TW201224455A - Microfluidic chip and MAU detection system using the same - Google Patents

Microfluidic chip and MAU detection system using the same Download PDF

Info

Publication number
TW201224455A
TW201224455A TW99143695A TW99143695A TW201224455A TW 201224455 A TW201224455 A TW 201224455A TW 99143695 A TW99143695 A TW 99143695A TW 99143695 A TW99143695 A TW 99143695A TW 201224455 A TW201224455 A TW 201224455A
Authority
TW
Taiwan
Prior art keywords
reagent
sample
flow channel
tank
mixing
Prior art date
Application number
TW99143695A
Other languages
Chinese (zh)
Other versions
TWI411780B (en
Inventor
Gwo-Bin Lee
Chun-Che Lin
Chin-Chung Tseng
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW99143695A priority Critical patent/TWI411780B/en
Publication of TW201224455A publication Critical patent/TW201224455A/en
Application granted granted Critical
Publication of TWI411780B publication Critical patent/TWI411780B/en

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A microfluidic chip is disclosed, which is low cost and can be used to detect the amount of albumin and creatinine in a sample. The microfluidic chip mainly includes a substrate, a reagent-channel layer, an air-chamber layer for the reagent, a sample-channel layer, and an air-chamber layer for the sample. A MAU detection system using the microfluidic chip mentioned above is also disclosed.

Description

201224455 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種微流體晶片、以及一種使用該微流 體晶片之微蛋白尿的檢測系統,尤指一種可以一併檢測白 蛋白與肌酸酐含量之微流體晶片、以及一種使用該微流體 晶片之微蛋白尿的檢測系統。 【先前技術】 腎臟在體内屬於代謝器官,其能夠保留血液中有益白 蛋白(albumin)並濾除廢棄成分’因此當腎臟受嚴重傷害 時’尿中之白蛋白排池率(albumin excret丨〇n rate,AER) 會增加’此症狀稱為微白蛋白尿(micr〇albuminuria, MAU )。對於罹患糖尿病與高血壓的病患,以及僅罹患心 血官疾病的患者,評估其是否發生腎病變(nephropathy) 時,便可檢測患者之尿液是否為微白蛋白尿。由於糖尿病 造成之腎病變若早期發現便可治癒恢復原本功能,因此若 可儘早檢測出微白蛋白尿同時進行控制,便可減少腎病變 甚至演變成腎衰竭的風險,因此糖尿病高危險群需要定期 監測尿中白蛋白的含量。 判定微蛋白尿的測量方法,較常用者如下三種:第一 種是測量白蛋白***率(AER),其為標準方法,通常需 要累積收集24小時的尿液,因此過程繁雜且相當耗費時 間,且可能因為長時間尿液收集過程中發生錯誤造成結果 不準確,或者病人配合性不佳等造成檢測難以進行;第二 201224455 =直接測量展中白蛋白濃度,其僅測量白蛋白濃度而非 總因此比起前述第_種方法更為適用但由於白蛋白 濃度會受尿液體積、稀釋程度等影響,故結果容易有誤; 第三種則是測量白蛋白對肌酸針的比、例 (albumin-to-creatinine ratio, ACR) 能 含量取決於患者的肌肉4,而—般短時間内體内肌肉量屬 於常定值,將測量而得的白蛋白量除以肌酸奸莫耳量所得 的比值叫吏白蛋白量的結果有依據基準,因此不會如同上 述第二種方法會受尿液體積、稀釋程度等影響,且亦有報 導提到白蛋白對肌酸㈣比例(ACR)密切相關於白蛋白 ***T(AER) ’因此可以透過測量白蛋白含量與肌酸酐 的含ΐ而得知其兩者的比例,如此便可評估患者的腎臟功 人L· 醫院或檢測中心目前仍使用傳統人工檢測技術,亦即 利用白蛋白專-性抗體之免疫試劑檢測白蛋白含量,不過 其過程繁複且可偵測濃度範圍較窄(約2至4〇 )需 耗費較多的樣本(約21//L)與試劑體積(約32UL),而 且再現性(mtra reproducibility)較差(cVs 介於2.0% 至 7-5 /〇),或者使用大型儀器結合非免疫螢光試劑檢測白蛋 白含量(如Fluka檢測系統),雖然其可偵測濃度範圍較廣 (0.4至200 mg/L)且具有不錯的再現性(CVs介於〇 6%至 3.6% ),但需要耗費非常多的樣本(約5〇〇以[)及試劑體 積(約2500/z L)。另一方面,對於肌酸酐檢測,同樣使用 傳統人工檢測技術,亦即利用傑夫試劑(Jaff0 reagent)檢201224455 VI. Description of the Invention: [Technical Field] The present invention relates to a microfluidic wafer, and a detection system for microalbumin using the microfluidic wafer, in particular, a method for detecting albumin and creatinine together A microfluidic wafer, and a detection system for microalbuminuria using the microfluidic wafer. [Prior Art] The kidney is a metabolic organ in the body, which is capable of retaining the albumin in the blood and filtering out the waste components. Therefore, when the kidney is seriously injured, the rate of albumin in the urine (albumin excret丨〇) n rate, AER) will increase 'this symptom is called microalbuminuria (MAU). For patients with diabetes and high blood pressure, and patients with only cardiovascular disease, when nephropathy is assessed, it is possible to detect whether the patient's urine is microalbuminuria. If the kidney disease caused by diabetes can be cured and restored to its original function, early detection of microalbuminuria can reduce the risk of kidney disease and even renal failure. Therefore, the high risk group of diabetes needs regular Monitor the amount of albumin in the urine. The method for determining microalbuminuria is the following three methods: The first one is to measure albumin excretion rate (AER), which is a standard method, which usually requires cumulative collection of urine for 24 hours, so the process is complicated and time consuming. And may be inaccurate due to errors in the long-term urine collection process, or poor patient compatibility, etc.; second 201224455 = direct measurement of albumin concentration, which only measures albumin concentration instead of total Therefore, it is more suitable than the above-mentioned method, but the albumin concentration is affected by the volume of urine, the degree of dilution, etc., so the result is easy to be mistaken; the third is to measure the ratio of albumin to creatine needle, Albumin-to-creatinine ratio, ACR) The energy content depends on the patient's muscle 4, and the muscle mass in the short-term is a constant value. The measured amount of albumin is divided by the amount of creatine. The ratio of the amount of albumin is based on the benchmark, so it will not be affected by the volume of urine, the degree of dilution, etc., as mentioned above, and there are reports of white eggs. The ratio of creatine (IV) is closely related to albumin excretion T (AER). Therefore, the ratio of albumin to creatinine can be measured to determine the ratio of the two, so that the patient's kidney function can be assessed. L· Hospitals or testing centers still use traditional artificial detection techniques, that is, the use of albumin-specific antibodies to detect albumin levels, but the process is complicated and the concentration range can be narrow (about 2 to 4 〇). Need to consume more samples (about 21 / / L) and reagent volume (about 32UL), and poor reproducibility (cVs between 2.0% to 7-5 / 〇), or use large instruments combined with non-immunization Fluorescent reagents detect albumin levels (such as the Fluka detection system), although they have a wide range of detectable concentrations (0.4 to 200 mg/L) and good reproducibility (CVs range from 〇6% to 3.6%), but It takes a lot of samples (about 5 〇〇 to [) and reagent volume (about 2500 / z L). On the other hand, for creatinine detection, traditional manual detection techniques are also used, that is, using Jeff reagent (Jaff0 reagent)

