TW201222508A - Driving method of electro-wetting display device - Google Patents

Driving method of electro-wetting display device Download PDF

Info

Publication number
TW201222508A
TW201222508A TW99141520A TW99141520A TW201222508A TW 201222508 A TW201222508 A TW 201222508A TW 99141520 A TW99141520 A TW 99141520A TW 99141520 A TW99141520 A TW 99141520A TW 201222508 A TW201222508 A TW 201222508A
Authority
TW
Taiwan
Prior art keywords
waveform
voltage level
driving
sub
electrowetting display
Prior art date
Application number
TW99141520A
Other languages
Chinese (zh)
Other versions
TWI407404B (en
Inventor
Yung-Hsiang Chiu
Wei-Yen Lee
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99141520A priority Critical patent/TWI407404B/en
Priority to CN201010603809.5A priority patent/CN102479487B/en
Publication of TW201222508A publication Critical patent/TW201222508A/en
Application granted granted Critical
Publication of TWI407404B publication Critical patent/TWI407404B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A driving method of an electro-wetting display device is described. An electro-wetting display device including a first substrate having a first electrode layer, a second substrate opposite to the first substrate and having a second electrode layer, and a polar solution layer and a non-polar solution layer between the first substrate and the second substrate is provided. The electro-wetting display device is driven with a low energy initial signal having a first waveform, and then the electro-wetting display device is driven with a high energy driving signal having a second waveform.

Description

201222508 r ο 1 y y υ υ ) 4T W 36032twf. doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種顯示器的驅動方法,且特別是有 關於·一種電濕潤顯示器的驅動方法。 【先前技術】 電潤濕顯示器是一種結構簡單之顯示器,其包括上電 極、下電極以及夾於兩電極之間的水層以及油墨層。電濕 潤顯示器的操作方法是,當未施加電壓時,油墨層佈滿畫 素單元。如此可使入射光被油墨層吸收而使所述畫素單元 呈現暗態。反之’當欲使晝素單元呈現亮態時,則對其上 下兩電極施加電壓’以使油墨層收縮在所述晝素區域的邊 緣’進而露出位於油墨層下方的反射層。如此可使入射光 被反射層反射而呈現亮態。 ^但是,上述在施加電壓以使油墨層收縮的過程中,若 瞬,電場旎1過大,油墨層會受到水層的強烈推擠而*** 成夕個油墨滴,此些油墨滴會分佈於晝素的任—角落,而 晝ϊ單元的反射率。因此上述的***現象會降低 确C、頒不器的顯示品質與反應速度。 【發明内容】 低傳種電制顯示11的驅動方法,其可以降 容易使油二墨層收缩的過程中 201222508 --------4TW 36032twf.doc/n 本發明提出一種電濕潤顯示器的驅動方法,此方法首 先提供電濕调顯示器,其包括具有第一電極層之第一烏 板、位於第-基板的對向且具有第二電極層的第二基板^ 及位於第基板與第—基板之間的極性液體層與非極性溶 以低能量前置訊號驅動電濕潤顯示11 ’其中所述低 此1則置訊號具有第一波形。再以高能量驅動訊號驅動所 述電濕潤顯示器,其中高能量驅動訊號具有第二波形。 _ ^於上述,本發明是先以低能量前置訊號驅動電濕潤 ,不,之後,再以高能量驅動訊號驅動所述電濕潤顯示 f。藉由上述能量調變的方式可以改善非極性溶液層收縮 行為的穩定度,以降低非極性溶液層發生***的可能性。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1A以及圖1B是根據本發明一實施例之電濕潤顯示 器及其驅動方法的示意圖。請先參照圖1A,本實施例之電 濕潤顯示器包括第一基板1〇〇、第二基板120、極性溶液層 130以及非極性彩色溶液層14〇。 第一基板100與第二基板120彼此相對向設置。根據 本實施例,第一基板100包括基板1〇2、反射層1〇4、第一 電極層106、中間層108以及隔牆結構11〇。 基板102主要是作為承載顯示裝置之用,基板102可 為透明基板’其材質例如是玻璃、石英或有機聚合物。基 201222508 rui^yuwj4TW 36032twf.doc/n 板102也可以是反射基板。另外,基板1〇2可以是硬質基 板也可以是軟質基板。 反射層104位於102基板之一側。反射層1〇4之材質 例如是具有高反射率的金屬材料,或是其他適用的反射材 料。值得一提的是’倘若基板1〇2是採用反射基板,則可 以省略反射層104的製作。另外,若基板102為透明基板 且省略反射層104,則可使顯示器整體為一穿透式顯示器。 鲁 第一電極層位於反射層1〇4的上方。根據一實施 例’第一電極層106包括多個主動元件與主動元件電性連 接的晝素電極以構成畫素陣列層。根據另一實施例,第一 電極層106可為單純的被動電極圖案。此外,第一電極層 106可包括透明導電材料或是反射導電材料。若第一電極 層106是採用反射電極材料,則也可以選擇省略反射層1〇4 的製作。 中間層108位於第一電極層1 〇6上。一般來說,中間 層108包括一層絕緣層以及位於絕緣層上方的疏水層。絕 • 緣層之材質可為氧化矽、氮化矽或是其他介電材料。根據 一實施例,在絕緣層上方形成疏水層之方法可為對絕緣層 之表面進行疏水表面處理,或者是在絕緣層上以塗佈程 序、鑛膜程序或是沈積程序形成疏水層。 隔牆結構110是位於中間層108(疏水層)上,以於第 一基板100上定義出多個單元區域。圖1A與圖1B所繪示 的結構即是一個單元區域内的結構。所述單元區域是4應 一個顯示晝素單元。因此,倘若第一基板100之第一電^ 36032twf.doc/n 201222508201222508 r ο 1 yy υ υ ) 4T W 36032twf. doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a driving method of a display, and more particularly to a driving of an electrowetting display method. [Prior Art] An electrowetting display is a simple display comprising an upper electrode, a lower electrode, and a water layer sandwiched between the electrodes and an ink layer. The electrowetting display is operated by the ink layer being filled with the pixel unit when no voltage is applied. This allows the incident light to be absorbed by the ink layer to cause the pixel unit to assume a dark state. On the other hand, when the halogen element is to be in a bright state, a voltage ' is applied to the upper and lower electrodes to shrink the ink layer at the edge of the halogen region to expose the reflective layer under the ink layer. This allows the incident light to be reflected by the reflective layer to assume a bright state. ^ However, in the above process of applying voltage to shrink the ink layer, if the electric field 旎1 is too large, the ink layer will be strongly pushed by the water layer to split into an ink droplet, and the ink droplets will be distributed on the 昼. The prime of the prime, and the reflectivity of the unit. Therefore, the above splitting phenomenon will reduce the display quality and reaction speed of the C and the device. SUMMARY OF THE INVENTION The driving method of the low-transmission electric display 11 can be easily reduced in the process of shrinking the oil two-ink layer. 201222508 -------4TW 36032twf.doc/n The present invention provides an electrowetting display Driving method, the method first provides an electrowetting display comprising: a first black plate having a first electrode layer, a second substrate opposite to the first substrate and having a second electrode layer, and a substrate and a first substrate - a polar liquid layer between the substrates and a non-polar soluble low energy pre-signal driven electrowetting display 11' wherein the lower one has a first waveform. The electrowetting display is then driven by a high energy drive signal, wherein the high energy drive signal has a second waveform. In the above, the present invention first drives the electrowetting with a low energy preamble signal, and then, after that, drives the electrowetting display f with a high energy driving signal. The stability of the shrinkage behavior of the non-polar solution layer can be improved by the above-mentioned energy modulation to reduce the possibility of splitting of the non-polar solution layer. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] FIG. 1A and FIG. 1B are schematic diagrams of an electrowetting display and a driving method thereof according to an embodiment of the present invention. Referring first to FIG. 1A, the electrowetting display of the present embodiment includes a first substrate 1A, a second substrate 120, a polar solution layer 130, and a non-polar color solution layer 14A. The first substrate 100 and the second substrate 120 are disposed opposite to each other. According to the present embodiment, the first substrate 100 includes a substrate 1〇2, a reflective layer 1〇4, a first electrode layer 106, an intermediate layer 108, and a partition structure 11〇. The substrate 102 is mainly used as a bearing display device, and the substrate 102 may be a transparent substrate. The material thereof is, for example, glass, quartz or an organic polymer. Base 201222508 rui^yuwj4TW 36032twf.doc/n Plate 102 can also be a reflective substrate. Further, the substrate 1〇2 may be a rigid substrate or a flexible substrate. The reflective layer 104 is located on one side of the 102 substrate. The material of the reflective layer 1〇4 is, for example, a metal material having high reflectivity or other suitable reflective material. It is worth mentioning that if the substrate 1 is a reflective substrate, the fabrication of the reflective layer 104 can be omitted. Further, if the substrate 102 is a transparent substrate and the reflective layer 104 is omitted, the entire display can be a transmissive display. The first electrode layer is located above the reflective layer 1〇4. According to an embodiment, the first electrode layer 106 includes a plurality of dummy elements electrically connected to the active elements to form a pixel array layer. According to another embodiment, the first electrode layer 106 can be a simple passive electrode pattern. Further, the first electrode layer 106 may include a transparent conductive material or a reflective conductive material. If the first electrode layer 106 is made of a reflective electrode material, the fabrication of the reflective layer 1〇4 may be omitted. The intermediate layer 108 is located on the first electrode layer 1 〇6. Generally, the intermediate layer 108 includes an insulating layer and a hydrophobic layer over the insulating layer. The material of the edge layer can be tantalum oxide, tantalum nitride or other dielectric materials. According to an embodiment, the method of forming a hydrophobic layer over the insulating layer may be a hydrophobic surface treatment of the surface of the insulating layer, or a hydrophobic layer may be formed on the insulating layer by a coating process, a film film process, or a deposition process. The partition structure 110 is located on the intermediate layer 108 (hydrophobic layer) to define a plurality of unit regions on the first substrate 100. The structure shown in Figs. 1A and 1B is a structure in a unit area. The cell area is 4 to display a pixel unit. Therefore, if the first substrate 100 is the first electric ^ 36032twf.doc / n 201222508

A Vl^,?wj4TAV 層106為晝素陣列層,則每一單元區域内之第一電極層 是對應設置有至少一主動元件以及至少一畫素電極。一般 來說,隔牆結構110為親水隔牆結構。換言之,隔牆結構 110本身為親水材質或是其表面為親水表面(例如具有親水 官能基)。 ^ ’ 另外,第二基板120包括基板122以及第二電極層 124。第二基板120也可稱為對向基板。第二基板12〇之基 板122為透明基板,其可為玻璃、石英或是有機聚合物基 板。基板122可以是硬質基板也可以是軟質基板。 第二電極層124位於基板122之一側。第二電極層124 也可稱為對向電極。因此,第二電極層124與第一電極層 106疋用來操控位於第一基板1〇〇與第二基板12〇之間的 液體層,藉以達到顯示的目的。一般來說,第二電極層124 為透明電極層,其材質包括金屬氧化物,例如是銦錫氧化 物或銦鋅氧化物等等。 極性溶液層130位於第一基板100與第二基板12〇之 間。更詳細來說,極性溶液層130是位於第一基板1〇〇與 第二基板120之間的容納空間内。極性溶液層13〇可為水 或其他極性液體。 非極性溶液層140位於第一基板1〇〇與第二基板ι2〇 之間,且位於隔牆結構110所定義出的單元區域内。換言 之’各個單元區域内的非極性溶液層140是彼此分離的。 在此,非極性溶液層140 —般又可稱為油墨層。根據本實 施例’非極性溶液層14〇包括吸光材料,因此當光線射入 201222508 roiyyuu54TW 36032twf.doc/n 包含有吸光材料之非極性溶液層140之後將會被吸收。而 上述之吸光材料可以吸收特定波長範圍的光線的材料,例 如是吸收可見光全波段的吸光材料、吸收可見光中的紅光 波段的吸光材料、吸收可見光中的綠光波段的吸光材料、 吸收可見光中的藍光波段的吸光材料等等。A Vl^, ?wj4TAV layer 106 is a halogen array layer, and the first electrode layer in each unit region is correspondingly provided with at least one active element and at least one pixel electrode. In general, the partition wall structure 110 is a hydrophilic partition wall structure. In other words, the partition wall structure 110 itself is a hydrophilic material or its surface is a hydrophilic surface (e.g., having a hydrophilic functional group). Further, the second substrate 120 includes a substrate 122 and a second electrode layer 124. The second substrate 120 may also be referred to as a counter substrate. The substrate 122 of the second substrate 12 is a transparent substrate, which may be glass, quartz or an organic polymer substrate. The substrate 122 may be a rigid substrate or a flexible substrate. The second electrode layer 124 is located on one side of the substrate 122. The second electrode layer 124 may also be referred to as a counter electrode. Therefore, the second electrode layer 124 and the first electrode layer 106 are used to manipulate the liquid layer between the first substrate 1 and the second substrate 12 to achieve the purpose of display. Generally, the second electrode layer 124 is a transparent electrode layer made of a metal oxide such as indium tin oxide or indium zinc oxide or the like. The polar solution layer 130 is located between the first substrate 100 and the second substrate 12A. In more detail, the polar solution layer 130 is located in the accommodating space between the first substrate 1 〇〇 and the second substrate 120. The polar solution layer 13 can be water or other polar liquid. The non-polar solution layer 140 is located between the first substrate 1 and the second substrate ι2 and is located in the cell region defined by the partition structure 110. In other words, the non-polar solution layers 140 in the respective unit regions are separated from each other. Here, the non-polar solution layer 140 can be collectively referred to as an ink layer. The non-polar solution layer 14A according to this embodiment includes a light absorbing material, and thus will be absorbed when the light is incident on the 201222508 roiyyuu54TW 36032twf.doc/n non-polar solution layer 140 containing the light absorbing material. The above-mentioned light absorbing material can absorb light of a specific wavelength range, for example, a light absorbing material that absorbs the entire wavelength range of visible light, a light absorbing material that absorbs a red light band in visible light, a light absorbing material that absorbs a green light band in visible light, and absorbs visible light. The blue light band of the light absorbing material and so on.

根據本實施例,所述電濕潤顯示器更包括切換器200 以及切換控制器202。切換器200具有第一電壓端(VI)、 第二電壓端(V2)以及參考電壓端(Vref)。而第一基板1〇〇 之第一電極層106以及第二基板120之第二電極層124是 電性連接至切換器200。另外,切換控制器2〇2與切換器 200電性連接,其用以控制第一電極層1〇6以及第二電極 層124與第一電壓端(V1)、第二電壓端(V2)或是參考電壓 &CVref)電性連接’並且控制施加到第一電極層以及 第二電極層124上的正/負電壓的脈波大小、脈波寬度、工 作週期等等。在此,第一電壓端(V1)與第二電壓端(V2)上 是被施予控制極性溶液層140收縮的驅動訊號,且參考 壓端(Vref)上被施予參考電壓。 如圖1A所示 S切換器200尚未將第一電極層 與第二電極層124電性連接至操作電壓時,或是同時連 到同-個電壓端(例如都接到Vre⑽,第—電極層ι〇6 = 第二電極層124之間不會有電場產生,因而非極性溶^ 刚整個佈滿隔牆結構110内的中間層1〇8(疏水層: 時,當外界光線從第二基板120射入顯示器之 會被非極性溶液層⑽吸㈣使騎畫絲構(單 201222508 ▲ w〆八 vj4TW 36032twfdoc/n 是呈現暗態。 若要使所述晝素結構(單元區域)呈現亮態,則其操作 如圖1B所示。也就是,透過切換控制器2〇2控制切換 200以使第一電極層106與第二電壓端(V2)電性連接並且 使第二電極層m與參考電壓端(Vref)電性連接、或是第 -電極層1〇6與參考電壓端(Vref)電性連接電性連接並且 使第二電極層124與第一電壓端(V1)電性連接。根據本實 方也例第電極層1〇6與第二電極層124之間的跨壓即是 驅動訊號與參考電壓之間的壓差。此時,因第一電極層1〇6 與第二電極層124之間產生電場,因而非極性溶液層14〇 便開始往單元區域的邊緣(親水隔牆結構i 1〇)收縮。 為了避免非極性溶液層140在上述之收縮過程之中發 生***成多個液滴之情形,本實施例以特殊的驅動方式對 上述第一電極層106與第二電極層124施予對應的驅動電 壓。換§之’本貫施例是先對第一電極層106與第二電極 層124施予低能量前置訊號之後,再對第一電極層1〇6與 第二電極層124施予高能量驅動訊號。上述之低能量前置 訊號的在單位時間内的能量或電場是小於高能量驅動訊號 在單位時間内的能量或電場。 上述之低能量前置訊號以及高能量驅動訊號可以以 多種實施方式來實現,如下所述。 圖2是根據本發明一實施例之驅動波形的示意圖。請 參照圖2’本實施例之低能量前置訊號具有第一波形W1 ’ 且高能量驅動訊號具有第二波形W2。換言之,本實施例 201222508 ro iyyuub4TW 36032twf.doc/n 在時間區段T1中是以低能量前置訊號(第一波形W1)驅動 顯示器之後,接著在時間區段T2中再以高能量驅動訊號 (第二波形W2)驅動顯示器。根據本實施例,上述之低能量 前置訊號(第一波形W1)的能量大於所述電濕潤顯示器的 臨界能量。在此,所謂臨界能量指的是能夠驅使電濕潤顯 不器中的非極性溶液層140開始進行收縮行為的能量。According to the embodiment, the electrowetting display further includes a switch 200 and a switching controller 202. The switch 200 has a first voltage terminal (VI), a second voltage terminal (V2), and a reference voltage terminal (Vref). The first electrode layer 106 of the first substrate 1 and the second electrode layer 124 of the second substrate 120 are electrically connected to the switch 200. In addition, the switching controller 2〇2 is electrically connected to the switch 200, and is configured to control the first electrode layer 1〇6 and the second electrode layer 124 with the first voltage terminal (V1), the second voltage terminal (V2), or It is a reference voltage & CVref) and connects the pulse wave size, pulse width, duty cycle, and the like of the positive/negative voltage applied to the first electrode layer and the second electrode layer 124. Here, the first voltage terminal (V1) and the second voltage terminal (V2) are driving signals that are applied to control the contraction of the polar solution layer 140, and the reference voltage is applied to the reference voltage terminal (Vref). As shown in FIG. 1A, the S switch 200 has not electrically connected the first electrode layer and the second electrode layer 124 to the operating voltage, or is connected to the same voltage terminal (for example, both connected to the Vre (10), the first electrode layer 〇6 = no electric field is generated between the second electrode layers 124, and thus the non-polar solution is completely covered by the intermediate layer 1 〇 8 in the partition structure 110 (drain layer: when external light is from the second substrate) 120 into the display will be sucked by the non-polar solution layer (10) (four) to make the riding silk structure (single 201222508 ▲ w〆 eight vj4TW 36032twfdoc / n is a dark state. To make the halogen structure (cell area) is bright The operation is as shown in FIG. 1B. That is, the switching 200 is controlled by the switching controller 2〇2 to electrically connect the first electrode layer 106 with the second voltage terminal (V2) and to make the second electrode layer m and the reference. The voltage terminal (Vref) is electrically connected, or the first electrode layer 1〇6 is electrically connected to the reference voltage terminal (Vref) and electrically connects the second electrode layer 124 to the first voltage terminal (V1). According to the actual method, the voltage across the electrode layer 1〇6 and the second electrode layer 124 is the driving signal and the reference. The pressure difference between the pressures. At this time, since an electric field is generated between the first electrode layer 1〇6 and the second electrode layer 124, the non-polar solution layer 14 starts to the edge of the unit region (the hydrophilic partition structure i 1为了) shrinkage. In order to prevent the non-polar solution layer 140 from splitting into a plurality of droplets during the above-mentioned shrinking process, the first electrode layer 106 and the second electrode layer 124 are applied in a special driving manner in this embodiment. The corresponding driving voltage is applied to the first electrode layer 106 and the second electrode layer 124 after the low energy pre-signal is applied, and then the first electrode layer 1 〇 6 and the second electrode are applied. The layer 124 applies a high-energy driving signal. The energy or electric field of the low-energy pre-signal in the unit time is less than the energy or electric field of the high-energy driving signal in a unit time. The low-energy pre-signal and the high-energy described above. The driving signal can be implemented in various embodiments, as follows. Figure 2 is a schematic diagram of a driving waveform according to an embodiment of the present invention. Referring to Figure 2, the low energy preamble signal of the present embodiment has a first waveform W1 ' The high energy drive signal has a second waveform W2. In other words, this embodiment 201222508 ro iyyuub4TW 36032twf.doc/n is driven in the time zone T1 with a low energy preamble signal (first waveform W1), followed by a time zone In the segment T2, the display is driven by the high energy driving signal (second waveform W2). According to the embodiment, the energy of the low energy preamble signal (first waveform W1) is greater than the critical energy of the electrowetting display. By critical energy is meant energy that is capable of driving the non-polar solution layer 140 in the electrowetting display to begin to contract.

更詳細而言,本實施例之低能量前置訊號的第一波形 W1具有正電壓準位與負電壓準位,且上述之高能量前置 说唬之第二波形W2具有正電壓準位與負電壓準位。在圖 2之實施例之中,第一波形W1之正電壓準位等於νι且負 電壓準位等於Λ/2。第二波形W2之正f壓準位等於V1且 負電壓準位等於-V2。 特別是,第一波形W1之正電壓準位與負電壓準位是 相同的’也就是說,第—波形W12正電壓與負電壓的絕 =^:相_。另外’第—波形W1在正電鮮位的脈波 冗度”第-波形W1在負電壓準㈣脈波寬度是相同的。 ^者’第二波形W2之正電壓準位與貞電壓準位是相同 ,,也就是說’第二波形W2之正電壓與負電壓的絕對值 Ξ第目冋Π;卜二Ϊ二波形W2在正電壓準位的脈波寬度 =-机W2在負電鮮_脈波寬度是㈣的。除此 之帛—波形W1的正麵狗績第二波形 的正電壓準位相同。另外,第—波形W1的負電壓準 第二波形的負電壓準位相同。特狀,本實施例之 波形W1的正負電壓準位的脈波寬度小於第二波形 201222508 ▲ w*,/〜J4TW 36032twf.doc/n W2之正負電壓準位的脈波寬度。因此,第一波形wi的 在單位時間内的能量小於第二波形W2在單位時間内的能 量。 有關低能量前置訊號除了上述圖2之實施方式之外, 還可以有多種變化,如下所述。在以下之實施例中,其高 能量驅動訊號(第二波形W2)都與圖2實施例相同,因此^ 再重複贅述。 請參照圖3,本實施例之低能量前置訊號的第一波形 W1包括多個子波形W1_i、W1_2、W1_3,其中在時間區 段τΐ-ι中是以子波形W1d驅動,在時間區段τι·2中是 以子波形W1-2驅動,且在時間區段Tl_3中是以子波形 W1-3驅動。此外,子波形WM、W1_2、wi_3之正電壓 準位等於VI且㈣壓準料於_V2。另外,本實施例之子 波开少、Wl-2、W1-3的正電壓準位與第二波形W2的 正電壓準位相同。另外,子波形wiU2、wl 3的負 電壓準位也與第二波_貞電鲜仙.除此之外,在 本實施例中,子波形Wl-1、W-2、ww之正電塵準位與 負電壓準位是相同的。子波形WM、wi 2、wi 3各自的 f電壓準位的脈波紐與其各自貞電醉㈣脈波寬度是 目同的。然而’子波形WM、Wl_2、Wl 3的正負電壓準 位的脈波寬度隨著時間區段而增加,也就是,子波形W1_3 的正負電壓準位的脈波寬度 > 子波形wi_2的正負電麗準 位的脈波寬度〉子波形WM的正負電壓準位的赚波寬度。 凊參照圖4,圖4之實施例與圖3之實施例相似,不 201222508 t*biyyuu54TW 36032twf.doc/n 同之處在於’子波形wi-l、Wl-2、Wl-3的正負電壓準位 的脈波寬度不完全隨著時間區段而增加。換言之,在本實 施例中,子波形W1-3的正負電壓準位的脈波寬度 > 子波 形W1-1的正負電壓準位的脈波寬度 > 子波形W1-2的正 負電壓準位的脈波寬度,且子波形Wl-卜 Wl-2、W1-3各 自的正負電壓準位的脈波寬度也可以不同。 請參照圖5,圖5之實施例與圖3之實施例相似,不 同之處在於,子波形Wl-1、Wl-2、W1-3的正電壓準位低 於第二波形W2的正電壓準位,且子波形WM、W1-2、 W1-3的負電壓準位也低於第二波形的負電壓準位。除此之 外’在本實施例中,子波形Wl-1、Wl-2、W1-3之正電壓 準位與負電壓準位不完全相同。在此,第二波形W2的正 電壓準位> 子波形W1-3的正電壓準位 > 子波形W1-2的 正電壓準位=子波形W1-1的正電壓準位,且第二波形W2 的負電壓準位 > 子波形W1-3的負電壓準位=子波形W1-2 的負電壓準位 > 子波形W1-1的負電壓準位。另外,子波 形Wl-1、Wl-2、W1-3的正電壓準位的脈波寬度與負電壓 準位的脈波寬度也是不完全相同。在此,子波形W1-3的 正負電壓準位的脈波寬度> 子波形W1-2的正負電壓準位 的脈波寬度 > 子波形W1-1的正負電壓準位的脈波寬度, 且子波形Wl-1、Wl-2、W1-3各自的正負電壓準位的脈波 寬度也可以不同。 請參照圖6,圖6之實施例與圖5之實施例相似,不 同之處在於,子波形Wl-1、Wl-2、W1-3之正電壓準位所 2〇122250§4TW 36032twf.doc/n 佔的時間與負電壓準位所佔的時間比例不完全相同。舉例 來說,子波形W1-1的正電壓準位的脈波寬度與負電壓準 位的脈波寬度不相同,子波形wl_2的正電壓準位的脈波 寬度與負電壓準位的脈波寬度不相同,而子波形W1-3的 正電壓準位的脈波寬度與負電壓準位的脈波寬度是相同 的。 請參照圖7 ’圖7之實施例與圖3之實施例相似,不 同之處在於’子波形W1-1與第二波形W2相同,而子波 形Wl-2、W1-3在單位時間内的能量小於第二波形W2。 而本實施例之子波形Wl-2、W1-3的正負電壓準位的脈波 寬度隨著時間區段而增加,也就是,子波形W1-2的正負 電壓準位的脈波寬度 > 子波形W1-1的正負電壓準位的脈 波寬度。 在上述圖3至圖7之實施例中’第一波形W1是以具 有三個子波形Wl-1、Wl-2、W1-3為例,然本發明不限於 此。根據其他實施例,第一波形W1可以是單一波形、兩 種子波形或是三種以上之子波形。 在此外,上述各實施中,第一波形W1與第二波形 W2都是以方形波為例來說明。然’本發明不限於此。根 據其他實施例,低能量前置訊號(第一波形W1)還可以是其 他種形式之波形,如鑛齒波、正弦波、或是其他形狀的波 形。一般來說,如果低能量前置訊號(第一波形W1)要以其 他種形式之波形來實現,通常會在切換器200與第一電極 層106與第二電極層124之間加裝波形功能電路302、 201222508 roiyyL'UD4TW 36032twf.doc/n 304,如圖8所示,其主要是用來改變波形的形狀。當切換 器控制器202控制切換器200與第一電極層106/第二電極 層124電性連通之後,低能量前置訊號(第一波形Wi)在通 過波形功能電路302、304時會被改變其波形形狀,如圖9 所示,而以鋸齒波的形式(子波形W1_i、W1_2)驅動顯示 器。在以低能量前置訊號完成前置驅動之後,以高能量驅 動訊號(第二波形W2)驅動,此時可使波形功能電路3〇2、 304不運作,而以原有的方形波來驅動顯示器。 圖10顯示兩實例與比較例之電濕潤顯示器的驅動時 間與反射率的關係曲線圖。請參照圖1〇,圖1〇之橫軸表 不反應時間且縱軸表示反射率。比較例是直接以高能量驅 動訊號驅動顯示器,而實例i與實例2是先錢能量前置 讯,驅動之後再以高能量驅動訊號驅動顯示器,其中實例 1是以圖2之驅動波形來驅動,且實例2是以圖3之之驅 動波形來驅動。由圖10可知,實例丨與實例2的反射率表 現明顯優於比較例的反射率表現。由此可知,實例丨盥實 例2之顯示ϋ t非極性溶液層產生***的情形遠低於啸 例’因而具有較佳的反射率表現。 j上職’本發明是先以低能量前置訊號驅動電濕潤 ^丁^器之後’再以4量驅動訊號驅動所述電濕潤顯示 上越量輕財式可以改料紐溶液層收縮 仃為的^度,崎㈣極性驗層發生純的可能性。 ,詳細來說’當以低能量前置訊號驅動電濕潤顯示器 、’低能1前置喊的能量或電場可驅使顯示器内的非In more detail, the first waveform W1 of the low-energy preamble signal of the embodiment has a positive voltage level and a negative voltage level, and the second waveform W2 of the high energy preamble has a positive voltage level and Negative voltage level. In the embodiment of Figure 2, the positive voltage level of the first waveform W1 is equal to νι and the negative voltage level is equal to Λ/2. The positive f-pressure level of the second waveform W2 is equal to V1 and the negative voltage level is equal to -V2. In particular, the positive voltage level of the first waveform W1 is the same as the negative voltage level. That is, the positive voltage of the first waveform W12 and the negative voltage are negative. In addition, the first waveform W1 is the same as the negative voltage (four) pulse width. The positive voltage level and the 贞 voltage level of the second waveform W2 are the same. Is the same, that is, 'the absolute value of the positive voltage and the negative voltage of the second waveform W2 Ξ第目冋Π; 卜二二 waveform W2 at the positive voltage level pulse width = - machine W2 in the negative power _ The pulse width is (4). In addition, the positive voltage level of the second waveform of the front side of the waveform W1 is the same. In addition, the negative voltage of the first waveform of the first waveform W1 has the same negative voltage level. In the embodiment, the pulse width of the positive and negative voltage levels of the waveform W1 of the embodiment is smaller than the pulse width of the positive and negative voltage levels of the second waveform 201222508 ▲ w*, /~J4TW 36032twf.doc/n W2. Therefore, the first waveform The energy of wi in unit time is less than the energy of the second waveform W2 per unit time. Regarding the low energy preamble signal, in addition to the above embodiment of Fig. 2, there may be various changes, as described below. In the example, the high energy drive signal (second waveform W2) is the same as the embodiment of FIG. With reference to FIG. 3, the first waveform W1 of the low-energy preamble signal of this embodiment includes a plurality of sub-waveforms W1_i, W1_2, and W1_3, wherein the sub-waveform is in the time segment τΐ-ι. The W1d driver is driven by the sub-waveform W1-2 in the time segment τι.2, and is driven by the sub-waveform W1-3 in the time segment T1_3. In addition, the positive voltage levels of the sub-waveforms WM, W1_2, and wi_3 are driven. It is equal to VI and (4) is pressed to _V2. In addition, the sub-waves of this embodiment are less, the positive voltage levels of Wl-2, W1-3 are the same as the positive voltage level of the second waveform W2. In addition, the sub-waveform wiU2 The negative voltage level of wl 3 is also the same as the second wave. In addition, in this embodiment, the positive electric dust level and the negative voltage of the sub-waveforms W1-1, W-2, and ww. The level is the same. The pulse waveforms of the f voltage levels of the sub-waveforms WM, wi 2, and wi 3 are the same as their respective pulse widths. However, the sub-waveforms WM, Wl_2, and Wl 3 The pulse width of the positive and negative voltage levels increases with time, that is, the pulse width of the positive and negative voltage levels of the sub-waveform W1_3 > The pulse width of the negative power level> the profit width of the positive and negative voltage levels of the sub-waveform WM. Referring to FIG. 4, the embodiment of FIG. 4 is similar to the embodiment of FIG. 3, not 201222508 t*biyyuu54TW 36032twf.doc/n The same is true that the pulse widths of the positive and negative voltage levels of the 'sub-waveforms wi-1, W1-2, and W1-3 are not completely increased with time segments. In other words, in the present embodiment, the sub-waveform W1-3 Pulse width of positive and negative voltage levels > Pulse width of positive and negative voltage levels of sub-waveform W1-1 > Pulse width of positive and negative voltage levels of sub-waveform W1-2, and sub-waveform Wl-Bu Wl- 2. The pulse widths of the positive and negative voltage levels of W1-3 can also be different. Referring to FIG. 5, the embodiment of FIG. 5 is similar to the embodiment of FIG. 3, except that the positive voltage levels of the sub-waveforms W1-1, W1-2, and W1-3 are lower than the positive voltage of the second waveform W2. The level is negative, and the negative voltage levels of the sub-waveforms WM, W1-2, W1-3 are also lower than the negative voltage level of the second waveform. In addition, in the present embodiment, the positive voltage levels of the sub-waveforms W1-1, W1-2, and W1-3 are not completely the same as the negative voltage levels. Here, the positive voltage level of the second waveform W2 > the positive voltage level of the sub-waveform W1-3 > the positive voltage level of the sub-waveform W1-2 = the positive voltage level of the sub-waveform W1-1, and The negative voltage level of the second waveform W2 > the negative voltage level of the sub-waveform W1-3 = the negative voltage level of the sub-waveform W1-2 > the negative voltage level of the sub-waveform W1-1. Further, the pulse widths of the positive voltage levels of the sub-waveforms W1-1, W1-2, and W1-3 are not completely the same as the pulse widths of the negative voltage levels. Here, the pulse width of the positive and negative voltage levels of the sub-waveform W1-3> the pulse width of the positive and negative voltage levels of the sub-waveform W1-2> the pulse width of the positive and negative voltage levels of the sub-waveform W1-1, The pulse widths of the positive and negative voltage levels of the sub-waveforms W1-1, W1-2, and W1-3 may be different. Referring to FIG. 6, the embodiment of FIG. 6 is similar to the embodiment of FIG. 5, except that the positive voltage levels of the sub-waveforms W1-1, W1-2, and W1-3 are 2122250 §4TW 36032twf.doc The ratio of time taken by /n to the negative voltage level is not exactly the same. For example, the pulse width of the positive voltage level of the sub-waveform W1-1 is different from the pulse width of the negative voltage level, and the pulse width of the positive voltage level of the sub-waveform w1_2 and the pulse wave of the negative voltage level The width is not the same, and the pulse width of the positive voltage level of the sub-waveform W1-3 is the same as the pulse width of the negative voltage level. Referring to FIG. 7 , the embodiment of FIG. 7 is similar to the embodiment of FIG. 3 except that 'the sub-waveform W1-1 is the same as the second waveform W2, and the sub-waveforms W1-2, W1-3 are in unit time. The energy is smaller than the second waveform W2. On the other hand, the pulse width of the positive and negative voltage levels of the sub-waveforms W1-2, W1-3 of the present embodiment increases with time, that is, the pulse width of the positive and negative voltage levels of the sub-waveform W1-2> The pulse width of the positive and negative voltage levels of waveform W1-1. In the above-described embodiments of Figs. 3 to 7, the first waveform W1 is exemplified by having three sub-waveforms W1-1, W1-2, and W1-3, but the present invention is not limited thereto. According to other embodiments, the first waveform W1 may be a single waveform, a two-seed waveform, or three or more sub-waveforms. Further, in each of the above embodiments, the first waveform W1 and the second waveform W2 are both exemplified by a square wave. However, the invention is not limited thereto. According to other embodiments, the low energy preamble signal (first waveform W1) may be other forms of waveforms, such as mineral tooth waves, sine waves, or waveforms of other shapes. Generally, if the low energy preamble signal (the first waveform W1) is to be implemented in other forms of waveforms, a waveform function is usually added between the switch 200 and the first electrode layer 106 and the second electrode layer 124. Circuit 302, 201222508 roiyyL'UD4TW 36032twf.doc/n 304, as shown in Figure 8, is primarily used to change the shape of the waveform. After the switch controller 202 controls the switch 200 to be in electrical communication with the first electrode layer 106 / the second electrode layer 124, the low energy preamble signal (first waveform Wi) is changed when passing through the waveform function circuits 302, 304. The waveform shape is as shown in Fig. 9, and the display is driven in the form of a sawtooth wave (sub-waveforms W1_i, W1_2). After the pre-drive is completed with the low-energy pre-signal, the high-energy drive signal (second waveform W2) is driven. At this time, the waveform function circuits 3〇2, 304 are not operated, but are driven by the original square wave. monitor. Fig. 10 is a graph showing the relationship between the driving time and the reflectance of the electrowetting display of the two examples and the comparative example. Referring to Fig. 1A, the horizontal axis of Fig. 1 shows no reaction time and the vertical axis represents reflectance. In the comparative example, the display is driven directly by the high-energy driving signal, and the example i and the example 2 are the first energy front-end, and then the driving is driven by the high-energy driving signal, wherein the example 1 is driven by the driving waveform of FIG. And example 2 is driven by the driving waveform of FIG. As can be seen from Fig. 10, the reflectance of Example 丨 and Example 2 was significantly better than that of the comparative example. From this, it can be seen that the case of the example 丨盥t non-polar solution layer of the example 2 is much lower than that of the whistling case and thus has a better reflectance performance. j上职' The invention is to drive the electric humidifier with a low-energy pre-signal signal, and then drive the electro-wet display with a 4-digit drive signal. ^ degree, Saki (four) polarity test layer occurs purely possibility. In detail, 'When the low-energy front signal is used to drive the electrowetting display, the low energy 1 front shouting energy or electric field can drive the non-display

13 S 20122250813 S 201222508

A V/ A ^ V/VA V/ A ^ V/V

^4TW 36032twf.doc/n 極性溶液層產生前置收縮反應(液體擾動)的作用。當後續 再以尚能量驅動訊號來驅動時’可使極性溶液層完整地收 縮至單元區域(晝素單元)的邊緣’進而減少極性溶液層破 裂成分散的液滴。 由於本發明之驅動方式可以降低非極性溶液層發生 ***的可能性’因此可以改善電潤濕顯示器的顯示品質與 反應速度。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 Γ 1A以及目16是根據本發明一實施例之電濕潤顯示 态及其驅動方法的示意圖。 圖2至圖7是根據本發雖個實施例之驅動波 思、圚。 圖8是根據本發明另—實施例之電濕 動方法料㈣。 肖了減具駆 圖9是根據本發明一實施例之驅動波形的示意圖。 圖10顯示兩實例與比較例之電濕潤顯 間與反射率的關係曲線圖。 τ_時 201222508^4TW 36032twf.doc/n The polar solution layer produces a pre-shrinkage reaction (liquid perturbation). When subsequently driven by the energy drive signal, the polar solution layer can be completely collapsed to the edge of the cell region (the pixel unit), thereby reducing the breakdown of the polar solution layer into dispersed droplets. Since the driving method of the present invention can reduce the possibility of splitting of the non-polar solution layer, the display quality and reaction speed of the electrowetting display can be improved. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Γ 1A and 16 are schematic views of an electrowetting display state and a driving method thereof according to an embodiment of the present invention. 2 to 7 are driving waves, 圚 according to an embodiment of the present invention. Figure 8 is an electrowetting method (4) according to another embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 9 is a schematic illustration of a driving waveform in accordance with an embodiment of the present invention. Fig. 10 is a graph showing the relationship between the electrowetting property and the reflectance of the two examples and the comparative examples. Τ_时 201222508

4TW 36032twf.doc/n 【主要元件符號說明】 100 :第一基板 102 :基板 104 :反射層 106 :第一電極層 108 :中間層 110 :隔牆結構 120 :第二基板 • 122 :基板 124 :第二電極層 130 :極性溶液層 140 :非極性溶液層 200 :切換器 202 :切換控制器 302、304 :波形功能電路4TW 36032twf.doc/n [Description of main component symbols] 100: First substrate 102: Substrate 104: Reflective layer 106: First electrode layer 108: Intermediate layer 110: Partition structure 120: Second substrate • 122: Substrate 124: Second electrode layer 130: polar solution layer 140: non-polar solution layer 200: switcher 202: switching controller 302, 304: waveform function circuit

Wl、Wl-1、Wl-2、Wl-3、W2 :波形 ΤΙ、Tl-1、Tl-2、Tl-3、T2 :時間區段 15Wl, Wl-1, Wl-2, Wl-3, W2: Waveform ΤΙ, Tl-1, Tl-2, Tl-3, T2: time section 15

Claims (1)

201222508 rw 36032twf.doc/n 七、申請專利範圍: 1. 一種電濕潤顯示器的驅動方法,包括: 提供一電濕潤顯示器,其包括: 一第一基板,其具有一第一電極層; 一第二基板,位於該第一基板的對向且具有一第 二電極層;以及 一極性液體層以及一非極性溶液層,位於該第一 基板與該第二基板之間; 以一低能量前置訊號驅動該電濕潤顯示器,該低能量 前置訊號具有一第一波形;以及 以一高能量驅動訊號驅動該電濕潤顯示器,該高能量 驅動訊號具有一第二波形。 2. 如申請專利範圍第1項所述之電濕潤顯示器的驅 動方法,其中該低能量前置訊號的能量大於該電濕潤顯示 器的一臨界能量。 3. 如申請專利範圍第1項所述之電濕潤顯示器的驅 動方法,其中該低能量前置訊號之該第一波形具有一正電 壓準位與一負電壓準位,且該高能量前置訊號之該第二波 形具有一正電壓準位與一負電壓準位。 4. 如申請專利範圍第3項所述之電濕潤顯示器的驅 動方法,其中該第一波形的該正電壓準位與該負電壓準位 相同或是不相同。 5. 如申請專利範圍第3項所述之電濕潤顯示器的驅 動方法,其中該第二波形的該正電壓準位與該負電壓準位 § 16 201222508 ιτυ 36032twf.doc/n 相同或不相同。 6. 如申請專利範圍第3項所述之電濕潤顯示器的驅 動方法,其中該第一波形在該正電壓準位的脈波寬度與該 第一波形在該負電壓準位的脈波寬度相同或不相同。Λ 7. 如申請專利範圍第3項所述之電濕潤顯示器的驅 動方法,其中該第二波形在該正電壓準位的脈波寬度與該 第二波形在該負電壓準位的脈波寬度相同或不相同。Λ 8. 如申請專利範圍第3項所述之電濕潤顯示器的驅 動方法,其中該第—波形的該正電壓準位與該第二 沾 該正電壓準位相同。 —市的 9·如申請專利範圍第3項所述之電濕潤顯示器的驅 動方法,其中該第一波形的該負電壓準位與該 D 該負電壓準位相同。 一波形的 10. 如申請專利範圍第3項所述之電濕潤顯 動方法’其巾該第—波形的紅電壓準位低於:驅 的該正電壓準位。 弗一波形 11. 如申請專利範圍第3項所述之電濕潤 動方法’其巾該第—波形的該貞電壓準位低於-止驅 的該負電壓準位。 Λ乐一波形 12·如申請專_圍第丨顿狀電關顯 方法’其中該第—波形包括多個子波形。 ° 13·如申請專利範圍第12項所述之 驅動方法,其巾該些子波形齡波寬度科目同,不器的 /、中雜子波形的脈波寬度隨著時間㈣逐漸 17 4TW 36032twf.doc/n 201222508 增大。 15.如申請專利範圍第12項所述之電濕潤顯示器 驅動方法,其中該些子波形分別具有一正電壓準位以及〜 負電壓準位’且該些子波形之正電壓準位所佔的時間 電壓準位所佔的時間比例不相同。 ^写 16·如申請專利範圍第12項所述之電濕潤顯示 驅動方法,其中該些子波形分別具有一正電壓準位好 些子波形之s玄些正電壓準位不相同。 ’ 17·如申請專利範圍第12項所述之電 其中該些子波形分別具有—負電壓準^不二 二子波升>之5亥些負電壓準位不相同。 18.如申請專利範圍第12 驅動方法,其中該些子波 2 =顯不裔的 波形相同。 u個子波形與該第二 動方Γ’,Kg利1項所述之電濕濶顯示器的驅 «波/、中衫一波形與該第二波形各自為方形波或是 動方法’其中該之電濕濶顯示器的驅 * 一切換器,該切換器具有 鳊以及一參考電壓端,且 差鸲、〜第二電壓 電性連接錢娜|| ·· ^ —f極相錢第二電極層 —切換控制器,其與該 該第-電極層以及該第2電x減二電性連接’用以控制該 電壓端或是該參考電_·^接料—電㉔、該第二201222508 rw 36032twf.doc/n VII. Patent Application Range: 1. A method for driving an electrowetting display, comprising: providing an electrowetting display comprising: a first substrate having a first electrode layer; a second a substrate, located opposite the first substrate and having a second electrode layer; and a polar liquid layer and a non-polar solution layer between the first substrate and the second substrate; and a low energy pre-signal Driving the electrowetting display, the low energy pre-signal has a first waveform; and driving the electro-wetting display with a high-energy driving signal, the high-energy driving signal having a second waveform. 2. The method of driving an electrowetting display according to claim 1, wherein the energy of the low energy preamble signal is greater than a critical energy of the electrowetting display. 3. The driving method of the electrowetting display of claim 1, wherein the first waveform of the low energy pre-signal has a positive voltage level and a negative voltage level, and the high energy front The second waveform of the signal has a positive voltage level and a negative voltage level. 4. The method of driving an electrowetting display according to claim 3, wherein the positive voltage level of the first waveform is the same as or different from the negative voltage level. 5. The method of driving an electrowetting display according to claim 3, wherein the positive voltage level of the second waveform is the same as or different from the negative voltage level § 16 201222508 ιτυ 36032 twf.doc/n. 6. The method of driving an electrowetting display according to claim 3, wherein a pulse width of the first waveform at the positive voltage level is the same as a pulse width of the first waveform at the negative voltage level. Or not the same. 7. The method of driving an electrowetting display according to claim 3, wherein a pulse width of the second waveform at the positive voltage level and a pulse width of the second waveform at the negative voltage level Same or different. 8. The method of driving an electrowetting display according to claim 3, wherein the positive voltage level of the first waveform is the same as the second positive voltage level. The driving method of the electrowetting display of claim 3, wherein the negative voltage level of the first waveform is the same as the negative voltage level of the D. 10. A waveform 10. The method of electrowetting according to claim 3, wherein the red voltage level of the first waveform is lower than: the positive voltage level of the drive. The oscillating waveform 11. The electrowetting method of claim 3, wherein the 贞 voltage level of the first waveform is lower than the negative voltage level of the snubber. Λ乐一 waveform 12·If the application is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ° 13 · The driving method described in claim 12, the pulse wave width of the sub-wavelength is the same as that of the sub-waveform, and the pulse width of the non-incorporated/disintegrated waveform gradually increases with time (4) by 17 4TW 36032twf. Doc/n 201222508 Increased. 15. The electrowetting display driving method of claim 12, wherein the sub-waveforms respectively have a positive voltage level and a negative voltage level 'and a positive voltage level of the sub-waveforms The time ratio of the time voltage level is different. The electrowetting display driving method of claim 12, wherein the sub-waveforms respectively have a positive voltage level, and the sub-waveforms have different positive voltage levels. 17. The power as described in claim 12, wherein the sub-waveforms have a negative voltage level of -5 and a negative voltage level respectively. 18. The method of claim 12, wherein the waveforms of the wavelets 2 = dominant are the same. u sub-waveforms and the second moving element ,', the Kg-li 1 display of the electro-wet display of the drive «wave /, the middle shirt waveform and the second waveform are each a square wave or a moving method" A switcher of the electrowetting display, the switch has a 鳊 and a reference voltage terminal, and the difference 〜, the second voltage is electrically connected to the 钱娜|| ·· ^ -f pole phase second electrode layer - a switching controller, the first electrode layer and the second electric x minus two electrical connection 'to control the voltage terminal or the reference electrical source - electricity 24, the second
TW99141520A 2010-11-30 2010-11-30 Driving method of electro-wetting display device TWI407404B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99141520A TWI407404B (en) 2010-11-30 2010-11-30 Driving method of electro-wetting display device
CN201010603809.5A CN102479487B (en) 2010-11-30 2010-12-22 Driving method of electrowetting display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99141520A TWI407404B (en) 2010-11-30 2010-11-30 Driving method of electro-wetting display device

Publications (2)

Publication Number Publication Date
TW201222508A true TW201222508A (en) 2012-06-01
TWI407404B TWI407404B (en) 2013-09-01

Family

ID=46092104

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99141520A TWI407404B (en) 2010-11-30 2010-11-30 Driving method of electro-wetting display device

Country Status (2)

Country Link
CN (1) CN102479487B (en)
TW (1) TWI407404B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471600B (en) * 2012-12-17 2015-02-01 Ind Tech Res Inst Electro-wetting element and operation method thereof, electro-wetting display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984088B (en) * 2014-05-14 2016-09-28 华南师范大学 A kind of electric moistening display and driving method thereof
CN109856792B (en) * 2019-03-28 2020-11-24 福州大学 Electrowetting display device and driving method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1823361A (en) * 2003-07-15 2006-08-23 皇家飞利浦电子股份有限公司 An electrophoretic display panel with reduced power consumption
CN100568332C (en) * 2003-10-08 2009-12-09 皇家飞利浦电子股份有限公司 Electrowetting display device
US8390545B2 (en) * 2005-10-25 2013-03-05 Samsung Lcd Netherlands R&D Center B.V. Reset circuit for display devices
WO2007057797A1 (en) * 2005-11-15 2007-05-24 Koninklijke Philips Electronics N.V. Driving means for electrowetting displays
GB0706275D0 (en) * 2007-03-30 2007-05-09 Liquavista Bv Driving of electrowetting display device
GB0712859D0 (en) * 2007-07-03 2007-08-08 Liquavista Bv Electrowetting system and method for operating it
TWI418848B (en) * 2008-08-29 2013-12-11 Prime View Int Co Ltd Pixel structure for use in a display and display using the same
TWI395974B (en) * 2008-11-21 2013-05-11 Ind Tech Res Inst Color electrowetting display (ewd) devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471600B (en) * 2012-12-17 2015-02-01 Ind Tech Res Inst Electro-wetting element and operation method thereof, electro-wetting display device
US9046681B2 (en) 2012-12-17 2015-06-02 Industrial Technology Research Institute Electro-wetting element and operation method thereof, electro-wetting display device

Also Published As

Publication number Publication date
TWI407404B (en) 2013-09-01
CN102479487A (en) 2012-05-30
CN102479487B (en) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101596055B1 (en) Electrowetting display having controlled fluid motion
US7274416B2 (en) Display device
JP4653398B2 (en) Display device
KR101976209B1 (en) Electrowetting display device
CN103270446B (en) Electrowetting optical element
JP6005348B2 (en) Electrophoretic display device and manufacturing method thereof
JP2011053683A5 (en)
US10637156B2 (en) Scanning antenna and method for manufacturing scanning antenna
KR101942968B1 (en) Electrowetting display apparatus having improved aperture ratio and method of driving the same
KR101945535B1 (en) Electrowetting display
KR20130125514A (en) Electrowetting display device
WO2015169030A1 (en) Parallax barrier and preparation method therefor, display panel and display device
CN105182636A (en) Blue-phase liquid crystal display, blue-phase liquid crystal display module and manufacture method thereof
US20110194168A1 (en) Electrowetting display device
US8213090B2 (en) Electrowetting pixel structure
TWI460470B (en) Electrowetting display device
TW201222508A (en) Driving method of electro-wetting display device
US9013779B2 (en) Electrowetting display apparatus
KR101779078B1 (en) Electrowetting display device
KR20130050303A (en) Electrowetting display panel
US8988761B2 (en) Display apparatus and method of driving the same
TWI443373B (en) Electrowetting display panel and manufacturing method thereof
US20090168136A1 (en) Solid-state optical modulator
KR101759553B1 (en) Electrowetting display device and method of fabricating the same
KR101807879B1 (en) Electrowetting display device