TW201218051A - Positioning method and driving apparatus for touch panel - Google Patents

Positioning method and driving apparatus for touch panel Download PDF

Info

Publication number
TW201218051A
TW201218051A TW99136039A TW99136039A TW201218051A TW 201218051 A TW201218051 A TW 201218051A TW 99136039 A TW99136039 A TW 99136039A TW 99136039 A TW99136039 A TW 99136039A TW 201218051 A TW201218051 A TW 201218051A
Authority
TW
Taiwan
Prior art keywords
value
electrodes
sensed
relative
relative extreme
Prior art date
Application number
TW99136039A
Other languages
Chinese (zh)
Other versions
TWI442295B (en
Inventor
Po-Yang Chen
Po-Sheng Shih
Chien-Yung Cheng
Original Assignee
Chimei Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp filed Critical Chimei Innolux Corp
Priority to TW99136039A priority Critical patent/TWI442295B/en
Publication of TW201218051A publication Critical patent/TW201218051A/en
Application granted granted Critical
Publication of TWI442295B publication Critical patent/TWI442295B/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

A positioning method and a driving apparatus for touch panel are provided. The touch panel includes a plurality electrode pairs of and a conductive layer with anisotropic conductivity, wherein each of the electrode pairs includes a first electrode and a second electrode. The first electrodes and the second electrodes are respectively disposed at a first side and a second side of the conductive layer. The positioning method senses the first electrodes and the second electrodes to obtain a plurality of sensing value. Part of the first electrodes are defined a first relative extreme portion with a relative extreme. Part of the second electrodes are defined a second relative extreme portion with a relative extreme. A ratio of sensing values is calculated according to the first relative extreme portion and the second relative extreme portion. The ratio is used for calculating a touch position of the touch panel in a first axis direction.

Description

201218051 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係關於一種觸控面板,且特別係關於一種觸控面 板的定位方法與驅動裝置。 【先前技術·】 [0002] 為了達到更便利、體積更輕巧化以及更人性化的目的, 許多資訊產品的輸入方式已由傳統之鍵盤或滑鼠等裝置 ,轉變為使用觸控面板作為輸入的方式。觸控面板可組 裝在諸多種類的平面顯示器上,以使平面顯示器兼具顯 示畫面以及輸入操作資訊的功能。傳統觸控面板主要包 括電阻式、電容式、紅外線式以及表面聲波式。不同類 型的觸控面板各自具有其優缺點,例如電容式觸控面板 具有質感佳、觸控力道小等優點,但是價格較為昂貴。 降低觸控面板的成本,以及對觸碰點進行精確定位,一 直是本領域的課題。 【發明内容】 [0003] 有鑑於此,本發明提供一種觸控面板的定位方法與驅動 裝置,可以應用於不同類型的觸控面板,以及對觸碰點 進行精確定位。 [0004] 本發明實施例提出一種觸控面板的定位方法。該觸控面 板包含具有導電異向性的導電層與複數電極對,其中這 些電極對各自包含一第一電極與一第二電極。該導電層 沿第一軸向的二個對向側分別為第一側與第二側。所述 第一電極配置於該導電層的第一側,而所述第二電極配 置於該導電層的第二侧。該定位方法包括感測複數第一 099136039 表單編號A0101 第4頁/共33頁 0992063008-0 201218051 電極與複數第二電極而獲得複數感測值。於這些第一電 極的感測值中定義第一相對極值部,其中該第一相對極 值部至少具有第一電極感測值中的第一相對極值。於這 些第二電極的感測值中定義第二相對極值部,其中該第 二相對極值部至少具有第二電極感測值中的第二相對極 值。計算該第一相對極值部與該第二相對極值部的感測 值比值。使用該感測值比值而計算觸碰點於該觸控面板 第一軸向的位置。 [0005] Ο ο 本發明實施例提出一種觸控面板的驅動裝置。該觸控面 板包含具有導電異向性的導電層,其中該導;電層沿第一 軸向的二個對向側分別為第一側與第二側。該驅動裝置 包括複數電極對、一選擇器、一感測電路以及一微控制 器。該些電極對各自包含一第一電極與一第二電極。這 些第一電極配置於導電層的第一側。這些第二電極對配 置於導電層的第二側。選擇器連接至導電層的第一電極 與第二電極。感測電路連揍至選擇器。感測電路透過選 擇器驅動與感測第十電極與第二電極而獲得複數感測值 。微控制器連接至感測電路以接收這些感測值。其中, 於這些第一電極的感測值中定義第一相對極值部,且第 一相對極值部至少具有這些第一電極的感測值中的第一 相對極值;以及於這些第二電極的感測值中定義第二相 對極值部’且第二相對極值部至少具有這些第二電極的 感測值中的第二相對極值。微控制器計算第一相對極值 部與第二相對極值部的感測值比值。接下來,微控制器 使用該感測值比值而計算觸碰點於觸控面板上的第一軸 099136039 表單編號Α0101 第5頁/共33頁 0992063008-0 201218051 向位置。 [0006] [0007] [0008] 在本發明之一實施例中,上述計算觸碰點於第一轴向位 置的v驟包括.若該第一相對極值部的感測值小於該第 二相對極值部的感測值,則該觸碰點於該第一轴向位置 y L.(2r),其中l為該些第一電極至該些第二電極的距 離’ r為所述感測值比值;若該第一相對極值部的感測值 等於該第二相對極值部的感測值,則y = U2 ;以及若該第 相對極值邙的感測值大於該第二相對極值部的感測值 ,則 y = L - (Lxr) + 2。 為讓本發明之上述特徵和優點能更明顯易懂下文特舉 實施例,並配合所附圖式作詳細:說明如下。 【實施方式】 圖1A為依照本發明一實施例說明電容式觸控面板ι〇〇與驅 動裝置150的示意圖。為圖1A之觸控面板剛沿剖線 A-A繪示的局部剖面示意潘1在圖域與圖丨B中引入笛卡 兒座標系統(Cartesian (^ordinate system),其包 括相互垂直的X軸方向、Y軸方‘和艾轴方向。觸控面板 100包含導電層110、保護層(cover iens) 12〇以及基 板1〇2。導電層m配置於基板102上,而保護層12〇則配 置於導電層110上。導電層11〇具有導電異向性 (Anisotropic Conductivity),亦即,導電薄膜 11() 在兩個不同方向上具有不同的阻抗性。例如,導電層ιι〇 具有圖1A所示之低阻抗方向0以及高阻抗方向H,其中低 阻抗方向D和高阻抗方向η可為垂直。於本實施例中導 電層110的低阻抗方向D為Υ轴方向。 099136039 表單編號Α0101 第6頁/共33頁 0992063008-0 201218051 [0009]於本實施例t,基板102與/或保護層120可採用如:聚乙 浠(Polyethylene, PE)、聚碳酸醋(p〇iyCarb〇nate, PC)、t 對本一 f 酸二乙醋(polyethylene tereph-thalate,PET)、聚甲基丙烯酸甲酯(P〇lyMethyi MethAcry 1 ate’ PMMA)或薄化後的玻璃基板等透明材質 。導電層no可以是平行排列的奈米碳管(carbon nano-tube,CNT)所形成之導電薄膜。此奈米碳管薄膜 是由超順垂直排列奈米碳管陣列(Super Vert i ca i _201218051 VI. Description of the Invention: [Technical Field] The present invention relates to a touch panel, and more particularly to a method and a driving device for positioning a touch panel. [Previous Technology·] [0002] In order to achieve more convenience, lighter weight, and more user-friendly, many information products have been converted from traditional keyboards or mice to input using touch panels. the way. The touch panel can be assembled on a wide variety of flat panel displays so that the flat panel display has both a display screen and input operation information. Traditional touch panels mainly include resistive, capacitive, infrared, and surface acoustic waves. Different types of touch panels each have their own advantages and disadvantages. For example, a capacitive touch panel has the advantages of good texture and small touch force, but it is expensive. Reducing the cost of the touch panel and accurately locating the touch points has been a subject in the field. SUMMARY OF THE INVENTION [0003] In view of the above, the present invention provides a positioning method and a driving device for a touch panel, which can be applied to different types of touch panels and accurately position touch points. Embodiments of the present invention provide a positioning method of a touch panel. The touch panel comprises a conductive layer having conductive anisotropy and a plurality of electrode pairs, wherein each of the pair of electrodes comprises a first electrode and a second electrode. The two opposite sides of the conductive layer along the first axial direction are a first side and a second side, respectively. The first electrode is disposed on a first side of the conductive layer, and the second electrode is disposed on a second side of the conductive layer. The positioning method includes sensing the first number 099136039 Form No. A0101 Page 4 of 33 0992063008-0 201218051 The electrode and the plurality of second electrodes obtain a complex sensed value. A first relative extremum portion is defined in the sensed values of the first electrodes, wherein the first relative extremity portion has at least a first relative extremum of the first electrode sensed values. A second relative extremum portion is defined in the sensed values of the second electrodes, wherein the second relative extremum portion has at least a second relative extremum of the second electrode sensed values. A ratio of the sensed values of the first relative extremum portion to the second relative extremum portion is calculated. The position of the touch point in the first axial direction of the touch panel is calculated using the sensed value ratio. [0005] The embodiment of the invention provides a driving device for a touch panel. The touch panel comprises a conductive layer having conductive anisotropy, wherein the two opposite sides of the electrical layer along the first axial direction are a first side and a second side, respectively. The drive device includes a plurality of electrode pairs, a selector, a sensing circuit, and a micro controller. The pair of electrodes each include a first electrode and a second electrode. The first electrodes are disposed on a first side of the conductive layer. These second electrode pairs are disposed on the second side of the conductive layer. A selector is coupled to the first electrode and the second electrode of the conductive layer. The sensing circuit is connected to the selector. The sensing circuit drives and senses the tenth electrode and the second electrode through the selector to obtain a complex sensed value. A microcontroller is coupled to the sensing circuit to receive the sensed values. Wherein the first relative extremum portion is defined in the sensed values of the first electrodes, and the first relative extremum portion has at least a first relative extremum of the sensed values of the first electrodes; and the second A second relative extremum portion is defined in the sensed value of the electrode and the second relative extremum portion has at least a second relative extremum of the sensed values of the second electrodes. The microcontroller calculates a ratio of sensed values of the first relative extreme portion to the second relative extreme portion. Next, the microcontroller uses the sensed value ratio to calculate the touch point on the first axis of the touch panel. 099136039 Form No. 1010101 Page 5 of 33 0992063008-0 201218051 Position. [0007] In one embodiment of the present invention, the calculating the touch point at the first axial position includes: if the sensed value of the first relative extreme portion is smaller than the second The touch point is the first axial position y L. (2r), where l is the distance from the first electrode to the second electrodes Measured ratio; if the sensed value of the first relative extreme portion is equal to the sensed value of the second relative extreme portion, then y = U2; and if the sensed value of the first relative extreme 邙 is greater than the second For the sensed value of the extreme part, then y = L - (Lxr) + 2. The above-described features and advantages of the present invention will become more apparent from the detailed description of the appended claims. [Embodiment] FIG. 1A is a schematic diagram showing a capacitive touch panel and a driving device 150 according to an embodiment of the invention. The partial cross-section of the touch panel of FIG. 1A just taken along the line AA shows that the Cartesian coordinate system (Cartesian coordinate system) includes the X-axis directions perpendicular to each other. The Y-axis side and the y-axis direction. The touch panel 100 includes a conductive layer 110, a protective layer 12 〇, and a substrate 1 〇 2. The conductive layer m is disposed on the substrate 102, and the protective layer 12 is disposed on the substrate The conductive layer 11 has an anisotropic conductivity, that is, the conductive film 11 () has different resistance in two different directions. For example, the conductive layer ιι has the structure shown in FIG. 1A. The low impedance direction 0 and the high impedance direction H, wherein the low impedance direction D and the high impedance direction η can be vertical. In the present embodiment, the low impedance direction D of the conductive layer 110 is the x-axis direction. 099136039 Form No. Α0101 Page 6 / Total 33 pages 0992063008-0 201218051 [0009] In this embodiment t, the substrate 102 and / or the protective layer 120 can be used, for example, Polyethylene (PE), polycarbonate (p〇iyCarb〇nate, PC) , t to the original f acid diethyl vinegar (polyethylene t Transparent material such as ereph-thalate, PET), polymethyl methacrylate (P〇lyMethyi MethAcry 1 ate' PMMA) or thinned glass substrate. Conductive layer no can be parallel arranged carbon nanotubes (carbon nano- Conductive film formed by tube, CNT). This carbon nanotube film is made up of super-shorted vertically arranged carbon nanotube arrays (Super Vert i ca i _

Aligned Carbon Nanotube Array)透過拉伸方式製成 0 ,可應用於製作透明的導電薄膜。例如,採用化學氣相 沉積法(chemical vapor deposition, CVD)或其他 適當的方法於矽基板、石英基板或其他適當的基板上形 成奈米碳管層。接著,沿著_拉伸方向從奈米碳管層的 一侧邊拉出奈米碳管薄膜,也就是導電層11()。之後,將 導電層110配置於基板102上,同時將保護層120覆蓋於 導電層110上即初步地苳成電容式觸控面板1〇〇。因拉伸 ^ 製程中,長鍊狀奈米舞管約略沿著拉伸方向平行排列, 使得奈米碳管薄膜在拉伸方向具有較低阻抗,在垂直拉 伸方向阻抗約為拉伸方向阻抗的5〇至350倍之間。奈米碳 管薄膜的表面電阻也因量測的位置不同、方向不同而介 於1 ΚΩ至800 ΚΩ之間,因此導電層11〇具有導電異向 性。 [0010]請參照圖1A ’導電層110的低阻抗方向D為第一轴向,且 導電層11 0沿第一轴向(例如Y軸方向)的二個對向側分別 為第一側111與第二侧112。第一電極s 11、s 12、S13、 099136039 表單編號A0101 第7頁/共33頁 0992063008-0 201218051 814、815、316配置於導電層11〇的第一側111。第二電 極S21、S22、S23、S24、S25、S26配置於導電層 no的 第二侧112。雖然圖1A中之第一電極sn〜S16及第二電極 S21-S26僅分別以六個電極表示,但實際應用時,第一電 極及第二電極的數目可根據實際觸控面板的面積以及設 計需求而定。 [〇〇11]為了簡化說明,以下實施例以觸控面板1 〇 〇在操作時,僅 以一個觸碰點TP為例。在實際操作時,本實施例所述定 位方法亦可適用於多觸碰點的倩形。 [0012]請參照圖1A,驅動裝置150包含選擇器151、感測電路 152與微控制器153。選擇器151連接至導電層11()的電極 S1卜S16與S2卜S26。選擇器151依據前述順序逐一選擇 一個電極,以及提供參考電壓(例如接地電壓或是其他固 定準位的參考電壓)至其他未被選擇的電極。感測電路 152連接於選擇器151與微控制器153之間。當電極 S11〜S16與S2卜S26的其中個電極被選擇時,感測電路 1 52透過選擇器1S1軀動與辱鈿被選擇電極。因此感測 電路152可以透過選擇器151驅動與感測第一電極 S11〜S〗6及第二電極S2卜S26而獲得複數感測值。 [0013] 圖2是依照本發明實施例說明觸控面板的定位方法。於步 驟S210中,感測電路152透過選擇器151感測第一電極 099136039 sn〜S16與第二電極S2卜S26而獲得複數感測值,以及將 这些感測值傳送至微控制器153 ^觸控面板1〇〇的感測方 法(藤動方法)例如是逐一地選擇第 第二電極S2卜S26進行掃描與感測 表單編號A0101 第8頁/共33頁 一電極S11〜S16以及 。本實施例將沿X軸方 0992063008-0 201218051 向掃描並驅動第一電極Sn〜S16與第二電極S21〜S26。例 如,前述掃描、驅動與感測電極的順序可以是Sll、si 2 、S13、S14、S15、S16、S26、S25、S24、S23、S22 、S21 ’ 或是以Sll、S12、S13、S14、S15、S16、S21 Ο [0014] 、S22、S23、S24、S25、S26順序驅動之,或是以其他 順序(例如隨機順序)進行掃描、驅動與感測,但不以此 為限。前述掃描 '驅動與感測的操作例如先對所選擇的 電極施加驅動電壓(例如電源電壓…!))而對導電層11〇充 電,然後感測所選擇電極的物理特徵值(即感測值,例如 電壓值、電荷量或電容值等)。在某個電極進行掃描與感 測時,其他電極皆被施加一參考電壓(例如接地電壓)。 ❹ 在另一實施例中,在某個選定電極進行掃描、驅動與感 測時’除了與此選定電極相對位置的電極為浮接外,其 他電極皆被施加參考電壓(例如接地電壓)。例如,當第 一電極S13進行掃描與感測時,除了與此第一電極Sl3相 對位置的第二電極S23為浮接外,其他電極sii〜S12、 S14-S16 ' 、S24〜S2弓皆被施加接地電壓。又例 如,當第一電極S25進行掃描與感測時,除了與此第二電 極S25相對位置的第一電極S15為浮接外,其他電極 S11~S14、S16、S21〜S24、S26皆被施加接地電壓。 [0015] 當手指或是物體觸碰觸控面板1〇〇或是接近導電層11〇時( 即圖1A所不觸碰點TP),感測電路152會進行步驟S2l〇, 以透過選擇器151對第一電極SU〜S16及第 二電極 S2卜S26進行驅動與感測,並且將所獲得的複數感測值傳 送給微控㈣153。在後續步驟中,微控制器153利用第 099136039 表單編號A0101 第9頁/共33頁 0992063008-0 201218051 —電極S11~S16的感測值與第二電極S21〜S26的感測值可 以求出X轴與Y軸的位置。 [0016] 在完成步驟S210後,微控制器153會獲知第一電極 SU、S16與/或第二電極S2卜S26的相對極值位置。於本 實施例中,當微控制器153發現於低阻抗方向D上的電極 對(例如第一電極S13與第二電極S23)出現相對極值,微 控制器153便可以進行步驟S220。於步驟S220中,微控 制器153使用第一電極S1卜S16的感測值與/或第二電極 s2l~S26的感測值,而計算該觸碰點TP於觸控面板100上 第二軸向(例如X轴方向)的位置。 [0017] 圖3 A是依照本發明實施例說明圖1A中第二電極S 2卜S 2 6 的感測值示意圖。橫軸表示第二電極S21〜S26的位置,縱 軸表示感測值。由於觸碰點TP較靠近第二電極S23 ’因此 圖3A於S23處出現相對極值(relative extreme),例如 第二電極S23的感測值大於鄰近第二電極的感測值。相類 似地,圖3B是依照未發明實施姆說坍圖1A中第一電極 S11〜S16的感測值示意圖。橫軸表示第一電極S1卜S16的 位置,縱軸表示感測值。圖3B於S13處亦出現相對極值。 由於觸碰點TP與第一電極S11~S16的距離大於觸碰點TP 與第二電極S21~S26的距離,因此第一電極S11~S16的感 測值整體上小於第二電極s2卜S26。在一些實施例中,步 驟S220可以依據第一電極S1卜S16的感測值中出現相對 極值的位置(在此為第一電極S13的位置)’而計算該觸碰 點TP於觸控面板上X軸方向的位置。或者’步驟S22〇 亦可以依據第二電極S2卜S26的感測值中出現相對極值的 099136039 表單編號A0101 第10頁/共33頁 0992063008-0 201218051 位置(在此為第二電極S23的位置),而計算該觸碰點τρ於 觸控面板1〇〇上X輪方向的位置。 [0018] Ο 於本實施例中,步騍S220將第一電極S11~S16的感測值 各自與第二電極中S2卜S26對應電極的感測值相加,而獲 得第二轴向感測值Sl、S2、S3 ' S4、S5、S6。例如, S1=S11+S21,S2=S12 + S22,以此類推。圖3(:是依照本 發明實施例說明圖u中第一電極su〜sl6的感測值各自 與第二電極中S2l~S26對應電極的感測值相加示意圖。橫 轴表示電極的位置(例如X轴的位置),縱轴表示感測值。 然後’步驟S220以第二軸向感測值S1~S6中相對極值的 位置(在此為第二軸向感測值S 3的位置.)作為觸碰點τ P於 觸控面板1〇〇上第二軸向(例如χ軸方向)的位置。 [0019] 應用本實施例者亦可以依據設計需求 ,採用内插法或其 Ο 他演算法計算出更精確的第二轴向位置。圖3D是依照本 發明實施例說明步驟S220進行内插法求得_ 二轴向位置 之示意圖。橫軸表示X軸方向位置’縱軸表示感測值。圖 3D僅繪出第二轴向義測值82、S3 .、S4,而省略其他感測 值。依據第二轴向感測值81~56中的相對極值(在此為 S3)以及與該相對極值相鄰的二個第二軸向感測值(在此 為S2、S4) ’步驟S220使用内插法計算觸碰點TP於觸控 面板100上第二軸向的位置。假設感測值S3與感測值S2的 差值為△ 1 ’感測值S 3與感測值S 4的差值為△ 2,而相鄰 兩電極(例如電極S13與S14)距離的一半為p。若Δ1>Δ2 ,則觸碰點TP距相對極值位置(例如感測值S3位置)的偏 移量(offset)△S=[p(△1_A2)]^△l。若△1<△2,則 099136039 表單編號A0101 第11頁/共33頁 0992063008-0 201218051 觸碰點TP距相對極值位置(即感測值S3位置)的偏移量 (offset) Δ8=[-ρ( Δ2-Δ 1)] + Δ2。所以,觸碰點TP的 第二軸向位置為相對極值位置加上偏移量A S,例如感測 值S3位置加上偏移量。 [0020] 請參照圖1A與圖2,在完成步驟S210與S220後,微控制 器153會獲知第一電極si卜S16與/或第二電極S21〜S26 的相對極值位置。於本實施例中,當微控制器153發現於 低阻抗方向D上的電極對(例如第一電極S13與第二電極 S23)同時出現相對極值,微控制器153便可以進行步驟 S230與S240。於其他實施例中,於低阻抗方向D上的電 極對中’只要其中一個電極出現相對释值,微控制器153 便可以進行步驟S230與S240。 [晒]於步驟S230中’微控制器153會在第一電極S1卜S16的感 測值中定義一個第一相對極值部,且在第二電極S2卜S26 的感測值中定義一個第二相對極值部。其中,第一相對 極值部至少具有第一電極SI 1 ~S1 6的感測值中的第一相對 極值(例如圖3B所示第一電極S13的感測值),而第二相對 極值部至少具有第二電極S21 ~S26的感測值中的第二相對 極值(例如圖3A所示第二電極S23的感測值)。第一相對極 值部與第二相對極值部所含電極數量,可以依照設計需 求而任意決定。在此先以單一電極定義第一相對極值部 與第二相對極值部作為範例。在稍後所述的其他實施範 例中’會以二個電極(或更複數電極)定義第一相對極值 部與第二相對極值部。 [0022] 099136039 於本實施例中 表單編號A0101 ’微控制器153發現第一電極S13與第二電 第12頁/共33頁 0992063008-0 201218051 極S23同時出現相對極值,因此於步驟S230中微控制器 153將第一電極S13的感測值定義為第一相對極值部,而 將第二電極S23的感測值定義為第二相對極值部。接下來 ’於步驟S230中微控制器153計算該第一相對極值部與該 第二相對極值部的感測值比值,也就是計算所述第二相 對極值與所述第一相對極值的比值’做為感測值比值。 例如,假設第一電極S13的感測值為A,第二電極$23的感 測值為B,則步驟S230計算感測值比值r=B/A。 〇 [0023]於步驟S240,微控制器153用感測值比值r來計算觸碰點 TP於觸控面板100上第—軸向(例如γ轴方向)的位置。例 如,若第一相對極值部的感測值(在此為第一電極S13的 感測值)小於該第二相對極值部的感測值(在此為第二電 極“3的感測值),則觸碰點TP於第一軸向位置y=u(2r) ,其中L為第一電極su〜S16至第二電極S21〜S26的距離 ,r為前述步驟S230所獲得的感测值比值。若 值部的感測值等於第;相對極值部的感測值,貝忉。 〇 若第一相對極值部賴侧值大於該第二相對極值部的感 測值,則y=L- (LxrH2。若第一相對極值部的感測值遠 小於第二相對極值部的感測值,則y=〇。若第一相對極值 部的感測值遠大於第二相對極值部的感測值,則Μβ 說明觸碰點TP於觸控面板⑽上沿第二軸向移動的情 形。假設觸碰點TP於觸控面板100下緣附近由左向右沿一 直線移動’如圖4A所示。圖4B說明當觸碰點㈣觸控面 板1〇〇上沿第二轴向移動時,各電極感测值的變化情形。 橫軸表示時間,縱軸表示感測值。_騎出第一電極 099136039 表單编號A0I01 第13頁/共33頁 0992063008-0 201218051 S12、S13、S14的感測值與第二電極S22、S23、S24的 感測值作為代表,而省略其他感測值。請參照圖4A與圖 4B,隨著觸碰點TP沿一直線移動的過程中,電極S12、 S1 3、S14、S 2 2、S 2 3、S 2 4的感測值以及感測值比值r 之變化情形如圖4 B所示。因此,進行圖2所示定位方法所 計算出來的觸碰點TP移動路徑會像圖4A所示路徑410—般 。為了改善圖4A所示現象,以下實施例會以二個電極或 更複數電極定義第一相對極值部與第二相對極值部。 [0025] 於本實施例中會以相鄰二個電極定義第一相對極值部與 第二相對極值部。在每次完成步驟S210後,會獲知第一 電極S1卜S16與/或第二電極S2卜S26的相對極值位置, 進而初步判斷出觸碰點TP的第二軸向位置。於本實施例 中,當觸碰點TP的第二軸向位置落於第一電極S1卜S16 中某二個相鄰電極之間,則步驟S230會將此二個相鄰電 極的感測值定義為第一相對極值部。計算該第一相對極 值部中複數感測值的總和,而獲得第一總和值。相類似 地,當觸碰點TP的第二軸φ位置落於第二電極S2卜S26 中某二個相鄰電極之間,則步驟S230會將此二個相鄰電 極的感測值定義為第二相對極值部。計算該第二相對極 值部中複數感測值的總和,而獲得第二總和值。接下來 ,步驟S230計算所述第二總和值與所述第一總和值的比 值,做為該感測值比值r。 [0026] 例如,假設步驟S210感測到觸碰點TP的第二軸向位置落 於第一電極S12與S13之間,則步驟S230會將此二個相鄰 電極S12與S13的感測值定義為第一相對極值部,然後計 099136039 表單編號A0101 第14頁/共33頁 0992063008-0 201218051 算第一相對極值部所有感測值的總和,而獲得第一總和 值(S12 + S13)。相類似地,假設觸碰點TP的第二轴向位 置落於第二電極S22與S23之間,則步驟S23〇會將此二相 鄰電極S22與S23的感測值定義為第二相對極值部’然後 計算第二相對極值部所有感測值的總和,而擭得第二總 和值(S22+S23)。接下來,步驟S230計算所述第二總和 值與所述第一總和值的比值,例如計算r=(S22 + S23) + (S12+S13)。 [0027] ΟAligned Carbon Nanotube Array) is made by stretching 0, which can be used to make transparent conductive films. For example, a carbon nanotube layer is formed on a tantalum substrate, a quartz substrate or other suitable substrate by chemical vapor deposition (CVD) or other suitable method. Next, the carbon nanotube film, that is, the conductive layer 11 (), is pulled out from one side of the carbon nanotube layer in the _ stretching direction. Then, the conductive layer 110 is disposed on the substrate 102, and the protective layer 120 is overlaid on the conductive layer 110 to form a capacitive touch panel. Due to the stretching process, the long-chain nano dance tubes are arranged in parallel along the stretching direction, so that the carbon nanotube film has a lower impedance in the stretching direction and the impedance in the vertical stretching direction is the tensile direction impedance. Between 5〇 and 350 times. The surface resistance of the carbon nanotube film is also between 1 ΚΩ and 800 ΚΩ depending on the position and direction of measurement, so the conductive layer 11〇 has an anisotropic conductivity. Referring to FIG. 1A, the low-impedance direction D of the conductive layer 110 is a first axial direction, and the two opposite sides of the conductive layer 110 in the first axial direction (for example, the Y-axis direction) are respectively the first side 111. With the second side 112. First electrode s 11, s 12, S13, 099136039 Form number A0101 Page 7 of 33 0992063008-0 201218051 814, 815, 316 are disposed on the first side 111 of the conductive layer 11A. The second electrodes S21, S22, S23, S24, S25, and S26 are disposed on the second side 112 of the conductive layer no. Although the first electrodes sn to S16 and the second electrodes S21-S26 in FIG. 1A are respectively represented by six electrodes, in actual application, the number of the first electrodes and the second electrodes may be based on the area and design of the actual touch panel. Depending on the needs. [11] In order to simplify the description, in the following embodiment, when the touch panel 1 is operated, only one touch point TP is taken as an example. In actual operation, the positioning method described in this embodiment can also be applied to the shape of a multi-touch point. Referring to FIG. 1A, the driving device 150 includes a selector 151, a sensing circuit 152, and a microcontroller 153. The selector 151 is connected to the electrodes S1 to S16 and S2 of the conductive layer 11(). The selector 151 selects one electrode one by one in accordance with the foregoing sequence, and supplies a reference voltage (e.g., a ground voltage or a reference voltage of other fixed levels) to other unselected electrodes. The sensing circuit 152 is connected between the selector 151 and the microcontroller 153. When one of the electrodes S11 to S16 and S2 S26 is selected, the sensing circuit 152 passes through the selector 1S1 to move and abusively select the electrodes. Therefore, the sensing circuit 152 can drive and sense the first electrodes S11 to S6 and the second electrode S2 to S26 through the selector 151 to obtain a complex sensing value. 2 is a diagram illustrating a positioning method of a touch panel according to an embodiment of the invention. In step S210, the sensing circuit 152 senses the first electrodes 099136039 sn~S16 and the second electrode S2 and S26 through the selector 151 to obtain complex sensing values, and transmits the sensing values to the microcontroller 153. The sensing method (the vine motion method) of the control panel 1 is, for example, selecting the second electrode S2 and S26 one by one to perform scanning and sensing of the form number A0101, page 8 / page 33, and electrodes S11 to S16. In this embodiment, the first electrodes Sn to S16 and the second electrodes S21 to S26 are scanned and driven along the X-axis side 0992063008-0 201218051. For example, the order of scanning, driving and sensing electrodes may be S11, si 2 , S13, S14, S15, S16, S26, S25, S24, S23, S22, S21 ' or S11, S12, S13, S14, S15, S16, S21 Ο [0014], S22, S23, S24, S25, S26 are sequentially driven, or scanned, driven and sensed in other orders (for example, random order), but not limited thereto. The aforementioned scanning 'driving and sensing operation, for example, first applying a driving voltage (for example, a power supply voltage...!) to the selected electrode), charging the conductive layer 11A, and then sensing the physical characteristic value of the selected electrode (ie, the sensing value) Such as voltage value, charge amount or capacitance value, etc.). When an electrode is scanned and sensed, the other electrodes are applied with a reference voltage (such as a ground voltage).另一 In another embodiment, when a selected electrode is scanned, driven, and sensed, the other electrodes are applied with a reference voltage (e.g., a ground voltage) except that the electrode at a position opposite the selected electrode is floating. For example, when the first electrode S13 performs scanning and sensing, the other electrodes sii~S12, S14-S16', S24~S2 are all floated except for the second electrode S23 at a position opposite to the first electrode S13. Apply a ground voltage. For another example, when the first electrode S25 performs scanning and sensing, the other electrodes S11 to S14, S16, S21 to S24, and S26 are applied except that the first electrode S15 at a position opposite to the second electrode S25 is floating. Ground voltage. [0015] When a finger or an object touches the touch panel 1〇〇 or approaches the conductive layer 11〇 (ie, the touch point TP is not touched in FIG. 1A), the sensing circuit 152 performs step S2l〇 to pass through the selector. 151 drives and senses the first electrodes SU to S16 and the second electrodes S2 and S26, and transmits the obtained complex sensed values to the micro control (four) 153. In the subsequent step, the microcontroller 153 can obtain the X value by using the sensing value of the electrodes S11 to S16 and the sensing values of the second electrodes S21 to S26 using the 099136039 form number A0101 page 9/33 page 0992063008-0 201218051. The position of the axis and the Y axis. [0016] After completing step S210, the microcontroller 153 knows the relative extreme position of the first electrodes SU, S16 and/or the second electrode S2 S26. In the present embodiment, when the electrode pair 153 found in the low impedance direction D (e.g., the first electrode S13 and the second electrode S23) exhibits a relative extreme value, the microcontroller 153 can proceed to step S220. In step S220, the microcontroller 153 calculates the touch point TP on the second axis of the touch panel 100 by using the sensed value of the first electrode S1 and the sensed value of the second electrode s21 to S26. The position to (for example, the X-axis direction). 3A is a schematic diagram showing sensing values of the second electrode S 2 SB S 2 6 in FIG. 1A according to an embodiment of the invention. The horizontal axis represents the position of the second electrodes S21 to S26, and the vertical axis represents the sensed value. Since the touch point TP is closer to the second electrode S23', Fig. 3A exhibits a relative extreme at S23, for example, the sensed value of the second electrode S23 is larger than the sensed value adjacent to the second electrode. Similarly, Fig. 3B is a schematic diagram showing the sensed values of the first electrodes S11 to S16 in Fig. 1A in accordance with the invention. The horizontal axis represents the position of the first electrode S1, and the vertical axis represents the sensed value. Figure 3B also shows relative extrema at S13. Since the distance between the touch point TP and the first electrodes S11 to S16 is larger than the distance between the touch point TP and the second electrodes S21 to S26, the sensing values of the first electrodes S11 to S16 are smaller than the second electrodes s2 and S26 as a whole. In some embodiments, step S220 may calculate the touch point TP on the touch panel according to the position where the relative extreme value (here, the position of the first electrode S13) appears in the sensing value of the first electrode S1 S16. The position in the X-axis direction. Or 'Step S22〇 may also be based on the relative value of the second electrode S2 S26, the relative value of 099136039 Form No. A0101 Page 10 / Total 33 Page 0992063008-0 201218051 Position (here the position of the second electrode S23) And calculating the position of the touch point τρ in the direction of the X wheel on the touch panel 1 . [0018] In the embodiment, step S220 adds the sensed values of the first electrodes S11 to S16 to the sensed values of the corresponding electrodes of the S2 and S26 in the second electrode to obtain the second axial sense. Values S1, S2, S3 'S4, S5, S6. For example, S1 = S11 + S21, S2 = S12 + S22, and so on. FIG. 3 is a schematic diagram showing the sensing values of the first electrodes su to sl6 in FIG. 9 and the sensing values of the electrodes corresponding to S2l to S26 in the second electrode according to an embodiment of the present invention. The horizontal axis represents the position of the electrodes ( For example, the position of the X-axis, the vertical axis represents the sensed value. Then, in step S220, the position of the relative extreme value in the second axial sensed values S1 to S6 (here, the position of the second axial sensed value S 3 ) . ) as the position of the touch point τ P in the second axial direction (for example, the x-axis direction) of the touch panel 1 . [0019] The embodiment of the present application can also adopt interpolation or its 依据 according to design requirements. His algorithm calculates a more accurate second axial position. Fig. 3D is a schematic diagram showing the interpolation of the step 222 to obtain the _ two-axis position according to an embodiment of the present invention. The horizontal axis represents the position of the X-axis direction and the vertical axis represents Sensed value. Figure 3D only depicts the second axial sensed values 82, S3., S4, and omits other sensed values. According to the relative values of the second axial sensed values 81~56 (here S3) and two second axial sense values adjacent to the relative extreme values (here, S2, S4) 'interpolation using step S220 Calculating the position of the touch point TP in the second axial direction on the touch panel 100. It is assumed that the difference between the sensed value S3 and the sensed value S2 is Δ 1 'the difference between the sensed value S 3 and the sensed value S 4 is Δ 2, and half of the distance between adjacent electrodes (for example, electrodes S13 and S14) is p. If Δ1 > Δ2 , the offset of the touch point TP from the relative extreme position (for example, the position of the sensed value S3) (offset) △S=[p(△1_A2)]^△l. If △1<△2, then 099136039 Form No. A0101 Page 11/ Total 33 Page 0992063008-0 201218051 Touch point TP from relative extreme position (ie feeling The offset (offset) of the measured value S3) Δ8=[-ρ( Δ2-Δ 1)] + Δ2. Therefore, the second axial position of the touch point TP is the relative extreme position plus the offset AS For example, the position of the sensed value S3 plus the offset. [0020] Referring to FIG. 1A and FIG. 2, after completing steps S210 and S220, the microcontroller 153 knows the first electrode Si S16 and/or the second electrode. The relative extreme position of S21 to S26. In the present embodiment, when the pair of electrodes found by the microcontroller 153 in the low impedance direction D (for example, the first electrode S13 and the second electrode S23) simultaneously exhibit relative extremum, The controller 153 can perform steps S230 and S240. In other embodiments, in the pair of electrodes in the low impedance direction D, as long as one of the electrodes exhibits a relative release value, the microcontroller 153 can proceed to steps S230 and S240. In step S230, the microcontroller 153 defines a first relative extremum portion in the sensed value of the first electrode S1 S16, and defines a second in the sensed value of the second electrode S2 S26. Relative extremes. The first relative extreme portion has at least a first relative extreme value of the sensing values of the first electrodes SI 1 -S1 6 (eg, a sensing value of the first electrode S13 shown in FIG. 3B), and the second relative pole The value portion has at least a second relative extreme value of the sensing values of the second electrodes S21 to S26 (for example, a sensing value of the second electrode S23 shown in FIG. 3A). The number of electrodes included in the first relative extreme portion and the second relative extreme portion can be arbitrarily determined in accordance with design requirements. Here, the first relative extreme portion and the second relative extreme portion are defined by a single electrode as an example. In the other embodiment examples described later, the first relative extreme portion and the second relative extreme portion will be defined by two electrodes (or more complex electrodes). [0022] 099136039 In the present embodiment, the form number A0101 'the microcontroller 153 finds that the first electrode S13 and the second page 12/33 pages 0992063008-0 201218051 pole S23 simultaneously appear relative extreme values, so in step S230 The microcontroller 153 defines the sensed value of the first electrode S13 as the first relative extreme value portion and the sensed value of the second electrode S23 as the second relative extreme value portion. Next, in step S230, the microcontroller 153 calculates a ratio of the sensed value of the first relative extremum portion and the second relative extremum portion, that is, calculates the second relative extremum and the first relative pole. The ratio of the values 'as the ratio of the sensed values. For example, assuming that the sensed value of the first electrode S13 is A and the sensed value of the second electrode $23 is B, the step S230 calculates the sensed value ratio r = B / A. [0023] In step S240, the microcontroller 153 calculates the position of the touch point TP on the first axial direction (for example, the γ-axis direction) on the touch panel 100 by using the sensed value ratio r. For example, if the sensed value of the first relative extreme portion (here, the sensed value of the first electrode S13) is smaller than the sensed value of the second relative extreme portion (here, the sensing of the second electrode "3" Value), the touch point TP is at the first axial position y=u(2r), where L is the distance from the first electrodes su to S16 to the second electrodes S21 to S26, and r is the sensing obtained in the foregoing step S230. a value ratio: if the sensed value of the value portion is equal to the first; the sensed value of the relative extreme value portion, 忉. If the first relative extreme value portion is greater than the sensed value of the second relative extreme portion, then y=L- (LxrH2. If the sensed value of the first relative extreme portion is much smaller than the sensed value of the second relative extreme portion, then y=〇. If the sensed value of the first relative extreme portion is much larger than the first For the sensed value of the relative extreme portion, Μβ indicates that the touch point TP moves along the second axis on the touch panel (10). It is assumed that the touch point TP is from left to right near the lower edge of the touch panel 100. A straight line movement 'shows in Fig. 4A. Fig. 4B illustrates the change of the sensed values of the electrodes when the touch point (4) touches the touch panel 1 沿 along the second axis. The horizontal axis represents time. The vertical axis represents the sensed value. _ Riding the first electrode 099136039 Form No. A0I01 Page 13 of 33 0992063008-0 201218051 Sensing values of S12, S13, S14 and sensing of the second electrodes S22, S23, S24 The values are representative, and other sensed values are omitted. Referring to FIG. 4A and FIG. 4B, as the touch point TP moves along a straight line, the electrodes S12, S1 3, S14, S 2 2, S 2 3, S 2 The change of the sensed value of 4 and the ratio of the sensed value r is as shown in Fig. 4B. Therefore, the moving path of the touch point TP calculated by performing the positioning method shown in Fig. 2 is like the path 410 shown in Fig. 4A. In order to improve the phenomenon shown in FIG. 4A, the following embodiment defines a first relative extreme portion and a second relative extreme portion by two electrodes or a plurality of electrodes. [0025] In this embodiment, two adjacent electrodes are used. Defining a first relative extreme value portion and a second relative extreme value portion. After each step S210 is completed, a relative extreme position of the first electrode S1 S16 and/or the second electrode S2 S26 is known, and then the initial determination is performed. Touching the second axial position of the point TP. In this embodiment, when the second axial position of the touch point TP Falling between the two adjacent electrodes in the first electrode S1, S16, the sensing value of the two adjacent electrodes is defined as the first relative extreme portion in step S230. The first relative extreme portion is calculated. Comparing the sum of the plurality of sensed values to obtain the first sum value. Similarly, when the second axis φ position of the touch point TP falls between two adjacent electrodes of the second electrode S2 and S26, the step S230 defines the sensed value of the two adjacent electrodes as a second relative extreme value portion, and calculates a sum of the plurality of sensed values in the second relative extreme value portion to obtain a second total value. Next, step S230 calculates a ratio of the second sum value to the first sum value as the sensed value ratio r. For example, if it is determined that the second axial position of the touch point TP falls between the first electrodes S12 and S13, the step S230 will sense the sensed values of the two adjacent electrodes S12 and S13. Defined as the first relative extremum, then counted as 099136039 Form No. A0101 Page 14 of 33 0992063008-0 201218051 Calculate the sum of all the sensed values of the first relative extremum and obtain the first sum (S12 + S13 ). Similarly, assuming that the second axial position of the touch point TP falls between the second electrodes S22 and S23, the sensing value of the two adjacent electrodes S22 and S23 is defined as the second relative pole in step S23. The value portion 'then calculates the sum of all the sensed values of the second relative extreme value portion, and obtains the second sum value (S22+S23). Next, step S230 calculates a ratio of the second sum value to the first sum value, for example, r = (S22 + S23) + (S12 + S13). [0027] Ο

G 在接下來的實施例中會以相鄰三個電極定義第一相對極 值部與第二相對極值部。在每次完成步驟S210後,會獲 知第一電極Sii~S16與/或第二電極S2卜S26羚相對極值 位置。於本實施例中,步驟S230會將第一電極S11〜S16 中出現相對極值的電極與相鄰二個電極的感測值定義為 第一相對極值部,然後計算該第一相對極值部所有感測 值的總和而獲得第一總和值。相類似地’步驟S230也會 將第二電極S21〜S26中出現相對極值的電極與相鄰二個電 極的感測值定義為第二相對極俾部,然後計算該第二相 對極值部所有感測值的總和而獲得第二總和值。接下來 ,步驟S230計算所述第二總和值與所述第一總和值的比 值,做為該感測值比值r。 [0028] 例如,假設步驟S210感測到第一電極S11〜S16中出現相 對極值的電極是S13,而第二電極S21-S26中出現相對極 值的電極是S23。因此’步驟S230會將此三個相鄰電極 Si 2、S13與S14的感測值定義為第一相對極值部’然後 計算第一相對極值部所有感測值的總和,而獲得第一總 099136039 表單編號A0101 第15頁/共33頁 0992063008-0 201218051 和值(S12 + S13 + S14)。相類似地,步驟S230會將此三個 相鄰電極S22、S23與S24的感測值定義為第二相對極值 部,然後計算第二相對極值部所有感測值的總和,而獲 得第二總和值(S22 + S23 + S24)。接下來,步驟S230計算 所述第二總和值與所述第一總和值的比值,例如計算 r=(S22+S23+S24)+(S12+S13+S14)。 [0029] 上述第一相對極值部與第二相對極值部所含電極數量, 可以依照設計需求而任意決定。在其他實施例中,步驟 S 2 3 0可以計算該第一相對極值部中複數感測值的平均而 獲得第一平均值,另外計算該第二相對極值部中複數感 測值的平均而獲得第二平均值,然後計算所述第二平均 值與所述第一平均值的比值,做為該感測值比值r。 [0030] 綜上所述,上述諸實施例揭露了多種定位方法,均可以 應用於不同類型的觸控面板,以及對觸碰點進行精確定 位。例如,此定位方法亦可以應用於二層導電膜的電阻 式觸控面板。此二層導電膜的其中一者可以是如圖1A所 述的導電層110,而另一層導電膜可以是固定耦接至參考 電壓的銦錫氧化物(Indium Tin Oxide, ITO膜。此二 層導電膜疊覆於基板上。此二層導電膜之間均勻散佈複 數絕緣間隔物(spacer),使此二層導電膜維持一固定間 距。 [0031] 雖然本發明已以實施例揭露如上,然其並非用以限定本 發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故 本發明之保護範圍當視後附之申請專利範圍所界定者為 099136039 表單編號A0101 第16頁/共33頁 0992063008-0 201218051 準。 【圖式簡單說明】 [0032] 圖1 A為依照本發明一實施例說明表面電容式觸控面板的 示意圖。 [0033] 圖1B為圖1A之觸控面板沿剖線A-A’繪示的局部剖面示意 圖。 [0034] 圖2是依照本發明實施例說明觸控面板的定位方法。 [0035] 圖3A是依照本發明實施例說明圖1A中第二電極S2卜S26 的感測值示意圖。y [0036] 圖3B是依照本發明實施例說明圖1A中第一電極Sn〜S16 的感測值示意圖。 [0037] 圖3C是依照本發明實施例說明圖1A中第一電極S11 ~S 1 6 的感測值各自與第二電極中S21〜S26對應電極的感測值相 加示意圖。 [0038] 圖3D是依照本發明實施例說明進行内插法求得第二軸向 位置之示意圖。 [0039] 圖4A說明觸碰點於觸控面板上沿第二軸向移動的情形。 [0040] 圖4B說明當觸碰點於觸控面板上沿第二軸向移動時,各 電極感測值的變化情形。 【主要元件符號說明】 [0041] 觸控面板:100 [0042] 基板:102 099136039 表單編號A0101 第17頁/共33頁 0992063008-0 201218051In the following embodiment, the first relative extreme portion and the second relative extreme portion are defined by three adjacent electrodes. After each step S210 is completed, the relative extreme positions of the first electrodes Sii to S16 and/or the second electrodes S2 and S26 are known. In this embodiment, step S230 defines a sensing value of the electrode having the relative extreme value in the first electrodes S11 to S16 and the adjacent two electrodes as the first relative extreme value portion, and then calculating the first relative extreme value. The sum of all the sensed values is obtained to obtain the first sum value. Similarly, in step S230, the sensed value of the electrode having the opposite extreme value and the adjacent two electrodes in the second electrodes S21 to S26 is also defined as the second relative pole portion, and then the second relative extreme portion is calculated. A second sum value is obtained by summing all the sensed values. Next, step S230 calculates a ratio of the second sum value to the first sum value as the sensed value ratio r. For example, it is assumed that the step S210 senses that the electrode in which the relative extreme value appears in the first electrodes S11 to S16 is S13, and the electrode in which the relative extreme value appears in the second electrode S21-S26 is S23. Therefore, 'Step S230 defines the sensed values of the three adjacent electrodes Si 2, S13 and S14 as the first relative extreme value portion' and then calculates the sum of all the sensed values of the first relative extreme portion, and obtains the first Total 099136039 Form No. A0101 Page 15 of 33 Page 0992063008-0 201218051 and value (S12 + S13 + S14). Similarly, step S230 defines the sensed values of the three adjacent electrodes S22, S23, and S24 as the second relative extreme portion, and then calculates the sum of all the sensed values of the second relative extreme portion, and obtains the first Two sum values (S22 + S23 + S24). Next, step S230 calculates a ratio of the second sum value to the first sum value, for example, r = (S22 + S23 + S24) + (S12 + S13 + S14). [0029] The number of electrodes included in the first relative extremum portion and the second relative extremum portion can be arbitrarily determined according to design requirements. In other embodiments, step S 2 3 0 may calculate an average of the complex sensed values in the first relative extreme value portion to obtain a first average value, and additionally calculate an average of the complex sensed values in the second relative extreme value portion. And obtaining a second average value, and then calculating a ratio of the second average value to the first average value as the sensing value ratio r. [0030] In summary, the above embodiments disclose various positioning methods, which can be applied to different types of touch panels, and precise determination of touch points. For example, the positioning method can also be applied to a resistive touch panel of a two-layer conductive film. One of the two conductive films may be the conductive layer 110 as described in FIG. 1A, and the other conductive film may be an Indium Tin Oxide (ITO) fixedly coupled to a reference voltage. The conductive film is overlaid on the substrate, and a plurality of insulating spacers are evenly distributed between the two conductive films to maintain the two conductive films at a fixed pitch. [0031] Although the present invention has been disclosed in the above embodiments, It is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope defined by the patent scope is 099136039. Form No. A0101 Page 16 / Total 33 page 0992063008-0 201218051 Standard. [Illustration of Drawings] [0032] FIG. 1A illustrates a surface capacitive touch panel according to an embodiment of the invention. 1B is a partial cross-sectional view of the touch panel of FIG. 1A taken along line A-A'. [0034] FIG. 2 is a diagram illustrating a method of positioning a touch panel according to an embodiment of the invention.3A is a schematic diagram illustrating sensing values of the second electrode S2 and S26 of FIG. 1A according to an embodiment of the present invention. [0036] FIG. 3B is a schematic diagram showing sensing values of the first electrodes Sn to S16 of FIG. 1A according to an embodiment of the present invention. 3C is a schematic diagram showing the sensing values of the first electrodes S11 to S16 in FIG. 1A and the sensing values of the corresponding electrodes of S21 to S26 in the second electrode, in accordance with an embodiment of the present invention. [0038] 3D is a schematic view showing the second axial position by interpolation by the interpolation method according to an embodiment of the present invention. [0039] FIG. 4A illustrates a case where the touch point moves along the second axial direction on the touch panel. 4B illustrates the change of the sensed value of each electrode when the touch point moves along the second axis in the touch panel. [Main component symbol description] [0041] Touch panel: 100 [0042] Substrate: 102 099136039 Form No. A0101 Page 17 of 33 0992063008-0 201218051

[0043] 導電層:110 [0044] 導電層的第一侧 :111 [0045] 導電層的第二侧 :112 [0046] 驅動裝置:1 5 0 [0047] 選擇器:151 [0048] 感測電路:1 5 2 [0049] 微控制器:153 [0050] 計算出來的路徑 :410 [0051] 低阻抗方向:D [0052] 高阻抗方向:Η [0053] 第二軸向感測值 :sr [0054] 第一電極:su〜 S16 [0055] 第二電極:s21〜 S26 [0056] 步驟:S210〜 S240 [0057] 觸碰點:TP 099136039 表單編號A0101 第18頁/共33頁 0992063008-0[0043] Conductive layer: 110 [0044] First side of the conductive layer: 111 [0045] Second side of the conductive layer: 112 [0046] Drive: 1 5 0 [0047] Selector: 151 [0048] Sensing Circuit: 1 5 2 [0049] Microcontroller: 153 [0050] Calculated path: 410 [0051] Low impedance direction: D [0052] High impedance direction: Η [0053] Second axial sensed value: sr [0054] First electrode: su~ S16 [0055] Second electrode: s21~S26 [0056] Step: S210~S240 [0057] Touch point: TP 099136039 Form number A0101 Page 18 of 33 0992063008-0

Claims (1)

201218051 七、申請專利範圍: 性的觸::板的又位方法’該觸控面板包含具有導電異向 ㈣―導電層與概電極對,其中雜電轉各自包含— 電極與一第二電極’且該導電層沿-第-軸向的二個 料:分別為一第—側與一第二側,該些第—電極配置於 “層的第—側’該些第二電極配置於該導電層的第二 側,該定位方法包括: 感測該些第-電極與該些第二電極而獲得複數感測值; 〇 於該些第一電極的感測值中定義一第一相對極值部,其中 該第-相對極值部至少具有該些第—電極的感難中的一 第一相對極值; 於該些第二電極的感測值中定義一第二相對極1值部’其中 該第二相對極值部至少具有該些第二電極的感測值中的一 第二相對極值; 計算該第-相對極值部與該第二相對極值部的一感測值比 值;以及 f ··.. ◎ 制該❹m比值而計算-觸碰點於該觸控面板上該第一 轴向的位置。 〜 2. 如申請專利範圍第丨項所述觸控面板的定位方法,其中所 述計算該感測值比值的步驟包括: 計算所述第二相對極值與所述第—相對極值的比值,做為 該感測值比值。 3. 如申請專利範圍第1項所述觸控面板的定位方法,其中所 述計算該感測值比值的步驟包括: 計算該第-相對極值部中複數感測值的總和,而獲得一第 099136039 表單蝙號A0101 第19頁/共33 1 0992063008-0 201218051 一總和值; 計算該第二相對極值部中複數感測值的總和,而獲得一第 一總和值;以及 計算所述第二總和值與所述第一總和值的比值,做為該感 測值比值。 •如申請專利範圍第1項所述觸控面板的定位方法其中所 述計算該感測值比值的步驟包括: 計算該第一相對極值部中複數感測值的平均,而獲得一第 —平均值; 计算该第二相對極值部中複數感測值的平均而獲得一第 二平均值;以及 計算所述第二平均值與所述第一平均值的比值,做為該感 测值比值。 * 如申凊專利範圍第1項所述觸控面板的定位方法,其中所 述計算該觸碰點於該第一軸向位置的步驟包括: 若該第-相對極值部的感_小於該第·對極值部的感 測值,則該觸碰點於該第一私命敝置,其中[為 -亥些第t極至該些第二電極“_,r為所述感測值比 值; 若該第-相對極值耗制值等於該第二㈣極值部的感 測值,則y = L+2 ;以及 099136039 若該第-相對極值部的感測值大於該第二相對極值部的感 測值,則y = L - (Lxr) + 2。 如申明專利範圍第5項所述觸控面板的定位方法,其中所 述計算該觸碰點於該第一抽向位置的步驟更包括: 若該第-相對極值部的感難遠小於該第二相對極值部的 表單編號A0101 第20頁/共33頁 0992063008-0 201218051 感測值,則y = 〇 ;以及 若该第一相對極值部的感測值遠大於該第二相對極值部的 感測值,則y = L。 •如申請專利範圍第1項所述觸控面板的定位方法,更包括 將該些第一電極的感測值各自與該些第二電極中對應電極 的感測值相加,而獲得複數第二軸向感測值;以及 以該些第二軸向感測值中相對極值的位置做為該觸碰點於201218051 VII. Patent application scope: Sexual touch:: Re-method of the board' The touch panel includes conductive anisotropic (4)-conducting layer and a pair of electrode pairs, wherein the hybrid electric power each includes an electrode and a second electrode The second layer of the conductive layer along the first-axis is a first side and a second side, and the first electrodes are disposed on the first side of the layer, and the second electrodes are disposed on the conductive layer The second side, the positioning method includes: sensing the first electrode and the second electrodes to obtain a complex sensed value; defining a first relative extreme value in the sensed values of the first electrodes Wherein the first-relative extreme portion has at least a first relative extreme value of the sensing of the first electrodes; and a second relative pole value portion of the sensing values of the second electrodes The second relative extreme portion has at least one second relative extreme value of the sensing values of the second electrodes; and calculating a ratio of a sensed value of the first relative extreme portion and the second relative extreme portion; And f ··.. ◎ calculate the ❹m ratio and calculate - touch the point on the touch panel The method of positioning the touch panel according to the above aspect of the invention, wherein the calculating the ratio of the sensing value comprises: calculating the second relative extreme value and the first The method of calculating the ratio of the sensing value according to the method of claim 1, wherein the calculating the ratio of the sensing value comprises: calculating the first- Comparing the sum of the complex sensed values in the extreme value portion, obtaining a 099136039 form bat number A0101 page 19 / total 33 1 0992063008-0 201218051 a sum value; calculating the complex sensed value in the second relative extreme value part And summing a first sum value; and calculating a ratio of the second sum value to the first sum value as a ratio of the sensed value. • The touch panel according to claim 1 The locating method, wherein the calculating the ratio of the sensed values comprises: calculating an average of the plurality of sensed values in the first relative extreme value portion to obtain a first average value; calculating a complex sense in the second relative extreme value portion Measured value And averaging a second average value; and calculating a ratio of the second average value to the first average value as the ratio of the sensed value. * The touch panel according to claim 1 of claim patent scope a positioning method, wherein the step of calculating the touch point at the first axial position comprises: if the sense_ of the first-relative extreme value portion is smaller than a sensed value of the first-to-zero extreme value portion, the touch Pointing at the first private device, wherein [the -th pole to the second electrode "_,r" is the sensed value ratio; if the first-relative extreme value is equal to the first The sensed value of the second (four) extreme value portion, then y = L+2; and 099136039, if the sensed value of the first-relative extreme value portion is greater than the sensed value of the second relative extreme value portion, then y = L - ( Lxr) + 2. The method for locating a touch panel according to the fifth aspect of the invention, wherein the step of calculating the touch point in the first drawing position further comprises: if the feeling of the first-relative extreme portion is far less than the Form No. A0101 of the second relative extremum part 20 page/page 33 0992063008-0 201218051 The sensed value, then y = 〇; and if the sensed value of the first relative extremum is much larger than the second relative The sensed value of the value is y = L. The method for positioning a touch panel according to claim 1, further comprising adding the sensed values of the first electrodes to the sensed values of the corresponding ones of the second electrodes to obtain a plurality of a two-axis sensed value; and a position of the relative extreme value of the second axial sensed values as the touch point 099136039 該觸控面板上一第二轴向的位置。 8·如申請專利範圍第1項所述觸控面板的定位方法,更包括 將該些第一電極的感測值各自與該些第二電極中對應電極 的感測值相加,而獲得複數第二軸向感測值;以及 依據該些第二軸向感測值中一相對極值與相鄰二個第二轴 向感測值,使用内插法計算該觸碰點於該觸控面板上一第 二軸向的位置’其中該第一軸向與該第二^向互相垂直。 9.如申清專利範圍第㈣所述觸控面板的定位方法其中該 導電層的低阻抗方向為該第一軸向。 10 .如申凊專利範圍第W所述觸控面板的定位方法其中該 導電層為平行排列的奈米碳管所形成之導電薄膜。 11 · —_控面板的驅動裝置’該觸控面板包含具有導電異向 2的-導電層’其中該導電層沿一第一軸向的二個對向侧 分別為-第一側與一第二側,該驅動裝置包括: 複數電極對,其中該些電極對各自包含一第一電極與一第 二電極’該些第-電極配置於該導電層的該第—側,該些 第二電極對配置於該導電層的該第二侧; 0992063008-0 I單編Sfe A0101 第21頁/共33頁 201218051 一選擇器 極; 連接至該導電層的該些第 一電極與該些第二電 一感測電路,連接至該選擇芎, ψ 35具中s玄感測電路透過該選 擇器驅動與感測該些第一電極盥 、 ^ 电蚀興*亥些第二電極而獲得複數 感測值;以及 一微控制器,連接至該感測電路以接收該些感測值,其中 於該些第-電極的感測值U義—第_相對極值部,且該 第-相對極值部至少具有該些第—電極的感測值中的一第 -相對極值;於該些第二電極的感測值中定義一第二相對 極值部’且該第二相對極乘部至少具有該些第二電極的感 測值中的-第二相對極值;賴控㈣計算該第—相對極 值部與該第二㈣極值㈣―感難比值;以及該微控制 器使用該感測值比值而計算一觸碰點於該觸控面板上該第 一軸向的位置。 12 13 如申請專利範圍第11項所述觸控面板的驅動裝置,其中該 微控制器計算所述第二相對極敏奏所述第一相對極值的比 值,做為該感測值比值。 如申請專利範圍第11項所述觸控面減的驅動裝置,其中該 微控制器計算該第一相對極值部中複數感測值的總和而獲 得一第一總和值,計算該第二相對極值部中複數感測值的 總和而獲得一第二總和值,以及計算所述第二總和值與所 述第一總和值的比值,做為該感測值比值。 099136039 14 . 如申請專利範圍第11項所述觸控面板的驅動裝置,其中該 微控制器計算該第一相對極值部中複數感測值的平均而獲 得一第一平均值,計算該第二相對極值部中複數感測值的 平均而獲得一第二平均值,以及計算所述第二平均值與所 表單編號A0101 第22頁/共33頁 0992063008-0 201218051 述第一平均值的比值,做為該感測值比值。 •如申凊專利範圍第11項所述觸控面板的驅動裝置,其中若 該第一相對極值部的感測值小於該第二相對極值部的感測 值,則該觸碰點於該第一軸向位置y=L*f(2r),L為該些第 一電極至該些第二電極的距離,r為所述感測值比值;若 該第一相對極值部的感測值等於該第二相對極值部的感測 值,則y=L4*2 ;以及若該第一相對極值部的感測值大於該 第二相對極值部的感測值,則y=L — (Lxr) + 2。 16 ‘如申請專利範圍第15項所述觸控面板的驅動裝置,其中若 "亥第相對極值部的感測值遠小於該第二相對極值部的感 測值,則y = 0 :以及若該第一相對極值部的感測值遠大於 邊第二相對極值部的感測值,則y = L。 17 .如申請專利範圍第11項所述觸控面板的驅動裝置,其中該 微控制器將該些第一電極的感測值各自與該些第二電極令 對應電極的感測值相加,而獲得複數第二軸向感測值;以 及该微控制器以該些第二軸向感測值中相鈴極值的位置做 為該觸碰點於該觸控面板上一第二軸向的位置。 18 .如申請專利範圍第丨丨項所述觸控面板的驅動裝置其中該 微控制器將該些第一電極的感測值各自與該些第二電極中 對應電極的感測值相加,而獲得複數第二軸向感測值;以 及忒微控制器依據該些第二轴向感測值中一相對極值與相 鄰二個第二轴向感測值’使用内插法計算該觸碰點於該觸 控面板上一第二轴向的位置,其中該第一軸向與該第二軸 向互相垂直。 如申請專利範圍第11項所述觸控面板的驅動裝置,其中該 導電層的低阻抗方向為該第一轴向。 099136039 0992063008-0 表單編號A0101 第23頁/共33頁 19 201218051 20 . 如申請專利範圍第11項所述觸控面板的驅動裝置,其中該 導電層為平行排列的奈米碳管所形成之導電薄膜。 099136039 表單編號A0101 第24頁/共33頁 0992063008-0099136039 A second axial position on the touch panel. The method for positioning a touch panel according to claim 1, further comprising adding the sensing values of the first electrodes to the sensing values of the corresponding ones of the second electrodes to obtain a plurality a second axial sensing value; and calculating the touch point to the touch using interpolation according to a relative extreme value of the second axial sensing values and two adjacent second axial sensing values a second axial position on the panel 'where the first axial direction and the second axial direction are perpendicular to each other. 9. The method of positioning a touch panel according to claim 4, wherein the low impedance direction of the conductive layer is the first axial direction. 10. The method of positioning a touch panel according to claim W, wherein the conductive layer is a conductive film formed by parallel arranged carbon nanotubes. 11·__Control panel driving device 'The touch panel comprises a conductive layer having a conductive anisotropic layer 2, wherein the two opposite sides of the conductive layer along a first axis are respectively - the first side and the first On the two sides, the driving device includes: a plurality of electrode pairs, wherein the pair of electrodes respectively comprise a first electrode and a second electrode, wherein the first electrodes are disposed on the first side of the conductive layer, and the second electrodes Paired on the second side of the conductive layer; 0992063008-0 I Single Sfe A0101 Page 21 / Total 33 pages 201218051 a selector pole; the first electrodes connected to the conductive layer and the second electricity a sensing circuit is connected to the selection 芎, and the 具35 sensing circuit drives and senses the first electrodes ^, ^ 蚀 * 些 些 些 些 些 些 获得 获得 获得 获得 获得 获得 获得 获得And a microcontroller connected to the sensing circuit to receive the sensing values, wherein the sensing values of the first electrodes are U-the first-relative extreme portion, and the first-relative extreme value The portion has at least one of the sensed values of the first electrodes; The second relative extreme value portion is defined in the sensing values of the second electrodes, and the second relative polar multiplication portion has at least a second relative extreme value among the sensing values of the second electrodes; Calculating the first-to-relative extreme value portion and the second (fourth) extreme value (four)-insensitive ratio value; and the microcontroller uses the sensing value ratio to calculate a touch point on the first axial direction of the touch panel position. The driving device of the touch panel according to claim 11, wherein the microcontroller calculates a ratio of the first relative extreme sensitivity of the first relative extreme value as the ratio of the sensed values. The driving device of the touch panel subtraction according to claim 11, wherein the microcontroller calculates a sum of the plurality of sensing values in the first relative extreme portion to obtain a first sum value, and calculates the second relative A second sum value is obtained by summing the plurality of sensed values in the extreme value portion, and a ratio of the second sum value to the first sum value is calculated as the ratio of the sensed values. The driving device of the touch panel according to claim 11, wherein the microcontroller calculates an average of the plurality of sensing values in the first relative extreme portion to obtain a first average value, and calculates the first Obtaining a second average value from the average of the plurality of sensed values in the relative extreme value portion, and calculating the second average value and the first average value of the form number A0101 page 22/33 pages 0992063008-0 201218051 The ratio is used as the ratio of the sensed values. The driving device of the touch panel according to claim 11, wherein if the sensing value of the first relative extreme portion is smaller than the sensing value of the second relative extreme portion, the touch point is The first axial position y=L*f(2r), L is the distance between the first electrodes and the second electrodes, and r is the ratio of the sensing values; if the first relative extreme portion is The measured value is equal to the sensed value of the second relative extreme value portion, then y=L4*2; and if the sensed value of the first relative extreme value portion is greater than the sensed value of the second relative extreme value portion, then y =L — (Lxr) + 2. The driving device of the touch panel according to claim 15, wherein if the sensed value of the "Hai relative extreme portion is much smaller than the sensed value of the second relative extreme portion, then y = 0 And if the sensed value of the first relative extreme portion is much larger than the sensed value of the second relative extreme portion, then y = L. The driving device of the touch panel according to claim 11, wherein the microcontroller adds the sensing values of the first electrodes to the sensing values of the corresponding electrodes of the second electrodes. And obtaining a plurality of second axial sensing values; and the position of the harmonic threshold of the second axial sensing values by the microcontroller as the touch point on a second axial direction of the touch panel s position. The driving device of the touch panel of claim 2, wherein the microcontroller adds the sensed values of the first electrodes to the sensed values of the corresponding ones of the second electrodes, And obtaining a plurality of second axial sensing values; and the 忒microcontroller calculates the value according to a relative extreme value of the second axial sensing values and the adjacent two second axial sensing values The touch point is at a second axial position on the touch panel, wherein the first axial direction and the second axial direction are perpendicular to each other. The driving device of the touch panel according to claim 11, wherein the low impedance direction of the conductive layer is the first axial direction. The driving device of the touch panel according to the invention of claim 11, wherein the conductive layer is electrically conductive formed by parallel arranged carbon nanotubes. film. 099136039 Form No. A0101 Page 24 of 33 0992063008-0
TW99136039A 2010-10-22 2010-10-22 Positioning method and driving apparatus for touch panel TWI442295B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99136039A TWI442295B (en) 2010-10-22 2010-10-22 Positioning method and driving apparatus for touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99136039A TWI442295B (en) 2010-10-22 2010-10-22 Positioning method and driving apparatus for touch panel

Publications (2)

Publication Number Publication Date
TW201218051A true TW201218051A (en) 2012-05-01
TWI442295B TWI442295B (en) 2014-06-21

Family

ID=46552395

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99136039A TWI442295B (en) 2010-10-22 2010-10-22 Positioning method and driving apparatus for touch panel

Country Status (1)

Country Link
TW (1) TWI442295B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941925A (en) * 2013-01-17 2014-07-23 联咏科技股份有限公司 Touch panel
CN104731394A (en) * 2013-12-20 2015-06-24 和鑫光电股份有限公司 Touch panel
TWI566147B (en) * 2015-10-08 2017-01-11 宏碁股份有限公司 Foldable touch module and method for controlling the same and foldable display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941925A (en) * 2013-01-17 2014-07-23 联咏科技股份有限公司 Touch panel
CN103941925B (en) * 2013-01-17 2017-04-12 联咏科技股份有限公司 Touch panel
CN104731394A (en) * 2013-12-20 2015-06-24 和鑫光电股份有限公司 Touch panel
CN104731394B (en) * 2013-12-20 2018-04-03 和鑫光电股份有限公司 Contact panel
TWI566147B (en) * 2015-10-08 2017-01-11 宏碁股份有限公司 Foldable touch module and method for controlling the same and foldable display device

Also Published As

Publication number Publication date
TWI442295B (en) 2014-06-21

Similar Documents

Publication Publication Date Title
JP5508964B2 (en) Touch panel positioning method
US8884915B2 (en) Method and driving apparatus for identifying sensing value of touch panel
JP5711908B2 (en) Multipoint touch identification method used for touch panels
JP5697923B2 (en) Touch panel and localization method of touch point
CN101937279B (en) Touch screen and driving method thereof
JP5723547B2 (en) Multipoint touch identification method used for touch panels
CN106201053B (en) Detect the sensitivity correction method and computer readable recording medium of the touch input device of touch pressure
US8610685B2 (en) Positioning method and driving apparatus of touch panel
CN104793819B (en) Self-capacitance touch screen structure, In-cell touch panel and liquid crystal display
US20110216035A1 (en) Surface capacitive touch panel, driving method thereof and electronic apparatus using the same
CN106371647B (en) Touch pressure sensitivity correction method and computer readable recording medium
TW201133315A (en) Touch panel and differential detection method for same
TW200929645A (en) Touch panel and driving method thereof
TW201218051A (en) Positioning method and driving apparatus for touch panel
CN102402319B (en) Method and device for driving touch panel
US10627951B2 (en) Touch-pressure sensitivity correction method and computer-readable recording medium
TWI465992B (en) Method for detecting touch spot of touch panel
TWI436257B (en) Surface capacitive touch panel and driving method and display and electrical device using same
JP5634778B2 (en) Touch panel and multi-point touch discrimination method used therefor
KR101182401B1 (en) Touch screen and method for getting touch information
TW201102888A (en) Method of multi-touch detection for touch panel
TW201102904A (en) Method of multi-touch detection for touch panel
TWI455001B (en) Method and apparatus for driving touch panel
TW201211844A (en) Method and driving apparatus for identifying sensing value of touch panel
TW201248474A (en) Method and apparatus for driving a touch panel with an anisotropic material and touch panel module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees