TW201218471A - Transparent thermoelectric energy conversion device - Google Patents

Transparent thermoelectric energy conversion device Download PDF

Info

Publication number
TW201218471A
TW201218471A TW99136590A TW99136590A TW201218471A TW 201218471 A TW201218471 A TW 201218471A TW 99136590 A TW99136590 A TW 99136590A TW 99136590 A TW99136590 A TW 99136590A TW 201218471 A TW201218471 A TW 201218471A
Authority
TW
Taiwan
Prior art keywords
energy conversion
bridge
bearing surface
permeable
type semiconductor
Prior art date
Application number
TW99136590A
Other languages
Chinese (zh)
Other versions
TWI419386B (en
Inventor
I-Yu Huang
Guan-Ming Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99136590A priority Critical patent/TWI419386B/en
Publication of TW201218471A publication Critical patent/TW201218471A/en
Application granted granted Critical
Publication of TWI419386B publication Critical patent/TWI419386B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A transparent thermoelectric energy conversion device is provided. At least one transparent P-type semiconductor element and at least one transparent P-type semiconductor element are disposed on a transparent carrier, and each two neighboring cold sides or hot sides of a first bridge structure of the transparent P-type semiconductor element and a second bridge structure of the transparent N-type semiconductor element are connected by a transparent conductive material. Whereby, the transparent thermoelectric energy conversion device of the invention can convert light/heat source into electricity more efficiently and reduce the heat transfer between neighboring cold sides and between neighboring hot sides of each two first bridge structure and second bridge structure. In addition, the transparent thermoelectric energy conversion device of the invention has excellent structural sturdiness and low production cost, and its manufacturing process has compatibility with CMOS IC process. Furthermore, even if one of the first bridge structures or the second bridge structures is out of order, the transparent thermoelectric energy conversion device still runs normally.

Description

201218471 六、發明說明: 【發明所屬之技術領域】 詳言之,係關於 本發明係關於一種熱電能量轉換裝置 一種可透光式熱電能量轉換裝置。 【先前技術】 一般習知的熱電元件大都採用串 啷的方式,以獲得較大 的輸出電壓、然而串聯方式的缺點就是當組成積體式的埶201218471 VI. Description of the Invention: [Technical Field to Which the Invention Is Applicable] In particular, the present invention relates to a thermoelectric energy conversion device which is a transmissive thermoelectric energy conversion device. [Prior Art] Conventional conventional thermoelectric elements are mostly used in a series manner to obtain a large output voltage. However, the disadvantage of the series method is that when the integrated type is formed.

^件陣列中只要有—個熱電元件損帛,整個元㈣列便 會斷路而失去作用。另外,習知的 J热冤7G件只有一端與基 板相接’另一端完全懸空的,故社 ^ 又、。構的強度會大大減弱, 極易受到應力(Stress)的影響。 習知塊才型熱電致冷器(Bulk themc>eleetne , 其尺寸大小從數十平方公釐(m m 2)—直到數百平方公釐, 有單層(Smgle Stage)結構,也有多層疊接(Muit]_stage Cascade)結構’其中多層疊接式致冷器可以提高熱端(H〇t Suie)和冷端(Cold Slde)的最大溫差(△[),但由於受到習 知致冷器尺寸的限制,難以和現今的積體電路製程整合。 另有以半導體製程所開發之習知熱電致冷器,該習知熱 電致冷器製作方式可以分為共平面(In_plane)式及垂直 (cr〇ss-plane)式。其中,共平面式所產生之冷端與熱端位 於同一平面且距離甚為接近,導致散熱的效果不佳。 關於Μ熱電致冷器(p_TEC)與微熱電發電器(μ_ΤΕ〇),其 係結構與材料極為相似的元件,只是能量轉換機制恰好相 反,微熱電致冷器是將電能轉換為熱能,而微熱電發電器 150965.doc 201218471 則是將元件冷端與熱端的溫度差轉換成可用之電能。Wulf Glatz 等人(參考 Wulf Glatz, Simon Muntwyler and Christofer Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator, Sensors and Actuators A: Physical Vol. 132, Issue 1, The 19th European Conference on Solid-State Transducers, 8As long as there is a damage to the thermoelectric element in the array, the entire element (4) column will be broken and lose its effect. In addition, the conventional J hot 7G piece has only one end connected to the substrate, and the other end is completely suspended. The strength of the structure is greatly reduced and it is highly susceptible to stress. Bulk themc thermoelectric cooler (Bulk themc > eleetne, its size from tens of squares (mm 2) - up to hundreds of square centimeters, has a single layer (Smgle Stage) structure, but also has multiple layers ( Muit]_stage Cascade structure] where the multi-layered chiller can increase the maximum temperature difference (Δ[) of the hot end (H〇t Suie) and the cold end (Cold Slde), but due to the size of the conventional refrigerator Restrictions are difficult to integrate with today's integrated circuit processes. There are also conventional thermoelectric coolers developed by semiconductor processes. The conventional thermoelectric coolers can be divided into coplanar (In_plane) and vertical (cr〇). Ss-plane), in which the cold end and the hot end generated by the coplanar type are in the same plane and the distance is very close, resulting in poor heat dissipation. About the thermoelectric cooler (p_TEC) and the micro thermoelectric generator ( ΤΕ〇_ΤΕ〇), which is a component that is very similar in structure and material, except that the energy conversion mechanism is just the opposite. The micro-thermoelectric cooler converts electrical energy into heat, while the micro-thermoelectric generator 150965.doc 201218471 is the cold-end and heat of components. Temperature difference at the end Switch to available power. Wulf Glatz et al. (Ref. Wulf Glatz, Simon Muntwyler and Christofer Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator, Sensors and Actuators A: Physical Vol. 132, Issue 1, The 19th European Conference On Solid-State Transducers, 8

November 2006,Pages 337-345.)所開發之三種μ-TEG,分 別為側面/側面(Lateral/Lateral)型、垂直/側面(Vertical/ Lateral)型與垂直/側面(Vertical/Vertical)型,其以碲化物 為熱電材料’其功率可達到〇·29μ\ν . cm—2 . K-2,但是整 體元件皆為無法透光之材質’無法應用於需透光之物件 上。 因此’有必要提供一創新且富有進步性之可透光式熱電 能量轉換裝置,以解決上述問題。 【發明内容】 本發明提供一種可透光式熱電能量轉換裝置,其包括: 一可透光載體、至少一可透光P型半導體元件、至少一可 透光N型半導體元件及一可透光導電材料。該可透光載體 具有一承載面。每一可透光P型半導體元件具有至少一第 一橋式結構’每一第一橋式結構具有至少一冷端及至少— 熱端,每一第一橋式結構設置於該承載面且其一部分與該 承載面之間具有一間距。每一可透光N型半導體元件具有 至少一第一橋式結構,每一第二橋式結構具有至少一冷端 及至少一熱端’每一第二橋式結構設置於該承載面且其— 150965.doc 201218471 部分與該承載面之間具有一 每二相鄰之帛士 該可透光導電#料串接 相郇之弟-橋式結構和 計甲按 端。 僑式結構相應之冷端或熱 本發明之可透光式熱電能 外表(例如:窗戶破物直換裝置可應用於建築物之 不僅β 車用破璃等需透光之物件上,其 不僅可保留透光功能,且可古^ 物件上,其November 2006, Pages 337-345.) The three μ-TEGs developed are Lateral/Lateral, Vertical/ Lateral and Vertical/Vertical. The bismuth compound is a thermoelectric material, and its power can reach 〇·29μ\ν . cm-2. K-2, but the whole component is a material that cannot be transmitted light' cannot be applied to objects that need to be transmitted. Therefore, it is necessary to provide an innovative and progressive light-transmissive thermoelectric energy conversion device to solve the above problems. SUMMARY OF THE INVENTION The present invention provides a light transmissive thermoelectric energy conversion device, comprising: a light transmissive carrier, at least one light transmissive P-type semiconductor component, at least one light transmissive N-type semiconductor component, and a light transmissive Conductive material. The permeable carrier has a bearing surface. Each permeable P-type semiconductor device has at least one first bridge structure 'each first bridge structure has at least one cold end and at least - a hot end, each first bridge structure is disposed on the bearing surface and There is a spacing between a portion and the bearing surface. Each permeable N-type semiconductor device has at least one first bridge structure, each second bridge structure has at least one cold end and at least one hot end 'each second bridge structure is disposed on the bearing surface and — 150965.doc 201218471 Between the part and the bearing surface, there is a pair of two adjacent gentlemen. The light-transmissive conductive material is connected to the bridge-type structure and the gauge end. Corresponding cold end or heat of the overseas Chinese structure The light transmissive thermal power appearance of the present invention (for example, the window breaking direct changing device can be applied to a building that is not only a light-transmitting object such as a glass for a vehicle, but not only Can retain the light transmission function, and can be used on the object

At 〇 w 有效利用光/熱源以產生電 …且,該等第-橋式結構和該等第 浮式結構,因該爾式…構係為懸 苒因該寻第一橋式結構和該等第 部分不鱼兮矸凌出被爾式、,口構之一 个…亥可透先載體直接接觸 構和第-抹J负政降低弟—橋式結 橋式、,.。構之冷端及端熱之熱量傳遞。並且,該可 透先導電材料串接每二相鄰 丨之弟—橋式結構和第二橋式結 構之冷^或熱端,故可大幅增加結構的強度,而不易受到 應力的影響。此外,太士 。 在本發明之可透光式熱電能量轉換裝 ,即使其中—第一橋式結構或第二橋式結構失去作 用’也不會影響整個可透光式熱電能量轉換裝置的運作。 再者’本發明t可透光式熱電能量轉換裝置可利用低壓 化子氣相 /儿積系統(L〇w Pressure Chemicai vap〇rAt 〇w effectively utilizing the light/heat source to generate electricity... and the first-bridge structure and the first floating structure are constructed as a suspension due to the first bridge structure and the like The first part is not a fish 兮矸 被 被 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The heat transfer of the cold end and end heat of the structure. Moreover, the permeable conductive material is connected in series with the cold or hot end of the bridge structure and the second bridge structure of each of the two adjacent cymbals, so that the strength of the structure can be greatly increased without being affected by the stress. In addition, the priest. In the permeable transmissive thermoelectric energy conversion device of the present invention, even if the first bridge structure or the second bridge structure loses its function, the operation of the entire opaque thermoelectric energy conversion device is not affected. Furthermore, the present invention can utilize a low-pressure gas phase/integral system (L〇w Pressure Chemicai vap〇r).

Deposition,LPCVD)進行多晶;^薄膜之沉積,以製造該等 P型半導體元件及該等N型半導體元件,其中以lpcvd$ 積之多晶矽薄膜其薄膜均勻性較佳,且較可以進行大面積 之沉積,而LPCVD系統是CMOS 1C製程中相當重要的設 備其價格明顯低於(Molecular Beam Expitaxy,MBE)系 統,且其製程為批次製造,所以製造成本相當低,因此本 發明之可透光式熱電能量轉換裝置之製造成本低且製程可 150965.doc 201218471 與CMOS I_C製程相容。 【實施方式】 圖1顯示本發明可透光式熱電能量轉換裝置之俯視圖; 圖2顯示本發明可透光式熱電能量轉換裝置之局部放大 圖。配合參考圖1及圖2,該可透光式熱電能量轉換裝置 100包括:一可透光載體1、至少一可透光P型半導體元件 2、至少一可透光N型半導體元件3及一可透光導電材料4。 該可透光載體1具有一承載面110。該至少一可透光p型 半導體元件2設置於該承載面〗〗〇,每一可透光p型半導體 元件2具有至少一第一橋式結構。每一第一橋式結構具有 至少一冷端及至少一熱端,每一第一橋式結構設置於該承 載面11 0且其一部分與該承載面11 〇之間具有一間距。 較佳地,該至少一可透光p型半導體元件2係為多晶矽薄 膜,且該多晶矽薄膜較佳之厚度係為2至5微米。在本實施 例中,該至少一可透光P型半導體元件2包括複數個p型半 V體長條結構2 1、2 2 (僅以二個標號表示),每一 p型半導 體長條結構2 1、2 2具有複數個相連接之第一橋式結構 211、 221,每一第一橋式結構211、221分別具有一冷端 212、 222及二熱端213、223。其中,該等第一橋式結構 2 11、22 1之結構相同,以下僅以第一橋式結構2丨丨為例說 明。 在本實施例中,每一第一橋式結構2〗丨之該等熱端2丨3設 置於該承載面110,該冷端212之二側連接該等熱端213, 且與該承載面11 0之間具有一間距。可理解的是,在其他 150965.doc 201218471 實施例中,每―第—橋式結構211可具有三冷額2及-熱 端213,該等冷端212設置於該承載面11〇,該埶端η]之二 側連接該等冷端212且與該纟載面11〇之間具有一間距。 該至少一可透光N型半導體元件3設置於該承載面11(), 每:可透光_半導體元件3具有至少―第二橋式結構。每 一第二橋式結構具有至少—冷端及至少一熱端,每一第二 橋式結構設置於該承載面】i 0且其一部分與該承載面丨丨〇之 間具有一間距。 較佳地,該至少一可透光N型半導體元件3係為多晶矽薄 膜,且該多晶矽薄膜較佳之厚度係為2至5微米。在本實施 例中,該至少一可透光N型半導體元件3包括複數個N型半 導體長條結構31、32(僅以二個標號表示),該等N型半導 體長條結構3 1、32實質上平行該等p型半導體長條結構 21、2 2,且邊等P型半導體長條結構2 i、2 2及該等N型半導 體長條結構3 1、3 2係間隔地設置於該承載面丨丨〇。每一 n型 半導體長條結構3 1、32具有複數個相連接之第二橋式結構 3 11、32 1,每一第二橋式結構3 j!、32 i分別具有一冷端 312、322及二熱端313、323。其中,該等第二橋式結構 311、321之結構相同,以下僅以第二橋式結構311為例說 明。 在本實施例中,每一第二橋式結構311之該等熱端313設 置於該承載面110,該冷端312之二側連接該等熱端313, 且與該承載面110之間具有一間距。可理解的是,在其他 實施例中,每一第二橋式結構可具有二冷端312及—熱端 150965.doc 201218471 3]3,該等冷端312設置於該承載面11〇,該熱端3i3之二側 連接該等冷端312且與該承載面11〇之間具有一間距。 在本實施例中,該可透光導電材料4串接每二相鄰之第 一橋式結構和第二橋式結構相應之冷端或熱端。例如:N 型半導體長條結構31之第二橋式結構311之熱端313連接p 型半導體長條結構2丨之第一橋式結構21〗之熱端213,?型 半導體長條結構21之第一橋式結構211之冷端212再連接N 型半導體長條結構32之第二橋式結構321之冷端322。較佳 地’ β玄可透光導電材料4係為氧化銦錫(〗τ〇)。 在本實施例中,該等Ρ型半導體長條結構21之第一橋式 結構211、221與該等Ν型半導體長條結構31之第二橋式結 構3] 1、321係設置於該承載面u〇。要強調的是,在本實 施例中,每二相鄰之第一橋式結構和第二橋式結構之冷端 以及每二相鄰之第一橋式結構和第二橋 部分可透光導電材料更設置於該承載面。例如,每= 之第一橋式結構211、221之冷端212、222和第二橋式結構 311、321之冷端312、322間以及每二相鄰之第一橋式結構 211、221之熱端213、223和第二橋式結構311、321之熱端 313、323間之部分可透光導電材料4係設置於該承載面 110。 其中,在陣列式之該等Ρ型半導體長條結構21之第一橋 式結構21丨及該等Ν型半導體長條結構31之第二橋式結構 311中,若其中一第一橋式結構211、221或第二橋式結構 311、321失去作用,因為其他相鄰ρ型半導體長條結構η 150965.doc 201218471 之第一橋式結構211、221及N型半導體長條結構3丨之第二 橋式結構3 11、32 1間之仍然具有正常之連接,因此也不會 影響整個元件陣列(可透光式熱電能量轉換裝置100)的正常 運作。Deposition, LPCVD) is performed by depositing polycrystalline thin films to fabricate the P-type semiconductor elements and the N-type semiconductor elements, wherein the polycrystalline germanium film with lpcvd$ product has better film uniformity and can be used for a large area. The deposition, while the LPCVD system is a very important device in the CMOS 1C process, its price is significantly lower than (Molecular Beam Expitaxy, MBE) system, and its process is batch manufacturing, so the manufacturing cost is relatively low, so the light transmittance of the present invention The thermoelectric energy conversion device has a low manufacturing cost and the process can be 150965.doc 201218471 is compatible with the CMOS I_C process. [Embodiment] Fig. 1 is a plan view showing a permeable transmissive thermoelectric energy conversion device of the present invention; and Fig. 2 is a partially enlarged view showing a permeable transmissive thermoelectric energy conversion device of the present invention. Referring to FIG. 1 and FIG. 2, the opaque thermoelectric energy conversion device 100 includes: a light transmissive carrier 1, at least one permeable P-type semiconductor device 2, at least one permeable N-type semiconductor device 3, and a Light transmissive conductive material 4. The permeable carrier 1 has a bearing surface 110. The at least one light transmissive p-type semiconductor device 2 is disposed on the carrying surface, and each of the light transmissive p-type semiconductor elements 2 has at least one first bridge structure. Each of the first bridge structures has at least one cold end and at least one hot end, and each of the first bridge structures is disposed on the bearing surface 110 and a portion thereof has a spacing from the bearing surface 11 。. Preferably, the at least one light transmissive p-type semiconductor device 2 is a polycrystalline silicon film, and the polycrystalline germanium film preferably has a thickness of 2 to 5 μm. In this embodiment, the at least one light transmissive P-type semiconductor device 2 includes a plurality of p-type half V body strip structures 2 1 , 2 2 (represented by only two labels), and each p-type semiconductor strip structure 2, 2 2 have a plurality of connected first bridge structures 211, 221, and each of the first bridge structures 211, 221 has a cold end 212, 222 and two hot ends 213, 223, respectively. The structures of the first bridge structures 2 11 and 22 1 are the same, and only the first bridge structure 2 丨丨 will be described below as an example. In this embodiment, the hot ends 2丨3 of each of the first bridge structures 2 are disposed on the bearing surface 110, and the two sides of the cold ends 212 are connected to the hot ends 213, and the bearing surfaces are There is a spacing between 11 0. It can be understood that in the other embodiment of the 150965.doc 201218471, each of the "bridge" structures 211 can have three cold 2 and - hot ends 213, and the cold ends 212 are disposed on the bearing surface 11〇. The two sides of the end η] are connected to the cold ends 212 and have a spacing from the crucible surface 11〇. The at least one light transmissive N-type semiconductor component 3 is disposed on the carrying surface 11 (), and each: the light transmissive semiconductor component 3 has at least a second bridge structure. Each of the second bridge structures has at least a cold end and at least one hot end, and each of the second bridge structures is disposed on the bearing surface i 0 and a portion thereof has a spacing from the bearing surface. Preferably, the at least one light transmissive N-type semiconductor device 3 is a polycrystalline silicon film, and the polycrystalline germanium film preferably has a thickness of 2 to 5 μm. In this embodiment, the at least one permeable N-type semiconductor device 3 includes a plurality of N-type semiconductor strip structures 31, 32 (indicated by only two labels), and the N-type semiconductor strip structures 3 1 and 32 The P-type semiconductor strip structures 21 and 22 are substantially parallel to each other, and the P-type semiconductor strip structures 2 i and 2 2 and the N-type semiconductor strip structures 3 1 and 3 2 are disposed at intervals. Carrying surface defects. Each n-type semiconductor strip structure 3 1 , 32 has a plurality of connected second bridge structures 3 11 , 32 1 , and each of the second bridge structures 3 j!, 32 i has a cold end 312, 322 And two hot ends 313, 323. The structures of the second bridge structures 311 and 321 are the same. Hereinafter, only the second bridge structure 311 will be described as an example. In this embodiment, the hot ends 313 of each of the second bridge structures 311 are disposed on the bearing surface 110, and the two sides of the cold ends 312 are connected to the hot ends 313 and have a relationship with the bearing surface 110. a spacing. It can be understood that, in other embodiments, each of the second bridge structures can have two cold ends 312 and a hot end 150965.doc 201218471 3]3, and the cold ends 312 are disposed on the bearing surface 11〇, The two sides of the hot end 3i3 are connected to the cold ends 312 and have a spacing from the bearing surface 11〇. In this embodiment, the permeable conductive material 4 is connected in series with the corresponding cold or hot end of each of the two adjacent first bridge structures and the second bridge structure. For example, the hot end 313 of the second bridge structure 311 of the N-type semiconductor strip structure 31 is connected to the hot end 213 of the first bridge structure 21 of the p-type semiconductor strip structure 2? The cold junction 212 of the first bridge structure 211 of the semiconductor strip structure 21 is then connected to the cold junction 322 of the second bridge structure 321 of the N-type semiconductor strip structure 32. Preferably, the ?-β opaque conductive material 4 is indium tin oxide (??). In this embodiment, the first bridge structures 211 and 221 of the germanium-type semiconductor strip structures 21 and the second bridge structures 3] 1 and 321 of the germanium-type semiconductor strip structures 31 are disposed on the carrier. Face u〇. It should be emphasized that, in this embodiment, the cold end of each of the two adjacent first bridge structures and the second bridge structure and the second bridge portion and the second bridge portion adjacent to each other are transparent and conductive. The material is further disposed on the bearing surface. For example, between the cold ends 212, 222 of the first bridge structures 211, 221 and the cold ends 312, 322 of the second bridge structures 311, 321 and each of the two adjacent first bridge structures 211, 221 A portion of the heat-transmissive conductive material 4 between the hot ends 213, 223 and the hot ends 313, 323 of the second bridge structures 311, 321 is disposed on the carrying surface 110. Wherein, in the array of the first bridge structure 21 of the 半导体-type semiconductor strip structure 21 and the second bridge structure 311 of the Ν-type semiconductor strip structure 31, if one of the first bridge structures 211, 221 or the second bridge structure 311, 321 is disabled because the other adjacent p-type semiconductor strip structure η 150965.doc 201218471 first bridge structure 211, 221 and N-type semiconductor strip structure 3 The two bridge structures 3 11 and 32 1 still have a normal connection and therefore do not affect the normal operation of the entire component array (transmissive thermoelectric energy conversion device 100).

另外,在本實施例中,該可透光式熱電能量轉換裝置 100中,該等第一橋式結構211、221之熱端213、223及該 等第二橋式結構311、321之熱端313、323設置於該承載面 11〇,每二相鄰之第一橋式結構211、221之冷端212、222 和第二橋式結構311、321之冷端312、322間之部分可透光 導電材料4設置於該承載面丨丨〇,且每二相鄰之第一橋式妙 構211、221之熱端213、223和第二橋式結構311、321之熱 端3 1 3、323間之部分可透光導電材料4設置於該承载面 11 〇,故可大幅增加結構的強度,而不易受到應力的影 響。 〜 圖3至圖10顯示本發明可透光式熱電能量轉換裝置之第 -橋式結構、第二橋式結構及可透光導電材料之製作步驟 '二圖八中圖3至圖1 0中之⑷部分係顯示沿圖1中A_ A(平订第一橋式結構或第二橋式結構)之剖面示意圖;圖3 至圖10中之(b)部分係顯示沿圖ltB_B(垂直第—橋式結構 或第二橋式結構)之剖面示意圖。 參考圖3,利用齋aa; u 用电濃輔助化學氣相沈積(PECVD)系矣 於一可透光裁、’ 之表面沉積200A之氮化矽(Nitnde)層 作為犧牲層釋放時之—保護層。 參考圖4,利用Μ μ 射頻磁控濺鍍系統於該氮化石夕層5 ^ 150965.doc 201218471 (面,全面地沉積2000AiITO熱端薄膜,並在3犯^塗佈2 μ1Ώ之AZ5214光阻,再使用光罩對準與曝光系統及反應式 離子蝕刻系統(STS-R1E)定義出熱端接觸面6。 參考圖5,利用電漿輔助化學氣相沈積系統全面地沉積2 μΐη的氧化矽(0xlde)薄膜,並再塗佈2 μΐΏ之az462〇光阻, 接著使用光罩對準與曝光系統及反應式離子姓刻系統定義 出二氧化矽犧牲層7。 #考圖6,利用電漿輔助化學氣相沈積系統全面地沉積3 # ㈣的非晶矽薄膜,再使用以下不同熱氧化方式將非晶矽 薄臈轉化為多晶石夕薄膜,以達到本發明所需之高優質多晶 矽熱電材料。 利用電裝輔助化學氣相沈積系統沉積非晶石夕所需之溫度 約為30(TC,在沉積過程中通入NjSiH4氣體,該二種氣 體會藉由化學反應的方式,在反應器内,生成固態的生成 物亚沉積於一基板表面,而此固態的生成物即為本發明所 _ f之非Μ薄膜。㈣利用紅外線快速熱退火系統,將非 晶矽薄膜轉變成為多晶矽熱電薄膜材料。接著塗佈5 μπΐ2 ΑΖ4620光阻,再使用光罩對準與曝光系統及反應式離子 触刻系統定義出多晶矽薄膜8。 參考圖7,利用離子佈植機台並使用—第一遮罩9定義與 佈植(例如磷離子佈植)N型(N_type)多晶矽熱電材料1〇(可 寸應圖2之N型半導體長條結構32之第二橋式結構^),接 著移除第一遮罩9。 參考圖8,利用離子佈植機台並使用一第二遮罩丨丨定義 150965.doc 201218471 與佈植(例如硼離子佈植)P型(P_type)多晶矽熱電材料1 2 (可 對應圖2之P型半導體長條結構2〗之第二橋式結構2丨〗),接 著移除第二遮罩】]。 參考圖9,利用射頻磁控濺鍍系統沉積2〇〇〇AiIT〇熱端 薄膜,並在SNDL塗佈2 μηι之AZ5214光阻,再使用光罩對 準與曝光系統及反應式離子蝕刻系統定義出冷端接觸面 13(可對應圖2之可透光導電材料4)。 參考圖1 0,以HF溶液蝕刻二氧化矽犧牲層7 ,以釋放懸 洋式多晶矽薄膜層。再配合參考圖丨、2及圖〗〇,其中移除 二氧化矽犧牲層7後,即形成本發明可透光式熱電能量轉 換裝置100。 該可透光式熱電能量轉換裝置100具有可透光之特性, 因此可應用於建築物之外表(例如:窗戶玻璃)或車用玻璃 等需透光之物件上,將光/熱源(例士D :太陽熱能)造成需透 光物件之二側面的溫差轉換成可用之電能,再將形成之電 能做進一步的轉換、儲存或利用。藉此,本發明之可透光 式熱電能量轉換裝置100不僅可保留透光功能,且可有效 利用光/熱源以產生電能。 舉例而言,臺灣地處亞熱帶區域’經實地量測顯示,夏 日大峰日照量可達800-1000 W/m2。經過初步估算,當窗 戶兩側溫差5。(:時,本發明之可透光式熱電能量轉換裝置 之熱電轉換效率約為〇.1%,以每扇窗戶面積為! ^的條件 下,將可獲得0.8-1.0瓦特之電能。因此,本發明之可透光 式熱電能量轉換裝置若應用於居家大樓(每戶玻璃面積>15 150965.doc -12- 201218471 m2)或大面積帷幕玻璃建築(整楝玻璃面積>1200 m2)時.,所 產生的電能應足以供應住家或辦公室之小功率照明或電子 產品之電力所需。 並且’在該可透光式熱電能量轉換裝置100中,第—橋 式結構2 11、22 1和第二橋式結構3 11、321係為懸浮式結 構’因冷端212、222及冷端312、322不與該可透光載體】 直接接觸’可有效降低第一橋式結構21]、221之冷端 212、222及熱端213、223和第二橋式結構311、321之冷端 312、322及熱端313、323之熱量傳遞。 再者,本發明之可透光式熱電能量轉換裝置1 〇〇可利用 低壓化學氣相沉積系統(L〇w pressure chemical Vapor Dep〇S1t丨on,LPCVD)進行多晶矽薄膜之沉積,以製造該等 P型半導體長條結構21、22及該等N型半導體長條結構31、 32。其中以LPCVD沉積之多晶矽薄膜其薄膜均勻性較佳, 且較可以進行大面積之沉積’而Lpcvd系統是CMOS 1C製 程中相當重要的設備,其價格明顯低於(M〇lecular Beam Expitaxy,MBE)系統,且其製程為批次製造,所以製造成 本相當低,因此本發明之可透光式熱電能量轉換裝置1〇〇 之製造成本低且製程可與CMOS 1C製程相容。 上述實施例僅為說明本發明之原理及其功效,並非限制 本發明。因此習於此技術之人士對上述實施例進行修改及 變化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圖式簡單說明】In addition, in the embodiment, in the permeable type thermoelectric energy conversion device 100, the hot ends 213 and 223 of the first bridge structures 211 and 221 and the hot ends of the second bridge structures 311 and 321 313 and 323 are disposed on the bearing surface 11〇, and the portions between the cold ends 212 and 222 of the two adjacent first bridge structures 211 and 221 and the cold ends 312 and 322 of the second bridge structures 311 and 321 are transparent. The photoconductive material 4 is disposed on the carrying surface 丨丨〇, and the hot end 213, 223 of each of the two adjacent first bridges 211, 221 and the hot end 3 1 3 of the second bridge structure 311, 321 A portion of the 323-part permeable conductive material 4 is disposed on the bearing surface 11 〇, so that the strength of the structure can be greatly increased without being affected by the stress. ~ Figure 3 to Figure 10 show the first-bridge structure, the second bridge structure and the manufacturing steps of the permeable conductive material of the permeable type thermoelectric energy conversion device of the present invention, in Figure 3 to Figure 10 Part (4) shows a schematic cross-sectional view along A_A (flattened first bridge structure or second bridge structure) in Fig. 1; part (b) in Fig. 3 to Fig. 10 shows along ltB_B (vertical first) A schematic cross-sectional view of a bridge structure or a second bridge structure. Referring to FIG. 3, the use of electro-concentration-assisted chemical vapor deposition (PECVD) is used to deposit a 200A Nitinde layer on the surface of the light-transmissive surface as a sacrificial layer. Floor. Referring to FIG. 4, a Aμ RF magnetron sputtering system is used to deposit a 2000AiITO hot end film on the nitride layer, and a 2μ1 AAZ5214 photoresist is coated on the surface of the nitriding layer 5^150965.doc 201218471. The hot end contact surface 6 is defined using a reticle alignment and exposure system and a reactive ion etching system (STS-R1E). Referring to Figure 5, a 2 μΐη yttrium oxide is fully deposited using a plasma-assisted chemical vapor deposition system ( 0xlde) film, and then coated with 2 μΐΏ of az462〇 photoresist, then define the cerium oxide sacrificial layer 7 using a reticle alignment and exposure system and a reactive ion characterization system. #考图6, using plasma assist The chemical vapor deposition system comprehensively deposits 3# (four) amorphous germanium film, and then converts the amorphous germanium thin film into polycrystalline stone film by using the following different thermal oxidation methods to achieve the high quality polycrystalline germanium thermoelectric material required by the invention. The temperature required to deposit amorphous rock by the Denso-assisted chemical vapor deposition system is about 30 (TC, NjSiH4 gas is introduced during the deposition process, and the two gases are chemically reacted in the reactor. , generating solid state The solid matter is deposited on the surface of a substrate, and the solid product is the non-ruthenium film of the invention. (4) The amorphous germanium film is converted into a polycrystalline germanium thermoelectric film material by an infrared rapid thermal annealing system. 5 μπΐ2 ΑΖ 4620 photoresist, then use the reticle alignment and exposure system and the reactive ion etch system to define the polysilicon film 8. Referring to Figure 7, the ion implanter is used and the first mask 9 is defined and implanted. (For example, phosphorus ion implantation) N-type (N_type) polycrystalline germanium thermoelectric material 1 〇 (the second bridge structure of the N-type semiconductor strip structure 32 of Fig. 2 can be used), and then the first mask 9 is removed. Figure 8, using an ion implanter and using a second mask 丨丨 define 150965.doc 201218471 and implant (eg boron ion implant) P-type (P_type) polysilicon thermoelectric material 1 2 (corresponding to Figure 2 P The second bridge structure of the semiconductor strip structure 2 丨)), then remove the second mask]]. Referring to Figure 9, a 2 〇〇〇 AiIT 〇 hot end film is deposited by a radio frequency magnetron sputtering system. And coating 2 μηι of AZ5214 photoresist in SNDL, and then making The mask alignment and exposure system and the reactive ion etching system define a cold end contact surface 13 (corresponding to the permeable conductive material 4 of Figure 2.) Referring to Figure 10, the cerium oxide sacrificial layer 7 is etched with an HF solution, The transparent polycrystalline germanium film layer is released, and the light-transmissive thermoelectric energy conversion device 100 of the present invention is formed by removing the germanium dioxide sacrificial layer 7 with reference to FIG. 2, FIG. 2 and FIG. The thermoelectric energy conversion device 100 has the characteristics of light transmissibility, and thus can be applied to objects (such as window glass) or glass for vehicles that need to transmit light, and the light/heat source (Case D: solar heat) The temperature difference between the two sides of the object to be light-transmissive is converted into usable electric energy, and the formed electric energy is further converted, stored or utilized. Thereby, the light transmissive thermoelectric energy conversion device 100 of the present invention can not only retain the light transmission function, but also effectively utilize the light/heat source to generate electric energy. For example, Taiwan is located in a subtropical region. According to field measurements, the amount of sunshine in the summer peaks can reach 800-1000 W/m2. After preliminary estimation, the temperature difference between the two sides of the window is 5. (: When the thermoelectric conversion efficiency of the permeable type thermoelectric energy conversion device of the present invention is about 0.1%, the electric energy of 0.8-1.0 watts can be obtained under the condition of each window area. The opaque thermoelectric energy conversion device of the present invention is applied to a home building (glass area per household > 15 150965.doc -12 - 201218471 m2) or a large-area curtain glass building (whole glass area > 1200 m2) The generated electrical energy should be sufficient to supply the power of the low-power lighting or electronic products of the home or office. And 'in the permeable thermoelectric energy conversion device 100, the first bridge structure 2 11 , 22 1 and The second bridge structure 3 11, 321 is a suspended structure 'because the cold ends 212, 222 and the cold ends 312, 322 are not in direct contact with the permeable carrier" can effectively reduce the first bridge structure 21], 221 Heat transfer of the cold ends 212, 222 and the hot ends 213, 223 and the cold ends 312, 322 of the second bridge structures 311, 321 and the hot ends 313, 323. Furthermore, the transmissive thermoelectric energy conversion of the present invention Device 1 〇〇 can use low pressure chemical vapor deposition system (L〇w press Ue chemical Vapor Dep〇S1t丨on, LPCVD) deposition of a polycrystalline germanium film to fabricate the P-type semiconductor strip structures 21, 22 and the N-type semiconductor strip structures 31, 32. The polycrystalline germanium film deposited by LPCVD The film uniformity is better, and it can be deposited in a large area. The Lpcvd system is a very important device in the CMOS 1C process, and its price is significantly lower than the (M〇lecular Beam Expitaxy, MBE) system, and the process is batch Sub-manufacturing, so the manufacturing cost is relatively low, so the opaque thermoelectric energy conversion device of the present invention has a low manufacturing cost and the process can be compatible with the CMOS 1C process. The above embodiments are merely illustrative of the principle of the present invention and The invention is not limited to the scope of the invention, and the scope of the invention should be as described in the following claims. 】

S I50965.doc -13- 201218471 圖1顯示本發明可透光式熱電能量轉換裝置之俯視圖·S I50965.doc -13- 201218471 Figure 1 shows a top view of the permeable transmissive thermoelectric energy conversion device of the present invention.

圖2顯示本發明可透光式熱電能量轉換裝置之局部放 圖;及 X 圖3至圖10顯示本發明可透光式熱電能量轉換裝 =式結構、第二橋式結構及可透光導電材料之製作步驟 【主要元件符號說明】2 shows a partial plan view of the permeable transmissive thermoelectric energy conversion device of the present invention; and FIG. 3 to FIG. 10 show the permeable transmissive thermoelectric energy conversion device of the present invention, a second bridge structure, and a permeable conductive material. Material production steps [main component symbol description]

1 可透光載體 2 可透光P型半導體元件 3 可透光N型半導體元件 4 可透光導電材料 5 氮化矽層 6 熱端接觸面 7 一氧化碎犧牲層 8 多晶石夕薄膜 9 第一遮罩 10 N型多晶矽熱電材料 11 第二遮罩 12 P型多晶矽熱電材料 13 冷端接觸面 21 > 22 p型半導體長條結構 31 > 32 N型半導體長條結構 100 本發明之可透光式熱電能量轉換裝 110 承載面 150965.doc -14- 2012184711 permeable carrier 2 permeable P-type semiconductor component 3 permeable N-type semiconductor component 4 permeable conductive material 5 tantalum nitride layer 6 hot end contact surface 7 oxidized sacrificial layer 8 polycrystalline shi film 9 First mask 10 N-type polysilicon thermoelectric material 11 Second mask 12 P-type polysilicon thermoelectric material 13 Cold end contact surface 21 > 22 p-type semiconductor strip structure 31 > 32 N-type semiconductor strip structure 100 The present invention Light transmissive thermoelectric energy conversion device 110 bearing surface 150965.doc -14- 201218471

211、 221 第一 -橋 式結構 212、 • 222 第- _橋 式 結 構 之 冷端 213 ' • 223 第- -橋 式 結 構 之 熱端 311、 •321 第二 二橋 式 結 構 312 ' 322 第二 二橋 式 結 構 之 冷端 313 ' • 323 第二 二橋 式 結 構 之 熱端 -15- 150965.doc211, 221 first-bridge structure 212, • 222 cold-end 213' of the first-bridge structure • 223 hot-end 311 of the --bridge structure, •321 second-second bridge structure 312 '322 second The cold end of the two-bridge structure 313 ' • 323 the hot end of the second two-bridge structure -15- 150965.doc

Claims (1)

201218471 七、申請專利範圍: 1. 一種可透光式熱電能量轉換梦怒 和供戾置,包括: 一可透光載體,具有—承載面; 至少一可透光p型半導體元件,每一玎透光p型半導體 凡件具有至少-第-橋式結構U一橋式結構具有 至少一冷端及至少—熱端,每1-橋式Μ構設置於該 承載面且其-部分與該承載面之間具有〆間距;201218471 VII. Patent application scope: 1. A translucent thermoelectric energy conversion dream anger and supply device, comprising: a light transmissive carrier having a bearing surface; at least one light transmissive p-type semiconductor component, each 玎The light transmissive p-type semiconductor has at least a first-bridge structure U-bridge structure having at least one cold end and at least a hot end, each 1-bridge structure is disposed on the bearing surface and its portion and the bearing surface Between each other; 至少-可透光Ν型半導體元件U透光㈣半導體 π件具有至少-第二橋式結構,每一第二橋式結構具有 至乂 #端及至熱端,每〜第二橋式結構設置於該 承載面且其一部分與該承載面之間且有一間距;及 A:可透光導電材料,串接每。相鄰之第-㈣結構和 弟一橋式結構相應之冷端或熱端。 2. 如請求項1之可透光式埶雷^ 飞”、、玉此董轉換裝置,其中該可透 光載體係為矽基可透光基板。 3. 如請求項}之可透《式熱電能量轉換裝置,纟中該可透 光基板係為康寧玻璃或石英玻璃。 4. 如凊求項1之可透光式熱電能量轉換裝置其中該可透 光載體之厚度係為300至500微米(μηι)。 々明求項1之可透光式熱電能量轉換裝置,其中該至少 可透光Ρ型半導體元件及該至少一可透光Ν型半導體元 件係為多晶矽薄膜。 6.如請求項5之可透光式熱電能量轉換裝置,其中該多晶 石夕薄膜之厚度係為2至5微米。 150965.doc 5 201218471 7. 如請求項1之可透光式熱電能量轉換裝置,其中該可透 光導電材料係為氧化銦錫(ITO)。 8. 如請求項丨之可透光式熱電能量轉換裝置,其中該至少 可透光P型半導體兀件係為複數個p型半導體長條結 構,該至少一可透光N型半導體元件係為複數個N型半導 體長條結構,該等P型半導體長條結構及該等1^型半導體 長條結構實質上平行地間隔設置於該承載面,每一 p型 半導體長條結構具有複數個第一橋式結構,每一 N型半 • 導體長條結構具有複數個第二橋式結構。 9如請求項1之可透光式熱電能量轉換裝置,其中每二相 鄰之第一橋式結構和第二橋式結構之冷端以及每二相鄰 之第—橋式結構和第二橋式結構之熱端間之部分可透光 導電材料係設置於該承載面。 10. 如請求項丨之可透光式熱電能量轉換裝置,其中每一第 一橋式結構具有一冷端及二熱端,該等熱端設置於該承 載面,該冷端之二側連接該等熱端且與該承載面之間具 # 有一間距;每〆第二橋式結構具有一冷端及二熱端,該 等熱端設置於該承載面,該冷端之二側連接該等熱端且 與該承載面之間具有一間距。 11. 如請求項1之可透光式熱電能量轉換裝置,其中每一第 一橋式結構具有二冷端及一熱端,該等冷端設置於該承 載面,該熱端之一側連接該等冷端且與該承载面之間具 有一間距;每一第二橋式結構具有二冷端及一熱端,該 等冷端設置於該承載面,該熱端之二側連接該等冷端且 與該承載面之間具有一間距。 150965.docAt least the light transmissive 半导体-type semiconductor element U is transparent (4) the semiconductor π-member has at least a second bridge structure, each of the second bridge structures has a 乂# end and a hot end, and each of the second bridge structures is disposed at The bearing surface and a portion thereof and the bearing surface have a spacing; and A: a light transmissive conductive material, connected in series. The adjacent first-(four) structure and the second-bridge structure correspond to the cold or hot end. 2. The permeable transmissive device of claim 1 is a ray-transparent substrate, wherein the permeable transmissive carrier is a bismuth-based transparent substrate. The thermoelectric energy conversion device, wherein the permeable substrate is a Corning glass or a quartz glass. 4. The permeable transmissive thermoelectric energy conversion device of claim 1, wherein the permeable carrier has a thickness of 300 to 500 μm. The opaque thermoelectric energy conversion device of claim 1, wherein the at least light transmissive germanium semiconductor device and the at least one light transmissive germanium semiconductor device are polycrystalline germanium films. A permeable, thermoelectric energy conversion device, wherein the thickness of the polycrystalline film is 2 to 5 μm. 150965.doc 5 201218471 7. The opaque thermoelectric energy conversion device of claim 1, wherein The permeable conductive material is indium tin oxide (ITO). 8. The permeable transmissive thermoelectric energy conversion device of claim 1, wherein the at least permeable P-type semiconductor element is a plurality of p-type semiconductor strips Structure, the at least one light transmissive N-type semiconductor component And a plurality of N-type semiconductor strip structures, wherein the P-type semiconductor strip structures and the strip-shaped semiconductor strip structures are disposed substantially parallel to the bearing surface, and each p-type semiconductor strip structure has a plurality of The first bridge structure, each N-type half conductor strip structure has a plurality of second bridge structures. 9 The permeable transmissive thermoelectric energy conversion device of claim 1, wherein each of the two adjacent first bridges The cold junction of the structure and the second bridge structure and a portion of the permeable electrically conductive material between the two adjacent first bridge structures and the hot ends of the second bridge structure are disposed on the bearing surface. The permeable transmissive thermoelectric energy conversion device, wherein each of the first bridge structures has a cold end and two hot ends, the hot ends are disposed on the bearing surface, and the two sides of the cold end are connected to the hot ends And having a distance from the bearing surface; each second bridge structure has a cold end and two hot ends, the hot ends are disposed on the bearing surface, and the two sides of the cold end are connected to the hot ends There is a spacing from the bearing surface. 11. As claimed in claim 1. The light-transmissive thermoelectric energy conversion device, wherein each of the first bridge structures has two cold ends and a hot end, the cold ends are disposed on the bearing surface, and one side of the hot end is connected to the cold ends and the bearing Each of the second bridge structures has a second cold junction and a hot end, and the cold ends are disposed on the bearing surface, and the two sides of the hot end are connected to the cold ends and are opposite to the bearing surface There is a spacing between them. 150965.doc
TW99136590A 2010-10-26 2010-10-26 Transparent thermoelectric energy conversion device TWI419386B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99136590A TWI419386B (en) 2010-10-26 2010-10-26 Transparent thermoelectric energy conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99136590A TWI419386B (en) 2010-10-26 2010-10-26 Transparent thermoelectric energy conversion device

Publications (2)

Publication Number Publication Date
TW201218471A true TW201218471A (en) 2012-05-01
TWI419386B TWI419386B (en) 2013-12-11

Family

ID=46552521

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99136590A TWI419386B (en) 2010-10-26 2010-10-26 Transparent thermoelectric energy conversion device

Country Status (1)

Country Link
TW (1) TWI419386B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682075A (en) * 2012-08-28 2014-03-26 鉅永真空科技股份有限公司 Light-permeable thermoelectric cooling element
ES2529266R1 (en) * 2012-07-20 2015-03-09 Univ Madrid Complutense Thermal energy converter by radiant emission with voltaic effect
CN104934524A (en) * 2014-03-20 2015-09-23 金瑞治科技股份有限公司 Thermoelectric element
CN106784283A (en) * 2016-12-16 2017-05-31 昆明理工大学 A kind of preparation method of transparent electrothermal module
CN107112408A (en) * 2015-01-08 2017-08-29 琳得科株式会社 Thermoelectric conversion device and accumulating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390603B (en) * 2015-11-17 2018-04-03 中国科学院上海微***与信息技术研究所 A kind of thermoelectric energy collector of double polarizing keys structure and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69730822T2 (en) * 1996-11-15 2005-09-29 Citizen Watch Co., Ltd. METHOD FOR PRODUCING A THERMIONIC ELEMENT
EP1965446B1 (en) * 2007-02-28 2011-11-16 Corning Incorporated Glass-ceramic thermoelectric module
TWI473309B (en) * 2009-02-27 2015-02-11 Hon Hai Prec Ind Co Ltd Thermoelectric power generation apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529266R1 (en) * 2012-07-20 2015-03-09 Univ Madrid Complutense Thermal energy converter by radiant emission with voltaic effect
CN103682075A (en) * 2012-08-28 2014-03-26 鉅永真空科技股份有限公司 Light-permeable thermoelectric cooling element
TWI475734B (en) * 2012-08-28 2015-03-01
CN104934524A (en) * 2014-03-20 2015-09-23 金瑞治科技股份有限公司 Thermoelectric element
TWI635771B (en) * 2014-03-20 2018-09-11 金瑞治科技股份有限公司 Thermoelectric material
CN107112408A (en) * 2015-01-08 2017-08-29 琳得科株式会社 Thermoelectric conversion device and accumulating system
CN106784283A (en) * 2016-12-16 2017-05-31 昆明理工大学 A kind of preparation method of transparent electrothermal module

Also Published As

Publication number Publication date
TWI419386B (en) 2013-12-11

Similar Documents

Publication Publication Date Title
TW201218471A (en) Transparent thermoelectric energy conversion device
Lin et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility
EP1918999B1 (en) Method for producing single crystal silicon solar cell and single crystal silicon solar cell
JP5374494B2 (en) Manufacturing method of substrate mainly composed of glass and apparatus employing the substrate
WO2010117671A1 (en) Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
CN111341875B (en) Graphene/palladium diselenide/silicon heterojunction self-driven photoelectric detector
JP2013538009A5 (en) Method of manufacturing emitter region of solar cell and solar cell substrate
JP2008112848A (en) Process for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
US9799792B2 (en) Substrate-free thin-film flexible photovoltaic device and fabrication method
CN105957955B (en) A kind of photodetector based on graphene planes knot
CN102270688A (en) Solar cell
CN101419092B (en) Method for making pyroelectric infrared detector for planarization thermal isolation structure
TW200929579A (en) Solar cell and method of manufacturing the same
CN102593039A (en) Manufacturing method for mechanically actuated uniaxial strain GeOI wafer based on AlN embedded insulating layer
TW201113389A (en) Method of coating substrate
TW201138081A (en) Active pixel cell and method of preparing an active pixel cell on a substrate
US8148192B2 (en) Transparent solar cell method of fabrication via float glass process
Rau et al. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass
Li et al. Enhanced ultraviolet photoresponse in a graphene-gated ultra-thin Si-based photodiode
JP4666217B2 (en) Photonic crystal manufacturing method
CN113193070A (en) Two-dimensional palladium diselenide flexible self-driven wide-spectrum photoelectric sensor and preparation method thereof
CN102403259B (en) Manufacturing method of single-shaft strain GeOI wafer based on mechanical bending table
TW201327862A (en) Conductive substrate and fabricating method thereof, and solar cell
US8168467B2 (en) Solar cell method of fabrication via float glass process
CN110707176B (en) Ultra-wideband thin film photoelectric detector and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees