阻 層及蝕刻,沈積金屬化層,形成中心導孔136,該中心導孔 136亦與n+型GaN層11〇形成歐姆接觸,如圖中所說明。 在例示性具體實例中,沈積若干層金屬(例如導孔金屬) ^形成中〜導孔1 36。舉例而言,可濺鍍或電鍍約1 〇〇埃之 鈦及約1.5微米至2微米之鋁以塗佈渠溝211之側面、底部 以及一部分頂部,繼而在約55(rc下形成合金,以在n +型 GaN層11 〇頂部上开》成最大直徑為約1 〇微米之實心金屬導 孔13 6。接著亦使用此項技術中已知之適當或標準遮罩及/ 或光阻層及㈣,如圖54中所說明,諸如藉由例如(但不 限於)電漿增強化學氣相沈積(pECVD)氮切或氮氧化 矽來生長或沈積第一氮化物鈍化層135A,一 …嶋,或更尤其約。.5微米之厚度二= 之取大直徑,繼而沈積光阻且進行蝕刻步驟以移除不必要 之氮化砍區域。 接著亦經由此項技術中已知之適當或標準遮罩及/或光 阻層及蝕刻’沈積金屬化層,形成如目55中所說明與p + 型GaN層115形成接觸之通f使用模用金屬形成之具有凸 塊或突出結構之金屬4 12〇B。在例示性具體實例中,可如 本文先前所述沈積若干層金屬以形成用於與㈣㈣層 且出於簡要起見 形成接觸之金屬層120A及/或120B,S 57 201226479 Perform a shallow or blind guide hole name without forming any peripheral guide holes or channels. The metallization layer is then deposited via a suitable or standard mask and/or photoresist layer and etching known in the art to form a central through via 丨3丨 and a plurality of peripheral through vias I34, which are also associated with n+ type The GaN layer 11 is formed into an ohmic contact, as illustrated in FIG. 41. In an exemplary embodiment, several layers of metal are deposited to form through vias 131, 134. For example, titanium and tungsten may be sputtered to coat the sides and bottom of the trenches 88 to form a seed layer, which is then shoveled to form solid metal vias 1 3 1 , 1 3 4 . The metallization layer is then deposited via a suitable or standard mask and/or photoresist layer and etch as known in the art to form a metal layer 120A that forms an ohmic contact with the p+ type GaN layer 115, as illustrated in FIG. In an exemplary embodiment, several layers of metal may be deposited as previously described to form a metal layer and form an ohmic contact with the P+ type GaN layer 115. This technique is then also used to determine appropriate or standard masks and/or photoresist layers and etches as illustrated in the figures, such as by, for example, but not limited to, electro-r against chemical vapor deposition (PECVD) nitrogen. The chemical or nitrous oxide growth or deposition of the nitride purification layer 135' typically reaches a thickness of about 0.35 microns to 1 micron, followed by deposition of photoresist and (4) steps to remove unnecessary nitrogen cut regions. The metal layer having the bumps or protruding structures is then formed through appropriate or standard masking and/or photoresist layers and etching known in the art, as illustrated in FIG. In an illustrative embodiment, as also described above, the formation of the metal layer 12〇b is performed in a right-drying step using a metal seed layer, followed by electroplating or stripping to redeposit the metal, removing the resist and cleaning the seed crystal. The layer area is carried out. Continued from wafer 150A singulated diodes (in this case, diodes 22 58 201226479 » * In the following, the diodes are completed in other ways as described below and should be noted 'this The completed diode 100H also has only one metal contact or terminal (also the first terminal 125) on the upper surface of each of the diodes 1〇〇H. Also as an alternative, as described below and as above Referring to other exemplary diodes, the second side (back) metal layer 122 can be fabricated to form the second terminal 127. Figures 45-50 illustrate another example of fabricating a diode 1〇〇1〇〇L Method 45 wherein Figure 45 illustrates fabrication on the 15 〇 or 15 〇A level of the wafer and Figure 46_5 〇 illustrates fabrication on the level of the diode 100_100L. Figure 45 shows the buffer layer 145, the composite GaN heterostructure (n+ GaN layer) A cross-sectional view of a substrate 105 of a metallization layer (metal layer 120A) having an ohmic contact with a p + -type GaN layer, as described above, when the substrate 1〇5 is Buffer layer 145 is typically fabricated when 矽 (eg, using tantalum wafer 15 ,), and for other substrates (such as GaN based) For the case of the board 1〇5), the buffer layer 145 may be omitted. In addition, the sapphire 1〇6 is illustrated as an alternative, such as a thick GaN substrate 1〇5 grown or deposited on the sapphire wafer 15A. Said that in the earlier step of fabricating the diode, after deposition or growth of the GaN heterostructure (n+-type GaN layer 110, quantum well region ι85 and 卩+-type GaN layer 115), rather than in a later step, Depositing a metal layer 119 (as a seed layer for subsequently depositing the metal layer 120A, for example, the metal layer 119 may be a nickel and gold flash layer having a total thickness of about several hundred angstroms, or may be optically reflected by a very thin layer A metal layer (illustrated as silver layer 103 in FIG. 25) and/or an optically transmissive metal layer (such as nickel-gold or nickel-gold-nickel having a thickness of about 1 Å) is metallized and alloyed therewith to have Helps ohmic contact formation (and possibly 59 201226479 for light reflection towards the n+ type GaN layer 110), some of which are then removed along with other GaN layers, such as during GaN mesa formation. Figure 46 is a buffer layer, The four-faced composite 〇aN heterogeneous celebrity structure and the ohmic contact with the P+ GaN layer A cross-sectional view of a substrate of a metallization layer (metal layer 119) that describes a very small portion of wafer 150 or 150A (such as region 193 of FIG. 45) to illustrate a single diode (eg, diode 10) 01) Fabrication. Suitable or standard mask and/or photoresist layer and etched 'etched composite GaN heterostructure (n+ type GaN layer 110, quantum well region 185 and p + type GaN layer U5) known in the art (along with the metal layer 119) to form a GaN mesa structure 187C (along with the metal layer 11g). After silver etching of the GaN mesa, a metallization layer is also deposited via any suitable or standard mask and/or photoresist layer known or to be known in the art (using any of the processes and metals previously described, such as titanium and aluminum) Then, annealing) to form the metal layer 120A and also form the metal layer I29 having ohmic contact with the n+ type GaN layer 11A, as illustrated in FIG. After metallization, an appropriate or standard mask and/or photoresist layer and etching, also known or to be known in the art, is passed through the non-mesa portion of the GaN heterostructure (n+ type) as illustrated in FIG. The GaN layer 11) and passes through or into the substrate 105 in a deeper manner (for example, as previously described, through the GaN substrate 105. to the sapphire (1〇6) of the wafer 150A or through a portion of the germanium substrate 105) The trench trench is etched and the singulated trench 155 described above is formed, and then metal is deposited in the trench 155 via a suitable or standard mask and/or photoresist layer and etching as is known in the art. The layer is formed to penetrate or surround the via 133 of the perimeter 201226479 (providing electrical conductivity around the entire periphery or side of the diode (1001.)) which also forms an ohmic contact with the n+ type GaN layer 110, as in FIG. Explained. In an exemplary embodiment, a plurality of layers of metal may also be deposited to form a peripheral through via 133. For example, titanium and tungsten may be sputtered to form a seed layer on the sides and bottom of the trench 155, and then plated to form a solid metal surrounding via 133. The appropriate or standard mask and/or photoresist layer and etch as known in the art are then again used as illustrated in FIG. 50, such as by, for example, but not limited to, plasma enhanced chemical vapor deposition (PECVD). The nitride passivation layer 135 is typically grown or deposited to a thickness of about 0-35 microns to 1.0 microns, followed by deposition of photoresist and an etching step to remove unnecessary tantalum nitride regions. A metal layer 120B having bumps or protruding structures is then formed, as previously described, by suitable or standard masking and/or photoresist layers and etching as is known in the art, as illustrated in FIG. Except for the subsequent 15 晶圆 or boa singulated diodes (in this case 'diode 1001), the diode 1001 is completed in other ways as described below, and it should be noted that such completion is achieved. The pole body 1 001 also has only one metal contact or terminal (also the first terminal 125) on the upper surface of each of the diodes 001. Also as an alternative, a first side (back) metal layer 22 can be formed to form the second terminal 127 as described below and as mentioned above with reference to other exemplary diodes. Figures 51-57, 67 and 68 illustrate another exemplary method of fabricating a diode 100K after fabrication on the 15 或 or 150A level of the wafer illustrated in Figure 45. Figure 11 is a cross-sectional view of a substrate 61 1 201226479 having a buffer layer, a fifth mesa-etched composite GaN heterostructure 187D, and a metallization layer forming an ohmic contact with the leaf GaN layer. As described above, the buffer layer 145 is usually fabricated when the t substrate 1G5 is 7 (for example, using the Shihwa wafer 150), and the buffer layer 145 can be omitted for other substrates such as the GaN substrate 105. In addition, sapphire (10) is illustrated as an alternative, such as for a thick GaN substrate 1〇5 grown or deposited on a blue f-stone wafer i5〇a, in which case the buffer layer i45 may be omitted. As also described above, in the earlier step of fabricating the diode, after deposition or growth of the GaN heterostructure (type GaN layer 11 量子, quantum well region 185 GaN layer li5), rather than in a later step, A metal layer 119 is deposited (as a seed layer for the subsequent deposition of only a metal layer of 120 A). For example, the metal layer 119 may be a nickel and gold flash layer having a total thickness of about several hundred angstroms, or may be passed through an extremely thin optically reflective metal layer (illustrated as silver layer 103 in FIG. 25) and/or An optically transmissive metal layer (such as nickel, nickel-gold or nickel-nickel-nickel having a thickness of about 1 Å) is woven and alloyed therewith to help form an ohmic contact with the p + -type GaN layer 1 15 ( It is also possible to provide light reflection towards the n+ type GaN layer 11 , some of which are then removed along with other GaN layers, such as during GaN mesa formation. Etching the composite GaN heterostructure (n+-type GaN layer u〇, quantum well region 185, and p+-type GaN layer U5) (along with the metal layer) via appropriate or standard mask and/or photoresist layers and surnames known in the art 119 together) to form a GaN mesa structure 187D (together with metal layer ι 9 ) having a depth of about 1 micron. 'It generally has a toroidal shape with an inner diameter of about 14 microns and an outer general hexagonal diameter of about 26 micro' meters. (Side side to side measurement). After GaN mesa (187D), blind or shallow via trench etching is also performed via appropriate or standard mask and/or photoresist layer and etching known or to be known in the art, as shown in FIG. It is illustrated that a relatively shallow central via trench 2 11 is formed into the GaN heterogeneous 62 201226479, non-mesa portion of the Cr structure (n+ type GaN layer germanium). As illustrated, a circular central via trench 2丨i having a depth of about 2 microns and a diameter of 6 microns is formed. The metallization layer is then deposited via a suitable or standard mask and/or photoresist layer and etching known in the art to form a central via 136 that also forms an ohmic contact with the n+ type GaN layer 11 As explained in the figure. In an exemplary embodiment, a plurality of layers of metal (e.g., via metal) are deposited to form a via-via 136. For example, about 1 Å of titanium and about 1.5 microns to 2 microns of aluminum can be sputtered or plated to coat the sides, bottom and a portion of the top of the trench 211, and then form an alloy at about 55 (rc). On the top of the n + -type GaN layer 11 , a solid metal via 13 6 having a maximum diameter of about 1 μm is formed. Then, an appropriate or standard mask and/or photoresist layer known in the art is used, and (4) , as illustrated in FIG. 54, growing or depositing a first nitride passivation layer 135A, such as by, but not limited to, plasma enhanced chemical vapor deposition (pECVD) nitrogen bismuth or bismuth oxynitride, or More particularly about .5 microns thickness II = taking a large diameter, then depositing a photoresist and performing an etching step to remove unnecessary nitrided chopped regions. Next, also by appropriate or standard masks known in the art and And/or a photoresist layer and an etched 'deposited metallization layer, forming a contact with the p + -type GaN layer 115 as described in FIG. 55, a metal having a bump or a protruding structure formed using a mold metal 4 12〇B In an illustrative embodiment, the deposition can be as previously described herein To form a dry layer of a metal for forming a metal layer of the contact 120A and / or 120B and ㈣㈣ layer and for the sake of brevity,

S 63 201226479 此處將不重複。在一例示性1 T『生具體貫例中,金屬 狀一般為六角形且直徑為约9〇他i 120B之形 為、力22微米(側面對側面量), 且包含約100埃之鎳、約4 扪面里測) •5喊未之鋁、約0.5微米之镍以 及約100nm之金。 攸木之錦以 在金屬化之後,亦蠖ά + τε仏, 丄由此項技術中已知或即 適當或標準遮罩及/或光阻層以及钱刻,如圖5“ 使用先前所述之方法,穿過…Γ如圖56中所說明, 穿過部分GaN異質結構(進入但 不完全穿過n+型GaN層11〇χ在一 八你例不性具體實例中深度 一般為約2微米)進行單體芥笙 逆仃早體化渠溝蝕刻,且形成上文所述 之單體化渠溝1 5 5。 如圖57中所說明’接著諸如藉由例如(但不限於)電 漿增強化學氣相沈積(PECVD)氮切或氮氧切來生長 或沈積第二氮化物鈍化層135, 一般達约〇35微米至ι〇 微米,或更尤其約0.5微米之厚度。接著使用此項技術中已 知之適當或標準遮罩及/或光阻層及蝕刻,移除不必要之氮 化矽區域,諸如以清潔金屬層i 〇2B之頂部,其將形成第二 端子127。 下文參考圖64、65、67及68描述後續基板移除、第 二側(背面)金屬層! 22之單體化及製造。 圖58-63及69說明在圖45中所.說明之在晶圓15〇或 】5〇A層級上製造之後製造.二極體i00L之另一例示性方 法。圖58為具有缓衝層、第六台面蝕刻之複合GaN異質結 構187E及與p+型GaN層形成歐姆接觸之金屬化層之基板 的橫截面圖。如上所述,當基板1 〇 5為石夕(例如,使用梦 64 201226479 晶圓1 50 )時通常製造緩衝層145,且對於其他基板(諸如 GaN基板105)而言,可省去緩衝層145。另外,藍寶石1〇6 說明為可選方案,諸如對於生長或沈積於藍寶石晶圓15〇A 上之厚GaN基板105,在該狀況下可省去緩衝層145。亦如 上所述,在製造二極體之較早步驟中,在GaN異質結構(n + 型GaN層110、i子井區185及? +型GaN層丨)沈積或 生長後,而非在較遲步驟中,沈積金屬層丨19 (作為用於後 續沈積金屬層120A之晶種層)。舉例而言,金屬層n9可 為鎳與金快閃層,其總厚度為約幾百埃,或可經極薄之光 學反射金屬層(在圖25中說明為銀層1〇3)及/或光學透射 性金屬層(諸如厚度為約100埃至約25nm之鎳、鎳金或 鎳-金-鎳)金屬化且與其形成合金,以有助於與p +型GaN 層U5形成歐姆接觸(且可能提供朝向n+型〇心層ιι〇之 光反射),其中一些金屬層119接著與其他GaN層一起,諸 如在GaN台面形成期間移除。在一例示性具體實例中,沈 積約2 nm至3 nm ’或更尤其約2 5 nm之鎳或鎳及金且在 5〇〇°c下使其形成合金以形成與对型^^^層ιΐ5歐姆接觸之 金屬層119。經由此項技術中已知之適當或標準遮罩及/或 ,阻層及茲刻,飯刻複合GaN異質結構(n+型_層11〇、 量子井區185及P+型GaN層115)(連同金屬層119 一起) 乂形成冰度為約1微米之GaN台面結構! (連同金屬層 119 一起)’其具有上文所論述之修平三角形形狀,至為接 點128保留空間之切去區域的第-半徑為、約8微米且至三 角形頂點/側面之第二半徑為約11微米。 65 201226479 在台面姓刻(187E)之後,接著亦經由此項技術 中已知之適當或標準料及/或光阻層純刻,沈積第一全 屬化層,形成接點128,該等接.點128亦與㈣⑽層&quot;Ο 形成:姆接觸,如圖59中所說明。在例示性具體實射, 沈積若干層導孔金屬以形成接點128,該等接點US用作第 二端子舉例而言(但不加以限制),可㈣或電鑛約 100埃之鈦、約500 nm之鋁、5〇〇 nm之鎳及1〇〇 nm之金S 63 201226479 will not be repeated here. In an exemplary embodiment, the metal is generally hexagonal in shape and has a diameter of about 9 Å. The shape of the 120B is 22 microns (side to side) and contains about 100 angstroms of nickel. Measured in about 4 )) • 5 calls for aluminum, about 0.5 micron nickel, and about 100 nm gold. The eucalyptus eucalyptus is after metallization, also 蠖ά + τε仏, 已知 known or suitable for standard or standard masking and/or photoresist layers and money engraving, as shown in Figure 5 The method, through..., as illustrated in Figure 56, passes through a portion of the GaN heterostructure (into but not completely through the n+-type GaN layer 11). The depth is typically about 2 microns. Performing a monomeric mustard reverse aging channel etching and forming the cyclized trenches 15 5 described above. As illustrated in Figure 57, 'then by, for example, but not limited to, plasma Enhanced chemical vapor deposition (PECVD) nitrogen or oxynitride to grow or deposit a second nitride passivation layer 135, typically up to about 35 microns to ι microns, or more particularly about 0.5 microns. Appropriate or standard masking and/or photoresist layers and etching are known in the art to remove unnecessary tantalum nitride regions, such as to clean the top of metal layer i 〇 2B, which will form second terminal 127. 64, 65, 67, and 68 describe subsequent substrate removal, second side (back) metal layers! 22 Singulation and fabrication. Figures 58-63 and 69 illustrate another exemplary method of fabricating a diode i00L after fabrication on a wafer 15 〇 or 5 〇 A level as illustrated in Figure 45. 58 is a cross-sectional view of a substrate having a buffer layer, a sixth mesa-etched composite GaN heterostructure 187E, and a metallization layer forming an ohmic contact with the p+-type GaN layer. As described above, when the substrate 1 〇5 is Shi Xi ( For example, the buffer layer 145 is typically fabricated when using Dream 64 201226479 wafer 1 50 ), and for other substrates such as GaN substrate 105, buffer layer 145 may be omitted. Additionally, sapphire 1〇6 is illustrated as an alternative. For example, for a thick GaN substrate 105 grown or deposited on a sapphire wafer 15A, the buffer layer 145 may be omitted in this case. As also described above, in the earlier step of fabricating the diode, the GaN heterostructure After the deposition or growth of the n + -type GaN layer 110, the i-well region 185, and the ?-type GaN layer ,, rather than in a later step, the metal layer 丨 19 is deposited (as a crystal for subsequent deposition of the metal layer 120A) For example, the metal layer n9 may be a nickel and gold flash layer, the total thickness of which is a few hundred angstroms, or a very thin optically reflective metal layer (illustrated as silver layer 1〇3 in Figure 25) and/or an optically transmissive metal layer (such as nickel, nickel gold having a thickness of from about 100 angstroms to about 25 nm) Or nickel-gold-nickel) metallized and alloyed therewith to help form an ohmic contact with the p+ type GaN layer U5 (and possibly provide light reflection towards the n+ type core layer), some of which are 119 This is then removed along with other GaN layers, such as during GaN mesa formation. In an exemplary embodiment, nickel or nickel and gold are deposited at about 2 nm to 3 nm ' or more specifically about 25 nm and at 5 〇〇. It is alloyed at °c to form a metal layer 119 in ohmic contact with the pair of layers ι. Suitable GaN heterostructures (n+-type _layer 11 〇, quantum well region 185 and P+ GaN layer 115) (along with metal) by suitable or standard masks and/or resistive layers and engravings known in the art Layer 119 together) 乂 forms a GaN mesa structure with an ice of about 1 micron! (along with the metal layer 119) 'which has the flattened triangular shape discussed above, the first radius of the cut-out region that is the space reserved for the joint 128, about 8 microns, and the second radius to the apex/side of the triangle is About 11 microns. 65 201226479 After the countertop engraving (187E), the first full genus layer is deposited via the appropriate or standard material and/or photoresist layer known in the art to form a contact 128, which is connected. 128 is also in contact with (4) (10) layer &quot; 形成 formation: m, as illustrated in Figure 59. In an exemplary specific implementation, a plurality of layers of via metal are deposited to form contacts 128, which are used as, for example, but not limited to, a second terminal, which may be (iv) or an iron ore of about 100 angstroms. Aluminum of about 500 nm, nickel of 5 〇〇 nm, and gold of 1 〇〇 nm

以形成實心金屬接點128,其厚度各自為約微米,徑向 量測之寬度為約3微米,且如圖23中所說明圍繞…型GaN 層1 ίο之周邊延伸。在一例示性具體實例中,亦如圖23中 所說明’形成三個接點12 8。 在沈積接點128之後,亦經由此項技術中已知或即將 知曉之適當或標準遮罩及/或光阻層,沈積其他金屬化層(使 用先前所述之任何製程及金屬,諸如鈥及鋁,繼而退火) 以形成金屬層120A作為用於p +型GaN層115之歐姆接觸 的一部分,如圖60中所說明。舉例而言,在一例示性具體 實例中’可錢鍍或電鍍約200 nm之銀(形成反射層或鏡面 層)、200 nrn之鎳、約500 nm之鋁及200 nm之鎳,以形成 位於中心之金屬層120A,其厚度為約1.1微米且直徑為約 8微米。 接著亦經由此項技術中已知之適當或標準遮罩及/或光 阻層及蚀刻’沈積其他金屬化層,形成如圖6 1中所說明與. P +型GaN層115形成接觸之通常使用模用金屬形成之具有 凸塊或突出結構之金屬層12 0 B。在例示性具體實例中,可 66 201226479 如本文先前所述沈積若干層金屬以形成用於與p +型GaN層 115形成接觸之金屬層120A及/或120B,且出於簡要起見, 此處將不重複。在一例示性具體實例中,金屬層120B —般 具有圖23中所說明之修平三角形形狀,其中至切去區域(用 於接點128 )之第一半徑為約6微米’至三角形頂點/側面 之第二半徑為約9微米,其寬度各自為約3.7微米,且其包 含約200 nm之銀(亦在p +型GaN層115上形成反射層或 鏡面層)、約200 nm之鎳、約200 nm之鋁、約250 nm之 鎳、約2 0 0 nm之链、約2 5 0 nm之鎳及約l〇〇nm之金,上 述金屬各自添加作為連續層,繼而在550。(:下於氮氣環境中 形成合金約10分鐘,以達成約5微米之總高度(除金屬層 1 2〇A之約1 · 1微米高度之外)。應注意,此使第一端子與第 二端子125、127之間在高度上隔開約5微米。 如圖62中所§兒明,接著諸如藉由例如(但不限於)電 漿増強化學氣相沈積(PECVD)氮化矽或氮氧化矽來生長 或沈積第二氮化物鈍化層135,一般達約〇 35微米至卜〇 微米,或更尤其約0.5微米之厚度。接著使用此項技術中已 知之適當或標準遮罩及/或光阻層及蝕刻,移除不必要之氮 化石夕區域’諸如以清潔金屬層1G2B之頂部,其將形成第— 端子125 。 一在鈍化之後,亦經由此項技術中已知或即將知曉之 當或標準遮罩及/或光阻居以;5為办丨 又尤丨且層以及蝕刻,如圖63中所說明,侦 用先前所述之方法,穿過一邱八r ^ 芽過邛刀GaN異質結構(進入但未 儿全穿過n+型GaN層11 〇 )(右_ ^丨_ 曰11U八在例不性具體實例中深度—To form solid metal contacts 128 each having a thickness of about a micron, a radial measurement having a width of about 3 microns, and extending around the perimeter of the GaN layer 1 ίο as illustrated in FIG. In an exemplary embodiment, three contacts 12 8 are formed as also illustrated in FIG. After depositing the contacts 128, other metallization layers are also deposited via appropriate or standard mask and/or photoresist layers known or to be known in the art (using any of the processes and metals previously described, such as germanium and Aluminum, which is then annealed) to form metal layer 120A as part of the ohmic contact for p+ type GaN layer 115, as illustrated in FIG. For example, in an exemplary embodiment, 'can be plated or plated with about 200 nm of silver (forming a reflective or mirror layer), 200 nrn of nickel, about 500 nm of aluminum, and 200 nm of nickel to form The central metal layer 120A has a thickness of about 1.1 microns and a diameter of about 8 microns. The other metallization layers are then deposited by appropriate or standard masking and/or photoresist layers and etching as known in the art to form a common contact with the P+ type GaN layer 115 as illustrated in FIG. The metal layer 12 0 B having a bump or a protruding structure formed of a metal. In an exemplary embodiment, 66 201226479 deposits several layers of metal as previously described to form metal layers 120A and/or 120B for making contact with p + -type GaN layer 115, and for the sake of brevity, here Will not repeat. In an exemplary embodiment, metal layer 120B generally has the flattened triangular shape illustrated in FIG. 23, wherein the first radius to the dicing region (for contact 128) is about 6 microns' to the apex/side of the triangle The second radius is about 9 microns, each having a width of about 3.7 microns, and it comprises about 200 nm of silver (also forming a reflective or mirror layer on the p + -type GaN layer 115), about 200 nm of nickel, about Aluminum at 200 nm, nickel at about 250 nm, chains at about 200 nm, nickel at about 250 nm, and gold at about 10 nm are each added as a continuous layer, followed by 550. (: The alloy is formed in a nitrogen atmosphere for about 10 minutes to achieve a total height of about 5 microns (except for the height of the metal layer 1 2 〇 A of about 1 · 1 μm). It should be noted that this makes the first terminal and the first The two terminals 125, 127 are spaced apart by about 5 microns in height. As illustrated in Figure 62, the tantalum or nitrogen is then nitrided, such as by, for example, but not limited to, plasma chemical vapor deposition (PECVD). Cerium oxide is used to grow or deposit a second nitride passivation layer 135, typically up to about 35 microns to a diopside micron, or more particularly about 0.5 microns. Then use appropriate or standard masks and/or known in the art. The photoresist layer and the etch, removing unnecessary nitride regions, such as to clean the top of the metal layer 1G2B, which will form the first terminal 125. One, after passivation, is also known or will be known in the art. When either a standard mask and/or a photoresist is present; 5 is a trick and a layer and etching, as illustrated in Figure 63, the method described previously is used to pass through a Qiu 8 r ^ bud Knife GaN heterostructure (into but not all through the n+ GaN layer 11 〇) (right _ ^ _ Said depth 11U eight exemplary embodiment without specific example -

S 67 201226479 般為約2微米至3.5微米)進行單體化渠溝蝕刻,且形成上 文所述之單體化渠溝1 5 5 » 下文參考圖64、65、67及69描述後續基板移除及單 體化。 製造二極體100-100L之方法之多種變化形式根據本發 明之教示可顯而易見’所有變化形式皆視作等效且處於本 發明範疇内。在其他例示性具體實例中,該渠溝丨55形成 及(氮化物)鈍化層形成可在器件製造製程中較早或較遲 進行。舉例而言,可在製造過程中較遲,在形成金屬層i2〇B 後形成渠溝155,且可留下暴露之基板1〇5或之後可進行第 二次鈍化。亦舉例而言,可在製造過程中較早,諸如在㈣ 台面蝕刻後形成渠溝155,繼而沈積(氮化物)鈍化層US。 在後-實施射,為在ϋ件製造製程之其餘部分期間維持 平坦化,純化之渠冑155可用氧化物、光阻或其他材料填 充(沈積層’ Μ而使用抗絲遮罩及㈣或無遮罩钱刻製 程移除不必要區域)或可用抗钱劑填充(且在金屬I點】2 〇 A 形成之後可能再填充)。在另_實施例中,氮化碎i35沈積 (繼之以遮罩及蝕刻步驟)可在GaN台面蝕刻之後且在金屬 接點1 2 0 A沈積之前進行。 圖64為說明黏著至固持裝置16〇 (諸如固持操作或 固持器晶圓)之具有複數個二極體1〇〇隱之例示性矽晶 圓150具體實例的橫截面圖。圖65為說明黏著至固持裝置 160之例示性二極體藍寶石晶圓15〇A具體實例的橫截面 圖。如圖64及65中所說明’使用任何已知之市售晶圓黏 68 201226479 « •. 著劑或晶圓黏結劑16 5將含有複數個未釋放二極體 1 0 0 -1 0 0 L(出於解說之目的一般性說明而無任何顯著之特徵 細節)之二極體晶圓150、150A在二極體晶圓15〇、150A 具有製造之二極體100-100L之第一側上黏著至固持裝置 1 6 0 (諸如晶圓固持器)。如所說明且如上文所述,已在晶 圓加工期間,諸如經由蚀刻在各二極體1 〇〇_ 1 〇〇L之間形成 單體化或個別化渠溝155 ’接著使用該等單體化或個別化渠 溝15 5在不進行機械製程(諸如鑛切)下使各二極體 100-100L與相鄰二極體l〇(M〇OL分離。如圖64中所說明, 在二極體晶圓150仍黏著至固持裝置16〇的同時,接著將 二極體晶圓150之第二側(背面)18〇蝕刻(例如,濕式或 乾式蝕刻)或機械研磨且拋光至某—位準(以虛線說明), 或敍刻並機械研磨且拋光以暴露渠溝丨55,或留下某些其他 基板’該其他基板接著可經由例如(但不限於)蝕刻移除。 當充分蝕刻或研磨且拋光,或充分蝕刻並研磨且拋光(及/ 或連同任何其他蝕刻一起)時,各個別二極體丨〇〇_丨乙已 彼此釋放且自任何剩餘之二極體晶圓150釋放,而仍由黏 著d 165黏著至固持裝置160。如圖65中所說明,亦在二 極體晶圓150A仍黏著至固持裝置16〇的同時,接著使二極 體曰曰圓1 5 0 A之第二側(背面)! 8 〇曝露於雷射光(說明為 一或多個雷射束162),該雷射光接著自晶圓15〇八之藍寶石 二切害J GaN基板1〇5 (以虛線說明)(亦稱為雷射剝離), 亦可繼而進行任何其他化學機械拋光及任何所需之蝕刻 (例如濕式或乾式敍刻),從而使各個別二極體㈣⑴儿彼S 67 201226479 is typically about 2 microns to 3.5 microns) singulated trench trench etching and forming the singulated trenches described above 1 5 5 » Subsequent substrate shifts are described below with reference to Figures 64, 65, 67 and 69 In addition to singulation. Various variations of the method of making the diode 100-100L are apparent in light of the teachings of the present invention. All variations are considered equivalent and are within the scope of the present invention. In other exemplary embodiments, the trench 丨 55 formation and (nitride) passivation layer formation may be performed earlier or later in the device fabrication process. For example, the trench 155 may be formed later in the fabrication process after the formation of the metal layer i2 〇 B, and the exposed substrate 1 〇 5 may be left or a second passivation may be performed thereafter. Also for example, a trench 155 may be formed earlier in the fabrication process, such as after (iv) mesa etching, followed by deposition of a (nitride) passivation layer US. After the post-implementation, to maintain planarization during the remainder of the manufacturing process, the purified trench 155 may be filled with oxide, photoresist or other material (deposited layer 'Μ with anti-silk mask and (iv) or none The mask engraving process removes unnecessary areas) or can be filled with anti-money agents (and may be refilled after metal IA formation). In another embodiment, the nitridation i35 deposition (followed by a masking and etching step) can be performed after the GaN mesa etching and before the metal junction 1 20 A deposition. Figure 64 is a cross-sectional view showing an embodiment of an exemplary twin crystal circle 150 having a plurality of diodes 1 adhered to a holding device 16 (such as a holding operation or a holder wafer). Figure 65 is a cross-sectional view showing an exemplary embodiment of an exemplary diode sapphire wafer 15A adhered to a holding device 160. As illustrated in Figures 64 and 65 'Use any known commercially available wafer adhesive 68 201226479 « •. Ingredient or wafer adhesive 16 5 will contain a plurality of unreleased diodes 1 0 0 -1 0 0 L ( The diode wafers 150, 150A are generally attached to the first side of the diodes 100-100L of the diode wafers 15A, 150A for the purpose of illustration and without any significant feature details. To the holding device 160 (such as a wafer holder). As illustrated and as described above, singulated or individualized trenches 155' have been formed between wafers 1 〇〇 1 1 〇〇L during wafer processing, such as via etching, and then used The individualized or individualized trenches 15 separate the respective diodes 100-100L from the adjacent diodes 100 (M〇OL) without mechanical processing (such as tapping). As illustrated in Figure 64, While the diode wafer 150 is still adhered to the holding device 16 , the second side (back side) of the diode wafer 150 is then 18 etched (eg, wet or dry etched) or mechanically ground and polished to a certain - level (indicated by dashed lines), or etched and mechanically ground and polished to expose the trench 丨 55, or leave some other substrate 'the other substrate can then be removed via, for example, but not limited to, etching. When etched or ground and polished, or fully etched and ground and polished (and/or along with any other etch), the individual diodes are released from each other and from any remaining diode wafer 150 Released while still adhered to the holding device 160 by the adhesive d 165. As shown in Fig. 65 It is also noted that while the diode wafer 150A is still adhered to the holding device 16〇, the diode is then rounded to the second side (back side) of the 150 A! 8 〇 exposed to the laser light (described as One or more laser beams 162), which are then cut from the wafer 15 sapphire two to the J GaN substrate 1 〇 5 (illustrated by dashed lines) (also known as laser stripping), and may then be carried out any Other chemical mechanical polishing and any required etching (such as wet or dry characterization), so that the individual diodes (4) (1)

S 69 201226479 此釋放且自晶圓15〇Α釋放,而仍由黏著劑165黏著至固持 裝置⑽。在此例示性具體實例巾,可接著研磨及/或抛光 晶圓150A且再使用。 一般亦圍繞晶圓150之周邊塗覆環氧樹脂珠粒(未作 單獨說明)以防止非二極體片段在下文所論述之二極體釋 放製程期間自晶圓邊緣釋放至二極體(1〇〇_1〇〇L)流體中。 圖66為說明黏著至固持裝置之例示性二極體i〇〇j具體 實例的橫截面圖。在單體化二極體1〇〇_1〇〇κ (如上文參考 圖64及65所述)之後,且在二極體&quot;ο」〇〇κ仍由黏著劑 165黏著至固持裝置16〇的同時,暴露二極體ι〇〇 ι〇〇κ之 第二側(背面)。如圖66中所說明,可接著諸如經由氣相 沈積(傾斜以避免填充渠溝155)沈積金屬化層至第二側(背 面)’形成第二側(背面)金屬層122及二極體i〇〇j具體實 例。亦如所說明’二極體丨〇〇J具有與n+型GaN層11 〇形 成歐姆接觸且與第二側(背面)金屬層122形成接觸之一 個中心貫穿導孔丨3 1以於n+型GaN層11 0與第二側(背面) 金屬層122之間傳導電流。例示性二極體100D與例示性二 極體1 00J頗為相似,後者具有第二側(背面)金屬層122 以形成第二端子127 »如先前所提及,第二側(背面)金屬 層122'(或基板105或各個貫穿導孔131、133、134中之任 一者)可用於在裝置 300、300A、3〇〇B、3 00C、3 00D、720、 73 0、760中與第一導體310形成電連接以對二極體 100-1 00K 通電。 圖67為說明在背面金屬化之前黏著至固持裝置160之 70 201226479 % 例示性第十二極體具體實例的橫截面圖。如圖67中所說 明,單體化例示性製程中二極體,其中如上文所述且亦以 飯d V驟(例如濕式或乾式蚀刻)移除任何基板i 〇 5、丨〇 5 A, ,露型GaN層110及導孔136之表面’留下深度為約2 微米至6微米(或更尤其為約2微米至4微米,或更尤其 為約3微米)之複合GaN異質結構。接著使用此項技術中 已知之適當或標準遮罩及/或光阻層及蝕刻,諸如經由濺 錄電鑛或氣相沈積沈積金屬化層至第二側(背面),形成 第二側(背面)金屬層122及二極體ΐοοκ具體實例,如圖 68中所說明。在一例示性具體實例中,金屬層丨22呈橢圓 开/ 如圖2 1中所§兒明,其長袖寬度一般為約12微米至16 祕米’短軸寬度為約4微米至8微米’且深度為約4微米 至6微求,或其長軸寬度更尤其一般為約14微米,短軸寬 度為約ό微米’且深度為約5微米,且其包含約1 〇〇埃之 欽、約4.5微米之鋁、約〇.5微米之鎳及1〇0 nm之金。亦 如對於二極體i 00K所說明,最初為比較淺之中心導孔者現 為與n+型GaN層110形成歐姆接觸且與第二侧(背面)金 屬層122形成接觸以於n+型GaN層110與第二側(背面) 金屬層122之間傳導電流的貫穿導孔136。如先前所提及, 對於此例示性二極體100K具體實例,接著翻轉或反轉二極 體100K,且第二側(背面)金屬層122形成第—端子ι25 且可用於在裝置 300、300A、3 00B、3 00C、3 00D、720、73 0、 760中與第二導體32〇形成電連接以使二極體ι〇〇κ通電。 圖69為說明黏著至固持裝置之例示性第十一二極體S 69 201226479 This release is released from the wafer 15〇Α and remains adhered by the adhesive 165 to the holding device (10). In this exemplary embodiment, the wafer 150A can then be ground and/or polished and reused. Epoxy beads are also typically applied around the perimeter of wafer 150 (not separately illustrated) to prevent non-diode segments from being released from the wafer edge to the diode during the diode release process discussed below (1) 〇〇_1〇〇L) in the fluid. Figure 66 is a cross-sectional view showing a specific example of an exemplary diode i黏j adhered to a holding device. After the singulated diode 1〇〇_1〇〇κ (as described above with reference to FIGS. 64 and 65), and the diode &quot;ο"〇〇κ is still adhered to the holding device 16 by the adhesive 165 While rubbing, expose the second side (back side) of the diode ι〇〇ι〇〇κ. As illustrated in FIG. 66, a second side (back) metal layer 122 and a diode i can then be formed, such as by vapor deposition (tilting to avoid filling trenches 155) deposition of the metallization layer to the second side (back side). 〇〇j specific examples. As also illustrated, the 'diode 丨〇〇J has a central through via 丨3 1 that forms an ohmic contact with the n+ type GaN layer 11 and contacts the second side (back) metal layer 122 for n+ type GaN. Current is conducted between layer 110 and second side (back) metal layer 122. The exemplary diode 100D is quite similar to the exemplary diode 100J having a second side (back) metal layer 122 to form a second terminal 127 » as previously mentioned, a second side (back) metal layer 122' (or any of the substrate 105 or each of the through vias 131, 133, 134) can be used in the devices 300, 300A, 3〇〇B, 3 00C, 3 00D, 720, 73 0, 760 and A conductor 310 forms an electrical connection to energize the diode 100-1 00K. Figure 67 is a cross-sectional view showing an example of a 201212479% exemplary twelfth polar body adhered to the holding device 160 prior to back metallization. As illustrated in Figure 67, the diodes in the exemplary process are singulated, wherein any substrate i 〇 5, 丨〇 5 A is removed as described above and also with a meal (eg, wet or dry etch). The surface of the exposed GaN layer 110 and vias 136 'remains a composite GaN heterostructure having a depth of from about 2 microns to 6 microns (or more specifically from about 2 microns to 4 microns, or more specifically about 3 microns). The second side (back side) is then formed using a suitable or standard mask and/or photoresist layer and etching as known in the art, such as depositing a metallization layer to the second side (back side) via sputtercasting or vapor deposition. A specific example of the metal layer 122 and the diode ΐοοκ, as illustrated in FIG. In an exemplary embodiment, the metal layer 22 is elliptical or as shown in Figure 21, and the long sleeve width is generally from about 12 microns to about 16 cm. The short axis width is from about 4 microns to 8 microns. And having a depth of from about 4 microns to about 6 micro, or a major axis width thereof, more particularly about 14 microns, a minor axis width of about ό microns and a depth of about 5 microns, and comprising about 1 〇〇 之, Approximately 4.5 microns of aluminum, approximately 5 microns of nickel, and 1 〇 0 nm of gold. As also explained for the diode i 00K , the initially shallow center via is now in ohmic contact with the n + -type GaN layer 110 and in contact with the second (back) metal layer 122 for the n + -type GaN layer. A through-via 136 that conducts current between the 110 and the second side (back) metal layer 122. As previously mentioned, for this exemplary diode 100K embodiment, the diode 100K is then flipped or inverted, and the second side (back) metal layer 122 forms the first terminal ι25 and can be used in the device 300, 300A 3, 00B, 3 00C, 3 00D, 720, 73 0, 760 form an electrical connection with the second conductor 32A to energize the diode ι κ. Figure 69 is an illustration of an eleventh dipole that is adhered to a holding device.

S 71 201226479 100L具體貫例的橫截面圖。如圖69中所說明,單體化例示 性二極體100L,其中如上文所述且以蝕刻步驟移除任何基 板105、105A,暴露n+型GaN層11〇之表面,留下深度為 約2微米至6微米(或更尤其為約3微米至5微米,或更 尤其為約4微米至5微米,或更尤其為約45微米)之複合 GaN異質結構。 在單體化二極體100-1 00L之後,可使用其形成二極體 墨水,下文參考圖74及75進行論述。 亦應注意’亦可對於各個二極體1〇〇_1〇〇L中之任一者 製造各種表面幾何形狀及/或紋理,以有助於在建構成led 時減少内部反射及提高光提取。此等各種表面幾何形狀中 之任一者亦可具有先前參考圖25所論述之各種表面紋理中 之任一者。圖104為說明例示性發光或光吸收區域之例示 性第一表面戌何形狀的透視圖,其建構為二極體100K之上 部發光(或光吸收)表面上複數個同心環或超環形形狀。 通常在添加为面金屬122之前或之後,經由此項技術中已 知或即將知曉之適當或標準遮罩及/或光阻層及蝕刻將該幾 何形狀蝕刻至二極體100K之第二側(背面)中。圖1〇5為 說明例示性發光或光吸收區域之例示性第二表面幾何形狀 的透視圖,其建構為二極體100K之上部發光(或光吸收) 表面上複數個實質上曲邊梯形形狀。亦通常在添加背面金 屬122之前或之後,亦經由此項技術中已知或即將知曉之 適畲或標準遮罩及/或光阻層及蝕刻將該幾何形狀蝕刻至二 極體100Κ之第二側(背面)中。 72 201226479 麵 . 圖106為說明例示性發光或光吸收區域之例示性第三 表f幾何形狀的透視圖,其建構為二極體l〇〇L之下部 底。p )發光(或光吸收)表面上複數個實質上曲邊梯形形 狀。圖107為說明例示性發光或光吸收區域之例示性第四V 表面幾何形狀的透視圖,其建構為二極體1〇〇L之下部(或 底邛)發光(或光吸收)表面上實質上星形形狀。圖 為說明例示性發光或光吸收區域之例示性第五表面幾何形 狀的透視圖,其建構為二極體丨〇〇L之下部(或底部)發光 (或光吸收)表面上複數個實質上平行桿狀或條紋形狀。亦 通常經由此項技術中已知或即將知曉之適當或標準遮罩及/ 或光阻層及蝕刻將該等幾何形狀蝕刻至二極體1〇〇l之第二 側(背面)中,作為先前參考圖69所論述之基板移除製程 及/或二極體單體化製程的一部分。 圖70、71、72及73分別為說明用於製造二極體 100-100L之例示性第一、第二、第三及第四方法具體實例 的流程圖,且提供適用概述。應注意,此等方法中之多個 步驟可按各種次序中之任一者進行,且一個例示性方法之 步驟亦可用於其他例示性方法中。因此,各方法將一般性 涉及二極體100-100L中任一者之製造,而非特定二極體 100-100L具體實例之製造,且熟習此項技術者應知曉哪些S 71 201226479 100L cross-sectional view of a specific example. As illustrated in Figure 69, an exemplary diode 100L is singulated, wherein any substrate 105, 105A is removed as described above and in an etch step, exposing the surface of the n+ type GaN layer 11 , leaving a depth of about 2 A composite GaN heterostructure having micron to 6 microns (or more particularly from about 3 microns to 5 microns, or more specifically from about 4 microns to 5 microns, or more specifically about 45 microns). After singulating the diode 100-1 00L, it can be used to form a diode ink, which is discussed below with reference to Figures 74 and 75. It should also be noted that 'other surface geometries and/or textures can also be fabricated for each of the diodes 1〇〇_1〇〇L to help reduce internal reflection and improve light extraction when constructing the led . Any of these various surface geometries can also have any of the various surface textures previously discussed with reference to FIG. Figure 104 is a perspective view illustrating an exemplary first surface geometric shape of an exemplary illuminating or light absorbing region constructed as a plurality of concentric rings or super-annular shapes on the upper illuminating (or light absorbing) surface of the diode 100K. The geometry is typically etched to the second side of the diode 100K, either before or after addition as the face metal 122, via a suitable or standard mask and/or photoresist layer and etch known or to be known in the art ( In the back). Figure 1-5 is a perspective view illustrating an exemplary second surface geometry of an exemplary illuminating or light absorbing region constructed as a plurality of substantially curved trapezoidal shapes on the upper illuminating (or light absorbing) surface of the diode 100K. . The geometry is also typically etched to the second of the diode 100, either before or after the addition of the back metal 122, via a suitable or standard mask and/or photoresist layer and etching known or to be known in the art. In the side (back). 72 201226479 Fig. 106 is a perspective view illustrating an exemplary third table f geometry of an exemplary illuminating or light absorbing region constructed as a lower portion of the diode l〇〇L. p) a plurality of substantially curved trapezoidal shapes on the surface of the luminescent (or light absorbing) surface. Figure 107 is a perspective view illustrating an exemplary fourth V surface geometry of an exemplary illuminating or light absorbing region constructed to illuminate (or absorb light) the surface of the lower portion (or bottom) of the diode 1 〇〇L. Upper star shape. The figure is a perspective view illustrating an exemplary fifth surface geometry of an exemplary illuminating or light absorbing region constructed as a plurality of substantially on the lower (or bottom) illuminating (or light absorbing) surface of the diode 丨〇〇L. Parallel rod or stripe shape. The geometries are also typically etched into the second side (back side) of the diode 1〇〇1 via appropriate or standard masking and/or photoresist layers and etching known or to be known in the art. A portion of the substrate removal process and/or the diode singulation process previously discussed with reference to FIG. Figures 70, 71, 72, and 73 are flow diagrams illustrating illustrative first, second, third, and fourth method embodiments for fabricating diodes 100-100L, respectively, and provide a suitable overview. It should be noted that multiple of these methods can be performed in any of a variety of orders, and the steps of one exemplary method can be used in other exemplary methods. Therefore, each method will generally involve the manufacture of any of the diodes 100-100L, rather than the manufacture of specific examples of specific diodes 100-100L, and those familiar with the art should know which

步驟可此合且配合」以形成任何所選之二極體1 〇〇_丨〇〇L 具體實例。 參考圖70,自起始步驟24〇開始,於半導體晶圓(諸 如矽晶圓)上生長或沈積氧化物層(步驟245 )。蝕刻氧化 73 1 201226479 物層(步驟250 )諸如以形成網袼或其他圖案。生長或沈積 =層及發光或光吸收區域(諸#㈣異質結構)(步驟 255 ),接著蝕刻以形成各二極體1〇〇_1〇〇乙之台面結構(步 驟260)。接著蝕刻晶圓15〇以在各二極體ι〇〇丨之基板 1〇5中形成導孔渠溝(步驟26小接著沈積-或多個金屬 化層以形成各二極體1〇〇_1〇〇L之金屬接點及導孔(步驟 )接著在一極體1 〇〇-1 〇〇L之間姓刻單體化渠溝(步驟 275)。接著生長或沈積鈍化層(步驟28〇)。接著於金屬接 點上沈積或生長凸塊或突出金屬結構(步驟285 )且方法可 結束,返回步驟290。應注意,此等製造步驟中之多個步驟 可藉由不同實體及試劑進行,且該方法可包括上文所論述 之步驟的其他變化形式及排序。The steps can be combined and coordinated to form any selected diode 1 〇〇 丨〇〇 具体 L specific example. Referring to Figure 70, starting from the initial step 24, an oxide layer is grown or deposited on a semiconductor wafer, such as a germanium wafer (step 245). Etching Oxidation 73 1 201226479 The layer of matter (step 250) is such as to form a mesh or other pattern. The growth or deposition = layer and luminescent or light absorbing regions (#(4) heterostructures) (step 255) are then etched to form the mesa structure of each of the diodes (step 260). Then, the wafer 15 is etched to form a via trench in the substrate 1〇5 of each of the diodes (the step 26 is followed by deposition or a plurality of metallization layers to form the respective diodes 1〇〇_ The metal contacts and vias (steps) of 1〇〇L are then singulated between the polar bodies 1 〇〇-1 〇〇L (step 275). Then the passivation layer is grown or deposited (step 28) Then, a bump or a protruding metal structure is deposited or grown on the metal contact (step 285) and the method can be ended, returning to step 290. It should be noted that multiple steps in the manufacturing steps can be performed by different entities and reagents. The process is performed and the method can include other variations and ordering of the steps discussed above.

參考圖71,自起始步驟5〇〇開始,於晶圓(諸如藍寶 石晶圓1 50 A )上生長或沈積比較厚之GaN層(例如7微米 至8微米)(步驟505 )。生長或沈積發光或光吸收區域(諸 如GaN異質結構)(步驟5 1 0 ),接著蝕刻以形成各二極體 100-100L之台面結構(在各二極體1〇〇_1〇〇L之第一側上) (步驟515)。接者触刻晶圓150以在各二極體i〇〇_i〇〇l之 基板105中形成一或多個貫穿或深導孔渠溝及單體化渠溝 (步驟520)。接著通常藉由使用上文所述之任何方法沈積晶 種層(步驟525),繼而進行其他金屬沈積來沈積一或多個 金屬化層以形成各二極體100-100L之貫穿導孔,其可為中 心、周邊或周圍貫穿導孔(分別為131、134、133 )。亦沈 積金屬以形成一或多個與GaN異質結構(諸如與p +型GaN 201226479 層115或與n+型GaN層11〇)之金屬接點(步驟535)及 形成任何其他電流分佈金屬(例如120A、126)(步驟540)。 接著生長或沈積鈍化層(步驟545 ),其中如先前所述及所 說明蝕刻或移除一定區域。接著於金屬接點上沈積或生長 凸塊或突出金屬結構(120B)(步驟55〇)。接著將晶圓15〇A 附接至固持晶圓(步驟555 )且移除藍寶石或其他晶圓(例 士、’、!由雷射切割)以單體化或個別化二極體1 〇〇_ 1 (步 驟560 ) »接著將金屬沈積於二極體】1 之第二側(背 面)上以形成第二側(背面)金屬層丨22 (步驟),且 6亥方法可結束,返回步驟57〇。亦應注意,此等製造步驟中 之多個步驟可藉由不同實體及試劑進行,且該方法可包括 上文所論述之步驟的其他變化形式及排序。 參考圖72,自起始步驟600開始,於晶圓15〇 (諸如 藍寶石晶圓150A)上生長或沈積比較厚之GaN層(例如7 微米至8微米)(步驟605 )。生長或沈積發光或光吸收區域 (諸如GaN異質結構)(步驟61〇 )。沈積金屬以形成一或多 個與GaN異質結構(諸如與p +型GaN層115 ,如圖45中 所說明)之金屬接點(步驟6丨5 )。接著蝕刻發光或光吸收 區域(諸如GaN異質結構)與金屬接觸層(丨丨9 ),形成各 二極體100-100L之台面結構(在各二極體1〇〇1〇〇L之第一 側上)(步驟620 )。沈積金屬以形成一或多個與GaN異質 結構之金屬接點(諸如與n+型GaN層11 〇之n+型金屬接觸 層129,如圖47中所說明)(步驟625 )。接著蝕刻晶圓i5〇a 以在各二極體100-100L之基板105中形成一或多個貫穿或Referring to Figure 71, a relatively thick GaN layer (e.g., 7 microns to 8 microns) is grown or deposited on a wafer (such as a sapphire wafer 1 50 A) starting from the initial step 5 (step 505). Growing or depositing a luminescent or light absorbing region (such as a GaN heterostructure) (step 5 1 0), followed by etching to form a mesa structure of each of the diodes 100-100L (in each of the diodes 1〇〇_1〇〇L) On the first side) (step 515). The substrate is etched into the wafer 150 to form one or more through or deep via trenches and singulated trenches in the substrate 105 of each of the diodes (i〇〇l (step 520). The seed layer is then typically deposited by using any of the methods described above (step 525), followed by other metal deposition to deposit one or more metallization layers to form through vias for each of the diodes 100-100L. The guide holes (131, 134, 133, respectively) may be through the center, the periphery or the periphery. A metal is also deposited to form one or more metal contacts to the GaN heterostructure (such as p+-type GaN 201226479 layer 115 or n+-type GaN layer 11) (step 535) and to form any other current distribution metal (eg, 120A) , 126) (step 540). A passivation layer is then grown or deposited (step 545) wherein a certain area is etched or removed as previously described and illustrated. A bump or protruding metal structure (120B) is then deposited or grown on the metal contacts (step 55A). The wafer 15A is then attached to the holding wafer (step 555) and the sapphire or other wafer is removed (eg, cut by laser) to singulate or individualize the diode 1 〇〇 _ 1 (step 560) » Next, a metal is deposited on the second side (back side) of the diode 1 to form a second side (back) metal layer ( 22 (step), and the 6 hai method can be ended, returning to the step 57〇. It should also be noted that the various steps in such manufacturing steps can be performed by different entities and reagents, and the method can include other variations and ordering of the steps discussed above. Referring to Figure 72, starting from the initial step 600, a relatively thick GaN layer (e.g., 7 microns to 8 microns) is grown or deposited on the wafer 15 (e.g., sapphire wafer 150A) (step 605). A luminescent or light absorbing region (such as a GaN heterostructure) is grown or deposited (step 61A). The metal is deposited to form one or more metal contacts to the GaN heterostructure (such as with the p+ type GaN layer 115, as illustrated in Figure 45) (step 6丨5). Then etching a light-emitting or light-absorbing region (such as a GaN heterostructure) and a metal contact layer (丨丨9) to form a mesa structure of each of the diodes 100-100L (first in each of the diodes 1〇〇1〇〇L) On the side) (step 620). The metal is deposited to form one or more metal contacts to the GaN heterostructure (such as the n+ type metal contact layer 129 with the n+ type GaN layer 11 as illustrated in Figure 47) (step 625). The wafer i5〇a is then etched to form one or more through or in the substrate 105 of each of the diodes 100-100L.

S 75 201226479 深導孔渠溝及/或單體化渠溝(步驟630 )。接著使用上文所 述之任何金屬沈積方法沈積—或多個金屬化層以形成各二 極體100-100L之貫穿導孔,其可為中心 '周邊或周圍貫穿 導孔(分別為131、134、133)。亦沈積金屬以形成一或多 個與GaN異質結構(諸如與p +型〇aN層m或與n+型GaN 層11 〇 )之金屬接點,及形成任何其他電流分佈金屬(例如 120A、126 )(步驟640 )。若先前未形成單體化渠溝(在步 驟630中),則蝕刻單體化渠溝(步驟645 )。接著生長或沈 積鈍化層(步驟650 )’其中如先前所述及所說明蝕刻或移 除一定區域。接著於金屬接點上沈積或生長凸塊或突出金 屬結構(120B)(步驟655 )。接著將晶圓15〇、ι5〇Α附接 至固持晶圓(步驟660 ),且移除藍寶石或其他晶圓(例如 經由雷射切割或背面研磨及拋光)以單體化或個別化二極 體100-100L(步驟665)。接著將金屬沈積於二極體1〇〇1〇〇l 之第二側(背面)上以形成第二側(背面)導電(例如金 屬)層122 (步驟670 ),且該方法可結束,返回步驟675。 亦應注意,此等製造步驟中之多個步驟可藉由不同實體及 試劑進行,且該方法可包括上文所論述之步驟的其他變化 形式及排序。 參考圖73,自起始步驟611開始,於晶圓15〇 (諸如藍 寶石晶圓150A)或矽晶圓15〇之緩街層145上生長或沈積 比較厚之GaN層(例如7微米至8微米)(步驟6丨丨)。生 長或沈積發光或光吸收區域(諸如GaN異質結構)(步驟 61 6 )。沈積金屬以形成一或多個與GaN異質結構(諸如盥 76 201226479 . P +型GaN層115,如圖45中所說明)之金屬接點(步驟 62 1 )。接著蝕刻發光或光吸收區域(諸如GaN異質結構) 與金屬接觸層(119),形成各二極體i〇〇_1〇〇l之台面結構 (在各二極體100-100L之第一側上)(步驟626 )。對於二極 體1OOK具體實例’接著飯刻GaN異質結構以形成各二極 體1 00K之中心導孔渠溝(步驟63 1 ),且在其他情況下可省 去步驟63卜接著使用上文所述之任何金屬沈積方法沈積一 或多個金屬化層以形成各二極體1〇〇κ之中心導孔136或二 極體100L之金屬接點128 (步驟636 )。對於二極體100K 具體實例’接著生長或沈積鈍化層135A (步驟641),其中 如先前所述且如所說明蝕刻或移除一定區域,且在其他情 況下可省去步驟64 1。亦沈積金屬以形成一或多個與GaN 異質結構(諸如p +型GaN層i丨5 )之金屬接點,諸如金屬 層120B或金屬層120A及120B (步驟046 )。若先前未形成 單體化渠溝,則蝕刻單體化渠溝(步驟65丨)。接著生長或 沈積鈍化層(步驟656 ),其中如先前所述及所說明蝕刻或 移除一定區域。應注意,對於製造二極體i 〇〇L而言,步驟 65 6與65 1按相反次序進行,其中先進行鈍化’繼而蝕刻單 體化渠溝。接著將晶圓! 5〇、1 5〇A附接至固持晶圓(步驟 661)且移除石夕、藍寶石或其他晶圓(例如經由雷射切割 或背面研磨及拋光)以單體化或個別化二極體1〇〇_1〇〇l(步 驟666 ),諸如經由蝕刻移除任何其他GaN。對於二極體⑶收 具體貫例,接著將金屬沈積於二極體1〇〇κ之第二側(背面) 上以形成第二侧(背面)導電(例如金屬)層122 (步驟S 75 201226479 Deep guide channel and/or singulated channel (step 630). Then, using any of the metal deposition methods described above, one or more metallization layers are deposited to form through-vias of each of the diodes 100-100L, which may be through the vias around or around the center (131, 134, respectively) , 133). A metal is also deposited to form one or more metal contacts with a GaN heterostructure (such as a p+ type 〇aN layer m or an n+ type GaN layer 11 ,), and form any other current distribution metal (eg, 120A, 126) (Step 640). If the monolithic trench has not previously been formed (in step 630), the singulated trench is etched (step 645). A passivation layer is then grown or deposited (step 650)' wherein certain regions are etched or removed as previously described and illustrated. A bump or protruding metal structure (120B) is then deposited or grown on the metal contacts (step 655). The wafers 15〇, ι5〇Α are then attached to the holding wafer (step 660), and the sapphire or other wafer is removed (eg, via laser cutting or back grinding and polishing) to singulate or individualize the poles Body 100-100L (step 665). A metal is then deposited on the second side (back side) of the diode 1〇〇1〇〇1 to form a second side (back) conductive (eg, metal) layer 122 (step 670), and the method can end and return Step 675. It should also be noted that the various steps in such manufacturing steps can be performed by different entities and reagents, and the method can include other variations and ordering of the steps discussed above. Referring to FIG. 73, starting from the initial step 611, a relatively thick GaN layer (eg, 7 micrometers to 8 micrometers) is grown or deposited on the wafer 15 (such as sapphire wafer 150A) or the buffer layer 15 of the germanium wafer 15 ) (Step 6丨丨). The growth or deposition of a luminescent or light absorbing region (such as a GaN heterostructure) is grown (step 61 6). The metal is deposited to form one or more metal contacts with a GaN heterostructure (such as 盥 76 201226479 . P + -type GaN layer 115, as illustrated in Figure 45) (step 62 1 ). Next, an illuminating or light absorbing region (such as a GaN heterostructure) and a metal contact layer (119) are etched to form a mesa structure of each of the diodes (1〇〇1 (on the first side of each of the diodes 100-100L) Up) (step 626). For the diode 1OOK specific example 'the GaN heterostructure is then engraved to form the central via trench of each diode 1 00K (step 63 1 ), and in other cases step 63 can be omitted and then use the above Any of the metal deposition methods described deposit one or more metallization layers to form a central via 136 of each of the diodes 1 〇〇 or a metal contact 128 of the diode 100L (step 636). A passivation layer 135A is subsequently grown or deposited for the diode 100K specific example (step 641), wherein certain regions are etched or removed as previously described and as illustrated, and in other cases step 64 1 may be omitted. Metal is also deposited to form one or more metal contacts to the GaN heterostructure, such as p+ type GaN layer i丨5, such as metal layer 120B or metal layers 120A and 120B (step 046). If the singulated trench has not previously been formed, the singulated trench is etched (step 65A). A passivation layer is then grown or deposited (step 656) wherein a certain area is etched or removed as previously described and illustrated. It should be noted that for the fabrication of the diode i 〇〇 L, steps 65 6 and 65 1 are performed in reverse order, wherein passivation is performed first and then the monolithic trench is etched. Then the wafer will be! 5〇, 15〇A is attached to the holding wafer (step 661) and the stone, sapphire or other wafer is removed (eg, by laser cutting or back grinding and polishing) to singulate or individualize the diode 1〇〇_1〇〇1 (step 666), such as removing any other GaN via etching. For a specific example of the diode (3), a metal is then deposited on the second side (back side) of the diode 1 〇〇 to form a second side (back) conductive (e.g., metal) layer 122 (step

S 77 201226479 ,且該方法可結束,返回步驟㈣。亦應注意,此等製 造步驟中之多個步驟可藉由不同實體及試劑進行,且該方 法可包括上文所論述之步驟的其他變化形式及排序。舉例 而言,步,驟611及612可由專門供應商進行。 圖74為說明個別二極體⑽⑽l(亦出於解說之目的 一般性說明而無任何顯著之特徵細節)的橫截面圖,該等 一極體不再在二極體晶圓15〇、15〇A上耦接在一起(由於 二極體晶圓150、15〇A之第二側現已經研磨或拋光、切割 (田射到離)及/或飯刻至完全暴露單體化(個別化)渠溝 155 ),但由晶圓黏著劑165黏著至固持裝置且懸浮或 浸沒於含晶圓黏著劑溶劑170之器孤175中。可使用任何 適合之器* 175 ’諸如皮氏培養孤(petri dish),其中-例 示性方法使用聚四敦乙稀(PTFE或鐵氣龍(Tefl〇n))器凰 175。晶圓黏著劑溶劑17〇可為任何市售之晶圓黏著劑溶劑 或晶圓黏結劑移除劑,包括(不限於)例如可自R〇lla, .Uri USA之Brewer Science公司獲得之2-十二烯晶圓 黏、·°齊丨移除劑’或任何其他相對長鏈烷烴或烯烴或短鏈庚 按*或庚歸。通常在室溫(例如約65°F-75°F或更高溫度)下 將黏著至固持裝置16〇之二極體100-100L浸沒於晶圓黏著 劑^劑170中約5至約15分鐘,且在例示性具體實例中, 亦可進订音波處理。隨著晶圓黏著劑溶劑丨7〇溶解黏著劑 165 —極體100'10〇L與黏著劑165及固持裝置160分離且 大。卩刀或一般個別地或以群組或團塊形式下沉至器皿175 底部。當所有或大部分二極體l〇〇—1〇〇]L已自固持裝置ι6〇 78 201226479 釋放且沈澱至斋皿1 75之底部時,自器皿丨75移出固持裝 置160及一部分當前使用之晶圓黏著劑溶劑17〇。接著再添 加晶圓黏著劑溶劑170 (約120 ml至140 mi),且通常在室 皿或更南度下’攪拌晶圓黏著劑溶劑17〇與二極體 1 〇(M 00L之混合物(例如,使用音波處理器或葉輪混合器) 約5至15分鐘,繼而再次使二極體1〇〇_1〇〇L沈澱至器皿 N5底部。接著一般至少再次重複此製程,以便當所有或大 部分二極體100_100L已沈澱至器皿175之底部時,自器皿 175移出一部分當前使用之晶圓黏著劑溶劑17〇,接著再添 加(約120 ml至14〇 ml)晶圓黏著劑溶劑17〇,繼而在室 μ或更局溫度下攪拌晶圓黏著劑溶劑17〇與二極體 100-100L之混合物約5至15分鐘,繼而再次使二極體 ⑽-100L沈澱至器㈤175之底部且移出―部分剩餘晶圓黏 者劑溶劑170。在此階段,一般已自二極體1〇〇_1〇〇l移除 足量之任何殘留晶圓黏著劑165,或重複晶圓黏著劑溶劑 製程,直至不再有可能干擾二極體100_100L之印刷或 起作用為止。 / 々可以各種方式中之任一者移除晶圓黏著劑溶劑170(含 溶解之晶圓黏著劑165)或下文所論述之任何其他溶劑、溶 液或其他液體。舉例而纟’可藉由真空、抽氣、抽吸、抽 汲等,諸如經由吸液管移除晶圓黏著劑溶劑17〇或其他液 體。亦舉例而t,可藉由諸如使用具有適當開口或微孔尺 寸之筛或多孔石夕膜過濾二極體1〇(M帆與晶圓黏著劑溶劑 170 (或其他液體)之混合物來移除晶圓黏著劑溶劑17〇或S 77 201226479 , and the method can be ended, returning to step (4). It should also be noted that multiple steps in such fabrication steps can be performed by different entities and reagents, and the method can include other variations and ordering of the steps discussed above. For example, steps 611 and 612 can be performed by a dedicated vendor. Figure 74 is a cross-sectional view showing individual diodes (10) (10) 1 (also for the purpose of illustration, without any significant feature details), which are no longer in the diode wafers 15 〇, 15 〇 A is coupled together (since the second side of the diode wafer 150, 15〇A is now ground or polished, cut (field shot) and/or meal to full exposure singulation (individualization) The trench 155) is adhered by the wafer adhesive 165 to the holding device and suspended or immersed in the device 175 containing the wafer adhesive solvent 170. Any suitable device * 175 ' can be used, such as a petri dish, wherein the - exemplary method uses polytetraethylene (PTFE or Teflon) 175. The wafer adhesive solvent 17 can be any commercially available wafer adhesive solvent or wafer adhesive remover, including, without limitation, 2-derived from Brewer Science, Inc. of R〇lla, .Uri USA. The decadiene wafer is viscous, the 丨 丨 remover' or any other relatively long-chain alkane or olefin or short-chain heptane or *g. The diode 100-100L adhered to the holding device 16 is typically immersed in the wafer adhesive 170 for about 5 to about 15 minutes at room temperature (e.g., at about 65°F to 75°F or higher). And in an exemplary embodiment, the sound wave processing can also be customized. As the wafer adhesive solvent 〇7〇 dissolves the adhesive 165, the polar body 100'10〇L is separated from the adhesive 165 and the holding device 160 and is large. The files are either sunk to the bottom of the vessel 175 either individually or in groups or clumps. When all or most of the diodes have been released from the holding device ι6〇78 201226479 and deposited to the bottom of the vessel 1 75, the vessel 丨 75 is removed from the holding device 160 and a portion of the currently used The wafer adhesive solvent is 17 〇. Then add the wafer adhesive solvent 170 (about 120 ml to 140 mi), and usually stir the wafer adhesive solvent 17〇 and the diode 1 〇 (M 00L mixture in the chamber or more south (for example , using a sonic processor or impeller mixer) for about 5 to 15 minutes, and then again depositing the diode 1〇〇_1〇〇L to the bottom of the vessel N5. Then generally repeat this process at least again, so that when all or most When the diode 100_100L has settled to the bottom of the vessel 175, a portion of the currently used wafer adhesive solvent is removed from the vessel 175, and then (about 120 ml to 14 〇 ml) of the wafer adhesive solvent 17 〇 is added, and then Stir the mixture of the wafer adhesive solvent 17〇 and the diode 100-100L for about 5 to 15 minutes at chamber μ or more, and then again precipitate the diode (10)-100L to the bottom of the device (five) 175 and remove the portion. Remaining wafer adhesive solvent 170. At this stage, a sufficient amount of any residual wafer adhesive 165 has been removed from the diode 1〇〇_1〇〇l, or the wafer adhesive solvent process is repeated until No longer possible to interfere with the printing of the diode 100_100L or The wafer adhesive solvent 170 (containing the dissolved wafer adhesive 165) or any other solvent, solution or other liquid discussed below may be removed in any of a variety of ways. For example, The wafer adhesive solvent 17 〇 or other liquid is removed by vacuum, evacuation, suction, pumping, etc., such as via a pipette. Also by way of example, t can be used, for example, by using a suitable opening or micropore size. Screen or porous silica membrane filter diode 1 (M sail and wafer adhesive solvent 170 (or other liquid) mixture to remove the wafer adhesive solvent 17 〇 or

S 79 201226479 其他液體。亦應提及的是,過濾二極體墨水(及下文所办 述之介電墨水)中使用之所有各種流體以移除大於約1〇2 米之粒子。 二極體墨水實施例1 : 包含以下之組成物: 複數個二極體100-100L;及 溶劑。 接著移除實質上所有或大部分晶圓黏著 -例示性具體實例中且舉例而言,將溶劑,且;:其。二 溶劑(諸如異丙醇(「心」))添加至晶圓黏著劑溶齊)m 與二極體100-100L之混合物中,繼而一般在室溫下(儘管 可等效地使用更高溫度)授拌IPA、晶圓㈣㈣劑Μ及 二極體⑽-魏之混合物約5纟15分鐘,繼而再次使二極 體UKM00L沈殿至器皿175之底部且移出—部分心盘曰 圓黏著劑溶劑17〇之混合物。再添力“pA(i2〇mi至: 如),且重複該製程兩次或兩次以上,即—般在室溫下授掉 IPA '晶圓黏著劑溶齋丨1 7ίΊ » 刎170及二極體100-100L之混合物約5 至15分鐘,繼而再攻伟_ 人使一極體1〇〇_100[沈澱至器皿Ρ 之底邛,移出一部&amp; IPA與晶圓黏著劑溶劑⑺之混 且再添加IPA。在—榀-n 刃 不性具體實例t,所得混合物為約 1〇〇 ml 至 11〇 ml IPA 盥也卜 1 '、來自四忖晶圓之約900萬_1000萬個 一極體100-100L (卷桐m丄。 1ΛΛ , (母個四吋晶圓150約970萬個二極體 100-100L),接著將盆 不體 轉移至另—較大容器(諸如PTFE杯 瓶)中,可包括例如再用 杯 丹用ΙΡΑ再洗滌二極體至杯瓶中。 80 201226479 等效地使用一或多種溶劑,例如(但不限於):水;醇,諸 如曱醇、乙醇、正丙醇(「NPA」)(包括1-丙醇、2-丙醇(IPA)、 1-甲氧基-2-丙醇)、丁醇(包括1-丁醇、2· 丁醇(異丁醇))、 戊醇(包括1-戊醇、2_戊醇、3 -戊醇)、辛醇、正辛醇(包 括1-辛醇、2-辛醇、3-辛醇)、四氫糠醇(THFA)、環己醇、 松香醇;醚,諸如甲基乙基醚、***、乙基丙基醚及聚醚; 酯,諸如乙酸乙酯、己二酸二甲酯、丙二醇單甲醚乙酸酯、 戊二酸二甲酯、丁二酸二甲酯、乙酸甘油酯;二醇,諸如S 79 201226479 Other liquids. It should also be mentioned that all of the various fluids used in the diode ink (and the dielectric inks described below) are filtered to remove particles larger than about 1 〇 2 meters. Diode Ink Example 1 : A composition comprising: a plurality of diodes 100-100 L; and a solvent. Substantially all or most of the wafer adhesion is then removed - in an exemplary embodiment and, by way of example, a solvent, and; A solvent such as isopropanol ("heart") is added to the mixture of the wafer adhesive) m and the diode 100-100L, which is then typically at room temperature (although equivalent temperatures can be used equivalently) The IPA, the wafer (4) and the diode (10)-Wei mixture are mixed for about 5 纟 15 minutes, and then the diode UKM00L is again immersed to the bottom of the vessel 175 and removed - part of the core disk 黏 round adhesive solvent 17 a mixture of cockroaches. Add “pA (i2〇mi to: eg) and repeat the process twice or more, ie, give IPA at room temperature.] Wafer Adhesive 1 7ίΊ » 刎170 and II A mixture of polar bodies 100-100L takes about 5 to 15 minutes, and then attacks _ _ people make a polar body 1 〇〇 _100 [precipitate to the bottom of the vessel 邛, remove a &amp; IPA and wafer adhesive solvent (7) Mix and add IPA. In the case of -榀-n edge specific example t, the resulting mixture is about 1〇〇ml to 11〇ml IPA 盥 also 1 ', about 9 million to 10 million from the four wafers One pole 100-100L (Tongtong m丄. 1ΛΛ, (mother four wafers 150 about 9.7 million diodes 100-100L), then transfer the basin to another - larger container (such as PTFE In a cup bottle, it may include, for example, re-cleaning the diode with the cup and then washing the diode into the bottle. 80 201226479 Equivalently using one or more solvents such as, but not limited to: water; alcohol, such as sterol, Ethanol, n-propanol ("NPA") (including 1-propanol, 2-propanol (IPA), 1-methoxy-2-propanol), butanol (including 1-butanol, 2-butanol) (Isobutanol)) Pentanol (including 1-pentanol, 2-pentanol, 3-pentanol), octanol, n-octanol (including 1-octanol, 2-octanol, 3-octanol), tetrahydrofurfuryl alcohol (THFA) , cyclohexanol, rosin alcohol; ethers such as methyl ethyl ether, diethyl ether, ethyl propyl ether and polyether; esters such as ethyl acetate, dimethyl adipate, propylene glycol monomethyl ether acetate, Dimethyl glutarate, dimethyl succinate, glycerol acetate; glycol, such as

乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、 趟、二醇鱗乙酸g旨;碳酸g旨,諸如碳酸伸丙醋;甘油類, 諸如甘油;乙腈、四氫呋喃(THF )、二甲基甲醯胺(DMF )、 N-曱基甲醯胺(NMF)、二甲亞砜(DMSO);及其混合物。 二極體100-100L與溶劑(諸如IPA)之所得混合物為二極 體墨水之第一實施例作為上述實施例i,且可作為獨立組成 物提供,例如用於後續改質或亦例如用於印刷中。在下文 論述之其他例示性具體實例中,二極體i 〇〇_丨〇〇l與溶劑(諸 如Π&gt;Α)之所得混合物為中間混合物,其如下文所述經進一 步改質以形成用於印刷中之二極體墨水。 在各個例示性且體银Μ &amp; 來選擇第—:::中’基於至少兩種特性或特徵 度調節劑或黏著黏:二。广劑之第一特徵為其溶於黏 脂、甲氧基丙基甲基纖二(诸如羥丙基甲基纖維素樹 纖維素樹脂)中之:力:素樹脂或其他纖維素樹脂或甲基 節劑之能力个::其溶解黏度調節劑或黏著黏度調 第—特试或特性為其蒸發率,其蒸發率應足Ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, hydrazine, glycol glycerol acetate; carbonic acid, such as propylene carbonate; glycerin, such as glycerin; acetonitrile, tetrahydrofuran (THF) , dimethylformamide (DMF), N-mercaptocaramine (NMF), dimethyl sulfoxide (DMSO); and mixtures thereof. The first embodiment in which the resulting mixture of the diode 100-100L and the solvent (such as IPA) is a diode ink is as the above embodiment i, and may be provided as a separate composition, for example for subsequent modification or also for example In printing. In other illustrative embodiments discussed below, the resulting mixture of the dipole i 〇〇 丨〇〇 与 1 and a solvent (such as Π &gt; Α) is an intermediate mixture which is further modified as described below to form Diode ink in printing. In each of the exemplary and in vivo silver Μ &amp; to select the first -::: based on at least two characteristics or characteristic adjusters or adhesive: two. The first feature of the broad-agent is that it is dissolved in a viscous, methoxypropylmethylcellulose (such as hydroxypropylmethylcellulose cellulose resin): force: resin or other cellulose resin or methyl The ability of the agent:: its solubility viscosity modifier or adhesion viscosity adjustment - special test or characteristic of its evaporation rate, its evaporation rate should be sufficient

S 81 201226479 夠緩慢以允許二極體墨水充分網版滯留(對於網版印刷) 或符合其他印刷參數。在各個例示性具體實例中’例示性 蒸發率小於1 ( &lt;1,與乙酸丁酯相比較之相對速率)或更尤 其為 0.0001 至 〇 9999。 二極體墨水實施例2 : 包含以下之組成物: 複數個二極體l〇〇_l〇〇L;及 黏度§周節劑。 二極體墨水實施例3 : 包含以下之組成物: 複數個二極體100-100L;及 溶劑化劑。 二極體墨水實施例4 : 包含以下之組成物: 複數個二極體100-100L;及 濕潤溶劑。 二極體墨水實施例5 : 包含以下之組成物: 複數個二極體100_100L; 溶劑;及 黏度調.節劑。 二極體墨水實施例6 : 包含以下之組成物: 複數個二極體loo-iooL; 82 201226479 * 溶劑;及 黏著黏度調節劑。 二極體墨水貫施例7 : 包含以下之組成物: 複數個二極體100-100L ; 溶劑;及 黏度調節劑; 其中該組成物在濕潤時不透明而在乾燥時具實質上光 學透射性或另外為透明的。 二極體墨水貫施例8 : 包含以下之組成物: 複數個二極體100-100L ; 第一極性溶劑; 黏度調節劑;及 第二非極性溶劑(或再濕潤劑)。 二極體墨水貫施例9 : 包含以下之組成物: 複數個二極體100-100L,複數個二極體100-1 00L中之 各二極體之任何尺寸均小於450微米;及 溶劑。 二極體墨水貫施例1 0 : 包含以下之組成物: 複數個二極體100- 100L ;及 至少一種實質上非絕緣載劑或溶劑。S 81 201226479 is slow enough to allow sufficient retention of the grid ink (for screen printing) or other printing parameters. In each exemplary embodiment, the exemplary evaporation rate is less than 1 (&lt;1, relative rate compared to butyl acetate) or, more specifically, 0.0001 to 〇9999. Diode Ink Example 2: Contains the following composition: a plurality of diodes l〇〇_l〇〇L; and a viscosity § weekly agent. Diode Ink Example 3: A composition comprising: a plurality of diodes 100-100L; and a solvating agent. Diode Ink Example 4: A composition comprising: a plurality of diodes 100-100 L; and a wetting solvent. Diode Ink Example 5: A composition comprising the following: a plurality of diodes 100_100L; a solvent; and a viscosity adjusting agent. Diode Ink Example 6: A composition comprising the following: a plurality of diodes loo-iooL; 82 201226479 * solvent; and adhesion viscosity modifier. Diode Ink Example 7: A composition comprising: a plurality of diodes 100-100L; a solvent; and a viscosity modifier; wherein the composition is opaque when wet and substantially optically transmissive when dry or Also transparent. Diode Ink Example 8: A composition comprising: a plurality of diodes 100-100 L; a first polar solvent; a viscosity modifier; and a second non-polar solvent (or a rewetting agent). Diode Ink Example 9: The following composition is included: a plurality of diodes 100-100L, each of the plurality of diodes 100-1 00L having a size of less than 450 microns; and a solvent. Diode Ink Embodiment 10: A composition comprising: a plurality of diodes 100-100L; and at least one substantially non-insulating carrier or solvent.

S 83 201226479 二極體墨水實施例11 : 包含以下之組成物: 複數個二極體100-100L ; 溶劑;及 黏度調節劑; 其中該組成物之抗濕潤(dewetting )或接觸角大於25 度或大於40度。 參考二極體墨水實施例1 -11,多種例示性二極體墨水 組成物處於本發明範鳴内。一般而言,如實施例1中,二 極體(100-100L )之液體懸浮液包含複數個二極體 (100-100L)及第一溶劑(諸如上文所論述之IPA或下文論 述之正丙醇、1-甲氧基-2-丙醇、二丙二醇、1-辛醇(或更一 般為正辛醇),或二乙二醇);如實施例2中,二極體 ( 100-100L)之液體懸浮液包含複數個二極體(i〇〇_i〇〇l) 及黏度調節劑(諸如下文所論述之黏度調節劑,其亦可為 如實施例6中之黏著黏度調節劑);且如實施例3及4中, 一極體(100-100L)之液體懸浮液包含複數個二極體 (100-100L )及溶劑化劑或濕潤溶劑(諸如下文所論述之第 二溶劑中之一者,例如二元酯)。更特定而言,諸如在實施 例2、5、6、7及8中,二極體(100-1 〇〇l)之液體懸浮液 包含複數個二極體(l〇(M 00L )(及/或複數個二極體 (100-1 00L )及第一溶劑(諸如正丙醇、i _辛醇、丨_甲氧基 -2-丙醇、二丙二醇、松香醇或二乙二醇)),以及黏度調節 劑(或等效地為黏性化合物、黏性劑、黏性聚合物、黏性 84 201226479 樹脂、黏性黏合劑、掷細添,r a /上、丄 9稠劑及/或流變改質劑)或黏著黏度 調節劑(下文更詳細論述),以办丨Λ γ 间疋)u例如(但不限於)使二極體 墨水在室溫(約25。〇下之黏度為約!,〇〇〇厘泊(cps)至 25,〇〇〇 cPS (或在冷藏溫度(例如代至邮)下之黏度為 約20,_ cps至60,_ cps),諸如下文所述之e_i〇黏度調 節劑H占度而冑’所得組成物可等效地稱作二極體或其 他二端積體電路液體懸浮液或膠體懸浮液,且本文中任何 對液體或膠體之提及應理解為意謂且包括另一者。 另外,二極體墨水之所得黏度一般將視欲使用之印刷 製私之類型而變化且亦可視二極體組成(諸如矽基板i 或GaN基板1 〇5 )而變化。舉例而言,二極體i 〇〇_ 1 具 有矽基板105之用於網版印刷之二極體墨水在室溫下可具 有約1,000厘泊(cps )至25,〇〇〇 cps之黏度,或在室溫下 可更尤其具有約6,000厘泊(cps )至i5,〇〇〇 cpS之黏度, 或在室溫下可更尤其具有約6,000厘泊(cps)至15,〇〇〇 cps 之黏度’或在室溫下可更尤其具有約8,0〇〇厘泊(cps)至 12,000cps之黏度’或在室溫下可更尤其具有約9,〇〇〇厘泊 (cps)至11,〇〇〇 CpS之黏度。另外舉例而言,二極體1〇〇1〇〇L 具有GaN基板1 05之用於網版印刷之二極體墨水在室溫下 可具有約10,000厘泊(cps)至25, OOOcps之黏度,或在室 溫下可更尤其具有約15,000厘泊(cps )至22,000 cps之黏 度,或在室溫下可更尤其具有約17,500厘泊(cps )至20,500 cps之黏度,或在室溫下可更尤其具有約18,〇〇〇厘泊(cps ) 至20,000 cps之黏度。亦舉例而言’二極體loo-iooL具有S 83 201226479 Diode Ink Example 11: A composition comprising: a plurality of diodes 100-100L; a solvent; and a viscosity modifier; wherein the composition has a dewetting or contact angle greater than 25 degrees or More than 40 degrees. Referring to Diode Ink Examples 1-11, a variety of exemplary diode ink compositions are within the scope of the present invention. In general, as in Example 1, the liquid suspension of the diode (100-100L) comprises a plurality of diodes (100-100 L) and a first solvent (such as the IPA discussed above or as discussed below) Propanol, 1-methoxy-2-propanol, dipropylene glycol, 1-octanol (or more generally n-octanol), or diethylene glycol); as in Example 2, a diode (100- The liquid suspension of 100 L) comprises a plurality of diodes (i〇〇_i〇〇l) and a viscosity modifier (such as a viscosity modifier as discussed below, which may also be an adhesion viscosity modifier as in Example 6). And as in Examples 3 and 4, the liquid suspension of the monopole (100-100 L) comprises a plurality of diodes (100-100 L) and a solvating or wetting solvent (such as the second solvent discussed below) One of them, such as a dibasic ester). More specifically, such as in Examples 2, 5, 6, 7, and 8, the liquid suspension of the diode (100-1 〇〇l) comprises a plurality of diodes (10 〇 (M 00L ) (and / or a plurality of diodes (100-1 00L) and a first solvent (such as n-propanol, i-octanol, 丨-methoxy-2-propanol, dipropylene glycol, rosin or diethylene glycol) ), and viscosity modifier (or equivalently viscous compound, adhesive, viscous polymer, viscous 84 201226479 resin, viscous adhesive, throwing fine, ra / upper, 丄 9 thickener and / Or a rheology modifier (or a viscosity modifier) (discussed in more detail below), such as, but not limited to, making the diode ink at room temperature (about 25 〇 之 viscosity) It is about!, centipoise (cps) to 25, 〇〇〇cPS (or viscosity at refrigerated temperature (eg, postal) of about 20, _ cps to 60, _ cps), such as described below The e_i〇 viscosity modifier H is occupied and the resulting composition is equivalently referred to as a diode or other two-end integrated circuit liquid suspension or colloidal suspension, and any liquid or colloid herein. References are to be understood to mean and include the other. In addition, the resulting viscosity of the diode ink will generally vary depending on the type of printing process to be used and may also be in the form of a diode (such as a germanium substrate i or GaN substrate). For example, the diode i 〇〇 1 has a ruthenium substrate 105 for screen printing of the diode ink at room temperature of about 1,000 centipoise (cps) to 25, the viscosity of 〇〇〇cps, or more particularly at room temperature, having a viscosity of about 6,000 centipoise (cps) to i5, 〇〇〇cpS, or more particularly about 6,000 centipoise at room temperature (cps) ) to 15, the viscosity of 〇〇〇cps' or more particularly at room temperature may have a viscosity of from about 8.0 centipoise (cps) to 12,000 cps' or more particularly about 9 at room temperature. The viscosity of the centipoise (cps) to 11, 〇〇〇CpS. For another example, the diode 1〇〇1〇〇L has a GaN substrate 105 for the screen printing of the diode ink It may have a viscosity of from about 10,000 centipoise (cps) to 25, OOO cps at room temperature, or more particularly from about 15,000 centipoise (cps) to 22,000 cps at room temperature. More particularly, at room temperature, it has a viscosity of from about 17,500 centipoise (cps) to 20,500 cps, or more particularly at room temperature, having a viscosity of from about 18 centipoise (cps) to 20,000 cps. Word 'diode loo-iooL has

S 85 201226479 矽基板105之用於快乾印刷之二極體墨水在室溫下可具有 約1,〇〇〇厘泊(cps)至1〇,〇〇〇 cps之黏度,或在室溫下可 更尤其具有約1,5〇〇厘泊(cps)至4,000 cps之黏度,或在 至狐下可更尤其具有約17〇〇厘泊(cps)至3 cy之黏 度,或在室溫下可更尤其具有約厘泊(cps)至2,2〇〇 cps之黏度》亦舉例而言,二極體1〇〇.1〇〇L具有_基板 之用於決乾印刷之二極體墨水在室溫下可具有約1,〇 0 0 厘泊(cps)至10,000 cps之黏度,或在室溫下可更尤其具 有約2,000厘泊(cps)至6,〇〇〇 cps之黏度,或在室溫下可 ::其具有約2,500厘泊(cps)至4,5〇〇cps之黏度,或在 室溫下可更尤其具有約2,〇〇〇厘泊(cps)至4,〇〇 s之黏 度。 可以夕種方式量測黏度。出於比較之目的,本文所說 明及/或主張之各種黏度範圍皆使用彳氏黏度計(Βγ〇〇ι^μ v咖崎r)(可獲自Br〇〇kfieM^。她心 Mlddleb〇r〇 Massachusetts,USA)以約 200 帕(或更一般 j 190帕至21Q怕)之煎應力,於水夾套中於約25。(:下,使月 =SC4_27以約1G柳(或更-般為1 rpm至3G rpm,A 其對於例如(但不限於)冷藏流體而言)t速度來量測。 可使用一或多種增稠劑(作為黏度調節劑),例如(但 不:艮於):黏土,諸如鋰蒙脫石黏土、膨潤土黏土、有機改 質黏土;耱及多聽,諸如瓜爾踢、三仙膠;纖維素及改質 纖、准素’諸如羥甲基纖維素、曱基纖維素、乙基纖維素、 丙基甲基纖維素、甲氧基纖維素、甲氧基甲基纖維素 '甲 86 201226479 氧基丙基甲基纖維素、經丙基 _ 巧土 τ暴纖維素、羧甲基纖維素、 輕乙基纖維素、乙基荈r其總 丞赳乙基纖維素、纖維素醚、纖維素乙 醚、聚葡萄胺糖;聚合物,諸如丙烯酸酯及(甲基)丙烯酸酿 聚合物及共聚物;=醇,諸如乙二醇、二乙二醇、聚乙二 醇丙一# —丙—醇、二醇峻、二醇喊乙酸醋;煙霧狀 二氧化梦(諸如CabGsil)、二氧切粉;以及改f尿素,諸 如 B彻 420 (可自 Βγκ Chemie ;u μ 物。可使用其他黏度調節劑,以及添加粒子以控制黏度, 如Lewis等人之專利申請公開案第us 2〇〇3/〇〇9ι647號中所 述。亦彳使用T文參考介電墨水所論述之其他黏度調節 劑,包括(不限於)聚乙烯吡咯啶酮、聚乙二醇、聚乙酸 乙婦_ (PVA)、聚乙稀醇、聚丙晞酸、聚氧化乙烯、聚乙 稀醇縮丁搭(PVB);二乙二醇、丙二醇、2_乙基㈣琳。 參考二極體墨水實施例6,二極體(丨00_丨〇〇L )之液體 懸浮液可進一步包含黏著黏度調節劑,即具有另外黏著特 性之任何上述黏度調節劑。該黏著黏度調節劑在製造(例 如印刷)裝置(300、300A、300B、3〇〇C、300D、700、700A、 700B、720、730、740、75〇、760、77〇 )期間使二極體 (1 00-1 00L )黏著至第一導體(例如3丨〇A )或黏著至基底 305、305A,接著進一步提供將二極體(1〇〇_1〇〇L)固持於 裝置(300、300A、300B、300C、300D、700、700A、700B、 720、73 0 ' 740 ' 750、760、770)中之適當位置上的基礎 結構(例如聚合物)(當乾燥或固化時)。在提供該黏著的 同時,該黏度調節劑亦應具有某種使二極體(丨〇〇_丨〇〇L )之S 85 201226479 The diode ink for the fast-drying printing of the substrate 105 may have a viscosity of about 1, centipoise (cps) to 1 〇, 〇〇〇cps at room temperature, or at room temperature. More particularly having a viscosity of from about 1,5 centipoise (cps) to 4,000 cps, or more particularly to a viscosity of about 17 centipoise (cps) to 3 cy under fox, or at room temperature More particularly, it has a viscosity of about centipoise (cps) to 2,2 〇〇 cps. For example, the diode 1 〇〇.1〇〇L has a _ substrate for the diode printing ink for dry printing. Having a viscosity of from about 1,0 0 centipoise (cps) to 10,000 cps at room temperature, or more particularly from about 2,000 centipoise (cps) to 6, cpps at room temperature, or At room temperature: it may have a viscosity of from about 2,500 centipoise (cps) to 4,5 〇〇 cps, or more particularly at room temperature of about 2, centipoise (cps) to 4, 〇 〇s viscosity. The viscosity can be measured in the same manner. For comparison purposes, the various viscosity ranges described and/or claimed herein are based on a Vickers viscometer (Βγ〇〇ι^μ v akisaki r) (available from Br〇〇kfieM^. Her heart Mlddleb〇r 〇Massachusetts, USA) The frying stress of about 200 Pa (or more generally j 190 Pa to 21Q) is about 25 in the water jacket. (: Next, let month = SC4_27 be measured at about 1G willow (or more generally 1 rpm to 3G rpm, A for, for example, but not limited to, refrigerated fluid) t speed. One or more increments may be used. Thickener (as a viscosity modifier), such as (but not: 艮): clay, such as hectorite clay, bentonite clay, organically modified clay; 耱 and more listen, such as guer kick, Sanxian gum; fiber And modified fiber, quasi-prime 'such as hydroxymethyl cellulose, thiol cellulose, ethyl cellulose, propyl methyl cellulose, methoxy cellulose, methoxymethyl cellulose 'A 86 201226479 Oxypropyl propyl cellulose, propyl _ 巧 τ τ 纤维素 cellulose, carboxymethyl cellulose, light ethyl cellulose, ethyl 荈 r its total 丞赳 ethyl cellulose, cellulose ether, fiber Polyether, polyglucamine; polymers, such as acrylate and (meth)acrylic polymers and copolymers; = alcohols, such as ethylene glycol, diethylene glycol, polyethylene glycol, a #-- Alcohol, glycol, diol, acetic acid vinegar; smoke-like dioxide dream (such as CabGsil), dioxy-cut powder; , such as B 420 (can be used from Βγκ Chemie; u μ. Other viscosity modifiers can be used, as well as the addition of particles to control the viscosity, as in the patent application publication No. 2 2/3/〇〇9ι647 of Lewis et al. Also, other viscosity modifiers discussed in the T-referenced dielectric ink include, but are not limited to, polyvinylpyrrolidone, polyethylene glycol, polyacetate (PVA), polyethylene glycol, Polypropionic acid, polyethylene oxide, polyvinyl condensate (PVB); diethylene glycol, propylene glycol, 2-ethyl (tetra) lin. Reference diode ink example 6, diode (丨00_丨The liquid suspension of 〇〇L) may further comprise an adhesive viscosity modifier, that is, any of the above-mentioned viscosity modifiers having additional adhesive properties. The adhesive viscosity modifier is used in manufacturing (eg, printing) devices (300, 300A, 300B, 3〇〇). During the C, 300D, 700, 700A, 700B, 720, 730, 740, 75〇, 760, 77〇), the diode (1 00-1 00L ) is adhered to the first conductor (eg 3丨〇A) or adhered To the substrate 305, 305A, and then further to provide the diode (1〇〇_1〇〇L) in the device Infrastructure (eg, polymer) at appropriate locations (300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 73 0 '740 '750, 760, 770) (when dry or cured) The viscosity modifier should also have some kind of diode (丨〇〇_丨〇〇L) while providing the adhesion.

S 87 201226479 接點(諸如端子125及/或127 )抗濕潤的能力。該等黏著、 黏度以及抗濕潤特性為在各個例示性具體實例中使用甲基 纖維素、甲氧基丙基曱基纖維素或羥丙基曱基纖維素樹脂 的原因之一。亦可憑經驗選擇其他適合之黏度調節劑。 黏度調節劑或黏著黏度調節劑之其他特性亦適用且處 於本發明範疇内。首先,該黏度調節劑應防止懸浮之二極 體(100-100L)在所選溫度下沈澱出來。其次,該黏度調節 劑應有助於在製造裝置(300、30〇A、3〇〇b、3〇〇c、3〇〇D、 700、700A、700B、720、730、740、750、76〇、77〇)期間 以均一方式定向二極體(100_1〇〇L )及印刷二極體 (100-1 00L )。第二’在一些具體實例中,黏度調節劑亦應用 以在印刷製程期間緩衝或以其他方式保護二極體 (100-1 00L),而在其他具體實例中,另外添加惰性粒子(諸 如玻璃珠粒)用以在印刷製程期間保護二極體i〇〇i〇〇l(下 文所論述之二極體墨水實施例1 7 _ 1 9 )。 參考二極體墨水實施例3、4及8,二極體(1〇〇_1〇〇1〇 之液體懸浮液可進-步包含第二溶劑(實施例8)《溶劑化 齊J (只施例3)或濕潤溶劑(實施例4 ),其中多個實施例 更詳細料於下”。錢續器件製造期間纟印刷二極體 墨水且二極體墨水乾燥之後,選擇該(第一或第二)溶劑 作為濕潤冑(等效地為溶劑化劑)或再濕潤劑以有助於第 :導體(例如310A,其可包含導電聚合物,諸如銀墨水、 炭墨水或銀墨水與石反墨水之混合物)與二極體⑽_剛1(經 由基板105、貝穿導孔結構(131 '⑴、134)及/或第二侧 88 201226479 (背面)金屬層122,如圖83中所說明)之間的歐姆接觸, 諸如非極性樹月a洛劑,包括亦例如(但不限於)一或多種 二元酯。舉例而言,當在第一導體31〇上印刷二極體墨水 時,濕潤劑或溶劑化劑部分溶解第一導體31〇;隨著濕潤劑 或溶劑化劑隨後消1,第31…更化且與二極體 (100-100L)形成接觸。 二極體(100-100L)液體或膠體懸浮液之其餘部分一趣 為另一第三溶劑,諸如去離子水,且本文對百分比之任充 描述可饭疋一極體(10〇_1〇〇L)液體或膠體懸浮液之其餘部 分為該第三溶劑(諸如水).,且所有所述之百分比皆以重量 體積或某種其他量度計。亦應注意,各種二極體 夕加卜 八生大軋%衩中混合,而無需任何特定 二氣組成或其他所含或過濾之環境。 ^可基於溶劑之極性選擇溶#卜在—例示性具體實例 於二醇)可選為極性或親水性溶劑以有助 -OB .to 730 〇〇A'3〇〇B'3〇〇C' 及其他導體(Μ 75^76G、77G期間:極體(⑽-1帆) 節劑中n力°31G) ’同時伴隨能夠溶於黏度調 a中或溶解黏度調節劑。 例示性二極體墨水 對於此例示性具體^ 3用特性由實施例7說明。 可為不透明沾 一極體墨水在印刷期間在濕潤時 以有助於各種印刷製寇,!士斜t咏 當乾燥或固化時,m π ^ 4如對齊。然而, 具實質上井與 〇、s έ化之二極體墨水在所選波長下 子透射性或另外為透明的,諸如以實質上不干S 87 201226479 The ability of joints (such as terminals 125 and / or 127) to resist moisture. These adhesion, viscosity and moisture resistance characteristics are one of the reasons for using methyl cellulose, methoxypropyl decyl cellulose or hydroxypropyl fluorenyl cellulose resin in each of the exemplary embodiments. Other suitable viscosity modifiers can also be selected based on experience. Other characteristics of the viscosity modifier or adhesion viscosity modifier are also suitable and within the scope of the invention. First, the viscosity modifier should prevent the suspended diode (100-100L) from precipitating at the selected temperature. Secondly, the viscosity modifier should contribute to the manufacturing equipment (300, 30〇A, 3〇〇b, 3〇〇c, 3〇〇D, 700, 700A, 700B, 720, 730, 740, 750, 76). During the period of 〇, 77〇), the diode (100_1〇〇L) and the printed diode (100-1 00L) are oriented in a uniform manner. Second 'In some embodiments, the viscosity modifier is also applied to buffer or otherwise protect the diode (100-1 00L) during the printing process, while in other embodiments, additional inert particles (such as glass beads) are additionally added. The particles are used to protect the diodes during the printing process (diode ink embodiment 1 7 _ 1 9 discussed below). Referring to the two-electrode inks of Examples 3, 4 and 8, the liquid suspension of the diode (1〇〇_1〇〇1〇 may further comprise a second solvent (Example 8). Example 3) or a wetting solvent (Example 4), wherein a plurality of embodiments are more detailed below." After printing the diode ink and drying the diode ink during the manufacturing of the device, the first or a second) solvent as a wet hydrazine (equivalently a solvating agent) or a humectant to aid in the :: conductor (eg 310A, which may comprise a conductive polymer such as silver ink, carbon ink or silver ink and stone counter a mixture of inks) and a diode (10)_just 1 (via substrate 105, a via-through via structure (131 '(1), 134) and/or a second side 88 201226479 (back) metal layer 122, as illustrated in FIG. An ohmic contact between, such as a non-polar tree, includes, but is not limited to, one or more dibasic esters. For example, when printing a diode ink on the first conductor 31, The humectant or solvating agent partially dissolves the first conductor 31; as the humectant or solvating agent subsequently disappears, the 31st Refined and in contact with the diode (100-100L). The remainder of the diode (100-100L) liquid or colloidal suspension is interesting to another third solvent, such as deionized water, and the percentage is The remainder of the liquid or colloidal suspension of the rice cooker (10〇_1〇〇L) is the third solvent (such as water), and all of the percentages are by weight or some kind Other metrics. It should also be noted that various diodes are mixed in the 衩 八 八 , , , without any specific two gas composition or other contained or filtered environment. ^ Can be selected based on the polarity of the solvent Illustrative specific examples in diols may be selected as polar or hydrophilic solvents to aid -OB.to 730 〇〇A'3〇〇B'3〇〇C' and other conductors (Μ 75^76G, 77G period: The polar body ((10)-1 sail) n-force °31G) in the nodal can be dissolved in the viscosity adjustment a or dissolved viscosity modifier. Exemplary diode ink for this exemplary specific characteristics 7 Description. Can be used for opaque dip inks during the printing process to help each Printing 寇, 士 oblique t咏 When drying or curing, m π ^ 4 as aligned. However, a substantially well and 〇, s bismuth diode ink is transmissive at selected wavelengths or otherwise transparent Such as not actually doing

S 89 201226479 擾由二極體(l〇〇_1〇〇L)產生之可見光發射。然而,在其他 例不性具體實例中,二極體墨水亦可具實質上光學透射性 或為透明的。 另一特性化例示性二極體墨水之方式基於二極體 (100-100L )之尺寸,如實施例9所說明,其中二極體 100-100L之任何尺寸一般小於約45〇微米,且其任何尺寸 ,尤其小於約200微求’且其任何尺寸更尤其小於約刚 微米’且其任何尺寸更尤其小於5〇微米,且其任何尺寸更 尤其小於3G微米。在所說明之例示性具體實例中,二極體 100-100L之寬度一般大致為約1〇微米至5〇微米,或寬度 更尤其為約20微米至30微米,且高度為約5微米至25 : 米’或直徑為約25微米至28微米(側面對側面而非頂點 對頂點量測),且高度為8微米至丨5微米或高度為9微米 至12微米。在—些例示性具體實例中,二極體U)0-100L 不包括形成凸塊或突出結構之金屬層12〇β在内的高度(亦 即’包括GaN異質結構之側自⑶之高度)大致為約5微 米至15微米’或更尤其為7微米至12微米,或更 微米至U微米,或更尤其為9微米至1〇微米,或更尤、其卜 於^微來至30微来’而形成凸塊或突出結構之金屬層咖 之南度一般大致為約3微米至7微米。 在其他例示性具體實例中,二極體(例如祖)不包 括形成凸塊或突出結構之金屬層12〇B及背面金屠在内 之高度(亦即,包括GaN異質結構之側面121之高度)大 致為約小於約10微米,或更尤其小於約8微米,或更尤其 90 201226479 為約2微米至6微米,或更尤其為約3微米至5微米,或 更尤其為約4.5微米,而形成凸塊或突出結構之金屬層12〇b 之高度一般大致為約3微米至7微米,或更尤其大致為約5 微米至7微米,而二極體i 0〇l之總高度大致為約小於約i 5 微米’或更尤其小於約12微米,或更尤其為約9微米至丄1 微米,或更尤其為約10微米至η微米’或更尤其為約1().5 微米。 在其他例杀性具體實例中,二極體(例如1 〇〇κ )不包 括形成凸塊或突出結構之金屬層12〇Β及背面金屬122在内 之南度(亦即,包括GaN異質結構之側面121之高度)大 致為約小於約1 〇微米,或更尤其小於約8微米,或更尤其 為約2微米至6微米,或更尤其為約2微米至4微米,或 更尤其為約3 ·0微米’而形成凸塊或突出結構之金屬層丨2〇B 及背面金屬122之高度一般大致為約3微米至7微米,或 更尤其大致為約4微米至6微米,或更尤其為約5微米, 而二極體100K之總向度大致為約小於約1 5微米,或更尤 其小於約14微米’或更尤其為約12微米至14微米,或更 尤其為約1 3微米。在其他例示性具體實例中,在不包括形 成凸塊或突出結構之背面金屬122之高度但包括金屬層 120B之高度下二極體ιοοκ之高度大致為約5微米至1〇微 米。 二極體墨水亦可由其電學特性特性化’如實施例1〇中 所說明。在此例示性具體實例中,二極體(1〇〇_1〇〇L)懸浮 於至少一種實質上非絕、緣的載劑或溶劑中,肖例如絕緣黏S 89 201226479 Disturbs the visible light emission produced by the diode (l〇〇_1〇〇L). However, in other exemplary embodiments, the diode ink may also be substantially optically transmissive or transparent. Another way to characterize an exemplary diode ink is based on the dimensions of a diode (100-100 L), as illustrated in Example 9, wherein any dimension of the diode 100-100L is generally less than about 45 microns and its Any size, especially less than about 200 micro", and any of its dimensions are more particularly less than about just a micron' and any of its dimensions are more particularly less than 5 microns, and any size thereof is more particularly less than 3G microns. In the illustrated exemplary embodiment, the width of the diode 100-100L is generally from about 1 micron to 5 microns, or more specifically from about 20 to 30 microns, and the height is from about 5 microns to 25 : meters' or diameters are from about 25 microns to 28 microns (side to side rather than apex versus apex) and heights from 8 microns to 丨 5 microns or heights from 9 microns to 12 microns. In some exemplary embodiments, the diode U) 0-100L does not include the height of the metal layer 12 〇β forming the bump or the protruding structure (ie, the height from the side of the GaN heterostructure from (3)) Roughly from about 5 microns to 15 microns' or more particularly from 7 microns to 12 microns, or more microns to U microns, or more particularly from 9 microns to 1 inch, or more preferably from less than 30 microns. The south of the metal layer forming the bump or protruding structure is generally about 3 microns to 7 microns. In other exemplary embodiments, the diode (eg, ancestor) does not include the height of the metal layer 12〇B and the back gold bump forming the bump or protruding structure (ie, the height of the side 121 including the GaN heterostructure) ) is generally less than about 10 microns, or more specifically less than about 8 microns, or more particularly 90 201226479 is from about 2 microns to 6 microns, or more specifically from about 3 microns to 5 microns, or more specifically about 4.5 microns, and The height of the metal layer 12〇b forming the bump or protruding structure is generally from about 3 microns to 7 microns, or more particularly about 5 microns to 7 microns, and the total height of the diodes i 0〇l is approximately Less than about i5 microns' or more particularly less than about 12 microns, or more specifically from about 9 microns to about 1 micron, or more specifically from about 10 microns to n microns or more particularly about 1 (.) 5 microns. In other exemplary embodiments, the diode (eg, 1 〇〇κ) does not include the south of the metal layer 12〇Β and the back metal 122 that form the bump or protrusion structure (ie, includes the GaN heterostructure). The height of the side 121 is substantially less than about 1 〇 micrometer, or more specifically less than about 8 micrometers, or more specifically about 2 micrometers to 6 micrometers, or more specifically about 2 micrometers to 4 micrometers, or more particularly about The height of the metal layer 丨2〇B and the back metal 122 forming the bump or protruding structure is generally about 3 to 7 micrometers, or more particularly about 4 to 6 micrometers, or more particularly About 5 microns, and the total orientation of the diode 100K is approximately less than about 15 microns, or more specifically less than about 14 microns or more specifically from about 12 microns to 14 microns, or more specifically about 13 microns. . In other exemplary embodiments, the height of the diode ιοοκ is approximately 5 microns to 1 micrometer at a height that does not include the height of the backside metal 122 forming the bump or protruding structure but including the metal layer 120B. The diode ink can also be characterized by its electrical characteristics as described in Example 1A. In this exemplary embodiment, the diode (1〇〇_1〇〇L) is suspended in at least one substantially non-extremely borne carrier or solvent, such as an insulating paste.

S 91 201226479 合劑形成對比。 物可由其表面特性特性化,如實施例工&quot; 觸。在此例示性具體實例中,二極體墨水之抗濕則 2於25度,或大於40度,視例如用於量測之基相 面能(諸如34達因至42達因)而定。 一極體墨水實施例1 2 : 包含以下之組成物: 複數個二極體1〇〇-10〇乙; 第溶劑,其包含約5%至5〇%之正丙醇、松香醇或二 乙-醇 '乙醇、四氫糠醇及/或環己醇,或其混合物; 黏度調節劑,其包含約〇.75%至5〇%之甲氧基丙基甲 ^纖維素樹脂或㈣基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂,或其混合物; 第二溶劑(或再濕潤劑), 性樹脂溶劑,諸如二元酯;及 其餘部分包含第三溶劑, 一極體墨水實施例13 : 其包含約0.5°/〇至1〇%之非極 諸如水。 包含以下之組成物: 複數個二極體l〇〇_1〇〇L; 第一溶劑’其包含約.15%至術。之正丙醇、松香醇或 -乙二醇、乙醇、四氫糠醇及/或環己醇,或其混合物; 黏度調節劑,其包含約至2.5%之甲氧基丙基曱 基纖維素樹脂或經丙基甲基纖維素樹脂或其他纖維素 基纖維素樹脂,或其混合物; 92 201226479 * 第—’合劑(或再濕潤劑),其包含約0.5%至10%之非極 性樹脂溶劑,諸如二元酯;及 其餘部分包含第三溶劑,諸如水。 二極體墨水實施例14 : 包含以下之缸成物: 複數個二極體100-100L ; 第-溶劑,其包含約17.5%至22 5%之正丙醇、松香醇 或二乙二醇、乙醇、四氣糖醇及/或環己醇,或其混合物; 黏度調節劑,其包含約1&gt;5%至2 25%之曱氧基丙基甲 基纖維素樹脂或經丙基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂,或其混合物; 第二溶劑(或再濕潤劑),其包含約〇 〇%至6 〇%之至 少一種二元酯;及 线部分包含第三溶劑,諸如水,其中該組成物在2 5 〇〇 下之黏度只夤上為約5,000 cps至約2〇,〇〇〇 —。 二極體墨水實施例1 5 : 包含以下之組成物: 複數個二極體100-100L ; 第一溶劑,其包含約20%至4〇%之正丙醇、松香醇或 二乙二醇、乙醇、四氫糠醇及/或環己醇,或其混合物; 黏度調節劑’其包含約&quot;作至(75%之甲氧基丙基甲 基纖維素樹脂或經丙基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂,或其混合物; 第二溶劑(或再濕潤劑),其包含約0%至6.0%之至少S 91 201226479 The mixture is in contrast. The object can be characterized by its surface properties, as in the example of the work. In this illustrative embodiment, the diode ink is resistant to moisture at 25 degrees, or greater than 40 degrees, depending, for example, on the measured base energy (e.g., 34 dynes to 42 dynes). One-electrode ink Example 1 2: comprising the following composition: a plurality of diodes 1〇〇-10〇B; a solvent comprising about 5% to 5% by weight of n-propanol, rosinol or diethyl An alcohol 'ethanol, tetrahydrofurfuryl alcohol and/or cyclohexanol, or a mixture thereof; a viscosity modifier comprising from about 75% to about 5% methoxypropylcellulose resin or (tetra)methyl group a cellulose resin or other cellulose or methyl cellulose resin, or a mixture thereof; a second solvent (or rewetting agent), a resin solvent such as a dibasic ester; and the remainder comprising a third solvent, a polar ink implementation Example 13: It contains about 0.5 ° / 〇 to 1 〇 % of a non-polar such as water. The following composition is included: a plurality of diodes l〇〇_1〇〇L; a first solvent 'which contains about .15% to surgery. a n-propanol, rosin or -ethylene glycol, ethanol, tetrahydrofurfuryl alcohol and / or cyclohexanol, or a mixture thereof; a viscosity modifier comprising from about 2.5% of methoxypropyl decyl cellulose resin Or a propylmethylcellulose resin or other cellulose-based cellulose resin, or a mixture thereof; 92 201226479 * a first-component (or rewetting agent) comprising from about 0.5% to 10% of a non-polar resin solvent, Such as a dibasic ester; and the remainder comprises a third solvent, such as water. Diode Ink Example 14: A cylinder comprising: a plurality of diodes 100-100 L; a first solvent comprising from about 17.5% to 225% n-propanol, rosin or diethylene glycol, Ethanol, tetraxitol and/or cyclohexanol, or a mixture thereof; a viscosity modifier comprising from about 1% to about 25% decyl propylmethylcellulose resin or propylmethylcellulose Or a cellulose or methylcellulose resin, or a mixture thereof; a second solvent (or rewetting agent) comprising from about 〇〇% to 6% by weight of at least one dibasic ester; and a line portion comprising a third A solvent, such as water, wherein the composition has a viscosity of only about 5,000 cps to about 2 Torr at 25 Torr. Diode Ink Example 1 5: A composition comprising: a plurality of diodes 100-100 L; a first solvent comprising from about 20% to about 4% n-propanol, rosin or diethylene glycol, Ethanol, tetrahydrofurfuryl alcohol and/or cyclohexanol, or a mixture thereof; viscosity modifier 'which contains about 7% of methoxypropylmethylcellulose resin or propylmethylcellulose resin Or other cellulose or methylcellulose resin, or a mixture thereof; a second solvent (or rewetting agent) comprising at least about 0% to 6.0%

S 93 201226479 #二元酯;及 其餘部分包含第三溶劑,諸如水,其中該組成物在2 5 °C 卞之黏度實質上為約i,000 CPS至約5,000 cps。 二極體墨水實施例16 : 包含以下之組成物: 複數個二極體100-1OOL ’其直徑(寬度及/或長度)為 約1 0微米至5 0微米且南度為5微米至2 5微米; 溶劑;及 黏度調節劑。 二極體墨水實施例1 7 : 包含以下之組成物: 複數個二極體100-100L ; 溶劑; 黏度調節劑;及 至少一種機械穩定劑或間隔劑。 二極體墨水實施例1 8 : 包含以下之組成物: 複數個二極體100_100L,其直徑(寬度及/或長度)為 約10微米至50微米且高度為5微米至25微米; 溶劑; 黏度調卽劑;及 複數個惰性粒子,苴尺+餘m &amp; &amp; ,、尺卞乾圍為約10微米至50微米。 二極體墨水實施例1 9 : 包含以下之組成物: 94 201226479 複數個二極體l〇〇-l〇OL,1吉 具直役(寬度及/或長度)為 約2〇微米至30微米且高度為約9微米至15微米; 溶劑; &gt; ” 黏度調節劑;及 複數個實質上光學透明且化學 1化予惰性的粒子,其尺寸範 圍為約1 5微米至約25微米。 二極體墨水實施例2 0 : 包含以下之組成物: 複數個二極體l〇0_10〇L,盆首 -直徑(寬度及/或長度)為 約1〇微米至50微米且高度為5微米至乃微米; 第一溶劑,其包含醇; 苐一》谷劑’其包含二醇; 黏度調節劑,其包含約〇.1〇%至25%之甲氧基丙基甲 基纖維素樹脂或經丙基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂’或其混合物;及 複數個實質上光學透明且化學惰性的粒子,其尺寸範 圍為約1 0微米至約50微米。 &amp; 一極體墨水貫施例2 1 : 包含以下之組成物: 複數個二極體100-100L,盆if官痒B 口 /、直k c寬度及/或長度)為 約10微米至50微米且高度為5微米至25微米; 至少第一溶劑與不同於第一溶劑之第二溶劑的混人 物,其包含約15%至99.99%之至少兩種選自由以下組成之 群之溶劑:正丙醇、異丙醇、二丙二醇、__S 93 201226479 #二元酯; and the remainder comprises a third solvent, such as water, wherein the composition has a viscosity at 25 ° C of substantially from about i,000 CPS to about 5,000 cps. Diode Ink Example 16: A composition comprising: a plurality of diodes 100-1OOL 'having a diameter (width and/or length) of from about 10 microns to 50 microns and a south degree of from 5 microns to 2 5 Micron; solvent; and viscosity modifier. Diode Ink Example 1 7 : A composition comprising: a plurality of diodes 100-100 L; a solvent; a viscosity modifier; and at least one mechanical stabilizer or spacer. Diode Ink Example 1 8 : A composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; solvent; viscosity The sputum agent; and a plurality of inert particles, 苴 + + y m &amp;&, 卞 卞 dry circumference is about 10 microns to 50 microns. Diode Ink Example 1 9 : Contains the following composition: 94 201226479 Multiple diodes l〇〇-l〇OL, 1 girders direct (width and / or length) of about 2 〇 to 30 microns And a height of from about 9 microns to 15 microns; a solvent; &gt; "viscosity modifier; and a plurality of substantially optically transparent and chemically inert particles having a size ranging from about 15 microns to about 25 microns. Body Ink Example 2 0 : The following composition is included: a plurality of diodes 10〇10_10〇L, and a head-diameter (width and/or length) of about 1 μm to 50 μm and a height of 5 μm to a first solvent comprising an alcohol; a gluten-containing diol comprising a diol; a viscosity modifier comprising from about 0.1% to about 25% methoxypropylmethylcellulose resin or a C a methylcellulose-based resin or other cellulose or methylcellulose resin' or mixtures thereof; and a plurality of substantially optically transparent and chemically inert particles having a size ranging from about 10 microns to about 50 microns. Polar Ink Embodiment 2 1 : Contains the following composition: a plurality of diodes 100-100L, potted itch B, / straight kc width and / or length) is about 10 microns to 50 microns and height 5 microns to 25 microns; at least a first solvent and a second solvent different from the first solvent a mixed person comprising at least two solvents selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, __ from about 15% to 99.99%

Hf· — 〇 一醇、丙二Hf· — 〇 one alcohol, two

S 95 201226479 乙醇、四氫糠醇、環己醇 醇、1-曱氧基-2-丙醇、正辛醇 及其混合物;及 黏度調節劑,其包含約〇.10%至2 5%之甲氧基丙基甲 基纖維素樹脂或經丙基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂,或其混合物。 二極體墨水實施例22 : 包含以下之組成物: 複數個二極體100-100L,其直徑(寬度及/或長度)為 約1 〇彳政米至5 0微米且高度為5微米至2 5微米; 至少第一溶劑與不同於第一溶劑之第二溶劑的混合 物,其包含約15%至99.99%之至少兩種選自由以下組成: 群之溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙一 醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇 及其混合物; 黏度調節劑,其包含約〇.1〇〇/。至2.5%之曱氧基丙基甲 基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂,或其混合物; 約0.01 %至2.5 %之複數個實質上光學透明且化學惰性 的粒子’其尺寸範圍為約1 〇微米至約5 〇微米。 二極體墨水實施例23 包含以下之組成物: 複數個二極體100-100L,其直徑(寬度及/或長度)為 約10微米至50微米且高度為5微米至25微米; 至少第一溶劑與不同於第一溶劑之第二溶劑的混八 96 201226479 物,其包含約15%至50,0%之至少兩種選自由以下組成之群 之溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、 甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇及其 混合物; 黏度調節劑,其包含約丨.0%至2.5%之甲氧基丙基甲基 纖維素樹脂或羥丙基曱基纖維素樹脂或其他纖維素或甲基 纖維素樹脂,或其混合物; 約0.01%至2.5%之複數個實質上光學透明且化學惰性 的粒子,其尺寸範圍為約1〇微米至約5〇微米;及 其餘部分包含第三溶劑,諸如水。 一極體墨水貫施例2 4 : 包含以下之組成物: 複數個二極體l〇0_100L,其直徑(寬度及/或長度)為 約10微米至50微米且高度為5微米至25微米; 第一溶劑,其包含、約15%至4〇%之選自由以下組成之 群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二 醇、1-曱氧基_2·丙醇、正辛醇、乙醇、四氫糠醇、環己醇 及其混合物; 第二溶劑,其不同於第一溶劑且包含約2%至10%之選 自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、 二乙二醇、丙二醇、&quot;氧基_2_丙醇、正辛醇、乙醇、四 氫糠醇、環己醇及其混合物; 第三溶劑,其不同於第一溶劑及第二溶劑且包含約 0·01%至2.5%之選自由以下組成之群的溶劑:正丙醇、異内 97 201226479 醇一丙一醇、二乙二醇、丙二醇、卜曱氧基丙醇、正 辛醇、乙酵、四氫糠醇、環己醇及其混合物; 黏度調節劑,其包含約i.oo/ο至2 5%之曱氧基丙基曱基 .截維素祕脂或羥丙基曱基纖維素樹脂或其他纖維素或曱基 纖維素樹脂,或其混合物;及 其餘部分包含第三溶劑,諸如水。 二極體墨水實施例25 : 包含以下之組成物: 複數個二極體1〇〇_1〇〇L,其直捏(寬度及/或長度)為 約10微米至50微米且咼度為5微米至25微米; 第一溶劑,其包含約15❶/。至30%之選自由以下組成之 群的溶劑:正内醇' 異丙醇、二丙二醇、〔乙二醇、丙二 ^ Y氧基2~丙每' 正辛酵、乙醇、四氫糠醇、環己醇 及其混合物; 第二溶劑,其不同於第-溶劑且包含約3%至8%之選 自由以下組成之群的溶劑:正丙醇、異丙醇、i丙二醇、 :乙二醇、丙二醇、卜甲氧基_2_丙醇、正辛醇、乙醇、四 氫糠醇、環己醇及其混合物; 第三溶劑,其不同於第一溶劑及第二溶劑且包含約 0.01%至2.5%之選自由以下組成之群的溶劑:正丙醇、里丙 醇、二丙二醇、二乙二醇、丙二醇、r甲氧基_2•丙醇、正 辛醇、乙醇、四氫糠醇、環己醇及其混合物; 黏度調節劑,其包含約i.25%i 2 5%之甲氧基丙基甲 基纖維素樹脂錢丙基甲基纖維素樹脂或其他纖維素或甲 98 201226479 ·. 基纖維素樹脂,或其混合物; 約0.01%至2.5%之複數個實質上光學透明且化學惰性 的粒子,其尺寸範圍為約丨〇微米至約5〇微米;及 其餘部分包含第三溶劑,諸如水。 一極體墨水貫施例2 6 : 包含以下之組成物: 複數個二極體100_100L,其直徑(寬度及/或長度)為 約1 0微米至5 0微米且高度為5微米至2 5微米; 第一溶劑,其包含約40%至60%之選自由以下組成之 群的溶劑:正丙醇、異丙醇、二丙二醇、二乙二醇、丙二 醇、1-甲氧基-2-丙醇、正辛醇、乙醇、四氫糠醇、環己醇 及其混合物; 第二溶劑,其不同於第一溶劑且包含約40。/。至60%之 選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、 二乙二醇、丙二醇、丨·甲氧基_2_丙醇、正辛醇、乙醇、四 氫糠醇、環己醇及其混合物;及 黏度調節劑,其包含約〇 1〇%至丨25〇/〇之曱氧基丙基曱 基纖維素樹脂或羥丙基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂’或其混合物。 二極體墨水實施例27 : 包含以下之組成物: 禝數個二極體10(M〇〇L,其直徑(寬度及/或長度)為 、,’勺1 0微米至50微米且高度為5微米至25微米; 第一溶劑,其包含約4〇%至6〇%之選自由以下組成之S 95 201226479 ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, 1-decyloxy-2-propanol, n-octanol and mixtures thereof; and a viscosity modifier comprising from about 10% to about 25% An oxypropyl methylcellulose resin or a propylmethylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof. Diode Ink Example 22: A composition comprising: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 1 Torr to 50 microns and a height of 5 microns to 2 5 micrometers; at least a mixture of a first solvent and a second solvent different from the first solvent, comprising at least about 15% to 99.99% of at least two selected from the group consisting of: a solvent of the group: n-propanol, isopropanol, two Propylene glycol, diethylene glycol, propanol, 1-methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising about 〇.1〇 〇/. Up to 2.5% of methoxypropyl methylcellulose resin or hydroxypropyl methylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof; from about 0.01% to 2.5% of a plurality of substantially optical Transparent and chemically inert particles have a size ranging from about 1 〇 micron to about 5 〇 microns. Diode Ink Example 23 comprises the following composition: a plurality of diodes 100-100L having a diameter (width and/or length) of from about 10 microns to 50 microns and a height of from 5 microns to 25 microns; at least first a mixture of a solvent and a second solvent different from the first solvent, which comprises from about 15% to about 50%, at least two solvents selected from the group consisting of n-propanol, isopropanol, and Propylene glycol, diethylene glycol, propylene glycol, methoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; viscosity modifier comprising from about 0.1% to about 2.5% Methoxypropylmethylcellulose resin or hydroxypropyl fluorenyl cellulose resin or other cellulose or methylcellulose resin, or mixtures thereof; from about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert The particles range in size from about 1 micron to about 5 microns; and the remainder comprise a third solvent, such as water. A polar ink embodiment 2 4: comprising the following composition: a plurality of diodes l〇0_100L having a diameter (width and / or length) of about 10 microns to 50 microns and a height of 5 microns to 25 microns; a first solvent comprising, about 15% to 4% by weight of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-decyloxy_2. a propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a second solvent different from the first solvent and comprising from about 2% to 10% of a solvent selected from the group consisting of: n-propyl Alcohol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, &quot;oxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol and mixtures thereof; third solvent, which is different from The first solvent and the second solvent and comprise from about 0.01% to 2.5% of a solvent selected from the group consisting of n-propanol, iso-in 97 201226479 alcohol-propanol, diethylene glycol, propylene glycol, dike Oxypropanol, n-octanol, ethyl yeast, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising about i.oo /ο至2 5% of methoxypropyl fluorenyl. Travisor or hydroxypropyl fluorenyl cellulose resin or other cellulose or fluorenyl cellulose resin, or a mixture thereof; and the remainder comprising the third A solvent such as water. Diode Ink Example 25: A composition comprising: a plurality of diodes 1〇〇_1〇〇L having a straight pinch (width and/or length) of from about 10 microns to 50 microns and a twist of 5 Micron to 25 microns; a first solvent comprising about 15 Å/. Up to 30% of a solvent selected from the group consisting of: n-alcohol's isopropanol, dipropylene glycol, [ethylene glycol, propylene glycol, 2, propylene, per-acid, ethanol, tetrahydrofurfuryl alcohol, Cyclohexanol and mixtures thereof; a second solvent which differs from the first solvent and comprises from about 3% to 8% of a solvent selected from the group consisting of n-propanol, isopropanol, i-propylene glycol, ethylene glycol , propylene glycol, bromo-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a third solvent different from the first solvent and the second solvent and comprising about 0.01% to 2.5% of a solvent selected from the group consisting of n-propanol, propylene glycol, dipropylene glycol, diethylene glycol, propylene glycol, rmethoxy-2-propanol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, Cyclohexanol and mixtures thereof; viscosity modifier comprising about i.25% i 2 5% of methoxypropyl methylcellulose resin propyl propyl methylcellulose resin or other cellulose or A 98 201226479 a cellulose-based resin, or a mixture thereof; from about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert particles, the size thereof Circumference about Shu square microns to about 5〇 microns; and the balance comprising a third solvent, such as water. A polar ink embodiment 2 6 : comprising the following composition: a plurality of diodes 100_100L having a diameter (width and/or length) of about 10 μm to 50 μm and a height of 5 μm to 25 μm a first solvent comprising from about 40% to 60% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propane Alcohol, n-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a second solvent that is different from the first solvent and contains about 40. /. Up to 60% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, ruthenium methoxy-2-propanol, n-octanol, ethanol, tetrahydrogen a sterol, a cyclohexanol, and a mixture thereof; and a viscosity modifier comprising from about 1% to about 25 Å/〇 of a methoxypropyl fluorenyl cellulose resin or a hydroxypropyl methylcellulose resin or other fiber Or methylcellulose resin' or a mixture thereof. Diode Ink Example 27: A composition comprising: a plurality of diodes 10 (M〇〇L, diameter (width and/or length), , 'spoon 10 μm to 50 μm and height 5 microns to 25 microns; a first solvent comprising from about 4% to about 6% selected from the group consisting of

S 99 201226479 群的溶劑:正丙醇、 醇、1-曱氧基-2-丙醇 其混合物; 異丙醇、二丙二醇、二乙二醇、丙二 、1 -辛醇、乙醇、四氫糠醇、環己醇及 第一 /合劑’其不同於第一溶劑且包含約40%至60%之 選自由以下組成之群的溶劑:正丙醇、異丙醇、二丙二醇、 二乙二醇、丙二醇、丨-甲氧基-2-丙醇、1-辛醇、乙醇、四氫 糠醇、環己醇及其混合物; 黏度調節劑,其包含約0.10%至1.25%之曱氧基丙基曱 基纖維素樹脂或㈣基甲基纖維素樹脂或其他纖維素或甲 基纖維素樹脂,或其混合物;及 約0.01%至2.5%之複數個實質上光學透明且化學惰性 的粒子’其尺寸範圍為約10微米至5 0微米。 參考二極體墨水實施例丨2_27,在一例示性具體實例 中,作為第一溶劑之另一醇,即正丙醇(「NpA」)(及/或正 辛醇(例如1-辛醇(或各種二級或三級辛醇異構體中之任 一者)、1-甲氧基-2-丙醇、松香醇、二乙二醇、二丙二醇、 四氫糠醇或環己醇)替換實質上全部或大部分IpA。在二極 體100-1 00L —般或大部分沈澱於容器底部的情況下,移出 IPA ’添加NPA,在室溫下攪拌或混合!pa、NPA及二極體 ιοο-iooL之混合物,繼而再次使二極體100_100L沈澱至容 器底部,且移出一部分IPA與NPA之混合物,且再添加NpA (約120 至140 ml )。一般重複此添加NPA及移出II&gt;A與 NPA之混合物的製程兩次,產生主要含npa、二極體 100-100L、痕量或少量IPA以及可能一般亦以痕量或少量殘 100 201226479 . 留之晶圓黏著劑及晶圓黏著劑溶劑1 7 〇的混合物。在一例 示性具體實例中,殘留之ΙΡΑ之殘留或痕量少於約ι〇/〇,且 更一般為約0.4%。亦在一例示性具體實例中,例示性二極 體墨水中可能存在之ΝΡΑ之最終百分比為約〇 5%至5〇〇/〇, 或更尤其為約1.0°/。至1 0%,或更尤其為約3%至7。/。,或在 其他具體實例中,更尤其為約15%至4〇%,或更尤其為約 17.5%至22.5%,或更尤其為約25%至約35%,視欲使用之 印刷類型而定。當連同ΝΡΑ —起或替代ΝΡΑ使用松香醇及 /或二乙二醇時’松香醇之典型濃度為約〇.5%至2 〇%,且二 乙一醇之典型濃度為約1 5 %至2 5 %。亦可以約2 5微米或2 5 微米以下過濾ΙΡΑ、ΝΡΑ、再濕潤劑、去離子水(及用於形 成例示性二極體墨水之其他化合物及混合物),以移除比二 極體100-1 00L大或與二極體1〇〇_1〇〇L處於相同尺寸等級之 粒子污染物。 接著將貫負上NPA或另一第一溶劑與二極體i〇〇_i〇〇L 之混合物添加至黏度調節劑中且與其一起混合或短暫攪 拌,該黏度調節劑例如甲氧基丙基甲基纖維素樹脂、羥丙 基曱基纖維素樹脂或其他纖維素或曱基纖維素樹脂。在一 例不性具體實例中,使用e_3及E_1〇曱基纖維素樹脂(可 自 The Dow Chemical 公司(www d〇w.com)及 Hercules Chemical Company 公司(www.herchem.corn)獲得),以使 得在例不性二極體墨水中之最終百分比為約〇 至 5.0%,或更尤其為約〇 2%至丨25%,或更尤其為約〇·]%至 0.7% ’或更尤其為約〇 4%至〇篇,或更尤其為約工⑽至 £ 101 201226479 2·5%,或更尤其為1.5%至2G%,《更尤其小於或等於 2.0%。在一例示性具體實例中,使用約3 〇%之e i〇調配物 且用去離子且過濾之水稀釋以達成於完成組成物中之最終 百分比。可等效地使用其他黏度調節劑,包括上文所論述 之黏度調節劑及下文參考介電墨水所論述之黏度調節劑。 黏度調節劑為二極體1〇(Mool提供充足黏度以使其尤其在 冷藏下實質上分散且維持懸浮而不自液體或膠體懸浮液中 沈殿出來。 如上所述,接著可添加第二溶劑(或對於實施例3及4 添加第一溶劑),其一般為非極性樹脂溶劑,諸如—或多箱 二元酯。在一例示性具體實例中,使用兩種二元酯之混乂 物以達到、約0.0%至約10%,或更尤其約〇 5%至約6 〇%,; 更尤其約L0%至約5.0%,或更尤其約2 〇%至約4 〇%,务 更尤其約2.5%至約3.5%之最終百分比’諸如戊二酸二甲館 或諸如約三分之二(2/3)戊二酸二甲酯與約三分之_( 1/3 丁二酸二甲醋之混合物,最終百分比為約3 73%,例如分另, 使用DBE-5或DBE-9 (可自lnvista USA,觀如邮⑽ DeUware,USA獲得),其亦具有痕量或少量雜質,諸如乾 0.2%之己二酸二曱酯及〇〇4%水。可能需要或必要時,亦添 加第三溶劑(諸如去離子水)以調節相對百分比且降低黎 度。除二元醋之外,可笨敔柹用之i从姑 寺忒便用之其他第二溶劑亦包括例 如(但不限於醇,諸如甲醇、乙醇、正丙醇(包括 .1-丙醇、2 -丙醇(異丙醇甲惫其ο工 ^ ; 1 T乳基-2~丙醇)、異丁醇、丁 醇(包括1-丁醇、2-丁醇)、戊醇(包括κ戍醇、2戊醇、 102 201226479 3-戊醇)、正辛醇f 醇、…·(包括卜辛醇、2-辛醇、3-辛醇)、四氫糠 四子私己醇;醚,铋a w # , 聚醚·和奴 如甲基乙基醚、6醚、乙基丙基醚及 聚醚’酉曰,諸如己酸 乙酸醋(及如上戶&quot; ^一甲^丙二醇單甲醚 二 斤述之戊二酸二曱酯及丁二酸二甲酯);二 醇’諸如乙二醇、- &gt; 电 _ —乙二醇、聚乙二酵、丙二醇、二丙二 ^、、4㈣、:醇喊乙酸S旨;碳酸S旨,諸如碳酸伸丙酿; =’由類’諸如甘油;乙腈、四氫。夫嚼(ΤΜ ).、二曱基甲酿 胺(DMF )、N_甲基甲醯胺(NMF )、二曱亞砜(DMS〇 ); 及其混合物。在一例示性具體實例中,第一溶劑之量與第 一洛劑之量的莫耳比處於至少約2:1之範圍内,且更尤其處 於至少約5:1範圍内,且更尤其處於至少約12:ι或12:1以 上之範圍内;在其他情況下,兩種溶劑之功能可組合於單 一试劑中’在一例示性具體實例中,使用一種極性或非極 性溶劑。亦除上文所論述之二元酯之外,例如(但不限於) 例示性溶解劑、濕潤劑或溶劑化劑亦如下文所提及包括丙 一醇單甲鍵乙酸酯(C6H丨2〇3 )(由Eastman以名稱「PM乙 酸酯(PM Acetate)」出售),其與1-丙醇(或異丙醇)以約 1:8莫耳比(或22:78重量比)使用以形成懸浮介質;以及 多種二元酯,及其混合物,諸如丁二酸二甲酯、己二酸二 曱酯及戊二酸二甲酯(其不同混合物可自Invista以產品名 稱 DBE、DBE-2、DBE-3、DBE-4、DBE-5、DBE-6、DBE-9 及D B E -1B獲得)。在一例示性具體實例中’使用D B E - 9。 溶劑之莫耳比將基於所選溶劑而變化’其中1:8及1:12為 典型比率。S 99 201226479 Group solvent: n-propanol, alcohol, 1-decyloxy-2-propanol mixture; isopropanol, dipropylene glycol, diethylene glycol, propane di, 1-octyl alcohol, ethanol, tetrahydrogen The sterol, cyclohexanol, and first/mixer 'are different from the first solvent and comprise from about 40% to 60% of a solvent selected from the group consisting of n-propanol, isopropanol, dipropylene glycol, diethylene glycol , propylene glycol, hydrazine-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising from about 0.10% to about 1.25% of a methoxypropyl group a mercapto cellulose resin or a (tetra)methylcellulose resin or other cellulose or methylcellulose resin, or a mixture thereof; and from about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert particles The range is from about 10 microns to 50 microns. Reference Diode Ink Example 丨2_27, in an exemplary embodiment, another alcohol as the first solvent, n-propanol ("NpA") (and/or n-octanol (eg 1-octanol ( Or any of various secondary or tertiary octanol isomers), 1-methoxy-2-propanol, rosinol, diethylene glycol, dipropylene glycol, tetrahydrofurfuryl alcohol or cyclohexanol) Substantially all or most of the IpA. In the case where the diode 100-1 00L is generally or mostly precipitated at the bottom of the container, remove the IPA 'Add NPA, stir or mix at room temperature! pa, NPA and diode a mixture of ιοο-iooL, and then again precipitate the diode 100_100L to the bottom of the vessel, and remove a portion of the mixture of IPA and NPA, and then add NpA (about 120 to 140 ml). This addition of NPA and removal II &gt;A is generally repeated. The NPA mixture is processed twice to produce mainly npa, diode 100-100L, trace or small amount of IPA and possibly also trace or small amount of residual 100 201226479. Retained wafer adhesive and wafer adhesive solvent a mixture of 1 7 。. In an exemplary embodiment, the residual The amount of traces or traces is less than about ι〇/〇, and more typically about 0.4%. Also in an exemplary embodiment, the final percentage of rhodium that may be present in the exemplary diode ink is about 〇5% to 5 〇〇/〇, or more particularly from about 1.0 ° / to 10%, or more particularly from about 3% to 7%, or in other specific examples, more particularly from about 15% to about 4%, Or more particularly from about 17.5% to 22.5%, or more especially from about 25% to about 35%, depending on the type of printing to be used. When used together with or instead of rosin and/or diethylene glycol The typical concentration of rosin alcohol is about 5% to 2%, and the typical concentration of diethyl alcohol is about 15% to 25%. It is also possible to filter ruthenium and osmium by about 25 microns or less. , rewetting agent, deionized water (and other compounds and mixtures used to form the exemplary diode ink) to remove the larger than the diode 100-1 00L or the diode 1〇〇_1〇〇 L is a particle contaminant of the same size class. Next, a mixture of NPA or another first solvent and a dipole i〇〇_i〇〇L is added to the viscosity modifier. And mixing with it or briefly stirring, the viscosity modifier such as methoxypropylmethylcellulose resin, hydroxypropyl fluorenyl cellulose resin or other cellulose or sulfhydryl cellulose resin. In an example of a non-specific example , using e_3 and E_1 mercapto cellulose resins (available from The Dow Chemical Company (www d〇w.com) and Hercules Chemical Company (www.herchem.corn)) to make the case of the inverting diode The final percentage in the ink is from about 5.0 to 5.0%, or more particularly from about %2% to 丨25%, or more specifically from about ]·]% to 0.7% ' or more particularly from about %4% to 〇, Or more particularly about work (10) to £101 201226479 2.5%, or more particularly 1.5% to 2G%, "more especially less than or equal to 2.0%. In an exemplary embodiment, about 3% of the e i 〇 formulation is used and diluted with deionized and filtered water to achieve a final percentage of the finished composition. Other viscosity modifiers can be used equivalently, including the viscosity modifiers discussed above and the viscosity modifiers discussed below with reference to the dielectric inks. The viscosity modifier is a diode 1 (Mool provides sufficient viscosity to substantially disperse and maintain suspension, especially under refrigeration, without merging out of the liquid or colloidal suspension. As noted above, a second solvent can then be added ( Or adding a first solvent to Examples 3 and 4, which is typically a non-polar resin solvent, such as - or a multi-box binary ester. In an illustrative embodiment, a mixture of two dibasic esters is used to achieve , from about 0.0% to about 10%, or more especially from about 5% to about 6%, more particularly from about L0% to about 5.0%, or more especially from about 2% to about 4%, more particularly 2.5% to a final percentage of about 3.5% 'such as dimethyl glutarate or such as about two-thirds (2 / 3) dimethyl glutarate and about three-thirds (1/3 dimethyl succinate) The final percentage of the mixture of vinegar is about 337%, for example, using DBE-5 or DBE-9 (available from lnvista USA, see, (10) DeUware, USA), which also has traces or small amounts of impurities, such as Dry 0.2% dinonyl adipate and 4% water. It may or may not be necessary to add a third solvent (such as deionized water) to adjust the phase. Percentage and reduction of radix. In addition to diacetic vinegar, other second solvents that can be used abruptly from the temple include, but are not limited to, alcohols such as methanol, ethanol, n-propanol ( Including .1-propanol, 2-propanol (isopropanol, acetoin; 1 T-milyl-2 to propanol), isobutanol, butanol (including 1-butanol, 2-butanol) ), pentanol (including κ sterol, 2 pentanol, 102 201226479 3-pentanol), n-octanol f alcohol, ... (including octinol, 2-octanol, 3-octanol), tetrahydroanthracene Tetra-p-hexanol; ether, 铋aw #, polyether and slaves such as methyl ethyl ether, 6 ether, ethyl propyl ether and polyether '酉曰, such as hexanoic acid vinegar (and above households &quot; ^一甲^-propylene glycol monomethyl ether, two kilograms of diammonium glutarate and dimethyl succinate; diols such as ethylene glycol, - &gt; _ ethylene glycol, polyethylene glycol, Propylene glycol, dipropylene di-, 4 (four), alcohol: acetic acid S; carbonic acid S, such as carbonic acid extension; = 'classes' such as glycerol; acetonitrile, tetrahydrogen chewing (ΤΜ). Amine (DMF), N-methylformamide (NMF), two Sulfoxide (DMS®); and mixtures thereof. In an exemplary embodiment, the molar ratio of the amount of the first solvent to the amount of the first agent is in the range of at least about 2:1, and more particularly At least about 5:1, and more particularly at least about 12:1 or more than 12:1; in other cases, the functions of the two solvents can be combined in a single reagent' in an exemplary embodiment Where a polar or non-polar solvent is used. Also in addition to the dibasic esters discussed above, such as, but not limited to, exemplary solubilizing, wetting or solvating agents also include propanol as mentioned below. Monomethyl acetate (C6H丨2〇3) (sold by Eastman under the name "PM Acetate"), which is about 1:8 moles with 1-propanol (or isopropanol) Ratio (or 22:78 by weight) used to form a suspension medium; and various dibasic esters, and mixtures thereof, such as dimethyl succinate, dinonyl adipate, and dimethyl glutarate (different mixtures thereof) Available from Invista under the product names DBE, DBE-2, DBE-3, DBE-4, DBE-5, DBE-6, DBE-9 and DBE-1B). In an exemplary embodiment, D B E - 9 is used. The molar ratio of the solvent will vary based on the solvent chosen, with 1:8 and 1:12 being typical ratios.

S 103 201226479 參考二極體墨水實施例17-20、22、25及27,包括一 或多種機械穩定劑或間隔劑’諸如化學惰性粒子及/或光學 透明的粒子’諸如通常包含例如(但不限於)矽酸鹽或硼 矽酸鹽玻璃之玻璃珠粒《在各個例示性具體實例中,使用 約0.0 1重置%至2.5重量%,或更尤其約〇 〇 5重量%至i 〇 重量%,或更尤其約0_1重量%至0·3重量%之玻璃球,其平 均尺寸或尺寸範圍為約1 〇微米至3 〇微米,或更尤其為約 12微米至28微米,或更尤其為約15微米至25微米。此等 粒子在印刷製程期間提供機械穩定性及/或間隔,諸如在將 印刷薄板饋送至印刷機中時充當薄板間隔物,因為二極體 100-100L最初僅經由由乾燥或固化之二極體墨水形成之比 較薄之膜固持於適當位置上(如圖89及9〇中所說明)。一 般而言,惰性粒子之濃度足夠低以使得每單位面積(裝置 面積,在沈積之後)惰性粒子之數目小於每單位面積二極 體⑽-魏之密度。惰性粒子提供機械敎性及間隔,趨 於防止二極體⑽-隱在沈積導電層〇1())及/或介電層 (3 i 5 )時將印刷薄板送至印刷機中時印刷薄板彼此滑過時 移位且丟失,類似於滾珠軸承提供穩定性。在沈積導電層 (川)及/或介電層(315)之後,二極體⑽猶被有效 地固持或鎖定於適當位置上,孩^ 田徂罝上移位之可能性顯著降低。惰 性粒子亦被固持或鎖定於適當 週田位置上,但在完成之裝置 300、700、720、730、740、750、7α ° 760、770中不發揮其他 功能且實際上具電學及化學惰性。 3 在圖94中之橫截面中說 明複數個惰性粒子292,且儘管夫力甘a 二 1 e禾在其他圖中單獨說明,但 104 201226479 . 可包括於任何其他所說明之裝置中。 說明一極體墨水實施例20-27以提供有效用於製造各 種裝置 300、700、720、73〇、74〇、75〇、76〇、77〇 具體實 例之二極體墨水組成物之其他且更特定的實施例。具有纖 維素或曱基纖維素樹脂(諸如羥丙基甲基纖維素樹脂)之 一極體墨水實施例20及其他實施例亦可包括未各別提及之 其他溶劑,例如(但不限於)水或丨_甲氧基_2_丙醇。 雖然一般按上文所述之次序混合各種二極體墨水,但 亦應注意可按其他次序將各種第一溶劑、黏度調節劑、第 二溶劑及第三溶劑(諸如水)添加或混合在一起,任何及 所有次序均處於本發明範疇内。舉例而言,可首先添加去 離子水(作為第三溶劑),繼而添加丨_丙醇及DBE-9,繼而 添加黏度調節劑’接著可能需要時繼而再添加水以調節例 如相對百分比及黏度。 接著在室溫下於空氣氛圍中,諸如藉由使用葉輪混合 盗以比較低之速度(以避免將空氣併入混合物中)混合或 搜拌實質上第一溶劑(諸如NPA)、二極體loo-iooL、黏度 調節劑、第二溶劑及第三溶劑(若存在)(諸如水)之混合 物約25分鐘至30分鐘。在一例示性具體實例中,二極體 墨水之所付體積通常大致為約二分之一公升至一公升(每 晶圓)含有900萬至1000萬個二極體loo-ι〇〇l,且可視需 要向上或向下調節二極體l〇〇_l〇〇L之濃度,諸如視下文所 述之所選印刷LED或光電器件所需之濃度而定,其例示性 黏度範圍為.上文對於不同類型之印刷及不同類型之二極體 105 201226479 100 100L所述。第一溶劑(諸如nPA )亦趨於充當防腐劑 且抑制細菌及真菌生長以用於儲存所得二極體墨水。在欲 使用其他第一溶劑時,亦可添加各別防腐齊卜抑制劑或殺 真菌Μ。對於一例不性具體實例,可使用用於印刷之其他 界面活性劑或消泡劑作為可選方案,但並非為適當起作用 及例示性印刷所需。 可根據裝置需要調節二極體1〇〇_1〇〇L之濃度。舉例而 a,對於照明應用,較低表面亮度燈每平方公分可使用約 25個二極體100_100L’使用二極體l〇〇_i〇〇L之濃度為每毫 升(cm )約12,500個二極體之二極體墨水。對於另一例示 性具體實例,一個晶圓15〇可含有約72〇萬個二極體 100-100L以得到約570 ml之二極體墨水。每毫升二極體墨 水在印刷時可用於覆蓋約500平方公分,57〇 ml二極體墨 水覆蓋約28.8平方公尺。亦舉例而言,對於每平方公分使 用約100個二極體100_100L之極高表面亮度燈,其需要每 毫升(cm3)約50,000個二極體100_1〇〇L之濃度。 圖75為說明製造二極體墨水之例示性方法具體實例的 流程圖且k供適用概述。該方法開始(起始步驟2 〇 〇 ),自 晶圓150、15 0A釋放二極體i〇〇_i〇〇l (步驟2〇5)。如上文 所論述’此步驟涉及用晶圓黏結黏著劑使晶圓之第一側(二 極體側)黏著至晶圓固持器,使用雷射剝離、研磨及/或抛 光及/或蝕刻晶圓之第二側(背面)以暴露單體化渠溝且視 需要或視規定移除任何其他基板或GaN,且溶解晶圓黏、名士 黏著劑以釋放二極體100-100L至溶劑(諸如IpA)戍另— 106 201226479 溶劑(諸如NPA)或本文所述 IPA時,該方法包括視情況選用之步驟210,將二極體 10 0-100L轉移至(第一)溶劑(諸如NPA)中。該方法接 著將於第一溶劑中之二極體1 〇〇_ 1 〇〇L添加至黏度調節劑 (諸如曱基纖維素)中(步驟215 )且添加一或多種第二溶 劑,諸如一或兩種二元酯,諸如戊二酸二甲酯及/或丁二酸 二甲酯(步驟220 可使用第三溶劑(諸如去離子水)調 節任何重量百分比(步驟225 )。在步驟23〇中,該方法接 著在室溫下(約25。〇於空氣氛圍中混合複數個二極體 100-100L、第一溶劑、黏度調節劑、第二溶劑(及複數個化 ^及電學惰性粒子’諸如玻璃珠粒)及任何其他去離子水 約^至30分鐘,所得黏度為、約WOOcps至約25,_cps。 接著該方法可結束’返回步驟235。亦應注意,如上文所述, /驟15 22G及225可按其他次序進行,且需要時可重複, 且亦可使用視情況選用之其他混合步驟。 1日月_ ht為/列不^破置3〇0具體實例之透視圖。圖77為 說明例不性袈置具體實 的平面圖(或俯視旧 例示性電極結構 而 。圖78為例示性震置300具體實例 之弟-検截面圖(穿過圖76之3〇_3 性裂置3 0。具體實例 面)圖79為例不 丰、 弟截面圖(穿過圖76之31-3 1' 圖“為例示性第 置7〇0具體實例之透視圖。 過圖之^,置7〇0具體實例之第—橫截面圖(穿 實例之第二橫截面二2為例不性第二裝置7。。具體 C穿過圖80之87_87,平面)。圖83為S 103 201226479 Reference Diode Inks Examples 17-20, 22, 25 and 27, including one or more mechanical stabilizers or spacers such as chemically inert particles and/or optically transparent particles such as, for example, typically include (but not Glass beads which are limited to citrate or borosilicate glass "in each exemplary embodiment, about 0.01% to 2.5% by weight, or more especially about 5% to 9% by weight. Or, more particularly, from about 0% to about 3% by weight of the glass spheres, having an average size or size ranging from about 1 to about 3 microns, or more specifically from about 12 to 28 microns, or more particularly about 15 microns to 25 microns. These particles provide mechanical stability and/or spacing during the printing process, such as acting as a thin plate spacer when feeding the printed sheet into the printing press, since the diode 100-100L initially passes only through the dried or cured diode The relatively thin film formed by the ink is held in place (as illustrated in Figures 89 and 9). In general, the concentration of inert particles is sufficiently low that the number of inert particles per unit area (device area, after deposition) is less than the density per unit area of the diode (10)-Wei. The inert particles provide mechanical flexibility and spacing, tending to prevent the diode (10) from hiding the conductive layer 〇1()) and/or the dielectric layer (3 i 5 ) when printing the sheet into the printing press Displaced and lost as they slide over each other, similar to ball bearings provide stability. After depositing the conductive layer (Chuan) and/or the dielectric layer (315), the diode (10) is effectively held or locked in place, and the possibility of displacement on the field is significantly reduced. The inert particles are also held or locked in the appropriate Zhoutian position, but do not perform other functions in the completed apparatus 300, 700, 720, 730, 740, 750, 7α ° 760, 770 and are actually electrically and chemically inert. 3 A plurality of inert particles 292 are illustrated in cross section in Fig. 94, and although individually described in other figures, 104 201226479 . may be included in any other illustrated apparatus. One-electrode ink embodiments 20-27 are illustrated to provide additional diode ink compositions that are effective for fabricating various devices 300, 700, 720, 73, 74, 75, 76, 77, and specific examples and A more specific embodiment. A polar ink embodiment 20 and other embodiments having a cellulose or sulfhydryl cellulose resin (such as hydroxypropyl methylcellulose resin) may also include other solvents not specifically mentioned, such as, but not limited to, water. Or 丨_methoxy-2-propanol. Although various diode inks are generally mixed in the order described above, it should also be noted that various first solvents, viscosity modifiers, second solvents, and third solvents (such as water) may be added or mixed together in other orders. Any and all orders are within the scope of the invention. For example, deionized water (as a third solvent) may be added first, followed by the addition of 丨_propanol and DBE-9, followed by the addition of a viscosity modifier. Then it may be necessary to add water to adjust for example the relative percentage and viscosity. The substantially first solvent (such as NPA), diode loo is then mixed or simmered at room temperature in an air atmosphere, such as by using impeller mixing at a relatively low speed (to avoid incorporation of air into the mixture). a mixture of -iooL, a viscosity modifier, a second solvent, and a third solvent, if present, such as water, for about 25 minutes to 30 minutes. In an exemplary embodiment, the volume of the diode ink is typically from about one-half liter to one liter (per wafer) containing between 9 million and 10 million diode loo-ι〇〇l. And the concentration of the diode l〇〇_l〇〇L may be adjusted upward or downward as needed, such as the concentration required for the selected printed LED or optoelectronic device described below, with an exemplary viscosity range of For different types of printing and different types of diodes 105 201226479 100 100L. The first solvent, such as nPA, also tends to act as a preservative and inhibit bacterial and fungal growth for storage of the resulting diode ink. When other first solvents are to be used, individual antiseptic inhibitors or fungicidal mites may also be added. For one less specific example, other surfactants or defoamers for printing may be used as an alternative, but not required for proper functioning and exemplary printing. The concentration of the diode 1〇〇_1〇〇L can be adjusted according to the needs of the device. For example, a, for lighting applications, a lower surface brightness lamp can use about 25 diodes per square centimeter 100_100L' using a diode l〇〇_i〇〇L concentration of about 12,500 per milliliter (cm) Polar body diode ink. For another illustrative embodiment, a wafer 15 can contain about 72 million diodes 100-100L to yield about 570 ml of diode ink. Each milliliter of the body of ink can be used to cover about 500 square centimeters of printing, and 57 〇 ml of diode ink covers about 28.8 square meters. Also for example, for an extremely high surface brightness lamp of about 100 diodes 100-100 L per square centimeter, it requires a concentration of about 50,000 diodes 100_1 〇〇L per milliliter (cm3). Figure 75 is a flow chart illustrating an exemplary embodiment of an exemplary method of fabricating a diode ink and is provided for an outline of the application. The method begins (initial step 2 〇 〇 ), releasing the diode i〇〇_i〇〇l from the wafer 150, 15 0A (step 2〇5). As discussed above, 'this step involves bonding the first side (diode side) of the wafer to the wafer holder with a wafer bonding adhesive, using laser stripping, grinding and/or polishing and/or etching the wafer. The second side (back side) exposes the singulated trench and removes any other substrate or GaN as needed or as specified, and dissolves the wafer adhesion, the taxi adhesive to release the diode 100-100L to the solvent (such as IpA) In the case of a solvent (such as NPA) or an IPA as described herein, the method includes the step 210 selected as appropriate to transfer the diode 100-100L to a (first) solvent such as NPA. The method then adds the diode 1 〇〇 1 〇〇 L in the first solvent to a viscosity modifier such as decyl cellulose (step 215) and adds one or more second solvents, such as one or Two dibasic esters, such as dimethyl glutarate and/or dimethyl succinate (step 220 can be adjusted to any weight percentage using a third solvent (such as deionized water) (step 225). In step 23 The method then mixes a plurality of diodes 100-100 L, a first solvent, a viscosity modifier, a second solvent (and a plurality of chemical and inert particles) at room temperature (about 25 Torr in an air atmosphere). Glass beads) and any other deionized water for about ^ to 30 minutes, the resulting viscosity is from about 10,000 cps to about 25, _cps. The method can then end 'return to step 235. It should also be noted that as described above, / 15 22G and 225 can be performed in other orders, and can be repeated as needed, and other mixing steps can be used as appropriate. 1 day _ ht is / column is not broken 3 〇 0 specific example perspective view. Figure 77 For the purpose of illustration, the actual real plan (or overlook) Illustrative electrode structure. Figure 78 is a cross-sectional view of the exemplified vibrating 300 specific example (through the 〇3 _3 cleavage of Fig. 76. Specific example surface) Fig. 79 is an example of a poor, younger brother The cross-sectional view (through the 31-3 1' diagram of Fig. 76 is a perspective view of an exemplary seventh embodiment. The image is crossed, and the first cross-sectional view of the specific example is set. The second cross section 2 is an example of the second device 7. The specific C passes through 87_87, plane of Fig. 80. Fig. 83

S 107 201226479 輛接至第一導體310A之例示性二極體i〇〇j、ι〇〇κ、 及贿之第二橫截面圖。圖87為自兩側發光之例示性第 三裝置300C具體實例之橫截面圖。圖88為自兩側發光之 例不性第四裝置300D具體實例之橫截面圖。圖Μ為例示 性第一裝置具體實例之更詳細部分橫截面圖。圖9()為例示 性第二裝置具體實例之更心部分横截面圖。圖91為例示 性第五裝置72〇具體實例之透視圖。圖92為例示性第五裝 置720具體實例之橫截面圖(穿過圖91之π·”,平面圖 為例不丨生第六裝置73〇具體實例之透視圖。圖%為例示 性第六裝置730具體實例之橫截面圖(穿過圖%之58_58, 平面)° ® 95為例示性第七裂置74〇具體實例之透視圖。 圖96為例不性第七裝置74〇具體實例之橫截面圖(穿過圖 之59-59平面)。圖97為例示性第八裝置75〇具體實例 •透視圖。圖98為例不性第八裝置75〇具體實例之橫截面 圖上穿過® 97之61_61,平自)。目99為說明例示性裝置具 體貫例之第-導電層之例示性第二電極結構的平面圖(或 俯視圖)。圖101為通常用於圖1〇〇中所說明之系統8〇〇、 〇 ’、體實例的例示性第九及第十裝置76〇、具體實例 =平面圖(或俯視圖)。圖1〇2為例示性第九裝置76〇具體 實例之橫截面圖(.穿過圖101.之63_63,平面)。圖1〇3為例 不性第十裴置770具體實例之橫截面圖(穿過圖1〇1之 平面)。圖109為發光之通電例示性裝置3〇〇a具體實 例之照片。 參考圖76-79,在裝置3〇〇中,於基底3〇5上第一側上 108 201226479 沈積一或多個第一導體310,繼而沈積複數個二極體 100-100K (使第二端子127耦接至導體310)、介電層315、 第二導體320 ( —般為耦接至第一端子之透明導體),視情 況繼而沈積穩定化層335、發光(或發射)層325及保護層 或塗層330。在此裝置300具體實例中,若使用光學不透明 之基底305及第一導體310,則光主要穿過裝置3〇〇之頂部 第一側發射或吸收’且若使用光學透射性基底3〇5及第一 導體3 1 0,則光自裝置300之兩側發射或吸收或發射或吸收 至裝置300之兩侧(尤其若用八匸電壓通電以使具有第一或 第二定向之二極體100-100K通電)。 參考圖80-83,在裝置700中,於具光學透射性且因此 在本文中稱作基底305A之基底305之第一側上沈積複數個 一極體100L,繼而沈積一或多個第一導體3丨〇(使導體 耦接至第二端子127)、介電層315、第二導體320 (耦接至 第為子)(其可能或可能不具光學透射性),且視情況繼 而沈積穩定化層335及保護層或塗層33〇。在基底3〇5之第 ,側上進行任何沈積步驟之前或之後,視情況存在之發光 (或發射)層325可連同任何其他保護層或塗層33() 一起塗 覆至基底305之第二側。在此裝置7〇〇具體實例中,若使 用或多個光學不透明之第二導體320,則光主要在第二側 上穿過裝置700之基底3〇5A發射或吸收,且若使用一或多 個光予透射性第二導體32〇,則光在裝置7〇〇之兩侧上發射 或吸收。 各種裳置 300、700、72〇、73〇、74〇、75〇、76〇、77〇S 107 201226479 A second cross-sectional view of an exemplary diode i〇〇j, ι〇〇κ, and bribe connected to the first conductor 310A. Figure 87 is a cross-sectional view of an exemplary third device 300C illumination from both sides. Fig. 88 is a cross-sectional view showing a specific example of the fourth apparatus 300D which is illuminated from both sides. Figure Μ is a more detailed partial cross-sectional view of an exemplary first device embodiment. Figure 9() is a cross-sectional view of a more central portion of an exemplary second device embodiment. Figure 91 is a perspective view of an exemplary fifth device 72. Figure 92 is a cross-sectional view of an exemplary fifth device 720 (through π· of Figure 91), and the plan view is a perspective view of a sixth device 73. The figure is an exemplary sixth device. A cross-sectional view of a specific example of 730 (through the figure 58_58, plane) ° 95 is a perspective view of an exemplary seventh split 74 〇. FIG. 96 is an example of a seventh device 74 A cross-sectional view (through the 59-59 plane of the drawing). Figure 97 is an exemplary eighth device 75 〇 specific example • perspective view. Figure 98 is an example of a cross-sectional view of the eighth device 75 61. 61_61, Fig. 99 is a plan view (or top view) illustrating an exemplary second electrode structure of a first conductive layer of a specific embodiment of the exemplary device. Fig. 101 is generally used for the description of Fig. System 〇〇, 〇', exemplary ninth and tenth devices 76 体, specific examples = plan view (or top view). Figure 1-2 is a cross-sectional view of an exemplary ninth device 76 〇 specific example (. Pass through Fig. 101. 63_63, plane). Figure 1〇3 is an example of the tenth set of 77 A cross-sectional view of a specific example (through the plane of Fig. 1 ) 1). Fig. 109 is a photograph of a specific example of the illuminating energizing exemplary device 3 〇〇 a. Referring to Figs. 76-79, in the device 3, One or more first conductors 310 are deposited on the first side 108 201226479 of the substrate 3〇5, and then a plurality of diodes 100-100K are deposited (the second terminal 127 is coupled to the conductor 310), the dielectric layer 315, A second conductor 320 (generally a transparent conductor coupled to the first terminal), optionally depositing a stabilizing layer 335, a light emitting (or emitting) layer 325, and a protective layer or coating 330. In the device 300 embodiment, If the optically opaque substrate 305 and the first conductor 310 are used, the light is mainly transmitted or absorbed through the top first side of the device 3 and if the optically transmissive substrate 3〇5 and the first conductor 3 1 0 are used, Light is emitted or absorbed or absorbed from both sides of the device 300 to either side of the device 300 (especially if energized with a gossip voltage to energize the diodes 100-100K having the first or second orientation). -83, in device 700, is optically transmissive and is therefore referred to herein Depositing a plurality of monopoles 100L on a first side of the substrate 305 of the bottom 305A, and subsequently depositing one or more first conductors 3 (couple the conductors to the second terminals 127), the dielectric layer 315, and the second conductor 320 (coupled to the first sub-) (which may or may not be optically transmissive), and optionally deposit a stabilizing layer 335 and a protective layer or coating 33. On the side of the substrate 3〇5, any The luminescent (or emissive) layer 325, as present before or after the deposition step, may be applied to the second side of the substrate 305 along with any other protective layer or coating 33(). In this embodiment, if a second opaque second conductor 320 is used, light is primarily emitted or absorbed through the substrate 3〇5A of the device 700 on the second side, and if one or more are used Light is transmitted through the second conductor 32, and light is emitted or absorbed on both sides of the device 7. Various skirts 300, 700, 72, 73, 74, 75, 76, 77

S 109 201226479 LED之照明之可撓性薄板或其他照 具體實例可印刷為基於 明器具’例如’其可經捲曲、摺疊、扭曲、盤旋、修平、 ϋ « α Μ #及以其他方式成型為任何種類之各種形式及設 計中之任一者,包括例々σ (但不限於)建築形狀、其他蓺 術或想像設計之摺疊及敏折折紙手工形狀、愛迪生(Μ—) 燈泡形狀、螢光燈泡形狀、枝形吊燈形狀,其中一種該皺 折及摺疊之愛迪生燈泡形狀在圖1〇〇中說明為系統8〇〇、 8二各種裝置_、具體實例亦可以各種方式組合(諸 士月對月)以使光自所得器件之兩側發射或吸收。舉例而 言(但不加以限制),兩個裝置3〇〇可在各別基板3〇5之第 二側上背對背組合以形成裝置300C具體實例,或裝置3〇〇 可印刷於基板305之兩側上以形成裝置3咖具體實例,裝 置300C具體實例與裝置3〇〇D具體實例分別在圖87及μ 中以橫截面說明。亦舉例而言(但不加以限制),未作單獨 說明,兩個裝置7 0 0亦可背對背組合於非基板3 〇 5 (第一侧) 上’亦自所得器件之兩側發光。 參考圖91-92,在裝置72〇中,在基底3〇5上第一側上 ’尤積或多層第一導體310 ,繼而沈積碳接點322A以耦接 至導體310,繼而沈積複數個二極體1〇〇_1〇〇κ (使第二端 子127耦接至導體31〇)、介電層315、亦沈積,或多層第 二導體320 ( —般為耦接至第一端子之透明導體),繼而沈 積碳接點322Β以耦接至導體32〇,視情況繼而沈積穩定化 層335 '發光(或發射)層325及保護層或塗層33〇。在此 裝置3〇〇具體實例中,光主要穿過裝置72〇之頂部第一側 110 201226479 發射或吸收,且若使用光學透射性基▲ 3G5及第一導體 31〇,則光自裝置72〇之兩侧發射或吸收或發射或吸收至裝 置720之兩側(尤其若用ac電塵通電)。 斤參考圖93-94,在裝置73〇中,在光學透射性基底3〇5a 上第一側上沈積一或多層實質上光學透射性第一導體 310,繼而沈積碳接點322A以耦接至導體31〇,繼而沈積複 數個二極體100-100K (使第二端子U7耦接至導體3ι〇) 連同複數個惰性粒子292、介電層3丨5、亦沈積一或多層第 二導體320 (亦一般為耦接至第一端子之透明導體),繼而 沈積碳接點322B以耦接至導體320,視情況繼而沈積穩定 化層335、第一發光(或發射)層325及保護層或塗層, 繼而在基底305A之第二侧上沈積第二發光(或發射)層325 及保護層或塗層330。在此裝置730具體實例中,光穿過裝 置730之頂部第一側及底部第二側兩者發射或吸收。另外, 使用第二發光(或發射)層325亦可使穿過第二側發射之 光的波長移位(除使穿過第一側所發射之光之光譜移位的 第一發光(或發射)層325之外)。 參考圖95-96,在裝置740中,於具光學透射性且亦在 本文中稱作基底305 A之基底305之第一側上沈積複數個二 極體100L,繼而沈積一或多層第一導體310 (使導體 库禹接至第二端子127 ),繼而沈積碳接點322A以耦接至導體 310 ’沈積介電層315,亦沈積一或多層第二導體32〇 (輕 接至第一端子),繼而沈積碳接點322B以耦接至導體32〇, 且視情況繼而沈積穩定化層33 5及保護層或塗層33〇。在基 111 201226479 底3 05之第一側上進行任何沈積步驟之前或之後,視情況 存在之發光(或發射)層325可連同任何其他保護層或塗 層3 30 —起塗覆至基底3〇5之第二側。在此裝置740具體 實例中’光主要在第二側上穿過裝置740之基底305A發射 或吸收(亦經第一發光(或發射)層325發生任何波長移 位),且若使用一或多個光學透射性第二導體32〇,則光在 裝置7 4 0之兩側上發射或吸收。 參考圖97-98,在裝置750中,於具光學透射性且亦在 本文中稱作基底305A之基底305之第一侧上沈積複數個二 極體100L’繼而沈積一或多層第一導體31〇(使導體31〇 叙接至第二端子127)’繼而沈積碳接點322A以耦接至導體 310’沈積介電層315,亦沈積一或多層實質上光學透射性 第二導體320 (耦接至第一端子),繼而沈積碳接點322B以 搞接至導體320 ’且視情況繼而沈積穩定化層335 '視情況 存在之第一發光.(或發射)層325及保護層或塗層330。在 基底305之第一側上進行任何沈積步驟之前或之後,視情 況存在之第一發光(或發射)層325可連同任何其他保護 層或塗層330 —起塗覆至基底3〇5八之第二側。在此裝置75〇 具體貫例中,光穿過裝置75〇之頂部第一侧及底部第二側 兩者發射或吸收,亦經第一及第二發光(或發射)層325 發生任何波長移位。 下文將參考圖100-103更詳細描述裝置76〇及77〇,且 其與其他所說明之I置的不同之處在於使用亦通S沈積為 或夕層之第二導體312。另外,亦說明裝置77〇使用下文 112 201226479 ' 更詳細論述之障壁層3丨8。 如上所述,裝置 3〇〇、7〇〇、72〇、73〇、74〇、75〇、76〇、 770藉由以下步驟形成:在基底3〇5上(即對於裝置3〇〇、 720、730、750而言)沈積(例如印刷)複數層,在基底 305上沈積一或多個第一導體31〇,呈導體31〇層狀物或複 數個導體310形式,繼而在二極體1〇〇_1〇〇L處於液體或膠 體懸浮液中時沈積二極體100_100L (達約18微米至2〇微 米或2 0微米以上之濕膜厚度)(亦即二極體墨水),且蒸發 或以其他方式分散懸浮液之液體/膠體部分,而對於裝置 700,740,750而言,在光學透射性基底3〇5八之第一側上 在二極體100-1 00L處於液體或膠體懸浮液中時沈積二極體 100-100L (達約18微米至20微米或2〇微米以上之濕膜厚 度)(亦即二極體墨水)且蒸發或以其他方式分散懸浮液之 液體/膠體部分,繼而沈積一或多個第—導體31〇。 隨著二極體100-1 00L液體或膠體懸浮液乾燥或固化, —極體墨水之組分(尤其如上所述之黏度調節劑或黏著黏 度°周節劑)圍繞一極體1 0 0 -1 〇 〇 L形成比較薄之膜、塗層、 網格或網孔,其有助於將二極體i 〇〇_ i 〇〇L固持於基底3〇5 或第一導體31〇上的適當位置上,其在圖89及9〇中說明 為膜295 ’厚度通常大致為約50 nm至+約300 nm (當完全 固化或乾燥時)’視所使用之黏度調節劑的濃度而定,諸如 對於較低黏度調節劑/辰度而言,厚度為約5 〇至丄〇 〇 nm,而 對於較高黏度調節劑濃度而言,厚度為約2〇〇至3〇〇 nm。 所沈積之膜295可連續地圍繞二極體1〇〇_1〇〇L,如圖89中S 109 201226479 LED flexible sheets or other specific examples can be printed as based on the 'for example' they can be crimped, folded, twisted, hovered, flattened, ϋ «α Μ # and otherwise shaped into any Any of a variety of forms and designs, including, for example, σ (but not limited to) architectural shapes, other folding or imaginary designs of folding and sensitive origami hand shapes, Edison (Μ—) bulb shapes, fluorescent bulbs Shape, chandelier shape, one of the wrinkled and folded Edison bulb shapes is illustrated in Figure 1A as a system 8〇〇, 8 2 various devices _, specific examples can also be combined in various ways (Justice month to month ) to cause light to be emitted or absorbed from both sides of the resulting device. By way of example and not limitation, two devices 3 can be combined back-to-back on the second side of the respective substrate 3〇5 to form a specific example of device 300C, or two devices can be printed on substrate 305 A specific example of the device 3 is formed on the side, and a specific example of the device 300C and a specific example of the device 3D are respectively illustrated in cross section in FIGS. 87 and μ. Also by way of example and not limitation, the two devices 700 can also be back-to-back combined on the non-substrate 3 〇 5 (first side) and also illuminate from both sides of the resulting device. Referring to Figures 91-92, in device 72A, a first or multiple layers of first conductor 310 are deposited on a first side of substrate 3〇5, followed by deposition of carbon contacts 322A to couple to conductor 310, followed by deposition of a plurality of The polar body 1〇〇_1〇〇κ (couples the second terminal 127 to the conductor 31〇), the dielectric layer 315, and also the multilayered second conductor 320 (generally coupled to the transparent of the first terminal) The conductor), in turn, deposits a carbon junction 322 Β to couple to the conductor 32 〇, optionally depositing a stabilizing layer 335 'emissive (or emitting) layer 325 and a protective layer or coating 33 〇. In this embodiment, light is primarily transmitted or absorbed through the top first side 110 201226479 of the device 72, and if the optically transmissive base ▲ 3G5 and the first conductor 31 are used, the light is self-contained 72 Both sides emit or absorb or emit or absorb to both sides of the device 720 (especially if energized with ac electric dust). Referring to Figures 93-94, in device 73A, one or more layers of substantially optically transmissive first conductor 310 are deposited on a first side of optically transmissive substrate 3〇5a, followed by deposition of carbon contacts 322A for coupling to The conductor 31 turns, and then deposits a plurality of diodes 100-100K (couples the second terminal U7 to the conductor 3ι) together with a plurality of inert particles 292, a dielectric layer 3丨5, and one or more layers of the second conductor 320 (also typically a transparent conductor coupled to the first terminal), followed by deposition of a carbon junction 322B to couple to the conductor 320, optionally depositing a stabilizing layer 335, a first luminescent (or emitting) layer 325 and a protective layer or The coating, in turn, deposits a second luminescent (or emitting) layer 325 and a protective layer or coating 330 on the second side of substrate 305A. In this embodiment of device 730, light is transmitted or absorbed through both the top first side and the bottom second side of device 730. Additionally, the use of the second illuminating (or emitting) layer 325 can also shift the wavelength of the light emitted through the second side (except for the first illuminating (or emission) that shifts the spectrum of the light emitted through the first side. ) outside layer 325). Referring to Figures 95-96, in device 740, a plurality of diodes 100L are deposited on a first side of substrate 305 that is optically transmissive and also referred to herein as substrate 305 A, followed by deposition of one or more layers of first conductors. 310 (connecting the conductor bank to the second terminal 127), then depositing the carbon contact 322A to be coupled to the conductor 310' to deposit the dielectric layer 315, and also depositing one or more layers of the second conductor 32 (lightly connected to the first terminal) The carbon junction 322B is then deposited to couple to the conductor 32, and optionally a stabilizing layer 33 5 and a protective layer or coating 33 沉积 are deposited. The illuminating (or emitting) layer 325, as appropriate, may be applied to the substrate 3 together with any other protective layer or coating 30 before or after any deposition step on the first side of the base 111 201226479 bottom 305. The second side of 5. In this embodiment of device 740, 'light is emitted or absorbed primarily through substrate 305A of device 740 on the second side (and any wavelength shift occurs via first illumination (or emission) layer 325), and if one or more are used The optically transmissive second conductor 32 is then illuminated or absorbed on either side of the device 74. Referring to Figures 97-98, in device 750, a plurality of diodes 100L' are deposited on a first side of substrate 305 having optical transparency and also referred to herein as substrate 305A, followed by deposition of one or more layers of first conductor 31. 〇 (conducting the conductor 31 to the second terminal 127)' then depositing the carbon contact 322A to couple to the conductor 310' to deposit the dielectric layer 315, and also depositing one or more layers of substantially optically transmissive second conductor 320 (coupled Connected to the first terminal), and then deposits the carbon contact 322B to engage the conductor 320' and optionally deposits the stabilizing layer 335 'as the case may exist the first illuminating. (or emitting) layer 325 and the protective layer or coating 330. Prior to or after any deposition step on the first side of the substrate 305, the first luminescent (or emissive) layer 325, as appropriate, may be applied to the substrate together with any other protective layer or coating 330. The second side. In this particular embodiment of the apparatus 75, light passes through either of the top first side and the bottom second side of the device 75, and any wavelength shift occurs through the first and second illumination (or emission) layers 325. Bit. Devices 76A and 77A will be described in more detail below with reference to Figures 100-103, and differ from other illustrated I-sets in that a second conductor 312 that is also deposited as a layer or layer is used. In addition, it is also illustrated that the device 77 uses the barrier layer 3丨8 discussed in more detail below in 2012 201247479. As described above, the devices 3〇〇, 7〇〇, 72〇, 73〇, 74〇, 75〇, 76〇, 770 are formed by the following steps: on the substrate 3〇5 (i.e., for the devices 3〇〇, 720) , 730, 750) depositing (eg, printing) a plurality of layers, depositing one or more first conductors 31 on the substrate 305, in the form of a conductor 31 〇 layer or a plurality of conductors 310, and then in the diode 1 〇〇_1〇〇L deposits a diode 100_100L (up to a wet film thickness of about 18 microns to 2 μm or more than 20 μm) in a liquid or colloidal suspension (ie, a diode ink) and evaporates Or otherwise dispersing the liquid/colloidal portion of the suspension, and for apparatus 700, 740, 750, the liquid or colloid is present in the diode 100-1 00L on the first side of the optically transmissive substrate 3? Depositing 100-100L of the diode (up to a wet film thickness of about 18 microns to 20 microns or more) (ie, a diode ink) in the suspension and evaporating or otherwise dispersing the liquid/colloid of the suspension In part, one or more first conductors 31〇 are deposited. As the liquid or colloidal suspension of the diode 100-1 00L is dried or solidified, the components of the polar ink (especially the viscosity modifier or adhesive viscosity as described above) surround the polar body 1 0 0 - 1 〇〇L forms a relatively thin film, coating, mesh or mesh which helps to hold the diode i 〇〇 _ i 〇〇L on the substrate 3〇5 or the first conductor 31〇 Positionally, it is illustrated in Figures 89 and 9 that the thickness of film 295' is typically from about 50 nm to about 300 nm (when fully cured or dried) depending on the concentration of viscosity modifier used, such as The thickness is about 5 〇 to 丄〇〇nm for lower viscosity modifiers/densities and about 2 〇〇 to 3 〇〇 nm for higher viscosity modifier concentrations. The deposited film 295 can continuously surround the diode 1〇〇_1〇〇L, as shown in FIG.

S 113 201226479 所说明’或可為間斷的’留有間隙且僅部分圍繞二極體 100-100L,如圖90中所說明。雖然端子125、m通常塗佈 有一極體墨水膜295’但端子125、127 —般存在足夠之表 面粗糙度以使膜295不干擾與第一及第二導體31〇、32〇形 成電連接。膜295通常包含固化或乾燥形式之黏度調節劑, 且可能亦包含少量或痕量之各種溶劑,諸如第一或第二溶 劑,如下文參考固化或乾燥之二極體墨水具體實例所提 及亦如下文所更詳細論述,黏度調節劑亦可用於形成下 文參考圖103所論述之障壁層318。 對於裝置300,二極體1〇〇_1〇〇κ物理且電耦接至一資 多個第-導體31GA,且對於裝置·,二極體i隱物理来 接至基底305’隨後耦接至一或多個第一導體31〇,且在聋 置3〇〇、700具體實例中’由於二極體刚魏在以任何^ 向懸浮於液體或膠體中時沈積,所以二極體100-100L可! 第一定向(第一端子125呈向上方向)、呈第二定向(第一 端子125呈向下方向)或可能呈第三定向(第-端子12 ^向)。另外,由於二極體1⑽-佩在懸浮於液體或膠則 時沈積’所以二極體1G(M帆在裝置跡彻内一般則 不規則地間隔。另外’如上所述,在例示性具體實例中, ^體f水可包括複數個化學㈣之通常具光學透射㈣ 如玻璃珠粒,其尺寸範圍為約W微米㈣微米 =其為約12微米至28微来,或更尤其為㈣微㈣ 在第一向上定向或方向下 如圖83中所說明,第一端 114 201226479 子125 (二極體100-1 〇〇J之形成凸塊或突出結構之金屬層 12〇Β或二極體100K之金屬層m)向上定向,且二極體 100-100K經由第二端子127(其可為二極體100K之金屬層 12〇Β或如對於二極體l〇〇j所說明之背面金屬層122 ),或 經由如對於二極體1 00D所說明之中心導孔1 3 1 (在無二極 體100J之視情況存在之背面金屬層122下具體化),或經由 周邊導孔134 (未作單獨說明),或經由如對於二極體1〇〇Ε 所說明之基板105耦接至一或多個第一導體3 10Α。在第二 向下定向或方向下,如圖78及79中所說明,第一端子ι25 向下定向,且二極體100_100Κ經由或可經由第一端子ι25 (例如二極體1〇〇_1〇〇J之形成凸塊或突出結構之金屬層 12〇Β或二極體ι00κ之金屬層1S2)耦接至一或多個第—導 體 310Α。 對於二極體iOOL,二極體100L可以圖81及82中所說 明之第一向上定向或方向定向,其中第一及第二端子125、 127向上定向’且未單獨說明,二極體i〇〇L可以第二向下 定向或方向定向,其中第一及第二端子125、127向下定向。 對於S亥向下定向,應注意,雖然第一端子125可與一或多 個第一導體3 10電接觸,但第二端子127很可能處於介電 層135内且將不與第二導體320接觸,使得二極體100L在 具有第—定向時電隔離且無功能,此在許多具體實例中可 能合乎需要》 就二極體100-100L在懸浮於液體或膠體中時在其之間 門不確疋下且以任何360度定向沈積而言,預先不能準S 113 201226479 describes 'or may be intermittent' leaving a gap and only partially surrounding the diode 100-100L, as illustrated in FIG. Although the terminals 125, m are typically coated with a polar ink film 295', the terminals 125, 127 generally have sufficient surface roughness such that the film 295 does not interfere with the electrical connection with the first and second conductors 31, 32. Membrane 295 typically comprises a viscosity modifier in a cured or dried form, and may also contain minor or trace amounts of various solvents, such as a first or second solvent, as mentioned below with reference to a specific example of a cured or dried diode ink. As discussed in more detail below, the viscosity modifier can also be used to form the barrier layer 318 discussed below with reference to FIG. For the device 300, the diodes 1〇〇_1〇〇κ are physically and electrically coupled to a plurality of first conductors 31GA, and for the device, the diodes are physically coupled to the substrate 305' and subsequently coupled. To one or more first conductors 31〇, and in the case of the 〇〇3〇〇, 700 ′′, since the diodes are deposited in any liquid in the liquid or colloid, the diode 100- 100L can be! The first orientation (the first terminal 125 is in the upward direction), the second orientation (the first terminal 125 is in the downward direction) or possibly the third orientation (the first terminal 12^ direction). In addition, since the diode 1 (10)-peel is deposited when suspended in liquid or glue, the diodes 1G (the M sails are generally irregularly spaced within the device trace. In addition, as described above, in the illustrative specific examples Wherein, the body f water may comprise a plurality of chemistries (four) which are generally optically transmissive (four) such as glass beads, and have a size ranging from about W micrometers (four) micrometers = about 12 micrometers to 28 micrometers, or more particularly (four) microseconds. In the first upward orientation or direction, as illustrated in FIG. 83, the first end 114 201226479 sub-125 (the formation of the metal layer 12 〇Β or the diode 100K of the bump or protruding structure of the diode 100-1 〇〇J) The metal layer m) is oriented upwards, and the diode 100-100K is via the second terminal 127 (which may be the metal layer 12 of the diode 100K or the back metal layer as described for the diode l〇〇j) 122), or via a central via 1 1 1 as illustrated for the diode 1 00D (concrete under the back metal layer 122 in the absence of the diode 100J), or via a perimeter via 134 (not As described separately, or coupled to one or more via a substrate 105 as illustrated for the diode 1A The first conductor 3 10 Α. In the second downward orientation or direction, as illustrated in FIGS. 78 and 79, the first terminal ι25 is oriented downward, and the diode 100_100 Κ via or may be via the first terminal ι25 (eg, two poles) The metal layer 12A of the body 1〇〇_1〇〇J forming the bump or the protruding structure or the metal layer 1S2) of the diode ι00κ is coupled to the one or more first conductors 310Α. For the diode iOOL, The diode 100L can be oriented in a first upward orientation or direction as illustrated in Figures 81 and 82, wherein the first and second terminals 125, 127 are oriented upwards and are not separately illustrated, and the diodes i 〇〇 L can be second-direction Orientation or orientation, wherein the first and second terminals 125, 127 are oriented downward. For S-down orientation, it should be noted that although the first terminal 125 can be in electrical contact with the one or more first conductors 3 10 , The second terminal 127 is likely to be within the dielectric layer 135 and will not be in contact with the second conductor 320 such that the diode 100L is electrically isolated and non-functional when having a first orientation, which may be desirable in many embodiments. The gate of the diode 100-100L is suspended between it in a liquid or colloid Cloth and indeed at any degree orientation 360 is deposited, the pre-registration is not

S 115 201226479 確地以任何確定性知曉(例如最高品質製造之平均值之 4σ-6σ無缺陷率範圍内)任何特定二極體i〇〇1〇〇]L將落在 基板305A或一或多個第一導體31〇上之何處及呈何種定 向。貫際上,二極體1 〇〇_丨00[彼此之間的間距及二極體 100-100L之定向(第一向上或第二向下)存在統計分佈。 可以很確定地說,在可能數百萬個沈積於基板3〇5、3〇5八 薄板或一系列薄板上之二極體1 〇〇_丨〇〇L中,至少一個該種 二極體100-100L將以第二定向豎立,因為其在分散及懸浮 於液體或膠體中時沈積。 因此’ 一極體 l〇〇_l〇〇L 在裝置 3〇〇、7〇〇、720、730、 740、750、760、770中之分佈及定向可以統計學方式描述。 舉例而言,雖然在沈積之前可能不能準確地知曉或不確定 任何特定二極體100-100L將落於且適當固持於基板3〇5A 或一或多個第一導體310上之何處且呈何種定向,但平均 一定數目之二極體100-100L將以每單位面積某一二極體 i〇〇-i〇〇l濃度,例如(但不限於)每平方公分25個二極體 100-100L呈特定定向。 因此,二極體100-1 〇〇L可被認為將或已以實際上隨機 或偽隨機定向且以不規則間距沈積,且可以第一定向向上 、第一端子125向上),該第一定向通常為二極體1〇〇1〇〇J 之正向偏壓電壓及二極體10〇K之反向偏壓之方向(視施加 電壓之極性而定),或可以第二定向向下(第一端子125向 下)’該第二定向通常為二極體100-100J之反向偏壓電壓及 一極體100Κ之正向偏壓之方向(亦視施加電壓之極性而 116 201226479 定)°同樣對於二極體1〇 一 d &amp; 1 OL而呂,其可以第一定向向上(第 一及苐一知子125、127 a 向上),該第一定向通常為二極體 10 0L之正向偏壓電壓 — 方向,或可以第二定向向下(第一 及弟二端子125、127向 卜)’该第二定向通常為二極體1〇〇L 之反向偏壓電壓之方仓&lt; (亦視施加電壓之極性而定),儘管 如上所述且如下文所更詳細描述,呈第二定向之二極體 通常不完全電輕接且不發揮功能。二極體1〇〇-狐亦 有可此以第三定向(-试祕 體側面1 2 1向下而另一二極體側 面121向上)橫向沈積或豎立。 二極體墨水之流體會t + m 體動力學、黏度或流變學、網孔計數、 網孔開口、網孔材料(網孔材料之表面能)、印刷速度、第 導體3 1 0之相間錯雜或梳狀結構之尖齒之定向(尖齒垂 直於基底305通過印刷機移動之方向)、上面沈積有二極體 100-100L之基底3〇5或第—導體31〇之表面能、二極體 二0-100L之形狀及尺寸、.所印刷或沈積之二極體⑽“飢 密度、二極體側面121之形狀、尺寸及/或厚度,以及在二 體土 K固化或乾燥之則一極體液體或膠體懸浮 液之音波處理或其他機械振動似乎會影響一第一、第二或 第二疋向相較於另一第一、第二或第三定向之優勢。舉例 而言,二極體側面121之高度(或垂直厚度,垂直係關於 第一或第二定向)小於約10微米,且高度更尤其小於約8 微米,以使得二極體100-100L具有比較薄之側面或側緣, 顯著降低具有第三定向之二極體100-100L之百分比。 同樣’流體動力學、較高黏度及較低篩孔計數以及上S 115 201226479 Exactly any deterministic knowledge (eg within the range of 4σ-6σ no defect rate of the highest quality manufacturing average) any particular diode i〇〇1〇〇]L will fall on the substrate 305A or one or more Where and how the first conductors 31 are oriented. In contrast, the diodes 1 〇〇_丨00 [the spacing between the two and the orientation of the diodes 100-100L (first upward or second downward) have a statistical distribution. It can be quite sure that at least one of the diodes may be in the form of millions of diodes 1 〇〇 丨〇〇 L deposited on the substrate 3 〇 5, 3 〇 5 8 or a series of thin plates. 100-100L will be erected in a second orientation as it deposits when dispersed and suspended in a liquid or gel. Thus, the distribution and orientation of the &apos;polar body l〇〇_l〇〇L in devices 3〇〇, 7〇〇, 720, 730, 740, 750, 760, 770 can be statistically described. For example, although it may not be accurately known or uncertain before deposition that any particular diode 100-100L will fall on and properly hold on substrate 3〇5A or one or more first conductors 310 and What orientation, but an average number of diodes 100-100L will be a concentration of a diode per unit area, such as (but not limited to) 25 diodes per square centimeter -100L is in a specific orientation. Thus, the diodes 100-1 〇〇L can be considered to have or have been deposited in a substantially random or pseudo-random orientation and at irregular intervals, and can be oriented first, the first terminal 125 is up, the first The orientation is usually the forward bias voltage of the diode 1〇〇1〇〇J and the direction of the reverse bias of the diode 10〇K (depending on the polarity of the applied voltage), or may be oriented in a second orientation The lower (first terminal 125 is downward) 'the second orientation is generally the reverse bias voltage of the diode 100-100J and the direction of the forward bias of the one pole 100 ( (also depending on the polarity of the applied voltage 116 201226479 Also) for the diode 1 〇 1 d &amp; 1 OL and L, it can be oriented first upwards (first and first idiots 125, 127 a up), the first orientation is usually a diode 10 0L forward bias voltage - direction, or may be second oriented downward (first and second terminals 125, 127) "This second orientation is usually the reverse bias of the diode 1 〇〇 L The square of the voltage &lt; (depending on the polarity of the applied voltage), although as described above and as described in more detail below, is second Oriented diodes are usually not fully electrically connected and do not function. The diode 1 〇〇-fox may also be laterally deposited or erected in a third orientation (the side of the test body is 1 2 1 down and the side of the other side of the diode 121 is upward). The fluid of the diode ink will have t + m body dynamics, viscosity or rheology, mesh count, mesh opening, mesh material (surface energy of mesh material), printing speed, phase 3 of the first conductor Orientation of the tines of the miscellaneous or comb structure (the tines are perpendicular to the direction in which the substrate 305 moves through the printing press), the surface of the substrate 3〇5 or the first conductor 31〇 on which the diode 100-100L is deposited, The shape and size of the polar body 0-100L, the printed or deposited diode (10) "hungry density, the shape, size and/or thickness of the side 121 of the diode, and the curing or drying of the two-body soil K The sonication or other mechanical vibration of a polar liquid or colloidal suspension appears to affect the advantage of a first, second or second orientation relative to another first, second or third orientation. For example, The height (or vertical thickness, perpendicular to the first or second orientation) of the diode side 121 is less than about 10 microns, and more particularly less than about 8 microns, such that the diode 100-100L has a relatively thin side or Side edge, significantly reducing the diode with the third orientation 100- Percentage of 100 L. Same as 'hydrodynamics, higher viscosity and lower mesh counts and above

S 117 201226479 述其他因素對二極體100-100L之定向提供一定程度之控 制’從而針對既定應用調諧或調節呈第一或第二定向之二 極體100-100L之百分比。舉例而言,可調節上文列舉之因 素以提向第—定向之出現率,使得多達80%至90%或90% 以上之二極體100-100L呈第一定向。亦舉例而言,可調節 上文所列舉之因素以平衡第一定向與第二定向之出現率, 使得二極體1〇(M〇ol之第一定向與第二定向大致或實質上 平均分配’例如40%至60%之二極體100-1 〇〇l呈第一定向 且60%至40%之二極體1〇〇_1〇〇L呈第二定向。 應注意’即使顯著較高百分比之耦接至第一導體3 1 〇 a 或基底305之二極體100_100L呈第一向上定向或方向,但 在統計學上仍很有可能至少一或多個二極體1 〇〇_丨〇〇L將具 有第二向下定向或方向’且在統計學上,二極體1〇〇_1〇〇l 亦將展現不規則間距,其中一些二極體1 〇〇_丨〇〇J間距相對 較近,而至少一些二極體l00_100j間距遠得多。 換言之,視施加電壓之極性而定,雖然顯著較高百分 比之二極體1 會或將會以第一正向偏壓定向或方向 耦接,但在統計學上,至少一或多個二極體i 00_丨00L將具 有第二反向偏壓定向或方向。若發光或光吸收區域14〇不 同定向則4省此項技術者應瞭解亦視施加電壓之極性而 定,.第一定向應為反向偏壓定向,且第二定向應為正向偏 壓定向。 舉例而言,不同於使用抓放機定位電組件(諸如二極 體)以在所選容許度内表面黏著至電路板上之預定位置且 118 201226479 呈預定定向的傳統電子學製造,在任何既定情況下,二極 體100-100L在裝置300、700中不存在該等預定或確定之位 置(在x-y平面中)及定向(z軸)(亦即,至少一個二極 體100-1OOL於裝置3〇〇、700中將呈第二定向)。 此顯著不同於現有裝置結構,在現有裝置結構中,所 有該等二極體(諸如LED)相對於電壓軌道具有單一定向, 即所有二極體之相應陽極耦接至較高電壓且其陰極耦接至 較低電壓。由於統計定向,視具有第一或第二定向之二極 體100-1GGL之百分比而定且視各種二極體特徵(諸如對反 向偏壓之容許度)而定,可使用AC* 〇(:電壓或電流使二 極體1 00- 1 00L通電而不另外轉換電壓或電流。 參考圖77及99,可使用複數個第一導體31〇,形成至 少兩個各別電極結構,其說明為第一(第一)導體電極或 接點3 1G A以及第二(第—)導體電極或接點3議之相間 錯雜或梳狀電極結構。如圖77中所說明,導體31〇八與31仙 具有相同寬度’且在圖76&amp; 78 +,其說明為具有不同寬 度,其中所有該#變化皆處於本發明範心。對於例示性 裝置300具體實例,二極體墨水或懸浮液(具有二極體 100 100K)沈積於導體31〇A上。第二透明導體㈣(具光 學透射性,如下文所論述”遺後沈積(於介電層上,如下 =所論幻以與導體3刚形成單獨電接觸,如圖78中所 °兒明。儘官未作單獨說明,但作為可選方t,例示性裝置 7〇〇具體貫例亦可具有此等3iqa、3iqb電連接:在二極體 土 X或沿浮液(具有二極體1〇〇L)沈積於基底上之S 117 201226479 states that other factors provide a degree of control over the orientation of the diode 100-100L' to tune or adjust the percentage of the first or second oriented diode 100-100L for a given application. For example, the factors listed above can be adjusted to increase the incidence of the first orientation such that as many as 80% to 90% or more of the diodes 100-100L are in a first orientation. Also for example, the factors listed above may be adjusted to balance the occurrence of the first orientation and the second orientation such that the first orientation and the second orientation of the diode are substantially or substantially The average distribution 'for example, 40% to 60% of the diodes 100-1 〇〇l are in the first orientation and 60% to 40% of the diodes 1〇〇_1〇〇L are in the second orientation. It should be noted that ' Even though a significantly higher percentage of the diodes 100_100L coupled to the first conductor 3 1 〇a or the substrate 305 are in a first upward orientation or direction, it is still statistically possible to have at least one or more diodes 1 〇〇_丨〇〇L will have a second downward orientation or direction' and statistically, the diodes 1〇〇_1〇〇l will also exhibit irregular spacing, some of which are 1 〇〇_丨〇〇J spacing is relatively close, and at least some of the diodes l00_100j are much farther apart. In other words, depending on the polarity of the applied voltage, although a significantly higher percentage of the diode 1 will or will be in the first positive direction Bias orientation or directional coupling, but statistically, at least one or more diodes i 00_丨00L will have a second reverse bias orientation or If the illuminating or light absorbing region 14 is different in orientation, the skilled person should understand that depending on the polarity of the applied voltage, the first orientation should be reverse biased and the second orientation should be positive. Orientation to a bias voltage. For example, a conventional electronics that uses a pick and place machine to position an electrical component (such as a diode) to adhere to a predetermined location on the board within a selected tolerance and 118 201226479 in a predetermined orientation Manufactured, in any given case, the diodes 100-100L do not have such predetermined or defined positions (in the xy plane) and orientation (z-axis) in the devices 300, 700 (ie, at least one diode) 100-1OOL will be in a second orientation in device 3, 700. This is significantly different from existing device structures in which all of the diodes (such as LEDs) have a single orientation with respect to the voltage track, That is, the respective anodes of all the diodes are coupled to a higher voltage and their cathodes are coupled to a lower voltage. Due to the statistical orientation, depending on the percentage of the diodes 100-1GGL having the first or second orientation, and depending on the various Diode feature Depending on the tolerance of the reverse bias, AC* 〇 (: voltage or current can be used to energize the diode 1 00- 1 00L without additionally converting the voltage or current. Referring to Figures 77 and 99, the complex number can be used. The first conductors 31〇 form at least two respective electrode structures, which are illustrated as the first (first) conductor electrode or the junction 3 1G A and the second (first) conductor electrode or the junction 3 Or comb-like electrode structure. As illustrated in Figure 77, the conductors 31 and 31 have the same width ' and in Figures 76 &amp; 78 +, which are illustrated as having different widths, all of which are in the scope of the present invention. . For the exemplary device 300 embodiment, a diode ink or suspension (having a diode 100 100K) is deposited on conductor 31A. The second transparent conductor (4) (with optical transmission, as discussed below) is deposited afterwards (on the dielectric layer, as follows = illusion to form a separate electrical contact with conductor 3, as shown in Figure 78. The official does not make a separate description, but as an alternative, the exemplary device 7 can also have such 3iqa, 3iqb electrical connections: in the diode X or along the floating liquid (with the diode 1〇) 〇L) deposited on the substrate

S 119 201226479 後,可沈積一或多個導體3 10A及3 10B (呈相間錯雜或梳 狀結構)’繼而在導體310A上沈積介電層315»無需具光學 透射性之第二導體32〇隨後沈積(於介電層3 1 5上,如下 文所論述),且亦可具有相間錯雜或梳狀結構,以與導體 3 1 0B形成單獨電接觸,如圖78中對於裝置所說明。如 圖80-82對於裝置7〇〇所說明,為說明另一結構替代方案, 第二端子127耦接至一或多個第一導體31〇且第一端子 耦接至一或多個第二導體32〇。圖81及91_98亦說明另— 適用於裝置 300、700、72〇、73〇、74〇、75〇、76〇、77〇 具 體實例中之任-者的結構可選方案,其中碳電極322八及 322B分別耦接至第一導體31〇與第二導體且延伸至保 護塗層330以外,以為裝置期、提供電連接或耗接。 應注意,當第一導體310具有圖77中所說明之相間錯 雜或梳狀結構時,可使用第一導體31〇B使第二導體32〇^ 電。第一導體之相間錯雜或梳狀結構提供電流平衡,以使 得通過第-導體310A、二極體1〇〇•魏、第二導體32〇及 第-導體31GB之每個電流路徑實f上處於預定範圍内。此 用以使電流須穿過第二透明導體之距離減至最小,從而降 低電阻及熱生成’且一般同時且在預定電流位準範圍内向 所有或大部分二極體l〇〇_10〇L提供電流。 另外’第-導體310之多個相間錯雜或梳狀結構亦可 串聯搞接’諸如以產生具有所需多個二極體跳贿正向 電壓之總器件電壓,諸如(但不限於)高達典型家用電壓。 舉例而言,如圖99中所說明,對於第—區域7ΐι (其十二 120 201226479 極體100-1 00L並聯耦接),導體31 〇B可耦接至第二區域712 (其二極體100-100L亦並聯耦接)之導體31〇A或與第二區 域712之導體310A沈積成整體層,且對於第二區域712(其 中二極體100-100L並聯耦接),導體3i〇b可輕接至第三區 域713 (其二極體100-100L亦並聯耦接)之導體31〇A或與 第三區域7 1 3之導體3 1 0 A沈積成整體層,諸如此類,以使 第一、第二及第三區域(7U、712、713) _聯耦接,其中 每一該種區域所具有之二極體100_10〇L並聯耦接。此串聯 連接亦可用於圖100-103中所說明之系統8〇〇、81〇及裝置 760、770具體實例。 亦如圖99中所說明,可藉由對耦接至所有各別尖齒 (3 1 0 A、3 1 0B )之匯流排7 14施加電壓位準來使任何相間錯 雜或梳狀電極結構通電。匯流排7丨4通常經訂定尺寸以具 有比較低之薄層電阻或阻抗。 對於相對較小區域或對於其他應用(諸如繪圖術 (graphical art))’不需要該等電流平衡及阻抗匹配(薄層電 阻匹配)結構’且可使用較簡單之第一及第二導體3 1〇、32〇 結構,諸如圖91-98、102、103中所說明之層狀結構。舉例 而言’當第一導體與第二導體31〇、32〇之薄層電阻佔第一 及第二導體31〇、320連同二極體1 〇〇-1 〇〇l之總電阻之比例 比較或相對小時,可使用該等層狀結構。亦如圖102及103 17所說明’亦可使用第三導電層3丨2,諸如以沿比較長之裝 置 3 00、700、72〇、73〇、740、75〇、76〇、77〇 條狀物提供 並聯匯流排連接。After S 119 201226479, one or more conductors 3 10A and 3 10B (in phase-to-phase miscellaneous or comb-like structure) can be deposited. Then a dielectric layer 315 is deposited on conductor 310A. A second conductor 32 having optical transparency is not required. The deposition (on dielectric layer 315, as discussed below), and may also have interphase mismatch or comb structures to form separate electrical contacts with conductor 310B, as illustrated for the device in FIG. As illustrated in FIG. 80-82 for the device 7A, to illustrate another structural alternative, the second terminal 127 is coupled to the one or more first conductors 31 and the first terminal is coupled to one or more of the second Conductor 32〇. Figures 81 and 91-98 also illustrate another structural alternative suitable for use in any of the apparatus 300, 700, 72, 73, 74, 75, 76, 77, wherein the carbon electrode 322 And 322B are respectively coupled to the first conductor 31〇 and the second conductor and extend beyond the protective coating 330 to provide electrical connection or consumption for the device period. It should be noted that when the first conductor 310 has the phase-to-phase error or comb structure illustrated in Fig. 77, the second conductor 32 can be electrically discharged using the first conductor 31〇B. The phase-to-phase miscellaneous or comb-like structure of the first conductor provides a current balance such that each current path through the first conductor 310A, the diode 1 〇〇 Wei, the second conductor 32 〇, and the first conductor 31 GB is at Within the predetermined range. This is used to minimize the distance that current must pass through the second transparent conductor, thereby reducing resistance and heat generation 'and generally simultaneously and within a predetermined current level to all or most of the diodes 〇〇10 〇 L Provide current. In addition, a plurality of interphase miscellaneous or comb structures of the 'first conductor 310 may also be connected in series to generate a total device voltage having a desired plurality of diode bridging forward voltages, such as, but not limited to, up to typical Household voltage. For example, as illustrated in FIG. 99, for the first region 7ΐι (the twelve 120 201226479 pole body 100-1 00L is coupled in parallel), the conductor 31 〇B can be coupled to the second region 712 (its diode) The conductor 31〇A of 100-100L is also coupled in parallel or deposited as an integral layer with the conductor 310A of the second region 712, and for the second region 712 (where the diodes 100-100L are coupled in parallel), the conductor 3i〇b The conductor 31A can be lightly connected to the third region 713 (the diodes 100-100L are also coupled in parallel) or the conductor 3 1 0 A of the third region 7 1 3 is deposited as a whole layer, and the like, so that The first and second regions (7U, 712, 713) are coupled to each other, and the diodes 100_10〇L of each of the regions are coupled in parallel. This series connection can also be used with the specific examples of systems 8A, 81A and devices 760, 770 illustrated in Figures 100-103. As also illustrated in Figure 99, any phase miscellaneous or comb electrode structure can be energized by applying a voltage level to the busbars 7 14 coupled to all of the respective tines (3 1 0 A, 3 1 0B ). . The busbars 7丨4 are typically sized to have a relatively low sheet resistance or impedance. For relatively small areas or for other applications (such as graphic art) 'these current balancing and impedance matching (thin layer resistance matching) structures are not required' and the simpler first and second conductors 3 1 can be used 〇, 32〇 structure, such as the layered structure illustrated in Figures 91-98, 102, 103. For example, 'the ratio of the sheet resistance of the first conductor and the second conductor 31〇, 32〇 to the total resistance of the first and second conductors 31〇, 320 together with the diodes 1 〇〇-1 〇〇1 Or relatively small hours, these layered structures can be used. As also illustrated in Figures 102 and 103, 'the third conductive layer 3丨2 can also be used, such as for relatively long devices 3 00, 700, 72 〇, 73 〇, 740, 75 〇, 76 〇, 77 〇 The material provides a parallel busbar connection.

S 121 201226479 接著將一或多個介電層315以留下暴露之第一端子125 (呈第一定向時)或二極體lOOdOOK之第二側(背面)(或 二極體100L之GaN異質結構)(呈第二定向時)或兩者的 方式,以足以在一或多個第一導體310(耦接至二極體 100-100L)與沈積於一或多個介電層315上且與第〆端子 125或二極體100_100K之第二侧(背面)(視定向而定)形 成相應物理及電接觸的一或多個第二導體32〇之間提供電 絕緣的量沈積於二極體l〇〇_1〇〇L上。對於裝置3〇〇,可接 著沈積視情況存在之發光(或發射)層325,繼而沈積視情 況存在之穩定化層335及/或任何透鏡化、分散或密封層 330 °舉例而言,該視情況存在之發光(或發射)層325可 包含斯托克斯移位構光體(st〇kes shifting phosphor )層以 產生發射所需色彩或其他所選波長範圍或光譜之燈或其他 裝置。此等各個層、導體及其他所沈積之化合物在下文中 更詳細論述。對於裝置700,透鏡化、分散或密封層33〇 一 般在第一側上沈積於一或多個第二導體320上,.且視情況 存在之發光(或發射)層325接著可在第二側上沈積於基 板3 05上’繼而沈積視情況存在之穩定化層335及/或任何 透鏡化、分散或密封層33〇。視第一及第二導體31〇、32〇 之位置而定’可在沈積相應第一及.第二導體之後或在任何 透鏡化、分散或密封層330沈積之後塗覆碳電極322A、 322B。此等各個層、導體及其他所沈積之化合物在下文中 更洋細論述。 基底3 0 5可由任何適合材料形成或包含任何適合材 122 201226479 料,諸如(但不限於)塑膠、紙、紙板或塗料紙或紙板。 基底305彳g 3任何可撓性材料,其具有可經受預期使用 條件之強度。在—例示性具體實例中,基底305、3〇5A包 含實質上光學透射性聚酯或塑膠薄板,諸如經處理以達成 印刷可接又性且可自Denver,c〇1〇rad〇, usa之 公司之MacDermid Aui〇type公司講得之ct_5或cp 5或7 密耳聚酉旨(Mylar)薄板,或例如c_me酸處理之 在另一例示性具體實例中,基底305包含例如聚醯亞胺膜, 諸如可自Wumingt()n Delaware,usa之㈣福公司講得之S 121 201226479 Next, one or more dielectric layers 315 are left to leave the exposed first terminal 125 (in the first orientation) or the second side (back surface) of the diode 100dOOK (or the diode of the diode 100L) a heterostructure) (in the second orientation) or both, sufficient to deposit on one or more first conductors 310 (coupled to diodes 100-100L) and one or more dielectric layers 315 And providing an amount of electrical insulation between the second terminal (back surface) of the second terminal (or the rear side) of the diode 100_100K (depending on the orientation) to form a corresponding physical and electrical contact between the one or more second conductors 32 The polar body l〇〇_1〇〇L. For device 3, a luminescent (or emitting) layer 325, optionally present, may be deposited, followed by deposition of a stabilizing layer 335 as appropriate and/or any lensing, dispersing or sealing layer 330°, for example, The illuminating (or emitting) layer 325 that is present may include a Stokes shifting phosphor layer to produce a lamp or other device that emits the desired color or other selected wavelength range or spectrum. These various layers, conductors, and other deposited compounds are discussed in more detail below. For device 700, a lensing, dispersing or sealing layer 33 is typically deposited on the first side on one or more second conductors 320, and optionally a luminescent (or emitting) layer 325 can then be on the second side. Deposited on substrate 305' to subsequently deposit stabilizing layer 335 and/or any lensing, dispersing or sealing layer 33, as appropriate. Depending on the position of the first and second conductors 31A, 32A, the carbon electrodes 322A, 322B may be applied after deposition of the respective first and second conductors or after deposition of any lensing, dispersing or sealing layer 330. These various layers, conductors, and other deposited compounds are discussed in more detail below. Substrate 305 can be formed from any suitable material or include any suitable material, such as, but not limited to, plastic, paper, cardboard, or coated paper or paperboard. Substrate 305 彳 g 3 Any flexible material that has strength to withstand the intended conditions of use. In an exemplary embodiment, the substrate 305, 3〇5A comprises a substantially optically transmissive polyester or plastic sheet, such as processed to achieve printability and is available from Denver, c〇1〇rad〇, usa The company's MacDermid Aui〇type company speaks ct_5 or cp 5 or 7 mils Mylar sheets, or, for example, c_me acid treatment. In another exemplary embodiment, substrate 305 comprises, for example, a polyimide film. , such as from Wumingt () n Delaware, usa (four) Fu company

Kapton。亦在-例示性具體實例中,基底奶包含介電常數 月色夠或適用於針對戶斤撰傅夕$ , k擇之激發電壓提供足夠電絕緣的材 料。基底305彳包含例如以下任—或多者:紙、塗料紙、 塑膠塗佈紙、纖維紙、紙板、廣告紙、廣告板、書、雜諸、 報紙、木板、勝合被及盆仙y 板及其他呈任何所選形式之基於紙或木 材之產品;呈任何所選形式之塑膠或聚合物材料(薄板、 :、·板等)’呈任何所選形式之天然及合成橡膠材料及產 品;呈任何所選形式之天然及合成織物,包括聚合不織布 (梳織、炼喷及紡結不織布);擠出聚烯烴膜,包括LDPE膜; 呈任何所選形式之玻璃、陶竟及其他源自石夕或二氧化石夕之 材料及產品;混凝土(固化)、石料及其他建築材料及產品; 或“現有或將來產生之任何其他產品。在第一例示性具 體只例中,可選擇如下基底3G5、3()5a,其提供一定程度之 电絕=(亦即’具有足以使沈積或塗覆於基底305之第一 ,】)上t 4多個第一導體3 i 〇電絕緣(彼此電絕Kapton. Also in the exemplary embodiment, the base milk comprises a dielectric constant of a moon color sufficient or suitable for providing sufficient electrical insulation for the excitation voltage of the household. The substrate 305 彳 includes, for example, any one or more of the following: paper, coated paper, plastic coated paper, fiber paper, cardboard, advertising paper, advertising board, book, miscellaneous, newspaper, wood board, Shenghe and Panxian y board And other paper or wood based products in any selected form; in any selected form of plastic or polymeric material (sheet, :, board, etc.) 'in any selected form of natural and synthetic rubber materials and products; Natural and synthetic fabrics in any chosen form, including polymeric nonwovens (woven, smelted, and spunbonded); extruded polyolefin films, including LDPE films; glass, ceramics, and others derived from any selected form Materials and products of Shixi or TiO2; concrete (curing), stone and other building materials and products; or "any other product existing or future. In the first exemplary specific example, the following substrate may be selected 3G5, 3() 5a, which provides a certain degree of electrical insulation = (i.e., 'having a first enough to deposit or coat on the substrate 305,]) is electrically insulated (t. Electric

S 123 201226479 緣或與其他褒置或系統組件電絕緣)的介電常數或絕緣特 性)。舉例而言,雖然玻璃薄板或矽晶圓為比較昂貴之選 擇,但其亦可用作基底305。然而,在其他例示性具體實例 中’使用塑膠薄板或塗有塑膠之紙產品來形成基底3〇5,諸 如述聚酯或可自Sappi有限公司獲得之專利紙料及1〇〇比 覆蓋紙料,或自其他紙製造商(諸如MUsubishi papa Mills、Mead)獲得之類似塗料紙,及其他紙產品。在另_ 例示性具體實例中,使用亦可自s a p p i有限公司獲得之具有 複數個凹槽之軋花塑膠薄板或塗有塑膠之紙產品,其中該 等凹槽用於形成導體310。在其他例示性具體實例中^可使 用任何類型之基底305 ’包括(不限於)具有其他密封或囊 封層(諸如塑膠、漆及乙烯樹脂)沈積至基底3〇5之一或 多個表面的基底。基底305、305A亦可包含上述任何材料 之層壓物或其他黏結物。 在一例示性具體實例中,展佈於基板3〇5、3〇5a上之 二極體_·祖之比較小之尺寸提供比較快速之熱耗散而 無需散熱片,且使廣泛材料適用作基底3〇5、3〇5A,包括驟 燃溫度相對較低之材料。此等溫度可包括例如(但不限於) 5〇C或50C以上’或75C或75。(:以上’或i〇〇°c,或125。〇 或150〇C,.或200°C,或300。(:,且可使用例如(但不限於) 87丨:2006標準量測。袭置300、7〇〇之操作溫度亦一般 相對較低,例如,其平均操作溫度低於約15(rc,或低於約 125°C,或低於約1〇〇。(:或低於約75。(:,或低於約5〇t&gt;c。該 平均操作溫度一般應在例如(但不加以限制)裳置3〇〇、7〇〇 124 201226479 =啟=,諸如提供其最大光輸出至少㈣分鐘之後 約2〇。 °。^ f mu&amp;典型環境條件(諸如 、、、C至3 0 C之環境溫度)下,在带 隹裒置300、700之最外層 、里測刼作溫度增量(且計算算術平均值)。 而」二個圖中所說明之例示性基底3。5、舰具有總體 二,:上千坦之形態因數’諸如包含例X但不限於) 貝运牙過印刷機之由所選材料(例如紙或塑膠)形成之 :板,且其可在第-表面(或側面)i具有包括表面粗猶 又、、,1穴:通道或凹槽之型態或具有在預定容許度内實質 士平滑之第一表面(而不包括凹穴、通道或凹槽)之型態。 熟習此項技術者應瞭解’諸多其他形狀及表面型態可用, 其視作等效且處於本發明範疇内。 對於裳置300、720、730具體實例,接著諸如經由印 ㈣程將—或多個第-導體310塗覆或沈積(於基底305 之第一側或表面上),或塗覆於裝置7〇〇、74〇、75〇具體實 例之二極體随上達一定厚度,視導電墨水或聚合物之類 型而定,諸如達約〇.丨至15微米(例如對於典型銀墨水或 :米粒子銀墨水而言’約10微米至12微米濕膜厚度,乾 知或固化膜厚度為約〇 2微米或0.3微米至1〇微米)。在其 他例示性具體實例中,視所塗覆之厚度而定,第一導體3|〇 亦可經砂磨以使表面平滑且亦可經壓延以壓縮導電粒子 (諸如銀)。在製造例示性裝置3〇〇、7〇〇、72〇、73〇、74〇、 7 6 0 7 7 0之例示性方法中,諸如經由印刷或其他沈積 製程將導電墨水、聚合物或其他導電液體或膠體(諸如銀S 123 201226479 The dielectric constant or insulation properties of the edges or electrical insulation of other devices or system components). For example, although glass sheets or tantalum wafers are relatively expensive options, they can also be used as substrate 305. However, in other exemplary embodiments, 'a plastic sheet or a plastic coated paper product is used to form the substrate 3〇5, such as polyester or a patented paper material available from Sappi Co., Ltd. and a 1 inch cover paper stock, Or similar coated paper obtained from other paper manufacturers (such as MUsubishi papa Mills, Mead), and other paper products. In another exemplary embodiment, a embossed plastic sheet or a plastic coated paper product having a plurality of grooves, also obtained from s a p p i Ltd., is used, wherein the grooves are used to form the conductor 310. In other exemplary embodiments, any type of substrate 305' can be used including, without limitation, having other sealing or encapsulating layers (such as plastic, lacquer, and vinyl) deposited onto one or more surfaces of substrate 3〇5. Substrate. Substrates 305, 305A may also comprise laminates or other adhesives of any of the foregoing. In an exemplary embodiment, the relatively small size of the diodes spread over the substrates 3〇5, 3〇5a provides relatively fast heat dissipation without the need for heat sinks, and makes a wide range of materials suitable for use. Substrates 3〇5, 3〇5A, including materials with relatively low quenching temperatures. Such temperatures may include, for example, but are not limited to, 5 C or 50 C or more or 75 C or 75. (: above 'or i〇〇°c, or 125.〇 or 150〇C,. or 200°C, or 300. (:, and can use, for example, but not limited to) 87丨: 2006 standard measurement. The operating temperatures of 300 and 7 are also generally relatively low, for example, their average operating temperature is less than about 15 (rc, or less than about 125 ° C, or less than about 1 〇〇. (: or less than about 75. (:, or less than about 5 〇 t &gt; c. The average operating temperature should generally be, for example, but not limited to, 3 〇〇, 7 〇〇 124 201226479 = y =, such as providing its maximum light output After at least (four) minutes, about 2 〇. ^ f mu &amp; typical environmental conditions (such as,,, C to 30 ° C ambient temperature), in the outermost layer of the belt 300, 700, measured temperature Increment (and calculate the arithmetic mean). And the exemplary bases illustrated in the two figures 3. 5, the ship has a total of two,: the form factor of thousands of tandem 'such as including example X but not limited to) a plate formed of a selected material (such as paper or plastic): a plate, and which may have a surface including a rough surface, 1 hole: the type of channel or groove or the type of the first surface (not including the pocket, channel or groove) that is smoothed within the predetermined tolerance. Those skilled in the art should understand that 'many other Shapes and surface patterns are available, which are considered equivalent and within the scope of the present invention. For specific examples of skirts 300, 720, 730, then, for example, coating or deposition of a plurality of first conductors 310, such as via printing (four) passes ( On the first side or surface of the substrate 305, or on the device 7〇〇, 74〇, 75〇, the diode of the specific example is up to a certain thickness, depending on the type of conductive ink or polymer, such as About 15 microns (for example, for a typical silver ink or a meter of silver ink, 'about 10 microns to 12 microns wet film thickness, dry or cured film thickness is about 微米 2 microns or 0.3 microns to 1 〇 microns In other exemplary embodiments, depending on the thickness of the coating, the first conductor 3|〇 may also be sanded to smooth the surface and may also be calendered to compress the conductive particles (such as silver). Exemplary devices 3〇〇, 7〇〇, 72〇, 73〇, 7 In an exemplary method of 4〇, 7 6 0 7 7 0, such as via a printing or other deposition process, conductive ink, polymer or other conductive liquid or colloid (such as silver)

S 125 201226479 (Ag )墨水或聚合物、奈米粒子或奈米纖維銀墨水組成物、 碳奈米管墨水或聚合物,或銀/碳混合物,諸如分散於銀墨 水中之非晶形奈米碳(其粒控為約7 5 nm至l〇〇nm))沈積 於基底3 0 5上或沈積於一極體10 0 L上,隨後可使盆固化成 部分固化(諸如經由紫外線(wv )固化製程),形成一或多 個第一導體3 1 0。在另一例示性具體實例中,可藉由濺鍍、 旋轉澆鑄(或旋塗)' 氣相沈積或電鍍導電化合物或元素(諸 如金屬(例如鋁、銅、銀、金、鎳))形成一或多個第一導 體310。亦可使用不同類型之導體及/或導電化合物或材料 (例如墨水、聚合物、元素金屬等)之組合產生一或多個複 合第一導體310。多層及/或多種類型之金屬或其他導電材 料可組合形成一或多個第一導體3 1〇,諸如第一導體3 1〇包 含例如(但不限於)鎳上之鍍金層。舉例而言,可使用氣 相沈積之鋁或銀或混合之碳_銀墨水。在各個例示性具體實 例中,沈積複數個第一導體3 1 〇,且在其他具體實例中,第 一導體3 10可沈積為單個導電薄板或以其他方式附接(例 如,耦接至基底305之鋁薄板)(未作單獨說明)。亦在各 個具體實例中,可用於形成一或多個第一導體310之導電 墨水或聚合物在沈積複數個二極體i 〇〇_丨〇〇κ之前可能未固 化或可此僅部分固化,接著在與複數個二極體^οοκ接 觸時70全固化,諸如以與複數個二極體1〇〇1〇〇κ形成歐姆 接觸在例示性具體實例中,一或多個第一導體3 1 〇在 沈積複數個二極體10〇_1〇〇κ之前完全固化,其中二極體墨 水之其他化合物使一或多個第一導體31〇發生一定程度的 126 201226479 溶解,其隨後在與複數個二極體⑽職接觸時再固化, 且對700具體實例,一或多個第m㈣沈積 之後凡全固化。亦對於I置具體實例,亦可使用導電 粒子濃度較低之導電墨水以形成一或多個第—導體川從 而有助於第-端子125抗濕潤。視所選具體實例而定,亦 可使用光學透射性導電材料來形成-或多個第-導體310。 亦可使用其他導電墨水或材料形成一或多個第一導體 310、第二導體320、第三導體(未作單獨說明)以及下文 所論述之任何其他導體,諸如銅、錫、鋁、金、貴金屬、 碳、碳黑、碳奈米| (「CNT」)、單壁或雙壁或多壁cnt、 石墨薄膜、石墨薄膜薄#、奈米石墨薄膜薄片、奈米碳以 及奈米奴與銀之組成物、具有優良或可接受之光學透射性 之奈米粒子及奈米纖維銀組成物,或其他有機或無機導電 聚合物、墨水、膠體或其他液體或半固體材料。在一例示 性具體實例中,將碳黑(其粒徑為約i〇〇 nm )添加至銀墨 水中以使所得碳濃度處於約〇 〇25%至〇 5%範圍内,從而增 強二極體100-100L與第一導體310之間的歐姆接觸及黏 著。另外,可4效地使用任何其他可印或可塗佈導電物質 形成第一導體310、第二導體32〇及/或第三導體,且例示 性導電化合物包括:(1 )來自Conductive Compounds (Londonberry,NH,USA)之 AG-500、AG-800 及 AG-510 銀 導電墨水’其亦可包括其他塗料UV-1006S紫外線可固化介 電質(諸如第一介電層125之一部分);(2)來自DuPont 之7102碳導體(若套印5〇〇〇 Ag)、7105碳導體、5000銀 127 201226479 導體、7144碳導體(連同uv囊封劑)、7152碳導體(連同 7165囊封劑)以及9145銀導體;(3 )來自SunPoly公司之 128A銀導電墨水、129A銀及碳導電墨水、140A導電墨水 以及150A銀導電墨水;(4)來自Dow Corning公司之 PI-2000系列高導電銀墨水;(5 )來自Henkel/Emerson &amp;S 125 201226479 (Ag ) Ink or polymer, nanoparticle or nanofiber silver ink composition, carbon nanotube ink or polymer, or silver/carbon mixture, such as amorphous nanocarbon dispersed in silver ink (with a particle size of about 75 nm to 10 nm) deposited on the substrate 305 or deposited on a monopole 100 L, which can then be cured to a partial cure (such as via UV (wv) curing Process) forming one or more first conductors 310. In another illustrative embodiment, a conductive compound or element such as a metal (eg, aluminum, copper, silver, gold, nickel) may be formed by sputtering, spin casting (or spin coating) 'vapor deposition or plating. Or a plurality of first conductors 310. One or more composite first conductors 310 can also be produced using a combination of different types of conductors and/or conductive compounds or materials (e.g., ink, polymer, elemental metal, etc.). The plurality of layers and/or layers of metal or other electrically conductive material may be combined to form one or more first conductors 3 1 , such as, for example, but not limited to, a gold-plated layer on nickel. For example, a vapor deposited aluminum or silver or a mixed carbon-silver ink can be used. In various exemplary embodiments, a plurality of first conductors 3 1 沉积 are deposited, and in other embodiments, the first conductors 3 10 can be deposited as a single conductive sheet or otherwise attached (eg, coupled to substrate 305) Aluminum sheet) (not separately stated). Also in various embodiments, the conductive ink or polymer that can be used to form the one or more first conductors 310 may be uncured or may be partially cured only prior to depositing the plurality of diodes i 〇〇 丨〇〇 丨〇〇 κ, 70 is then fully cured upon contact with a plurality of diodes, such as to form an ohmic contact with a plurality of diodes 1 〇〇 1 〇〇 κ in an illustrative embodiment, one or more first conductors 3 1 〇 completely solidified before depositing a plurality of diodes 10〇_1〇〇κ, wherein other compounds of the diode ink cause one or more first conductors 31 to undergo a certain degree of 126 201226479 dissolution, which is followed by plural The two diodes (10) are re-cured upon contact, and for the 700 specific examples, one or more m (d) depositions are fully cured. Also for the specific example of I, it is also possible to use a conductive ink having a lower concentration of conductive particles to form one or more first conductors, thereby contributing to the moisture resistance of the first terminal 125. Optically transmissive conductive materials may also be used to form - or a plurality of first conductors 310, depending on the particular embodiment selected. Other conductive inks or materials may also be used to form one or more of first conductor 310, second conductor 320, third conductor (not separately illustrated), and any other conductors discussed below, such as copper, tin, aluminum, gold, Precious metals, carbon, carbon black, carbon nanotubes | ("CNT"), single or double or multi-wall cnt, graphite film, graphite film thin #, nano graphite film sheet, nano carbon and nano and silver Compositions, nanoparticles having excellent or acceptable optical transmission, and nanofiber silver compositions, or other organic or inorganic conductive polymers, inks, colloids, or other liquid or semi-solid materials. In an exemplary embodiment, carbon black (having a particle size of about i 〇〇 nm) is added to the silver ink such that the resulting carbon concentration is in the range of about 〇〇25% to 〇5%, thereby enhancing the diode. Ohmic contact and adhesion between 100-100L and the first conductor 310. In addition, the first conductor 310, the second conductor 32, and/or the third conductor may be formed using any other printable or coatable conductive material, and the exemplary conductive compounds include: (1) from Conductive Compounds (Londonberry) , NH, USA) AG-500, AG-800 and AG-510 silver conductive inks' which may also include other coatings UV-1006S UV curable dielectric (such as a portion of the first dielectric layer 125); (2 ) 7102 carbon conductor from DuPont (if overprinted 5 〇〇〇 Ag), 7105 carbon conductor, 5000 silver 127 201226479 conductor, 7144 carbon conductor (along with uv encapsulant), 7152 carbon conductor (together with 7165 encapsulant) and 9145 Silver conductor; (3) 128A silver conductive ink from SunPoly, 129A silver and carbon conductive ink, 140A conductive ink and 150A silver conductive ink; (4) PI-2000 series high conductivity silver ink from Dow Corning; (5) ) from Henkel/Emerson &amp;

Cumings 之 Electrodag 725A;( 6)可自 Boston,Massachusetts USA之Cabot公司獲得之Monarch M120,其用作碳黑添加 劑諸如以添加至銀墨水中從而形成碳與銀墨水之混合物; (7) Acheson 725A導電銀墨水(可自Henkel獲得)單獨或 與其他銀奈米纖維組合;以及(8 )可自Gye〇nggi d〇, K〇rea 之Inktec.獲得之inktek PA-010或PA-030奈米粒子或奈米 纖維可網版印刷銀導電墨水。如下文所論述,亦可使用此 等化合物形成其他導體(包括第二導體32〇 )及任何其他導 電跡線或連接件。另外,導電墨水及化合物可自多種其他 來源獲得。 亦可使用具實質上光學透射性之導電聚合物形成一或 多個第一導體31〇以及第二導體32〇及/或第三導體。舉例 而=,除下文所論述之其他任何透射性導體及其等效物之 外,亦可使用聚乙烯-二氧噻吩,諸如可以商標名「〇rga⑶心 自 Ridgefield Park,New Jersey,USA 之 AGFA 公司購得之聚 乙烯-二氧噻吩。可等效使用之其他導電聚合物包括例如(= 限於)聚苯胺及聚。比洛聚合物。在另—例示性具體實例中, 使用已懸浮或分散於可聚合離子液體或其他流體中之碳奈 米官形成具實質上光學透射性或透明之各種導體,諸如一 128 201226479 或多個第二導體320。應注意,對於裝置3〇〇具體實例,一 或多個第二導體320 —般具實質上光學透射性以在裝置之 第一側上提供較大光發射或吸收,且對於裝置7〇〇具體實 例,除非在第一側上亦需要光輸出,否則一或多個第二導 體320 —般不明顯具有光學透射性以提供相對較低之電阻 抗。在一些例示性裝置7〇〇具體實例中,一或多個第二導 體320具高度不透明性及反射性以充當鏡面且提高自裝置 700之第二側的光輸出。 已用於形成一或多個第二導體32〇之光學透射性導電 墨水包括可自Tempe,Ariz〇na,USA之職^㈣ Technologies Worldwide公司購得之透明導電墨水,且已描 述於Mark D. L〇wenthal等人於2011年2月28日申請且: 為「Metallic Nanofiber Ink,SubstantiaUy 化卿訂_Electrodag 725A of Cumings; (6) Monarch M120 available from Cabot Corporation of Boston, Massachusetts, USA, which is used as a carbon black additive such as to be added to silver ink to form a mixture of carbon and silver ink; (7) Acheson 725A conductive Silver ink (available from Henkel) alone or in combination with other silver nanofibers; and (8) inktek PA-010 or PA-030 nanoparticle available from Inktec. of Gye〇nggi d〇, K〇rea Nanofiber can be screen printed silver conductive ink. These compounds can also be used to form other conductors (including the second conductor 32A) and any other conductive traces or connectors as discussed below. In addition, conductive inks and compounds are available from a variety of other sources. One or more first conductors 31 and second conductors 32 and/or third conductors may also be formed using a substantially optically transmissive conductive polymer. By way of example, in addition to any other transmissive conductors discussed below and equivalents thereof, polyethylene-dioxythiophene may also be used, such as AGFA, which may be marketed under the trade name "〇rga(3) from Ridgefield Park, New Jersey, USA. Polyethylene-dioxythiophene commercially available from the company. Other conductive polymers that can be used equivalently include, for example, (=) polyaniline and polypyrrol. In another exemplary embodiment, the suspension or dispersion is used. The carbon nanotubes in the polymerizable ionic liquid or other fluid form various conductors that are substantially optically transmissive or transparent, such as a 128 201226479 or a plurality of second conductors 320. It should be noted that for the device 3, a specific example, The one or more second conductors 320 are generally substantially optically transmissive to provide greater light emission or absorption on the first side of the device, and for the device 7 〇〇 specific example, unless light is also required on the first side Output, otherwise one or more of the second conductors 320 are generally not significantly optically transmissive to provide a relatively low electrical impedance. In some exemplary devices, in one embodiment, one or more The two conductors 320 are highly opaque and reflective to act as a mirror and enhance the light output from the second side of the device 700. Optically transmissive conductive inks that have been used to form one or more second conductors 32 are available from Tempe, Ariz〇na, USA's position ^ (4) Transparent conductive inks purchased by Technologies Worldwide, as described by Mark D. L〇wenthal et al. on February 28, 2011 and: "Metallic Nanofiber Ink, SubstantiaUy Order _

Conductor,and Fabrication Method」之美國臨時專利申請案 第61/447,160號中,該專利申請案之全部内容以引用方式 併入本文中,具有如同在本文中闡述其全文一般之相同完 全效力。另一透明導體包括於諸如1-丁醇、環己醇、冰2 酸之溶劑(約1重量% )與聚乙烯吡咯啶_( MW為約1 〇〇 萬)(約2重量%至4重量%,或更尤其約3重量% )之混八 物中之銀奈米纖維(約3重量%至50重量。/。,或更尤其約4 重量%至40重量%,或更尤其約5重量%至3〇重量%,或 更尤其約6重量%至20重量%,或更尤其約5重量%至^ $ 重量%,或更尤其約7重量%至13重量%,或更尤其約9重 量%至U重量%,或更尤其約i。重量%)β另-導電墨水亦The entire disclosure of this patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire portion Another transparent conductor is included in a solvent such as 1-butanol, cyclohexanol, glacial acid (about 1% by weight) and polyvinylpyrrolidine _ (MW is about 1,000,000) (about 2% by weight to 4% by weight) %, or especially especially about 3% by weight of the silver nanofibers in the blended matter (about 3 to 50% by weight, or more especially about 4 to 40% by weight, or more especially about 5 weights) % to 3% by weight, or more particularly from about 6% to 20% by weight, or more especially from about 5% to 6% by weight, or more especially from about 7% to 13% by weight, or more especially about 9 by weight % to U% by weight, or more particularly about i.% by weight) β-conductive ink

S 129 201226479 可包含與複數種其他溶劑(諸如與 一 J、兴約5〇重量%至05重量% …醇及約1重量%至1〇重量。之正丙醇或&quot;氧基-2-丙醇)混合之奈米粒子或奈米纖維銀墨水(諸&gt; Μ㈣ P A - 0 1 0或p A - 030奈米粒子及奈半鏞 才卞A卞纖維可網版印刷銀導電墨 水)(約3 0重量〇/〇至5 〇重量〇/〇 )。另 里里)另—導電墨水亦可包含與 複數種如上所述之其他溶劑混合 〜不木拉子或奈米纖維銀 墨水(諸如 Inktek PA-010 戎 PA , A ^030奈米粒子或奈米纖維 可網版印刷銀導電墨水),銀漠声在奶λ。 ^ ; m /辰度為約0.30重量%至3.0重 量 〇/〇。 有機半導體(另稱為π共車厄聚合物、導電聚合物或合 成金屬)因碳原子之間沿聚合物主鏈t π共輛而固有地具 半導電性。其結構含有一維有機主鏈,由此在η_型或p+型 摻雜之後能夠導電。經充分研究之有機導電聚合物之類別 包括聚(乙炔)、聚(吡咯)、聚(噻吩)、聚苯胺、聚噻吩、聚(對 本石風醚)、t (對伸本基伸乙烯基)(ΡΡ V )及ρρν衍生物、 聚(3-烷基噻吩)、聚吲哚、聚芘、聚咔唑、聚甘菊環 '聚氮 呼、聚(芴)及聚奈。其他實例包括聚苯胺、聚苯胺衍生物、 聚噻吩、聚噻吩衍生物、聚吡咯、聚吡咯衍生物、聚苯并 °塞吩、聚苯并噻吩衍生物、聚對伸苯基、聚對伸苯基衍生 物、聚乙炔、聚乙炔衍生物、聚二乙炔 '聚二乙炔衍生物、 聚對伸苯基伸乙烯基、聚對伸苯基伸乙烯基衍生物、聚萘、 及聚萘衍生物、聚異苯并噻吩(PITN)、伸雜芳基可為例如 噻吩、呋喃或吡咯之聚伸雜芳基伸乙烯基(ParV )、聚苯硫 醚(PPS)'聚迫萘(PPN)、聚酞菁(pphc)等,及其衍生 130 201226479 物、其共聚物及其混合物。如 戈本文所用之術§吾诉生物意謂 該聚合物由經側鏈或基團取代之單體形成。 使導電聚合物聚合之方法 a 成小又特疋限制,且適用方法 包括例如(但不限於)UV或豆# + r并取人么甘 — 他電磁聚合、熱聚合、電解 氧化聚合、化學氧化聚合及催 .^ _ 联1承合。由聚合方法獲得之 聚合物常呈中性且不具導電性直至經摻雜為止。因此,對 聚合物進行P型摻雜或n型摻雜以使其轉化為導電聚合 物。半導體聚合物可經化學摻雜 ^雜:¾電化學摻雜。用於摻雜 之物質不受特定限制;—般 奴彳更用迠夠接受電子對之物質, 諸如路易斯酸(Lewis acid ) 〇警如A &gt;邮办 ; 貫例包括鹽酸、硫酸、有機 磺酸衍生物(諸如對磺酸、臂笑 * κ本乙埽石頁酸、院基苯績酸、 4早月&amp;石兴酸、烧基石黃酸、崎柳酿望\ 卜 K W ^ 4 )、氯化鐵、氯化銅及硫酸 鐵。 應注意,對於「顛倒 夕驻 - 」之扁置3 00構造,選擇具光學 透射性之基底305及-或多個第—導體31〇以使光穿過基 底3〇5之第二側進入及/或離開。另外,當第二導體32〇亦 透明時,光可自裝置300之兩側或在裝置300之兩側上發 射或吸收。 一或多個第一導體310可具有各種紋理,諸如具有比 較平滑之表面’或相反具有粗撻或有尖端之表自,或具有 工矛王改造之微乳化結構(例如可白〇 , &amp; k N 1 J自Sappi有限公司獲得)以 潛在地改良其他層(諸如介雷屏 丨电層315)之黏著及/或有助於 後續與二極體1 〇〇_ 1 〇〇L形成歐柄拉加 . 风^姆接觸。亦可在沈積二極體 100-100L之前對一或多個第—蓮鹏 ^ ^ 導體310進行電暈處理,該 131 201226479 電暈處理趨於移除可能已形成之任何氧化物且亦有助於後 人複數個—極體!00_ j00L形成歐姆接觸。熟習電子或印 刷㈣者應想到可形成—或多個第—導體川之方式的諸 多變化,其中所有該等變化視作等效且處於本發明範疇 内舉例而“但不加以限制)’亦可經由濺鍍或氣相沈積 來沈積一或多個第―審贈 弟導體310。另外,對於其他各個具體實 例’可诸如經由塗你、印用丨丨、·托力在4、t 怖 Pm 錢鍍或氣相沈積以單個或連 續層形式沈積一或多個第一導體31〇β ,因此如本文所用之「沈積」包括此項技術中已知之 衝擊式或非衝擊式之任何及所有印刷、塗佈、輥軋、喷霧、 層鋪、賤鐘、電鍍、旋轉洗鑄(或旋塗)' 氣相沈積、層合、 貼附及/或其他沈積製程。「印刷」包括此項技術中已知之衝 擊式或非衝擊式之任何及所有印刷、塗佈、輥軋、喷霧、 層鋪、旋塗、層合及/或貼附製程,且尤其包括例如(但不 限於)網版印刷、喷墨印刷、電光印刷、冑墨印刷、光阻 及其他抗蝕劑印席1】、熱感印刷、雷射喷印、磁性印刷、移 印、快乾印刷、混合平版微影、凹板印刷(Gravure)及其 他凹紋印刷。所有該等製程在本文中視作沈積製程且可供 使用。例示性沈積或印刷製程不需要顯著生產控制或限 制。不需要特定溫度或壓力。可能使用某種清潔室或經過 渡空氣,但其程度可能與已知印刷或其他沈積製程之樣準 一致。然而,對於一致性而言,諸如為使形成各個具體實 例之各個依次沈積之層正確對準(對齊),可能需要相對惶 溫(可能有例外,如下文論述)及濕度。另外,所用之各 132 201226479 種化合物可含於各種聚合物、黏合劑或其他分 可經熱固化或乾燥,在環境條件 -S 129 201226479 may comprise a plurality of other solvents (such as with a J, about 5 wt% to 05 wt% ... alcohol and about 1 wt% to 1 wt. of n-propanol or &quot;oxy-2- Propanol) mixed nanoparticle or nanofiber silver ink (all > Μ (4) PA - 0 1 0 or p A - 030 nanoparticle and nano 镛 镛 卞 A 卞 fiber screenable silver conductive ink) (about 30 0 〇 / 〇 to 5 〇 weight 〇 / 〇). In addition, the conductive ink may also be mixed with a plurality of other solvents as described above. ~ No Muraz or nanofiber silver ink (such as Inktek PA-010 戎PA, A ^ 030 nano particles or nano Fiber can be screen printed silver conductive ink), silver in the sound of milk λ. ^ ; m / Chen is about 0.30% by weight to 3.0 weight 〇 / 〇. Organic semiconductors (also known as π-co-polymers, conductive polymers or synthetic metals) are inherently semiconducting due to the carbon atoms interdigiting along the polymer backbone t π . Its structure contains a one-dimensional organic backbone, thereby enabling conduction after η-type or p+-type doping. Well-studied classes of organic conductive polymers include poly(acetylene), poly(pyrrole), poly(thiophene), polyaniline, polythiophene, poly(p-oxide), and t (for extended-base vinyl) ΡΡ V ) and ρρν derivatives, poly(3-alkylthiophene), polyfluorene, polyfluorene, polycarbazole, poly-chamomile ring 'polyazide, poly(芴) and polyene. Other examples include polyaniline, polyaniline derivatives, polythiophenes, polythiophene derivatives, polypyrroles, polypyrrole derivatives, polybenzoxene, polybenzothiophene derivatives, polyparaphenylene, poly-stretch a phenyl derivative, a polyacetylene, a polyacetylene derivative, a polydiacetylene 'polydiacetylene derivative, a polyparaphenylene vinyl group, a polyparaphenylene vinyl derivative, a polynaphthalene, and a polynaphthalene derivative, The polyisobenzothiophene (PITN) and the heteroaryl group may be, for example, a poly(arylene)-extended vinyl group (ParV) of a thiophene, a furan or a pyrrole, a polyphenylene sulfide (PPS) poly(perylene) (PPN), a polyfluorene. Phthalate and the like, and derivatives thereof 201226479, copolymers thereof, and mixtures thereof. As used herein, the term "the organism" means that the polymer is formed from a monomer substituted with a side chain or a group. The method a for polymerizing a conductive polymer is small and particularly limited, and suitable methods include, for example, but not limited to, UV or Bean # + r and take it for humans - electromagnetic polymerization, thermal polymerization, electrolytic oxidation polymerization, chemical oxidation Aggregation and reminder. ^ _ 1 unit. The polymer obtained by the polymerization process is often neutral and non-conductive until it is doped. Therefore, the polymer is P-doped or n-doped to convert it into a conductive polymer. The semiconducting polymer can be chemically doped: 3⁄4 electrochemically doped. The substances used for doping are not subject to specific restrictions; the general slaves are more suitable for accepting electron-pairing substances, such as Lewis acid, such as A &gt; post office; and examples include hydrochloric acid, sulfuric acid, and organic sulfon Acid derivatives (such as sulfonic acid, arm * * κ 埽 埽 页 、 、 、 院 院 院 院 院 院 院 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ) ) ) ) ) KW KW KW KW , ferric chloride, copper chloride and iron sulfate. It should be noted that for the flattened 300 configuration of "reverse-back", an optically transmissive substrate 305 and/or a plurality of first conductors 31 are selected to allow light to pass through the second side of the substrate 3〇5 and / or leave. Alternatively, when the second conductor 32 is also transparent, light can be emitted or absorbed from either side of the device 300 or on both sides of the device 300. The one or more first conductors 310 can have various textures, such as having a relatively smooth surface 'or oppositely having a rough or pointed surface, or having a micro-emulsified structure modified by a Spearman (eg, can be white, &amp; k N 1 J obtained from Sappi Co., Ltd.) to potentially improve adhesion of other layers (such as the dielectric layer 315) and/or to facilitate subsequent formation of a stalk with the diode 1 〇〇 1 1 〇〇L Laga. Wind ^m contact. It is also possible to corona treat one or more of the first -Lin Peng ^ ^ conductors 310 before depositing the diodes 100-100L. The 131 201226479 corona treatment tends to remove any oxide that may have formed and also helps After the plurals - polar! 00_j00L forms an ohmic contact. Those skilled in the art of electronic or printing (4) should be aware of many variations in the manner in which one or more of the first conductors may be formed, all of which are considered equivalent and within the scope of the invention as exemplified by "but not limited" Depositing one or more first-principal conductors 310 by sputtering or vapor deposition. In addition, for other specific examples, 'for example, by painting you, printing 丨丨, ·托力 in 4, t P Pm money Plating or vapor deposition deposits one or more first conductors 31A in a single or continuous layer, and thus "depositing" as used herein includes any and all printing, impinging or non-impacting known in the art. Coating, Rolling, Spraying, Layering, Cuckoo Clocking, Electroplating, Rotary Washing (or Spin Coating) 'Vapor deposition, lamination, attachment and/or other deposition processes. "Printing" includes any and all of the printing, coating, rolling, spraying, laminating, spin coating, laminating and/or attaching processes known in the art as impact or non-impact, and includes, for example, (but not limited to) screen printing, inkjet printing, electro-optical printing, ink printing, photoresist and other resist printing 1], thermal printing, laser printing, magnetic printing, pad printing, fast drying printing Mixed lithography, Gravure and other intaglio printing. All such processes are considered herein as deposition processes and are available for use. An exemplary deposition or printing process does not require significant production control or limitations. No specific temperature or pressure is required. It is possible to use some kind of clean room or to pass the air, but the extent may be the same as that of known printing or other deposition processes. However, for consistency, such as to properly align (align) the layers that are sequentially deposited in each of the specific embodiments, relative temperatures (with possible exceptions, as discussed below) and humidity may be required. In addition, each of the 132 201226479 compounds used may be contained in various polymers, adhesives or other sub-components that can be thermally cured or dried under ambient conditions -

固化。 欠设或UV 亦應注意,-般對於諸如經由印刷或其他沈 I:各種化合物進行任何塗覆,亦可諸如經由使用抗㈣ :曰或精由以其他方式改良該表面之「可濕性」 改良表“諸如基底305之表面、各個第一或第二導二 別為310、320 )之表面及/或二極體⑽损L之表 例如親水性、疏水性或電學(正電荷或負電荷)特徵來控 制表面特性或表面能。連同所沈積之化合物、懸浮液、^ 合物或墨水之特徵(諸如表面張力),可使所沈積之化人物 黏者至所需或所選位置,且有效避開其他區域。 舉例而Η但不加以限制),使用任何蒸發性或揮發性 有機或無機化合物(諸如水、醇、醚等)使複數個二極體 IJO-IOOL懸浮於液體、半液體或膠體載劑令,亦可包括黏 2劑組分(諸如樹脂)及/或界面活性劑或其他助流劑。在 :例不性具體實例中,舉例而言(但不加以限制)複數個 二極體lGG-lOOL如上文在實施例中所述而懸浮。亦可使用 界面活性劑或助流劑,諸如辛醇、曱醇、異丙醇或去離子 水,且亦可使用黏合劑,諸如含有實質上或比較小之鎳珠 粒(例如1微米)之各向異性導電黏合劑(其例如在壓縮 及固化之後提供導電性且可用以改良或增強歐姆接觸之形 成),或任何其他可uv、熱或空氣固化之黏合劑或聚合物二 匕括下文更詳細論述者(且其亦可與介電化合物、透鏡等Cured. Under- or UV should also be noted that, for example, any coating, such as via printing or other sinking: various compounds, may also be used to improve the "wetability" of the surface, such as via the use of anti-(4): 曰 or fine. The surface of the modified table "such as the surface of the substrate 305, each of the first or second guides 310, 320" and/or the surface of the diode (10), such as hydrophilicity, hydrophobicity or electrical (positive or negative charge) Feature to control surface properties or surface energy. Together with the characteristics of the deposited compound, suspension, compound or ink, such as surface tension, the deposited character can be adhered to the desired or selected location, and Effectively avoiding other areas. For example but without limitation, use any evaporative or volatile organic or inorganic compound (such as water, alcohol, ether, etc.) to suspend multiple diodes IJO-IOOL in liquid, semi-liquid Or a colloidal carrier, which may also include a viscous component (such as a resin) and/or a surfactant or other glidant. In the example of exemplification, by way of example (but not limitation) Diode lGG-lOOL Suspended as described above in the examples. Surfactants or glidants such as octanol, decyl alcohol, isopropanol or deionized water may also be used, and binders may also be used, such as containing substantially or comparatively Small nickel bead (eg, 1 micron) anisotropic conductive adhesive (which provides conductivity, for example, after compression and curing, and can be used to modify or enhance the formation of ohmic contacts), or any other uv, heat or air cure Adhesives or polymers are discussed in more detail below (and may also be associated with dielectric compounds, lenses, etc.)

S 133 201226479 一起使用)°S 133 201226479 Use together)°

具有各種色 ) 中之任一 100-100L 接 300 &gt; 300A 另外,各個二極體1 00-1 00L可組態為例h 彩(諸如紅色、綠色、藍色、黃色、琥珀色等 者之發光二極體。具有不同色彩之發光二極體 著可混合於例示性二極體墨水中’以便在裝置 中通電時,產生所選色溫。 乾燥或固化之二極體墨水實施例1 : 包含以下之組成物: 複數個二極體100-100L;及 固化或聚合之樹脂或聚合物。 乾燥或固化之二極體墨水實施例2 : 包含以下之組成物: 複數個二極體100-100L;及 部分圍繞各 固化或聚合之樹脂或聚合物,其形成至少 二極體且厚度為約10 nm至3 00 nm之膜。 乾燥或固化之二極體墨水實施例3 : 包含以下之組成物: 複數個二極體100-100L ;及 至少痕量之固化或聚合之樹脂或聚合物。 乾燥或固.化之二極體墨水實施例4 : 匕含以下之組成物: 複數個二極體l〇〇_l〇〇L ; 111化或聚合之樹脂或聚合物;及 至少痕量之溶劑。 134 201226479 乾燥或固化之二極體墨水實施例5 : 包含以下之組成物: 才复數個一·極體100-100L, 至少痕量之固化或聚合之樹脂或聚合物;及 至少痕量之溶劑。 乾燥或固化之二極體墨水實施例6 : 包含以下之組成物: 複數個二極體10〇-l〇〇L ; 固化或聚合之樹脂或聚合物; 至少痕量之溶劑;及 至少痕量之界面活性劑。 乾燥或固化之二極體墨水實施例7 : 包含以下之組成物: 複數個二極體100-100L ; 至少痕量之固化或聚合之樹脂或聚合物; 至少痕量之溶劑;及 至少痕S之界面活性劑。 接著諸如藉由使用280目塗有聚酯或pTFEi網進行 刷使二極體墨水(懸浮之二極體1G(M⑽l及視情況存 惰性粒子)沈積於裂置具體實例之基底MM 於裝置300具體實例之一或多個第上二, 經由例如加熱、UV固化或任何乾操 且诸如 組分消散以留下二極體1〇〇_1〇〇L實質上/揮發性或蒸發性 黏著至基底305A或一或多個第一導體1或至少部分接觸且 1 〇。在一例示性具Any one of 100-100L with various colors) 300 &gt; 300A In addition, each of the diodes 1 00-1 00L can be configured as an example of h color (such as red, green, blue, yellow, amber, etc.) Light-emitting diodes. Light-emitting diodes of different colors can be mixed in the exemplary diode ink to produce a selected color temperature when energized in the device. Dry or cured diode ink Example 1: Contains The following compositions: a plurality of diodes 100-100L; and a cured or polymerized resin or polymer. Dried or cured diode ink Example 2: Contains the following composition: Multiple diodes 100-100L And partially surrounding each cured or polymerized resin or polymer, which forms a film having at least a diode and having a thickness of about 10 nm to 300 nm. Dry or cured diode ink Example 3: Containing the following composition : a plurality of diodes 100-100L; and at least traces of cured or polymerized resin or polymer. Dry or solidified diode inks Example 4: 匕 contains the following components: a plurality of diodes l〇〇_l〇〇L; 111 or polymerized resin or And at least trace amounts of solvent. 134 201226479 Dry or cured diode ink Example 5: Contains the following composition: Only a plurality of polar bodies 100-100L, at least traces of cured or polymerized resin Or a polymer; and at least traces of solvent. Dry or cured diode ink Example 6: Composition comprising: a plurality of diodes 10〇-l〇〇L; cured or polymerized resin or polymer At least traces of solvent; and at least traces of surfactant. Dry or cured diode inks Example 7: Contains the following composition: Multiple diodes 100-100L; at least traces of curing or polymerization a resin or polymer; at least traces of solvent; and at least a surfactant of S. Next, the diode ink (suspended diode 1G) is brushed, for example, by using a 280 mesh coated polyester or pTFEi mesh. M(10)l and optionally inert particles are deposited on the substrate MM of the specific embodiment of the device 300 in one or more of the specific examples of the device 300, via, for example, heating, UV curing or any dry operation and such as component dissipating to leave two Polar body 1〇〇_ 1〇〇L substantially/volatile or evaporatively adhered to substrate 305A or one or more first conductors 1 or at least partially in contact with 1 〇.

135 S 201226479 體實例中,在約i 1(rc下使沈積之二極體墨水固化通常5分 鐘或不到5分鐘。如乾燥或固化之二極體墨水實施例1及2 中殘留之乾燥或固化之二極體墨水一般包含複數個二極體 100-100L及固化或聚合之樹脂或聚合物(至少以痕量存在) (其如上所述可一般將二極體100-100L固定或固持於適當 位置上)’且如先前所論述形成膜295。雖然揮發性或蒸發 ( 生、.且刀(諸如苐一及/或第二溶劑及/或界面活性劑)實質上 消政仁了殘留痕置或更多量’如乾燥或固化之二極體墨 水實施例3-6中所說明。如本文所用之「痕量」之成分應理 解為相較於初始沈積於第一導體31〇及/或基底3〇5、3〇5八 上時二極體墨水中最初存在之成分之量大於零但小於或等 於5°/◦之量。 元成之裝置(300、300A、300B ' 300C、300D、700、 700A、700B、720、730、740、750、760、770 )中所得二 極體100-100L密度或濃度(例如每平方公分二極體 100-100L之數目)將視二極體墨水中二極體i〇〇1〇〇l之濃 度而定。當二極體l〇〇_l〇〇L之尺寸處於2〇微米至30微米 之範圍内時,可使用極高密度但仍僅覆蓋較小百分比之表 面積(一優勢在於允許較大程度的熱耗散而不另外需要散 熱片)。舉例而言,當使用尺寸處於2〇微米至3〇微米範圍 内之二極體100—100L時,一平方吋中1〇,〇〇〇個二極體僅覆 蓋約1 %之表面積。亦舉例而言,在一例示性具體實例中, 對於在裝置 300、300A、300B、300C、300D、700、700A、 700B、720、730、740、750、760、770 中使用,多種二極 136 201226479 體逸、度可用且處於本發明範疇内,包括(不限於):每平方 公分2至10,〇〇〇個二極體i〇〇_1〇〇L;或更尤其,每平方公 分5至10,000個二極體10〇_1〇〇L ;或更尤其,每平方公分 5至1,000個二極體100_1〇〇L ;或更尤其,每平方公分$至 100個二極體100-100L;或更尤其,每平方公分5至5〇個 一極體100-100L ;或更尤其,每平方公分5至25個二極體 100-100L;或更尤其,每平方公分1〇至8,〇〇〇個二極體 100-100L ;或更尤其,每平方公分15 1 5,〇〇〇個二極體 100-100L ;或更尤其,每平方公分2〇至1〇〇〇個二極體 100-100L ;或更尤其,每平方公分μ至1〇〇個二極體 100-100L ;或更尤其,每平方公分25至5〇個二極體 100-100L 。 亦可使用其他步驟或若干步驟製程將二極體1〇〇_i〇〇l 沈積於一或多個第一導體31〇上。亦舉例而言(但不加以 限制),可首先沈積黏合劑,諸如甲氧基化二醇醚丙烯酸酯 單體(其亦可包括水溶性光引發劑,諸如τρ〇 ( (2,4,卜三曱 基本曱醯基)一笨基氧化膦(triphosphene oxide)),或各向 異性導電黏合劑,繼而如上文所論述沈積已懸浮於液體或 膠體中之二極體l〇0_1〇〇L。 在例示性具體實例中,對於裝置300、720、730、760 具體實例,二極體100_100K之懸浮介質亦可包含溶解溶劑 或其他反應劑,諸如一或多種二元酯,其最初溶解或再濕 潤一或多個第一導體31〇中之—些第一導體31〇。當沈積複 數個二極體100-100Κ之懸浮液且一或多個第一導體310之135 S 201226479 In the case of the body, the deposited diode ink is cured for about 5 minutes or less at about i 1 (rc). Drying or residual in the dried or cured diode inks of Examples 1 and 2 The cured diode ink generally comprises a plurality of diodes 100-100L and a cured or polymerized resin or polymer (at least in trace amounts) (which can generally hold or hold the diode 100-100L as described above) [where appropriate] and forming film 295 as previously discussed. Although volatile or evaporating (and knives (such as ruthenium and/or second solvent and/or surfactant) substantially eliminates the residual traces Or a greater amount 'as dry or cured diode inks as illustrated in Examples 3-6. As used herein, "trace" components are understood to be compared to initial deposition on the first conductor 31 and/or When the substrate is 3〇5, 3〇5-8, the amount of the component originally present in the diode ink is greater than zero but less than or equal to 5°/◦. The device of Yuancheng (300, 300A, 300B '300C, 300D, Diode 100-100 obtained in 700, 700A, 700B, 720, 730, 740, 750, 760, 770) The density or concentration of L (for example, the number of 100-100 L per square centimeter of the diode) will depend on the concentration of the diode i〇〇1〇〇l in the diode ink. When the diode is l〇〇_l〇 When the size of 〇L is in the range of 2 〇 to 30 μm, a very high density can be used but still covers only a small percentage of the surface area (one advantage is that a greater degree of heat dissipation is allowed without the need for a heat sink). For example, when using a diode 100-100L in the range of 2 〇 micrometers to 3 〇 micrometers, 1 一 in one square 〇, the 二 diode covers only about 1% of the surface area. In an exemplary embodiment, for use in devices 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, a plurality of dipoles 136 201226479 body Ease and degree are available and within the scope of the invention, including (without limitation): 2 to 10 per square centimeter, one diode i〇〇_1〇〇L; or more specifically, 5 to 10,000 per square centimeter Dipoles 10〇_1〇〇L; or more specifically, 5 to 1,000 diodes per square centimeter 100_1〇〇L Or more particularly, from 100 to 100 diodes per square centimeter, 100-100 L; or more particularly, 5 to 5 angstroms per square centimeter, 100-100 L; or, more particularly, 5 to 25 per square centimeter Polar body 100-100L; or more particularly, 1〇 to 8 per square centimeter, 100-100L of two diodes; or more specifically, 15 1 5 per square centimeter, 100-100L of two diodes Or more particularly, from 2 Å to 1 二 diodes per square centimeter 100-100 L; or more particularly, from μ to 1 二 diodes per square centimeter 100-100 L; or more particularly, per square centimeter 25 to 5 diodes 100-100L. The diodes 1〇〇_i〇〇1 may also be deposited on the one or more first conductors 31〇 using other steps or a number of steps. Also by way of example, but not limitation, a binder may be deposited first, such as a methoxylated glycol ether acrylate monomer (which may also include a water soluble photoinitiator such as τρ〇( (2,4, Bu) The triazine base is a triphosphene oxide, or an anisotropic conductive binder, which in turn deposits a diode l〇0_1〇〇L that has been suspended in a liquid or colloid as discussed above. In an illustrative embodiment, for the specific example of apparatus 300, 720, 730, 760, the suspension medium of the diode 100_100K may also contain a dissolving solvent or other reactant, such as one or more dibasic esters, which initially dissolve or rewet. One or more of the first conductors 31 of the one or more first conductors 31. When depositing a plurality of diodes 100-100Κ of the suspension and one or more first conductors 310

S 137 201226479 表面接著變得部分溶解或未固化時,複數個二極體 100-100K可略微或部分包埋於一或多個第一導體内, 亦有助於形成歐姆接觸,且使複數個二極體100_100K與一 或多個第一導胃310之間形成黏著黏結或黏著耦接。由於 溶解劑或反應劑諸如經由蒸發而消散,所以一或多個第一 V體310在實質接觸複數個二極體1〇〇_1〇〇Κ時再硬化(或 再固化)除上文所論述之二元酯之外,例示性溶解劑、濕 潤劑或溶劑化劑例如(但不限於)亦如上所述包括丙二醇 單曱醚乙酸酯(C6Hi2〇3 )(由Eastman以名稱「ΡΜ乙酸酯」 出售)’其與1-丙醇(或異丙醇)以約1:8莫耳比(或22:78 重S比)用於形成懸浮介質;以及多種二元酯,及其混合 物,諸如丁二酸二甲酯、己二酸二甲酯及戊二酸二曱酯(其 不同混合物可自invista以產品名稱DBE、DBE_2、、 、DBE-9及DBE-IB獲得)。在一例 DBE-9 〇溶劑之莫耳比將基於所選 DBE-4、DBE-5、dbe-6 示性具體實例中,使用 溶劑而變化’其中1:8及1:12為典型比率。亦可使用各種 化合物或其他試劑來控制此反應:例如,1-丙醇與水之組合 或混合物可明顯抑制一或多個第一導體3丨〇經be_9溶解戋 再濕潤直至在固化製程中相對較遲在二極體墨水之各種化 合物已蒸發或以其他方式消散且二極體墨水之厚度小於一 極體100-100K之高度為止,因此第一導體310之任何溶解 之材料.(諸如銀墨水樹脂及銀墨水粒子)不沈積於二極體 100-100K之上表面上(該等二極體ι〇〇_1〇〇κ接著能夠與第 二導體320形成電接觸)。 一 138 201226479 介電墨水實施例1 : 包含以下之組成物: 介電樹脂,其包含約0.5%至約30%甲基纖維素樹脂. 第一溶劑,其包含醇;及 界面活性劑。 介電墨水實施例2 : 包含以下之組成物: 介電樹脂,其包含約4%至約6°/。曱基纖維素樹脂; 第—溶劑,其包含約0,5%至約1.5%辛醇; 第二溶劑,其包含約3%至約5% IPA ;及 界面活性劑。 介電墨水實施例3 : 包含以下之組成物: 約10°/。至約30%之介電樹脂; 第一溶劑,其包含二醇醚乙酸酯; 第二溶劑,其包含二醇醚;及 第三溶劑。 介電墨水實施例4 : 包含以下之組成物: 約10%至約30%之介電樹脂; 第一溶劑,其包含約35%至5〇%乙二醇單丁醚乙酸酯; 第二溶劑,其包含約20〇/〇至3 50/〇二丙二醇單曱醚;及 第三溶劑,其包含約〇 _ 〇丨%至〇. 5 %甲苯。 介電墨水實施例5 :S 137 201226479 When the surface subsequently becomes partially dissolved or uncured, a plurality of diodes 100-100K may be slightly or partially embedded in one or more first conductors, also contributing to the formation of ohmic contacts, and making a plurality of An adhesive bond or adhesive coupling is formed between the diode 100_100K and the one or more first gastric guides 310. Since the solvating agent or reactant is dissipated, such as via evaporation, the one or more first V bodies 310 are hardened (or resolidified) in addition to the plurality of diodes 1 〇〇 1 实质 in addition to the above In addition to the dibasic esters discussed, exemplary solubilizing, wetting or solvating agents such as, but not limited to, also include propylene glycol monoterpene ether acetate (C6Hi2〇3) as described above (by Eastman under the name "ΡΜ乙Acid ester "sold" which is used to form a suspension medium with 1-propanol (or isopropanol) at a molar ratio of about 1:8 (or 22:78 weight S); and a plurality of dibasic esters, and mixtures thereof For example, dimethyl succinate, dimethyl adipate and dinonyl glutarate (different mixtures thereof are available from invista under the product names DBE, DBE_2, , DBE-9 and DBE-IB). In one example, the molar ratio of DBE-9 oxime solvent will vary based on the selected DBE-4, DBE-5, dbe-6 exemplified examples using a solvent, where 1:8 and 1:12 are typical ratios. Various compounds or other reagents may also be used to control the reaction: for example, a combination or mixture of 1-propanol and water may significantly inhibit one or more of the first conductors 3 from being dissolved by be_9 and then wetted until relatively in the curing process. Later, the various compounds of the diode ink have evaporated or otherwise dissipated and the thickness of the diode ink is less than the height of the polar body 100-100K, thus any dissolved material of the first conductor 310. (such as silver ink The resin and silver ink particles are not deposited on the upper surface of the diode 100-100K (the diodes ι〇〇_1〇〇κ can then make electrical contact with the second conductor 320). A 138 201226479 Dielectric Ink Example 1 : A composition comprising: a dielectric resin comprising from about 0.5% to about 30% methylcellulose resin. A first solvent comprising an alcohol; and a surfactant. Dielectric Ink Example 2: A composition comprising: a dielectric resin comprising from about 4% to about 6°/. a mercapto cellulose resin; a first solvent comprising from about 0,5% to about 1.5% octanol; a second solvent comprising from about 3% to about 5% IPA; and a surfactant. Dielectric Ink Example 3: Contains the following composition: about 10°/. Up to about 30% of a dielectric resin; a first solvent comprising a glycol ether acetate; a second solvent comprising a glycol ether; and a third solvent. Dielectric Ink Example 4: comprising the following composition: from about 10% to about 30% of a dielectric resin; a first solvent comprising from about 35% to about 5% by weight of ethylene glycol monobutyl ether acetate; a solvent comprising from about 20 〇 / 〇 to 3 50 / 〇 dipropylene glycol monoterpene ether; and a third solvent comprising from about 〇 〇丨 % to 〇. 5 % toluene. Dielectric ink example 5:

S 139 201226479 包含以下之組成物· 約15%至約20%之介電樹脂; 第一溶劑,其包含約35%至50%乙二醇單τ - J鲥乙酸酯; 第二溶劑,其包含約20%至35%二丙二醆留m 鮮早甲醚;及 第三溶劑,其包含約0.01%至0.5〇/〇曱苯。 介電墨水貫施例6 . 包含以下之組成物: 約10%至約30°/。之介電樹脂; 第一溶劑,其包含約50%至85%二丙二醇蒐 邱早甲醚;及 第二溶劑,其包含約0.01 〇/〇至0.5%曱笨。 介電墨水實施例7 : 包含以下之組成物: 約15%至約20%之介電樹脂; 第一溶劑,其包含約50〇/。至90%乙二醇單丁祕π 平厂醚乙酸醋; 第二溶劑,其包含約0.01 %至0.5%曱苯。 介電墨水實施例8 : 包含以下之組成物: 約15%至約20%之介電樹脂; 具包含約50%至 干了喊; 其餘部分’其包含第二溶劑,該第二溶劑包含約〇 * 至8.0%丙二醇或去離子水。 ,接著在沈積第二導體320之前,諸如經由印刷或々 製耘將絕緣材料(稱為介電墨水,諸如描述為介電墨 140 201226479 沈積於二極體100-100L上或二極體 部分上以形成絕緣或介電層3 15。介 致為約30微米至40微米且乾燥或 微米至7微米。絕緣或介電層3 15 所論述之各種任何介質中之任何絕 施例1 - 8之介電墨水) 100-100L之周邊或側向 電層315之濕膜厚度大 固化膜厚度大致為約5 可包含懸浮於如上下文 緣或介電化合物。, 任—例不性具體實例中,絕緣或介電層 3 1 5包含甲基纖維素椒 # θ ^ 户展树如,其罝處於約〇 5。/〇至15%範圍内, 或更尤其處於約1 . 〇 %至的 .,s 0王、、习8.0 /〇範圍内,或更尤其處於約 3.0%至約6.0%|&amp;圍内’或更尤其處於約4 5%至約5 範 圍内,諸如可自Dow Chemical獲得之E_3「曱基纖維素 (methocel)」;以及界面活性劑,其量處於約〇」%至S 139 201226479 comprises the following composition: about 15% to about 20% of a dielectric resin; a first solvent comprising about 35% to 50% ethylene glycol monoτ-J鲥 acetate; a second solvent, Approximately 20% to 35% dipropylene dihydromethane fresh early methyl ether; and a third solvent comprising from about 0.01% to about 0.5% hydrazine. Dielectric Ink Example 6. Contains the following composition: from about 10% to about 30°/. a dielectric resin; a first solvent comprising from about 50% to 85% dipropylene glycol; and a second solvent comprising from about 0.01 〇/〇 to 0.5% 曱. Dielectric Ink Example 7: A composition comprising: from about 15% to about 20% dielectric resin; a first solvent comprising about 50 Å/. Up to 90% ethylene glycol monobutyl acetoacetate; second solvent comprising about 0.01% to 0.5% benzene. Dielectric Ink Example 8: A composition comprising: about 15% to about 20% dielectric resin; comprising about 50% to dry shout; the remainder 'containing a second solvent, the second solvent comprising about 〇* to 8.0% propylene glycol or deionized water. Then, prior to depositing the second conductor 320, an insulating material (referred to as a dielectric ink, such as described as dielectric ink 140 201226479 deposited on the diode 100-100L or on the diode portion, such as via printing or stamping) To form an insulating or dielectric layer 3 15 , which is about 30 microns to 40 microns and dried or micron to 7 microns. Any of the various embodiments of any of the dielectrics discussed in the insulating or dielectric layer 3 15 Dielectric ink) The wet film thickness of the peripheral or lateral electrical layer 315 of 100-100 L is large and the cured film thickness is approximately 5, which may be suspended in a rim or dielectric compound. In any of the examples, the insulating or dielectric layer 315 comprises methylcellulose pepper # θ ^, and the 罝 is at about 〇 5. /〇 to 15%, or more particularly in the range of about 1. 〇% to ., s 0, 8.0 / ,, or more especially from about 3.0% to about 6.0% | Or more particularly in the range of from about 45% to about 5, such as E_3 "methocel" available from Dow Chemical; and surfactants in amounts ranging from about 〇% to

|巳圍内,或更尤其處於約〇2%至約1〇%範圍内,或更尤其 處於約0.4%至約0.6%範圍内,諸如來自Βγκ Chemie GmbH 之0.5% BYK 38 1 ;懸浮於以下溶劑中:第—溶劑,其量處 於約0.01 %至0.5%範圍内,或更尤其處於約〇〇5%至約 0.25°/◦範圍内,或更尤其處於約〇 〇8%至約〇 12%範圍内, 諸如約0.1°/〇辛醇;及第二溶劑,其量處於約〇 〇%至8%範 圍内,或更尤其處於約1.0%至約7.0〇/。範圍内,或更尤其處 於約2.0%至約6.0%範圍内,或更尤其處於約3 〇%至約5 〇% 範圍内,諸如約4% IPA ’其餘部分為第三溶劑,諸如去離 子水。用E-3調配物沈積4至5個塗層,以形成總厚度大致 為6微米至10微米之絕緣或介電層315,其中各塗層在約 110 °C下固化約5分鐘。在其他例示性具體實例中,介電層 3 15可經IR (紅外光)固化、wv固化或兩者。在其他例示 141 201226479 性具體實例中,不同介電調配物可塗覆成不同層以形成絕 緣或介電層3 1 5 ;舉例而言(但不加以限制),塗覆由可自 Dusseldorf,Germany之Henkel公司獲得之基於溶劑之透明 介電質形成之第一層,諸如Henkel BIK-201 8 1_40 A、Henkel BIK-20181-40B 及 / 或 Henkel BIK-20181-24B,繼而塗覆上 文所述之基於水之E-3調配物’形成介電層3丨5。在其他例 示性具體實例中,其他介電化合物可自Henkel購得且可等 效地使用,諸如於介電墨水實施例8中。介電層3丨5可為 透明的’但亦可包括例如(而不限於)比較低濃度之光漫 射、散射或反射性粒子以及導熱粒子(諸如氧化鋁)。在各 個例示性具體實例中,介電墨水亦將使二極體l〇〇]〇〇L之 上表面抗濕潤,使二極體100_100κ之至少一些第一端子125 或第二側(背面)(視定向而定)暴露以後續接觸第二導體 320 ° 在例示性介電墨水十可使用一或多種例示性溶劑,例 如(仁不限於):水;醇’諸如甲醇、乙醇、正丙醇(包括 1_丙醇、2·丙醇(異丙醇)、1-甲氧基-2-丙醇)、異丁醇、正 I醇(包括1-丁醇、2_丁醇)、正戊醇(包括丨·戊醇、2_戊 户 戊醇)、正辛醇(包括1-辛醇、2-辛醇、3 -辛醇);峻, 諸如甲其·, 土乙基醚、***、乙基丙基醚及聚醚;酯,諸如乙 酸乙酷、P w 己一@欠二曱酯、内二醇單甲醚乙睃酯、戊二酸二 Ψ 酷、丁一 一酸二甲酯.、乙酸甘油酯、二元酯(例如Invista DBE-9 )’酯,諸如乙酸乙酯;二醇,諸如乙二醇、二乙二 * 醇 丙一醇、一丙^一《醇、一醇峻、二醇趟乙酸 142 201226479 醋:二乙酸醋(丙二醇單f醚乙酸酯)、二丙二醇單甲醚、 ^一酉予單丁鱗乙酸自旨;碳酸_,諸如碳酸伸丙醋;甘油類, 諸如甘油;乙腈、四氫咬喃(™F)、二甲基甲醯胺(DMF)、 N-甲基甲酿胺(NMF)、二甲亞硬(D刪);及其混合物。 除水溶性樹脂之外,亦可使用其他基於溶劑之樹脂。可使 用一或多種增稠劑,例如黏土,諸如鐘蒙脫石黏土、膨潤 黏 有機改質黏Λ ;醣及多醣,諸如瓜爾膠、三仙膠· 纖維素及改質纖維素,諸如經甲基纖維素、甲基纖維素、’ 乙基纖維素、丙基甲基纖維素、甲氧基纖維素、曱氧基甲 基截、准素、f氧基丙基甲基纖維素、經丙基甲基纖維素、 缓甲基纖維素、經乙基纖維素、乙基經乙基纖維素、纖維 素醚 '纖維素乙崎、聚葡萄胺糖;聚合物,諸如丙稀酸醋 及(甲基)丙烯酸g旨聚合物及共聚物 '聚乙婦吡咯啶酮、聚乙 二醇、聚乙酸乙烯酯(PVA)、聚乙烯醇、聚丙烯酸、聚氧 化乙烯、聚乙烯醇縮丁醛(PVB);二乙二醇、丙二醇、 乙基噁唑啉、煙霧狀二氧化矽(諸如矽石粉)、二氧化矽粉; 以及改質尿素,諸如BYK®42〇(可自BYKChemie獲得)。 可使用其他黏度調節劑,以及添加粒子以控制黏度,如 Lewis等人之專利申請公開案第us 2〇〇3/〇〇91647號中所 述。亦可使用例如助流劑或界面活性劑,諸如辛醇及埃默 拉爾德高效能材料公司(Emerald Perf〇r_ce) 之Foamblast 339。在其他例示性具體實例中,一或多種絕 緣體135可為聚合物,諸如在去離子水中包含通常12%以 下之PVA或PVB。Within the range, or more particularly in the range of from about 2% to about 1%, or more particularly from about 0.4% to about 0.6%, such as 0.5% BYK 38 1 from Βγκ Chemie GmbH; suspended in the following In the solvent: the first solvent, in an amount ranging from about 0.01% to 0.5%, or more particularly in the range of from about 5% to about 0.25°/◦, or more particularly from about 〇〇8% to about 〇12. Within the range of %, such as about 0.1 ° / octanol; and the second solvent, in an amount ranging from about 〇〇% to 8%, or more particularly from about 1.0% to about 7.0 Å. Within the range, or more particularly in the range of from about 2.0% to about 6.0%, or more particularly in the range of from about 3% to about 5%, such as about 4% IPA, the remainder being a third solvent, such as deionized water . Four to five coatings were deposited with the E-3 formulation to form an insulating or dielectric layer 315 having a total thickness of approximately 6 microns to 10 microns, with each coating cured at about 110 ° C for about 5 minutes. In other exemplary embodiments, dielectric layer 315 may be IR (infrared) cured, wv cured, or both. In other exemplary embodiments 141 201226479, different dielectric formulations may be coated in different layers to form an insulating or dielectric layer 3 1 5 ; for example (but not limited), coated by Dusseldorf, Germany The first layer of solvent-based transparent dielectric material obtained by Henkel, such as Henkel BIK-201 8 1_40 A, Henkel BIK-20181-40B and/or Henkel BIK-20181-24B, followed by coating as described above The water-based E-3 formulation 'forms the dielectric layer 3丨5. In other exemplary embodiments, other dielectric compounds are commercially available from Henkel and can be used equivalently, such as in dielectric ink embodiment 8. Dielectric layer 3丨5 may be transparent' but may also include, for example, without limitation, relatively low concentrations of light diffusing, scattering or reflective particles, as well as thermally conductive particles such as alumina. In various exemplary embodiments, the dielectric ink will also wet the surface of the diodes 〇〇L, such that at least some of the first terminals 125 or the second side (back) of the diodes 100_100κ ( Depending on the orientation) exposure to subsequent contact with the second conductor 320 °. In exemplary dielectric inks, one or more exemplary solvents may be used, such as, for example, water; alcohols such as methanol, ethanol, n-propanol ( Including 1-propanol, 2-propanol (isopropanol), 1-methoxy-2-propanol), isobutanol, n-ol (including 1-butanol, 2-butanol), n-pentane Alcohol (including quinone pentanol, 2_pentanol), n-octanol (including 1-octanol, 2-octanol, 3-octanol); Jun, such as methyl acetate, earth ethyl ether, ether , Ethyl propyl ether and polyether; esters, such as ethyl acetate, P w hexyl oxalate, internal diol monomethyl ether oxime ester, glutaric acid diterpene, butyl methacrylate Ester., glycerol acetate, dibasic ester (such as Invista DBE-9) 'ester, such as ethyl acetate; glycol, such as ethylene glycol, diethylene glycol alcohol, one alcohol, one alcohol, one Alcoholic, two Indoleacetic acid 142 201226479 vinegar: diacetate vinegar (propylene glycol mono-f-ether acetate), dipropylene glycol monomethyl ether, ^ 酉 酉 单 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; , , , , , , , , , , , , , Acetonitrile, tetrahydrocarbamate (TMF), dimethylformamide (DMF), N-methylmethanamine (NMF), dimethylene hard (D-deletion); and mixtures thereof. Other solvent-based resins may be used in addition to the water-soluble resin. One or more thickeners may be used, such as clay, such as montmorillonite clay, swellable viscous organic modified viscous saccharides; sugars and polysaccharides such as guar gum, trisin gum, cellulose, and modified cellulose, such as Methylcellulose, methylcellulose, 'ethylcellulose, propylmethylcellulose, methoxycellulose, decyloxymethylidene, quasi-prime, foxypropylmethylcellulose, Propyl methyl cellulose, slow methyl cellulose, ethyl cellulose, ethyl ethyl cellulose, cellulose ether 'cellulose ethyl sulphate, polyglucamine; polymer, such as acrylic acid vinegar and Methyl)acrylic acid g-polymer and copolymer 'polyethyl pyrrolidone, polyethylene glycol, polyvinyl acetate (PVA), polyvinyl alcohol, polyacrylic acid, polyethylene oxide, polyvinyl butyral ( PVB); diethylene glycol, propylene glycol, ethyloxazoline, aerosolized cerium oxide (such as vermiculite powder), cerium oxide powder; and modified urea, such as BYK® 42 〇 (available from BYK Chemie). Other viscosity modifiers can be used, as well as the addition of particles to control the viscosity, as described in U.S. Patent Application Publication No. 2/3/91,174, to the entire disclosure of the entire disclosure. It is also possible to use, for example, a flow aid or a surfactant such as octanol and Foamblast 339 from Emerald Perf〇r_ce. In other exemplary embodiments, the one or more insulators 135 can be a polymer, such as containing typically less than 12% PVA or PVB in deionized water.

S 143 201226479 在沈積絕緣或介電層315之後,沈積一或多個第二導 體320 (例如經由印刷導電墨水、聚合物或其他導體,諸如 金屬),其可為上文所論述之任何類型之導體、導電墨水或 聚合物,或可為光學透射性(或透明)導體,以與二極體 100-100L之暴露或非絕緣部分(一般為二極體1〇〇_1〇〇[之 第一端子125,呈第一定向)形成歐姆接觸。一或多個光學 透射性第二導體320之濕膜厚度大致為約6微米至丨8微米 且乾燥或固化之膜厚度大致為約〇1微米至〇4微米,且光 學不透明之一或多個第二導體32〇 (諸如Aches〇n MSA導 電銀)之濕膜厚度一般大致為約14微米至18微米且乾燥 或固化之膜厚度大致為約5微米至8微米。舉例而言光 學透射性第二導體可沈積為單個連續層(形成單個電極), 諸如用於照明或光電應用。對於上述顛倒構造,且對於裝 置700具體實例,第二導體32〇無需具光學透射性(儘管 其可具光學透射性)以允許光自裝置3〇〇、3〇〇A、3〇〇b、 300C 、 300D 、 700 、 700A 、 700B 、 720 、 730 、 740 、 750 、 760、770之頂面及底面進入或離開。光學透射性第二導體 3 2 0可包含如下任何化合物,該化合物:(丨)具有足夠導電 性以使裝置3 0 0通電或自其第一或上端部分接收能量(且 可能必要或需'要時,一般具有足夠低之電阻或阻抗以降低 或最小化功率損耗及熱生成);且(2 )對於所選波長之電 磁輻射(諸如可見光譜之部分)具有至少預定或所選之透 明度或透射度。形成光學透射性或非透射性第二導體3 2 〇 之材料的選擇可視裝置300、700之所選應用且視視情況存 144 201226479 在之-或多個第三導體之利用而不&quot;如藉由使用如印 刷或塗佈技術中已知或即將知曉之印刷或塗佈製程將一或 多個第二導體320沈積於二極體!隊狐之暴露及/或非絕 緣部分上,及/或亦沈積於任何絕緣或介電層315上,其中 可能必要或需要時,提供適當控制以達成任何所選之對準 或對齊。S 143 201226479 After depositing the insulating or dielectric layer 315, depositing one or more second conductors 320 (eg, via printed conductive ink, polymer or other conductor, such as a metal), which may be of any of the types discussed above Conductor, conductive ink or polymer, or may be an optically transmissive (or transparent) conductor to the exposed or uninsulated portion of the diode 100-100L (generally a diode 1〇〇_1〇〇[第A terminal 125, in a first orientation, forms an ohmic contact. The one or more optically transmissive second conductors 320 have a wet film thickness of from about 6 microns to about 8 microns and a dried or cured film thickness of from about 1 micron to about 4 microns, and one or more optically opaque. The second conductor 32 (such as Aches〇n MSA conductive silver) typically has a wet film thickness of from about 14 microns to about 18 microns and a dried or cured film thickness of from about 5 microns to about 8 microns. For example, an optically transmissive second conductor can be deposited as a single continuous layer (forming a single electrode), such as for illumination or optoelectronic applications. For the reverse configuration described above, and for the device 700 embodiment, the second conductor 32 does not need to be optically transmissive (although it may be optically transmissive) to allow light from the device 3〇〇, 3〇〇A, 3〇〇b, The top and bottom surfaces of 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 enter or exit. The optically transmissive second conductor 320 can comprise any compound that has sufficient conductivity to energize the device or receive energy from its first or upper portion (and may or may not require Typically, having a sufficiently low resistance or impedance to reduce or minimize power loss and heat generation); and (2) having at least a predetermined or selected transparency or transmission for electromagnetic radiation of a selected wavelength, such as a portion of the visible spectrum. degree. The selection of the material forming the optically transmissive or non-transmissive second conductor 3 2 可视 can be selected for the selected application of the device 300, 700 and stored as a visual condition 144 201226479 - or the use of a plurality of third conductors without &quot; One or more second conductors 320 are deposited on the diode by using a printing or coating process known or to be known in the art of printing or coating! The exposed and/or non-insulating portions of the team fox, and/or also deposited on any of the insulating or dielectric layers 315, may provide appropriate control to achieve any selected alignment or alignment, as necessary or desired.

舉例而言,用於形成一或多個第二導體32〇之例示性 透明導電墨水可包含約〇.4%至3〇%銀奈求纖維(或3.〇% 以上,在其他具體實例令)、約2%至4%聚乙烯咄咯啶酮(MW 為100萬)、0.5%至2%冰乙酸,其餘部分為丨_丁醇及/或環 己醇。 在一例示性具體實例中,除上文所述之導體之外,可 使用厌不米官(CNT )、奈米粒子或奈米纖維銀、聚乙稀_ 二氧噻吩(例如AGFA 〇rgac〇n)、聚汔肛伸乙二氧基噻吩 與聚苯乙烯磺酸之組合(以Baytr〇n p出售且可自 Leverkusen,Germany之Bayer AG獲得)、聚苯胺或聚吡咯 聚合物、氧化銦錫(IT0)及/或氧化銻錫(AT〇)(其中ιτ〇 或ΑΤΟ通常以粒子形式懸浮於先前所論述之各種黏合劑、 聚合物或載劑中之任一者中)來形成光學透射性第二導體 320。在一例示性具體實例中,碳奈米管懸浮於含界面活性 劑之揮發性液體中,諸如可自N〇rman,〇klah〇ma,usa之 South West NanoTechnologies公司獲得之碳奈米管組成物。 另外,阻抗或電阻相對較低之一或多個第三導體(未作單 獨說明)併入或可併入相應透射性第二導體32〇中。舉例For example, an exemplary transparent conductive ink for forming one or more second conductors 32A may comprise from about 4% to about 3% silver (or more than 3.3%), in other specific examples. ), about 2% to 4% polyvinylpyrrolidone (MW 1 million), 0.5% to 2% glacial acetic acid, and the balance being 丨-butanol and/or cyclohexanol. In an exemplary embodiment, in addition to the conductors described above, nectar (CNT), nanoparticle or nanofiber silver, polyethylene diol dioxide (eg, AGFA 〇rgac〇) may be used. n), a combination of polyanthracene ethylenedioxythiophene and polystyrenesulfonic acid (sold by Baytr〇np and available from Bayer AG of Leverkusen, Germany), polyaniline or polypyrrole polymer, indium tin oxide ( IT0) and/or strontium tin oxide (AT〇) (wherein ιτ〇 or ΑΤΟ is usually suspended in the form of particles in any of the various binders, polymers or carriers previously discussed) to form optical transmission Two conductors 320. In an exemplary embodiment, the carbon nanotubes are suspended in a volatile liquid containing a surfactant such as a carbon nanotube composition available from South West NanoTechnologies, Inc. of N〇rman, 〇klah〇ma, usa. . Additionally, one or more third conductors (not separately illustrated) having a relatively low impedance or resistance may be incorporated or may be incorporated into the corresponding second conductive conductor 32A. Example

S 145 201226479 而言,為形成一或多個第三導體,可使用印刷於透射性第 二導體320之相應部分或層上之導電墨水或聚合物(例如 銀墨水、CNT或聚乙烯-二氧噻吩聚合物)形成一或多個精 細導線,或可使用印刷於較大顯示器中之較大整體透明第 二導體320上之導電墨水或聚合物形成一或多個精細導線 (例如具有網格或梯形圖案)。 可等效地用於形成實質上光學透射性第二導體320之 其他化合物包括如上所述之氧化銦錫(IT0 ),及此項技術 中當前已知或可能即將知曉之其他透射性導體,包括一或 夕種上文所論述之導電聚合物,諸如可以商標名「〇rgac〇n」 得到之聚乙烯-二氧噻吩,及各種基於碳及/或碳奈米管之透 明導體。代表性透射性導電材料可例如得自DuPont,諸如 7 162·及7 1 64 ΑΤΟ半透明導體。透射性第二導體32〇亦可與 各種黏合劑、聚合物或載劑組合,包括先前所論述之黏合 劑、聚合物或載劑,諸如在各種條件下可固化(諸如暴露 於紫外線輻射可固化(心可固化))之黏合劑。 可能必要或需要時,視情況存在之穩定化層335可沈 積於第二導體32G ±,且用於保護第二導體咖以防止發 光(或魚射)| 325或任何***保形塗層使第二導體似 之導電性降級。可使用由下文(參考保護塗層33Q) 任何墨水、化合物或塗料形成之一或多個比較薄之塗声, 諸如Nazdar 9727透明基質或Dup_ 5(m或紅外: 樹脂,諸如於環己醇中之約7 %聚乙稀醇縮丁路固化 定化層3 3 5中亦可視#&amp; ,穩 了視清况包括祕散及/或光散射粗子 146 201226479 . 不性穩定化層呈乾燥或固化形式時诵當A】η咖, 八于遇书為約1 〇微米至40 诚示。 作為可選方案,可使用碳電極322 (說明為322八及 )在役封或保護層3 3 0外部與一或多個第—導體3工〇 及:或多個第二導體320形成接觸,如對於各個例示性具 體實例所說明,且有助於保護一或多個第一導體31〇及一 或多個第二導體32〇免遭腐蝕及磨損。在一例示性具體實 例中,使用碳墨水,諸如Aches〇n 44〇A,其濕膜厚度大致 為約丨8微米至20微米且乾燥或固化之膜厚度大致為约7 微米至1 〇微米。 亦作為圖1 02及1 03中所說明之可選方案,可使用視 f月況存在之第二導電層312,,且可包含本文對於一或多個第 —導體31〇及/或一或多個第二導體32〇所述之任何導電材 料。 一或多個發光(或發射)層325 (例如包含一或多個碟 光體層或塗層)可沈積於穩定化層335上(或當不使用穩 定化層335時’沈積於第二導體32〇上),或直接沈積於裝 置700具體實例之基底305A之第二側上。亦可使用多個發 光(或發射)層325,如所說明,諸如裝置300、300A、300C、 300D、700、700A、720、730、740、750、760、770 之各 側上一個發光(或發射)層325。在一例示性具體實例(諸 如LED具體實例)中,例如(但不加以限制),可諸如經由 上文所論述之印刷或塗佈製程將一或多個發射層325沈積 於裝置300具體實例之穩定化層335之整個表面上(或當S 145 201226479, to form one or more third conductors, a conductive ink or polymer printed on a corresponding portion or layer of the second conductive conductor 320 (eg, silver ink, CNT or polyethylene-diox) may be used. The thiophene polymer) forms one or more fine wires, or may form one or more fine wires using conductive ink or polymer printed on a larger, unitary transparent second conductor 320 in a larger display (eg, having a grid or Trapezoidal pattern). Other compounds that are equivalently used to form the substantially optically transmissive second conductor 320 include indium tin oxide (ITO) as described above, and other transmissive conductors currently known or likely to be known in the art, including One or more of the conductive polymers discussed above, such as polyethylene-dioxythiophene available under the trade name "〇rgac〇n", and various transparent conductors based on carbon and/or carbon nanotubes. Representative transmissive conductive materials can be obtained, for example, from DuPont, such as 7 162· and 7 1 64 ΑΤΟ translucent conductors. The transmissive second conductor 32 can also be combined with various binders, polymers or carriers, including the previously discussed binders, polymers or carriers, such as being curable under various conditions (such as exposure to ultraviolet radiation curable) (heart-curable) adhesive. Stabilizing layer 335, as may be necessary or desirable, may be deposited on second conductor 32G ± and used to protect the second conductor from illuminating (or fish shooting) | 325 or any intervening conformal coating The two conductors are similar in conductivity degradation. One or more relatively thin coatings may be formed using any of the inks, compounds or coatings described below (with reference to protective coating 33Q), such as Nazdar 9727 transparent substrate or Dup 5 (m or infrared: resin, such as in cyclohexanol About 7 % of the polyethylene glycol shrinking hardening layer 3 3 5 is also visible #&amp;, stable conditions include secret and/or light scattering coarse 146 201226479 . The inactive stabilization layer is dry Or when curing the form, when A] η coffee, eight in the case of the book is about 1 〇 micron to 40. As an alternative, you can use the carbon electrode 322 (illustrated as 322 eight and) in the service seal or protective layer 3 3 0 externally in contact with one or more first-conductor 3 processes and: or a plurality of second conductors 320, as illustrated for each exemplary embodiment, and to help protect one or more first conductors 31 The one or more second conductors 32 are protected from corrosion and wear. In an exemplary embodiment, a carbon ink, such as Aches〇n 44A, is used, having a wet film thickness of about 丨8 microns to 20 microns and dried. Or the cured film thickness is approximately 7 microns to 1 micron. Also as shown in Figures 102 and 03. Illustratively, a second conductive layer 312 may be used, and may include the ones described herein for one or more first conductors 31 and/or one or more second conductors 32 Any electrically conductive material. One or more luminescent (or emitting) layers 325 (eg, comprising one or more disc layers or coatings) may be deposited on the stabilizing layer 335 (or deposited when the stabilizing layer 335 is not used) The second conductor 32 is mounted on the second side of the substrate 305A of the device 700 embodiment. A plurality of light emitting (or emitting) layers 325 may also be used, such as illustrated, such as devices 300, 300A, 300C, One illuminating (or emitting) layer 325 on each side of 300D, 700, 700A, 720, 730, 740, 750, 760, 770. In an exemplary embodiment, such as a specific example of LED, for example (but without limitation) One or more emissive layers 325 may be deposited on the entire surface of the stabilization layer 335 of the device 300 embodiment, such as via a printing or coating process as discussed above (or

S 147 201226479 不使用穩定化層335日夺,沈積於第二導體320上)’或直接 沈積於裝置700具體實例之基底3〇5a之第二側上,或兩 者。一或多個發射層325可由任4 一 4订月匕夠或適於回應於自二 極體100-1 00L所發射之光(或苴 他電磁輻射)發射可見光 S曰中之光或使發射光之頻率(或任何所選頻率之其他電磁 .•射)移位(例如斯托克斯移位)_物質或化合物形成。 舉例而言,基於黃色磷光體之發射層325可與發射藍光之 二極體100-100L —起使用以產吐眘發l人 起便用以產生貫質上白光。該等發光化 合物包括各種磷光體,其可以各種形式中之任一者且與各 種摻雜劑中之任一者一起提供。形成一或多個發射層奶 之發光化合物或粒子可以具有各種黏合劑之聚合物形式使 用或懸浮,且亦可單獨與各種.黏合劑(諸如可自Dup〇nt4S 147 201226479 does not use a stabilizing layer 335, deposited on the second conductor 320) or deposited directly on the second side of the substrate 3〇5a of the device 700 embodiment, or both. The one or more emissive layers 325 may be capable of emitting light or emitting light in response to light emitted from the diodes 100-1 00L (or other electromagnetic radiation). The frequency of light (or other electromagnetic radiation of any selected frequency) shift (eg Stokes shift) _ substance or compound formation. For example, the yellow phosphor-based emissive layer 325 can be used in conjunction with the blue-emitting diode 100-100L to produce a punctual white light. The luminescent compounds include various phosphors which may be provided in any of a variety of forms and with any of a variety of dopants. The luminescent compound or particle forming the one or more emissive layer milks can be used or suspended in the form of a polymer of various binders, and can also be used alone with various binders (such as from Dup〇nt4).

Conductive Compounds獲得之磷光體黏合劑)組合,有助 於印刷或其他沈積製程,且使磷光體黏著至下伏層及後續 上覆層。亦可以wv可固化或熱可固化形式提供一或多個發 射層325。 多種等效之發光或其他光發射性化合物可用且處於本 發明範疇内’包括(不限於)··( 1 ) G175 8、G2060、G22 62、 G3161 、 EG2762 、 EG 3261 、 EG3560 、 EG3759 、 Y3957 、 EY4156 &gt; EY4254.、EY4453、EY4651、EY4750 ' 05446、 05 5 44'05 742'06040、R630、R65 0 ' R6733、R660、R670、 NYAG-1、NYAG-4、NYAG-2、NYAG-5、NYAG-3、NYAG-6、 TAG-卜 TAG-2、SY450-A、SY450-B、SY460-A、SY460-B、 OG450-75、OG450-27、OG460-75、OG460-27、RG450-75、 148 201226479 I RG450-65、RG450-55、RG450-50、RG450-45、RG450-40、 RG450-35、RG450-30、RG450-27、RG460-75、RG460-65、 RG460-55 ' RG460-50、RG460-45、RG460-40、RG460-35、 RG460-30 及 RG460-27,可自 Fremont, California,USA 之 Intematix 獲得;(2) 13C1380、13D1380、14C1220 及 GG-84, 可自 Towanda,Pennsylvania, USA 之 Global Tungsten &amp; Powders 公司獲得;(3 ) FL63/S-D1、HPL63/F-F1、 HL63/S-D1 ' QMK58/F-U1 ' QUMK58/F-D1 ' KEMK63/F-P1 ' CPK63/N-U1、ZMK58/N-D1 及 UKL63/F-U1,可自 Herts, England 之 Phosphor Technology 有限公司獲得;(4 ) BYW01A/PTCW01AN、BYW01B/PTCW01BN、BUVOR02、 BUVG01、BUVR02、BUVY02、BUVG02、BUVR03/PTCR03 及 BUVY03,可自 Lithia Springs,Georgia,USA 之 Phosphor Tech 公司獲得;以及(5 ) Hawaii655、Maui535、Bermuda465 及 Bahama560,可自 Princeton,New Jersey,USA 之 Light scape Materials公司獲得。另外,視所選具體實例而 定,在任何該種發光(或發射)層325内可包括著色劑、 染料及/或摻雜劑。在一例示性具體實例中,使用釔鋁石榴 石(「YAG」)構光體,其可自Phosphor Technology有限公 司及 Global Tungsten &amp; Powders 公司獲得,諸如含 40% YAG 之wv可固化樹脂(其濕膜及乾燥/固化膜厚度為約40至1 00 微米),或含70% YAG之紅外光可固化樹脂-溶劑系統(諸 如約5%聚乙烯醇縮丁醛於約95%環己醇中)(其濕膜厚度 為約1 5微米至1 7微米且乾燥/固化膜厚度為約13微米至The combination of Phosphorus Binders from Conductive Compounds facilitates printing or other deposition processes and allows the phosphor to adhere to the underlying layer and subsequent overlying layers. One or more of the emissive layers 325 may also be provided in a wv curable or thermally curable form. A wide variety of equivalent luminescent or other light emissive compounds are available and are within the scope of the invention 'including (not limited to) (1) G175 8, G2060, G22 62, G3161, EG2762, EG 3261, EG3560, EG3759, Y3957, EY4156 &gt; EY4254., EY4453, EY4651, EY4750 ' 05446, 05 5 44'05 742'06040, R630, R65 0 ' R6733, R660, R670, NYAG-1, NYAG-4, NYAG-2, NYAG-5, NYAG-3, NYAG-6, TAG-Bu TAG-2, SY450-A, SY450-B, SY460-A, SY460-B, OG450-75, OG450-27, OG460-75, OG460-27, RG450-75 , 148 201226479 I RG450-65, RG450-55, RG450-50, RG450-45, RG450-40, RG450-35, RG450-30, RG450-27, RG460-75, RG460-65, RG460-55 'RG460- 50, RG460-45, RG460-40, RG460-35, RG460-30 and RG460-27, available from Intematix of Fremont, California, USA; (2) 13C1380, 13D1380, 14C1220 and GG-84, available from Towanda, Available from Global Tungsten &amp; Powders, Pennsylvania, USA; (3) FL63/S-D1, HPL63/F-F1, HL63/S-D1 ' QMK58/F-U1 ' QUMK58/F-D1 ' KEMK63/F-P1 ' CPK63/N-U1, ZMK58/ N-D1 and UKL63/F-U1, available from Phosphor Technology Ltd. of Herts, England; (4) BYW01A/PTCW01AN, BYW01B/PTCW01BN, BUVOR02, BUVG01, BUVR02, BUVY02, BUVG02, BUVR03/PTCR03 and BUVY03, Obtained from Phosphor Tech, Inc. of Lithia Springs, Georgia, USA; and (5) Hawaii 655, Maui 535, Bermuda 465, and Bahama 560, available from Lightscape Materials, Inc. of Princeton, New Jersey, USA. Additionally, colorants, dyes, and/or dopants may be included in any such luminescent (or emitting) layer 325, depending on the particular embodiment selected. In an illustrative embodiment, a yttrium aluminum garnet ("YAG") illuminant is available, available from Phosphor Technology, Inc. and Global Tungsten &amp; Powders, such as a wv curable resin containing 40% YAG (its Wet film and dried/cured film thickness of about 40 to 100 microns), or 70% YAG infrared light curable resin-solvent system (such as about 5% polyvinyl butyral in about 95% cyclohexanol) (the wet film thickness is about 15 microns to 17 microns and the dried/cured film thickness is about 13 microns to

S 149 201226479 μ微米)。另外,用於形成發射層325之磷光體或其他化合 物可包括在特定光譜(諸如綠色或藍色)内發射之摻雜劑。 在彼等狀況下,發射層可經印刷以界定任何既定或所選色 彩(諸如RGB 4 CMYK)之像素以提供彩色顯示。熟習此 項技術者應暸解任何裝置300具體實例亦可包含該一或多 個發射層325耦接至或沈積於穩定化層335或第二導體\ = 上0 視用於形成一或多個第二導體32〇之溶劑而定,可使 用視情況存在之一或多個障壁層3 18,如圖1〇3中所說明, 諸如以防止一或多個第二導體32〇之化合物穿透介電層315 至或多個第—導體3 10。在一例示性具體實例中,使用黏 度調節劑,諸如E_10黏度調節劑或上文所論述之任何其他 黏度調節劑,使其沈積以形成約1〇〇 nm至2〇〇 nm之固化 或乾燥膜或薄臈厚度。亦可使用任何用於形成保護或密封 塗層330或穩定化層335之材料來形成一或多個障壁層 318 〇 裝置300亦可包括視情況存在之保護或密封塗層330 (其亦可與視情況存在之穩定化層3 3 5組合),其亦可包括 任何類型之透鏡化或光漫射或分散結構或濾光片,諸如實 質上透明之塑膠或其他聚合物以提供保護而免受各種因素 (諸如天氣、空氣傳播之腐蝕性物質等)影響,或該種密封 及/或保護功能可由發射層3 2 5所用之聚合物(樹脂或其他 黏合劑)提供。為便於說明,圖76、78-82、87、88、91-98、 102及1〇3使用虛線說明該種形成保護或密封塗層33〇之聚 150 201226479 合物(樹脂或其他黏合劑)以指示實質透明度。在一例示 性具體實例中,使用基於胺基罕酸酯之材料(諸如可以 NAZDAR 9727 ( www.nazdar.com )獲得之專用樹脂或可自S 149 201226479 μ μm). Additionally, the phosphor or other compound used to form the emissive layer 325 can include a dopant that emits within a particular spectrum, such as green or blue. In these cases, the emissive layer can be printed to define pixels of any given or selected color (such as RGB 4 CMYK) to provide a color display. Those skilled in the art will appreciate that any device 300 embodiment may also include the one or more emissive layers 325 coupled to or deposited on the stabilizing layer 335 or the second conductor \ = 0 for forming one or more Depending on the solvent of the two conductors 32 Å, one or more barrier layers 3 18 may be used as appropriate, as illustrated in Figure 1-3, such as to prevent compound penetration of one or more second conductors 32〇. Electrical layer 315 to one or more first conductors 3 10 . In an exemplary embodiment, a viscosity adjusting agent, such as an E_10 viscosity modifier or any other viscosity modifier discussed above, is deposited to form a cured or dried film of about 1 〇〇 nm to 2 〇〇 nm. Or thin thickness. Any of the materials used to form the protective or sealing coating 330 or the stabilizing layer 335 may also be used to form one or more barrier layers 318. The device 300 may also include a protective or sealing coating 330 as appropriate (which may also be Stabilizing layers 3 3 5 as appropriate, which may also include any type of lensing or light diffusing or dispersing structure or filter, such as substantially transparent plastic or other polymer to provide protection from A variety of factors, such as weather, airborne corrosive materials, etc., or such sealing and/or protective functions may be provided by the polymer (resin or other binder) used in the emissive layer 32. For ease of explanation, Figures 76, 78-82, 87, 88, 91-98, 102, and 1〇3 illustrate the formation of a protective or sealing coating 33〇201225479 (resin or other adhesive) using dashed lines. To indicate substantial transparency. In an illustrative embodiment, an amine based urethane-based material such as the one available from NAZDAR 9727 (www.nazdar.com) or may be used.

Dusseldorf,Germany之Henkel公司獲得之心可固化丙烯酸 胺基甲S文S曰PF455 BC)沈積保護或密封塗層330作為—或 多個保形塗層,達約10微米至4〇微米之厚度。在另—例 示性具體實例中,藉由層合裝f 3〇〇達成保護或密封塗層 330。未作單獨說明但如相關美國專利巾請案(美國專利申 請案第12/560,334號、美國專利申請案第12/56〇,34〇號、 美國專利申請案第12/560,355號、美國專利申請案°第 12/560,364號及美國專利申請案第12/56〇,371冑,以全文 引用之方式併入本文中,具有如同在本文中閣述其全文一 叙之相同完全效力)中所論述,複數個透鏡(懸浮於聚人 物(樹脂或其他黏合劑)中)亦可直接沈積於一或多㈣ 射層325及其他特徵上’形成各種發光裝置3〇〇具體實例 中之任一者。 熟習此項技術者應瞭解在所主張之本發明範嘴内可使 用任何數目之第-導體31〇、絕緣體315、第三導體等。 另外,除所說明之定向之外’任何裝£ 3〇〇之複數個第一 導體3U)、一或多個絕緣體(或介電層)315及複數個第二 導體320(以及任何併人之相應及視情況存在之一或多個第 二導體)可能存在多種定向及組態,諸如實質上平行定向。 舉例而言’複數個第-導體31〇可皆實質上彼此平行,且 複數個第二導體320亦可皆實質上彼此平行。隨後,複數Dusseldorf, Germany, Henkel Corporation obtains a core-curable acrylate A S S PF 455 BC) deposition protection or seal coat 330 as - or a plurality of conformal coatings, up to a thickness of from about 10 microns to about 4 microns. In another exemplary embodiment, the protective or sealing coating 330 is achieved by laminating f3. Not separately described, but as disclosed in the related U.S. Patent Application Serial No. 12/560,334, U.S. Patent Application Serial No. 12/56, No. 34, U.S. Patent Application Serial No. 12/560,355, U.S. Patent Application </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A plurality of lenses (suspended in a poly-person (resin or other adhesive)) may also be deposited directly onto one or more (four) shot layers 325 and other features to form any of a variety of illumination devices. Those skilled in the art will appreciate that any number of first conductors 31, insulators 315, third conductors, etc. can be utilized within the claimed invention. In addition, any of the plurality of first conductors 3U, one or more insulators (or dielectric layers) 315 and a plurality of second conductors 320 (and any others) other than the orientation indicated. There may be multiple orientations and configurations, such as substantially parallel orientation, corresponding to one or more second conductors as appropriate. For example, the plurality of first conductors 31 can be substantially parallel to each other, and the plurality of second conductors 320 can also be substantially parallel to each other. Subsequently, plural

C 151 201226479 個第一導體310與複數個第二導體320可彼此垂直(界定 列及行)’因此其重疊區域可用於界定像元(「像素」)且可 各別且獨立地定址。當複數個第一導體3丨〇及複數個第二 導體320中之任一者或兩者可建構成具有預定寬度之間隔 開且實質上平行之線(兩者皆界定列或兩者皆界定行)時, 其亦可由列及/或行定址,例如(但不限於)對各列接連地 進行順序定址)^另外’複數個第一導體3丨〇及複數個第二 導體320中之任一者或兩者可建構成如上所述之層狀物或 薄板。 如可自本發明所顯而易見,視複合材料(諸如基底3 〇 5 ) 之選擇而定,例示性裝置3〇〇、300A、300B、300C ' 300D、 7〇〇、700A、700B、720 ' 730、740、750、760、770 可經 &quot;又·並製造成具有向度可撓性及可變形性,可能甚至可摺 疊、可拉伸且可能可穿著,而非硬質的。舉例而言(但不 加以限制)’例示性裝置300、30〇A、3〇〇B、3 00C、3 00D、 700、700A、700B、720、730、740、750、760、770 可包 含可撓性、可摺疊及可穿著之衣服或可撓性燈或壁紙燈。 例示性裝置 300、300A、300B、300C、300D、700、700A、 700B、720、730、740 ' 750 ' 760、770 因具有該可撓性而 可經親軋(諸如海報),或如紙張一樣摺疊且在再打開時發 揮完全功能。亦舉例而言’例示性裴置3〇〇、3〇〇A、300B、 300C、300D、700、700A、700B、720、730、740、750、 760、770因具有該可撓性而可具有多種形狀及尺寸,且可 經組態以用於多種任何風格及其他美學目標。該例示性裝 152 201226479 • 置 300、300A、300B、300C、300D、700、700A、700B、 720、730、740、750、760、770亦比先前技術器件具有顯 著更大之彈性,易破碎性及脆性比(例如)典型之大螢幕 電視小得多。 如上所示’複數個二極體1 〇〇_ i 〇〇L可經組態(經由材 料選擇及相應摻雜)為例如(但不限於)光電(PV)二極 體或LED。圖84為第一例示性系統35〇具體實例之方塊圖, 其中複數個二極體100-1 〇〇L建構成任何類型或色彩之 LED。系統 350 包含發光裝置 3〇〇a、300C、300D、300C、 30 0D、700A(及二極體為LED之任何裝置720、730、740、 75 0、760、770 )、可耦接至電源34〇 (諸如ac線或DC電 池組)之介面電路355及視情況存在之控制器345 (具有控 制邏輯電路360及視情況存在之記憶體365 )。(裝置3〇〇a 在其他方面一般與裝置300相同,但具有複數個建構成lED 之二極體100-100L,且對於裝置3〇〇c、3〇〇D具體實例, 具有雙側,且同樣,裝置7〇〇A在其他方面一般與裝置7〇〇 相同,但具有複數個建構成LED之二極體丄〇〇_丨〇〇[。)當 諸如經由施加相應電壓(例如,自電源34〇 )使一或多個第 一導體310及一或多個第二導體32〇 (或第三導體312)通 電時,能量將供應至複數個LED (二極體1〇〇1〇〇L)中之 或夕者,元全越過裝置3〇〇a、300C、300D、300C、300D、 700A、720、730、740、75 0、760、770 (當導體及絕緣體 各自建構成單個層時),或於通電之第一導體31〇與第二導 體320之相應相交處(重疊區),該等相交處視其定向及組 £ 153 201226479 態界疋例如像素、薄板戋列 汉及幻/仃。因此,藉由選擇性地使第 一導體310及第二導體、s + 體320通電,裝置300A (及/或系統 35〇)提供像素可定址性動態顯示器或照明器件或標牌等。 ㈣Μ ’ #㈣I導體㈣彳包含相應複數列,且複 數個透射性第二導體32〇包令 匕3相應複數行,其中各像素由 相應列與相應行之相交或重疊所界定。#複數個第一導體 31〇及複數個第二導體32〇中之任一者或兩者可建構為如圖 7U2' 87' 88、91_98、1〇2、1〇3中所說明時亦例如, 使導體3U)、32〇通電將為實f上所有(或大部分)複數個 LED (一極體i〇〇_1Q()L )提供電力,諸如以使照明器件或 靜態顯示H (諸如標牌)發光。該像素計數可能相當高, 遠高於典型高清晰度水準。 繼續參考圖 84,裝置 300A、300C、3 00D、3 00C、3 00D、 700A、720、73〇、740、750、760、770 經由介面電路 355 耦接至電源340 ’且亦視情況耦接至控制器345,該電源34〇 可為DC電源(諸如電池組或光電電池)或ac電源(諸如 家用或建築電力介面電路3 55可以多種方式具體化,諸 如全波整流器或半波整流器、阻抗匹配電路、減少D c漣波 t電容器、耦接至AC線之開關電源等,且可包括例如(但 不限於)多種控制二極體i 〇〇_ 1 〇〇L之通電的組件(未作單 獨說明)。當控制器345經建構諸如用於可定址發光顯示系 統3 50具體實例及/或動態發光顯示系統35〇具體貪例時, 控制器3 4 5可如電子技術中已知或即將知曉用於控制二極 體10 0-10 0L之通電(經由各種複數個第一導體31〇及複數 154 201226479 個透射/±第—導體32G),且通常包含控制邏輯電路則(其 可為組合邏輯電路、有限狀態機、處理器等)及記憶體365。 亦可使用其他輸入/輸出(1/〇)電路。當未建構控制器, 諸如用於各種照明系統35〇具體實例(其通常不可定址及/ 或為非動態發光顯示系統35〇具體實例)時,***35〇通 ,接至電開關或電子開關(未作單獨說明),該電開關或 電子開關可包含任何適合類型之開關佈置,諸如用於照明 系統開啟、關閉及/或減光。下文在論述圖^及 86之後更詳細論述控制邏輯電路36〇、記憶體。 介面電路355可如此項技術中已知或可能即將知曉來 建構,且可包括阻抗匹配能力、電壓整流電路、使低電壓 處理器與例如較高電壓控制匯流排成介面之電壓轉換、回 應於自控制邏輯電&amp; 360之傳信開啟或關閉各種線或連接 器之各種開關機構(例如電晶體)及/或物理耦接機構。另 外,介面電路355亦可經調適例如以諸如經由硬連線或rf 傳信以自系統350外部接收及/或傳輸信號,例如以接收即 時資訊來控制動態顯示器,或亦例如以控制光輸出之亮度 (減光)。介面電路355A亦可為獨立器件(例如模組)且可 由例如與經組態以搭扣連接至、旋擰至、鎖接至或以其他 方式耦接至介面電路355A之裝置76〇、77〇再使用,因此 介面電路355A可隨時間推移由多個替換裝置76〇、77〇重 複使用。 舉例而σ々。目100中所說明,例示性系統具體實例 810包έ凌置760 (若使用二極體1〇〇1〇〇κ建構)或 155 201226479 裝置770 (若使用二極體100L建構)(其中複數個二極體 1 00-100L為發光二極體)’及介面電路355以配合燈泡之各 種標準淺圓螺紋插座(Edison socket)中之任一者。繼續舉 例而言(但不加以限制),介面電路3 5 5可訂定尺寸且成型 以符合一或多個標準化螺旋組態,諸如E12、E14、E26及/ 或E27螺旋座標準,諸如中型螺旋座(E26 )或燭台形螺旋 座(candelabra screw base) (E12),及/或由例如美國國家 標準協會(American National Standards Institute,「ANSI」) 及/或照明工程學會(Illuminating Engineering s〇ciety)所 發佈之其他各種標準。在其他例示性具體實例中,介面電 路355可訂定尺寸且成型以符合例如(但不限於)標準螢 光燈泡插座或雙插塞插座,諸如GU_1〇插座。該種例示性 系統具體實例亦可等效地視作另一類型之裝置,當具有適 於***例如(但不限於)淺圓螺紋插座或螢光插座中之形 態因數時尤其如此。 乂 舉例而言,基於LED之「燈泡」可形成為具有類似於 傳統白熾電燈泡之設計,具有螺旋型連接件作為介面電路 355之一部分’諸如ES、E27、SES或E14,其可經調適以 與任何電源插座類型連接,例如(但不限於)L1、pL_2插 腳、PL-4 插腳、G9 南素膠囊燈(hal〇gen capsule)、G4 _ 素膠囊燈、GU10、GU5.3、卡口、小卡口或此項技術中已 知之任何其他連接件。 裝置300A、3〇〇C、300D、7〇〇及第一系統35〇可用於 形成多種照明器件或其他照明產品,用於多種目的,用作 156 201226479 燈泡及燈管、燈、照 ϋ $ π β 态具、室内及室外照明、經組態以 具有燈罩形態因數之 足、建築照明、工作或作業照明、裝 飾或情调照明、頂部昭 η77 Βη ^ ‘、、、明、女全照明、可減光照明、彩色 々、月、劇場及/或色彩可 了交照明、顯示照明及具有本文所提 及之各種裝飾或想像 捉 / 心式中之任一者的照明。未作單獨說 明,弟—系統350 —如介a , 雨 奴亦包括處於系統350内之呈任何所 而$狀或形式的各種機 瑪1械結構以提供對裝置300A、300C、 3 00D之足夠物理支撐。 參考圖1 0 0,例示杈么 丨生系統80〇包含裝置760及介面電路 355A,且例示性系統81〇包含梦署77Λ这入^办 匕谷忒置770及介面電路355Α。 介面電路355Α經植能丨、;人 ^ &gt; 、、心U配合於標準愛迪生燈泡螺旋型插座 中以麵接至標準AC雷、、盾广 電源(诸如AC總線)(未作單獨說明)。C 151 201226479 The first conductors 310 and the plurality of second conductors 320 may be perpendicular to each other (delimiting columns and rows) so that their overlapping regions may be used to define pixels ("pixels") and may be individually and independently addressed. Either or both of the plurality of first conductors 3 and the plurality of second conductors 320 may be constructed to have spaced and substantially parallel lines between predetermined widths (both defined columns or both defined) In the case of a row, it may also be addressed by columns and/or rows, such as, but not limited to, sequential addressing of the columns in succession. ^Others of the plurality of first conductors 3丨〇 and the plurality of second conductors 320 One or both may be constructed as a layer or sheet as described above. As can be seen from the present invention, depending on the choice of composite material (such as substrate 3 〇 5 ), exemplary devices 3 〇〇 , 300 A , 300 B , 300 C ' 300 D , 7 〇〇 , 700 A , 700 B , 720 ' 730 , 740, 750, 760, 770 may be &quot;and manufactured to have dimensional flexibility and deformability, may even be foldable, stretchable, and possibly wearable, rather than rigid. By way of example (but not limitation), the exemplary device 300, 30A, 3〇〇B, 3 00C, 3 00D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 may include Flexible, foldable and wearable clothing or flexible or wallpaper lights. The exemplary device 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740 '750 ' 760, 770 may be pro-rolled (such as a poster) or have a paper like this because of the flexibility Fold and fully functional when reopened. Also for example, 'exemplary devices 3〇〇, 3〇〇A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 may have such flexibility Available in a variety of shapes and sizes and can be configured for any of a wide range of styles and other aesthetic goals. The exemplary package 152 201226479 • 300, 300A, 300B, 300C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770 are also significantly more flexible and fragile than prior art devices. And the brittleness is much smaller than, for example, a typical large screen TV. As noted above, the plurality of diodes 1 〇〇 _ i 〇〇 L can be configured (via material selection and corresponding doping) to be, for example, but not limited to, photovoltaic (PV) diodes or LEDs. Figure 84 is a block diagram of a first exemplary system 35, in which a plurality of diodes 100-1 〇〇L are constructed to form LEDs of any type or color. System 350 includes illumination devices 3〇〇a, 300C, 300D, 300C, 30 0D, 700A (and any device 720, 730, 740, 75 0, 760, 770 whose LEDs are LEDs), and can be coupled to power source 34 A interface circuit 355 (such as an ac line or a DC battery pack) and a controller 345 (having control logic circuit 360 and memory 365 as appropriate) are present as appropriate. (Device 3A is generally identical to device 300 in other respects, but has a plurality of diodes 100-100L constructed to form lED, and has two sides for the specific examples of devices 3〇〇c, 3〇〇D, and Similarly, device 7A is generally identical to device 7A in other respects, but has a plurality of diodes 建_丨〇〇[.) that are constructed to form an LED, such as by applying a corresponding voltage (eg, from a power source) 34〇) When one or more first conductors 310 and one or more second conductors 32〇 (or third conductors 312) are energized, energy is supplied to a plurality of LEDs (diodes 1〇〇1〇〇L) In the middle or the evening, the elements pass through the devices 3〇〇a, 300C, 300D, 300C, 300D, 700A, 720, 730, 740, 75 0, 760, 770 (when the conductor and the insulator are each formed into a single layer) Or at the intersection of the first conductor 31 通电 and the second conductor 320 (overlapping region), the intersections are oriented according to their orientation and group 153 201226479 state boundaries such as pixels, thin plates, and illusion/仃. Thus, by selectively energizing the first conductor 310 and the second conductor, s+ body 320, device 300A (and/or system 35A) provides a pixel addressable dynamic display or illumination device or signage or the like. (d) ’ ’ #(四) I conductor (4) 彳 includes a corresponding plurality of columns, and a plurality of transmissive second conductors 32 令3 corresponding to a plurality of rows, wherein each pixel is defined by the intersection or overlap of the corresponding column and the corresponding row. Any one or both of the plurality of first conductors 31A and the plurality of second conductors 32A may be constructed, for example, as illustrated in FIGS. 7U2' 87' 88, 91_98, 1〇2, 1〇3, for example Powering the conductors 3U), 32〇 will provide power to all (or most) of the plurality of LEDs (one pole body i〇〇_1Q()L) on the real f, such as to cause the illumination device or static display H (such as Signage) shines. This pixel count can be quite high, well above typical high definition levels. With continued reference to FIG. 84, devices 300A, 300C, 3 00D, 3 00C, 3 00D, 700A, 720, 73 〇, 740, 750, 760, 770 are coupled to power supply 340 ′ via interface circuit 355 and are also coupled to Controller 345, which may be a DC power source (such as a battery pack or photovoltaic cell) or an ac power source (such as a home or building power interface circuit 355) may be embodied in a variety of ways, such as a full wave rectifier or a half wave rectifier, impedance matching a circuit, a reduced DC c-wave t-capacitor, a switching power supply coupled to an AC line, etc., and may include, for example, but not limited to, a plurality of components that control the energization of the diodes i 〇〇 1 〇〇 L (not separately When the controller 345 is constructed, such as for a specific example of the addressable illuminating display system 355 and/or the dynamic illuminating display system 35, the controller 345 may be known or soon known in electronic technology. Used to control the energization of the diodes 10 0 0 0L (via various first conductors 31 and 154 201226479 transmission / ± first conductors 32G), and usually includes control logic (which can be combinatorial logic) Circuit, limited State machine, processor, etc.) and memory 365. Other input/output (1/〇) circuits can also be used. When no controller is constructed, such as for various lighting systems 35, specific examples (which are typically not addressable and/or In the case of a non-dynamic illumination display system 35, a specific example), the system 35 is coupled to an electrical switch or an electronic switch (not separately illustrated), which may include any suitable type of switch arrangement, such as for The illumination system is turned on, off, and/or dimmed. Control logic circuitry 36, memory is discussed in more detail below after discussion of Figures and 86. Interface circuitry 355 may be known in the art or may be known to be constructed, and may be Including impedance matching capability, voltage rectification circuit, voltage conversion for low voltage processor and interface such as higher voltage control bus, response to self-control logic &amp; 360 signaling to turn various lines or connectors on or off a switching mechanism (eg, a transistor) and/or a physical coupling mechanism. Additionally, the interface circuit 355 can also be adapted, for example, to communicate via a hardwired or rf The system 350 externally receives and/or transmits signals, such as to receive dynamic information to control the dynamic display, or for example to control the brightness (dimming) of the light output. The interface circuit 355A can also be a stand-alone device (eg, a module) and can be, for example, Re-use with devices 76, 77 that are configured to be snap-connected, screwed, latched, or otherwise coupled to interface circuit 355A, such that interface circuit 355A can be replaced by multiple replacement devices over time 76〇, 77〇 are reused. For example, σ々. As explained in item 100, an exemplary system specific example 810 includes a 760 (if diode 〇〇1〇〇1 construction is used) or 155 201226479 device 770 (If using a diode 100L construction) (in which a plurality of diodes 1 00-100L are light-emitting diodes)' and interface circuit 355 to match any of the standard light-duty sockets (Edison sockets) of the bulb . Continuing by way of example (but not limiting), interface circuit 355 can be sized and shaped to conform to one or more standardized helical configurations, such as E12, E14, E26, and/or E27 spiral seating standards, such as medium spirals Block (E26) or candelabra screw base (E12), and/or by, for example, the American National Standards Institute (ANSI) and/or Illuminating Engineering s〇ciety Other standards published. In other exemplary embodiments, interface circuit 355 can be sized and shaped to conform to, for example, but not limited to, a standard fluorescent bulb socket or a dual plug socket, such as a GU_1 socket. Such exemplary system embodiments may also be considered equivalently as another type of device, particularly when having a form factor suitable for insertion into, for example, but not limited to, a shallow circular socket or a fluorescent socket. For example, an LED-based "bulb" can be formed to have a design similar to a conventional incandescent light bulb with a helical connector as part of the interface circuit 355 'such as ES, E27, SES or E14, which can be adapted to Any type of power outlet connection, such as (but not limited to) L1, pL_2 pins, PL-4 pins, G9 NAND capsules, G4 _ capsule lamps, GU10, GU5.3, bayonet, small The bayonet or any other connector known in the art. The devices 300A, 3〇〇C, 300D, 7〇〇 and the first system 35〇 can be used to form a variety of lighting devices or other lighting products for a variety of purposes, for use as 156 201226479 bulbs and tubes, lamps, photos $ π Β-state, indoor and outdoor lighting, configured to have the shape factor of the lampshade, architectural lighting, work or work lighting, decorative or mood lighting, top η77 Βη ^ ', ,, Ming, female full lighting, can be reduced Light illumination, color enamel, moon, theater, and/or color may be illuminated, illuminated, and illuminated with any of the various decorations or imaginary captures/hearts mentioned herein. Not separately stated, the system-350 is a medium, and the rain slaves also include various mechanical structures in any form or form within the system 350 to provide sufficient for the devices 300A, 300C, 300D. Physical support. Referring to FIG. 100, an exemplary system 80 includes a device 760 and a interface circuit 355A, and the exemplary system 81 includes a Dream Server 77 and a Quaternary Circuit 770 and an interface circuit 355. The interface circuit 355 is implanted in a standard Edison bulb spiral socket to be connected to a standard AC lightning, shielded power supply (such as an AC bus) (not separately described).

該介面電路355A通當白人敕,古雨AThe interface circuit 355A is used as a white 敕, 古雨 A

㊉包3 1流電路以使AC電壓轉換為DC 電壓’且亦可包括阻抗 ^ 机匕配電路及各種電容器及/或電阻器 、*匕括使用電晶體建構之開關)以減少電廢之漣 波如LED照明及LED電力供應領域中已知。如圖㈤及 斤°兒月,裳置760包含複數個二極體1〇〇_1〇〇κ,而 裝置70包3複數個二極體j帆,裝置結構及材料之相應 差異如上文所論述且如下文所更詳細論述。圖_亦用以 說明例示性裝置(则、藤、職、綱CD、霞、 3〇〇D、7GG、7GGA、7_、72G、73〇、74〇、75()、76()、77〇) 之極溥且可繞的形態因數’其已扭轉並摺疊成 形式。 局的平面圖。如 圖101為說明裝置760、77〇之印刷佈Ten packs of 3 1 stream circuits to convert AC voltage to DC voltage 'and can also include impedance ^ machine matching circuit and various capacitors and / or resistors, * including switches constructed using transistors) to reduce the waste of electricity Waves are known in the art of LED lighting and LED power supply. As shown in Figure (5) and 斤 °月月, Swelling 760 contains a plurality of diodes 1〇〇_1〇〇κ, and the device 70 packs 3 multiple diodes j sails, the corresponding differences in device structure and materials are as above Discussed and discussed in more detail below. Figure _ is also used to illustrate the exemplary device (then, vine, occupation, CD, Xia, 3〇〇D, 7GG, 7GGA, 7_, 72G, 73〇, 74〇, 75(), 76(), 77〇 The extremely versatile and wrapable form factor 'has been twisted and folded into form. The floor plan of the bureau. Figure 101 is a printed cloth illustrating the devices 760, 77

S 157 201226479 所說明,裝置760、770印刷成具有極薄形態因數之平坦薄 板’接著在㈣716中進行刀模切割,形成比較窄之燈條 717(争聯搞接,如上文所述八電極(說明為碳電極322A、 322B)提供於各末端處。接著捲曲裝置76〇、77〇且使燈條 717之末端718聚集於一起且彼此重疊呈環形,通向電極 322A及322B以經由介面電路355A向裝置76〇、提供 電力,且燈條7丨7彼此間存在一定間隔,如圖1〇〇中所說 明。 參考圖102,裝置760類似於其他所說明之裝置,其中 再增加兩層,即一或多個第三導體312(其亦可使用本^所 論述之任何透明或不透明導電墨水及化合物沈積為單層) 及在-或多個第三導體312與一或多個第一導豸Η。之間 的另外介電層(說明為315A以使其區別於說明為3ΐ5β之 另一介電層)。使用一或多個第三導體312以沿燈條717之 邊緣提供電力(例如電壓位準)且_接至—或多個第二導 體320 (.其可沈積為如上文所論述之透明導電材料層),且 提供降低裝置76G之總阻抗、電流位準及功率消耗之方法, 有效地充當沿各燈條717之長度的並聯匯流排。 彳 參考圖103 ’裝置770亦類似於其他所說明之裝置,其 中再增加三層:(1 ) -或多個第三導體3 12 (其亦可使用本 文論述之任何透明或不透明導電墨水及化合物沈積為單 層);(2)在一或多個第三導體312與一或多個第二導體 之間的另外介電層(說明為315A以使其區別於說明為315B 之另”電層),及(3)如上所述沈積於介電層315b與一 158 201226479 .或多個第一導體320之間的一或多個障壁層3丨8。使用一或 多個第三導體312以沿燈條717之邊緣提供電力(例如電 壓位準)且搞接至-或多個第一導體3 1〇,且亦提供降低裝 置770之總阻抗、電流位準及功率消耗之方法,亦有效地 充當沿各燈條7 1 7之長度的並聯匯流排。 各種光輸出水準中之任一者可由裝置3〇〇A、3〇〇c、 300D、300C、300D、700A、720、730、740、750、760、 770提供,且一般將基於所用二極體1〇〇-1〇〇L之濃度、第 一系統 350 中所用之裝置 300A、300C、300D、300C、300D、 700A、720、730、740、750、760、77〇 之數目、所選或允 許之功率消耗及施加電壓及/或電流位準而變化Q在一例示 性具體實例中’裝置 300A、300C、300D、300C ' 300D、 700A、720 ' 730、740、75 0、760、770 可提供例如(但不 限於)約25流明至1300流明範圍内之光輸出,視功率消 耗、二極體100-100L之濃度或密度、二極體i〇〇_1〇〇L之電 流位準(亦即驅動二極體100-l〇〇L之難度)、總阻抗位準等 而定。 如上所示’技數個二極體1 0 0 - 1 〇 〇 L亦可經組態(經由 材料選擇及相應摻雜)為光電(PV )二極體。圖85為第二 例示性系統375具體實例之方塊圖,其中二極體丨〇〇_丨〇〇L 建構成光電(PV)二極體。系統375包含裝置30〇b、7〇〇B (其在其他方面一般與裝置300、700 (或任何其他所說明之 裝置)相同,但具有複數個建構成光電(PV )二極體之二 極體100-100L),且包含能量儲存器件380 (諸如電池組)As described in S 157 201226479, the devices 760, 770 are printed as flat sheets having a very thin form factor' and then cut in a (four) 716 to form a relatively narrow strip 717 (competitively connected, as described above for the eight electrodes ( The carbon electrodes 322A, 322B) are provided at the respective ends. The crimping devices 76A, 77B are then crimped and the ends 718 of the light strips 717 are brought together and overlap each other in a ring shape, leading to the electrodes 322A and 322B via the interface circuit 355A. Power is supplied to the device 76, and the light bars 7A7 are spaced apart from each other as illustrated in Figure 1A. Referring to Figure 102, the device 760 is similar to the other devices described, wherein two more layers are added, One or more third conductors 312 (which may also be deposited as a single layer using any of the transparent or opaque conductive inks and compounds discussed herein) and at - or a plurality of third conductors 312 and one or more first conductors An additional dielectric layer (illustrated as 315A to distinguish it from another dielectric layer illustrated as 3ΐ5β). One or more third conductors 312 are used to provide power along the edge of the light strip 717 (eg, voltage) Level) and _ connected to Or a plurality of second conductors 320 (which may be deposited as a layer of transparent conductive material as discussed above) and providing a means of reducing the overall impedance, current level, and power consumption of device 76G, effectively acting along each of the light bars 717 Parallel busbars of length. 彳 Referring to Figure 103, device 770 is also similar to other illustrated devices in which three additional layers are added: (1) - or a plurality of third conductors 3 12 (which may also use any of the discussed herein) Transparent or opaque conductive ink and compound deposited as a single layer); (2) an additional dielectric layer between one or more third conductors 312 and one or more second conductors (illustrated as 315A to distinguish it from the description An additional "electric layer" of 315B, and (3) one or more barrier layers 3丨8 deposited between the dielectric layer 315b and a 158 201226479 or a plurality of first conductors 320 as described above. The plurality of third conductors 312 provide power (eg, voltage level) along the edge of the light strip 717 and are coupled to the - or plurality of first conductors 3 1 , and also provide a reduction in the total impedance and current level of the device 770 and The method of power consumption also effectively acts as a 7 7 7 along each light bar Parallel busbars of length. Any of a variety of light output levels may be provided by devices 3〇〇A, 3〇〇c, 300D, 300C, 300D, 700A, 720, 730, 740, 750, 760, 770, and generally The devices 300A, 300C, 300D, 300C, 300D, 700A, 720, 730, 740, 750, 760, 77 used in the first system 350 will be based on the concentration of the diodes 1〇〇-1〇〇L used. Number, selected or allowed power consumption, and applied voltage and/or current level change Q In an exemplary embodiment, 'device 300A, 300C, 300D, 300C '300D, 700A, 720 '730, 740, 75 0 , 760, 770 can provide, for example, but not limited to, a light output in the range of about 25 lumens to 1300 lumens, depending on power consumption, concentration or density of the diode 100-100L, diode i〇〇_1〇〇L The current level (that is, the difficulty of driving the diode 100-l〇〇L), the total impedance level, and the like. As shown above, the 'diodes 1 0 0 - 1 〇 〇 L can also be configured (via material selection and corresponding doping) to be photovoltaic (PV) diodes. Figure 85 is a block diagram of a second exemplary embodiment of a system 375 in which a diode 丨〇〇_丨〇〇L is constructed to form a photovoltaic (PV) diode. System 375 includes devices 30〇b, 7〇〇B (which are otherwise otherwise identical to devices 300, 700 (or any other described device), but have a plurality of diodes that form a photovoltaic (PV) diode. Body 100-100L), and includes an energy storage device 380 (such as a battery pack)

S 159 201226479S 159 201226479

個第二導體320 (或電極322B )耦接形成第二端子(諸女Second conductors 320 (or electrodes 322B) are coupled to form a second terminal (female

(PV)二極體 i〇〇_i〇〇l 上時,光可集中於一或多個光電 其h•後將入射光子轉換成電子 電洞對,使得第一端子及第二端子上產生輸出電壓且輸出 至能莖儲存器件380或介面電路385中之任一者或兩者。 7 7中所說明之相間錯 應注意’當第一導體310具有圖 雜或梳狀結構時,可使用第一導體31〇jb使第二導體32〇通 電’或同樣,可接收第一導體310A及310B上所產生之電 壓。 圖86為說明用於製造裝置3 00、3 00A、3 00B、3 00C、 300D、700、700A、700B、720、730、740、750、760、770 之例示性方法昇體實例的流程圖,且提供適用概述。自起 始步驟400開始,諸如藉由印刷導電墨水或聚合物或用一 或夕種金屬氣相沈積、減鐘或塗佈基底(305),繼而固化 或部分固化導電墨水或聚合物,或可能移除不必要位置上 160 201226479 沈積之金屬(視具體實施而定)將一或多個第—導體(31〇) 沈積於基底(305)上(步驟4051° m /工、v驟4Ui))。接者亦通常經由印刷或 塗佈將已通常懸浮於液體、膠體或其他化合物或混合物(亦 可包括複數個惰性粒子292 )中(例如懸浮於二極體墨水中) 之複數個二極體100-100L沈積於一或多個第—導體上(步 驟410) ’以在複數個二極體i〇〇_1〇〇L與一或多個第一導體 之間形成歐姆接觸(其亦可涉及例如(但不限於)各種化 學反應、壓縮及/或加熱)。對於裝置7〇〇具體實例,如上文 所論述’步驟405與4 1 0按相反次序進行。On the (PV) diode i〇〇_i〇〇l, the light can be concentrated on one or more of the photoelectrics, and then the incident photons are converted into electron hole pairs, so that the first terminal and the second terminal are generated. The voltage is output and output to either or both of the stem storage device 380 or the interface circuit 385. The interphase error explained in 7 7 should note that 'when the first conductor 310 has a patterned or comb-like structure, the second conductor 32 can be energized using the first conductor 31〇jb' or, similarly, the first conductor 310A can be received. And the voltage generated on 310B. 86 is a flow chart illustrating an example embodiment of a lift method for fabricating devices 300, 300A, 3 00B, 3 00C, 300D, 700, 700A, 700B, 720, 730, 740, 750, 760, 770, A summary of the application is provided. Beginning with an initial step 400, such as by printing a conductive ink or polymer or by vapor deposition of a metal or a metal, reducing the clock or coating the substrate (305), followed by curing or partially curing the conductive ink or polymer, or possibly Remove unnecessary locations on the 160 201226479 deposited metal (depending on the implementation) deposit one or more first conductors (31〇) on the substrate (305) (step 4051 ° m / work, v 4Ui)) . The plurality of diodes 100 that have typically been suspended in a liquid, colloid or other compound or mixture (which may also include a plurality of inert particles 292) (eg, suspended in a diode ink) are typically printed or coated. -100L is deposited on one or more first conductors (step 410)' to form an ohmic contact between the plurality of diodes i〇〇_1〇〇L and one or more first conductors (which may also involve For example (but not limited to) various chemical reactions, compression and/or heating). For device 7 specific examples, steps 405 and 4 1 0 are discussed in reverse order as discussed above.

接著將介電或絕緣材料(諸如介電墨水)沈積於複數 個二極體100-100L上或周圍,諸如圍繞二極體1〇〇1〇〇L 周邊(且固化或加熱)(步驟415)’形成一或多個絕緣體或 介電層3 1 5。對於裝置760具體實例,未作單獨說明,可沈 積一或多個第三導體312及介電層315A (作為步驟4〇5及 415),接著繼而進行另一步驟405及步驟410。對於裝置 770具體實例’亦可沈積障壁層3 1 8,其亦未作單獨說明。 其次,接著將一或多個第二導體320(其可能具或可能不具 光學透射性)沈積於複數個二極體1 00-100L上且與複數個 二極體100-10 0L形成接觸,諸如沈積於介電層315上且圍 繞二極體1 00-100L之上表面且固化(或加熱)(步驟420 ), 亦在一或多個第二導體( 320 )與複數個二極體i〇〇_1〇〇L 之間形成歐姆接觸。在例示性具體實例中,諸如對於可定 址顯示器,複數個(透射性)第二導體32〇經定向成實質 上垂直於複數個第一導體3 1 0。對於裝置770具體實例,未A dielectric or insulating material, such as a dielectric ink, is then deposited over or around the plurality of diodes 100-100L, such as around the perimeter of the diode 1 (1) and cured (heated or heated) (step 415) 'Form one or more insulators or dielectric layers 3 15 . For the specific embodiment of device 760, one or more third conductors 312 and dielectric layer 315A may be deposited (as steps 4〇5 and 415), and then another step 405 and step 410 may be performed, unless otherwise specified. The barrier layer 3 1 8 may also be deposited for the device 770 embodiment </ RTI> which is also not separately illustrated. Second, one or more second conductors 320, which may or may not be optically transmissive, are then deposited over the plurality of diodes 100-100L and in contact with a plurality of diodes 100-10 0L, such as Deposited on the dielectric layer 315 and surrounding the upper surface of the diode 1 00-100L and cured (or heated) (step 420), also one or more second conductors (320) and a plurality of diodes i〇 An ohmic contact is formed between 〇_1〇〇L. In an illustrative embodiment, such as for an addressable display, a plurality of (transmissive) second conductors 32 are oriented substantially perpendicular to a plurality of first conductors 310. For the specific example of device 770, not

S 161 201226479 作單獨說明’可沈積介電層315A(作為步驟415),繼而沈 積一或多個第三導體312 (作為步驟4〇5 )。 作為另-可選方案,在步驟42() &lt;前或期間,可進行 測試,其中移除或停用無功能或另外有缺陷之二極邮 1〇〇-祖。舉例而言,對於PV二極體,可用雷射或其他= 源掃描部分完成之裝置的表面(第一側)1當區域(或個 別二極體100-100L)不提供預期之電響應時,可使用高強 度雷射或其他移除技術將其移除。亦舉例而言,對於已通 電之發光二極體,可用光感測器掃描表面(第一側),且合 區域(或個別二極體100·隱)不提供預期之光輸出及二 汲取過量電&amp; (亦即電流超過預定量)時,亦可使用高強 度雷射或其他移除技術將其移除。視具體實施而定,諸如 視如何移除無功能或有缺陷之二極體1〇〇_1〇〇l而定,該測 試步驟實際上可在下文論述之步驟425、43〇或435之後進 行。接著將穩定化層335沈積於一或多個第二導體32〇或 ㈣於各個裝置所說明之其他層上(步驟似),繼而於穩 定化層上沈積發射層325 (步驟43〇)。在裝置7〇〇具體實 例中,如上所述,層325通常沈積於基底3〇5a之第二側上。 接著亦通常經由印刷將亦通常已懸浮於聚合物、黏合劑或 其他化合物或混合物中以形成透鏡化或透鏡粒子墨水或懸 浮液之複數個透鏡(未作單獨說明)置於或沈積於發射層 上,或將包含懸浮於聚合物中之複數個透鏡的預成型透鏡 面板附接至部分完成之裝置之第一侧(諸如經由層合製 程),繼而視情況沈積保護塗層(及/或所選色彩)(諸如經 162 201226479 由印刷)(步驟355 ),且該方法可結束,返回步驟44〇。 再參考圖84 ’控制邏輯電路360可為任何類型之控制 器、處理器或控制邏輯電路,且可具體化為—或多個處理 器以執行本文論述之功能性。由於本文使用術語處理器, 所以處理器360可包括使用單個積體電路(「扣」),或可包 括使用複數個積體電路或其他連接、排列或會集在一起之 、’’件°者如控制器、微處理器、數位信號處理器(「〇 § p」)、 亚订處理器、多核處理器、定製積體電路、特殊應用積體 ,路(「ASIC」)、現場可程式間陣列(「FpGA」)、自適應計 异ic、相關記憶體(諸如RAM、DRAM及r〇m)以及其 他1C及組件。因此,如本文所用之術語處理器應理解為等 效地思谓且包括單個IC,或定製積體電路、AW。、處理器、 微處理器、控制器、FPGA、自適應計算1C或—些其他執行 :文=論述之功能的積體電路群組之配置,及相關記憶 體,堵如微處理器記憶體或其他ram、dram、sdram、 SRAM、MRAM、R〇M、ft aqu cS 161 201226479 as a separate description 'The dielectric layer 315A can be deposited (as step 415), followed by deposition of one or more third conductors 312 (as step 4〇5). As a further alternative, a test may be performed before or during step 42(), wherein the non-functional or otherwise defective two-pole ancestor is removed or deactivated. For example, for a PV diode, the surface (first side) of the device that can be partially completed with a laser or other = source scan 1 when the region (or individual diodes 100-100L) does not provide the expected electrical response, It can be removed using high intensity laser or other removal techniques. For example, for a powered LED, the surface can be scanned with a light sensor (first side), and the combined region (or individual diode 100) does not provide the desired light output and excessive extraction. When the electric &amp; (ie, the current exceeds a predetermined amount), it can also be removed using high-intensity laser or other removal techniques. Depending on the implementation, such as depending on how the non-functional or defective diodes 1〇〇_1〇〇l are removed, the test step can actually be performed after steps 425, 43 or 435 discussed below. . The stabilizing layer 335 is then deposited on one or more of the second conductors 32 or (d) on the other layers illustrated by the respective devices (steps), and then the emissive layer 325 is deposited on the stabilizing layer (step 43A). In a particular embodiment of device 7, as discussed above, layer 325 is typically deposited on the second side of substrate 3〇5a. A plurality of lenses (not separately illustrated) that are also typically suspended in a polymer, binder or other compound or mixture to form a lens or lens particle ink or suspension are typically placed or deposited on the emissive layer via printing. Attaching, or attaching a pre-formed lens panel comprising a plurality of lenses suspended in the polymer to a first side of the partially completed device (such as via a lamination process), and then depositing a protective coating (and/or Color is selected (such as by 162 201226479) (step 355), and the method can end, returning to step 44. Referring again to Figure 84, control logic circuit 360 can be any type of controller, processor or control logic, and can be embodied as - or multiple processors to perform the functionality discussed herein. As the term processor is used herein, processor 360 may include the use of a single integrated circuit ("button"), or may include the use of a plurality of integrated circuits or other connections, arrangements, or gatherings. Such as controllers, microprocessors, digital signal processors ("〇§ p"), sub-subscription processors, multi-core processors, custom integrated circuits, special application integrated circuits, roads ("ASIC"), field programmable Inter-array ("FpGA"), adaptive metering ic, related memory (such as RAM, DRAM, and r〇m) and other 1C and components. Accordingly, the term processor as used herein shall be understood to mean equivalently and encompasses a single IC, or custom integrated circuit, AW. , processor, microprocessor, controller, FPGA, adaptive computing 1C or some other implementation: text = discussion of the function of the integrated circuit group configuration, and related memory, blocking such as microprocessor memory or Other ram, dram, sdram, SRAM, MRAM, R〇M, ft aqu c

ASH、EPR0M 或 E2PR〇M。處 =及HI記憶體可_適或組態(經由程式化'PPM ^連線)以執行本發明之方法,諸如對於動態顯示 ===行選擇性像素定址,或諸如料標牌具體實 1夕J退订列/仃定址。裹彳丨 ^ ^ ]而1 ,方法可處理器及其相關記憶 肢(及/或§己憶體3 6 5 )乃並从姑 ^ 及/、他荨效組件中程式化且儲存為 後續在處理器可摔作(h 4效組態或其他程式)用於 地,競Γ 通電且起作用)時執行。等效 田控制邏輯電路360可完全或部 163 1 201226479 積體電路及/或ASIC時’該等FPGA、定製積體電路或ASIC 亦可經設計、組態及/或硬連線以執行本發明之方法。舉例 而言,控制邏輯電路360可建構成處理器、控制器、微處 理器、DSP及/或ASIC之配置,統稱為「控制器」或「處 理器」,其分別經程式化、設計、調適或組態以連同記憶體 3 65 —起執行本發明之方法。 控制邏輯電路360及其相關記憶體可經組態(經由程 式化、FPGA互連或硬連線)以控制向各種複數個第一導體 310及複數個第二導體320 (及視情況存在之一或多個第二 導體3 12 )通電(施加電壓),以相應控制正在顯示之資訊。 舉例而言,靜態或時變顯示資訊可在控制邏輯電路36〇及 其相關記憶體(及/或記憶體365 )及其他等效組件中程式 化並儲存、組態及/或硬連線為一組程式指令(或等效組能、 或其他程式)用於後續在控制邏輯電路36〇可操作時執行 形式。 可包括資料儲存庫(或資料庫)之記憶體365可以多 種形式具體化,包括於當前已知或將來可得之任何電腦咬 其他機器可讀資料儲存媒體、記憶體器件或其他用於資訊 儲存或通信之儲存或通信器件内’包括(但不限於)記情 體積體電路(「IC」)或積體電路之記憶體部分(諸如處理 器内之常駐記憶體),其可為揮發性或非揮發性、可卸除式 或不可卸除式記憶體,包括(不限於)RAM、FLASH、DRAM、 SDRAM、SRAM、MRAM、FeRAM、ROM、EPROM 或 E PROM ’或任何其他記憶體器件形式,諸如磁性硬碟機、 164 201226479 * 光碟機、磁碟或磁帶機' 硬碟機.、其他機器可讀儲存或記 f思體媒體,諸如軟碟、CDR〇M、CD_RW、數位多功能光碟 (DVD )或其他光記憶體,或已知或即將知曉之任何其他類 型之式憶體、儲存媒體或資料儲存裝置或電路,視所選具 體實例而定。另外,該種電腦可讀媒體包括任何通信媒體 形式,其可使電腦可讀指令、資料結構、程式模組或其他 資料具體化成資料信號或調變信號,諸如電磁或光學載波 或其他傳送機構’包括任何資訊傳輸媒體,其可以有線或 無線方式將資料或其他資訊編碼成信號,包括電磁、光學、 聲學、RF或紅外信號等。記憶體365可經調適以儲存各種 查找表、參數、係數、其他資訊及資料、(本發明軟體之) 程式或指令,及其他類型之表格,諸如資料庫表。 如上文所示,使用例如本發明之軟體及資料結構使處 理器360程式化以執行本發明之方法。因此,本發明之系 統及方法可具體化為提供上文所論述之該等程式化或其他 指令(諸如具體化於電腦可讀媒體内之一組指令及/或元資 料)的軟體。另外,元資料亦可用於定義查找表或資料庫 之各種資料結構。該軟體可呈例如(但不限於)原奸碼或 目標碼形式。原始碼進一步可編譯成某種形式之指令或目 標碼(包括組合語言指令或組態資訊)。本發明之軟體、原 始碼或元資料可具體化為任何類型之編碼,諸如cASH, EPR0M or E2PR〇M. Where and HI memory can be adapted or configured (via a stylized 'PPM ^ connection) to perform the method of the present invention, such as for dynamic display === row selective pixel addressing, or such as material signage J Unsubscribe column/仃 address. Wrap ^ ^ ^ ] and 1, the method can be programmed with the processor and its associated memory limb (and / or § Remembrance 3 6 5 ) and programmed from the ^ and /, his effective components and stored as a follow-up Executed when the processor can be used (h4 configuration or other program) for ground, when the power is on and active. The equivalent field control logic circuit 360 can be fully or partially 163 1 201226479 integrated circuit and/or ASIC when the FPGA, custom integrated circuit or ASIC can also be designed, configured and/or hardwired to perform the present Method of the invention. For example, the control logic circuit 360 can be configured to form a processor, a controller, a microprocessor, a DSP, and/or an ASIC, collectively referred to as a "controller" or a "processor," which are respectively programmed, designed, and adapted. Or configured to perform the method of the present invention in conjunction with memory 3 65. Control logic circuit 360 and its associated memory can be configured (via stylized, FPGA interconnect, or hardwired) to control a plurality of first conductors 310 and a plurality of second conductors 320 (and optionally one of Or a plurality of second conductors 3 12 ) are energized (applied voltage) to correspondingly control the information being displayed. For example, static or time-varying display information may be programmed and stored, configured, and/or hardwired in control logic circuitry 36 and its associated memory (and/or memory 365) and other equivalent components. A set of program instructions (or equivalent sets of functions, or other programs) are used to subsequently execute the form when control logic 36 is operational. The memory 365, which may include a data repository (or database), may be embodied in a variety of forms, including any computer readable data storage media, memory devices, or other information storage that is currently known or available in the future. Or a storage or communication device in communication 'including, but not limited to, a memory volume circuit ("IC") or a memory portion of an integrated circuit (such as resident memory in a processor), which may be volatile or Non-volatile, removable or non-removable memory, including (not limited to) RAM, FLASH, DRAM, SDRAM, SRAM, MRAM, FeRAM, ROM, EPROM or E PROM ' or any other form of memory device, Such as magnetic hard drive, 164 201226479 * CD player, disk or tape drive 'hard disk drive., other machine-readable storage or record-based media, such as floppy disk, CDR 〇 M, CD_RW, digital versatile CD ( DVD) or other optical memory, or any other type of memory, storage medium or data storage device or circuit known or to be known, depending on the particular embodiment selected. Additionally, the computer readable medium includes any form of communication media that can embody computer readable instructions, data structures, program modules, or other data into data signals or modulated signals, such as electromagnetic or optical carrier or other transmission mechanisms. Includes any information transmission media that can encode data or other information into signals, including electromagnetic, optical, acoustic, RF or infrared signals, in a wired or wireless manner. Memory 365 can be adapted to store various lookup tables, parameters, coefficients, other information and materials, programs or instructions (of the software of the present invention), and other types of forms, such as database tables. As indicated above, processor 360 is programmed to perform the method of the present invention using, for example, the software and data structures of the present invention. Accordingly, the systems and methods of the present invention may be embodied as software that provides the above-described stylized or other instructions, such as a set of instructions and/or meta-data embodied in a computer-readable medium. In addition, metadata can be used to define various data structures for lookup tables or databases. The software may be in the form of, for example, but not limited to, an original code or an object code. The source code can be further compiled into some form of instruction or target code (including combined language instructions or configuration information). The software, original code or metadata of the present invention can be embodied as any type of code, such as c.

SystemC、LISA、XML、Java、Brew、SQL 及其變化形式, 或執行本文中所論述之功能性的任何其他類型之程式化♦丘 言,包括各種硬體定義或硬體模型化語言(例如Verii〇g、SystemC, LISA, XML, Java, Brew, SQL, and its variations, or any other type of stylized language that performs the functionality discussed in this article, including various hardware definitions or hardware-modeled languages (such as Verii) 〇g,

S 165 201226479 VHDL ' RTL) ,八&quot;I TT貝个卞厗 旧尔V例如GDSII) =中所等效使用之「構造」、「種式構造」、「軟體 或:軟體:f謂且指具有任何語法或簽名之任何種類之任 何私式化5吾5,其提供或可經解譯以提供所 能性或方法(當具現化或裁入處 θ 目1 理器测中且執行時處理以電腦(包括例如處 本發明之軟體、元資料或其他原始碼以及任何所得位 凡檔案(目標石馬、資料庫或查找表)可於任何有幵 體(諸如任何電腦或其他機器可讀資料儲存媒幻 、 化為電腦可讀指令、資料結構、程式模組或其他資料^ 如上文對於記憶體365所述者’例如如 麵、CD-RW、DVD、磁性硬碟機、光碟機或任:: 類型之資料儲存裝置或媒體。 〃他 除圖84中所說明之控制器345之外,孰 _ 應瞭解存在此項技術中已知之諸多等效組態、佈:支:者 及類型之控制電路,其處於本發明範疇内。 11 類 儘管已關於特定具體實例描述本發明,但 例僅具說明性而隸制本發明。在本文之描述中,提= ==之;如電子组件、電子及結構連接、材料:結 構文化形式之實例以充分瞭解本發明之具體實缺 熟習相關技術者應瞭解本發明之具體實例可 特定細節下或以其他裝置、系統、總成、組件二或多個 等在其他情況下’不特定展示或詳細描述:知: 構'材料或操作以避免使本發明之具體 - a N文恶樣不明 166 201226479 確。热習此項技術者應進—步瞭解 步驟,戋# ’、 了使用其他或等效方法 次Τ與其他步驟組合,或可 何及所有去比泰w 卜丨J人斤進仃,其任 白處於所主張之本發明範疇内。 按比例描繪且不應視作具限制性。 ’各圖不 在本發明說明書中通篇對「一 實例」或-特定「具體實例」之提及例」-具體 所述之牿佘壯 」之如及思明關於該具體實例 特疋特徵、結構或特性包括於至少一個具 而未必包括於所有具體實例 ^ , 奢枷lL , 且此外,未必指同一具體 可盘二二’:何特定具體實例之特定特徵、結構或特性 :何=合,包括使用所選特徵而不相應使用其他; 於1'作出多種修改以使特定應用、情況或材料適 有可能斟hi _解’根據本文中之教示 、巾所描述及說明之本發明具體實例作出其他 變化及修改,日呤堃㈣儿n^ 沾一 且6亥4變化及修改將視作本發明精神及範疇 的一部分。 =應瞭解’圖中所描繪之—或多個元件亦可以較各別 1之方式建構,或甚至在某些狀況下可移除或使其不 可刼作,根據特定應用可能適用。整體成形之組件組合亦 在本發明範嘴内,尤其對於個別組件分離或組合不清楚或 難辨別之具體實例。另外’本文中使用術語「耦接」(包括 =各種形式,諸如「可㈣」)意謂且包括任何直接或間接 電、結構或磁輕接、連接或附接’或該直接或間接電、結 構或磁福接、連接或附接之適合性或能力,包括整體成形 ^5 167 201226479 之組件及經或經由另一組件輕接之έ且件。 如本文中出於本發明之目的所用,術語 數形式應理解為包括任何電」及,、復 信號產生韓射之其他類型之心=極體或能夠回應於電 ^ , 之基於載子注入或接合之***, 〇(但不限於)回應於電流或電壓發光之各種基 體或碳之結構、發光聚合物、有機⑽等,該韓射包2 見光譜或其他光譜(諸如紫外光或紅外光)内、任何帶寬 或任何色彩或色溫之賴射。亦如本文中出於本發明之目的 所用,術語「光電二極體(或PV)」及其複數形式應理解為 包括任何光電二極體或能夠回應於人射能^(諸如光或並 他電磁波)產生電信號(諸如電壓)《其他類型之基於載 子注入或接合之系、统’包括(但不限於)回應於光產生提 供電信號之各種基於半導體或碳之結構,該光包括可見光 譜或其他光譜(諸如紫外光或紅外光)内,任何帶寬或光 譜之光。 本文令所揭示之尺寸及值不應理解為嚴格限於所述之 精確數值。實際上,除非另作說明,否則每一該種尺寸意 謂所述值及圍繞該值之功能等效範圍。舉例而言,揭示為 「40 mm」之尺寸意謂「約4〇 mm」。 【實施方式】中所引用之所有文獻在相關部分中以引用 方式併入本文申;對任何文獻之引用不應視作承認其為關 於本發明之先前技術。若本發明中之術語之任何意義或定 義與以引用方式併入本文_之文獻中同一術語之任何意義 或定義相矛盾’則應以本發明中賦予該術語之意義或定義 168 201226479 為準。 此外,除非另外特定說明,否則圖式/圖中之任何信號 箭頭應視作僅具例示性,而不具限制性。步驟之組成部分 的組合亦應視作處於本發明範疇内’尤其在不清楚或可預 見能夠分離或組合的情況下。除非另外指#,否則如本文 :且貫穿隨附之中請專利範圍所用之轉折術語「或」一般 思明及/或」’具有連接及轉折兩種意義(而非限於「排他 性或」之意義)。除非上下文另外明確規^,否則如本文描 述中及貫穿隨附之申請專利範圍所用之「一」及「該」包 括複數個參考物。除非上τ文另外明確規^,^貞卜亦如本 文描述中及貫穿隨附之申請專利範圍所用之「於…中」之意 義包括「於,..中」及「於____^ 上文對所說明之本發明具體實例的描述(包括【發明 内容】或【發明摘要】+所述者)不意欲為詳盡的或使本 發明限於本文所揭示之精確形式。自上文,可觀察到,預 期作出多種變化、修改及替換且可在不背離本發明新顆概 念之精神及範嘴下達成。應瞭解,不應預期或不應推斷對 於本文所說明之特定方法及裂置的關。當然,所有該等 修改意欲由隨附之中請專利範圍涵蓋而屬於巾請專 範疇内。 圖 圖 俯視圖 圖式簡單說明】 1為說明例示性第一二極體具體實例之透視圖 2為說明例示性第一二極體具體實例之平面圖 或S 165 201226479 VHDL ' RTL) , eight &quot;I TT 卞厗 卞厗 卞厗 卞厗 例如 例如 例如 例如 例如 例如 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Any privateization 5 of any kind with any grammar or signature that is provided or can be interpreted to provide a capability or method (when there is a modernization or ruling, and is processed at execution time) By computer (including, for example, the software, metadata or other source code of the present invention and any resulting files (target stone horse, database or lookup table) may be in any carcass (such as any computer or other machine readable material) Storage media illusion, computer readable instructions, data structures, program modules or other information ^ as described above for memory 365 'such as face, CD-RW, DVD, magnetic hard drive, CD player or any :: Type of data storage device or media. In addition to the controller 345 illustrated in Figure 84, 孰_ should be aware of the existence of many equivalent configurations, fabrics, and types of materials known in the art. Control circuitry is within the scope of the present invention. Class 11 Although the invention has been described with respect to specific specific examples, the examples are merely illustrative of the invention. In the description herein, mention ===; such as electronic components, electronic and structural connections, materials: structural cultural forms The specific examples of the present invention will be understood by those skilled in the art to understand the specific embodiments of the present invention. The specific examples of the present invention may be described in the specific details or in other cases, other devices, systems, assemblies, components, two or more, etc. Or a detailed description: know: construct 'material or operation to avoid making the specifics of the invention - a N text is unknown 166 201226479 indeed. Those who are eager to learn this technology should step into the steps, 戋 # ', use other or The equivalent method is combined with other steps, or all of them may be in the scope of the claimed invention, which is drawn in proportion and should not be regarded as restrictive. 'The figures are not in the specification of the present specification, and the specific examples of the "examples" or "specific examples" - the details of the specific examples, and the specific features of the specific examples, structure The characteristics are included in at least one and not necessarily in all specific examples, and in addition, do not necessarily refer to the specific features, structures, or characteristics of the particular embodiment: what is the combination, including The features are selected and the other features are not used accordingly; various modifications are made in 1' to make a particular application, situation or material suitable. Other changes may be made in accordance with the teachings of the present disclosure, the description and description of the invention. And modifications, 呤堃 呤堃 (4) 儿 n^ 一 一 and 6 hai 4 changes and modifications will be considered as part of the spirit and scope of the invention. = It should be understood that 'the one depicted in the figure - or multiple components can also be different 1 The way it is constructed, or even under certain conditions, may be removed or rendered inoperable, depending on the particular application. The integrally formed component combinations are also within the scope of the present invention, particularly for specific examples in which individual components are separated or unclear or difficult to discern. In addition, the term "coupled" (including the various forms such as "may") means and includes any direct or indirect electrical, structural or magnetic connection, connection or attachment, or direct or indirect electrical, The suitability or capability of the structure or magnetic connection, connection or attachment, including the components of the integral forming and the assembly of the components. As used herein for the purposes of the present invention, the term number form is to be understood to include any electrical and/or complex signal that produces other types of lasers of the Korean type, or that can respond to the charge, or based on carrier injection or Bonding system, 〇 (but not limited to) a variety of substrates or carbon structures, luminescent polymers, organic (10), etc. that respond to current or voltage luminescence, see the spectrum or other spectrum (such as ultraviolet or infrared) Inside, any bandwidth or any color or color temperature. Also as used herein for the purposes of the present invention, the term "photodiode (or PV)" and its plural forms are understood to include any photodiode or capable of responding to human radiation (such as light or he Electromagnetic waves (such as voltage) "Other types of carrier-based injection or bonding systems" include, but are not limited to, various semiconductor- or carbon-based structures that provide electrical signals in response to light generation, including visible Light of any bandwidth or spectrum within a spectrum or other spectrum (such as ultraviolet or infrared). The dimensions and values disclosed herein are not to be understood as being strictly limited to the precise values recited. In fact, unless otherwise stated, each such size means the stated value and the functional equivalents surrounding the value. For example, the size revealed as "40 mm" means "about 4 mm". All documents cited in the [Embodiment] are hereby incorporated by reference in their entireties in their entireties in the the the the the the the the To the extent that any meaning or definition of a term in the present invention is inconsistent with any meaning or definition of the same term in the document incorporated by reference, the meaning or definition of the term in the present invention 168 201226479 shall prevail. In addition, any signal arrows in the drawings/drawings should be considered as illustrative only and not limiting, unless specifically stated otherwise. Combinations of the components of the steps are also considered to be within the scope of the invention', especially if it is unclear or foreseeable to be able to separate or combine. Unless otherwise indicated by #, otherwise as the following: and throughout the accompanying claims, the term "or" is used in the context of the patent to generally mean and/or "have the meaning of connection and transition (not limited to the meaning of "exclusiveness or"). ). &quot;an&quot; and &quot;the&quot; as used in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Unless otherwise stated in the above paragraphs, the meaning of "in" as used in this article and throughout the scope of the accompanying patent application includes "in, in." and "in ____^ The description of the specific examples of the invention (including the invention or the invention) is not intended to be exhaustive or to limit the invention to the precise forms disclosed herein. A variety of changes, modifications, and alterations can be made without departing from the spirit and scope of the novel concept of the invention. It should be understood that the specific methods and sings described herein should not be expected or should not be inferred. All such modifications are intended to be within the scope of the accompanying claims, and are included in the scope of the disclosure. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view illustrating an exemplary first diode embodiment. FIG. 2 is an illustrative illustration. a plan view of a specific example of the first diode or

S 169 201226479 圖3為說明例示性第一二極體具體實例之橫截面圖。 圖4為說明例示性第二二極體具體實例之透視圖。 圖5為說明例示性第二二極體具體實例之平面圖(或 俯視圖)。 圖6為說明例示性第三二極體具體實例之透視圖。 圖7為說明例示性第三二極體具體實例之平面圖(或 俯視圖)。 圖8為說明例示性第四二極體具體實例之透視圖。 圖9為說明例示性第四二極體具體實例之平面圖(或 俯視圖)。 圖10為說明例示性第二、第三及/或第四二極體具體實 例之橫截面圖。 圖11為說明例示性第五及第六二極體具體實例之透視 圖。 圖1 2為說明例示性第五及第六二極體具體實例之平面 圖(或俯視圖)。 圖1 3為說明例示性第五二極體具體實例之橫截面圖。 圖14為說明例示性第六二極體具體實例之橫截面圖。 圖1 5為說明例示性第七二極體具體實例之透視圖。 圖1 6為說明例示性第七二極體具體實例之平面圖(或 俯視圖)。 圖17為說明例示性第七二極體具體實例之橫截面圖。 圖1 8為說明例示性第八二極體具體實例之透視圖。 圖19為說明例示性第八二極體具體實例之平面圖(或 170 201226479 \ 俯視圖)。 圖2〇為說明例示性第八二極體具體實例之橫截面圖。 圖21為說明例示性第十二極體具體實例之透視圖。 圖22為說明例示性第十二極體具體實例之橫截面圖。 圖23為說明例示性第十一二極體具體實例之透視圖。 圖24為說明例示性第十一二極體具體實例之橫截面 圖。 圖25為說明一部分複合GaN異質結構及金屬層之橫截 面圖其°兒明複合GaN異質結構之外表面及/或内表面之視 情況呈現之幾何形狀及紋理。 圖26為具有氧化物層(諸如二氧化矽)之晶圓的橫截 面圖。 圖27為具有蝕刻成網格圖案之氧化物層之晶圓的橫截 面圖。 圖28為具有蝕刻成網格圖案之氧化物層之晶圓的平面 圖(或俯視圖)^ 圖29為具有緩衝層(諸如氮化紹或氮化石夕)、呈網格 圖案之—氧化石夕層及氮化鎵(GaN )層之晶圓的橫截面圖。S 169 201226479 FIG. 3 is a cross-sectional view illustrating an exemplary first diode embodiment. 4 is a perspective view illustrating an exemplary second diode embodiment. Figure 5 is a plan (or top view) illustrating an exemplary second diode embodiment. Figure 6 is a perspective view illustrating an exemplary third diode embodiment. Figure 7 is a plan view (or top view) illustrating an exemplary third diode embodiment. Figure 8 is a perspective view illustrating an exemplary fourth diode embodiment. Figure 9 is a plan view (or top view) illustrating an exemplary fourth diode embodiment. Figure 10 is a cross-sectional view illustrating a specific example of an exemplary second, third, and/or fourth diode. Figure 11 is a perspective view illustrating an exemplary fifth and sixth diode embodiment. Figure 12 is a plan view (or top view) illustrating an exemplary fifth and sixth diode embodiment. Figure 13 is a cross-sectional view illustrating an exemplary fifth diode embodiment. Figure 14 is a cross-sectional view illustrating an exemplary sixth diode embodiment. Figure 15 is a perspective view illustrating an exemplary seventh diode embodiment. Figure 16 is a plan view (or top view) illustrating an exemplary seventh diode embodiment. Figure 17 is a cross-sectional view illustrating an exemplary seventh diode embodiment. Figure 18 is a perspective view illustrating an exemplary eighth diode embodiment. Figure 19 is a plan view (or 170 201226479 \ top view) illustrating an exemplary eighth diode embodiment. 2A is a cross-sectional view illustrating an exemplary eighth diode embodiment. Figure 21 is a perspective view illustrating an exemplary twelfth polar body embodiment. Figure 22 is a cross-sectional view illustrating an exemplary twelfth polar body embodiment. Figure 23 is a perspective view illustrating an exemplary eleventh dipole embodiment. Figure 24 is a cross-sectional view showing an exemplary eleventh dipole embodiment. Figure 25 is a cross-sectional view showing a portion of a composite GaN heterostructure and a metal layer. The geometry and texture of the outer surface and/or inner surface of the composite GaN heterostructure are shown. Figure 26 is a cross-sectional view of a wafer having an oxide layer such as hafnium oxide. Figure 27 is a cross-sectional view of a wafer having an oxide layer etched into a grid pattern. Figure 28 is a plan view (or top view) of a wafer having an oxide layer etched into a grid pattern. Figure 29 is a oxidized stone layer with a buffer layer (such as nitrided or nitrided), in a grid pattern. A cross-sectional view of a wafer of gallium nitride (GaN) layers.

圖3〇為具有緩衝層及複合GaN異質結構(n+型 GaN 層、量子井區及p +型GaN層)之基板的橫截面圖。 圖3 1為具有緩衝層及第一台面蝕刻之複合GaN異質結 構之基板的橫截面圖。 圖32為具有緩衝層及第二台面蝕刻之複合GaN異質結 構之基板的橫截面圖。 171 201226479 圖33為具有緩衝層、台面蝕刻之複合GaN異質结構以 及用於導孔連接之經蝕刻基板之基板的橫截面圖。 圖34為具有缓衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層以及形成導孔之金 屬化層之基板的橫截面圖。 圖35為具有緩衝層、台面钮刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層、形成導孔之金屬 化層以及側向蝕刻之渠溝之基板的橫截面圖。 圖36為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層 '形成導孔之金屬 化層 '側向#刻之渠溝及鈍化層(諸如氮化矽)之基板的 橫截面圖。 圖37為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN廣形成歐姆接觸之金屬化層、形成導孔之金屬 化層、側向#刻之渠溝、鈍化層及形成突出或凸塊結構之 金屬化層之基板的橫截面圖。 圖38為具有複合GaN異質結構(n+型GaN層 '量子 井區及p +型GaN層)之基板的橫截面圖。 圖39為具有第三台面蝕刻之複合GaN異質結構之基板 的橫截面.圖.。 圖40為具有台面蝕刻之複合GaN異質結構、用於導孔 連接之經飯刻基板及側向蝕刻之渠溝之基板的橫截面圖。 圖41為具有台面蝕刻之複合GaN異質結構、與n+型 GaN層形成歐姆接觸且形成貫穿導孔之金屬化層以及侧向 172 201226479 * 姓刻之渠溝之基板的橫截面圖。 圖42為具有台面姓刻之複合GaN異質結構、與n+型 GaN層形成歐姆接觸且形成貫穿導孔之金屬化層、與p +型3A is a cross-sectional view of a substrate having a buffer layer and a composite GaN heterostructure (n+-type GaN layer, quantum well region, and p+-type GaN layer). Figure 31 is a cross-sectional view of a substrate having a buffer layer and a first mesa-etched composite GaN heterostructure. Figure 32 is a cross-sectional view of a substrate having a buffer layer and a second mesa-etched composite GaN heterostructure. 171 201226479 Figure 33 is a cross-sectional view of a substrate having a buffer layer, mesa-etched composite GaN heterostructure, and an etched substrate for via connection. Figure 34 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer that forms an ohmic contact with the P+ type GaN layer, and a metallization layer forming the via. 35 is a cross-sectional view of a substrate having a buffer layer, a mesa buttoned composite GaN heterostructure, a metallization layer forming an ohmic contact with a P + -type GaN layer, a metallization layer forming a via hole, and a laterally etched trench. . 36 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming a ohmic contact with a P + -type GaN layer, a metallization layer forming a via hole, a lateral trench, and a passivation layer (such as nitrogen). A cross-sectional view of a substrate of phlegm. 37 is a composite GaN heterostructure having a buffer layer, a mesa etching, a metallization layer which is ohmically contacted with P + -type GaN, a metallization layer forming a via hole, a lateral trench, a passivation layer, and a protrusion. Or a cross-sectional view of a substrate of a metallization layer of a bump structure. Figure 38 is a cross-sectional view of a substrate having a composite GaN heterostructure (n+ type GaN layer 'quantum well region and p + type GaN layer). Figure 39 is a cross section of a substrate having a third mesa-etched composite GaN heterostructure. Figure 40 is a cross-sectional view of a substrate having a mesa-etched composite GaN heterostructure, a via-hole substrate for via connection, and a laterally etched trench. 41 is a cross-sectional view of a substrate having a mesa-etched composite GaN heterostructure, an ohmic contact with an n+-type GaN layer, a metallization layer formed through the via, and a laterally etched substrate. 42 is a composite GaN heterostructure having a mesa name, an ohmic contact with an n+ type GaN layer, and a metallization layer forming a through via, and a p+ type

GaN層形成歐姆接觸之金屬化層以及側向蝕刻之渠溝之基 板的橫截面圖。 圖43為具有台面钱刻之複合GaN異質結構、與n+型 GaN層形成歐姆接觸且形成貫穿導孔之金屬化層、與p+型 N層形成歐姆接觸之金屬化層、側向银刻之渠溝及純化 層(諸如氮化矽)之基板的橫截面圖。 圖44為具有台面蝕刻之複合GaN異質結構、與n+型The GaN layer forms a cross-sectional view of the metallization layer of the ohmic contact and the substrate of the laterally etched trench. 43 is a composite GaN heterostructure having a mesa surface, an ohmic contact with an n+ type GaN layer, a metallization layer forming a through via, a metallization layer forming an ohmic contact with the p+ type N layer, and a side silver engraved trench A cross-sectional view of a substrate of a trench and a purification layer such as tantalum nitride. Figure 44 is a composite GaN heterostructure with mesa etching, and n+ type

GaN層形成歐姆接觸且形成貫穿導孔之金屬化層、與p +型The GaN layer forms an ohmic contact and forms a metallization layer through the via, and a p + type

GaN層形成歐姆接觸之金屬化層、側向蝕刻之渠溝、鈍化 層(5者如氮化石夕)及形成突出或凸塊結構之金屬化層之基 板的橫截面圖。 圖45為具有緩衝層、複合GaN異質結構(n+型GaN 層、里子井區及p+型GaN層)及與p +型GaN層形成歐姆 接觸之金屬化層之基板的橫截面圖。 圖46為具有緩衝層、第四台面蝕刻之複合GaN異質結 構及與p +型GaN層形成歐姆接觸之金屬化層之基板的橫截 面圖。 圖47為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層及與n+型GaN層 形成歐姆接觸之金屬化層之基板的橫截面圖。 圖48為具有缓衝層、台面蝕刻之複合GaN異質結構、 173 201226479 '、里GaN層形成歐姆接觸之金屬化層及側向蝕刻之渠溝 之基板的橫截面圖β 圖49為具有緩衝層、台面钱刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層、與n+型GaN層 形成歐姆接觸之金屬化層&amp;具有形成周圍貫穿導孔之金屬 化層之側向蝕刻之渠溝之基板的橫截面圖。 圖50為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P+型GaN層形成歐姆接觸之金屬化層、與n+型層 形成I姆接觸之金屬化層&amp;具有开)成周目I冑導孔之金屬 化層之側向姓刻之渠溝、鈍化層(諸如說化石夕)以及形成 突出或凸塊結構之金屬化層之基板的橫截面圖。 圖5 1為具有緩衝層、第五台面蝕刻之複合GaN異質結 構以及與P+型GaN層形成歐姆接觸之金屬化層之基板的橫 截面圖。 圖52為具有緩衝層、台面蝕刻之複合異質結構、 與P +型GaN層形成歐姆接觸之金屬化層以及用於中心導孔 連接之經蝕刻GaN異質結構之基板的橫截面圖。 圖53為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P+型GaN層形成歐姆接觸之金屬化層及形成中心導孔且 與n+型GaN層形成歐姆接觸之金屬化層之基板的橫截面 圖.。 圖54為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層、形成中心導孔且 與n+型GaN層形成歐姆接觸之金屬化層及第一鈍化層(諸 174 201226479 '* 如氮化矽)之基板的横戴面圖。 圖5 5為具有緩衝層、台面蝕刻之複合GaN異質結構、 -、P +型GaN層形成歐姆接觸之金屬化層、形成中心導孔且 與型GaN層形成歐姆接觸之金屬化層、第一鈍化層(諸 如氮化石夕)及形成突出或凸塊結構之金屬化層之基板的橫 截面圖。 圖56為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層、形成中心導孔且 與型GaN層形成歐姆接觸之金屬化層、第一鈍化層(諸 如氮化矽)、形成突出或凸塊結構之金屬化層及側向(或周 圍)姓刻之渠溝之基板的橫截面圖。 圖57為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P+型GaN層形成歐姆接觸之金屬化層、形成中心導孔且 與型GaN層形成歐姆接觸之金屬化層、第一鈍化層(諸 如氮化矽)、形成突出或凸塊結構之金屬化層、側向(或周 圍)蝕刻之渠溝及第二鈍化層(諸如氮化矽)之基板的橫 截面圖。 圖58為具有緩衝層、第六台面蝕刻之複合GaN異質結 冓X及與p +型GaN層形成歐姆接觸之金屬化層之基板的橫 截面圖。 圖59為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層及與n+型層 形成歐姆接觸之金屬化層之基板的横截面圖。 圖60為具有緩衝層 '台面蝕刻之複合GaN異質結構、The GaN layer forms a cross-sectional view of an ohmic contact metallization layer, a laterally etched trench, a passivation layer (such as nitride nitride), and a substrate forming a metallization layer of a protruding or bump structure. Figure 45 is a cross-sectional view of a substrate having a buffer layer, a composite GaN heterostructure (n+ type GaN layer, lining well region, and p+ type GaN layer) and a metallization layer forming ohmic contact with the p+ type GaN layer. Figure 46 is a cross-sectional view of a substrate having a buffer layer, a fourth mesa-etched composite GaN heterostructure, and a metallization layer that forms an ohmic contact with the p+ type GaN layer. Figure 47 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer that forms an ohmic contact with the P+ type GaN layer, and a metallization layer that forms an ohmic contact with the n+ type GaN layer. 48 is a cross-sectional view of a substrate having a buffer layer, mesa-etched composite GaN heterostructure, 173 201226479 ', a GaN layer forming an ohmic contact metallization layer, and a laterally etched trench. FIG. 49 is a buffer layer. a composite GaN heterostructure having a mesa surface, a metallization layer forming an ohmic contact with the P + -type GaN layer, a metallization layer forming an ohmic contact with the n + -type GaN layer, and a side forming a metallization layer surrounding the via hole A cross-sectional view of the substrate to the etched trench. Figure 50 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with the P+ type GaN layer, and a metallization layer forming an I contact with the n+ type layer. A cross-sectional view of a laterally-formed trench of a metallization layer of a via, a passivation layer such as a fossil layer, and a substrate forming a metallization layer of a protruding or bump structure. Figure 51 is a cross-sectional view of a substrate having a buffer layer, a fifth mesa-etched composite GaN heterostructure, and a metallization layer that forms an ohmic contact with the P+-type GaN layer. Figure 52 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite heterostructure, a metallization layer that forms an ohmic contact with the P+ type GaN layer, and an etched GaN heterostructure for the center via connection. 53 is a cross section of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer forming an ohmic contact with the P+ type GaN layer, and a metallization layer forming a center via and forming an ohmic contact with the n+ type GaN layer. Figure.. 54 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a P + -type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the n + -type GaN layer, and a first passivation A cross-sectional view of a substrate of layers 174 201226479 '* such as tantalum nitride. 5 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer in which an ohmic contact is formed by a P + -type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the GaN layer, and first A cross-sectional view of a passivation layer, such as a nitride nitride, and a substrate forming a metallization layer of a protruding or bump structure. 56 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a P + -type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the type GaN layer, and a first passivation layer A cross-sectional view of a substrate (such as tantalum nitride), a metallization layer that forms a protruding or bump structure, and a substrate that is laterally (or surrounding) ascribed trench. 57 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a P+ type GaN layer, a metallization layer forming a center via hole and forming an ohmic contact with the type GaN layer, and a first passivation layer ( A cross-sectional view of a substrate such as tantalum nitride, a metallization layer forming a protruding or bump structure, a lateral (or surrounding) etched trench, and a second passivation layer (such as tantalum nitride). Figure 58 is a cross-sectional view of a substrate having a buffer layer, a sixth mesa-etched composite GaN heterojunction X, and a metallization layer forming an ohmic contact with the p + -type GaN layer. Figure 59 is a cross-sectional view of a substrate having a buffer layer, a mesa-etched composite GaN heterostructure, a metallization layer that forms an ohmic contact with the P+ type GaN layer, and a metallization layer that forms an ohmic contact with the n+ type layer. Figure 60 is a composite GaN heterostructure with a buffer layer 'mesa etching,

S 175 201226479 P +型GaN層形成歐姆接觸之金屬化層、與n +型層 » 形成歐姆接觸之金屬化層及與P +型GaN層形成接觸之其他 金屬化層之基板的橫截面圖。 圖6 1為具有緩衝層、台面姓刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層、與…型GaN層 形成歐姆接觸之金屬化層、與p +型GaN層形成接觸之其他 金屬化層及形成突出或凸塊結構之金屬化層之基板的橫截 面圖。 圖62為具有緩衝層、台面蝕刻之複合GaN異質結構、 與P +型GaN層形成歐姆接觸之金屬化層、與n+型GaN層 形成歐姆接觸之金屬化層、與p +型GaN層形成接觸之其他 金屬化層、形成突出或凸塊結構之金屬化層及鈍化層(諸 如氮化矽)之基板的橫截面圖。 圖63為具有緩衝層、台面蝕刻之複合GaN異質結構、 ” P +型GaN層形成歐姆接觸之金屬化層、與n+型層 形成歐姆接觸之金屬化層、與p+型GaN層形成接觸之其他 金屬化層、形成突出或凸塊結構之金屬化層、鈍化層(諸 如齓化石夕)及側向(或周圍)餘刻之渠溝之基板的橫截面 圖。 圖64為說明黏著至固持裴置之例示性二極體晶圓具體 實例之橫截面圖。 圖65為說明黏著至固姓驻 U持装置之例示性二極體晶圓具體 實例之橫截面圖。 圖6 6為§兒明黏者至固牲壯52 u待裝置之例示性第十二極體具體 176 201226479 實例之橫哉面圖。 圖67為說明在背面金屬仆夕a針益s门 興亿之刖黏者至固招:奘努1 性第十二極體具體實例之横截面圖。 、 例不 圖68為說明黏著至固持妒 了我置之例不性二極體且髀音 之橫截面圖。 r [八體貫例 圖69為說明黏著至固持梦罟夕/sr — ω妨I _ ^ ^ 訂展置之例不性第~{—二極體具 貼·貧例之橫截面圖。 圖7〇為說明用於製造二極體之例示性第一方法具體實 流裎圖。 例之流程圖 圖71分成圖71Α及圖71Β,為說明用於製造 例示性第二方法具體實例之流程圖。 _ 刀成圖72Α及圖72Β,為說明用於製造 例示性笛二+、_!_ 弟一方法具體實例之流程圖。 _ 刀成圖73Α及圖73Β,為說明用於製造 例示性第四方法具體實例之流程圖 極體 之 ,,《λ 只 i/j on, ^ is] 〇 圖74為s兒明黏著至固持裝置且懸浮於含黏#齋】〆分裁 #1 。口 π工A U π I且惣汙於含黏湣 JHL 中 &amp; 不性經研磨及拋光二極體晶圓具體實 面圖。 — 為說明用於製造二極體懸浮液之例示怏方 貫例之流裎圖。 圖 7 6 、 為例示性第一裝置具體實例之透視圖。 圖 7 7 为^ ^ ^ 卜 為說明例示性裝置具體實例之第一導電膚 第電極結構之平面圖(或俯視圖)。 。 圖78為例示性第一裝置具體實例之第一橫截面_ s 177 201226479 圖79為例示性第一裝置具體實例之第二橫截面圖。 圖80為例示性第二裝置具體實例之透視圖。 圖8 1為例示性第二裝置具體實例之第一橫截面圖。 圖82為例示性第二裝置具體實例之第二橫截面圖。 圖83為耦接至第一導體之例示性二極體之第二橫截面 圖。 圖84為第一例示性系統具體實例之方塊圖。 圖85為第二例示性系統具體實例之方塊圖。 圖86為說明用於製造裝置之例示性方法具體實例之流 程圖。 圖87為自兩側發光之例示性第三裝置具體實例之橫截 面圖。 圖88為自兩側發光之例示性第四裝置具體實例之橫截 面圖。 圖89為例示性第一裝置具體實例之更詳細的部分橫截 面圖。 圖90為例示性第二裝置具體實例之更詳細的部分橫截 面圖。 圖91為例示性第五裝置具體實例之透視圖。 圖92為例示性第五裝置具體實例之橫截面圖。 圖93為例示性第六裝置具體實例之透視圖。 圖94為例示性第六裝置具體實例之横截面圖。 圖95為例示性第七裝置具體實例之透視圖。 圖96為例示性第七裝置具體實例之橫截面圖。 178 201226479 &quot;7為例不性第八裝置具體實例之透視圖。 ^ 98為例示性第八裳置具體實例之橫截面圖。 圖99為說明例示性裝置具體實例之第—導電層之例示 二電極結構之平面圖(或俯視圖)。 |^| 10 〇 - 卜 '、’、乐二及第四例示性系統具體實例之透視圖。 w 為例示性第九及第十裝置具體實例之平面圖(或 俯視圖)。 圖102為例示性第九裝置具體實例之橫截面圖。 圖103為例示性第十裝置具體實例之橫截面圖。 圖104為說明例示性發光或光吸收區域之例示性第一 表面幾何形狀之透視圖。 圖1 〇5為說明例示性發光或光吸收區域之例示性第二 表面幾何形狀之透視圖。 圖106為說明例示性發光或光吸收區域之例示性第三 表面幾何形狀之透視圖。 圖107為說明例示性發光或光吸收區域之例示性第四 表面幾何形狀之透視圖。 圖10 8為說明例示性發光或光吸收區域之例示性第五 表面幾何形狀之透視圖。 圖10 9為發光之通電例示性裝置具體實例之照片。 圖110為例示性第二二極體具體實例之掃描電子顯微 照片。 ‘ 圖111為複數個例示性第二二極體具體實例之掃描電 子顯微照片。S 175 201226479 P + -type GaN layer forms a cross-sectional view of a metallization layer of ohmic contact, a metallization layer forming an ohmic contact with an n + type layer, and a substrate of another metallization layer in contact with the P + -type GaN layer. 6 is a composite GaN heterostructure having a buffer layer, a mesa name, a metallization layer forming an ohmic contact with the P + -type GaN layer, a metallization layer forming an ohmic contact with the GaN layer, and a p + -type GaN layer. A cross-sectional view of a substrate forming another metallization layer in contact and a metallization layer forming a protruding or bump structure. 62 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer forming an ohmic contact with a P + -type GaN layer, a metallization layer forming an ohmic contact with the n + -type GaN layer, and a contact with the p + -type GaN layer; A cross-sectional view of another metallization layer, a metallization layer forming a protruding or bump structure, and a substrate of a passivation layer such as tantalum nitride. 63 is a composite GaN heterostructure having a buffer layer, mesa etching, a metallization layer in which an ohmic contact is formed by a P + -type GaN layer, a metallization layer forming an ohmic contact with an n + -type layer, and a contact with a p + -type GaN layer; A cross-sectional view of a metallization layer, a metallization layer forming a protruding or bump structure, a passivation layer (such as a bismuth fossil), and a lateral (or surrounding) residual trench. Figure 64 is an illustration of adhesion to retention. A cross-sectional view of a specific example of an exemplary diode wafer is shown in Fig. 65. Fig. 65 is a cross-sectional view showing an exemplary embodiment of an exemplary diode wafer adhered to a holding device. Fig. 6 is a § The viscous to solid animal 52 u to the device of the illustrative twelfth polar body specific 176 201226479 Example of the horizontal 哉 哉 。 。 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Trick: A cross-sectional view of a concrete example of a twelfth polar body. Example No. Fig. 68 is a cross-sectional view showing the case of the inaccurate diode and the arpeggio attached to it. Figure 69 shows the adhesion to the holding of the nightmare / sr — ω I I _ ^ ^ Figure 5A is a cross-sectional view showing an exemplary first method for fabricating a diode. Figure 7 is a flow chart of an example. Figure 71A and Figure 71A are flowcharts for illustrating an exemplary second method embodiment. _ knives are shown in Fig. 72A and Fig. 72A, for illustrating a method for manufacturing an exemplary flute two +, _! A flow chart of an example. _ knives are shown in Fig. 73 Α and Fig. 73 Β, to illustrate a flow chart pole for manufacturing an exemplary fourth method embodiment, "λ only i/j on, ^ is] 〇 Fig. 74 is s The child sticks to the holding device and suspends in the viscous 斋 斋 〆 # # # 1 1 1 AU AU AU AU π 惣 惣 惣 AU AU AU AU 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 惣 AU AU AU AU AU AU Fig. 7 is a flow chart for illustrating an exemplary embodiment of a diode suspension. Fig. 7 is a perspective view showing an example of a first device shown in Fig. 7. Fig. 7 7 is ^ ^ ^ A plan view (or top view) of a first conductive skin electrode structure of an exemplary device embodiment is illustrated. Figure 78 is an illustration. A first cross-section of a device embodiment _ s 177 201226479 Figure 79 is a second cross-sectional view of an exemplary first device embodiment. Figure 80 is a perspective view of an exemplary second device embodiment. Figure 81 is an exemplary A first cross-sectional view of a second embodiment of the second device. Figure 82 is a second cross-sectional view of an exemplary second device embodiment. Figure 83 is a second cross-sectional view of an exemplary diode coupled to a first conductor. Figure 84 is a block diagram of a first exemplary system embodiment. Figure 85 is a block diagram of a second exemplary system embodiment. Figure 86 is a flow diagram illustrating an exemplary method embodiment for fabricating a device. Figure 87 is a cross-sectional view of an exemplary third device embodiment illuminated from both sides. Figure 88 is a cross-sectional view of an exemplary fourth device embodiment illuminated from both sides. Figure 89 is a more detailed partial cross-sectional view of an exemplary first device embodiment. Figure 90 is a more detailed partial cross-sectional view of an exemplary second device embodiment. Figure 91 is a perspective view of an exemplary fifth device embodiment. Figure 92 is a cross-sectional view of an exemplary fifth device embodiment. Figure 93 is a perspective view of an exemplary sixth device embodiment. Figure 94 is a cross-sectional view of an exemplary sixth device embodiment. Figure 95 is a perspective view of an exemplary seventh device embodiment. Figure 96 is a cross-sectional view of an exemplary seventh device embodiment. 178 201226479 &quot;7 is a perspective view of a specific example of an eighth device. ^ 98 is a cross-sectional view of an exemplary eighth embodiment. Figure 99 is a plan (or top) view of an exemplary two-electrode structure illustrating a first conductive layer of an exemplary device embodiment. |^| 10 〇 - A perspective view of the specific examples of the ', ', Le and fourth exemplary systems. w is a plan view (or top view) of a specific example of the ninth and tenth devices. Figure 102 is a cross-sectional view of an exemplary ninth device embodiment. Figure 103 is a cross-sectional view of an exemplary tenth device embodiment. Figure 104 is a perspective view illustrating an exemplary first surface geometry of an exemplary illuminating or light absorbing region. Figure 1 is a perspective view of an exemplary second surface geometry illustrating an exemplary illuminating or light absorbing region. Figure 106 is a perspective view illustrating an exemplary third surface geometry of an exemplary illuminating or light absorbing region. Figure 107 is a perspective view illustrating an exemplary fourth surface geometry of an exemplary illuminating or light absorbing region. Figure 10 is a perspective view illustrating an exemplary fifth surface geometry of an exemplary illuminating or light absorbing region. Figure 10 is a photograph of a specific example of an energized exemplary device for illumination. Figure 110 is a scanning electron micrograph of an exemplary second diode embodiment. Figure 111 is a scanning electron micrograph of a plurality of exemplary second diode embodiments.

S 179 201226479 【主要元件符號說明】 100 :第一二極體 100A :第二二極體 100B :第三二極體 100C :第四二極體 100D :第五二極體 100E :第六二極體 100F :第七二極體 100G :第八二極體 100H :第九二極體 100K :第十二極體 100L :第十一二極體 1001 :第十二二極體 100J :第十三二極體 102A :金屬層 102B :金屬層 103 :反射層 105 :基板 105A :基板 106 :藍寶石 107 :表面紋理 108 :其他層 109 :反射器 110 : n+型 GaN 層 201226479 ·. 1 11 :平滑表面 11 2 :外表面紋理 11 3 :條紋 114 :頂點 11 5 : p +型 GaN 層 11 6 :透鏡形狀 11 7 :其他幾何形狀 11 8 :超環狀體、蜂巢或華夫餅乾形狀 119 :金屬層 120 :金屬層 120A :金屬層 120B :金屬層 12 1 :六角形側面 122 :金屬層 124 :延長延伸件 125 :第一端子 126 :金屬接點延伸件 127 :第二端子 128 :接點 1 2 9 :金屬層 1 3 0 :導孔 131 :導孔結構 132 :導孔結構 133 :導孔結構 f™1 181 201226479 134 :導孔結構 135 :介電層 135A :鈍化層 136 :導孔結構 140 :發光區域 14 5 :緩衝層 1 5 0 .晶圓 1 5 0 A .晶圓 155 :渠溝 160 :固持裝置 162 :雷射束 165 :黏著劑 170 :晶圓黏著劑溶劑 175 :器孤 180 :背面 1 8 5 :量子井區 186 :相對淺渠溝 187 : GaN台面結構 187A : GaN台面結構 187B : GaN台面結構 187C : GaN台面結構 187D : GaN台面結構 187E : GaN台面結構 188 :渠溝 182 201226479 190 :二氧化矽層 19 1 :區域 192 :區域 19 3 .區域S 179 201226479 [Description of main component symbols] 100: First diode 100A: Second diode 100B: Third diode 100C: Fourth diode 100D: Fifth diode 100E: Sixth pole Body 100F: seventh diode 100G: eighth diode 100H: ninth diode 100K: tenth polar body 100L: eleventh diode 1001: twelfth diode 100J: thirteenth Diode 102A: Metal layer 102B: Metal layer 103: Reflective layer 105: Substrate 105A: Substrate 106: Sapphire 107: Surface texture 108: Other layer 109: Reflector 110: n+ type GaN layer 201226479 ·. 11 11 : Smooth surface 11 2 : outer surface texture 11 3 : stripe 114 : vertex 11 5 : p + type GaN layer 11 6 : lens shape 11 7 : other geometric shape 11 8 : super-ring, honeycomb or waffle shape 119 : metal layer 120: metal layer 120A: metal layer 120B: metal layer 12 1 : hexagonal side surface 122: metal layer 124: extension extension 125: first terminal 126: metal contact extension 127: second terminal 128: contact 1 2 9: metal layer 1 3 0 : via hole 131 : via structure 132 : via structure 133 : via structure fTM1 181 201226479 134 : Structure 135: Dielectric layer 135A: Passivation layer 136: Via structure 140: Light-emitting region 14 5 : Buffer layer 1 50 0. Wafer 1 500 A. Wafer 155: Trench 160: Holding device 162: Laser beam 165: Adhesive 170: Wafer Adhesive Solvent 175: Device Lone 180: Back 1 8 5: Quantum Well Area 186: Relative Shallow Ditch 187: GaN Mesa Structure 187A: GaN Mesa Structure 187B: GaN Mesa Structure 187C: GaN Mesa Structure 187D: GaN mesa structure 187E: GaN mesa structure 188: trench 182 201226479 190: yttria layer 19 1 : region 192: region 19 3 . region

195 :多晶 GaN 200 :起始步驟 205 :釋放二極體步驟 2 11 :中心導孔渠溝 215 :將於第—溶劑中之二極體添加至黏性劑中步驟 220 :添加一或多種第二溶劑步驟 225:使用添加之第三溶劑(例如去離子水)調節任何 重量百分比步驟 )下於空氣氛圍中混合複數個二極 、第二溶劑及任何添加之第三溶劑 230 :在室溫(25°C 體、第一溶劑、黏性劑 2 5-30分鐘步驟 235 :返回步驟 240 :起始步棘 245 :於半導體晶圓上生長或沈積氧化物層步驟 25 0 :蝕刻氧化物層以形成網格或其他圖案步驟 255:生長或沈積緩衝層及發光或光吸收區域步驟 260 :蝕刻及發光或光吸收區域以形成各二極體之台面 结構步驟 265 :蝕刻晶圓以在各二極體之基板中形成導孔渠溝步195: polycrystalline GaN 200: initial step 205: releasing the diode step 2 11: central via trench 215: adding the diode in the first solvent to the binder step 220: adding one or more a second solvent step 225: mixing a plurality of dipoles, a second solvent, and any added third solvent 230 in an air atmosphere using an added third solvent (eg, deionized water) to adjust any weight percentage step: at room temperature (25 ° C body, first solvent, adhesive 2 5-30 minutes Step 235: Return to step 240: Start step spine 245: Growth or deposition of oxide layer on the semiconductor wafer Step 25 0: Etching the oxide layer To form a grid or other pattern, step 255: growing or depositing a buffer layer and a light-emitting or light-absorbing region, step 260: etching and illuminating or absorbing regions to form a mesa structure of each of the diodes. Step 265: etching the wafer to each Forming a guide channel in the substrate of the polar body

S 183 201226479 270 :沈積一或多個金屬化層以形成各二極體之金屬接 點及導孔步驟 2 75 :在二極體之間蝕刻單體化渠溝步驟 280 :生長或沈積鈍化層步驟 285:於金屬接點上沈積或生長凸塊或突出金屬結構步 驟 290 :返回步驟 292 :惰性粒子 295 :膜 300 :裝置 300A :裝置 300B :裝置 300C :裝置 300D :裝置 305 :基板 305A :基底 310 :第一導體 3 10A :導體 310B :導體 3 12 :導體 315 :絕緣介電層 3 1 5A :介電層 315B :介電層 3 1 8 :障壁層 184 201226479 。 320 :導體 3 22A :碳接點 3 22B :碳接點 325 :發光(或發射)層 3 3 0 :保護層 3 3 5 :穩定化層 3 40 :電源 345 :控制器 3 5 0 :照明系統 3 55 :介面電路 355A :介面電路 3 6 0 :控制邏輯電路 365 :記憶體 375 :系統 3 80 :能量儲存器件 385 :介面電路 4 0 0 :起始步驟 405 :在基板上沈積一或多個第一導體步驟. 410:在至少一個第一導體上沈積具有複數個二極體之 二極體墨水步驟 415 :使用介電墨水,在複數個二極體上及/或周圍沈積 介電層步驟 420 :沈積一或多個第二導體以接觸複數個二極體步驟 425 :在一或多個第二導體上沈積穩定化層步驟S 183 201226479 270: depositing one or more metallization layers to form metal contacts and via holes of each diode step 2 75: etching the singulation trench between the diodes step 280: growing or depositing a passivation layer Step 285: Depositing or growing bumps or protruding metal structures on the metal contacts. Step 290: Returning to step 292: Inert particles 295: Film 300: Apparatus 300A: Apparatus 300B: Apparatus 300C: Apparatus 300D: Apparatus 305: Substrate 305A: Substrate 310: first conductor 3 10A: conductor 310B: conductor 3 12: conductor 315: insulating dielectric layer 3 1 5A: dielectric layer 315B: dielectric layer 3 1 8 : barrier layer 184 201226479. 320: conductor 3 22A: carbon junction 3 22B: carbon junction 325: illuminating (or emitting) layer 3 3 0 : protective layer 3 3 5 : stabilizing layer 3 40 : power supply 345 : controller 3 5 0 : lighting system 3 55 : interface circuit 355A : interface circuit 3 6 0 : control logic circuit 365 : memory 375 : system 3 80 : energy storage device 385 : interface circuit 4 0 0 : initial step 405 : deposit one or more on the substrate a first conductor step. 410: depositing a diode having a plurality of diodes on at least one of the first conductors. Step 415: depositing a dielectric layer on and/or around the plurality of diodes using a dielectric ink 420: depositing one or more second conductors to contact the plurality of diodes. Step 425: depositing a stabilizing layer on the one or more second conductors

S 185 201226479 427 :在穩定化層上第一側上沈積保護塗層步驟 430 :在穩定化層上或在基板之第二側上沈積發射層步 驟 4 3 5 ·沈積透鏡化及/或保護塗層步驟 440 :返回步驟 500 :起始步驟 5 05 :於藍寶石或其他晶圓上生長或沈積GaN基板步驟 5 10 :生長或沈積發光或光吸收區域步驟 5 1 5 :姓刻發光或光吸收區域以形成各二極體之一或多 個台面步驟 520 : #刻穿過GaN或其他基板以形成一或多個深導孔 及單體化渠溝步驟 5 2 5 :沈積晶種層 530 :沈積金屬以形成深導孔步驟 5 3 5 :沈積金屬接點步驟 540 :沈積電流分佈金屬步驟 5 4 5 生長或沈積純化層步驟 5 50 :在金屬接點上沈積凸塊或突出金屬結構步驟 5 5 5 :附接固持晶圓步驟 560 :移除藍寶石或其他晶圓以單體化二極體步驟 5 6 5 ’在各二極體之第二側(背面)上沈積金屬接點步 驟 570 :返回步驟 600 ·起始步驟 186 201226479 \ 605 :於藍寶石或其他晶圓上生長或沈積GaN基板步驟 6 1 0 :生長或沈積發光或光吸收區域步驟 6 1 5 :沈積金屬接點步驟 620 :蝕刻發光或光吸收區域以形成各二極體之一或多 個台面步驟 625 :沈積金屬接點步驟 630 :蝕刻穿過GaN或其他基板以形成一或多個深導孔 步驟 635 :沈積金屬以形成深導孔步驟 640 :沈積或圖案化互連步驟 645 :蝕刻單體化渠溝步驟 650 :生長或沈積鈍化層步驟 655 :在金屬接點上沈積凸塊或突出金屬結構步驟 6 6 0 .附接固持晶圓步驟 665 :移除藍寶石或其他晶圓以單體化二極體步驟 670 :在各二極體之第二側(背面)上沈積金屬接點步 驟 6 7 5 :返回步驟_ 700 :裝置 700A :裝置 700B :裝置 711 :第一區域 7 1 2 :第二區域 7 1 3 :第三區域 187 201226479 7 1 4 :匯流排 7 1 6 :區域 7 1 7 :燈條 7 1 8 :燈條末端 720 :裝置 730 :裝置 740 :裝置 750 :裝置 760 :裝置 770 :裝置 800 :系統 810 :系統S 185 201226479 427: depositing a protective coating on the first side of the stabilizing layer. Step 430: depositing an emissive layer on the stabilizing layer or on the second side of the substrate. Step 4 3 5 · Deposition of lensing and/or protective coating Layer Step 440: Return to Step 500: Start Step 5 05: Growth or Deposition of GaN Substrate on Sapphire or Other Wafer Step 5 10: Growth or Deposition of Luminescence or Light Absorption Region Step 5 1 5: Surname Illumination or Light Absorption Region To form one or more mesas of each diode step 520: #刻刻 through GaN or other substrate to form one or more deep vias and singulated trenches Step 5 2 5: Depositing seed layer 530: deposition Metal to form deep vias Step 5 3 5: Deposit metal contacts Step 540: Deposit current distribution metal Step 5 4 5 Growth or deposition of purification layers Step 5 50: Deposit bumps or protruding metal structures on metal contacts Step 5 5 5: attaching the holding wafer step 560: removing the sapphire or other wafer to singulate the diode step 5 6 5 ' depositing metal contacts on the second side (back side) of each of the diodes step 570: return Step 600 · Initial Step 186 201226479 \ 605: Yu Lan Growth or deposition of a GaN substrate on a gemstone or other wafer. Step 61: Growth or deposition of a luminescent or light absorbing region. Step 6: 5: Depositing a metal junction. Step 620: etching the luminescent or light absorbing region to form one of the diodes. Or a plurality of mesa steps 625: depositing metal contacts step 630: etching through GaN or other substrate to form one or more deep vias step 635: depositing metal to form deep vias step 640: depositing or patterning interconnecting steps 645: Etching the singulation trench 650: growing or depositing the passivation layer Step 655: depositing bumps or protruding metal structures on the metal contacts Step 660. Attaching the holding wafer Step 665: Removing the sapphire or other crystal Rounding the singulated diode step 670: depositing a metal joint on the second side (back side) of each of the diodes. Step 6 7 5: Returning to step _700: Apparatus 700A: Apparatus 700B: Apparatus 711: First area 7 1 2 : second area 7 1 3 : third area 187 201226479 7 1 4 : bus bar 7 1 6 : area 7 1 7 : light bar 7 1 8 : light bar end 720: device 730: device 740: device 750 : Device 760: Device 770: Device 800: System 810: System

Claims (1)

201226479 ' 七、申請專利範圍: 1. 一種製備用於印刷之二極體液體或膠體懸浮液之方 法,該方法包含: 將黏度調節劑添加至第一溶劑中之複數個二極體中; 混合該複數個二極體、該第一溶劑及該黏度調節劑, 形成該複數個二極體之該液體或膠體懸浮液。 2. 如申請專利範圍第1項之方法,其中混合該複數個二 極體之该液體或膠體懸浮液直至在約25。〇下所量測之黏度 為至少約100厘泊(cps)為止。 3. 如申請專利範圍第丨項之方法’其中混合該複數個二 極體之該液體或膠體懸浮液直至在約乃它下所量測之黏度 為至少約1,000厘泊(cps)為止。 4. 如申請專利範圍第丨項之方法,其進一步包含: 將複數個實質上化學惰性的粒子添加至該複數個二極 體、該第一溶劑及該黏度調節劑之混合物中。 5·如申凊專利範圍第4項之方法其中該複數個實質上 化學惰性的粒子中之各粒子之任何尺寸均為約1〇微米至約 7 0微米。 6·如申请專利範圍第4項之方法,其中該複數個實質上 化子h性的粒子具實質上光學透射性且該複數個實質上化 ^性的粒子中之各粒子之任何尺寸均為約1()微米至㈣ 微米。 7·如申請專利範圍第6項之方法,其中該複數 化學惰性的粒子包含二氧化矽玻璃。 189 201226479 8 ·如申晴專利範圍笛 圍第1項之方法,苴中 至少一種選自由以下έΒ 4、 八中5亥弟一浴劑包含 乙醇、正丙醇(包括\之严的溶劑:水;醇,諸如甲醇、 -、 _丙醇、2_丙醇(異丙醇)、1甲氯美 -2-丙醉)、丁醇(包括i 、丙知)卜甲乳基 括卜戊醇、2-戊醇、3戌以•(異丁醇))、戊醇(包 ^ 戍酵)、辛醇、正辛醇(包括1-辛醇、 2-辛醇、3-辛醇)、气 、匕括1辛和 甲臬乙美秘, 環己醇、松香醇;趟,諸如 甲基乙基醚、***、? 丙基醚及聚鱗;酿,諸如乙酸乙 西曰、己一酸一甲酯、丙二 早甲私乙酸酯、戊二酸二曱醋、 丁二酸二甲|旨、乙酿&amp;&amp; . 乙I甘油醋;二醇,諸如乙二醇、二乙二 醇、聚乙二醇、丙二醇'__ 一 一丙一醇' 二醇醚、二醇醚乙酸 醋:碳酸醋’諸如碳酸伸丙醋;甘油類,諸如甘油;乙腈、 四鼠夫南(THF )、二甲基甲醯胺(DMF )、Ν-甲基曱醯胺 (NMF )、二曱亞砜(DMs〇 );及其混合物。 士申β專利fe圍第丨項之方法,其中該黏度調節劑包 .含至少-種選自由以下組成之群的黏度調節劑:黏土,諸 純蒙脫石黏土、膨潤土黏土、有機改質黏土;醣及多醋, 諸如瓜爾膠(guar gum)、三仙膠;纖維素及改質纖維素, 諸如經甲基纖維素、甲基纖維素、乙基纖維素、丙基甲基 纖維素'曱氧基纖維素、甲氧基曱基纖維素、甲氧基丙基 曱基纖維素、羥丙基甲基纖維素、綾曱基纖維素、羥乙基 纖維素、乙基羥乙基纖維素、纖維素醚、纖維素***、聚 葡萄胺糖;聚合物,諸如丙烯酸酯及(甲基)丙烯酸酯聚合物 及共聚物;二醇,諸如乙二醇、二乙二醇、聚乙二醇、丙 二醇、二丙二醇、二醇醚、二醇醚乙酸酯;煙霧狀二氧化 190 201226479 \ 矽、二氧化矽粉;改質尿素;及其混合物。 10. 如申請專利範圍第1項之方法,其進一步包含: 將第二溶劑添加至該複數個二極體、該第一溶劑及該 黏度調節劑中,該第二溶劑不同於該第一溶劑;及 混合該複數個二極體、該第一溶劑、該第二溶劑及該 黏度調節劑。 11. 如申請專利範圍第10項之方法,其中該第二溶劑為 至少一種選自由以下組成之群的溶劑:水;醇,諸如甲醇、 乙醇、正丙醇(包括1 -丙醇、2-丙醇(異丙醇)、1 -曱氧基 -2-丙醇)、丁醇(包括1-丁醇、2-丁醇(異丁醇))、戊醇(包 括1-戊醇、2-戊醇、3-戊醇)、辛醇、正辛醇(包括1-辛醇、 2-辛醇、3-辛醇)、四氫糠醇、環己醇、松香醇;醚,諸如 甲基乙基醚、***、乙基丙基醚及聚醚;酯,諸如乙酸乙 醋、己二酸二曱酯、丙二醇單甲醚乙酸酯、戊二酸二曱酯、 丁二酸二甲酯、乙酸甘油酯;二醇,諸如乙二醇、二乙二 醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、二醇醚乙酸 醋;碳酸酯,諸如碳酸伸丙酯;甘油類,諸如甘油;乙腈、 四氫呋喃(THF )、二曱基曱醯胺(DMF )、N-曱基甲醯胺 (NMF )、二甲亞砜(DMSO );及其混合物。 12. 如申請專利範圍第10項之方法,其進一步包含: 在空氣氛圍中混合該複數個二極體、該第一溶劑、該 第二溶劑及該黏度調節劑約25至30分鐘。 1 3 .如申請專利範圍第1 0項之方法,其中該第一溶劑包 含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧 191 201226479 基-2-丙醇、1 -辛醇、乙醇、四氫糠醇或環己醇,或其混合 物,且以約5重量%至5〇重量%之量存在;其中該黏度調 節劑包含甲氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素 樹脂或其混合物,且以約〇1〇重量%至5 〇重量%之量存 在,其中s亥第二溶劑包含正丙醇、異丙醇二丙二醇、二 乙二醇、丙二醇、甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠 醇或環己醇,或其混合物,且以約0 · 3重量。至5 〇重量。/〇之 量存在。 14.如申請專利範圍第13項之方法,其進一步包含: 添加複數個實質上光學透明且化學惰性之粒子,其/ 寸範圍介於約10微米與約5〇微米之間且以約〇丨重量%j 2.5重量%之量存在。 15·如申凊專利範圍第1〇項之方法其中該第一溶劑爸 含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、卜&quot; 基-2-丙醇、丨_辛醇、乙醇、四氫糠醇或環己醇,或其混&lt; 物且以約5重$ %至3〇重量%之量存在「其中該黏度言 節劑包含甲氧基丙基甲基纖維素樹脂或經丙基甲基纖㈣ 樹脂或其混合物,且以約U重量%至3.0重量%之量存在 其令該第二溶劑包含正丙醇、異丙醇、二丙二醇、二乙: 醇、丙二醇、卜甲氧基_2_丙 ^ ^ 辛醇、乙醇、四虱糠醇‘ %己酵,或其混合物, 六士. a 〇.2拿至8·0重量。/。之j 子,且其中該方法之其餘部分進一步包含水。 16.如申請專利範圍第丨5項 $之万决,其進一步包含: 添加複數個實質上光學锈日日0 m 尤予逯明且化學惰性之粒子,其/ 192 201226479 \ 寸範圍-介於約10微米與約50微米之間且以約0.1重量%至 2.5重量%之量存在。 17. 如申請專利範圍第10項之方法,其中該第一溶劑包 含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、1-甲氧 基-2-丙醇、1 -辛醇、乙醇、四氫糠醇或環己醇,或其混合 物,且以約40重量%至60重量%之量存在;其中該黏度調 節劑包含曱氧基丙基甲基纖維素樹脂或羥丙基甲基纖維素 - 樹脂或其混合物,且以約0.10重量%至1.5重量%之量存 在;其中該第二溶劑包含正丙醇、異丙醇、二丙二醇、二 乙二醇、丙二醇、1-甲氧基-2-丙醇、1-辛醇、乙醇、四氫糠 醇或環己醇,或其混合物,且以約40重量%至60重量%之 量存在。 18. 如申請專利範圍第17項之方法,其進一步包含: 添加複數個實質上光學透明且化學惰性之粒子,其尺 寸範圍介於約10微米與約50微米之間且以約0· 1重量%至 2.5重量%之量存在。 1 9.如申請專利範圍第1 0項之方法,其中該第二溶劑為 至少一種二元酯。 20.如申請專利範圍第1 〇項之方法,其中該第二溶劑包 含: 戊二酸二甲酯;及 丁二酸二甲酯; 其中戊二酸二曱酯與丁二酸二甲酯之比率為約2比1 (2:1)。 S 193 201226479 21.如申請專利範圍第1〇項之方法,其中該第二溶劑以 約〇.1重量%至ίο重量%之量存在。 22·如申請專利範圍第1〇項之方法,其中該第二溶劑以 約10重量%至50重量%之量存在。 23.如申請專利範圍第1項之方法,其中在該添加黏度 調節劑之步驟之前,該方法進一步包含: 自晶圓釋放該複數個二極體至第三溶劑中。 24·如申請專利範圍第23項之方法,其中該自該晶圓釋 放該複數個二極體之步驟進一步包含蝕刻該晶圓之第二側 (背面)。 2 5.如申睛專利範圍第2 3項之方法,其中該自該晶圓釋 放該複數個二極體之步驟進一步包含研磨及拋光該晶圓之 第二側(背面)。 26.如申請專利範圍第23項之方法,其中該自該晶圓釋 放該複數個二極體之步驟進一步包含使用雷射使該複數個 二極體自該晶圓之第二側(背面)雷射剝離。 27·如申請專利範圍第23項之方法,其進一步包含: 實質上移除該第三溶劑;及 添加該第一溶劑。 28. 如申請專利範圍第27項之方法,其進一步包含: 重複該實質上移除該第三溶劑之步驟及該添加該第一 溶劑之步驟直至剩餘之該第三溶劑之量少於1 .〇重量。/〇為 止。 29. 如申請專利範圍第1項之方法,其中該複數個二極 194 201226479 體中之各二極體包含GaN且其中該複數個二極體中之各二 極體之該GaN部分實質上為六角形、正方形、三角形、矩 形、葉形、星形或超環形。 30.如申請專利範圍第丨項之方法,其中該複數個二極 體中之各二極體之發光或光吸收區域具有包含以下的表面 紋理:複數個圓環,或複數個實質上曲邊梯形,或複數個 平行條紋,或星形圖案。 3!•如申請專利範圍帛i項之方法,其中該複數個二極 體中之各二極體的直徑為約2〇微米1 3〇微米丨高度為約5 微米至1 5微米。 仏如甲…範圍第&quot;員之方法,其中該複數個二極 體中之各二極體的直徑為約10微米至5〇微米且高度為約5 微米至25微米。 33,如申請專利範圍第1 員之方法,其中該複數個二極 體中之各二極體在側向上 曰 貫質上為,、角形,其相對面對面 I測之直徑為約10微米 丁囬 25微米。 5〇从未’且同度為約5微米至 =申料利範圍第1項之方法,其中該複數個 體中之各二極體在側向上實質上為二……二極 量測之直徑為約2(M…U开;,其相對面對面 15微米。 &lt; 水至30微米,且高度為約5微米至 其中該複數個二極 10微米至50微米 阁乐 i項j 體中之各二極體的寬度及長度各 且高度為約5微米至25微米。 S 195 201226479 36. 如申請專利範圍第1項之方法,其中該複數個二極 體中之各二極體的寬度及長度各自為約20微米至30微米 且向度為約5微米至15微米。 37. 如申請專利範圍第丨項之方法,其中該複數個二極 體中之各二極體在該二極體之第一側上具有第一金屬端子 且在該二極體之第二側(背面)上具有第二金屬端子。 38. 如申請專利範圍第3 1項之方法,其中該第一端子及 遠第二端子之高度各自為約1微米至6微米。 39. 如申請專利範圍第丨項之方法,其中該複數個二極 體中之各二極體在第一側上具有複數個第一金屬端子且在 該第一側上具有一個第二金屬端子,該第二金屬端子具有 一個接點’且該第二金屬端子之該一個接點與該複數個第 —金屬端子之接點在高度上間隔約1微米至7微米。 40. 如申請專利範圍第39項之方法,其中該複數個第一 金屬端子中之各第一金屬端子的高度為〇_5微米至2微米且 邊第二金屬端子之高度為约1微米至8微米且該第二金屬 端子之側面經鈍化。 41 ·如申請專利範圍第丨項之方法,其中該複數個二極 體t之各二極體之側面的高度小於1 〇微米。 42·如申請專利範圍第1項之方法,其中該複數個二極 體中之各二極體之側面的高度為約2·5微米至6微米。 43. 如申請專利範圍第1項之方法,其中該複數個二極 體中之各二極體之側面實質上為S形且終止於彎曲點。 44. 如申請專利範圍第1項之方法,其中該黏度調節劑 196 201226479 在乾燥或固化時實質上圍繞該複數個二極體中之各二極體 周邊形成聚合物或樹脂網格或結構。 45·如申請專利範圍第丨項之方法,其中該複數個二極 體之該液體或膠體懸浮液在濕潤時為視覺上不透明的且在 乾燥或固化時為實質上光學透明的。 46.如申請專利範圍帛i項之方法,其中該複數個二極 體之該液體或膠體懸浮液之接觸角大於約25度或大於約4〇 度。 47_如申請專利範圍第丨項之方法,其中該複數個二極 體包含至少一種選自由以下組成之群的無機半導體:矽、 坤化鎵(GaAs )、氮化鎵(GaN )、GaP、InAiGaP、InA1GaP、 AlInGaAs、InGaNAs 及 AlInGASb。 48.如申請專利範圍第!項之方法,其中該複數個二極 體包含至少一種選自由以下組成之群的有機半導體:π共輛 聚合物、聚(乙炔)、聚(吡咯)、聚(噻吩)、聚苯胺、聚噻吩、 聚(對苯硫醚)、聚(對伸苯基伸乙烯基)(PPV )及ρρν衍生 物、聚(3-烷基噻吩)' 聚吲哚、聚芘、聚咔唑、聚甘菊環、 聚氮呼、聚(芴)、聚萘、聚苯胺、聚苯胺衍生物、聚噻吩、 聚噻吩衍生物、聚吡咯、聚吡咯衍生物、聚苯并噻吩、聚 苯并嗟吩衍生物、聚對伸苯基、聚對伸苯基衍生物、聚乙 決、聚乙炔衍生物 '聚二乙炔、聚二乙炔衍生物、聚對伸 苯基伸乙烯基、聚對伸苯基伸乙烯基衍生物、聚萘、聚萘 竹生物、聚異苯弁 σ塞吩(p〇lyis〇thianaphtliene,ΡΙΤΝ )、伸 雜芳基為噻吩、呋喃或吡咯之聚伸雜芳基伸乙烯基 S 197 201226479 (ParV)、聚苯硫喊(PPS)、聚迫萘yperinaphthalene, PPN)、聚駄菁(PPhc),及其衍生物其共聚物及其混合物。 49·如申請專利範㈣i項之方法,其中該複數個二極 體之該液體或膠體懸浮液的相對蒸發率小於i,其中該基發 率係相對於乙酸丁醋而言,後者之蒸發率為卜 5〇·—種使用如申請專利範圍第丨項之複數個二極體之 液體或膠體懸浮液的方法,該方法包含: 、將忒複數個一極體之該液體或膠體懸浮液印刷於基底 上或印刷於耦接至該基底之第一導體上。 人51‘如申請專利範圍帛1項之方法,其中該第-溶劑包 丙一醇或正丙醇或辛醇或丨_甲氧基_2_丙醇或丙二 醇,或其混合物。 52. 如申味專利範圍第丨項之方法,其中該第一溶劑以 約〇.3重量%至60重量%之量存在。 53. 如申請專利範圍第丨項之方法,其中該黏度調節劑 包含曱基纖維素樹脂。 八54.如申請專利範圍第i項之方法其中該黏度調節劑 匕3經丙基甲基纖維素樹脂或甲氧基丙基甲基纖維素樹 月旨,或其混合物。 55.如申請專利範圍帛1項之方法,其中該黏度調節劑 以約0,1〇重量%至5重量%之量存在。 56·如申喷專利範圍第1項之方法,豆中該複數個二極 體之該液體或膠體懸浮液於約抑下所㈣之黏度大於約 1 〇〇 厘泊(cps )。 198 201226479 ;申吻專利辜&amp;固帛1項之方法,纟中該複數個二極 體之該液體或膠體縣沒 心于液於約25°c下所量測之黏度為約 1,000厘泊(cps )至約, ' 2、〇〇〇 厘泊(cps )。 5 8.如申請專利箱圖@ 圍弟1項之方法,其中該複數個二極 體之該液體或膠體Μ、至 L斤液於約25°C下所量測之黏度為約 1,000 厘泊(cps)至約 1Λλ '' 1 〇,〇0〇 厘泊(cps )。 5 9 ·如申請專利節圚 辄㈤弟1項之方法,其中該複數個二極 體之該液體或膠體縣、、襄W 心斤液於約25°C下所量測之黏度為約 1 0,0 0 0 厘泊(c p s ) 5 的。 、Ρ叼至約25,000厘泊(cps)。 60·如申請專利範圍帛1項之方法,其中該複數個二極 體之4液或私體懸浮液於約5乞至1〇0C下所量測之黏度 為約2M00厘泊(cps)至約6M⑽厘泊(cps)。 6 1 · —種製備用於印刷之二極體液體或膠體懸浮液之方 法,該方法包含: 將第二溶劑添加至第一溶劑中之複數個二極體中,該 弟一 &gt;谷劑不同於該第一溶劑; 將黏度調節劑添加至該複數個二極體、該第一溶劑及 該第二溶劑中; 將複數個實質上化學惰性的粒子添加至該複數個二極 體、該第一溶劑、該第二溶劑及該黏度調節劑中;及 混合δ亥複數個二極體、該第一溶劑、該第二溶刻、該 黏度調節劑及該複數個實質上化學惰性的粒子直炱於約 25°C下所量測之黏度為至少約1 〇〇厘泊(cps )為止,形成 該複數個二極體之該液體或膠體懸浮液》 S 199 201226479 62.如申請專利範圍第 體中之各二極體的侧向尺寸之方法’其中該複數個二極 為約5微米至25微米。 、10微米至50微米且高度 項之方法,其中該複數個實質 之任何尺寸均為約1〇微米至 63·如申請專利範圍第61 上化學惰性的粒子中之各粒子 約70微米。 落劑f. 64_如申請專利範圍第61項 含至少-種選自由以下級成之群法、中該第〜溶 炉 群的溶劑.水;醇, ==丙醇(包括“丙醇、2_丙醇(異丙醇)” = :,)、丁醇(包括,丁醇、2 丁醇(異丁醇)广, ::1_“、2-戊醇、3-戊醇)、辛醇、正辛醇/ :…-辛醇、3_辛醇)、四氣糠醇、環己醇、松香Γ m甲基乙㈣、㈣、乙基丙錢及㈣ ^ :乙酸乙醋、己二酸二甲醋、丙二醇彻 7 醇、二乙二醇=Π酸甘油';二醇’諸如乙: 二 —丙一醇、二丙二醇、二醇鰱、 酸酯;碳酸酯,諸如碳酸伸丙酯;甘油類,諉 :油;乙腈、四氫。夫喃(THF)、:f&amp;甲酿胺(dmf/ 1基甲醯胺(卿)、二f亞颯(DMS〇);及其混合物 ^ 65.如申請專利範圍第61項之方法,其中該黏度調節劑 上έ至少種選自由以下組成之群的黏度調節劑:黏土, 諸如鋰蒙脫石黏土、膨潤土黏土、有機改質黏丨;醣及多 醣,諸如瓜爾膠、三仙膠;纖维素及改質纖維素,諸如= $基纖維素、f基纖維素、乙基纖維素、丙基^基纖維素= 200 201226479 甲氧基纖維素、甲氧基曱基 .^ φ ^ ^ 紙堆素、曱氧基丙基甲基纖維 其=素、緩甲基纖維素、乙基纖維素、 印入咖^ .......、截維素***、聚葡萄胺糖; 鬈合物’诸如丙烯酸酯及(甲其 1基)丙烯酸酯聚合物及共聚物. 二酵,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇丙 二醇、二《、二醇驗乙酸酿;煙霧狀二氧化…:丙 石夕粉;改質尿素;及其混合物。 如申請專利範圍第61項之方法,其中該第 至少一種選自由以下組成之群的溶劑:水;醇,諸如甲t 乙醇、正丙醇(包括丙醇、2_丙醇(異丙醇)、:、 _2_丙醇)、丁醇(包括卜丁醇、丁醇(異丁醇))、戊醇^ 括卜戊醇、2_戊醇、3-戊醇)、辛醇、正辛醇(包括包 …一)、四氮糖醇、環己醇、㈣:括:辛:、 甲基乙基喊、乙喊、乙基丙基喊及聚峻;_,諸 / ,、己二酸二甲酿、丙二醇單甲鰱乙酸酿、戊二酸二甲:乙 丁二酸二甲酯、乙酸甘油酯;二醇,諸如乙二醇…日、 醇、聚乙二醇、丙二醇、二丙二醇、二㈣、二醇::二 輯;碳酸自旨,諸如碳酸伸丙醋;甘油類,諸如甘、、由…乙酉欠 四氫咬喃(THF)、二甲基甲醯胺(Dmf) ’ ’乙腈、 (NMF)、二甲亞石風(DMSO);及其混合物。&quot;甲酸胺 67·如申請專利範圍第6 1項之方法,其中哕第—、, 含正丙醇、異丙醇、二丙二醇、二乙二醇、劑包 甘 i —醇、1_甲备 基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,或龙$ 物’且以約5重量%至6〇重量%之量存广合 /、甲孩黏度調 S 201 201226479 節劑包含甲氧基丙基曱基纖維素樹脂或羥丙基曱基纖維素 秘月曰或其混合物,且以約0 · 1 0重量%至5.0重量%之量存 在’其中該第二溶劑包含正丙醇' 異丙醇、二丙二醇、二 乙二醇、丙二醇、曱氧基_2_丙醇、1-辛醇、乙醇、四氫糠 '醇或環已醇,或其混合物,且以約0.3重量%至6 0重量°/〇之 量存在。 68. 如申請專利範圍第61項之方法,其中該複數個二極 體中之各二極體之側面的高度小於1 〇微米。 69. 如申凊專利範圍第6丨項之方法,其中該複數個二極 體中之各二極體之側面實質上為S形且終止於彎曲點。 7〇.一種製備用於印刷之二極體液體或膠體懸浮液之方 法,該方法包含: 將黏度δ周節劑添加至複數個二極體、第一溶劑及第二 命d中,忒第二溶劑不同於該第—溶劑,其中該複數個二 木體中之各一極體的側向尺寸為約上〇微米至$ 〇微米且高 度為約5微米至25微米; ° 將複-數個實質上化學惰性的粒子添加至該複數個二極 體》亥第,合劑、该第二溶劑及該點度調節劑中,其中該 複數個實質上化學惰性的粒子中之各粒子的任何尺寸均為 約10微米至約70微米;及 . 混合該複數個二極體、該第_溶劑、‘該第二溶劑、咳 黏度調節劑及該複數個實質上化學惰性的粒子直至W 25°下所量測之黏度為至少、約ι,_厘泊…為止,步 成該複數個二極體之該液體或膠體懸浮液。 ’ 202 201226479 71.如申請專利範圍第70項 含至少—種選自由以下组成 ,,其中該第—溶劑包 醇、乙醇、正丙醇(包括!-丙醇 欠,醇,諸&quot; 氧基-2-丙醇)、丁醇(包们 :(異丙醇)、1-甲 醇(包括〗戊醇、2_戊醇、3相、::=醇))、戊 1-辛醇、2-辛醇、3_辛醇)、四 子 辛知(包括 醚,諸如甲A己其㈣ 飞糠知、環己醇、松香醇; T基乙基趟、乙鱗、'I 如乙酸乙酯、…“ 基丙基醚及聚醚,·酯,諸 &quot; 一酉夂一甲酯、丙二醇單 酸二甲酿、丁二酸二甲醋、乙酸甘:……、戊二 一 欠甘油酯;二醇,諸如乙二 —醇、聚乙二醇、丙二醇、二丙二醇、二醇醚、 -㈣乙酸酿&quot;炭酸醋,諸如碳酸伸丙酿;甘油類,諸如 甘油,乙腈、四氫呋喃(THF)、二甲基甲醯胺⑼⑽)、 N-甲基甲酿胺(W Jt η / )一 T亞砜(DMSO );及其混合物。 勺八 申明專利範圍第70項之方法,其中該黏度調節劑 〇 3至v —種選自由以下組成之群的黏度調節劑:黏土, 諸如鐘蒙脫石黏土、膨潤土黏土、有機改質黏土;醋及多 醋諸如瓜爾膠、三仙勝;纖維素及改質纖維素,諸如經 f基纖維素、甲基纖維素、乙基纖維素、丙基甲基纖維素、 甲氧基纖維素、甲氧基甲基纖維素、甲氧基丙基甲基纖維 素經丙基曱基纖維素、羧甲基纖維素、羥乙基纖維素、 土 乙基纖維素、纖維素醚、纖維素***、聚葡萄胺糖; 聚合物,# i &amp; ^ 缉如丙烯酸酯及(曱基)丙烯酸酯聚合物及共聚物; 一醇,諸如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙 醇一醇趟、二醇醚乙酸酯;煙霧狀二氧化矽、二氧化 S 203 201226479 矽粉;改質尿素;及其混合物。 73·如申μ專利範圍第7q項之方法,. 至少一種選自由以下組成 。亥弟二溶劑為 乙醇、正丙醇(包括/丙:的溶劑:水;醇,諸如甲醇、 k括[丙醇、2丙醇(異 I丙醇)、丁醇(包…醇、…(異丁醇))、戍醇口 广V:戊醇、3姻)、辛醇、正辛醇(包括= 2-辛酵'3-辛醇)、四氫糠醇、環己醇、松香醇,·趟,諸如 甲基乙基醚、***、乙基丙基醚及聚醚;酉旨,諸如乙酸乙 酯、己二酸二甲酯' 丙二醇單甲醚乙酸酯、戊二酸酯、 丁二酸二甲酯、乙酸甘油酯;二醇,諸如乙二醇、二乙二 醇、聚乙二醇、丙二醇、二丙二醇、二醇趟、二醇:乙: 酯;碳酸酯,諸如碳酸伸丙酯;甘油類,諸如甘油;乙腈、 四氫。夫喊(THF )、二甲基曱醯胺(DMF )、基甲醯胺 (NMF )、二曱亞砜(DMSO );及其混合物。 7 4.如申睛專利範圍弟7 0項之方法,其中該第一溶劑包 含正丙醇、異丙醇、二丙二醇、二乙二醇、丙二醇、丨_甲氧 基-2-丙醇、1-辛醇、乙醇、四氫糠醇或環己醇,威其滿合 物,且以約5重量%至60重量%之量存在;其中該黏度調 節劑包含曱氧基丙基甲基纖維素樹脂或經丙基甲恭纖維素 樹脂或其混合物,且以約〇·ΐ〇重量%至5.0重量。/〇之量存 在;其中該第二溶劑包含正丙醇、異丙醇、二丙&gt;醇'二 乙二醇、丙二醇、1-甲氧基-2-丙醇' 1-辛醇、乙醇、¢9鼠糖 醇或環己醇,或其混合物’且以約〇.3重量%至6〇重量%之 ϊ存在。 204 201226479 \ 75.如申請專利範圍第70項之方法,其中該複數個二極 體中之各二極體之側面的高度小於1 〇微米。 76.如申請專利範圍第70項之方法,其中該複數個二極 體中之各二極體之側面實質上為S形且終止於彎曲點。 八、圖式: (如次頁) 205201226479 ' VII. Patent application scope: 1. A method for preparing a liquid or colloidal suspension for printing, the method comprising: adding a viscosity modifier to a plurality of diodes in a first solvent; mixing The plurality of diodes, the first solvent and the viscosity modifier form a liquid or colloidal suspension of the plurality of diodes. 2. The method of claim 1, wherein the liquid or colloidal suspension of the plurality of diodes is mixed until about 25. The viscosity measured under the armpit is at least about 100 centipoise (cps). 3. The method of claim 2, wherein the liquid or colloidal suspension of the plurality of diodes is mixed until the viscosity measured under about is about at least about 1,000 centipoise (cps) . 4. The method of claim 2, further comprising: adding a plurality of substantially chemically inert particles to the plurality of diodes, the first solvent, and the mixture of viscosity modifiers. 5. The method of claim 4, wherein any of the plurality of substantially chemically inert particles has a size of from about 1 micron to about 70 microns. 6. The method of claim 4, wherein the plurality of substantially homogenous particles are substantially optically transmissive and any of the plurality of particles of the plurality of substantially normalized particles are About 1 () micron to (four) micron. 7. The method of claim 6, wherein the plurality of chemically inert particles comprise ceria glass. 189 201226479 8 · For example, according to the method of Shen Qing patent scope flute, the at least one of the sputum is selected from the following έΒ 4, 8 zhong 5 haidi one bath containing ethanol, n-propanol (including the solvent of: strict: water Alcohols, such as methanol, -, -propanol, 2-propanol (isopropanol), 1 methylchloro-2-propanol, butanol (including i, propyl) , 2-pentanol, 3-indole (isobutanol), pentanol (enzyme), octanol, n-octanol (including 1-octanol, 2-octanol, 3-octanol), Gas, including 1 Xin and Jia Yi B Mei Mi, cyclohexanol, rosin alcohol; hydrazine, such as methyl ethyl ether, ether, ? Propyl ether and polyscale; brewing, such as ethyl acetate, monomethyl hexanoate, propylene diacetate, glutaric acid bismuth vinegar, dimethyl succinate | &amp; . B I glycerin; glycol, such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol '__ monopropanol' glycol ether, glycol ether acetate vinegar: carbonated vinegar 'such as carbonic acid Propylene vinegar; glycerin, such as glycerin; acetonitrile, tetramurine (THF), dimethylformamide (DMF), hydrazine-methyl decylamine (NMF), disulfoxide (DMs); And mixtures thereof. The method of the invention of the present invention, wherein the viscosity modifier comprises at least one viscosity modifier selected from the group consisting of clay, pure montmorillonite clay, bentonite clay, and organically modified clay. Sugar and vinegar, such as guar gum, trisaccharide; cellulose and modified cellulose, such as methylcellulose, methylcellulose, ethylcellulose, propylmethylcellulose '曱oxycellulose, methoxymercaptocellulose, methoxypropylmercaptocellulose, hydroxypropylmethylcellulose, mercaptocellulose, hydroxyethylcellulose, ethylhydroxyethyl Cellulose, cellulose ether, cellulose ether, polyglucamine; polymers such as acrylate and (meth) acrylate polymers and copolymers; glycols such as ethylene glycol, diethylene glycol, polyethylene Glycol, propylene glycol, dipropylene glycol, glycol ether, glycol ether acetate; smog dioxide 190 201226479 \ 矽, cerium oxide powder; modified urea; and mixtures thereof. 10. The method of claim 1, further comprising: adding a second solvent to the plurality of diodes, the first solvent, and the viscosity modifier, the second solvent being different from the first solvent And mixing the plurality of diodes, the first solvent, the second solvent, and the viscosity modifier. 11. The method of claim 10, wherein the second solvent is at least one solvent selected from the group consisting of: water; alcohols such as methanol, ethanol, n-propanol (including 1-propanol, 2- Propyl alcohol (isopropanol), 1-methoxy-2-propanol), butanol (including 1-butanol, 2-butanol (isobutanol)), pentanol (including 1-pentanol, 2 -pentanol, 3-pentanol), octanol, n-octanol (including 1-octanol, 2-octanol, 3-octanol), tetrahydrofurfuryl alcohol, cyclohexanol, rosin alcohol; ether, such as methyl Ethyl ether, diethyl ether, ethyl propyl ether and polyether; esters such as ethyl acetate, dinonyl adipate, propylene glycol monomethyl ether acetate, dinonyl glutarate, dimethyl succinate , glycerol acetate; glycol, such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol ether, glycol ether acetate; carbonate, such as propyl carbonate; glycerin, Such as glycerin; acetonitrile, tetrahydrofuran (THF), dimethyl decylamine (DMF), N-mercaptocarboxamide (NMF), dimethyl sulfoxide (DMSO); and mixtures thereof. 12. The method of claim 10, further comprising: mixing the plurality of diodes, the first solvent, the second solvent, and the viscosity modifier in an air atmosphere for about 25 to 30 minutes. The method of claim 10, wherein the first solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy 191 201226479 -2-propanol Or 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 5% by weight to about 5% by weight; wherein the viscosity modifier comprises methoxypropylmethylcellulose a resin or hydroxypropyl methylcellulose resin or a mixture thereof, and is present in an amount of from about 1% by weight to about 5% by weight, wherein the second solvent comprises n-propanol, isopropanol dipropylene glycol, and diethyl A diol, propylene glycol, methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and having a weight of about 0.03. Up to 5 〇 weight. / The amount of 〇 exists. 14. The method of claim 13, further comprising: adding a plurality of substantially optically transparent and chemically inert particles having a size ranging between about 10 microns and about 5 microns and at about 〇丨The weight % j is present in an amount of 2.5 wt%. 15. The method of claim 1, wherein the first solvent contains n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, b&quot;-2-propanol, 丨_ Octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and present in an amount of from about 5% by weight to about 3% by weight "wherein the viscosity statistic agent comprises methoxypropylmethyl fiber Or a propylmethylcellulose (tetra) resin or a mixture thereof, and is present in an amount of from about U% by weight to 3.0% by weight such that the second solvent comprises n-propanol, isopropanol, dipropylene glycol, diethyl alcohol , propylene glycol, bromooxy 2 - propyl octanol, ethanol, tetradecyl alcohol '% of yeast, or a mixture thereof, six s. a 〇. 2 to get 8.0 weight. And wherein the remainder of the method further comprises water. 16. As claimed in the scope of claim 5, the method further comprises: adding a plurality of substantially optical rust day 0 m, especially bright and chemically inert particles , / 192 201226479 \ inch range - between about 10 microns and about 50 microns and in an amount of about 0.1% to 2.5% by weight 17. The method of claim 10, wherein the first solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1 An octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 40% to 60% by weight; wherein the viscosity modifier comprises decyloxypropylmethylcellulose resin or hydroxy a propylmethylcellulose-resin or a mixture thereof, and is present in an amount of from about 0.10% to 1.5% by weight; wherein the second solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or a mixture thereof, and is present in an amount of from about 40% by weight to 60% by weight. The method of clause 17, further comprising: adding a plurality of substantially optically transparent and chemically inert particles having a size ranging between about 10 microns and about 50 microns and between about 0.1% and 2.5% by weight The quantity exists. 1 9. The method of claim 10, wherein the second The agent is at least one dibasic ester. The method of claim 1, wherein the second solvent comprises: dimethyl glutarate; and dimethyl succinate; wherein the decyl glutarate The ratio to the dimethyl succinate is about 2 to 1 (2:1). S 193 201226479. The method of claim 1, wherein the second solvent is about 11% by weight to ίο. The method of claim 1, wherein the second solvent is present in an amount of from about 10% to 50% by weight. 23. The method of claim 1, wherein prior to the step of adding the viscosity modifier, the method further comprises: releasing the plurality of diodes from the wafer into the third solvent. The method of claim 23, wherein the step of releasing the plurality of diodes from the wafer further comprises etching the second side (back side) of the wafer. 2. The method of claim 23, wherein the step of releasing the plurality of diodes from the wafer further comprises grinding and polishing the second side (back side) of the wafer. 26. The method of claim 23, wherein the step of releasing the plurality of diodes from the wafer further comprises using the laser to cause the plurality of diodes from the second side (back) of the wafer The laser is peeled off. 27. The method of claim 23, further comprising: substantially removing the third solvent; and adding the first solvent. 28. The method of claim 27, further comprising: repeating the step of substantially removing the third solvent and the step of adding the first solvent until the amount of the remaining third solvent is less than one. 〇 weight. /〇 is the only one. 29. The method of claim 1, wherein each of the plurality of diodes 194 201226479 includes GaN and wherein the GaN portion of each of the plurality of diodes is substantially Hexagon, square, triangle, rectangle, leaf, star or super ring. 30. The method of claim 2, wherein the illuminating or light absorbing region of each of the plurality of diodes has a surface texture comprising: a plurality of rings, or a plurality of substantially curved edges Trapezoidal, or a plurality of parallel stripes, or a star pattern. 3: The method of claim 2, wherein each of the plurality of diodes has a diameter of about 2 μm and a diameter of about 3 μm and a height of about 5 μm to 15 μm. For example, the method of the present invention, wherein each of the plurality of diodes has a diameter of about 10 micrometers to 5 micrometers and a height of about 5 micrometers to 25 micrometers. 33. The method of claim 1, wherein each of the plurality of diodes has a laterally tangential shape and an angular shape, and the diameter of the opposite surface I is about 10 micrometers. 25 microns. 5 方法 a method which is never 'and the same degree is about 5 micrometers to = claim 1 of the range of claims, wherein each of the plurality of individuals is substantially two in the lateral direction... the diameter of the two-pole measurement is About 2 (M...U open; it is 15 μm opposite to face. &lt; Water to 30 μm, and height is about 5 μm to each of the plurality of diodes 10 μm to 50 μm The width and length of the polar body are each about 5 micrometers to 25 micrometers. S 195 201226479 36. The method of claim 1, wherein each of the plurality of diodes has a width and a length of each of the plurality of diodes The method of claim 20, wherein the dipole is in the range of from about 5 micrometers to about 30 micrometers, and wherein the dipoles of the plurality of diodes are a first metal terminal on one side and a second metal terminal on a second side (back surface) of the diode. 38. The method of claim 31, wherein the first terminal and the second terminal The heights of the terminals are each from about 1 micron to 6 microns. 39. As stated in the third paragraph of the patent application. The method, wherein each of the plurality of diodes has a plurality of first metal terminals on a first side and a second metal terminal on the first side, the second metal terminal having a contact And the junction of the one of the second metal terminals and the plurality of first metal terminals is spaced apart by a height of about 1 micrometer to 7 micrometers. 40. The method of claim 39, wherein the plurality of Each of the first metal terminals has a height of 〇_5 μm to 2 μm and a height of the second metal terminal of about 1 μm to 8 μm and a side of the second metal terminal is passivated. The method of claim 2, wherein a height of a side of each of the plurality of diodes t is less than 1 〇 micrometer. 42. The method of claim 1, wherein the plurality of diodes The height of the side of each of the plurality of diodes is substantially from about 2.5 micrometers to about 6 micrometers. The method of claim 1, wherein the sides of the plurality of diodes are substantially S-shaped and terminated at the bending point. The method of claim 1, wherein the viscosity modifier 196 201226479 forms a polymer or resin mesh or structure substantially around the periphery of each of the plurality of diodes upon drying or curing. The method of claim 2, wherein the liquid or colloidal suspension of the plurality of diodes is visually opaque when wet and substantially optically transparent when dried or cured. 46. The method of claim i, wherein the liquid or colloidal suspension of the plurality of diodes has a contact angle greater than about 25 degrees or greater than about 4 degrees. 47. The method of claim 2, wherein the plurality of The polar body includes at least one inorganic semiconductor selected from the group consisting of germanium, gallium arsenide (GaAs), gallium nitride (GaN), GaP, InAiGaP, InA1GaP, AlInGaAs, InGaNAs, and AlInGASb. 48. If you apply for a patent scope! The method of claim, wherein the plurality of diodes comprise at least one organic semiconductor selected from the group consisting of: π-host polymer, poly(acetylene), poly(pyrrole), poly(thiophene), polyaniline, polythiophene , poly(p-phenylene sulfide), poly(p-phenylene vinylene) (PPV) and ρρν derivatives, poly(3-alkylthiophene)' polyfluorene, polyfluorene, polycarbazole, polychamomile ring, poly Nitrogen, poly(anthracene), polynaphthalene, polyaniline, polyaniline derivative, polythiophene, polythiophene derivative, polypyrrole, polypyrrole derivative, polybenzothiophene, polybenzophenanthene derivative, poly pair Phenylphenyl, polyparaphenylene derivative, polyacetylene, polyacetylene derivative 'polydiacetylene, polydiacetylene derivative, polyparaphenylene vinylene, polyparaphenylene vinyl derivative, poly Naphthalene, polynaphthalene, polyisophthalazinium 塞 吩 (p〇lyis 〇 iana ph 塞 、 、 、 、 、 、 、 、 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S Phenylthiophene (PPS), polyene naphthalene phthalenephthalene, PPN), polyphthalocyanine PPhc), copolymers and mixtures and derivatives thereof. 49. The method of claim 4, wherein the relative evaporation rate of the liquid or colloidal suspension of the plurality of diodes is less than i, wherein the basis rate is relative to acetic acid vinegar, and the evaporation rate of the latter The method of using a liquid or colloidal suspension of a plurality of diodes as claimed in the scope of the patent application, the method comprising: printing the liquid or colloidal suspension of the plurality of monopolar bodies On the substrate or printed on the first conductor coupled to the substrate. The method of claim 51, wherein the first solvent comprises propanol or n-propanol or octanol or hydrazine-methoxy-2-propanol or propylene glycol, or a mixture thereof. The method of claim 3, wherein the first solvent is present in an amount of from about 3% by weight to about 60% by weight. 53. The method of claim 2, wherein the viscosity modifier comprises a mercapto cellulose resin. VIII. The method of claim i, wherein the viscosity modifier 匕3 is subjected to propylmethylcellulose resin or methoxypropylmethylcellulose, or a mixture thereof. 55. The method of claim 1, wherein the viscosity modifier is present in an amount of from about 0% by weight to about 5% by weight. 56. The method of claim 1, wherein the liquid or colloidal suspension of the plurality of diodes has a viscosity greater than about 1 厘 centipoise (cps). 198 201226479; the method of applying the patent 辜 &; 帛 纟 纟 纟 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体 液体Centimeter (cps) to about, '2, centipoise (cps). 5 8. The method of applying for a patent box diagram @围弟1, wherein the viscosity of the liquid or colloidal enamel of the plurality of diodes to the liquid of about 1.8 centimeters is about 1,000 centipoise. (cps) to about 1 Λ λ '' 1 〇, 〇 0 〇 centipoise (cps). 5 9 · If applying for the patent section (5), the method of the first item, wherein the viscosity of the liquid or colloidal county, the 襄W heart solution of the plurality of diodes is about 1 at about 25 ° C. 0,0 0 0 centipoise (cps) 5 . , Ρ叼 to about 25,000 centipoise (cps). 60. The method of claim 1, wherein the viscosity of the liquid or the private suspension of the plurality of diodes is about 2 M 00 centipoise (cps) at about 5 Torr to 1 Torr. About 6M (10) centipoise (cps). 6 1 - A method for preparing a liquid or colloidal suspension for printing, the method comprising: adding a second solvent to a plurality of diodes in a first solvent, the first one &gt; Different from the first solvent; adding a viscosity modifier to the plurality of diodes, the first solvent and the second solvent; adding a plurality of substantially chemically inert particles to the plurality of diodes, a first solvent, the second solvent, and the viscosity modifier; and mixing a plurality of diodes, the first solvent, the second solvent, the viscosity modifier, and the plurality of substantially chemically inert particles Forming the liquid or colloidal suspension of the plurality of diodes at a viscosity of at least about 1 centipoise (cps) at about 25 ° C. S 199 201226479 62. The method of lateral dimensioning of each of the diodes in the first body 'where the plurality of two are approximately 5 microns to 25 microns. A method of from 10 micrometers to 50 micrometers and heights, wherein any of the plurality of substantial dimensions is from about 1 micron to about 63. Each particle in the chemically inert particles of claim 61 is about 70 microns. Falling agent f. 64_If the scope of claim 61 contains at least one selected from the group consisting of the following steps, the solvent of the first furnace group; water; alcohol, == propanol (including "propanol, 2_propanol (isopropanol)" = :,), butanol (including butanol, 2 butanol (isobutanol), ::1_", 2-pentanol, 3-pentanol), xin Alcohol, n-octanol/:...-octanol, 3-octanol), tetra-sterol, cyclohexanol, rosin, m-methyl b (tetram), (iv), ethylpropanol and (iv) ^: ethyl acetate, hexane Dimethyl vinegar, propylene glycol, 7th alcohol, diethylene glycol = glycerol phthalate'; diols such as B: di-propanol, dipropylene glycol, diol hydrazine, acid ester; carbonate, such as propyl carbonate ; glycerol, hydrazine: oil; acetonitrile, tetrahydrogen, flurane (THF), :f&amp; amylamine (dmf / 1 carbamide (clear), dioxin (DMS 〇); and mixtures thereof ^ 65. The method of claim 61, wherein the viscosity modifier has at least one viscosity modifier selected from the group consisting of clay, such as hectorite clay, bentonite clay, organic modified binder; Sugar and polysaccharides, such as guar gum, three Carrageenan; cellulose and modified cellulose, such as = base cellulose, f-based cellulose, ethyl cellulose, propyl-based cellulose = 200 201226479 methoxy cellulose, methoxy fluorenyl. ^ φ ^ ^ paper pile, methoxypropyl methyl fiber, its auxin, slow methyl cellulose, ethyl cellulose, printed coffee ^ ..., truncated ether, poly grape Amines; conjugates such as acrylates and (meth) 1 acrylate polymers and copolymers. Di-fermentation, such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol propylene glycol, two ", two An alcoholic acid smelting; a smog-like oxidizing agent; a propylene oxide powder; a modified urea; and a mixture thereof. The method of claim 61, wherein the at least one solvent selected from the group consisting of: water; Alcohols, such as methyl t ethanol, n-propanol (including propanol, 2-propanol (isopropanol), :, _2-propanol), butanol (including butanol, butanol (isobutanol)), Pentanols include pentanol, 2-pentanol, 3-pentanol), octanol, n-octanol (including package...), tetraazaol, cyclohexanol, (iv): Methyl ethyl shunt, B shout, ethyl propyl shout and Ju Jun; _, Zhu /, adipic acid dimethyl brewing, propylene glycol monomethyl hydrazine acetic acid brewing, glutaric acid dimethyl: ethane succinate Ester, glycerol acetate; diol, such as ethylene glycol, alcohol, polyethylene glycol, propylene glycol, dipropylene glycol, di(tetra), diol:: two series; carbonic acid, such as carbonic acid propylene glycol; glycerol , such as glycerol, condensed by tetrahydroanthracene (THF), dimethylformamide (Dmf) ' 'acetonitrile, (NMF), dimethyl sulphur (DMSO); and mixtures thereof. &quot; Formic acid Amine 67. The method of claim 61, wherein the hydrazine-, containing n-propanol, isopropanol, dipropylene glycol, diethylene glycol, the agent, the alcohol, the 1-methyl group- 2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, or dragon's material and stored in an amount of about 5% by weight to 6% by weight, and the viscosity of the baby is adjusted to S 201 201226479 The stilbant comprises a methoxypropyl decyl cellulose resin or a hydroxypropyl decyl cellulose secret guanidine or a mixture thereof, and is present in an amount of from about 0. 10% by weight to 5.0% by weight. 'wherein the second solvent comprises n-propanol' isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, decyloxy-2-propanol, 1-octanol, ethanol, tetrahydroanthracene alcohol or cyclohexanol , or a mixture thereof, and is present in an amount of from about 0.3% to about 60% by weight. 68. The method of claim 61, wherein a height of a side of each of the plurality of diodes is less than 1 〇 micrometer. 69. The method of claim 6 wherein the sides of each of the plurality of diodes are substantially S-shaped and terminate at a bend point. 7. A method of preparing a liquid or colloidal suspension for printing, the method comprising: adding a viscosity δ weekly agent to a plurality of diodes, a first solvent, and a second life d, The second solvent is different from the first solvent, wherein each of the plurality of two woods has a lateral dimension of about 〇μm to $ 〇μm and a height of about 5 μm to 25 μm; a substantially chemically inert particle added to the plurality of diodes, the mixture, the second solvent, and the dot modifier, wherein any of the plurality of substantially chemically inert particles are of any size Each of from about 10 microns to about 70 microns; and mixing the plurality of diodes, the first solvent, the second solvent, the viscosity adjuster, and the plurality of substantially chemically inert particles up to W 25° The measured viscosity is at least about ι, _ centipoise, and the liquid or colloidal suspension of the plurality of diodes is formed. '202 201226479 71. As claimed in claim 70, at least one selected from the group consisting of: the first solvent-alcohol, ethanol, n-propanol (including !-propanol owing, alcohol, various &quot; oxy groups -2-propanol), butanol (including: (isopropanol), 1-methanol (including pentanol, 2-pentanol, 3-phase, ::= alcohol)), pentyl 1-octanol, 2 - octanol, 3-octanol), tetragen (including ethers, such as methyl A (4) fly 糠, cyclohexanol, rosin alcohol; T-ethyl ethyl hydrazine, ethyl scale, 'I such as ethyl acetate ,..."propyl propyl ether and polyether, · ester, various &quot; monomethyl ester, propylene glycol monoacid dimethyl brew, dimethyl succinate, acetic acid: ..., pentane oligoglyceride a diol such as ethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol ether, - (tetra) acetic acid brewing &quot;carbonic acid vinegar, such as carbonic acid; glycerin, such as glycerin, acetonitrile, tetrahydrofuran (THF) ), dimethylformamide (9) (10)), N-methylcartoamine (W Jt η / )-T sulfoxide (DMSO); and mixtures thereof. The method wherein the viscosity modifiers 至3 to v are selected from the group consisting of clay viscosity modifiers such as clay, such as montmorillonite clay, bentonite clay, organically modified clay, vinegar and vinegar such as guar gum, Sanxiansheng; cellulose and modified cellulose, such as f-based cellulose, methyl cellulose, ethyl cellulose, propyl methyl cellulose, methoxy cellulose, methoxymethyl cellulose, Methoxypropylmethylcellulose via propyl fluorenyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, soil ethyl cellulose, cellulose ether, cellulose ether, polyglucosamine; polymer , # i &amp; ^ such as acrylate and (mercapto) acrylate polymers and copolymers; mono-alcohols, such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropanol oxime, Glycol ether acetate; aerosolized cerium oxide, oxidized S 203 201226479 cerium powder; modified urea; and mixtures thereof. 73. The method of claim 7th, wherein at least one selected from the group consisting of the following. The two solvents of Haidi are ethanol and n-propanol (including / Solvent: water; alcohol, such as methanol, k [propanol, 2 propanol (isopropanol), butanol (including ... alcohol, ... (isobutanol)), decyl alcohol V: pentanol , 3 marriages), octanol, n-octanol (including = 2-octyl '3-octanol), tetrahydrofurfuryl alcohol, cyclohexanol, rosin alcohol, · hydrazine, such as methyl ethyl ether, ether, ethyl a propyl ether and a polyether; such as ethyl acetate, dimethyl adipate propylene glycol monomethyl ether acetate, glutarate, dimethyl succinate, glycerol acetate; diol, such as Ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycol oxime, glycol: ethyl ester; carbonate, such as propyl carbonate; glycerin, such as glycerin; acetonitrile, tetrahydrogen. Shout (THF), dimethyl decylamine (DMF), carbamide (NMF), disulfoxide (DMSO); and mixtures thereof. 7 4. The method of claim 70, wherein the first solvent comprises n-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, hydrazine-methoxy-2-propanol, 1-octanol, ethanol, tetrahydrofurfuryl alcohol or cyclohexanol, virgin, and present in an amount of from about 5% to 60% by weight; wherein the viscosity modifier comprises decyloxypropylmethylcellulose Resin or propylmethyl cellulose resin or a mixture thereof, and is present in an amount of from about 5% by weight to about 5.0% by weight. The amount of hydrazine is present; wherein the second solvent comprises n-propanol, isopropanol, dipropylene&gt; alcohol 'diethylene glycol, propylene glycol, 1-methoxy-2-propanol' 1-octanol, ethanol , ¢9 rat sugar alcohol or cyclohexanol, or a mixture thereof' and is present in an amount of from about 3% by weight to about 6% by weight. The method of claim 70, wherein the height of the sides of each of the plurality of diodes is less than 1 〇 micrometer. 76. The method of claim 70, wherein the sides of each of the plurality of diodes are substantially S-shaped and terminate at a bend point. Eight, the pattern: (such as the next page) 205
TW100131619A 2010-09-01 2011-09-01 Method of manufacturing a printable composition of a liquid or gel suspension of diodes TWI534211B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US37922510P 2010-09-01 2010-09-01
US37928410P 2010-09-01 2010-09-01
US37982010P 2010-09-03 2010-09-03
US37983010P 2010-09-03 2010-09-03

Publications (2)

Publication Number Publication Date
TW201226479A true TW201226479A (en) 2012-07-01
TWI534211B TWI534211B (en) 2016-05-21

Family

ID=46552490

Family Applications (7)

Application Number Title Priority Date Filing Date
TW100131614A TWI615994B (en) 2010-09-01 2011-09-01 Diode for a printable composition
TW100131609A TWI513032B (en) 2010-09-01 2011-09-01 Method of manufacturing a light emitting, power generating or other electronic apparatus
TW100131616A TWI555172B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of two-terminal integrated circuits and apparatus
TW100131619A TWI534211B (en) 2010-09-01 2011-09-01 Method of manufacturing a printable composition of a liquid or gel suspension of diodes
TW100131615A TWI566369B (en) 2010-09-01 2011-09-01 Light emitting, power generating or other electronic apparatus
TW100131613A TWI566302B (en) 2010-09-01 2011-09-01 Diode for a printable composition
TW100131618A TWI550896B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of diodes

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW100131614A TWI615994B (en) 2010-09-01 2011-09-01 Diode for a printable composition
TW100131609A TWI513032B (en) 2010-09-01 2011-09-01 Method of manufacturing a light emitting, power generating or other electronic apparatus
TW100131616A TWI555172B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of two-terminal integrated circuits and apparatus

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW100131615A TWI566369B (en) 2010-09-01 2011-09-01 Light emitting, power generating or other electronic apparatus
TW100131613A TWI566302B (en) 2010-09-01 2011-09-01 Diode for a printable composition
TW100131618A TWI550896B (en) 2010-09-01 2011-09-01 Printable composition of a liquid or gel suspension of diodes

Country Status (1)

Country Link
TW (7) TWI615994B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144369A (en) * 2013-03-14 2015-12-09 尼斯迪格瑞科技环球公司 Printing complex electronic circuits
US9670334B2 (en) 2014-08-26 2017-06-06 Industrial Technology Research Institute Shear thickening formulation and composite material employing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823691B2 (en) * 2017-01-11 2020-11-03 Winbond Electronics Corp. Sensor, composite material and method of manufacturing the same
CN108305947B (en) * 2017-01-11 2021-10-22 华邦电子股份有限公司 Sensor, composite material and method for manufacturing the same
TWI651349B (en) * 2017-01-11 2019-02-21 華邦電子股份有限公司 Sensor, composite material and method of manufacturing the same
US10269711B1 (en) * 2018-03-16 2019-04-23 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and method for manufacturing the same
CN113327914A (en) * 2021-05-27 2021-08-31 武汉新芯集成电路制造有限公司 Semiconductor device and method for manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046949A (en) * 1983-08-26 1985-03-14 Asahi Glass Co Ltd Paste for thick film
JP3244369B2 (en) * 1993-11-19 2002-01-07 三洋電機株式会社 Photovoltaic device with heterojunction
JPH08116093A (en) * 1994-10-17 1996-05-07 Fujitsu Ltd Optical semiconductor device
MY131962A (en) * 2001-01-24 2007-09-28 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
US7535624B2 (en) * 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
TW200303733A (en) * 2002-02-22 2003-09-16 Philip Morris Prod Dispensing rack with high definition liquid crystal display header
US20030222263A1 (en) * 2002-06-04 2003-12-04 Kopin Corporation High-efficiency light-emitting diodes
JP2005150675A (en) * 2003-11-18 2005-06-09 Itswell Co Ltd Semiconductor light-emitting diode and its manufacturing method
US7476557B2 (en) * 2004-03-29 2009-01-13 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US7327078B2 (en) * 2004-03-30 2008-02-05 Lumination Llc LED illumination device with layered phosphor pattern
JP2008502151A (en) * 2004-06-04 2008-01-24 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Method and device for manufacturing and assembling printable semiconductor elements
US7629026B2 (en) * 2004-09-03 2009-12-08 Eastman Kodak Company Thermally controlled fluidic self-assembly
JP4992282B2 (en) * 2005-06-10 2012-08-08 ソニー株式会社 Light emitting diode, light emitting diode manufacturing method, light emitting diode backlight, light emitting diode illumination device, light emitting diode display, and electronic device
US20070289626A1 (en) * 2006-06-20 2007-12-20 Konarka Technologies, Inc. Photovoltaic cells
JP2010500766A (en) * 2006-08-10 2010-01-07 アイスモス・テクノロジー・リミテッド Method for manufacturing photodiode array with through-wafer via
US20080237611A1 (en) * 2007-03-29 2008-10-02 Cok Ronald S Electroluminescent device having improved contrast

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144369A (en) * 2013-03-14 2015-12-09 尼斯迪格瑞科技环球公司 Printing complex electronic circuits
CN105144369B (en) * 2013-03-14 2018-06-08 尼斯迪格瑞科技环球公司 Print complicated electronic circuit
US9670334B2 (en) 2014-08-26 2017-06-06 Industrial Technology Research Institute Shear thickening formulation and composite material employing the same

Also Published As

Publication number Publication date
TWI513032B (en) 2015-12-11
TW201216505A (en) 2012-04-16
TW201304112A (en) 2013-01-16
TWI550896B (en) 2016-09-21
TW201220471A (en) 2012-05-16
TW201216506A (en) 2012-04-16
TWI534211B (en) 2016-05-21
TWI615994B (en) 2018-02-21
TW201218416A (en) 2012-05-01
TWI566302B (en) 2017-01-11
TW201216370A (en) 2012-04-16
TWI566369B (en) 2017-01-11
TWI555172B (en) 2016-10-21

Similar Documents

Publication Publication Date Title
US9400086B2 (en) Apparatus with light emitting or absorbing diodes
US9349928B2 (en) Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US9362348B2 (en) Method of manufacturing a light emitting, power generating or other electronic apparatus
US8723408B2 (en) Diode for a printable composition
US8809126B2 (en) Printable composition of a liquid or gel suspension of diodes
US8846457B2 (en) Printable composition of a liquid or gel suspension of diodes
TW201226479A (en) Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US9534772B2 (en) Apparatus with light emitting diodes
US9419179B2 (en) Diode for a printable composition
US10161615B2 (en) Apparatus with forward and reverse-biased light emitting diodes coupled in parallel
US9130124B2 (en) Diode for a printable composition
US9425357B2 (en) Diode for a printable composition
US9343593B2 (en) Printable composition of a liquid or gel suspension of diodes
KR102156532B1 (en) Light emitting, power generating or other electronic apparatus and method of manufacturing same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees