TW201215222A - Method and apparatus for detecting and correcting improper dimmer operation - Google Patents

Method and apparatus for detecting and correcting improper dimmer operation Download PDF

Info

Publication number
TW201215222A
TW201215222A TW100115490A TW100115490A TW201215222A TW 201215222 A TW201215222 A TW 201215222A TW 100115490 A TW100115490 A TW 100115490A TW 100115490 A TW100115490 A TW 100115490A TW 201215222 A TW201215222 A TW 201215222A
Authority
TW
Taiwan
Prior art keywords
difference
half cycle
value
phase angle
input
Prior art date
Application number
TW100115490A
Other languages
Chinese (zh)
Inventor
michael Datta
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201215222A publication Critical patent/TW201215222A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3575Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/31Phase-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

A method is provided for detecting and correcting improper operation of a lighting system including a solid state lighting load. The method includes detecting first and second values of a phase angle of a dimmer connected to a power converter driving the solid state lighting load, the first and second values corresponding to consecutive half cycles of an input mains voltage signal, and determining a difference between the first and second values. When the difference is greater than a difference threshold, indicating asymmetric waveforms of the input mains voltage signal, a selected corrective action is implemented.

Description

201215222 六、發明說明: 【發明所屬之技術領域】 本發明一般係關於固態照明器具之控制。更特定言之, 本文揭示的各種發明方法及裝置係關於偵測及校正包含一 固態照明負載之一照明系統中一調光器之不適當操作。 【先前技術】 數位或固態照明技術,即,基於半導體光源(諸如發光 二極體(LED))之照明提供對傳統螢光燈、高強度放電 (HID)及白熾燈之一可行替代。LED之功能優點及益處包 含高能量轉換及光學效率、持久性、較低操作成本及許多 其他優點。LED技術之最近進展已提供在許多應用中能實 現各種照明效應的有效率且耐用的全光譜照明源。 體現此等源之器具之一些以一照明模組(包含能夠產生 白光及/或不同光色彩(例如,紅色、綠色及藍色)之一或多 個LED)為主,以及用於獨立控制led之輸出之一控制器或 處理器’以便產生多種色彩及變色照明效應,舉例而言, 如美國專利第6,016,038號及第6,211,626號中詳細闡述。 led技術包含線電壓供電照明器,諸如可自phiUps c〇1〇r Kinetics得到的ESSENTIALWHITE系列。可使用後邊緣調 光器技術調光此等照明器,諸如用於12〇 VAC或22〇 VAC 線電壓(或輸入主電源電壓)之電低壓(ELV)類型調光器。 6午多照明應用使用調光器。習知調光器與白熾燈(燈泡 及鹵素)燈運作良好。然而,問題出現在其他類型的電子 燈’包含小型螢光燈(CFL)、使用電子變壓器之低壓鹵素 155843.doc 201215222 燈及固態照明(SSL)燈(諸如LED及OLED)。特定言之,可 使用特殊調光器(諸如ELV類型調光器或阻容(RC)調光器) 來調光使用電子變壓器之低壓齒素燈,該等特殊調光器與 在輸入端處具有一電力因數校正(PFC)電路之負載充分合 作。 習知調光器通常截波每一輸入主電源電壓信號波形之一 部分且將該波形之剩餘部分傳遞至照明器具。一前邊緣或 正相調光器截波電壓信號波形之前邊緣,一後邊緣或反相 調光器截波電壓信號波形之後邊緣。電子負载(諸如LED驅 動器)通常利用後邊緣調光器更好進行操作。 不像自然無誤差回應於由一相位截波調光器產生的一經 截波正弦波形之白熾燈及其他電阻照明器件,led及其他 固態照明負載放置在此等相位截波調光器上時可引起許多 問題,諸如低端斷源(1〇w end dr〇p 〇ut)、三端錯誤啟動 (Mac misfiring)、最小負載問題、高端閃爍及光輸出中之 大步驟。一些問題涉及照明系統之組件(諸如相位截波調 光态及固態照明負載驅動器(例如,功率轉換器”之間之相 谷性’且顯示導致光輸出中《不期望的閃爍t對應徵兆。 閃爍通常由經整流輸入主電源電壓信號之經截波正弦波之 間缺乏均勻性而造成,其中波形係不對稱的。 舉例而言,圖1A展示輸入至—相位截波調光器之一未經 ㈣輸入主電源電壓之波形’其中該未經整流主電源電壓 ㈣具有周期性出現的正及負半循環。圖職示自該調光 器輸出的經整流輸入主電源電壓信號之經截波波形,其中 155843.doc 201215222 調光位準係大約50%,如調光器滑件之相對位置所指示。 更特定言之,圖1B展示一種情形:該調光器及該固態照明 負載驅動器正確作用,且因此提供對應於正及負半循環之 大體均勻的經整流截波正弦波。即,經調光整流的輸入主 電源電壓信號具有未經整流輸入主電源電壓之正半循環與 負半循環兩者之對稱截波。 反而,圖1C展示自該調光器輸出的經整流輸入主電源電 壓k號之經截波波形,其中該調光器及該固態照明負載驅 動正確作用,且因此提供不均勻的經整流截波正弦波。 即,經調光整流的輸入主電源電壓信號具有未經整流輸入 主電源電壓之正半循環與負半循環之不對稱截波。該經整 流輸入主電源電壓信號之經截波波形中之不對稱顯示導致 該固態照明負載處輸出的光之閃爍。 不適當操作可由多個可能問題引^…個問題係通過調 光器内部開關之不足夠的負載電流。調光器基於流過固態 照明負載之電流得到其之内部時序信號。因為固態照明負 載可係白熾負載之一小部分’流過調光器之電流不足以確 保内部時序信號之校正操作。另—問題係㈣器可經由流 過負載之電流得到其之内部電力供應器,該内部電力供應 器保持該調光器之内部電路操作。f貞載不足夠時,調光 器之内部電力供應器可能斷源,造成波形不對稱。 因此,此技術中需要偵測照明系統组件(諸如 或固態照明負載驅動器)之不適當操作,且識別並實施校 正動作以校正不適當操作及/或移除至固態照明負載之功 155843.doc201215222 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to the control of solid state lighting fixtures. More specifically, the various inventive methods and apparatus disclosed herein are directed to detecting and correcting improper operation of a dimmer in an illumination system that includes a solid state lighting load. [Prior Art] Digital or solid state lighting technology, i.e., illumination based on a semiconductor light source such as a light emitting diode (LED), provides a viable alternative to conventional fluorescent lamps, high intensity discharge (HID) and incandescent lamps. The functional advantages and benefits of LEDs include high energy conversion and optical efficiency, durability, low operating costs and many other advantages. Recent advances in LED technology have provided an efficient and durable full spectrum illumination source that can achieve a variety of lighting effects in many applications. Some of the devices embodying such sources are based on a lighting module (including one or more LEDs capable of producing white light and/or different light colors (eg, red, green, and blue), and for independent control of led One of the outputs is a controller or processor' to produce a variety of color and color-changing illumination effects, as described in detail in, for example, U.S. Patent Nos. 6,016,038 and 6,211,626. The led technology includes line voltage powered illuminators such as the ESSENTIALWHITE series available from phiUps c〇1〇r Kinetics. These illuminators can be dimmed using a trailing edge dimmer technology, such as an electric low voltage (ELV) type dimmer for a 12 VAC or 22 VAC line voltage (or input mains voltage). 6 diom lighting applications use dimmers. Conventional dimmers and incandescent (bulb and halogen) lamps work well. However, the problem arises in other types of electronic lamps that include small fluorescent lamps (CFLs), low voltage halogens using electronic transformers, 155843.doc 201215222 lamps, and solid state lighting (SSL) lamps (such as LEDs and OLEDs). In particular, special dimmers, such as ELV-type dimmers or RC dimmers, can be used to dim the low-voltage gull lamps using electronic transformers, at the input The load with a power factor correction (PFC) circuit is fully cooperative. Conventional dimmers typically intercept a portion of each input mains voltage signal waveform and pass the remainder of the waveform to the lighting fixture. A front edge or positive phase dimmer intercepts the voltage signal waveform before the edge, a back edge or an inverting dimmer intercepts the voltage signal waveform at the trailing edge. Electronic loads, such as LED drivers, typically operate better with a trailing edge dimmer. Unlike naturally occurring, non-error-responsive incandescent lamps and other resistive lighting devices that are cut-off sinusoidal waveforms generated by a phase-clip dimmer, led and other solid-state lighting loads can be placed on these phase-cut dimmers. Causes many problems, such as low-end sources (1〇w end dr〇p 〇ut), three-end error start (Mac misfiring), minimum load problems, high-end flicker and large steps in light output. Some of the problems relate to components of the lighting system (such as the phase-clip dimming state and the phase-to-phase relationship between solid-state lighting load drivers (eg, power converters) and the display causes "unwanted flicker t corresponding signs in the light output. Usually caused by the lack of uniformity between the chopped sine waves of the rectified input mains voltage signal, where the waveform is asymmetrical. For example, Figure 1A shows one of the input-phase chopper dimmers. (4) Input the waveform of the main power supply voltage, wherein the unreformed main power supply voltage (4) has periodic positive and negative half cycles. The figure shows the intercepted waveform of the rectified input main power supply voltage signal output from the dimmer , 155843.doc 201215222 The dimming level is approximately 50%, as indicated by the relative position of the dimmer slider. More specifically, Figure 1B shows a situation where the dimmer and the solid state lighting load driver function correctly. And thus providing a substantially uniform rectified chopped sine wave corresponding to the positive and negative half cycles. That is, the dimmed rectified input mains voltage signal has no rectification Entering the symmetrical chopping of both the positive half cycle and the negative half cycle of the mains voltage. Conversely, Figure 1C shows the truncated waveform of the rectified input mains voltage k from the dimmer output, where the dimmer And the solid-state lighting load drives the correct function and thus provides a non-uniform rectified cut-off sine wave. That is, the dimmed rectified input mains voltage signal has a positive half cycle and a negative half cycle of the unregulated input mains voltage Asymmetric chopping. The asymmetry in the intercepted waveform of the rectified input mains voltage signal causes the flicker of the light output at the solid state lighting load. Inappropriate operation can be caused by multiple possible problems. Unsatisfactory load current through the internal switch of the dimmer. The dimmer gets its internal timing signal based on the current flowing through the solid-state lighting load. Because the solid-state lighting load can be a small part of the incandescent load 'flow through the dimmer The current is not enough to ensure the correct operation of the internal timing signal. Another problem is that the (4) device can obtain its internal power supply via the current flowing through the load. The power supply maintains the internal circuit operation of the dimmer. When the load is insufficient, the internal power supply of the dimmer may be disconnected, causing waveform asymmetry. Therefore, the technology needs to detect the lighting system components ( Improper operation, such as or solid state lighting load drivers, and the identification and implementation of corrective actions to correct improper operation and/or removal to solid state lighting loads 155843.doc

S 201215222 率’以消除不期望的效應,諸如光閃爍。 【發明内容】 本發明係關於用於债測-固態照明系統之不正確操作 (輸入主電源電壓信號之正半循環及負半循環之不對稱所 才曰:)二擇性實施校正動作之發明方法及器件。 奴而σ,在一態樣中,本發明係關於一種用於偵測及 校正包含-固態照明負載之—照明系統之不適當操作之方 法《亥方法包含.偵測連接至驅動該固態照明負载之一功 率轉換器之一調光器之-相角之第-測量及第二測量,該 第測量及6亥第一測量對應於—輸入主電源電壓信號之連 續半循環;及判定該第一測量與該第二測量之間之一差。 當該差大於—差臨限值時,指示該輸人主電源電壓信號之 不對稱波形’實施一選擇的校正動作。 在另一態樣中,-般而言,本發明聚焦於—種用於控制 傳遞至-m態照明負載之功率之系統,該系統包含一調光 器、—功率轉換器及一相角偵測電路。該調光器連接至電 壓主電源且經組態以可調整地調光由該固態照明負載輸出 的光。該功率轉換器經組態以回應於源自於電壓主電源之 一經整流輸入電壓信號而驅動該固態照明負載。該相角偵 測,路經組態㈣測具有輸人電壓信號之連續半循環之調 光器之一相角、以判定該等連續半循環之間之一差,且當 該差大於-差臨限值時,指示該輸人電壓信號之不對稱波 形’實施一校正動作。 在又另-態樣中’本發明係關於_種回應於—相位截波 155843.doc 201215222S 201215222 rate ' to eliminate undesired effects such as light flicker. SUMMARY OF THE INVENTION The present invention relates to the incorrect operation of a debt-to-solid-state lighting system (input of the positive half cycle and the negative half cycle of the input mains voltage signal): the invention of the corrective action Methods and devices. Slave and σ, in one aspect, the present invention relates to a method for detecting and correcting improper operation of a lighting system including a solid-state lighting load. The method includes detecting a connection to drive the solid-state lighting load. a first-measurement and a second measurement of a phase angle of a dimmer of one of the power converters, the first measurement and the first measurement of the sixth phase corresponding to a continuous half cycle of the input mains voltage signal; and determining the first A difference between the measurement and the second measurement is measured. When the difference is greater than the - difference threshold, the asymmetric waveform indicating the input mains voltage signal is subjected to a selected corrective action. In another aspect, the invention is generally directed to a system for controlling the power delivered to a -m state lighting load, the system comprising a dimmer, a power converter, and a phase angle detector Measuring circuit. The dimmer is coupled to the voltage mains and is configured to adjustably dim the light output by the solid state lighting load. The power converter is configured to drive the solid state lighting load in response to a rectified input voltage signal originating from a voltage mains supply. The phase angle detection, the path configuration (4) measuring a phase angle of one of the dimmers having a continuous half cycle of the input voltage signal to determine a difference between the consecutive half cycles, and when the difference is greater than - difference At the threshold value, the asymmetric waveform indicating the input voltage signal 'implements a corrective action. In yet another aspect, the present invention relates to _ kinds of responses to - phase chopping 155843.doc 201215222

之一 LED光源輸出的 :藉由測量一輸入電壓信號之半循 ’·比較連續半循環以判定一半循環 每一預定差臨限值’其中該半循環 差小於該差臨限值指示該輸入電壓信號之波形對稱,而該 半循%差大於該差臨限值指示該輸入電壓信號之波形不對 稱。當該半循環差大於該差臨限值時,實施一校正動作。 如本文出於本發明之目的所使用,術語「LED」應理解 為包含貤夠回應於一電信號產生輻射之任何電致發光二極 體或其他類型的基於載子注射/接面的系統。因此,術語 LED包含(但不限於)回應於電流發射光之各種基於半導體 的結構、發光聚合物、有機發光二極體(0LED)、電致發 光條帶及類似物。特定言之,術語LED指所有類型(包含半 導體及有機發光二極體)的發光二極體’該等發光二極體 經組態以產生紅外線光譜、紫外線光譜及可見光譜之各種 部分之一或多者中的輻射(一般包含自大約400奈米至大約 700奈米之輻射波長)。LED之一些實例包含(但不限於)各 種類型的紅外線LED、紫外線LED、紅色LED、藍色 LED、綠色LED、黃色LED、琥珀色LED、橙色LED及白 色LED(下文進一步闡述p亦應瞭解led可經組態及/或控 制以產生具有一給定光譜(例如’窄頻寬、寬頻寬)之各種 頻寬(例如’半高全寬’或FWHM)及一給定一般色彩分類 中之多種主波長之輻射。 舉例而言,經組態以產生本質上白光之一 LED(例如,One of the LED light source outputs: by measuring a half-cycle of an input voltage signal to compare a continuous half cycle to determine a half cycle of each predetermined difference threshold 'where the half cycle difference is less than the difference threshold to indicate the input voltage The waveform of the signal is symmetrical, and the half-cycle difference is greater than the difference threshold indicating that the waveform of the input voltage signal is asymmetrical. When the half cycle difference is greater than the difference threshold, a corrective action is performed. As used herein for the purposes of the present invention, the term "LED" is understood to include any electroluminescent diode or other type of carrier-injection/junction-based system that produces radiation in response to an electrical signal. Thus, the term LED includes, but is not limited to, various semiconductor-based structures, luminescent polymers, organic light-emitting diodes (OLEDs), electroluminescent strips, and the like that are responsive to current-emitting light. In particular, the term LED refers to all types (including semiconductors and organic light-emitting diodes) of light-emitting diodes. These light-emitting diodes are configured to produce one of various parts of the infrared spectrum, the ultraviolet spectrum, and the visible spectrum or Radiation in many (generally containing radiation wavelengths from about 400 nm to about 700 nm). Some examples of LEDs include (but are not limited to) various types of infrared LEDs, ultraviolet LEDs, red LEDs, blue LEDs, green LEDs, yellow LEDs, amber LEDs, orange LEDs, and white LEDs. Can be configured and/or controlled to produce various bandwidths (eg, 'half-width, full width' or FWHM) having a given spectrum (eg, 'narrow bandwidth, wide bandwidth') and a plurality of dominant wavelengths in a given general color classification Radiation. For example, an LED configured to produce essentially white light (eg,

S I55843.doc 201215222 一LED白色照明器具)之一實施可包含分別發射不同電致發 光光譜之許多晶粒,該等電致發光光譜混合(結合)以形成 本質上白光。在另一實施中,一 LED白色照明器具可與將 具有一第一光譜之電致發光轉換成一不同第二光譜之一鱗 光體材料相關聯。在此實施之一實例中,具有—相對短波 長及窄頻寬光譜之電致發光「泵入」該磷光體材料,繼而 輻射具有一補微較寬光譜之較長波長輻射。 亦應瞭解術語LED並不限制一 LED之實體及/或電封裝類 型。舉例而言,如上文闡述,一 LED可指具有多個晶粒之 一單一發光器件,該等晶粒經組態以分別發射不同輻射光 譜(例如,可或不可單獨控制)。而且,一led可與被認為 該LED(例如,—些類型的白光LED)之一整體式部分之一 磷光體相關聯。一般而言,術語LED可指經封裝LED、未 封裝LED、表面安裝LED、板上晶片LED、τ封裝安裝 LED、輻射封裝LED、功率封裝LED、包含一些類型的外 殼及/或光學元件(例如,一擴散透鏡)之LED等等。 術語「光源」應理解為指多種輻射源之任一者或多者, 包含(但不限於)基於LED的光源(包含如上文定義的一或多 個LED)、白熾源(例如,白熾燈、鹵素燈)、螢光源、磷光 源、南強度放電源(例如,鈉汽燈、水銀汽燈及金屬鹵化 物燈)、雷射、其他類型的電致發光源、熱發光源(例如, 火焰)' 蠟燭發光源(例如,汽燈罩、碳弧輻射源)、光致發 光源(例如,氣態放電源)、使用電子飽和之陰極發光源、 磁發光源、晶體發光源、顯像管發光源、熱致發光源、摩 155843.doc 201215222 擦發光源、聲致發光源、輻射發光源及發光聚合物。 本文使用術語「照明器具」來指代一特定形狀因數、總 成或封包中的一或多個照明單元之一實施或配置。本文使 用術s吾「照明早元」來指代包含一或多個相同或不同類型 的光源之一裝置。一給定照明單元可具有用於該(等)光源 之多種安裝配置、外罩/外殼配置及形狀及/或電及機械連 接組態之任一者。此外,一給定照明單元視情況可與關於 δ亥(等)光源之操作的各種其他組件(例如,控制電路)相關 聯(例如,包含、耦合至及/或一起封裝)。一「基於LED的 照明單元」指代包含如上文闡述的一或多個基於LED的光 源(單獨或與其他非基於LED的光源結合)之一照明單元。 夕通道J照明單元指代包含經組態以分別產生不同輻 射光譜之至少兩個光源之一基於LED或非基於LED的照明 單元’其中每—不同光譜可稱為多通道照明單元之一「通 道」。 本文使用術S吾「控制器」—船用以0 ·+. Μ J 版用以描通關於一或多個光 源之操作之各種裝詈。—扯也丨σ。π 合裡褒ΐ 控制盗可以數種方式(例如,諸 如利用專用硬體)來實施以執行 丁不文閣述的各種功能。一 處理器」係使用一或多個斜步柿。。 1U锨處理器之一控制器之一實 例,可使用軟體(例如,微竭Ί 4 & ,^ 馬)程式化該等微處理器以執行 本文闡述的各種功能。一控制 本热R 控制盗可使用或不使用一處理器 只施,且該控制器亦可作為 愈用以巧用以執仃-些功能之專用硬體 興用以執仃其他功能之一處 料戶理哭« 态(例如,一或多個程式化 微處理盗及相關聯的電路 ^組合貫施"本發明之各種 J55843.doc 201215222 實施例中可使用的控制器组件之實例包含(但不限於)習知 微處理器微控制器、特定應用積體電路(asic)及場可程 式化閘陣列(FPGA)。 在各種貫把+處理器或控制器可與-或多個儲存媒 體(本文-般稱為「記憶體」,例如,揮發及非揮發電腦記 憶體’諸如隨機存取記憶體(RAM)、可程式化唯讀記憶體 (PROM)、電可程式化唯讀記憶體(EpR〇M)、電可擦除且 可程式化唯讀記憶體(EEPROM)、通料龍流排(刪)驅 動器、軟碟、小型磁碟、光碟、磁帶等等)相關聯。在一 些實施中,儲存媒體可編碼有—或多個程式,該―或多個 程式在於一或多個處理器及/或控制器上執行時執行本文 迟之力月匕中之至少-些、各種儲存媒體可固定在一處 理器或控制㈣或可係可傳送的,使得可將其上儲存的一 或多個程式載入至-處理器或控制器巾,以便實施本文闡 述的本發明之各種態樣。本文使用術語「程式」或「電腦 程式」-般意義上指代可用以程式化—或多個處理器或控 制器之任何類型的電腦碼(例如,軟體或微碼)。 在-網路實施中’麵合至—網路之—或多個器件可充當 用於輕合至該網路(例如,以主從關係)之一或多個其他器 件之-H實施中網路化環境可包含一或 夕:固專用控制器’言亥等控制器經組態以控制耦合至該網路 之Θ件之-或多者…般而t ’耗合至該網路之多個器件 各自可具有對通信媒體或媒介上存在的資料之存取;秋 而’―給定器件可係「可定址的」,因為其經組態以基於 155843.doc • 11 · 201215222 (舉例而言)指派至其之一或多個特定識別符(例如,「位 址」),選擇性與該網路交換資料(即,自該網路接收資料/ 傳輸資料至該網路)。 應瞭解刚述概念及下文更詳細闡述的額外概念(假設此 等概念互相一致)考慮為本文闡述的發明主旨之部分。特 定言之,本發明結尾處出現的申請主旨之所有組合考慮為 本文闡述的發明主旨之部分。亦應瞭解亦可出現在以引用 方式併入的任何揭示内容中之本文明確使用的術語應具有 與本文揭示的特定概念最為一致的意思。 【實施方式】 在圖式中,相同的參考字母一般指代所有不同圖示中相 同或相似的部分。而且,圖式不必要按比例繪製,反而一 般強調繪示本發明之原理。 在以下詳細描述中,出於說明且非限制性之目的,闡述 揭不特定細節之代表性實施例,以便提供本發明教示之一 透徹理解。然而,具有本發明之利益的一般技術者應瞭解 背離本文揭示的特定細節之根據本發明教示之其他實施例 仍在隨附申請專利範圍之範圍内。此外,可省略熟知裴置 及方法之描述以便不會模糊代表性實施例之描述。此等方 法及裝置明顯在本發明教示之範圍内。 一般而言,不考慮調光器設定,期望具有自一固態照明 負載(諸如一 LED光源)輸出的穩定光,例如,輸出光位準 中不具有閃爍或不受控波動。申請者已認識並瞭解提供一 種能夠偵測及校正由一調光器及一固態照明負載及驅動該 155843.doc •12· a 201215222 固態照明負載之斜施丄 · 轉換器造成的各種問題之電路係 =的“種實施例,,例如,由 率轉換器與—相位逾、“, &功 光器之間之—相互作用,可藉由 該等問題。 與負主電源半循環中之不對稱而偵測 鑒;刖述纟發明之各種實施例及實施係關於一種藉由 數位偵測並測量調光器之相角而_及校正由正主電源半 循環與負主電源半循環中之不對稱造成的固態照明器具之 不適當操作之電路及方法,且當連續測量(例如,分別對 應於正半循環及負半循環)之間之-差超過-預定臨限值 時(指示不對稱相位截波),實施校正動作。 圖2係展不根據—代表性實施例之—可調光照明系統之 一方塊® °參考圖2 m统扇包含調光器2〇4及整流 電路205,該調光器204及整流電路2〇5提供來自電壓主電 源201之一(經調光)經整流電壓根據各種實施,該 電壓主電源201可提供不同未經整流輸入主電源電壓,諸 如 100 VAC、120 VAC、 230 VAC及277 VAC。該調光器 204係一相位截波調光器(舉例而言),其藉由回應於其之滑 件204a之垂直操作截波該電壓主電源2〇丨之電壓信號波形 之後邊緣(後邊緣調光器)或前邊緣(前邊緣調光器)而提供 調光能力。為闡述目的,假設該調光器2〇4係一後邊緣調 光器。 一般而言’經整流電壓Urect之量值與由該調光器204設 定之一相角或調光位準成比例’使得對應於一較低調光器 155843.doc •13· 201215222 設定之一相角引起一較低經整流電壓Urect,反之亦然。 在描繪的實例中’可假設該滑件204a向下移動以降低該相 角’減小由固態照明負載240輸出的光量,且向上移動以 增加該相角’增加由該固態照明負載240輸出的光量。因 此’當該滑件204a在頂部位置.處時(如圖2中描繪),發生最 小調光,且當該滑件204a在其之底部位置時,發生最大調 光。 該照明系統200進一步包含調光器相角偵測電路21〇及功 率轉換器220。該相角偵測電路210包含一微控制器或其他 控制器(下文闡述)’且經組態以基於經整流電壓Urect判定 或測量該代表性調光器204之相角(調光位準)之值。該相角 偵測電路2 1 〇亦比較對應於該經整流電壓Urect之正半循環 及負半循環之所偵測相角值,且若該正半循環及負半循環 之比較指示該照明系統200正進行不適當操作,則實施校 正動作。舉例而言,所偵測相角可用作為至一軟體演算法 之一輸入以判定該經整流電壓Urect之截波波形係經對稱 (例如,如圖1B令展示)還是不對稱(如圖lc中展示)截波。 換言之,判定截波波形係對稱或不對稱的。不對稱截波指 不調光器-驅動器系統(例如,包含該調光器2〇4及該功率轉 換器220)之一問題。在各種實施例中,該相角偵測電路 210可進一步經組態以基於(部分)所偵測相角,在正常操作 期間使用經由控制線229之一功率控制信號動態調整該功 率轉換器220之一操作點。 一般而言,可藉由偵測自正半循環至負半循環之由該相 155843.doc 201215222 角偵測電路210產生的相角偵測脈衝長度之大差異而偵測 截波波形中之不對稱。舉例而言,圖3 A及圖把展示根據 一代表性實施例對應於該經整流電壓Urect之正半循環及 負半循環的來自該調光器204及該整流電路2〇5之截波波形 及由該相角偵測電路210產生的相關聯數位脈衝。如圓 中展示,第二數位脈衝33213之長度明顯小於第一數位脈衝 33 lb之長度,指示負半循環波形332a比緊接先前正半循環 波形3 3 1 a經更嚴重截波,如圖3 a中展示。 通常,當一使用者藉由調整該滑件2〇4a手動操作該調光 器204時,結果係對正半循環與負半循環之間之差具有一 非常緩慢且逐漸效應。因此,舉例而言,如圖3A及圖 中展示,自一循環至另一循環之一更急劇改變可區分為不 適當操作。在一實施例中,可基於(例如)實驗測量建立— 差臨限值,其指示正半循環與負半循環之間之可容忍差之 上限。舉例而言,該差臨限值可係基於不對稱波形開始發 生閃燦之點》如下文參考圖4闡述’該相角偵測電路 21〇(例如,使用微控制器或控制器)可比較正半循環與負半 循環之數位脈衝之間之差與該差臨限值,且於該差超過該 差臨限值時識別不適當操作之發生。 因為一不對稱波形係多個潛在問題之一徵兆,所有該等 問題引起自該固態照明負載240輸出的光之不期望的閃 爍,在該相角偵測電路210之控制下可嘗試不同校正動作 及或方法以校正問題。舉例而言,該相角偵測電路可 切換入與該固態照明負載240並聯之一電阻茂放電路(圖2 155843.doc • 15· 201215222 中未展不)’以連同該固態照明負載240汲取額外電流,因 此令該負载增加至用於該調光器204之操作之一足夠最小 值。若此動作不校正閃爍或基礎問題,則可嘗試其他校正 動作。可以一預定優先級嘗試該等校正動作,例如,從最 可能至最小可能成功,直到該等校正動作之一者有效。然 而,右沒有校正動作有效,該相角偵測電路21〇可使用經 由控制線229傳送之一功率控制信號簡單關閉該功率轉換 器22〇,因為沒有先比閃爍光更可取。舉例而言,該相角 偵測電路210可控制該功率轉換器22〇以不將電流傳遞至該 固態照明負載240 ’或可造成該功率轉換器220關閉。 。亥功率轉換器220接收來自該整流電路205之經整流電壓 Urect及經由該控制線229之功率控制信號,且輸出一對應 DC電壓用於供電給該固態照明負載24〇。一般而言該功 率轉換器220至少基於該經整流電壓Urect2量值及自該相 角偵測電路21 〇接收的該功率控制信號之值而One implementation of S I55843.doc 201215222, an LED white luminaire, can comprise a plurality of dies that respectively emit different electroluminescence spectra that are mixed (combined) to form essentially white light. In another implementation, an LED white luminaire can be associated with a spheroidal material that converts electroluminescence having a first spectrum into a different second spectrum. In one example of this implementation, electroluminescence having a relatively short wavelength and a narrow bandwidth spectrum "pumps" the phosphor material, which in turn has a longer wavelength radiation that complements the broader spectrum. It should also be understood that the term LED does not limit the physical and/or electrical package type of an LED. For example, as set forth above, an LED can refer to a single light emitting device having a plurality of dies that are configured to respectively emit different radiation spectra (e.g., may or may not be individually controlled). Moreover, a led can be associated with a phosphor that is considered to be one of the integral portions of the LED (e.g., some type of white LED). In general, the term LED can refer to a packaged LED, an unpackaged LED, a surface mount LED, an on-board wafer LED, a τ package mount LED, a radiation package LED, a power package LED, some type of housing, and/or an optical component (eg, , a diffusion lens) LED and so on. The term "light source" is understood to mean any or a plurality of sources of radiation, including but not limited to LED-based light sources (including one or more LEDs as defined above), incandescent sources (eg, incandescent lamps, Halogen lamp), fluorescent light source, phosphor light source, south intensity discharge power source (for example, sodium vapor lamp, mercury vapor lamp and metal halide lamp), laser, other types of electroluminescence source, thermal illumination source (for example, flame)' candle Light source (for example, a gas lamp cover, a carbon arc radiation source), a photoluminescence source (for example, a gas discharge source), a cathodoluminescence source using an electron saturation, a magnetoluminescence source, a crystal illumination source, a tube illumination source, and a thermoluminescence source Mo 155843.doc 201215222 Rubbing light source, sonoluminescence source, radiation source and luminescent polymer. The term "lighting fixture" is used herein to refer to one or more of one or more lighting units in a particular form factor, assembly or package. This article uses the term "illumination early" to refer to a device that contains one or more of the same or different types of light sources. A given lighting unit can have any of a variety of mounting configurations, housing/housing configurations and shapes, and/or electrical and mechanical connection configurations for the light source. In addition, a given lighting unit may optionally be associated with (e.g., include, couple to, and/or package together with) various other components (e.g., control circuitry) with respect to operation of the delta source. An "LED-based lighting unit" refers to a lighting unit that includes one or more LED-based light sources (alone or in combination with other non-LED-based light sources) as set forth above. An eve channel J lighting unit refers to an LED-based or non-LED-based lighting unit that includes one of at least two light sources configured to generate different radiation spectra, respectively. Each of the different spectra may be referred to as one of the multi-channel lighting units. "." This article uses the "controller" - ship for 0 · +. Μ J version to describe the various arrangements for the operation of one or more light sources. - Pull also 丨 σ. π 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ 褒ΐ A processor uses one or more oblique steps. . An example of one of the controllers of the 1U(R) processor, which can be programmed with software (e.g., exhaustive Ί 4 & , ^ horse) to perform the various functions set forth herein. A control of the heat R control can be used with or without a processor, and the controller can also be used as a dedicated hardware for performing some functions to perform one of the other functions. The households are crying (for example, one or more stylized micro-processing pirates and associated circuits are combined). Various examples of controller components that can be used in embodiments of the invention J55843.doc 201215222 include ( However, it is not limited to conventional microprocessor microcontrollers, application-specific integrated circuits (asic), and field programmable gate arrays (FPGAs). Various processors + controllers or controllers can be used with - or multiple storage media. (This article is generally referred to as "memory", for example, volatile and non-volatile computer memory such as random access memory (RAM), programmable read-only memory (PROM), and electrically programmable read-only memory). (EpR〇M), electrically erasable and programmable read-only memory (EEPROM), pass-through (deleted) drives, floppy disks, mini-discs, CDs, tapes, etc.). In practice, the storage medium can be encoded with - or multiple programs, and When a plurality of programs are executed on one or more processors and/or controllers, at least some of the storage media may be fixed to a processor or control (4) or may be transferable. Having one or more programs stored thereon loaded into a processor or controller towel for implementing various aspects of the invention as set forth herein. The term "program" or "computer program" is used in the generic sense. Refers to any type of computer code (eg, software or microcode) that can be used to programmatically—or multiple processors or controllers. In a network implementation, 'face-to-network—or multiple devices can The networked environment in which the H is used to lightly connect to the network (for example, in a master-slave relationship) or multiple other devices may include a one-day or a special-purpose controller. Configuring to control - or more of the components coupled to the network - a plurality of devices that are consuming to the network may each have access to data present on the communication medium or medium; '―A given device can be "addressable" because it is configured to 155843.doc • 11 · 201215222 (for example) assigned to one or more specific identifiers (eg, “addresses”) to selectively exchange data with the network (ie, receive data from the network) / Transmitting data to the network.) It should be understood that the concepts just described and the additional concepts set forth in more detail below (assuming these concepts are consistent with one another) are considered to be part of the inventive subject matter set forth herein. In particular, at the end of the present invention All combinations of the subject matter of the application are considered to be part of the inventive subject matter set forth herein. It should also be understood that the terminology explicitly used herein, as well as in any disclosure incorporated by reference, should have the meaning [Embodiment] In the drawings, the same reference numerals generally refer to the same or similar parts in all the different drawings. Moreover, the drawings are not necessarily to scale, the Representative embodiments of the specific details are set forth to provide a thorough understanding of the invention. However, it is to be understood by those of ordinary skill in the art that the present invention is in the scope of the appended claims. In addition, descriptions of well-known devices and methods may be omitted so as not to obscure the description of the representative embodiments. Such methods and apparatus are clearly within the scope of the teachings of the present invention. In general, regardless of the dimmer setting, it is desirable to have a steady light output from a solid state lighting load, such as an LED light source, for example, without blinking or uncontrolled fluctuations in the output light level. Applicants have recognized and understood that a circuit is provided that is capable of detecting and correcting various problems caused by a dimmer and a solid-state lighting load and driving the tilting converter of the 155843.doc •12· a 201215222 solid-state lighting load The "embodiment" of the system =, for example, by the rate converter and the - phase crossing, ", & Detecting the asymmetry in the negative half cycle of the main power supply; various embodiments and implementations of the invention are related to the detection and measurement of the phase angle of the dimmer by digital detection and correction by the positive main power supply half Circuits and methods for improper operation of solid state lighting fixtures caused by asymmetry in cycling and negative mains power half cycles, and when continuous measurements (eg, corresponding to positive and negative half cycles, respectively) - the difference is greater than - When the threshold is predetermined (indicating the asymmetric phase chopping), the corrective action is performed. 2 is a diagram of a dimmable illumination system according to a representative embodiment - a reference to FIG. 2 includes a dimmer 2 〇 4 and a rectifier circuit 205, the dimmer 204 and the rectifier circuit 2 〇5 provides a rectified voltage from one of the voltage main power sources 201 (dimmed). According to various implementations, the voltage main power source 201 can provide different unregulated input mains voltages, such as 100 VAC, 120 VAC, 230 VAC, and 277 VAC. . The dimmer 204 is a phase chopping dimmer (for example) that intercepts the voltage signal waveform after the edge (back edge) of the voltage main power source 2 回应 in response to the vertical operation of the slider 204a Dimming) or front edge (front edge dimmer) provides dimming capability. For illustrative purposes, it is assumed that the dimmer 2〇4 is a rear edge dimmer. In general, the magnitude of the rectified voltage Urect is proportional to a phase angle or dimming level set by the dimmer 204 such that it corresponds to one of the lower dimmers 155843.doc •13·201215222 setting The phase angle causes a lower rectified voltage Urect and vice versa. In the depicted example, it may be assumed that the slider 204a moves downward to lower the phase angle 'reduces the amount of light output by the solid state lighting load 240, and moves up to increase the phase angle' to increase the output by the solid state lighting load 240. The amount of light. Thus, when the slider 204a is at the top position (as depicted in Figure 2), minimal dimming occurs and maximum dimming occurs when the slider 204a is at its bottom position. The illumination system 200 further includes a dimmer phase angle detection circuit 21 and a power converter 220. The phase angle detection circuit 210 includes a microcontroller or other controller (described below) and is configured to determine or measure the phase angle (dimming level) of the representative dimmer 204 based on the rectified voltage Urect. The value. The phase angle detecting circuit 2 1 比较 also compares the detected phase angle values corresponding to the positive half cycle and the negative half cycle of the rectified voltage Urect, and if the comparison of the positive half cycle and the negative half cycle indicates the illumination system If the 200 is performing an improper operation, the corrective action is performed. For example, the detected phase angle can be used as an input to one of the software algorithms to determine whether the cut-off waveform of the rectified voltage Urect is symmetric (eg, as shown in FIG. 1B) or asymmetric (as shown in FIG. 1c). Show) Chop. In other words, the cutoff waveform is determined to be symmetrical or asymmetrical. Asymmetric chopping refers to a problem with a dimmer-driver system (e.g., including the dimmer 2〇4 and the power converter 220). In various embodiments, the phase angle detection circuit 210 can be further configured to dynamically adjust the power converter 220 via a power control signal via one of the control lines 229 during normal operation based on the (partial) detected phase angle. One of the operating points. In general, the detection of the difference in the length of the phase-detection pulse generated by the phase detection circuit 210 of the phase 155843.doc 201215222 can be detected by detecting the difference from the positive half cycle to the negative half cycle. symmetry. For example, FIG. 3A and FIG. 3 show the cutoff waveform from the dimmer 204 and the rectifying circuit 2〇5 corresponding to the positive half cycle and the negative half cycle of the rectified voltage Urect according to a representative embodiment. And associated bit pulses generated by the phase angle detection circuit 210. As shown in the circle, the length of the second digit pulse 33213 is significantly less than the length of the first digit pulse 33 lb, indicating that the negative half-cycle waveform 332a is more severely chopped than the immediately preceding positive half-cycle waveform 3 3 1 a, as shown in FIG. Shown in a. Typically, when a user manually operates the dimmer 204 by adjusting the slider 2〇4a, the result has a very slow and gradual effect on the difference between the positive half cycle and the negative half cycle. Thus, for example, as shown in Figure 3A and illustrated, a more drastic change from one cycle to another can be distinguished as improper operation. In an embodiment, the set-difference threshold may be established based on, for example, an experimental measurement indicating an upper limit of the tolerable difference between the positive half cycle and the negative half cycle. For example, the difference threshold may be based on the point at which the asymmetric waveform begins to flash. As explained below with reference to FIG. 4, the phase angle detection circuit 21 (eg, using a microcontroller or controller) can be compared. The difference between the positive half cycle and the negative half cycle digital pulse and the difference threshold, and the occurrence of improper operation is identified when the difference exceeds the difference threshold. Because an asymmetric waveform is one of a number of potential problems, all of which cause undesired flicker of light output from the solid state lighting load 240, and different corrective actions can be attempted under the control of the phase angle detecting circuit 210. And or method to correct the problem. For example, the phase angle detecting circuit can be switched into a resistor-discharge circuit in parallel with the solid-state lighting load 240 (not shown in FIG. 2 155843.doc • 15·201215222) to capture the solid-state lighting load 240. The extra current, thus increasing the load to a minimum of one of the operations for the dimmer 204. If this action does not correct for flicker or underlying problems, try other corrective actions. The corrective actions can be attempted with a predetermined priority, for example, from the most likely to the smallest possible success until one of the corrective actions is valid. However, the right no-correction action is active, and the phase angle detection circuit 21 can simply turn off the power converter 22A using one of the power control signals transmitted via the control line 229, since it is preferred to be less than the first. For example, the phase angle detection circuit 210 can control the power converter 22 to not pass current to the solid state lighting load 240' or can cause the power converter 220 to turn off. . The power converter 220 receives the rectified voltage Urect from the rectifier circuit 205 and a power control signal via the control line 229, and outputs a corresponding DC voltage for supplying power to the solid state lighting load 24A. In general, the power converter 220 is based at least on the magnitude of the rectified voltage Urect2 and the value of the power control signal received from the phase angle detecting circuit 21 而

入本文中。Into this article.

位準與低位準之間交替。舉例而言, 該功率控制信號可係一脈 —選擇作用時間循環在高 t .,該功率控制信號可具 155843.doc 201215222 有對應於該調光器204之一最大接通時間(高相角)之一高作 用時間循環(例如,100%)及對應於該調光器2〇4之一最小 接通時間(低相角)之一低作用時間循環(例如,0%)。當該 調光器204設定在最大相角與最小相角之間時,該相角偵 測電路210判定特定對應於所偵測相角之該功率控制信號 之一作用時間循環》 圖4係展示根據一代表性實施例偵測一可調光照明系統 之不適當操作之一處理程序之一流程圖。舉例而言,可藉 由圖2中展示的相角偵測電路21〇(或藉由圖6之微控制器 615,下文闡述)執行的韌體及/或軟體來實施該處理程序。 為闡述目的,可假設圖4以該照明系統2〇〇接通電源之方 塊S4_始。在方塊_處,有—延遲同時該經整流輪入 主電源電壓Urect達到穩定狀態。該延遲之後,判定相角 之一初始值且該初始值在方塊S42〇中保存為先前半循環位 準(Previous Half Cycle Level)。舉例而言,根據下文參考 方塊S430闡述的處理程序,可藉由簡單偵測該相角而判定 該相角之初始值。或者,在不背離本發明教示之範圍情況 下,可根據其他處理程序判定該相角之初始值或自儲存一 先前判定的相角(例如,根據該照明系統2〇〇之先前操作)之 記憶體擷取該初始值。 在由方塊S430指示的處理程序中,該相角偵測電路2ι〇 偵測相角,以便判定或測量另一相角值.在各種實施例 中,舉例而言,根據下文參考圖6至圖8闡述的演算法,藉 由獲得對應於該經整流輸入主電源電壓Urect之每—戴波 155843.doc -17- 201215222 波形之一數位脈衝而偵測該相角。因此’產生每一正半循 環及負半循環之一數位脈衝,如圖3A及圖3B中展示。當 然,在不背離本發明教示之範圍情況下,可根據其他處理 程序判定該相角之值。 所偵測相角在方塊S440中保存為當前半循環位準 (Current Half Cycle Level)。該先前半循環位準及該當前 半循環位準可儲存在記憶體中。舉例而言,該記憶體可係 一外部記憶體或該相角偵測電路21〇内部之一記憶體及/或 該相角偵測電路210中包含之一微控制器或其他控制器, 如下文參考圖6闡述。在各種實施例中,該先前半循環位 準及該當前半循環位準之值可用於填充表格或可保存在一 相關資料庫中用於比較,但在不背離本發明教示之範圍情 況下可併入儲存該先前半循環位準及該當前半循環位準之 其他構件。而且,在各種實施例中,可使用方塊S43〇中由 該相角偵測電路210偵測的相角值以產生一功率控制信 號.,該功率控制信號被提供至該功率控制器22〇以設定該 功率控制器220之一操作點,使能基於各種其他控制準則 進一步控制由該固態照明負載24〇輸出的光。 舉例而言,在方塊S450中藉由從先前半循環位準減去當 則半循環位準而判定該先前半循環位準與該當前半循環位 準之間之差ADim,反之亦然。接著在方塊S46〇申比較該 差△Dim與一預疋差臨限值△Threshold,以判定波形是否對 稱,例如,指示其間之不相容或該調光器2〇4及/或該功率 轉換器220之不適當操作。當該差ΔΙ)ίιη大於該臨限值 155843.doc 201215222The level alternates with the low level. For example, the power control signal may be a pulse-selective action time cycle at a high t. The power control signal may have 155843.doc 201215222 having a maximum on-time corresponding to one of the dimmers 204 (high phase angle) One of the high-acting time cycles (eg, 100%) and one of the minimum on-times (low phase angles) of one of the dimmers 2〇4 is a low-acting time cycle (eg, 0%). When the dimmer 204 is set between the maximum phase angle and the minimum phase angle, the phase angle detecting circuit 210 determines that one of the power control signals corresponding to the detected phase angle acts on a time cycle. FIG. 4 shows A flow chart of one of the processing procedures for detecting an improper operation of a dimmable lighting system in accordance with a representative embodiment. For example, the process can be implemented by firmware and/or software executed by the phase angle detection circuit 21A (or by the microcontroller 615 of Fig. 6, illustrated below) shown in FIG. For purposes of illustration, it can be assumed that Figure 4 begins with block S4_ of the lighting system 2 〇〇 powered. At block _, there is a delay while the rectified wheel mains voltage Urect reaches a steady state. After the delay, an initial value of the phase angle is determined and the initial value is saved as a previous half cycle level in block S42. For example, the initial value of the phase angle can be determined by simply detecting the phase angle according to the processing procedure set forth below with reference to block S430. Alternatively, the initial value of the phase angle or the memory from storing a previously determined phase angle (eg, according to previous operations of the illumination system 2) may be determined according to other processing procedures without departing from the scope of the teachings of the present invention. The body retrieves the initial value. In the processing indicated by block S430, the phase angle detecting circuit 2 ι detects the phase angle to determine or measure another phase angle value. In various embodiments, for example, reference is made to FIG. 6 to FIG. The algorithm illustrated in 8 detects the phase angle by obtaining a digital pulse corresponding to one of the waveforms of the rectified input mains voltage Urect, the wave 155843.doc -17-201215222. Thus, each of the positive half cycle and the negative half cycle digital pulse is generated as shown in Figures 3A and 3B. Of course, the value of the phase angle can be determined according to other processing procedures without departing from the scope of the teachings of the present invention. The detected phase angle is saved in the block S440 as the Current Half Cycle Level. The previous half cycle level and the current half cycle level can be stored in the memory. For example, the memory may be an external memory or a memory inside the phase angle detecting circuit 21 and/or a microcontroller or other controller included in the phase angle detecting circuit 210, as follows The text is explained with reference to FIG. 6. In various embodiments, the values of the previous half-cycle level and the current half-cycle level may be used to populate a table or may be saved in a related database for comparison, but may be combined without departing from the scope of the present teachings. The other components of the previous semi-circular level and the current semi-circular level are stored. Moreover, in various embodiments, the phase angle value detected by the phase angle detection circuit 210 in block S43 can be used to generate a power control signal that is provided to the power controller 22 Setting an operating point of the power controller 220 enables further control of light output by the solid state lighting load 24A based on various other control criteria. For example, the difference ADim between the previous half-cycle level and the current half-cycle level is determined by subtracting the current half-cycle level from the previous half-cycle level in block S450, and vice versa. Next, at block S46, the difference ΔDim and a pre-equivalent threshold ΔThreshold are compared to determine whether the waveform is symmetrical, for example, indicating incompatibility therebetween or the dimmer 2〇4 and/or the power conversion. The improper operation of the device 220. When the difference ΔΙ) ίιη is greater than the threshold 155843.doc 201215222

Threshold(方城S46〇 :是)時指示不對稱波形執行方 鬼S480私不之—處理程序以便識別並實施一適當校正動 作以解决造成不對稱波形的問題。下文參考圖5詳細描 述此處理程序。當該ΔΕ)ίιη*大於該臨限值AThreshold(方 塊S46〇 .否)時,指示大體對稱波形,在方塊S470中當前 半循%位準簡單保存為先前半循環位[該處理程序接著 返回至方塊S430以再判定相角,且重複由方塊S44〇至方塊 S480指示的處理程序。 圖5係展示根據一代表性實施例回應於不對稱波形之價 測㈣龍實施校正動作之—處理程权—流㈣。舉例 而言’可藉由圖2中展示的相角谓測電路21〇(或藉由圖仏 微控制器川或其他控制器,下文閣述)執行的㈣及/或軟 體來實施該處理程序。 在各種實施例中’一或多個校正動作可用於實施(如需 要)可以從最冋至最低優先級之級數排列該等校正動 作’其中最高優先級校正動作係先前判定為最可能成功解 決該等不對稱波形之校正動作。 乍 β亥排列連同用於實施該等 校正動作之每一者而實行的料 的對應步驟可儲存在記憶體中。 舉例而5,該s己憶體可係一外部^ ^ ^ ^ ^ ^ ^ ^ 。己隐體或該相角伯測電路 210内部之一記憶體及/或該 月偵測電路21〇中包含之一 微控制器或其他控制器,如下令4 i 文參考圖6闡述《該最高優 先級校正動作可包含切換入蛊 成固悲照明負載240並聯之 一電阻洩放電路,舉例而言, M令该調光器204之負載增 加至一充分最小負載。該電阻 及放電路可包含與一開關 155843.doc -19· 201215222 电阻,举例而言 (例如,一電晶體)串聯連接之 — I γ # --4 cr -ΚΛ :¾ ηψ 性汲取額外電流。一或多個額外校正動作(一般技術者應 瞭解其等之實施)可在該電阻洩放電路校正動作的優先級 之後。此外,可優先級化相同校正動作之一或多個變體。 舉例而言,可使用逐漸增加的電阻值重複該電阻洩放電路 之實施,直到找到一適當值。 參考圖5,在方塊S48 1中判定一校正動作是否合適。當 沒有校正動作合適(方塊S481 :否)時,在方塊以82中實施 最高優先級校正動作,且該處理程序返回至圖4之方塊 S470,其中#前半循環位準保存為先前半循環位準。該處 理程序接著返回至方賴3〇以再判定相角作為當前半循環 位準’在方塊S450及S460中當前半循環位準與先前半循環 位準之隨後比較指示方塊S482中實施的校正動作是否成 功。作為一實踐内容,可在實施_校正動作之後評估一或 多料循環,以便允許該校正動作在對此動作之成功 判定之前奏效。 再參考圖5,當判定p古_ .J. . 权正動作合適(方塊S481 : 疋)時’接著在方塊S483中判 Έ A j疋疋否有可嘗試的任何剩餘 杈正動作。當至少有一個制路ρ τ Λ 剩餘校正動作(方塊S483 :是) 寻’在方塊S485中實施下一夢古版斗 了 ^優先級校正動作,且該處 理:序返回至圖4之方塊S47〇,如上文聞述。 當不再有校正動作(方塊S48^否 閉該功率轉換器220,以便消除、在方綱6中關 沾„… 疋月除自5亥固態照明負載240輪出 的閃燦光或不適當操作之其他 貝戟〇輸出 W〜響。该處理程序接著 155843.doc 201215222 返回至圖4之方塊S470,其中儘管該功率轉換器22〇關閉, 仍可重複監測處理程序。雖然圖4及圖5中未展示,但在各 種實施例中,若當前半循環位準與先前半循環位準之間之 隨後比較指示該差ΔΟίπι降至低於該臨限值,可 再次開啟該功率轉換器220,其可回應於對調光位準之進 一步調整(例如’透過操控該滑件2〇4a)而發生。 在各種實施例中,每當該照明系統2〇〇接通電源時,該 功率轉換器220開啟且沒有合適的校正動作。換言之,當 該照明系統斷電時,中斷可在該照明系統2〇〇之一先前操 作中啟動的任何校正動作。同樣,導致該功率轉換器22〇 關閉的使用可行校正動作無法校正之閃爍的任何判定不轉 至s亥照明系統200之隨後操作。當然,在替代實施例中, 在不背離本發明教示之範圍情況下,用以關閉該功率轉換 器220之校正動作及/或判定可轉至隨後操作或關於隨後操 作加以考慮。舉例而言,若發現一特定校正動作足以解決 由該固態照明負載240輸出的光之閃爍,則可記錄可行校 正動作之優先級排列使得成功的校正動作具有最高優先 級0 此外,圖4描繪該處理程序在該照明系統2〇〇之整個操作 期間連續發生之-實施例。然而,在替代實施例中,圖4 之處理程序可僅在一初始啟動期間發生,在此期間基於所 偵測相角之值判疋當前半循環位準與先前半循環位準之間 之差ADim且與該差臨限值△Threshed比較。若回應於該比 較沒有識別並實施校正動作(即,輸入主電源電壓之波形 155843.doc •21. 201215222 對柄)’則該處理程序結束且該照明系統2〇〇回應於該調光 益204進行操作,而不進一步分析當前半循環位準與先前 半循%:位準之間之差ΔΕΗπι。同樣,若識別並成功實施一 校正動作(即,回應於輸入主電源電壓信號之波形不對 稱),則该處理程序結束且該照明系統2〇〇使用該校正動作 回應於該調光器2〇4進行操作,而不進一步分析當前半循 環位準與先前半循環位準之間之差ADim。以此方式,實 施一权正動作(諸如接入一電阻洩放電路)以校正操作剩餘 部分之問題,而不花費額外處理功率來進行進一步檢查。 圖6係展示根據一代表性實施例用於一可調光照明系統 (包含一相角偵測電路、一功率轉換器及一固態照明器具) 之一控制電路之一電路圖。根據一繪示性組態,圖6之一 般組件類似於圖2之此等組件,但提供與各種代表性組件 相關之更多細節。當然,在不背離本發明教示之範圍情況 下可實施其他組態。 參考圖6,控制電路600包含整流電路6〇5及相角偵測電 路610(虛線框)。如上文關於該整流電路2〇5闡述,該整流 電路605連接至連接在該整流電路6〇5與電壓主電源之間之 一调光器以接收(經調光)未整流電壓(由經調光器熱點輸入 k及中性點輸入端指示)。在描繪的組態中,該整流電路 605包含連接在經整流電壓節點N2與接地之間之四個二極 體D601至D604 ^該經整流電壓節點Ν2接收該經整流電壓Threshold (Fangcheng S46〇: Yes) indicates that the asymmetric waveform performer is not private—the program is to identify and implement an appropriate corrective action to solve the problem causing the asymmetric waveform. This processing procedure is described in detail below with reference to FIG. When the ΔΕ) ίιη* is greater than the threshold AThreshold (block S46〇.No), indicating a substantially symmetrical waveform, the current half-cycle % level is simply saved as the previous semi-cycle bit in block S470 [the handler then returns to Block S430 re-determines the phase angle and repeats the processing indicated by block S44 to block S480. Figure 5 is a diagram showing the processing of a process-weight (four) in response to an asymmetric waveform in accordance with a representative embodiment. For example, the process can be implemented by (4) and/or software executed by the phase angle reference circuit 21〇 shown in FIG. 2 (or by means of a microcontroller or other controller, as described below). . In various embodiments, 'one or more corrective actions can be used to implement (if needed) the corrective actions can be ranked from the last to the lowest priority level, wherein the highest priority corrective action was previously determined to be the most likely successful resolution Correction actions of the asymmetric waveforms. The corresponding steps of the 亥 亥 arrangement along with the material for performing each of the corrective actions can be stored in the memory. For example, 5, the suffix can be an external ^ ^ ^ ^ ^ ^ ^ ^. The memory or the memory of the phase detection circuit 210 and/or the month detection circuit 21A include a microcontroller or other controller, as described below with reference to FIG. The priority correction action may include switching one of the resistance bleeder circuits in parallel with the solid illumination load 240. For example, M increases the load of the dimmer 204 to a sufficient minimum load. The resistor and the discharge circuit may comprise an additional current in series with a switch 155843.doc -19·201215222 resistor, for example (eg, a transistor). I γ # --4 cr -ΚΛ :3⁄4 ηψ. One or more additional corrective actions (which the average technician should be aware of) may be after the resistance bleeder circuit corrects the priority of the action. In addition, one or more variants of the same corrective action can be prioritized. For example, the implementation of the resistive bleeder circuit can be repeated using a gradually increasing resistance value until an appropriate value is found. Referring to Figure 5, it is determined in block S48 1 whether a corrective action is appropriate. When no correction action is appropriate (block S481: NO), the highest priority correction action is performed in block 82, and the process returns to block S470 of FIG. 4, where the first half cycle level is saved as the previous half cycle level. . The process then returns to the square to determine the phase angle as the current half-cycle level. The corrective action implemented in the subsequent comparison instruction block S482 of the current half-cycle level and the previous half-cycle level in blocks S450 and S460 whether succeed. As a matter of practice, one or more cycles may be evaluated after the implementation of the corrective action to allow the corrective action to be effective prior to the successful determination of the action. Referring again to Fig. 5, when it is determined that the p__J.. weight positive action is appropriate (block S481: 疋), then in block S483, it is judged whether there is any remaining positive action that can be tried. When there is at least one system ρ τ 剩余 remaining correction action (block S483: YES), the search for the next dream version is performed in block S485, and the process returns to block S47 of FIG. Hey, as described above. When there is no more corrective action (block S48^No, the power converter 220 is turned off, so as to eliminate, in the direction of the hexagram „... 疋 除 除 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 The other output is W~. The process then returns to 155843.doc 201215222 to block S470 of Figure 4, wherein although the power converter 22 is turned off, the monitoring process can be repeated. Although in Figures 4 and 5 Not shown, but in various embodiments, the power converter 220 can be turned on again if a subsequent comparison between the current half cycle level and the previous half cycle level indicates that the difference ΔΟίπι falls below the threshold. This may occur in response to further adjustments to the dimming level (eg, 'by manipulating the slider 2〇4a.) In various embodiments, the power converter 220 is whenever the lighting system 2 is powered up. Turned on and there is no suitable corrective action. In other words, when the illumination system is powered down, any corrective action that can be initiated in one of the previous operations of the illumination system 2 is interrupted. Again, the power converter 22 is turned off. Any determination of the flicker that is not correctable by the corrective action does not go to the subsequent operation of the illumination system 200. Of course, in an alternative embodiment, the power converter 220 is turned off without departing from the scope of the present teachings. The corrective action and/or decision can be taken to a subsequent operation or to a subsequent operation. For example, if a particular corrective action is found to be sufficient to resolve the flicker of light output by the solid state lighting load 240, a prioritization of the feasible corrective action can be recorded. The rank arrangement is such that the successful corrective action has the highest priority 0. Furthermore, Figure 4 depicts that the process occurs continuously throughout the operation of the illumination system 2 - embodiments. However, in an alternative embodiment, the process of Figure 4 The program may only occur during an initial startup during which the difference ADim between the current semi-cycle level and the previous half-cycle level is determined based on the value of the detected phase angle and compared to the difference threshold ΔThreshed. If the response is not recognized and implemented in response to the comparison (ie, input the mains voltage waveform 155843.doc •21. 201215222 for the handle)' The process ends and the illumination system 2 operates in response to the dimming benefit 204 without further analyzing the difference between the current semi-cycle level and the previous half-cycle level: ΔΕΗπι. Similarly, if identified and successful Implementing a corrective action (ie, in response to a waveform asymmetry of the input mains voltage signal), the process ends and the illumination system 2 uses the corrective action in response to the dimmer 2〇4 to operate Further analyzing the difference ADim between the current half cycle level and the previous half cycle level. In this way, a positive action (such as accessing a resistance bleeder circuit) is implemented to correct the problem of the remainder of the operation without additional The power is processed for further inspection. 6 is a circuit diagram showing one of control circuits for a dimmable lighting system (including a phase angle detecting circuit, a power converter, and a solid state lighting fixture) in accordance with a representative embodiment. According to an illustrative configuration, one of the components of Figure 6 is similar to that of Figure 2, but provides more detail in relation to various representative components. Of course, other configurations can be implemented without departing from the scope of the teachings of the present invention. Referring to Figure 6, control circuit 600 includes a rectification circuit 6〇5 and a phase angle detection circuit 610 (dashed frame). As described above with respect to the rectifier circuit 2〇5, the rectifier circuit 605 is connected to a dimmer connected between the rectifier circuit 6〇5 and the voltage main power source to receive (dimmed) unrectified voltage (by the adjusted The optical hotspot input k and the neutral input input indicate). In the depicted configuration, the rectifier circuit 605 includes four diodes D601 through D604 connected between the rectified voltage node N2 and ground. The rectified voltage node Ν2 receives the rectified voltage.

Urect ’且通過粵該整流電路605並聯連接之輸入濾波電容 器C615連接至接地。 155843.doc •22- 201215222 該相角偵測電路610基於該經整流電壓Urect執行一相角 谓測處理程序。基於該經整流電壓Urect之一信號波形中 存在的相位截波之程度偵測對應於由該調光器設定的調光 位準之相角。功率轉換器620基於該經整流電壓Urect(RMS 輸入電壓)控制LED負載640(其包含串聯連接的代表性LED 641及642)之操作,且在各種實施例中,經由控制線629由 該相角偵測電路610提供一功率控制信號。此允許該相角 谓測電路61 〇調整自該功率轉換器620傳遞至該LED負載 640之功率。舉例而言,該功率控制信號可係一 PWM信號 或其他數位信號。在各種實施例中,該功率轉換器620以 一開放迴路或前向回饋方式進行操作,舉例而言,如頒予Urect ' is connected to ground through an input filter capacitor C615 connected in parallel by the rectifier circuit 605. 155843.doc • 22- 201215222 The phase angle detection circuit 610 performs a phase angle predicate processing procedure based on the rectified voltage Urect. The phase angle corresponding to the dimming level set by the dimmer is detected based on the degree of phase chopping present in the signal waveform of one of the rectified voltages Urect. Power converter 620 controls the operation of LED load 640 (which includes representative LEDs 641 and 642 connected in series) based on the rectified voltage Urect (RMS input voltage), and in various embodiments, from the phase angle via control line 629 Detection circuit 610 provides a power control signal. This allows the phase angle reference circuit 61 to adjust the power delivered from the power converter 620 to the LED load 640. For example, the power control signal can be a PWM signal or other digital signal. In various embodiments, the power converter 620 operates in an open loop or forward feedback manner, for example, as awarded

Lys之美國專利第7,256,554號中描述,該案以引用方式併 入本文中。 在描繪的代表性實施例中,該相角偵測電路61〇包含微 控制器615 ’該微控制器615使用該經整流電壓Urect之信 號波形來判定相角。該微控制器61 5包含連接在一第一二 極體D611與一第二二極體D612之間之數位輸入端618。該 第一二極體D611具有連接至該數位輸入端618之一陽極及 連接至電壓源Vcc之一陰極’且該第二二極體D612具有連 接至接地之一陽極及連接至該數位輸入端618之一陰極。 該微控制器615亦包含數位輸出端619。 在各種實施例中’舉例而言,該微控制器61 5可係自微 晶片技術(Microchip Technology)公司得到之一PJC12F683, 且該功率轉換器620可係自ST微電子公司得到之一 l6562, 155843.doc •23· 201215222 但在不背離本發明教示之範圍情況下,可包含其他類型的 微控制器、功率轉換器或其他處理器及/或控制器。舉例 而言’可藉由一或多個處理器及/或控制器實施該微控制 器6 15之功能,該等處理器及/或控制器如上文闡述經連接 以接收第一二極體D611與第二二極體D612之間之數位輸 入端’且可使用用以執行本文描述的各種功能之軟體或細 體(例如,儲存在一記憶體中)程式化該等處理器及/或控制 器’或可使用用以執行一些功能之專用硬體與用以執行其 他功能之一處理器(例如,一或多個經程式化微處理器及 相關聯的電路)之一組合實施該等處理器及/或控制器。各 種實施例中可使用的控制器組件之實例包含(但不限於)習 知微處理器、微控制器、ASIC及FPGA,如上文闡述。 §亥相角偵測電路610進一步包含各種被動電子組件(諸如 第一電容器C613及第二電容器C614)及由代表性第一電阻 器R611及第二電阻器R612指示之一電阻。該第一電容器 C613連接在該微控制器61 5之該數位輸入端618與一偵測節 點N1之間。該第二電容器C614連接在該偵測節點m與接 地之間《該第一電阻器R611及該第二電阻器R612串聯連接 在經整流電壓節點N2與該偵測節點N1之間。在描繪的實 施例中,舉例而言,該第一電容器C613可具有大約56〇 pF 之一值且該第二電容器C614可具有大約1〇 pF之一值。而 且,舉例而言,該第一電阻器R611可具有大約萬歐姆 之一值且該第二電阻器R61 2可具有大約i百萬歐姆之一 值。然而,如一般技術者應瞭解,該第一電容器C6n與該This is described in U.S. Patent No. 7,256,554, the disclosure of which is incorporated herein by reference. In the depicted exemplary embodiment, the phase angle detection circuit 61 includes a microcontroller 615' which uses the signal waveform of the rectified voltage Urect to determine the phase angle. The microcontroller 615 includes a digital input 618 coupled between a first diode D611 and a second diode D612. The first diode D611 has an anode connected to the digital input terminal 618 and is connected to one cathode of the voltage source Vcc and the second diode D612 has an anode connected to the ground and is connected to the digital input terminal. One of the cathodes of 618. The microcontroller 615 also includes a digital output 619. In various embodiments, for example, the microcontroller 61 5 can be derived from one of the Microchip Technology Corporation PJC12F683, and the power converter 620 can be derived from ST Microelectronics, one of the l6562, 155843.doc • 23· 201215222 Other types of microcontrollers, power converters or other processors and/or controllers may be included without departing from the scope of the present teachings. For example, the functions of the microcontroller 6 15 may be implemented by one or more processors and/or controllers, as described above, connected to receive the first diode D611 The digital input between the second diode D612 and the software or the like used to perform the various functions described herein (eg, stored in a memory) to program the processors and/or control The processor may be implemented in combination with one of a dedicated hardware for performing some functions and one of the processors (eg, one or more programmed microprocessors and associated circuitry) for performing other functions. And / or controller. Examples of controller components that may be used in various embodiments include, but are not limited to, conventional microprocessors, microcontrollers, ASICs, and FPGAs, as set forth above. The phase angle detection circuit 610 further includes various passive electronic components (such as the first capacitor C613 and the second capacitor C614) and one of the resistors indicated by the representative first resistor R611 and the second resistor R612. The first capacitor C613 is connected between the digital input terminal 618 of the microcontroller 61 5 and a detection node N1. The second capacitor C614 is connected between the detecting node m and the ground. The first resistor R611 and the second resistor R612 are connected in series between the rectified voltage node N2 and the detecting node N1. In the depicted embodiment, for example, the first capacitor C613 can have a value of approximately 56 〇 pF and the second capacitor C 614 can have a value of approximately 1 〇 pF. Also, for example, the first resistor R611 can have a value of about 10,000 ohms and the second resistor R61 2 can have a value of about one million ohms. However, as one of ordinary skill should understand, the first capacitor C6n and the

155843.doc •24· S 201215222 第二電容器C614及該第一電阻器R611與該第二電阻器 R 612之各別值可改變以提供任何特定情形之獨特利益或以 滿足各種實施之應用特定設計要求。 . 該經整流電壓Urect係耦合至該微控制器615之該數位輸 入知618之AC。該第一電阻器R6U及該第二電阻器R612限 制至该數位輸入端618中之電流。當該叙整流電壓urect之 一信號波形走高時’該第一電容器C613在通過該第一電阻 器R611及該第二電阻器尺612之上升邊緣上充電。舉例而 言,該第一二極體D611箝位該數位輸入端61 8至該電壓源 Vcc上之一個二極體壓降,同時該第一電容器C613充電。 只要信號波形非0 ’該第一電容器C613保持充電。在該經 整流電壓Urect之信號波形之下降邊緣上,該第一電容器 C613通過5亥第一電容器匸614放電,且由該第二二極體 D612使該數位輸入端61 8箝位至低於接地之一個二極體廢 降。當使用一後邊緣調光器時,該信號波形之後邊緣對應 於該波形之經截波部分之開始。只要該信號波形為〇,該 第一電容器C613保持放電。因此,該數位輸入端618處所 得邏輯位準數位脈衝緊密跟隨經截波整流電壓Urect之移 動’圖7A至圖7C中展示其之實例。 更特定言之,圖7A至圖7C展示根據代表性實施例在該 數位輸入端618處之取樣波形及對應數位脈衝。各個圖中 的了員部波形描繪該經截波整流電壓Urect,其中截波量反 映調光位準《舉例而言,該等波形可描繪出現在該調光器 之輸出端處之一全170 v(或E.U.之34〇 v)峰值經整流正弦 155S43.doc -25- 201215222 波之一部分。底部方形波形描繪該微控制器615之該數位 輸入端618處看到之對應數位脈衝。顯而易見,每一數位 脈衝之長度對應於一截波波形,且因此等於調光器接通時 間(例如,調光器内部開關「導通」之時間量)。藉由經由 該數位輸入端618接收數位脈衝,該微控制器615能夠判定 該調光器已被設定之位準。 圖7 A展示當調光器處於大約其之最大設定(由波形旁邊 展示的調光器滑件之頂部位置指示)時之經整流電壓Urect 之取樣波形及對應數位脈衝。圖7]5展示當調光器處於中間 設定(由波形旁邊展示的調光器滑件之中間位置指示)時之 經整流電壓Urect之取樣波形及對應數位脈衝。圖%屐示 當調光器處於大約其之最小設定(由波形旁邊展示的調光 器滑件之底部位置指示)時之經整流電壓Urect之取樣波形 及對應數位脈衝。 圖8係展示根據一代表性實施例偵測一調光器之相角之 一處理程序之一流程圖。可藉由圖6中展示的由該微控制 器615實行的韌體及/或軟體實施該處理程序,或更一般而 言’藉由-處理器或控制器(例如,圖2中展示的該相角偵 測電路210 ’舉例而言)實施該處理程序。 在圖8之方塊S821中,舉例而言,藉由該第一電容器 C613之初始充電偵測一輸入信號之一數位脈衝之一上升邊 緣(例如,由圖7A至圖7C中之底部波形之上升邊緣指示)。 舉例而言,該微控制器615之該數位輸入端618處之取樣在 方塊S822中開始。在描繪的實施例中,在等於一主電源半155843.doc •24· S 201215222 The second capacitor C614 and the respective values of the first resistor R611 and the second resistor R 612 can be varied to provide the unique benefit of any particular situation or to meet application-specific designs for various implementations. Claim. The rectified voltage Urect is coupled to the digital input of the microcontroller 615 to the AC of the 618. The first resistor R6U and the second resistor R612 limit the current to the digital input 618. When the signal waveform of the rectified voltage urect goes high, the first capacitor C613 is charged on the rising edge through the first resistor R611 and the second resistor scale 612. For example, the first diode D611 clamps the digital input terminal 6 8 to a diode voltage drop across the voltage source Vcc while the first capacitor C613 is charged. The first capacitor C613 remains charged as long as the signal waveform is not 0'. On the falling edge of the signal waveform of the rectified voltage Urect, the first capacitor C613 is discharged through the 5th first capacitor 匸614, and the digital input terminal 61 is clamped to be lower than the second diode D612. A diode of grounding is abolished. When a trailing edge dimmer is used, the trailing edge of the signal waveform corresponds to the beginning of the intercepted portion of the waveform. The first capacitor C613 remains discharged as long as the signal waveform is 〇. Thus, the logic level digital pulse at the digital input 618 closely follows the movement of the chopped rectified voltage Urect' as shown in Figures 7A-7C. More specifically, Figures 7A-7C show sampled waveforms and corresponding digital pulses at the digital input 618 in accordance with a representative embodiment. The waveform of the portion of the figure depicts the intercepted rectified voltage Urect, wherein the intercept amount reflects the dimming level. For example, the waveforms may depict one of the 170 occurrences at the output of the dimmer. The v (or EU 34〇v) peak is rectified as part of the sinusoidal 155S43.doc -25- 201215222 wave. The bottom square waveform depicts the corresponding digital pulse seen at the digital input 618 of the microcontroller 615. It will be apparent that the length of each digit pulse corresponds to a truncated waveform and is therefore equal to the dimmer turn-on time (e.g., the amount of time the dimmer internal switch is "on"). By receiving a digital pulse via the digital input 618, the microcontroller 615 can determine that the dimmer has been set. Figure 7A shows the sampled waveform and corresponding digital pulses of the rectified voltage Urect when the dimmer is at approximately its maximum setting (indicated by the top position of the dimmer slider shown next to the waveform). Figure 7]5 shows the sampled waveform of the rectified voltage Urect and the corresponding digital pulse when the dimmer is in the middle setting (indicated by the middle position of the dimmer slider shown next to the waveform). Figure % shows the sampled waveform of the rectified voltage Urect and the corresponding digital pulse when the dimmer is at approximately its minimum setting (indicated by the bottom position of the dimmer slider shown next to the waveform). Figure 8 is a flow chart showing one of the processing procedures for detecting the phase angle of a dimmer in accordance with a representative embodiment. The process can be implemented by the firmware and/or software implemented by the microcontroller 615 as shown in FIG. 6, or more generally by a processor or controller (eg, as shown in FIG. 2) The phase angle detection circuit 210', for example, implements the processing routine. In block S821 of FIG. 8, for example, one of the rising pulses of one of the input signals is detected by the initial charge of the first capacitor C613 (eg, the rise of the bottom waveform in FIGS. 7A through 7C). Edge indication). For example, sampling at the digital input 618 of the microcontroller 615 begins in block S822. In the depicted embodiment, equal to one main power supply half

155843.doc •26· S 201215222 循環正下方之一預定時間内數位取樣信號。每次取樣該信 號時’在方塊S823中判定該取樣是否具有一高位準(例 如’數位「1」)或一低位準(例如,數位「〇」)。在描繪的 實施例中,在方塊S823中做出一比較以判定該取樣是否是 數位「1」。當該取樣係數位「1」(方塊s823 :是)時在 方塊S824中使一計數器遞增,且當該取樣不是數位「i」 (方塊S823 :否)時,在方塊8825中***一小延遲。***該 延遲使得(例如,該微控制器6:15之)時脈循環數目相等,無 論s亥取樣是否判定為數位「1」或數位「〇」。 在方塊S826中,判定是否已取樣整個主電源半循環。當 該主電源半循環不完整(方塊S826 :否)時,該處理程序返 回至方塊S822以再取樣該數位輸入端61 8處之信號。當該 主電源半循環完整(方塊S826 :是)時,取樣停止且方塊 S824中累積的計數器值在方塊S827中識別為相角之當前 值,且該計數器被重設為〇。計數器值可儲存在一記憶體 中,上文闡述其之實例。該微控制器615接著可等待下一 上升邊緣以再開始取樣。舉例而言,可假設該微控制器 615在一主電源半循環期間做出255個取樣。當由該滑件將 調光器相角設定在其之範圍頂部處(例如,如圖7A中展示) 時,在圖8之方塊S824中該計數器將增加至大約255。當由 該滑件將調光器相.角設定在其之範圍底部處(例如,如圖 7C中展示)時,在方塊S824中該計數器將增加至僅大約1〇 或20。當將調光器相角設定在其之範圍中間某個地方(例 如,如圖7B中展示)’在方塊S824 t該計數器將增加至大 155843.doc •27· 201215222 約128 ^因此該計數器之值對該微控制器615給出該調光器 被設定之位準或該調光器之相角之一準確指示。在各種實 靶例中,如一般技術者應瞭解,可使用計數器值之一預定 函數計算(例如,藉由該微控制器615)相角值,其中該函數 可改變以便提供任何特定情形之獨特利益或以滿足各種實 施之應用特定設計要求。 再參考圖6,該微控制器615亦可經組態以偵測該調光器 (圖中未展示)及/或該功率轉換器62〇之不適當操作(造成該 LED負載640輸出閃爍光),且以識別並實施校正動作,如 上文參考圖4及圖5闡述。在描繪的實例中,該控制電路 600包含代表性電阻洩放電路65〇,出於闡述目的假設該電 阻洩放電路650為最高優先級校正動作。該電阻洩放電路 650包含與一開關(描繪為電晶體651)串聯連接之電阻器 652。該電晶體65丨展示為一場效應電晶體(FET),舉例而 5 ’諸如一金屬氧化物半導體場效應電晶體(M〇SFET)或 砷化鎵場效應電晶體(GaAs FET),但在不背離本發明教示 之範圍情況下,可併入一般技術者之見識内的其他類型 FET及/或其他類型電晶體。 忒電晶體65 1之一閘極經由控制線659連接至.該微控制器 615。因此,該微控制器615能夠選擇性導通該電晶體651 以便切換入該電阻洩放電路65〇(例如,根據圖5之方塊 S482)及關斷該電.晶體651以斷開該電阻洩放電路65〇(舉例 而言)以實施下一最高優先級校正動作(例如,根捸圖5之方 塊S485)。當該電晶體651導通時,該電阻器尺652之電阻與155843.doc •26· S 201215222 A digital sampling signal within a predetermined time immediately below the cycle. Each time the signal is sampled, it is determined in block S823 whether the sample has a high level (e.g., 'digit "1") or a low level (e.g., digital "〇"). In the depicted embodiment, a comparison is made in block S823 to determine if the sample is a digit "1." When the sampling coefficient bit is "1" (block s823: YES), a counter is incremented in block S824, and when the sample is not digit "i" (block S823: NO), a small delay is inserted in block 8825. Inserting this delay causes the number of clock cycles (e.g., the microcontroller 6:15) to be equal regardless of whether the s-th sampling is determined to be a digital "1" or a digital "〇". In block S826, it is determined whether the entire main power half cycle has been sampled. When the main power half cycle is incomplete (block S826: NO), the process returns to block S822 to resample the signal at the digital input 61 8 . When the main power supply half cycle is complete (block S826: YES), the sampling is stopped and the counter value accumulated in block S824 is recognized as the current value of the phase angle in block S827, and the counter is reset to 〇. The counter value can be stored in a memory, an example of which is set forth above. The microcontroller 615 can then wait for the next rising edge to resume sampling. For example, it can be assumed that the microcontroller 615 makes 255 samples during a main power half cycle. When the dimmer phase angle is set by the slider at the top of its range (e.g., as shown in Figure 7A), the counter will increase to approximately 255 in block S824 of Figure 8. When the dimmer phase angle is set by the slider at the bottom of its range (e. g., as shown in Figure 7C), the counter will increase to only about 1 或 or 20 in block S824. When the dimmer phase angle is set somewhere in the middle of its range (eg, as shown in Figure 7B) 'at block S824 t the counter will increase to a large 155843.doc • 27 · 201215222 about 128 ^ so the counter The value gives the microcontroller 615 an indication of the level at which the dimmer is set or one of the phase angles of the dimmer. In various real-world examples, as one of ordinary skill will appreciate, the phase angle value can be calculated (e.g., by the microcontroller 615) using a predetermined one of the counter values, wherein the function can be changed to provide uniqueness for any particular situation. Benefits or application-specific design requirements to meet various implementations. Referring again to FIG. 6, the microcontroller 615 can also be configured to detect improper operation of the dimmer (not shown) and/or the power converter 62 (causing the LED load 640 to output blinking light). And to identify and implement the corrective action, as explained above with reference to Figures 4 and 5. In the depicted example, the control circuit 600 includes a representative resistive bleeder circuit 65, which is assumed to be the highest priority corrective action for purposes of illustration. The resistance bleeder circuit 650 includes a resistor 652 connected in series with a switch (depicted as transistor 651). The transistor 65A is shown as a field effect transistor (FET), for example, 5' such as a metal oxide semiconductor field effect transistor (M〇SFET) or a gallium arsenide field effect transistor (GaAs FET), but not Other types of FETs and/or other types of transistors that are within the ordinary skill of the art can be incorporated without departing from the scope of the present teachings. A gate of the germanium transistor 65 1 is coupled to the microcontroller 615 via a control line 659. Therefore, the microcontroller 615 can selectively turn on the transistor 651 to switch into the resistance bleeder circuit 65 (eg, according to block S482 of FIG. 5) and turn off the transistor 651 to turn off the resistor discharge. Path 65 (for example) to implement the next highest priority corrective action (e.g., block S485 of Figure 5). When the transistor 651 is turned on, the resistance of the resistor scale 652 is

155843.doc •28· S 201215222 S亥LED負載640並聯連接以沒取額外電流且以增加調光器 之負載。而且,如上文闡述,當該(等)校正動作(包含該電 阻洩放電路65〇之實施)不成功時,該微控制器6丨5可經組 態以(舉例而言)經由控制線629關閉該功率轉換器62〇。此 外,該微控制器615可經組態以執行一或多個額外控制演 算法,以使用經由該控制線629之一功率控制信號基於(至 少部分)所偵測相角動態調整該功率轉換器6 2 〇之一操作 一般而言,希望確保由一固態照明器具輸出的光不會由 於驅動器(例如’功率轉換器)與相位截波調光器之間之不 相容而發生閃爍。根據各種實施例,—處理程序偵測不適 當操作、嘗試校正該不適當操作且若該不適#操作不能由 所嘗試校正解決,則關掉由該固態照明器具輸出的光(例 如,藉由關閉該功率轉換器)e因此,可消除閃爍,且該 功率轉換器能夠與不同調光器合作而不受潛在不相容限 制。 體=種實施例中’舉例而言’可藉由由硬體、_或軟 測電路=何組合構成之一或多個處理電路實施該相角偵 ’、路及/或該微.控制器615之功能,且可包己 揮發記憶體)’該可執行碼允許其執行各種功 言’可使用謂c、FPGA及類似物實施該功能。 偵測及校正不適當調光器操作 壓作缺★T W 由輸入主電源 之不對稱正半循環與負半循環所指示)可與具有 存可執行軟請體可執料之記憶體(❹,非 能 舉例 155843.doc •29- 201215222 固態照明(例如LED)負載之任何可調光功率轉換器一起使 用’期望消除光閃爍或增加與多種相位截波調光器之相容 性°根據各種實施例,可在各種基於LED的光源中實施該 相角偵測電路。此外,其可用作為對各種產品之「智慧」 改良之一構建組塊以使其等成為更易用於調光器(diminer_ friendly)。 雖然本文已描述並繪示多個發明性實施例,但一般技術 者將容易想像多種其他構件及/或結構用於執行功能及/或 獲得本文描述的結果及/或優點之一或多者,且認為此等 改變及/或修改之每—者在本文描述的發明性實施例之範 圍内。更-般而言’熟習此項技術者將容易瞭解本文描述 的所有參數、尺寸、材料及組態意為例示性且實際參數、 尺寸 用0 明教示之特定應 材料及/或組態將取決於使用本發 叫々沄。此外 特徵、系、统、物品、材料、套件及/或方 1¾ 加士:工 ·、,K 丨丨 ΛΛ· . . ^ 熱習此項技術者將認識到或能夠只使用例行試驗確認; 文描述的發明性實施例之許多等效物1此,應睁解前立 =例:舉例說明且在隨附申請專利範圍及其之等效則 圍内’除此之外可如特定描述及申請的實踐發 例。本發明之發明性實施例係關於本文描述的各個㈣ 徵、系統、物品:材料、套件及/或方法。此外,若此, 致 套件. 兩個或兩個以上此等特徵、系 W 〇〇 、材絲 或方法之任何組合包含在本發明之範圍内。’ 如本文定義並使用的所有定義應 〜里解為控制字典定4 155843.doc 201215222 以引用方式併入的文檔中之定義及/或所定義術語之普通 意思。 除非明確指示出相反情況,否則如本說明書中及申請專 利範圍中使用的不定冠詞「—」&「—個」應理解為意指 「至少一」。 如本說明書中及申請專利範圍中使用的短語「及/或」 應理解為意指如此結合的元件之「任一或兩者」,即,同 時出現在一些情況中及分開出現在其他情況中之元件。可 以相同方式解釋以「及/或」列出的多個元件,即,如此 結合該等元件之「一或多者」。除了由「及/或」從句特定 識別的元件之外,可視情況出現其他元件,無論與此等特 定識別的元件是否有關。 如本說明書中及申請專利範圍中使用,參考一或多個元 件之一列表,短語「至少一者」應理解為意指選自該元件 列表之任一或多個元件之至少一元件,但不必要包含該元 件列表内特定列出的各個及每個元件之至少一者且不排除 該元件列表中的元件之任何組合。此定義亦允許視情況可 出現除了短語「至少一者」指代的該元件列表内特定識別 的元件之外的元件,無論與此等特定識別的元件是否有 關。因此,作為一非限制性實例,對「A及B之至少一 者」(或等效地「A或B之至少一者」,或等效地「A及/或6 之至少一者」)可指:在一實施例中,至少一(視情況包含 個以上)A ’而不出現b(且視情況包含除了 b之外的元 件);在另一實施例中,至少一(視情況包含一個以上)B, 155843.doc •31 · 201215222 而不出現A(且視情況包含除了 A之外的元件);在又另一實 施例中,至少一(視情況包含一個以上)八及至少視情況 包含一個以上)B(且視情況包含其他元件);等等。 亦應瞭解除非清楚指示出相反情況,在本文申全主的勺八 一個以上步驟或動作之任何方法中,該方法之步驟或動作 之次序不必要受限於所陳述的方法之步驟或動作之次序。 而且,申請專利範圍中圓括弧間顯現的任何參考數字或其 他字母僅為方便性而提供且不意欲以任何方式限制申請專 利範圍》 在申請專利範圍以及上文說明書中,所有連接詞(諸如 包括」、「包含」、「攜載」、「具有」、「含有」、「涉及」、 「持有」、「由…組成」及類似物)應理解為開放式,即, 意指包含但不限於。僅連接詞「由…構成」及「本質上 由…構成」分別係封閉式或半封閉式連接詞,如章節 2111.03之美國專利局專利審查程序手冊中闡述。 【圖式簡單說明】 圖1A至圖1C展示具有對稱及不對稱半循環之未經整流 波形及經截波整流波形。 圖2係展示根據一代表性實施例之一可調光照明系統之 一方塊圖。 圖3A及圖3B展示根據一代表性實施例自一調光器之不 對稱半循環之取樣波形及對應數位脈衝。 圖4係展示根據一代表性實施例偵測及校正一可調光照 明系統之不適當操作之一處理程序之一流程圖。155843.doc •28· S 201215222 S-Hail LED Load 640 is connected in parallel to take no extra current and to increase the load on the dimmer. Moreover, as set forth above, when the (equal) corrective action (including the implementation of the resistive bleeder circuit 65) is unsuccessful, the microcontroller 丨5 can be configured, for example, via the control line 629. The power converter 62 is turned off. Moreover, the microcontroller 615 can be configured to perform one or more additional control algorithms to dynamically adjust the power converter based on (at least in part) the detected phase angle using a power control signal via the control line 629 6 2 One of the operations In general, it is desirable to ensure that the light output by a solid state lighting fixture does not flicker due to incompatibility between the driver (eg, 'power converter) and the phase cutoff dimmer. According to various embodiments, the handler detects an improper operation, attempts to correct the inappropriate operation, and if the unsuit # operation cannot be resolved by the attempted correction, turns off the light output by the solid state lighting fixture (eg, by turning off The power converter)e thus eliminates flicker and the power converter can cooperate with different dimmers without potential incompatibilities. In the embodiment, the 'example' can be implemented by one or more processing circuits composed of hardware, _ or soft circuit = combination, and the micro-controller. The function of 615, and can enrich the memory) 'The executable code allows it to perform various kinds of words' can be implemented using c, FPGA and the like. Detecting and correcting improper dimmer operation is not enough. ★TW is indicated by the asymmetric positive half cycle and negative half cycle of the input main power supply.) It can be stored with the memory that can be executed by the executable software (❹, Non-energy 155843.doc • 29- 201215222 Solid-state lighting (eg LED) loads with any tunable optical power converter used together 'expected to eliminate light flicker or increase compatibility with multiple phase chop dimmers° according to various implementations For example, the phase angle detection circuit can be implemented in various LED-based light sources. In addition, it can be used as one of the "wisdom" improvements of various products to make it easier to use for dimmers (diminer_friendly Although a number of inventive embodiments have been described and illustrated herein, one of ordinary skill in the art will readily recognize a variety of other components and/or structures for performing functions and/or obtaining one or more of the results and/or advantages described herein. And each of these changes and/or modifications are considered to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate all the parameters described herein. , size, material, and configuration are intended to be exemplary and actual parameters and dimensions specified by the 0 specific teaching materials and / or configuration will depend on the use of this call. In addition, features, systems, systems, materials, materials, Kits and/or Squares: ⁄······················································································ The present invention should be construed as an example and is to be construed as a specific description and application of the invention in the scope of the appended claims. Embodiments relate to the various (four) signs, systems, articles: materials, kits, and/or methods described herein. Further, if so, the kit. Two or more of these features, systems, wires, or methods Any combination of these is included within the scope of the invention. 'All definitions as defined and used herein shall be construed as a control dictionary. 4 155843.doc 201215222 Definitions in the documents incorporated by reference and/or defined terms Common meaning. Unless clear The indefinite article "-" & "-" is used to mean "at least one" as used in this specification and the scope of the claims. The term "and/or" is understood to mean "either or both" of the elements so combined, that is, elements that occur in some cases and separately in other instances. Or "a plurality of elements listed, that is, "one or more" of such elements. In addition to the elements specifically identified by the "and/or" clause, other elements may appear as appropriate, regardless of such Whether a particular identified component is relevant. As used in this specification and in the claims, reference to a list of one or more components, the phrase "at least one" is understood to mean any one or more selected from the list of components. At least one element of the elements, but does not necessarily include at least one of the individual and each of the elements listed in the list of elements and does not exclude any combination of elements in the list of elements. This definition also allows for the appearance of elements other than the specifically identified elements in the list of elements referred to in the phrase "at least one", as appropriate, whether or not associated with such specifically identified elements. Thus, as a non-limiting example, "at least one of A and B" (or equivalently "at least one of A or B", or equivalently "at least one of A and / or 6") It may be noted that, in an embodiment, at least one (including more than one) A' does not appear b (and optionally includes elements other than b); in another embodiment, at least one (as appropriate) More than one) B, 155843.doc • 31 · 201215222 without A (and optionally including elements other than A); in yet another embodiment, at least one (including one or more as appropriate) and at least The situation contains more than one) B (and other components as appropriate); and so on. It should also be understood that the steps or actions of the method are not necessarily limited by the steps or The order. Moreover, any reference numbers or other letters appearing between the parentheses in the scope of the claims are provided for convenience only and are not intended to limit the scope of the claims in any way. In the scope of the claims and the above description, all the conjunctions (including "including", "carrying", "having", "containing", "involving", "holding", "consisting of" and the like) shall be understood as open, ie, meaning including but not Limited to. Only the conjunctions "consisting of" and "consisting essentially of" are closed or semi-closed conjunctions, as set forth in the US Patent Office Patent Examining Procedures Manual of Section 2111.03. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A to Fig. 1C show an unrectified waveform and a chopped rectified waveform having symmetric and asymmetric half cycles. 2 is a block diagram showing a dimmable lighting system in accordance with a representative embodiment. 3A and 3B show sampled waveforms and corresponding digital pulses from an asymmetric half cycle of a dimmer, in accordance with a representative embodiment. 4 is a flow chart showing one of the processing procedures for detecting and correcting an improper operation of an adjustable illumination system in accordance with a representative embodiment.

155843.doc •32· S 201215222 識別並實施校正動作之 圖5係展示根據一代表性實施例 一處理程序之一流程圖。 圖6係展示根據一代表性實施例用於一照明系統之一控 制電路之一電路圖。 圖7A至圖7C展示根據一代表性實施例之一調光器之取 樣波形及對應數位脈衝。 圖8係展示根據一代表性實施例偵測相角之一處理程序 之一流程圖。 【主要元件符號說明】 200 照明系統 201 電壓主電源 204 調光器 204a 滑件 205 整流電路 210 相角偵測電路 220 功率轉換器 229 控制線 240 固態照明負載 331a 正半循環波形 331b 第一數位脈衝 332a 負半循環脈衝 332b 第一數位脈衝 600 控制電路 605 整流電路 610 相角偵測電路 155843.doc •33· 201215222 615 微控制器 618 數位輸入端 619 數位輸出端 620 功率轉換器 629 控制線 640 LED負載 641 LED 642 LED 650 電阻洩放電路 651 電晶體 C613 第一電容器 C614 第二電容器 C615 輸入濾波電容器 D601 二極體 D602 二極體 D603 二極體 D604 二極體 D611 第一二極體 D612 第二二極體 N1 偵測節點 N2 經整流電壓節點 R611 第一電阻器 R612 第二電阻器 R652 電阻器 Vcc 電壓源 155843.doc -34-155843.doc • 32· S 201215222 Identifying and Implementing Corrective Actions FIG. 5 is a flow chart showing one of the processing procedures in accordance with a representative embodiment. Figure 6 is a circuit diagram showing one of the control circuits for an illumination system in accordance with a representative embodiment. 7A-7C show sample waveforms and corresponding digital pulses of a dimmer in accordance with a representative embodiment. Figure 8 is a flow chart showing one of the processing procedures for detecting phase angles in accordance with a representative embodiment. [Main component symbol description] 200 Lighting system 201 Voltage main power supply 204 Dimmer 204a Slider 205 Rectifier circuit 210 Phase angle detection circuit 220 Power converter 229 Control line 240 Solid state lighting load 331a Positive half cycle waveform 331b First digital pulse 332a Negative half cycle pulse 332b First digit pulse 600 Control circuit 605 Rectifier circuit 610 Phase angle detection circuit 155843.doc •33· 201215222 615 Microcontroller 618 Digital input 619 Digital output 620 Power converter 629 Control line 640 LED Load 641 LED 642 LED 650 Resistance bleeder circuit 651 Transistor C613 First capacitor C614 Second capacitor C615 Input filter capacitor D601 Diode D602 Diode D603 Diode D604 Diode D611 First diode D612 Second Diode N1 Detection Node N2 Rectified Voltage Node R611 First Resistor R612 Second Resistor R652 Resistor Vcc Voltage Source 155843.doc -34-

Claims (1)

201215222 七、申請專利範圍: 1. 一種偵測及校正包含一固態照明負载之—照明系統之不 適當操作之方法,該方法包括: 判定連接至驅動該固態照明負載之一功率轉換器之一 調光器之一相肖之第一值及第二值1第一值及該第二 值對應於一輸入主電源電壓信號之連續半循環; 判定該第一值與該第二值之間之—差;及 當該差大於-差臨限值時’指示該輸入主電源電麼信 號之不對稱波形,實施一選擇的校正動作。 2. 如請求項丨之方法,其中實施該選擇的第一 步驟包括: 初之 判疋一校正動作是否已起作用丨及 虽判定沒有校正動作起作用時, 正動作作為選擇的校正動作。仏―最高優先級校 3. 如請求項2之方法,其中實施該選擇的 進—步包括: 動作之步驟 當判定-校正動作已起作用時 動作是否可行。 其他校正 4.如請求項3之方法,其令實 /、τ |施该選摆 進-步包括: 乂動作之步驟 最高 定至少-其他校正動作可行 二::正動作作為該選擇的校正動作” 二求項3之方法,其進_步包括: “!定至少一其他校正動 T仃時,關閉該功率轉 I55843.doc 201215222 換器。 6.如請求項5之方法,其進一步包括: 判疋s亥調光器之該相角之第三值及第四值,該第三值 及該第四值對應於該輸入主電源電壓信號之連續半循 環; 判疋該第三值與該第四值之間之/差;及 當判定該第三值與該第四值之間之該差小於該差臨限 值時’指示該輸入主電源電壓信號之對稱波形’驅動該 功率轉換器。 如請求項1之方法,其中判定該相角之該第一值及該第 二值之步驟.包括: 取樣對應於該輸入主電源電壓信號之波形之數位脈 銜;及 判定經取樣數位脈衝之長度,該長度對應於該調光器 之一調光位準。 8.如請求们之方法’其中該校正動作包括:接入與該固 態照明負載並聯之一電阻浪放電路。 9·如請求们之方法,其中判定該第一值 之該差包括: 將該第一值儲存為一先前半循環位準; 將該第二值儲存為一當前半循環位準;及 10二:存的當前半循環位準及先前半循環位準。 該選擇的校正動作消除由該固態照明負载輪出= 155843.doc 201215222 爍。 ιι· 一種用於控制傳遞至一固態照明負載之功率之系統,該 系統包括: . 一調光器,其連接至電壓主電源且經組態以可調整地 調光由該固態照明負載輸出的光; 一功率轉換器,其經組態以回應於源自於電壓主電源 之一經整流輸入電壓信號而驅動該固態照明負載;及 一相角偵測電路,其經組態以偵測具有輸入電壓信號 之連續半循環之調光器之一相角、以判定該等連續半循 環之間之一差,且當該差大於一差臨限值時指示該輸 入電壓信號之不對稱波形,實施一校正動作。 12. 如請求項m统,其中該功率轉換器以一開放迴路或 前向回饋方式進行操作。 13. 如請求㈣之系統’其中該相角偵測電路藉由取樣對應 於該輸入電壓信號之波形之數位脈衝且基於經取樣數位 脈衝之長度測量該等連續半循環而偵測該相角。 14·如响求項13之系統,其中該相角㈣電路藉由分別減去 . 對f於該等連續半循環之該等經取樣數位脈衝之長度而 判定該等連續半循環之間之差。 • 15.如請求項11之系統,其中該相角_電路包括: 處理器,其具有一數位輸入端; 第一極體,其連接在該數位輸入端與一電壓源之 間; ’、 ·;:;—第二二極體’其連接在該數位輸人端與接地之間; 155843.doc 201215222 一第一電容器,其連接在該數位輸入端與一偵測節點 之間; 一第二電容器’其連接在該偵測節點與接地之間;及 電阻’其連接在該偵測節點與接收經整流輸入電壓 之一經整流電壓節點之間, 其中該處理器經組態以取樣對應於該數位輸入端處之 輸入電壓信號之波形之數位脈衝且以基於經取樣數位脈 衝之長度測量連續半循環。 16. 17. 18. 如請求項11之系統,其中該相角偵測電路進一步經組態 以選擇具有一最高優先級之校正動作。 如凊求項1 6之系統,其中該相角偵測電路進一步經組態 以當實施選擇的校正動作但該等連續半循環之間之差繼 續大於該差臨限值時關閉該功率轉換器。 一種回應於一相位截波調光器消除由一功率轉換器驅動 之—發光二極體(LED)光源輸出的光之閃爍之方法,該 方法包括: 藉由測量一輸入電壓信號之半循環而偵測一調光器相 角; 比較連續半循環以判定一半循環差; 比較諒半循環差與一預定差臨限值’其中該半循環差 ^於该差臨限值指示該輸入電壓信號之波形對稱,而該 半循環差大於該差臨限值指示該輪入電壓信號之波形不 對稱;及 / 當該半循環差大於該差臨限值時’實施一校正動作。 155843.doc S 201215222 19. 如請求項18之方法,其進一步包括: 實施該校正動作之後,比較該半循環差與該預定差臨 限值;及 20. 當該半循環差大於該差臨限值且另 實施時’實施另一校正動作。 如請求項19之方法,其進一步包括: 备該半循環差大於該差臨限值且另 於實施時,關閉該功率轉換器。 一校正動作可用於 一校正動作不可用 155843.doc201215222 VII. Patent Application Range: 1. A method for detecting and correcting improper operation of a lighting system comprising a solid-state lighting load, the method comprising: determining that one of the power converters connected to drive the solid-state lighting load is adjusted The first value and the second value 1 of the first phase and the second value correspond to a continuous half cycle of an input main power voltage signal; determining between the first value and the second value - a difference; and when the difference is greater than - the difference threshold, 'indicating the asymmetric waveform of the input main power supply signal, performing a selected corrective action. 2. The method of claim 1, wherein the first step of implementing the selection comprises: initial determining whether a corrective action has occurred, and determining that no corrective action is active, the positive action being the selected corrective action.仏—Highest priority school 3. As in the method of claim 2, the step of implementing the selection includes: Steps of the action When the decision-correction action has taken effect, the action is feasible. Other corrections 4. The method of claim 3, wherein the real /, τ | is selected to include: the step of the 乂 action is at least at least - the other corrective action is feasible 2: the positive action as the corrective action of the selection The method of the second solution 3, the step _ includes: "! When at least one other correction T 仃 is set, the power is turned off to the I55843.doc 201215222 converter. 6. The method of claim 5, further comprising: determining a third value and a fourth value of the phase angle of the shai dimmer, the third value and the fourth value corresponding to the input main power voltage signal a continuous half cycle; determining a difference between the third value and the fourth value; and indicating that the input is different when the difference between the third value and the fourth value is less than the difference threshold The symmetrical waveform of the mains voltage signal drives the power converter. The method of claim 1, wherein the step of determining the first value and the second value of the phase angle comprises: sampling a digital pulse corresponding to a waveform of the input main power voltage signal; and determining the sampled digital pulse The length corresponding to one of the dimming levels of the dimmer. 8. The method of claimants wherein the corrective action comprises: accessing a resistive wave circuit in parallel with the solid state lighting load. 9. The method of claimant, wherein determining the difference of the first value comprises: storing the first value as a previous semi-circular level; storing the second value as a current semi-circular level; and 10 two : Current half cycle level and previous half cycle level stored. The selected corrective action is eliminated by the solid state lighting load wheel = 155843.doc 201215222 squeak. A system for controlling the power delivered to a solid state lighting load, the system comprising: a dimmer coupled to the voltage mains and configured to adjustably dim the output of the solid state lighting load Light power; a power converter configured to drive the solid state lighting load in response to a rectified input voltage signal from one of the voltage main power sources; and a phase angle detection circuit configured to detect the input a phase angle of one of the dimmers of the continuous half cycle of the voltage signal to determine a difference between the consecutive half cycles, and when the difference is greater than a difference threshold, indicating an asymmetric waveform of the input voltage signal, A corrective action. 12. If the request is in the system, the power converter operates in an open loop or forward feedback manner. 13. The system of claim (4) wherein the phase angle detection circuit detects the phase angle by sampling a digital pulse corresponding to a waveform of the input voltage signal and measuring the consecutive half cycles based on the length of the sampled digital pulse. 14. The system of claim 13, wherein the phase angle (four) circuit is subtracted from each other to determine the difference between the consecutive half cycles of the length of the sampled digital pulses of the consecutive half cycles . 15. The system of claim 11, wherein the phase angle_circuit comprises: a processor having a digital input; a first polar body coupled between the digital input and a voltage source; ;:; -Second diode 'connected between the digital input and ground; 155843.doc 201215222 A first capacitor connected between the digital input and a detection node; a capacitor 'connected between the detection node and ground; and a resistor connected between the detection node and a rectified voltage node receiving one of the rectified input voltages, wherein the processor is configured to sample corresponding to the A digital pulse of the waveform of the input voltage signal at the digital input and measured for a continuous half cycle based on the length of the sampled digital pulse. 16. 17. The system of claim 11, wherein the phase angle detection circuit is further configured to select a corrective action having a highest priority. The system of claim 16, wherein the phase angle detection circuit is further configured to turn off the power converter when a selected corrective action is performed but the difference between the consecutive half cycles continues to be greater than the difference threshold . A method for canceling flicker of light output by a light-emitting diode (LED) source driven by a power converter in response to a phase-cut dimmer, the method comprising: by measuring a half cycle of an input voltage signal Detecting a dimmer phase angle; comparing a continuous half cycle to determine a half cycle difference; comparing a half cycle difference with a predetermined difference threshold 'where the half cycle difference ^ is the difference threshold indicating the input voltage signal The waveform is symmetrical, and the half cycle difference is greater than the difference threshold indicating a waveform asymmetry of the wheeled voltage signal; and / when the half cycle difference is greater than the difference threshold, a corrective action is performed. 19. The method of claim 18, further comprising: comparing the half cycle difference to the predetermined difference threshold after performing the correcting action; and 20. when the half cycle difference is greater than the difference threshold When the value is implemented and another implementation is performed, another corrective action is performed. The method of claim 19, further comprising: turning off the power converter when the half cycle difference is greater than the difference threshold and otherwise implemented. A corrective action can be used for a corrective action not available 155843.doc
TW100115490A 2010-05-17 2011-05-03 Method and apparatus for detecting and correcting improper dimmer operation TW201215222A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34528310P 2010-05-17 2010-05-17

Publications (1)

Publication Number Publication Date
TW201215222A true TW201215222A (en) 2012-04-01

Family

ID=44120307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115490A TW201215222A (en) 2010-05-17 2011-05-03 Method and apparatus for detecting and correcting improper dimmer operation

Country Status (11)

Country Link
US (1) US9572215B2 (en)
EP (2) EP2572556B1 (en)
JP (1) JP5785611B2 (en)
KR (1) KR20130080013A (en)
CN (1) CN102907175B (en)
BR (1) BR112012029146A2 (en)
CA (1) CA2799631A1 (en)
ES (1) ES2832736T3 (en)
RU (1) RU2557670C2 (en)
TW (1) TW201215222A (en)
WO (1) WO2011145009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596987B (en) * 2015-09-10 2017-08-21 Panasonic Ip Man Co Ltd Dimming device
TWI620466B (en) * 2015-06-08 2018-04-01 Panasonic Ip Man Co Ltd Dimming device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9326346B2 (en) 2009-01-13 2016-04-26 Terralux, Inc. Method and device for remote sensing and control of LED lights
US8358085B2 (en) 2009-01-13 2013-01-22 Terralux, Inc. Method and device for remote sensing and control of LED lights
CN104254178A (en) 2009-11-17 2014-12-31 特锐拉克斯有限公司 Led power-supply detection and control
US20120139442A1 (en) * 2010-12-07 2012-06-07 Astec International Limited Mains Dimmable LED Driver Circuits
US20130049631A1 (en) * 2011-08-23 2013-02-28 Scott A. Riesebosch Led lamp with variable dummy load
US8907588B2 (en) 2011-12-16 2014-12-09 Terralux, Inc. Transformer voltage detection in dimmable lighting systems
WO2013090904A1 (en) 2011-12-16 2013-06-20 Terralux, Inc. System and methods of applying bleed circuits in led lamps
AT13358U1 (en) * 2012-04-13 2013-11-15 Tridonic Gmbh & Co Kg Control of lamps via an AC supply voltage
US9655202B2 (en) 2012-07-03 2017-05-16 Philips Lighting Holding B.V. Systems and methods for low-power lamp compatibility with a leading-edge dimmer and a magnetic transformer
WO2014188228A1 (en) * 2013-05-22 2014-11-27 Lau Chun To Power up restrike for led dimmer
US9265119B2 (en) 2013-06-17 2016-02-16 Terralux, Inc. Systems and methods for providing thermal fold-back to LED lights
US9996096B2 (en) * 2014-03-28 2018-06-12 Pass & Seymour, Inc. Power control device with calibration features
EP3609298A1 (en) * 2014-11-04 2020-02-12 Signify Holding B.V. Led lighting system
KR101921226B1 (en) * 2017-02-14 2019-02-13 (주)이젝스 Power supply apparatus and method therefor
US10123393B1 (en) 2017-08-01 2018-11-06 Kleverness Incorporated Power supply for a two-wire smart switch and lighting loads thereof
US10201064B1 (en) 2017-08-01 2019-02-05 Kleverness Incorporated Power supply for a two-wire smart dimmer and lighting loads thereof
US10201059B1 (en) 2017-08-01 2019-02-05 Kleverness Incorporated Method for analyzing operating parameters for lighting technologies
CN109587866B (en) * 2017-09-28 2021-06-18 朗德万斯公司 Electronic driver for LED lighting module and LED lamp
CN107979888B (en) * 2017-11-03 2023-11-17 杰华特微电子股份有限公司 LED dimming circuit and method
CN108024416B (en) * 2017-12-21 2024-02-23 杭州必易微电子有限公司 LED current ripple eliminating circuit
US20200008277A1 (en) * 2018-06-29 2020-01-02 Markus Zeigler Switchable stabilization load at low dimming levels
RU194528U1 (en) * 2019-10-17 2019-12-13 Акционерное общество "Федеральный центр науки и высоких технологий "Специальное научно-производственное объединение "Элерон" (АО "ФЦНИВТ "СНПО "Элерон") PULSE POWER SUPPLY FOR LED LUMINAIRES

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239255A (en) * 1991-02-20 1993-08-24 Bayview Technology Group Phase-controlled power modulation system
US5559395A (en) * 1995-03-31 1996-09-24 Philips Electronics North America Corporation Electronic ballast with interface circuitry for phase angle dimming control
US5847450A (en) 1996-05-24 1998-12-08 Microchip Technology Incorporated Microcontroller having an n-bit data bus width with less than n I/O pins
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6016038A (en) 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6091205A (en) * 1997-10-02 2000-07-18 Lutron Electronics Co., Inc. Phase controlled dimming system with active filter for preventing flickering and undesired intensity changes
PL3589081T3 (en) 2004-03-15 2024-05-20 Signify North America Corporation Power control methods and apparatus
CN100546418C (en) * 2004-05-19 2009-09-30 高肯集团有限公司 Be used for the light adjusting circuit of LED lighting apparatus and the device that keeps the TRIAC conducting
JP4479464B2 (en) * 2004-10-26 2010-06-09 パナソニック電工株式会社 Light control device
US7375871B2 (en) * 2004-11-03 2008-05-20 Leviton Manufacturing Co., Inc. Electrochromic glass control device
US7242150B2 (en) * 2005-05-12 2007-07-10 Lutron Electronics Co., Inc. Dimmer having a power supply monitoring circuit
RU2298217C1 (en) * 2006-01-10 2007-04-27 Общество с ограниченной ответственностью "Центр Новых Технологий "НУР" Phased power controller
US7656103B2 (en) * 2006-01-20 2010-02-02 Exclara, Inc. Impedance matching circuit for current regulation of solid state lighting
US7804256B2 (en) * 2007-03-12 2010-09-28 Cirrus Logic, Inc. Power control system for current regulated light sources
US7667408B2 (en) 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US8018171B1 (en) * 2007-03-12 2011-09-13 Cirrus Logic, Inc. Multi-function duty cycle modifier
US20100218372A1 (en) * 2007-10-25 2010-09-02 Osram Gesellschaft Mit Beschraenkter Haftung Method of soldering components on circuit boards and corresponding circuit board
US7868561B2 (en) * 2007-10-31 2011-01-11 Lutron Electronics Co., Inc. Two-wire dimmer circuit for a screw-in compact fluorescent lamp
WO2009085244A1 (en) * 2007-12-21 2009-07-09 Cypress Semiconductor Corporation Controlling a light emitting diode fixture
US20090160627A1 (en) * 2007-12-21 2009-06-25 Cypress Semiconductor Corporation Power line communicaton for electrical fixture control
US8115419B2 (en) * 2008-01-23 2012-02-14 Cree, Inc. Lighting control device for controlling dimming, lighting device including a control device, and method of controlling lighting
WO2009101544A2 (en) 2008-02-12 2009-08-20 Philips Intellectual Property & Standards Gmbh Control circuit of a dimmer assembly for dimming an energy-saving lamp
US8102167B2 (en) * 2008-03-25 2012-01-24 Microsemi Corporation Phase-cut dimming circuit
US8212491B2 (en) * 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
US8093826B1 (en) * 2008-08-26 2012-01-10 National Semiconductor Corporation Current mode switcher having novel switch mode control topology and related method
US8922133B2 (en) * 2009-04-24 2014-12-30 Lutron Electronics Co., Inc. Smart electronic switch for low-power loads
KR101799486B1 (en) 2009-09-28 2017-11-20 필립스 라이팅 홀딩 비.브이. Method and apparatus providing deep dimming of solid state lighting systems
US8729814B2 (en) * 2009-11-25 2014-05-20 Lutron Electronics Co., Inc. Two-wire analog FET-based dimmer switch
US8664881B2 (en) * 2009-11-25 2014-03-04 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US8102683B2 (en) * 2010-02-09 2012-01-24 Power Integrations, Inc. Phase angle measurement of a dimming circuit for a switching power supply
WO2011121511A1 (en) 2010-04-01 2011-10-06 Koninklijke Philips Electronics N.V. Apparatus and method for forming a concentration image of the concentration of magnetic particles arranged in a field of view field of the invention
US8242766B2 (en) * 2010-04-20 2012-08-14 Power Integrations, Inc. Dimming control for a switching power supply
US8441213B2 (en) * 2010-06-29 2013-05-14 Active-Semi, Inc. Bidirectional phase cut modulation over AC power conductors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620466B (en) * 2015-06-08 2018-04-01 Panasonic Ip Man Co Ltd Dimming device
TWI596987B (en) * 2015-09-10 2017-08-21 Panasonic Ip Man Co Ltd Dimming device
US10390401B2 (en) 2015-09-10 2019-08-20 Panasonic Intellectual Property Management Co., Ltd. Lighting control device having a corrector integrally with a controller thereof for correcting a dimming prescribed range stored therein

Also Published As

Publication number Publication date
EP2572556B1 (en) 2018-09-19
JP5785611B2 (en) 2015-09-30
WO2011145009A1 (en) 2011-11-24
US9572215B2 (en) 2017-02-14
EP3410826B1 (en) 2020-09-02
CA2799631A1 (en) 2011-11-24
CN102907175B (en) 2016-01-13
ES2832736T3 (en) 2021-06-11
KR20130080013A (en) 2013-07-11
US20130057180A1 (en) 2013-03-07
JP2013527574A (en) 2013-06-27
RU2012154312A (en) 2014-06-27
RU2557670C2 (en) 2015-07-27
EP3410826A1 (en) 2018-12-05
EP2572556A1 (en) 2013-03-27
BR112012029146A2 (en) 2016-08-09
CN102907175A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
TW201215222A (en) Method and apparatus for detecting and correcting improper dimmer operation
JP5773394B2 (en) Method and apparatus for providing deep dimming of a solid state lighting system
JP5829676B2 (en) Method and apparatus for adjusting the light output range of a semiconductor lighting load based on maximum and minimum dimmer settings
US10015860B2 (en) Method and apparatus for detecting presence of dimmer and controlling power delivered to solid state lighting load
US8816593B2 (en) Method and apparatus selectively determining universal voltage input for solid state light fixtures
JP5690930B2 (en) Bleed circuit to prevent inappropriate dimming operation and related method
US20120274216A1 (en) Selectively activated rapid start/bleeder circuit for solid state lighting system
US9949324B2 (en) Powerless bleeder
US20130141001A1 (en) Method and apparatus for increasing dimming range of solid state lighting fixtures
US9681507B2 (en) Switched-mode converter control for lighting applications
US9173273B2 (en) Solid state lightening driver with mixed control of power switch
KR20120062783A (en) Method and apparatus providing universal voltage input for solid state light fixtures