201224455 ^肌酸肝含量,不過其可偵測濃度極限較差(約40 mg/L), 八表費較夕的樣本(約4至21 " L)與試劑體積(約则以), 斤夺間長(約180至6〇〇秒)且再現性(比的 repr〇dUcibiIity)較差(CVs介於 i ι%至 2篇)。 入因此’若能夠發展出—種可以同時檢測白蛋白與肌酸 酐含量、具有較低成本需求且同時避免前述缺點之技術, 將可快速且準確監測患者是否有微白蛋白尿之產生,如此 更有利於預防及治療腎病。 【發明内容】 本發明之主要目的係在提供一種微流體晶片,里成本 :廉且屬於-整合型微流體晶片,故可用於—併檢測樣本 中之白蛋白與肌酸酐含量。 為達成上述目的,本發明提供—種微流體晶片,包括: -基板、-試劑流道層' 一試劑氣室層、一樣本流道層、 以及一樣本氣室層。 該試劑流道層設置於該基板上,且具有複數個試劑流 道組,其中,每一試劑流道組包括:複數個混合槽、一試 劑裝載槽、m應槽,其中該試劑裝載槽與該反應槽 連通該些混合槽。 ’ 該試劑氣室層設置於該試劑流道層上 b ^ . 上且具有複數個 s式劑驅流組、以及複數個混合纟且,兑φ ^ ,.八 母—試劑驅流組 用於驅動該些試劑流道組中之液體由該試劑裝載槽向該反 201224455 應槽移動,而每一混合組用於使該反應槽之液體於該些混 合槽中進行混合。 該樣本流道層設置於該試劑氣室層上,且具有複數個 連通該反應槽之樣本流道組,其中,每一樣本流道組包括: 一樣本裝載槽、以及一第四連通口,該第四連通口連通該 反應槽及該樣本裝載槽。 該樣本氣室層設置於該樣本流道層上,且具有複數個 樣本驅流組,其中,每一樣本驅流組用於驅動該樣本流道 中之液體由該樣本裝載槽向該第四連通口移動。 於本發明微流體晶片之一態樣中,該樣本氣室層可更 包括:一第一進氣孔、一第二進氣孔、複數個第三進氣孔、 複數個樣本口以及複數個試劑口,其中該第一進氣孔連通 該些試劑驅流組,該第二進氣孔連通該些混合組,該些第 二進氣孔分別連接該些樣本驅流組,該些樣本口分別連通 該些樣本流道組之該樣本裝载槽,而且該些試劑口分別連 通該些試劑流道組之該試劑裝載槽。 此外,每一試劑流道組可更包括一試劑流道,該試劑 流道連接該些混合槽'該試劑裝載槽、與該反應槽,而每 一樣本流道組可更包括一樣本流道,該試劑流道連接該樣 本裝載槽與該第四連通口。 於本發明微流體晶片之另一態樣中,每一試劑驅流組 可包括:一試劑驅流氣室、以及一試劑驅流氣道,其中該 甙劑驅流氣室對應該試劑流道,而該試劑驅流氣道連通該 第一進氣孔與試劑驅流氣室。 201224455 於本發明微流體晶片之再另一態樣中,每^一混合組可 包括:複數個混合氣室、一試劑閥門元件、以及一混合氣 道’其中’該些混合氣室分別對應該些混合槽之混合氣室, 且該試劑閥門元件具有一試劑閥門氣室與一試劑阻隔片, 該S式劑阻隔片向下突伸入該試劑流道,以阻斷該反應槽及 該試劑裝載槽之連通,該混合氣道連通該第二進氣扎、該 些混合氣室、與該閥門氣室。201224455 ^Cerebral acid liver content, but its detectable concentration limit is poor (about 40 mg / L), eight-episode sample (about 4 to 21 " L) and reagent volume (about), The length (about 180 to 6 sec) and the reproducibility (repr〇dUcibiIity) are poor (CVs range from i ι% to 2). Therefore, if it can be developed, a technique that can simultaneously detect albumin and creatinine content, has lower cost requirements, and at the same time avoids the aforementioned disadvantages, can quickly and accurately monitor whether a patient has microalbuminuria, and thus Conducive to the prevention and treatment of kidney disease. SUMMARY OF THE INVENTION The primary object of the present invention is to provide a microfluidic wafer that is inexpensive and belongs to an integrated microfluidic wafer and can be used to detect albumin and creatinine content in a sample. To achieve the above object, the present invention provides a microfluidic wafer comprising: - a substrate, a reagent flow channel layer - a reagent gas cell layer, an inner flow channel layer, and the same gas chamber layer. The reagent flow channel layer is disposed on the substrate and has a plurality of reagent flow channel groups, wherein each reagent flow channel group comprises: a plurality of mixing tanks, a reagent loading tank, and an m tank, wherein the reagent loading tank and the reagent loading tank The reaction tank communicates with the mixing tanks. The reagent gas chamber layer is disposed on the reagent flow channel layer b ^ . and has a plurality of s type agent flooding groups, and a plurality of mixed helium, and the φ ^ ,. eight mother-reagent driving group is used for The liquid driving the reagent flow channel groups is moved from the reagent loading tank to the counter 201224455 tank, and each mixing group is used to mix the liquid of the reaction tank in the mixing tanks. The sample flow channel layer is disposed on the reagent gas chamber layer, and has a plurality of sample flow channel groups connected to the reaction channel, wherein each sample flow channel group comprises: a sample loading channel, and a fourth communication port, The fourth communication port communicates with the reaction tank and the sample loading tank. The sample plenum layer is disposed on the sample flow channel layer and has a plurality of sample drive groups, wherein each sample drive group is configured to drive liquid in the sample flow path from the sample loading slot to the fourth communication Mouth movement. In one aspect of the microfluidic wafer of the present invention, the sample chamber layer may further include: a first air inlet hole, a second air inlet hole, a plurality of third air inlet holes, a plurality of sample ports, and a plurality of a reagent port, wherein the first air inlet is connected to the reagent driving group, the second air inlet is connected to the mixing groups, and the second air inlets are respectively connected to the sample driving groups, the sample ports The sample loading tanks of the sample flow channel groups are respectively connected, and the reagent ports respectively communicate with the reagent loading tanks of the reagent flow channel groups. In addition, each reagent flow channel group may further include a reagent flow channel connecting the mixing tanks 'the reagent loading tank and the reaction tank, and each sample flow channel group may further include the same flow channel, A reagent flow path connects the sample loading tank and the fourth communication port. In another aspect of the microfluidic wafer of the present invention, each reagent flooding group can include: a reagent flooding gas chamber, and a reagent flooding airway, wherein the buffering gas flow chamber corresponds to the reagent flow channel, and the reagent flow channel A reagent flooding air passage connects the first air inlet to the reagent drive air chamber. 201224455 In still another aspect of the microfluidic wafer of the present invention, each of the mixing groups may include: a plurality of mixing chambers, a reagent valve member, and a mixed air passage 'where' the mixing chambers respectively correspond to a mixing chamber of the mixing tank, and the reagent valve member has a reagent valve chamber and a reagent blocking sheet, and the S-type blocking sheet protrudes downward into the reagent channel to block the reaction tank and the reagent loading The mixing channel communicates with the second air inlet, the mixing air chambers, and the valve air chamber.

於本發明微流體晶片之再一態樣中,每一樣本驅流組 可包括.一樣本驅流氣室、一樣本驅流氣室、一樣本閥門 元件、以及一樣本驅流氣道,其中該樣本驅流氣室對應該 樣本流道,其中,該樣本閥門元件具有一樣本阻隔片該 樣本阻隔片向下突伸入該樣本流道,以阻斷該樣本裝載槽 與該反應槽之連通,且該樣本驅流氣道連接該第三進氣孔 以及該樣本驅流氣室。 由於本發明之微流體晶片S設計成樣本與試劑分流輸 入反應槽中’因此可於不同反應槽中針對同—樣本檢測不 同項目。舉例而言,該些試劑流道組可分別容納肌酸野檢 測試劑與白蛋白檢測試劑,如此則可針對尿液或血液檢測 其中白蛋白與肌酸酐含量。 於本發明微流體晶片之再m輯流體晶片可 =括:-溫控板,設置於該基板之下方,以使該微流體 b日片之溫度控制於一預定範圍。 =明之另一目的係在提供一種微白蛋白尿之檢測系 、·先,其係使用本發明之微流體晶片,結合使用與白蛋白結 201224455 合後螢光強度增強之高特異性螢光染料、以及與肌酸針反 應後會形成吸收特定光波長產物之傑夫試劑,搭配光學偵 測單元檢測反應後之螢光值及特定波長吸光值,故可同時 得知白蛋白與肌酸酐含量,進而得知其兩者之比率,俾以 快速且準確檢測微白蛋白尿。 為達成上述目的,本發明提供一種微白蛋白尿之檢測 系統,包括.一微流體晶片、一供氣控制單元、一光學偵 測單元、以及一微處理單元。 該微流體晶片係使用上述本發明之微流體晶片。 鲁 該供氣控制單元連接該微流體晶片之該第一進氣孔、 該第二進氣孔、以及第三進氣孔,以透過供應氣體控制該 微流體晶片中之液體流動。 該光學偵測單元係用於偵測該微流體晶片之該反應槽 中之光訊號變化。 該微處理單元連接該供氣控制單元及該光學偵測單 元’以調控該供氣控制單元並處理及計算該光學偵測單元 之光訊號變化。 Φ 於本發明微白蛋白尿檢測系統之一態樣中,該微流體 晶片之該些试劑流道組係分別容納肌酸酐檢測試劑與白蛋 白檢測試劑。此外’該微白蛋白尿檢測系統可更包括一溫 控板,連接該微處理單元且設置於該微流體晶片之該基板 之下方’以使該微流體晶片之溫度控制於一預定範圍。另 一方面’該供氣控制單元可為一電磁閥控制模組。 8 201224455 本發月h供一種微流體晶片以及一種整合型檢測系 統,該檢測系統搭配使用供氣控制單元、光學偵測單元、 微處理單元與本發明之微流體晶片,結合使用與白蛋白結 合後螢光強度增強之高特異性螢光染料、以及與肌酸酐反 應後會形成吸收特定光波長橙色產物之傑夫試劑,因此可 以檢測樣本中白蛋白與肌酸酐比率,以提供可床邊執行甚 至可定點照護檢驗(point 〇fcare),達到監測患者身體變 φ 化之目的。 【實施方式】 於本發明之具體實施例中,所使用之微流體晶片係由 ^'又甲基石夕乳烧(Poly dimethyl siloxane,PDMS )以及玻璃 基板所構成,其中試劑流道層與試劑氣室層係互相搭配以 傳送試劑,同時使試劑與樣本達到混合,以進行化學反應, 而樣本流道層與樣本氣室層則是係互相搭配以傳送樣本, 使樣本與試劑匯合。 此外,5式劑流道層與樣本流道層分別與其下方之基板 與試劑氣室層形成流道,以供試劑溶液與樣本溶液傳輸, 而5式劑氣室層與樣本氣室層則分別與其下方之試劑流道層 與樣本流道層形成氣室,以推動流道中的溶液流動。當壓 縮氣體自進氣孔輸入氣室層後,便會造成下方薄膜層(即 流道層)發生形變,擠壓流道内之溶液(樣品或試劑)’ 進而達到液體傳送及混合之目的。 以下係藉由特定的具體實施例說明本發明之實施方 式,熟習此技藝之人士可由本說明書所揭示之内容輕易地 201224455 了解本發明之其他優點與功效。本發明亦可藉由其他不同 的具體實施例加以施行或應用,本說明書中的各項細節亦 可基於不同觀點與應用,在不悖離本發明之精神下進行各 種修飾與變更。 本發明之實施例中該等圖式均為簡化之示意圖。惟該 等圖不僅顯示與本發明有關之元件,其所顯示之元件非為 實際實施時之態樣,其實際實施時之元件數目、形狀等比 例為一選擇性之設計,且其元件佈局型態可能更複雜。 實施例一 同時參考圖1與圖2,圖1係本發明微流體晶片之***示 意圖’圖2係本發明微流體晶片之透視圖。 本發明之微流體晶片1包括:一玻璃基板1 〇、一試劑流 道層20、一試劑氣室層30、一樣本流道層4〇、以及一樣本 氣室層50。 該試劑流道層20設置於該基板1 〇上,且其具有複數個 试劑流道組21 ’其中,每一試劑流道組21包括:複數個混 合槽211、一試劑裝載槽2 13、一反應槽215、以及一試劑流 道217,其中該試劑流道217連接該些混合槽21卜該試劑裝 載槽213、與該反應槽215,使該試劑裝載槽213與該反應槽 215連通該些混合槽211。 該試劑氣室層30設置於該試劑流道層20上,且其具有 複數個試劑驅流組32、以及複數個混合組34,其中,該些 試劑驅流組32是用於驅動該些試劑流道組21中之液體由該 試劑裝載槽213向該反應槽215移動,每一試劑驅流組32包 201224455 括.一試劑驅流氣室327、以及一試劑驅流氣道322,其中 該試劑驅流氣室327對應該試劑流道217,該試劑驅流氣道 322連通試劑驅流氣室327 ;該些混合組34用於使該反應槽 215之液體於該些混合槽211中進行混合,每一混合組“包 括:複數個混合氣室341、一試劑閥門元件344、以及一混 合氣道342,其中’該些混合氣室341分別對應該些混合槽 211,該試劑閥門元件344具有一試劑閥門氣室344a及一試 劑阻隔片344B,該試劑阻隔片344B向下突伸入該試劑流道 217以阻斷該反應槽215及該試劑裝載槽2n之連通,該混合 氣道342係連通該些混合氣室341與該閥門氣室344a。 該樣本流道層40設置於該試劑氣室層3〇上,且其具有 複數個連通該反應槽215之樣本流道組41,其中,每一樣本 流道組41包括:一樣本裝載槽419、一第四連通口 415、以 及一樣本流道41 7,其中該樣本流道4丨7連接該樣本裝載槽 419與該第四連通口 415,使該第四連通口415連通該反應槽 215及該樣本裝載槽419。 a亥樣本氣室層50設置於該樣本流道層4〇上,且其具有 複數個樣本驅流組5 1、一第一進氣孔56、一第二進氣孔58、 複數個第二進氣孔5 1 〇 '複數個樣本口 5 9、以及複數個試劑 口 53 ’其t該第一進氣孔56連通該些試劑驅流組32之試劑 驅流氣室327及試劑驅流氣道322,該第二進氣孔58連通該 些混合組34之該混合氣道342,該些第三進氣孔5 1 〇分別連 接该些樣本驅流組5 1 ’該些樣本口 59分別連通該些樣本流 道組41之該樣本裝載槽4 1 9,該些試劑口 53分別連通該些試 201224455 劑流道組21之該試劑裝載槽213。此外,該些樣本驅流組5i 用於驅動該樣本流道417中之液體由該樣本裝載槽419向該 第四連通口 415移動,每—樣本驅流組51包括:—樣本驅流 氣室517、一樣本閥門元件514、以及一樣本驅流氣道512 , 其中,該樣本驅流氣室517對應該樣本流道417,該樣本閥 門元件514具有一樣本阻隔片514B,該樣本阻隔片5MB向下 突伸入該樣本流道417以阻斷該樣本裝載槽419與該反應槽 215之連通,且該樣本驅流氣道512係連接該樣本驅流氣室 517。 φ 再參考圖3A與3B,其兩者皆為圖2中A-A,剖面線之剖 面圖同時參考圖2及3 A所示,試劑溶液由該些試劑口 53 進入該試劑流道217後,自該第一進氣孔56填充氣體,使氣 體經由該試劑驅流氣道3 22進入該試劑驅流氣室327 ,促使 該試劑流道層20發生形變’使該試劑流道217之試劑溶液由 圖3 A的左方往右方移動,其間因為該試劑閥門元件344之試 劑閥門氣室344A中未填充氣體,該試劑流道217的水壓讓該 試劑閥門元件344之試劑阻隔片344B抬升而讓試劑溶液得 鲁 以進入該些混合槽211與該反應槽215。 然後,同時參考圖2及3B所示,當自該第二進氣孔58 填充氣體,使氣體經由該混合氣道342進入混合氣室341與 試劑閥門氣室344A時,該些混合槽211中液體可均勻混合, 且因該試劑閥門氣室344A中有填充氣體,該試劑阻隔片 344B在液體混合過程中可以阻止液體經由該試劑流道217 回流至該試劑口 53。 12 201224455 由本發明上述設計可知,氣室、薄膜層、流道與閥門 元件於微流道晶片中構成微幫浦單元或構成微混合器。當 供應器體至氣室時,氣室層充氣會造成下方流道層發生形 變,擠壓流道内心讀,同日寺開門元件元件可以阻擔流道 内回流,促使流道内溶液持續前進,如此便可驅動流道中 溶液之流動’並達到均勻混合的目的。 實施例二 φ 參考圖4,其係本發明微白蛋白尿檢測系統之示意圖。 如圖4所示,本發明之微白蛋白尿檢測系統,包括:一 微流體晶片1、一供氣控制單元9、一光學偵測單元8、一微 處理單元7、以及一溫控單元6。 該微流體晶片1係使用實施例—之微流體晶片。 該溫控單元6包含:一加熱板6〇、以及一溫度控制模組 61 ( VT 4826 > Vertex technology Corp. - Taipei - Taiwan) ^ 其中,該加熱板60設置於該微流體晶片i下,該溫度控制模 組61連接該加熱板60及該微處理單元7,以將該微流體晶片 之溫度控制於一預定範圍。於本實施例中,該加熱板6〇係 一50 mmx4〇 mmxl mm的銅製加熱板,其中央開設一直徑約 為3 mm的孔洞,以供光線通過。 該供氣控制單元9連接該微流體晶片1與該微處理單元 7,透過自該微流體晶片1之該第一進氣孔56、該第二進氣 孔58、以及第三進氣孔51〇供應氣體,控制該微流體晶片1 中之液體流動。於本實施例中,該供氣控制單元9為電磁閥 (electromagnetic valve,EMV)控制模組,其包括壓力調 13 201224455 控器、8051 微控制器(AT89C51 24 PC,Atmel,California, USA)、EMV ( SD70M-6BG-32,SMC,Tokyo,Japan)、 空氣壓縮機(air compressor ’ MDR2-1A/11,Jun-Air Inc., Japan)、以及圖形使用者介面(graphical user interface, 其係使用 Visual Basic ( Visual Basic 2005,Microsoft,US A ) 軟體所發展)。 該光學偵測單元8連接微處理單元7,並用於偵測該微 流體晶片1中反應所造成之光訊號變化,其包括經改良之反 射型顯微鏡 80 (BX41,Olympus,Tokyo,Japan )、平面 發光二極體 81 (波長 510 至 550 nm,SDBL-5050G,Power Assist Instrument Scientific Corp.,Taoyuan,Taiwan )、帶 通光遽波器 812 ( band-pass optical filter,500-520 nm )、 長工作距離物鏡 82 ( 50x,numerical aperture=0.5 ) ' 二色 分光鏡 83 ( dichroic beam splitter ’ 595 nm )、針孔 84 (直 徑約為 1 mm )、光增效管 85 ( photo-multiplier tube ’ PMT ’ 操作電壓 600 V ’ C3830,R928 ’ Hamamatsu Photonics ’ Tokyo, Japan)、水銀燈86、帶通光濾波器 861( 540-580 nm)、 以及帶通光濾波器862 ( 600-660 nm)。 當檢測樣本之白蛋白含量時,由水銀燈86發出之激發 光EXL,經過帶通光濾波器861,由二色分光鏡83上反射槽 (reaction well ’直徑約3 mm)反射’通過長工作距離物鏡 82後到達該微流體晶片1,激發與白蛋白專一性結合之染劑 發出放射光EinL,放射光依序經過長工作距離物鏡82、二色 201224455 分光鏡83 '帶通光濾波器862與針孔84後,再經過依序經過 光增效管85 ’最後到達微處理單元7 ^ 另一方面’當檢測樣本之肌酸酐含量時,由平面發光 二極體81之吸收光AbL,通過加熱板60之孔洞後到達該微流 體晶片1,剩餘通過該微流體晶片1之吸收光AbL,則會依序 經過長工作距離物鏡82、帶通光濾波器812與針孔84後,再 經過依序經過光增效管85,最後到達微處理單元7。 該微處理單元7連接該溫控單元6'該供氣控制單元9 及該光學偵測單元8’其包括類比數位轉換器7〇,連接該微 處理單元7與該光增效管85,以將光增效管85增強之光訊號 轉變成電訊號而後傳遞至該微處理單元7 ^由此可知,該微 處理單元7接受該光學偵測單元8之訊號變化,便可處理及 6十算該微流體晶片1中樣本之白蛋白與肌酸酐含量。 試驗例 在將標準品或樣品(約3至6仁L )及試劑(約3 1 # L ) 分別置入微流體晶片1之樣本裝載槽419及試劑裝載槽2 13 後’加熱板便開始進行加熱。待達所需溫度(如3 7〇c ), 各樣品及s式劑便透過微流體晶片1分別被傳送到反應槽 215,經由微流體晶片1作動進行混合及反應。 當進行測量白蛋白含量之螢光檢測時,進氣孔會一直 維持在進氣狀態以保持白蛋白反應槽内之液面高度;但當 進行測量肌酸酐含量之吸枚光偵測時,混合器之進氣孔則 以特定之間隔(如〇· 1分鐘)進氣以保持肌酸酐反應槽内之 15 201224455 液面高度’以使肌酸針反應槽内之液體間隔地被混合及加 熱並維持在所需溫度。 最後,所量測到的光訊號被記錄下來並處理,以建構 檢量線’並使用該檢量線獲得樣品中白蛋白及肌酸酐之濃 度。 白蛋白之檢測係使用白蛋白螢光分析組(albumin fluorescence assay kit ’ Fluka,Buchs,Switzerland),而 肌酸酐之檢測係使用肌酸酐分析組(creatinine assay kh , Fisher Diagnostics,Middletown,USA) 〇 溫控測試 測試實施例一之微白蛋白尿檢測系統中溫控單元的穩 定度,其結果如圖5所示。由結果可知,本發明實施例二之 系統可在70秒内,將晶片中之液體由室溫加熱至所需溫度 (35 C、37 C及39 C ),同時在該溫度可穩定維持3分鐘以 上’所測得溫度的變異係數(coefficient of variatic)n,cv ) 約於0.9%至2.2%。 流速測試 測s式實施例二之微白蛋白尿檢測系統中微流體晶片中 溶液流速,其結果如圖6所示。由結果可知,本發明實施例 二之電磁閥控制模組,可透過不同進氣壓力與頻率調節, 達到所需之液體傳送流速,例如以2 psi的壓力、45 Hz的驅 動頻率,則可以獲得每分鐘141 的傳輸流速;wi5psi 的壓力、15 Hz的驅動頻率,則可以獲得每分鐘1613“l的 傳輸流速。 201224455 混合效率測試In still another aspect of the microfluidic wafer of the present invention, each of the sample flooding groups may include the same driving gas chamber, the same driving gas chamber, the same valve element, and the same driving air passage, wherein the sample driving The flow chamber corresponds to the sample flow channel, wherein the sample valve element has the same barrier sheet, and the sample barrier sheet protrudes downwardly into the sample flow path to block the sample loading tank from communicating with the reaction tank, and the sample A drive air passage connects the third intake port and the sample drive plenum. Since the microfluidic wafer S of the present invention is designed such that the sample and the reagent are branched into the reaction tank, it is possible to detect different items for the same sample in different reaction tanks. For example, the reagent flow channel groups can respectively contain a creatine field test agent and an albumin test reagent, so that albumin and creatinine content can be detected for urine or blood. The fluid wafer of the microfluidic wafer of the present invention can include a temperature control plate disposed below the substrate to control the temperature of the microfluid b wafer to a predetermined range. Another purpose of the invention is to provide a detection system for microalbuminuria, which uses the microfluidic wafer of the present invention in combination with a high specific fluorescent dye having enhanced fluorescence intensity after binding to albumin 201224455. And reacting with the creatine needle to form a Jeff reagent for absorbing specific wavelength products, and the optical detecting unit is used to detect the fluorescence value after the reaction and the specific wavelength absorbance, so that the albumin and creatinine content can be known at the same time. Further, the ratio of the two is known, and the microalbuminuria is detected quickly and accurately. To achieve the above object, the present invention provides a microalbuminuria detection system comprising: a microfluidic wafer, a gas supply control unit, an optical detection unit, and a microprocessing unit. The microfluidic wafer uses the microfluidic wafer of the present invention described above. The gas supply control unit connects the first inlet hole, the second inlet port, and the third inlet port of the microfluidic wafer to control the flow of the liquid in the microfluidic wafer through the supply gas. The optical detecting unit is configured to detect a change in optical signals in the reaction tank of the microfluidic wafer. The micro processing unit is coupled to the air supply control unit and the optical detection unit ′ to regulate the air supply control unit and process and calculate optical signal changes of the optical detection unit. Φ In one aspect of the microalbuminuria detection system of the present invention, the reagent flow channel groups of the microfluidic wafer respectively contain a creatinine detection reagent and a white protein detection reagent. Further, the microalbuminuria detection system may further comprise a temperature control plate coupled to the microprocessing unit and disposed under the substrate of the microfluidic wafer to control the temperature of the microfluidic wafer to a predetermined range. On the other hand, the air supply control unit can be a solenoid valve control module. 8 201224455 This month is for a microfluidic wafer and an integrated detection system. The detection system is combined with a gas supply control unit, an optical detection unit, a microprocessing unit and the microfluidic wafer of the present invention, and combined with albumin. A highly specific fluorescent dye with enhanced post-fluorescence intensity and a Jeff reagent that reacts with creatinine to absorb an orange product of a specific wavelength of light, thus detecting the ratio of albumin to creatinine in the sample to provide bedside execution Even point 〇fcare can be used to monitor the body's body. [Embodiment] In a specific embodiment of the present invention, the microfluidic wafer used is composed of a poly dimethyl siloxane (PDMS) and a glass substrate, wherein the reagent flow channel layer and the reagent are used. The gas chamber layers are matched to each other to deliver reagents, and the reagents are mixed with the sample for chemical reaction, and the sample flow channel layer and the sample gas chamber layer are matched to each other to transport the sample to bring the sample into contact with the reagent. In addition, the 5-type flow channel layer and the sample flow channel layer respectively form a flow channel with the substrate and the reagent gas chamber layer below, for the reagent solution and the sample solution to be transported, and the 5-type gas chamber layer and the sample gas chamber layer are respectively A gas chamber is formed with the reagent flow channel layer and the sample flow channel layer below it to push the solution flow in the flow channel. When the compressed gas is introduced into the gas chamber layer from the gas inlet hole, the lower film layer (i.e., the flow channel layer) is deformed, and the solution (sample or reagent) in the flow channel is squeezed to achieve liquid transfer and mixing. The embodiments of the present invention are described below by way of specific examples, and those skilled in the art can readily understand the other advantages and functions of the present invention from the disclosure of the present disclosure. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes may be made without departing from the spirit and scope of the invention. The drawings in the embodiments of the present invention are simplified schematic diagrams. However, the drawings not only show the components related to the present invention, but the components shown therein are not in actual implementation, and the number of components, the shape and the like in actual implementation are a selective design, and the component layout type thereof. The state may be more complicated. Embodiment 1 Referring to Figures 1 and 2 together, Figure 1 is an exploded view of a microfluidic wafer of the present invention. Figure 2 is a perspective view of a microfluidic wafer of the present invention. The microfluidic wafer 1 of the present invention comprises a glass substrate 1 , a reagent flow layer 20 , a reagent gas chamber layer 30 , the same flow channel layer 4 , and the same inner chamber layer 50 . The reagent flow channel layer 20 is disposed on the substrate 1 , and has a plurality of reagent flow channel groups 21 ′. Each reagent flow channel group 21 includes: a plurality of mixing channels 211 and a reagent loading channel 2 13 . a reaction tank 215 and a reagent flow channel 217, wherein the reagent flow channel 217 is connected to the mixing tank 21, the reagent loading tank 213, and the reaction tank 215, and the reagent loading tank 213 is connected to the reaction tank 215. Some mixing tanks 211. The reagent gas chamber layer 30 is disposed on the reagent flow channel layer 20, and has a plurality of reagent flooding groups 32, and a plurality of mixing groups 34, wherein the reagent flooding groups 32 are used to drive the reagents The liquid in the flow channel group 21 is moved from the reagent loading tank 213 to the reaction tank 215, and each reagent flooding group 32 includes 201224455, a reagent driving gas chamber 327, and a reagent driving air passage 322, wherein the reagent driving The flow chamber 327 corresponds to the reagent flow path 217, and the reagent drive flow path 322 communicates with the reagent drive flow chamber 327; the mixing groups 34 are used to mix the liquid of the reaction tank 215 in the mixing tanks 211, each mixing The group "includes: a plurality of mixing chambers 341, a reagent valve member 344, and a mixing air passage 342, wherein the plurality of mixing chambers 341 respectively correspond to mixing tanks 211 having a reagent valve chamber 344a and a reagent barrier sheet 344B, the reagent blocking sheet 344B protrudes downwardly into the reagent flow channel 217 to block the communication between the reaction tank 215 and the reagent loading tank 2n, and the mixed air passage 342 communicates with the mixed air chambers. 341 with the valve The sample channel layer 40 is disposed on the reagent gas chamber layer 3, and has a plurality of sample channel groups 41 connected to the reaction tank 215, wherein each sample channel group 41 comprises: the same load a slot 419, a fourth communication port 415, and the same main flow path 41 7 , wherein the sample flow path 4 丨 7 connects the sample loading slot 419 and the fourth communication port 415 such that the fourth communication port 415 communicates with the reaction channel 215 and the sample loading tank 419. The a sample gas chamber layer 50 is disposed on the sample flow channel layer 4, and has a plurality of sample flooding groups 51, a first air inlet 56, and a second inlet. a gas hole 58, a plurality of second gas inlet holes 5 1 〇 'plurality of sample ports 5 9 , and a plurality of reagent ports 53 ′, wherein the first gas inlet holes 56 communicate with the reagent drive gas of the reagent drive groups 32 The chamber 327 and the reagent driving air passage 322, the second air inlet hole 58 is connected to the mixing air passage 342 of the mixing group 34, and the third air inlet holes 5 1 〇 are respectively connected to the sample driving group 5 1 ' The sample ports 59 respectively connect the sample loading slots 4 1 9 of the sample flow channel groups 41, and the reagent ports 53 respectively The reagent loading tank 213 of the 201224455 agent flow channel group 21 is tested. Further, the sample driving group 5i is used to drive the liquid in the sample flow path 417 from the sample loading tank 419 to the fourth communication port 415. The moving, per-sample flooding group 51 comprises: a sample flooding chamber 517, a similar valve element 514, and an identical driving air passage 512, wherein the sample driving chamber 517 corresponds to a sample flow path 417, the sample valve The element 514 has the same barrier sheet 514B, and the sample barrier sheet 5MB protrudes downwardly into the sample flow path 417 to block the sample loading slot 419 from communicating with the reaction tank 215, and the sample driving air passage 512 is connected thereto. The sample drives a gas chamber 517. φ Referring again to FIGS. 3A and 3B, both of which are AA in FIG. 2, the cross-sectional view of the cross-sectional line is also shown in FIGS. 2 and 3A, and the reagent solution enters the reagent flow path 217 from the reagent ports 53. The first air inlet hole 56 is filled with a gas, and the gas enters the reagent driving gas chamber 327 via the reagent driving air channel 3 22 to cause the reagent flow channel layer 20 to deform. The reagent solution of the reagent flow channel 217 is formed by the reagent solution. The left side of A moves to the right, because the reagent valve 344A of the reagent valve element 344 is not filled with gas, and the water pressure of the reagent flow path 217 causes the reagent blocking piece 344B of the reagent valve element 344 to rise to allow the reagent The solution is passed to enter the mixing tank 211 and the reaction tank 215. Then, referring to FIGS. 2 and 3B, when the second intake port 58 is filled with gas to allow the gas to enter the mixed gas chamber 341 and the reagent valve chamber 344A via the mixed air passage 342, the liquid in the mixing tank 211 The mixture can be uniformly mixed, and because of the filling gas in the reagent valve chamber 344A, the reagent barrier sheet 344B can prevent liquid from flowing back to the reagent port 53 via the reagent flow path 217 during liquid mixing. 12 201224455 It is apparent from the above design of the present invention that the plenum, membrane layer, runner and valve elements form a micro-pilot unit or constitute a micro-mixer in the micro-channel wafer. When the supply body is to the air chamber, the inflation of the air chamber layer will cause deformation of the lower flow channel layer, and the inner end of the extrusion flow channel can be read. The components of the door opening device of the same day can resist the backflow in the flow channel, and the solution in the flow channel can continue to advance. It can drive the flow of the solution in the flow channel' and achieve uniform mixing. Embodiment 2 φ Referring to Figure 4, it is a schematic diagram of the microalbuminuria detection system of the present invention. As shown in FIG. 4, the microalbuminuria detection system of the present invention comprises: a microfluidic chip 1, an air supply control unit 9, an optical detection unit 8, a micro processing unit 7, and a temperature control unit 6. . The microfluidic wafer 1 uses the microfluidic wafer of the embodiment. The temperature control unit 6 includes: a heating plate 6〇, and a temperature control module 61 (VT 4826 > Vertex technology Corp. - Taipei - Taiwan). The heating plate 60 is disposed under the microfluidic chip i. The temperature control module 61 is connected to the heating plate 60 and the micro processing unit 7 to control the temperature of the microfluidic wafer to a predetermined range. In the present embodiment, the heating plate 6 is a copper heating plate of 50 mm x 4 mm x 1 mm, and a hole having a diameter of about 3 mm is opened in the center for light to pass therethrough. The air supply control unit 9 is connected to the microfluidic wafer 1 and the micro processing unit 7 , and is transmitted through the first air inlet 56 , the second air inlet 58 , and the third air inlet 51 of the microfluidic wafer 1 . The helium supply gas controls the flow of the liquid in the microfluidic wafer 1. In this embodiment, the air supply control unit 9 is an electromagnetic valve (EMV) control module, which includes a pressure regulator 13 201224455 controller, an 8051 microcontroller (AT89C51 24 PC, Atmel, California, USA), EMV (SD70M-6BG-32, SMC, Tokyo, Japan), air compressor (air compressor 'MDR2-1A/11, Jun-Air Inc., Japan), and graphical user interface (graphical user interface) Visual Basic (Visual Basic 2005, Microsoft, US A) software developed). The optical detecting unit 8 is connected to the micro processing unit 7 and is used for detecting the change of the optical signal caused by the reaction in the microfluidic wafer 1. The improved reflective microscope 80 (BX41, Olympus, Tokyo, Japan), plane Light-emitting diode 81 (wavelength 510 to 550 nm, SDBL-5050G, Power Assist Instrument Scientific Corp., Taoyuan, Taiwan), band-pass optical filter (band-pass optical filter, 500-520 nm), long work Distance objective 82 (50x, numerical aperture = 0.5) ' dichroic beam splitter ' 595 nm , pinhole 84 (about 1 mm in diameter), photo-multiplier tube ' PMT ' Operating voltages 600 V 'C3830, R928 'Haramatsu Photonics ' Tokyo, Japan), mercury lamp 86, bandpass optical filter 861 (540-580 nm), and bandpass optical filter 862 (600-660 nm). When the albumin content of the sample is detected, the excitation light EXL emitted by the mercury lamp 86 passes through the band pass optical filter 861 and is reflected by the reflection groove (reaction well 'about 3 mm in diameter) on the dichroic beam splitter 83 through the long working distance. After the objective lens 82 reaches the microfluidic wafer 1, the dye which is combined with the albumin specificity emits the emitted light EinL, and the emitted light sequentially passes through the long working distance objective lens 82, the two-color 201224455 splitter 83' bandpass optical filter 862 and After the pinhole 84, it passes through the photo-effect tube 85' and finally reaches the micro-processing unit 7. On the other hand, when the creatinine content of the sample is detected, the absorption light AbL of the planar light-emitting diode 81 is heated by heating. After the hole of the plate 60 reaches the microfluidic wafer 1, the remaining absorption light AbL passing through the microfluidic wafer 1 passes through the long working distance objective lens 82, the band pass optical filter 812 and the pinhole 84, and then passes through The sequence passes through the photo-effect tube 85 and finally reaches the micro-processing unit 7. The micro processing unit 7 is connected to the temperature control unit 6 ′. The air supply control unit 9 and the optical detection unit 8 ′ include an analog digital converter 7 〇, and the micro processing unit 7 and the optical efficiency tube 85 are connected to Converting the optical signal enhanced by the light-efficiency tube 85 into an electrical signal and then transmitting it to the micro-processing unit 7 ^ It can be seen that the micro-processing unit 7 accepts the signal change of the optical detecting unit 8 and can process and calculate The albumin and creatinine content of the sample in the microfluidic wafer 1. In the test example, after the standard or sample (about 3 to 6 L) and the reagent (about 3 1 #L) were placed in the sample loading tank 419 and the reagent loading tank 2 13 of the microfluidic wafer 1, the heating plate was started. heating. After the desired temperature (e.g., 3 7 〇c) is reached, each sample and s-type agent are transferred to the reaction tank 215 through the microfluidic wafer 1, respectively, and mixed and reacted via the microfluidic wafer 1. When measuring the fluorescence of albumin content, the inlet hole will remain in the intake state to maintain the liquid level in the albumin reaction tank; however, when measuring the absorption of creatinine, the mixing is performed. The air inlet of the device is aired at a specific interval (such as 〇·1 minute) to maintain the liquid level in the creatinine reaction tank 15 201224455 liquid level so that the liquid in the creatine needle reaction tank is mixed and heated at intervals. Maintain at the required temperature. Finally, the measured optical signal is recorded and processed to construct a calibration curve' and the concentration of albumin and creatinine in the sample is obtained using the calibration curve. The detection of albumin was performed using the albumin fluorescence assay kit (Fluka, Buchs, Switzerland), and the detection of creatinine was performed using the creatinine assay kh (Fischer Diagnostics, Middletown, USA). The test was tested for the stability of the temperature control unit in the microalbuminuria detection system of Example 1, and the results are shown in FIG. As can be seen from the results, the system of the second embodiment of the present invention can heat the liquid in the wafer from the room temperature to the desired temperature (35 C, 37 C and 39 C) in 70 seconds, and can stably maintain the temperature for 3 minutes at this temperature. The above coefficient of variation (coefficient of variatic n, cv ) is about 0.9% to 2.2%. Flow Rate Test The solution flow rate in the microfluidic wafer in the microalbuminuria detection system of Example 2 was measured, and the results are shown in Fig. 6. It can be seen from the results that the solenoid valve control module of the second embodiment of the present invention can achieve the required liquid delivery flow rate through different intake pressure and frequency adjustment, for example, a pressure of 2 psi and a driving frequency of 45 Hz. The transmission flow rate of 141 per minute; the pressure of wi5psi and the driving frequency of 15 Hz can obtain a transmission flow rate of 1613"1 per minute. 201224455 Mixing efficiency test

psi的進氣壓力及1 Hz的頻率下, 晶片中 :°由結果可知,利用本發 可在1 〇秒的混合時間、1 〇 正規化漠度(normalized concentration )之強度可達到約〇 5,亦即達到完全混合之 效率。 檢量線之建立 以實施例二之微白蛋白尿檢測系統,搭配非免疫螢光 染料(albumin blue)及傑夫反應(Jaff0reacti〇n)試劑,分別建 立白蛋白及肌酸酐之檢量線,以定量樣品中白蛋白及肌酸 酐之濃度,進而達到快速診斷微白蛋白尿之目的。 圖8A及圖8B為白蛋白及肌酸酐檢量線,其係分別利用 一系列標準樣品建構。 由於白蛋白專一性螢光染劑(AB 58〇 dye)在激發後 螢光訊號會快速衰退,因此紀錄反應〇1分鐘後,取最高的 光訊號。由圖8A可知,白蛋白檢量線之有效範圍大約落在5 至220 mg/L ’而偵測極限大約為5 mg/L。 由於1 mg/L低濃度肌酸肝的反應大約在1分鐘内完 成’但50 mg/L及100 mg/L高濃度肌酸肝的反應大約在2.5 分鐘以上完成,因此採用反應2分鐘左右的時間建立檢量 線。由圖8B可知’肌酸酐檢量線之有效範圍大約在1至ι〇〇 mg/L,而偵測極限大約為1 mg/L。 樣本檢測 201224455 準備40組臨床患者尿液檢體,以3〇〇〇 rpm離心1〇分 鐘,接著使用實施例二之微白蛋白尿檢測系統,二十重複 檢測40組臨床患者尿液檢體’並透過上述之白蛋白及肌酸 肝檢篁線’計算出各組尿液檢體中之白蛋白及肌酸針含 量’同時以統計工具(Bland-Altman plot 及passing_Bablok regression analysis)比較本發明與傳統方法,其結果分別如 圖9A與圖9B。 由圖9A可知,實施例二系統與傳統方法所得之結果無 明顯差異,而由圖9B可知,兩者所得之結果相當一致。綜 上所述’本發明將微幫浦、微閥門、微混合器、微管道等 組件整合製作於單一的生醫晶片上,以達到樣品之混合、 傳輸、偵測等目的,並利用此微流體晶片,降低操作上的 人為誤差、提高系統穩定性、降低耗能及樣品用量、節省 人力和時間,進而加速樣本筛檢。 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式簡單說明】 圖1係本發明實施例一中微流體晶片之***示意圖。 圖2係本發明實施例一中微流體晶片之透視圖。 圖3A與3B係圖2中A-A’剖面線之剖面圖。 圖4係本發明實施例二中微白蛋白尿檢測系統之示意圖。 圖5係本發明試驗例之溫控測試圖。 圖6係本發明試驗例之流速測試圖》 201224455 圖7係本發明試驗例之混合效率測試圖。 圖8A係本發明試驗例之白蛋白檢量線。 圖8B係本發明試驗例之肌酸酐檢量線。 圖9A係本發明試驗例之Bland-A丨tman分析圖。 圖9B係本發明試驗例之passing_Bablok回歸分析圖。 【主要元件符號說明】The inlet pressure of psi and the frequency of 1 Hz, in the wafer: ° From the results, it can be known that the intensity of the normalized concentration of about 1 〇 can be reached by using the present invention in a mixing time of 1 〇, That is, the efficiency of complete mixing is achieved. The calibration curve was established by using the microalbuminuria detection system of Example 2, together with the non-immunized fluorescent dye (albumin blue) and the Jeff reaction (Jaff0reacti〇n) reagent, to establish a check line of albumin and creatinine, respectively. To quantify the concentration of albumin and creatinine in the sample, and to achieve the purpose of rapid diagnosis of microalbuminuria. Figures 8A and 8B are albumin and creatinine calibration lines constructed using a series of standard samples, respectively. Since the fluorescent signal is rapidly degraded after the excitation of the albumin-specific fluorescent dye (AB 58〇 dye), the highest signal is taken after 1 minute of the recording reaction. As can be seen from Figure 8A, the effective range of the albumin calibration curve is approximately 5 to 220 mg/L' and the detection limit is approximately 5 mg/L. Since the reaction of 1 mg/L low concentration creatine liver is completed in about 1 minute, but the reaction of 50 mg/L and 100 mg/L high concentration creatine liver is completed in about 2.5 minutes, the reaction is about 2 minutes. Time to establish a calibration curve. It can be seen from Fig. 8B that the effective range of the creatinine calibration curve is about 1 to ι〇〇 mg/L, and the detection limit is about 1 mg/L. Sample test 201224455 Prepare 40 groups of clinical patients with urine samples, centrifuge at 3 rpm for 1 minute, then use the microalbuminuria detection system of Example 2, and repeatedly test 40 groups of clinical patients' urine samples' And comparing the albumin and creatine needle contents in each group of urine samples by the above-mentioned albumin and creatine liver test line', and comparing the present invention with statistical tools (Bland-Altman plot and passing_Bablok regression analysis) The conventional method has the results shown in Figures 9A and 9B, respectively. As can be seen from Fig. 9A, there is no significant difference between the results of the second embodiment and the conventional method, and as can be seen from Fig. 9B, the results obtained by the two are quite consistent. In summary, the present invention integrates micro-pumps, micro-valves, micro-mixers, micro-pipes and the like into a single biomedical wafer to achieve the purpose of mixing, transmitting, detecting, etc., and utilizing the micro Fluid wafers reduce man-made errors in operation, improve system stability, reduce energy consumption and sample usage, save manpower and time, and speed up sample screening. The above-described embodiments are merely examples for the convenience of the description, and the scope of the claims is intended to be limited by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the explosion of a microfluidic wafer in the first embodiment of the present invention. Figure 2 is a perspective view of a microfluidic wafer in the first embodiment of the present invention. 3A and 3B are cross-sectional views taken along line A-A' of Fig. 2. Fig. 4 is a schematic view showing the microalbuminuria detection system in the second embodiment of the present invention. Fig. 5 is a temperature control test chart of the test example of the present invention. Fig. 6 is a flow rate test chart of the test example of the present invention. 201224455 Fig. 7 is a mixed efficiency test chart of the test example of the present invention. Fig. 8A is an albumin calibration curve of the test example of the present invention. Fig. 8B is a creatinine calibration curve of the test example of the present invention. Fig. 9A is a Bland-A丨tman analysis chart of the test example of the present invention. Fig. 9B is a diagram showing the passing_Bablok regression analysis of the test example of the present invention. [Main component symbol description]

樣本裝載槽419 樣本流道41 7 複數個樣本驅流組5 1 第三進氣孔5 10 樣本驅流氣室5 1 7 微流體晶片1 試劑氣室層30 試劑流道組21 反應槽215 混合組3 4 混合氣室341 試劑閥門氣室344A 第四連通口 41 5 第一進氣孔5 6 樣本口 59 樣本閥門元件5 14 供氣控制單元9 溫控單元6 反射型顯微鏡80 長工作距離物鏡82 光增效管85 帶通光濾波器862 玻璃基板10 樣本流道層40 混合槽211 試劑流道217 試劑驅流氣室327 混合氣道342 試劑阻隔片344B 第二進氣孔58 試劑口 53 樣本驅流氣道512 光學偵測單元8 加熱板60 平面發光二極體8 1 二色分光鏡83 水銀燈86 類比數位轉換器70 試劑流道層20 樣本氣室層5 0 試劑裝載槽213 試劑驅流組32 試劑驅流氣道3 22 試劑閥門元件344 樣本阻隔片514B 微處理單元7 溫度控制模組61 帶通光濾波器8 12 針孔84 帶通光濾波器861Sample loading tank 419 sample flow path 41 7 multiple sample flooding group 5 1 third air inlet 5 10 sample driving gas chamber 5 1 7 microfluidic wafer 1 reagent gas chamber layer 30 reagent flow channel group 21 reaction tank 215 mixing group 3 4 Mixed air chamber 341 Reagent valve air chamber 344A Fourth communication port 41 5 First air inlet hole 5 6 Sample port 59 Sample valve element 5 14 Air supply control unit 9 Temperature control unit 6 Reflective microscope 80 Long working distance objective lens 82 Photopotentiation tube 85 Bandpass optical filter 862 Glass substrate 10 Sample channel layer 40 Mixing tank 211 Reagent flow path 217 Reagent drive gas chamber 327 Mixed air channel 342 Reagent barrier 344B Second air inlet 58 Reagent port 53 Sample drive Air passage 512 Optical detection unit 8 Heating plate 60 Planar light-emitting diode 8 1 Dichroic beam splitter 83 Mercury lamp 86 Analog-to-digital converter 70 Reagent flow channel layer 20 Sample gas chamber layer 5 0 Reagent loading tank 213 Reagent drive group 32 Reagent Drive Air Channel 3 22 Reagent Valve Element 344 Sample Barrier 514B Micro Processing Unit 7 Temperature Control Module 61 Bandpass Optical Filter 8 12 Pinhole 84 Bandpass Optical Filter 861

Claims (1)

201224455 七、申請專利範圍: 1. 一種微流體晶片’包括. 一基板; 一設置於該基板上之試劑流道層’具有複數個試劑流 道組,其中,每一試劑流道組包括:複數個混合槽、一試 劑裝載槽、·以及一反應槽’其中該試劑裝載槽與該反應槽 連通該些混合槽;201224455 VII. Patent application scope: 1. A microfluidic wafer 'includes a substrate; a reagent flow channel layer disposed on the substrate has a plurality of reagent flow channel groups, wherein each reagent flow channel group includes: plural a mixing tank, a reagent loading tank, and a reaction tank 'where the reagent loading tank and the reaction tank are connected to the mixing tanks; 一設置於該試劑流道層上之試劑氣室層,具有複數個 試劑驅流組、以及複數個混合組’其中,每一試劑驅流組 用於驅動該些試劑流道組中之液體由該試劑裝載槽向該反 應槽移動,而每一混合組用於使該反應槽之液體於該些混 合槽中進行混合; 一設置於該試劑氣室層上之樣本流道層,具有複數個 連通該反應槽之樣本流道組,其中,每一樣本流道組包括: 一樣本裝載槽、以及一連通該反應槽及該樣本裝載槽之第 四連通口;以及 曰a reagent gas chamber layer disposed on the reagent flow channel layer, having a plurality of reagent flooding groups, and a plurality of mixing groups, wherein each reagent driving group is used to drive the liquid in the reagent flow channel groups The reagent loading tank moves to the reaction tank, and each mixing group is used to mix the liquid of the reaction tank in the mixing tanks; a sample flow channel layer disposed on the reagent gas chamber layer has a plurality of a sample flow channel group connected to the reaction tank, wherein each sample flow channel group comprises: a sample loading tank, and a fourth communication port connecting the reaction tank and the sample loading tank; and -設置於該樣本流道層上之樣本氣室層,具有複數個 樣本驅流組,盆中,备一搞 母樣本駆流組用於驅動該樣本流道 中之液體由該樣本裝載槽向該第四連通口移動。 t如甲s月專利範圍第1項所述之微流體晶片,其中, 樣本孔至層更包括:—連通該些試劑驅流組之第一造 些混合組之第二進氣孔、複數個分別連接 :組之第三進氣孔、複數個分別連通該些樣本 …I載槽的樣本口、以及複數個分別連通該 20 201224455 試劑流道組之該試劑裝載槽的試劑σ;每_試㈣道組更 包括-連接該些混合槽、該試劑裝載槽、與該反應槽之試 劑流道;以及每-樣本流道組更包括—連接該樣本裝載槽 與該第四連通口之樣本流道。 曰 3. 如申請專利範圍第2項所述之微流體晶片,其中,每 一試劑驅流組包括:—對應該試劑流道之試劑驅流氣室、 以及-連通該第-進氣孔與試劑驅流氣室之試劑驅 道。 4. 如申請專利範圍第3項所述之微流體晶片,其中,每 一混合組包括:複數個分別對應該些混合槽之混合氣室、 -試劑閥門元件、以及一混合氣道,#中,該試劑閥門元 件=有一試劑閥門氣室及一試劑阻隔片,該試劑阻隔片向 下突伸入該試劑流道以阻斷該反應槽及該試劑裝載槽之連 通,該混合氣道係連通該第二進氣孔、該些混合氣室與 該閥門氣室。 5. 如申請專利範圍第4項所述之微流體晶片,其中,每 一樣本驅流組包括:—對應該樣本流道之樣本驅流氣室、 -樣本閥門元件、以及一樣本驅流氣道,纟中,該樣本間 門元件具有一樣本阻隔片,該樣本阻隔片向下突伸入該樣 本流道以阻斷該樣本裝載槽與該反應槽之連通,且該樣本 驅流氣道係連接該第三進氣孔以及該樣本驅流氣室。 6. 如申請專利範圍第1項所述之微流體晶片,其係檢測 微白蛋白尿之微流體晶片。 21 201224455 7. 如申請專利範圍第6項所述之微流體晶片,其中,該 些δ式劑流道組係分別容納肌酸酐檢測試劑與白蛋白檢測試 劑。 8. 如申請專利範圍第1項所述之微流體晶片,更包括: 一溫控板,设置於該基板之下方,以使該微流體晶片之溫 度控制於一預定範圍》 9. 一種微白蛋白尿之檢測系統,包括: 一微流體晶片1包括: 一基板; ® a又置於β亥基板上之试劑流道層,具有複數個試劑 流道組’其中,每一試劑流道組包括:複數個混合槽、 一試劑裝載槽、以及一反應槽,其中該試劑裝載槽與該 反應槽連通該些混合槽; 一設置於該試劑流道層上之試劑氣室層,具有複數 個試劑驅流組、以及複數個混合組,其中,每一試劑驅 流組用於驅動該些試劑流道組中之液體由該試劑裝載 槽向該反應槽移動,而每一混合組用於使該反應槽之液 馨 體於該些混合槽中進行混合; 一設置於該試劑氣室層上之樣本流道層,具有複數 個連通該反應槽之樣本流道組,其中,每一樣本流道組 包括:一樣本裝載槽、以及一連通該反應槽之第四連通 口;以及 22 201224455 一設置於該樣本流道層上之樣本氣室層,具有複數 個樣本驅力組,#令,I一樣本驅流組用於驅動該樣本 流道中之液體由該樣本裝載槽向該第四連通口移動; 一供氣控制單元,連接該微流體晶片之該第一進氣 孔、該第二進氣孔、以及第三進氣孔,以透過供應氣體控 制該微流體晶片中之液體流動; 一光學偵測單元,其用於偵測該微流體晶片之該反應 槽中之光訊號變化;以及 一微處理單元,其係連接該供氣控制單元及該光學偵 測單元,以調控該供氣控制單元並處理及計算該光學偵測 單元之光訊號變化。 1 〇.如申請專利範圍第9項所述之檢測系統,其中,於 該微流體晶片中,該樣本氣室層更包括:一連通該些試劑 驅流組之第一進氣孔、一連通該些混合組之第二進氣孔' 複數個分別連接該些樣本驅流組之第三進氣孔'複數個分 別連通該些樣本流道組之該樣本裝載槽的樣本口、以及複 數個分別連通該些試劑流道組之該試劑裝載槽的試劑口; 每一試劑流道組更包括一連接該些混合槽、該試劑裝載 槽、與該反應槽之試劑流道;以及每一樣本流道組更包括 一連接該樣本裝載槽與該第四連通口之樣本流道。 11.如申請專利範圍第10項所述之檢測系統,其中, 於該微流體晶片中,每一試劑驅流組包括:一對應該試叫 流道之试劑驅流氣室、以及一連通該第一進氣孔與試劑驅 /’IL氣至之5式劑驅流氣道;每一混合組包括:複數個分別對 23 201224455 應該些混合槽之混合氣室、—試劑閥門元件、以及一混合 氣道,其中,該試劑閥門元件具有—試劑間門氣室及一試 劑阻隔片,該試劑阻隔片向τ突伸人該試劑流道以阻斷該 反應槽及該試㈣載槽之連通,該混合氣道係連通該第二 進氣孔、該些混合氣室、與該閥門氣室;以及每一樣本驅 流組包括:-對應該樣本流道之樣本驅流氣室、—樣本間 π元件μ &樣本驅流氣道,其中,該樣本闊門元件具 有-樣本阻隔片,該樣本阻隔#向下突伸人該樣本流道以 阻斷該樣本裝制與該反應槽之連通,且該樣本驅流氣道 係連接該第三進氣孔以及該樣本驅流氣室。 12. 如申請專利範圍第9項所述之檢測系統,其中,該 微流體晶片之該些試劑流道組係分別容納肌料檢測試劑 與白蛋白檢測試劑。 13. 如申請專利範圍第9項所述之檢測系統,更包括一 溫控板,連接該微處理單元且設置於該微流體晶片之該基 板之下方,以使該微流體晶片之溫度控制於一預定範圍。 14. 如申請專利範圍第9項所述之檢測系統,其中,該 供氣控制單元係包括一電磁閥控制模組。 八、圓式(請見下頁): 24a sample gas chamber layer disposed on the sample flow channel layer, having a plurality of sample flooding groups, wherein the seed sample is used to drive the liquid in the sample flow channel from the sample loading channel to the sample The fourth communication port moves. The microfluidic wafer of the first aspect of the invention, wherein the sample hole to layer further comprises: a second air inlet hole, a plurality of the first mixing groups connected to the reagent flooding groups Connected to: a third air inlet of the group, a plurality of sample ports respectively connecting the samples, the I slot, and a plurality of reagents σ respectively connected to the reagent loading tank of the 20 201224455 reagent flow channel group; (4) The group further includes - connecting the mixing tank, the reagent loading tank, and the reagent flow path of the reaction tank; and each of the sample flow path groups further includes - a sample flow connecting the sample loading tank and the fourth communication port Road. 3. The microfluidic wafer of claim 2, wherein each reagent flooding group comprises: - a reagent flooding chamber corresponding to the reagent flow path, and - communicating the first inlet opening and the reagent Reagent drive for the venting chamber. 4. The microfluidic wafer of claim 3, wherein each mixing group comprises: a plurality of mixing chambers corresponding to the mixing tanks, a reagent valve member, and a mixed air passage, ##, The reagent valve element has a reagent valve chamber and a reagent blocking piece, and the reagent blocking piece protrudes downward into the reagent flow channel to block communication between the reaction tank and the reagent loading tank, and the mixed air passage system communicates with the first Two air inlet holes, the mixed air chambers and the valve air chamber. 5. The microfluidic wafer of claim 4, wherein each sample flooding group comprises: - a sample-driven gas chamber corresponding to the sample flow path, - a sample valve element, and the same venting air passage, In the crucible, the inter-sample door member has the same barrier sheet, and the sample barrier sheet protrudes downwardly into the sample flow path to block communication between the sample loading tank and the reaction tank, and the sample-driven air passage system is connected to the sample The third intake port and the sample drive air chamber. 6. The microfluidic wafer of claim 1, wherein the microfluidic wafer is microalbuminuria. The microfluidic wafer of claim 6, wherein the delta-type flow channel groups respectively contain a creatinine detection reagent and an albumin detection reagent. 8. The microfluidic wafer of claim 1, further comprising: a temperature control plate disposed under the substrate to control the temperature of the microfluidic wafer to a predetermined range. The proteinuria detection system comprises: a microfluidic wafer 1 comprising: a substrate; a a reagent flow channel layer disposed on the β-hai substrate, having a plurality of reagent flow channel groups, wherein each reagent flow channel group The method includes: a plurality of mixing tanks, a reagent loading tank, and a reaction tank, wherein the reagent loading tank and the reaction tank are connected to the mixing tanks; a reagent gas chamber layer disposed on the reagent flow channel layer, having a plurality of a reagent flooding group, and a plurality of mixing groups, wherein each reagent driving group is configured to drive liquid in the reagent flow channel group to move from the reagent loading tank to the reaction tank, and each mixing group is used to make The liquid scent of the reaction tank is mixed in the mixing tanks; a sample flow channel layer disposed on the reagent gas chamber layer, having a plurality of sample flow channel groups connected to the reaction tank, wherein each sample flow channel group Include: the same loading slot, and a fourth communication port that communicates with the reaction tank; and 22 201224455 a sample plenum layer disposed on the sample flow channel layer, having a plurality of sample drive groups, #令, I The driving group is configured to drive the liquid in the sample flow path to move from the sample loading slot to the fourth communication port; a gas supply control unit connecting the first air inlet hole and the second air inlet of the microfluidic wafer a hole, and a third air inlet for controlling the flow of the liquid in the microfluidic wafer through the supply gas; an optical detecting unit for detecting a change in the optical signal in the reaction tank of the microfluidic wafer; The micro processing unit is connected to the air supply control unit and the optical detection unit to regulate the air supply control unit and process and calculate the optical signal change of the optical detection unit. The detection system of claim 9, wherein in the microfluidic wafer, the sample plenum layer further comprises: a first air inlet connected to the reagent flooding groups, and a communication a plurality of second air inlets of the plurality of mixing groups, a plurality of third air inlets respectively connected to the sample driving groups, a plurality of sample ports respectively connecting the sample loading slots of the sample flow channel groups, and a plurality of sample ports Connecting the reagent ports of the reagent loading tanks of the reagent flow channel groups respectively; each reagent flow channel group further includes a reagent flow channel connecting the mixing tanks, the reagent loading tank, and the reaction tank; and each sample flow The track group further includes a sample flow path connecting the sample loading slot and the fourth communication port. 11. The detection system of claim 10, wherein in the microfluidic wafer, each reagent flooding group comprises: a pair of reagent-driven gas chambers that should be called flow channels, and a communication The first air inlet and the reagent drive / 'IL gas to the 5 type agent drive air passage; each mixed group includes: a plurality of separate pairs 23 201224455 should be mixed tank mixing chamber, - reagent valve components, and a mixture An airway, wherein the reagent valve member has a reagent chamber gas chamber and a reagent barrier sheet, and the reagent barrier sheet protrudes from the reagent flow channel to block communication between the reaction tank and the test (four) carrier tank, a mixed air passage system connecting the second air inlet hole, the plurality of mixing air chambers, and the valve air chamber; and each sample flooding group includes: - a sample driving air chamber corresponding to the sample flow path, - an inter-sample π element μ & a sample-driven airway, wherein the sample wide-door element has a -sample barrier sheet that protrudes downwardly from the sample flow path to block the sample assembly from communicating with the reaction tank, and the sample Drive the airway system to connect the third And stomatal flooding stream sample gas chamber. 12. The detection system of claim 9, wherein the reagent flow channel groups of the microfluidic wafer respectively contain a muscle detection reagent and an albumin detection reagent. 13. The detection system of claim 9, further comprising a temperature control plate connected to the micro processing unit and disposed under the substrate of the microfluidic wafer to control the temperature of the microfluidic wafer to A predetermined range. 14. The detection system of claim 9, wherein the gas supply control unit comprises a solenoid valve control module. Eight, round (see next page): 24
TW99143695A 2010-12-14 2010-12-14 Microfluidic chip and mau detection system using the same TWI411780B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99143695A TWI411780B (en) 2010-12-14 2010-12-14 Microfluidic chip and mau detection system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99143695A TWI411780B (en) 2010-12-14 2010-12-14 Microfluidic chip and mau detection system using the same

Publications (2)

Publication Number Publication Date
TW201224455A true TW201224455A (en) 2012-06-16
TWI411780B TWI411780B (en) 2013-10-11

Family

ID=46725866

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99143695A TWI411780B (en) 2010-12-14 2010-12-14 Microfluidic chip and mau detection system using the same

Country Status (1)

Country Link
TW (1) TWI411780B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579560B (en) * 2015-01-30 2017-04-21 惠普研發公司 Biologic test chip and biologic microfluidic device
TWI599774B (en) * 2015-07-17 2017-09-21 國立清華大學 Apparatus and platform for detection of allergen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768867B (en) * 2021-05-04 2022-06-21 國立成功大學 A hybrid wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200924849A (en) * 2007-12-03 2009-06-16 Univ Nat Cheng Kung Micro type sucking chip
TW201022674A (en) * 2008-12-04 2010-06-16 Univ Nat Cheng Kung Microfluidic chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579560B (en) * 2015-01-30 2017-04-21 惠普研發公司 Biologic test chip and biologic microfluidic device
US10639630B2 (en) 2015-01-30 2020-05-05 Hewlett-Packard Development Company, L.P. Microfluidic temperature control
TWI599774B (en) * 2015-07-17 2017-09-21 國立清華大學 Apparatus and platform for detection of allergen

Also Published As

Publication number Publication date
TWI411780B (en) 2013-10-11

Similar Documents

Publication Publication Date Title
CA1310566C (en) Element and method for performing biological assays accurately, rapidlyand simply
JP6016168B2 (en) Assay device and reading device
CN103630494B (en) For detecting the apparatus and method of particle
US20070122819A1 (en) Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
US8137626B2 (en) Fluorescence detector, filter device and related methods
WO2019205779A1 (en) Micro-fluidic chip and analysis instrument having same
US20220280944A1 (en) Apparatus And System For Biofluid Sample Dispensing And/Or Assay
Vinitha et al. A new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) for detecting unbound cortisol in saliva
WO2019205780A1 (en) Microfluidic chip and analytical instrument provided with microfluidic chip
CN207786624U (en) Chemiluminescence testing microfluid control chip and chemiluminescence testing microfluid control chip system
US20220018765A1 (en) Methods and systems for point-of-care coagulation assays by optical detection
WO2019205781A1 (en) Liquid metering device and use thereof
GB2423266A (en) A structure and method for detecting an analyte in a microfluidic chip
TW201224455A (en) Microfluidic chip and MAU detection system using the same
CN111715313B (en) Microfluidic chip integrating lateral flow chromatography technology
CN212189148U (en) Microfluidic chip and detection device
US20210308680A1 (en) A Passive Mixing Microfluidic Urinary Albumin Chip (UAL-Chip) for Chronic Kidney Disease
JP6190472B2 (en) Novel PoC inspection system and method
JP2007171122A (en) Immune reaction measuring method, cell for immune reaction measurement, and immune reaction measuring device
KR20110108004A (en) Assay strip and strip reader

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees