TW201212250A - Light/electric energy converting element and light/electric/chemical energy converting element - Google Patents

Light/electric energy converting element and light/electric/chemical energy converting element Download PDF

Info

Publication number
TW201212250A
TW201212250A TW99130825A TW99130825A TW201212250A TW 201212250 A TW201212250 A TW 201212250A TW 99130825 A TW99130825 A TW 99130825A TW 99130825 A TW99130825 A TW 99130825A TW 201212250 A TW201212250 A TW 201212250A
Authority
TW
Taiwan
Prior art keywords
refractive index
material layer
energy conversion
conversion element
substrate
Prior art date
Application number
TW99130825A
Other languages
Chinese (zh)
Other versions
TWI445187B (en
Inventor
Shu-Te Ho
Din-Ping Tsai
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW99130825A priority Critical patent/TWI445187B/en
Publication of TW201212250A publication Critical patent/TW201212250A/en
Application granted granted Critical
Publication of TWI445187B publication Critical patent/TWI445187B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention provides a light/electric energy converting element, comprising a first refraction coefficient substrate; a negative dielectric coefficient substance layer formed on the first refraction coefficient substrate; a second refraction coefficient substance layer formed on the negative dielectric coefficient substance layer; a light/electric energy converting substance layer formed on the second refraction coefficient substance layer; a third refraction coefficient substance layer formed on the light/electric energy converting substance layer; and a conductive layer formed on the third refraction coefficient substance layer, wherein the refraction coefficient of the second refraction coefficient substance layer is larger than that of the first refraction coefficient substrate. Compared to prior techniques, the light/electric energy converting element of the invention has advantages of high conversion efficiency to facilitate production with simple manufacturing processes and lower costs. The invention further provides a light/electric/chemical energy converting element.

Description

201212250 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種光電能轉換元件與光電化學能轉 換元件,尤關於一種利用全内反射之光電能轉換元件與光 電化學能轉換元件。 【先前技術】 近年來,由於工業化的結果,大量燃燒石化原料造成 溫室效應、全球暖化、與氣候變遷劇烈等各種生活環境惡 化情形,使得全世界的國家都體會到再生能源(renewable energy )的重要性。 吸收太陽光以產生電能的光電能轉換元件普遍稱為 太陽能電池(solar cell ),太陽能電池為一種取之不盡、與 用之不竭的再生能源之一,隨著半導體工業的迅速發展, 以早晶碎或神化嫁結晶材料為基礎的太陽能電池具有相當 高的光電轉換效率(約20%以上),不過,此類單晶材料 一直具有製程成本較高、與較易缺料的問題,使得在大面 積發電成本上相較於石化燃料一直居高不下而不具競爭 力。 自從90年代之後,電漿子學(plasmonics)開始被科 學家深入探討,電漿子太陽能電池(plasmonic solar cell, 簡稱PSC)的概念便脫穎而出,它是一種利用100奈米尺 度下的金屬(例如:金、銀、銅、紹、或綈等等)薄膜或 其奈米結構的集體電子震盪現象,一般稱其為表面電漿共 振(surface plasmon resonance,簡稱 SPR)效應,該表面 4 111722 201212250 電=2對其周圍的介電f產生極大的電場增強效果。 孟屬潯膜與介電質之間界面的表面電 為例,其激發表面雷將丘接 /、振效4 膜卜其巾—種方歧利用金屬薄 月吳上的週期性結構(链 导 沾他4旦々 〔§如.先柵),以提供入射光一個增加 的波向罝來激發表面雷將此 Μ^ψ^μ r,, ' 振’此種週期性結構通常由金 屬不未4(例如:奈米顆粒或奈米線等)所構成。201212250 VI. Description of the Invention: [Technical Field] The present invention relates to a photoelectric energy conversion element and a photoelectrochemical energy conversion element, and more particularly to a photoelectric energy conversion element and a photoelectrochemical energy conversion element using total internal reflection. [Prior Art] In recent years, as a result of industrialization, a large number of burning petrochemical raw materials have caused various environmental degradations such as the greenhouse effect, global warming, and severe climate change, making countries around the world realize the renewable energy. importance. Photoelectric energy conversion elements that absorb sunlight to generate electrical energy are commonly referred to as solar cells. Solar cells are one of the inexhaustible and inexhaustible renewable energy sources. With the rapid development of the semiconductor industry, Solar cells based on early crystallized or deified crystals have a relatively high photoelectric conversion efficiency (about 20% or more). However, such single crystal materials have always had the problems of high process cost and low material shortage. In terms of large-scale power generation costs, it has been consistently higher than petrochemical fuels and is not competitive. Since the 1990s, plasmonics began to be explored by scientists. The concept of plasmonic solar cell (PSC) stands out. It is a metal that uses 100 nm scale (eg: The collective electronic oscillation phenomenon of a film or its nanostructure, which is generally referred to as surface plasmon resonance (SPR) effect, is 4 111722 201212250 electricity = 2 A great electric field enhancement effect is produced on the dielectric f around it. For example, the surface electric energy of the interface between the decidua and the dielectric is the surface structure of the excitation surface, and the periodic structure of the metal thin moon is used. Dip him 4 denier [§.. first grid) to provide an increasing wave of incident light to excite the surface of the ray to Μ^ψ^μ r,, 'vibration' such a periodic structure usually from metal 4 (for example: nanoparticle or nanowire, etc.).

惟,由於金屬奈米結構的成形方法昂貴,且其製備方 法不易拓展至大面積萝迕 士丄^ 槓^的產業中,所以導致其應用範圍 大大地受到限制。 因此’如何解決習知光電能轉換元件之缺失,以節省 其成本,並增進其應用範圍,實已成目前虽欲解決的課題。 【發明内容】 ▲ II於以上所述習知技術之缺失,本發明提供一種光電 f轉換元件,係包括:第一折射係數基材;負介電係數物 質層,係設於該第-折射係數基材上;第二折射係數物質 參層,係設於該負介電係數物質上,且該第二折射係數物質 =之折射係數係大於該第一折射係數基材之折射係數;光 电月b轉換物質層,係設於該第二折射係數物質層上;第三 折射係數物質層,係設於該光電能轉換物質層上,且該第 一折射係數物質層之折射係數係小於該第一折射係數基材 之折射係數;以及導體層,係設於該第三折射係數物質層 上0 於上述之光電能轉換元件中,該光電能轉換物質層之 材質可為染料分子、有機共軛高分子、或發光材料,該染 5 111722 201212250 η 料分子可為釕錯合物染料分子,該有機共軛高分子可為聚 [2-曱氧基-5-(2-乙基己氧基)-1,4-笨撐乙烯撑],且該發光 材料可為三(8-經基喧。林)銘。 前述之光電能轉換元件中’該第三折射係數物質層之 材質可為有機溶劑或膠態物質,且該導體層之材質可為金 屬、電子陶瓷或半導體材料。 本發明復提供一種光電化學能轉換元件,係包括:第 一折射係數基材;負介電係數物質層,係設於該第一折射 係數基材上;第二折射係數物質層,係設於該負介電係數 物貝上,且該第二折射係數物質層之折射係數係大於該第 一折射係數基材之折射係數;以及第三折射係數物質層, 係設於該第二折射係數物質層上,且該第三折射係數物質 層之折射係數係小於該第一折射係數基材之折射係數,該 第三折射係數物質層在與第二折射係數物質層之界面處係 供產生化學反應。 依上所述之光電能轉換元件與光電化學能轉換元 件,於外露之該第一折射係數基材之側表面復可具有^射 面,該入射面係供電磁波由外入射至該第一折射係數基材 内且5亥第一折射係數基材係可由對於該電磁波之穿透率 大於30%之材質所構成。 卜所述之光電能轉換元件與光電化學能轉換元件中,該 第-折射係數基材可為平板狀、圓柱狀、擴圓柱狀或角柱 狀之結構,且該第-折射係數基材在任一縱向纟置上之橫 截面的形狀與大小均相同。 111722 6 201212250 於本發明之光電能轉換元件與光電化學能轉換元件 中,該第一折射係數基材之材質可為二氧化矽、玻璃或透 明塑膠,該負介電係數物質層之材質可為金、銀、銅、鋁、 或錄等,該第二折射係數物質層可為二氧化鈦、三氧化二 鋁、氧化鋅、或二氧化錫等。 又前述之光電能轉換元件與光電化學能轉換元件 中,該負介電係數物質層之厚度必須小於或等於100奈 米,該第二折射係數物質層之厚度可小於或等於100奈米。 綜上所述,本發明之光電能轉換元件與光電化學能轉 換元件係利用入射光在第一折射係數基材與第三折射係數 物質層之間以全内反射方式激發負介電係數物質層的表面 電漿共振效應,該表面電漿共振效應產生之表面電漿子使 得電場能長程傳遞,而將表面電漿共振的面積擴大至整個 光電能轉換元件,以增加對入射光的吸收與散射效率,進 而提升整體元件的光電轉換效率;再者,本發明係於負介 電係數物質層上增加第二折射係數物質層,以增加該元件 在非對稱介質中的長程表面電漿極化子的負介電係數薄膜 之切斷厚度,並更進一步延長表面電漿極化子的傳遞距 離,而使得利用大面積表面電漿共振技術之光電能轉換元 件得以產品化;而且,相較於習知技術,本發明的光電能 轉換元件之製程係簡便許多且成本也較低。 【實施方式】 以下藉由特定的具體實施形態說明本發明之實施方 式,熟悉此技藝之人士可由本說明書所揭示之内容輕易地 7 I11722 201212250 瞭解本發明之優點及功效。本發明亦可以其它不同的方式 予以實施,即,在不悖離本發明所揭示之技術思想之前提 下,能予不同之修飾與改變。. 第一實施形態: 如第1A圖所示,係本發明之光電能轉換元件之剖面 圖。如圖所示,本發明之光電能轉換元件係包括:第一折 射係數基材10;負介電係數物質層u,係設於該第一折射 係數基材10上,該負介電係數物質層u係用以於其相鄰 物質之界面產生表面電漿共振效應;第二折射係數物質層 12,係均勻地設於該負介電係數物質層u上,且該第二折 射係數物質層12之折射係數(refractiveindex)係大於該 第一折射係數基材10之折射係數;光電能轉換物質層 係設於該第二折射係數物質層12上;第三折射係數物質層 14’係設於該光電能轉換物質層13上,且該第三折射係數 物質層14之折射係數係小於該第—折射係數基材之折 射係數;以及導體層15,係設於該第三折射係數物質層14 上。 曰 於本實施形態之光電能轉換元件中,該第一折射係數 基材10係為例如玻璃纖維之圓柱狀結構,且該第一折射俨 數基材在任-縱向位置上之橫戴面的形狀與大小均= 同;當然,該第-折射係數基材1G亦可為平板狀(如第 圖所W、橢圓柱狀或角柱狀之結構,惟其結構配 相似,故在此不加以贅述。 依上所述之光電能轉換元件,於外露之該第一折射係 Π1722 8 201212250 數基材1 〇之側表面復具有入射面1 〇 1,該入射面1 〇 1係供 電磁波(例如太陽光)由外入射至該第一折射係數基材1〇 内,且該第一折射係數基材10可由對於該電磁波之穿透率 大於30%之材質所構成,以增進該電磁波於該第一折射係 數基材10的傳遞距離。 於上述之光電能轉換元件中,該第一折射係數基材1〇 之材質可為二氧化石夕或玻璃,該負介電係數物質層11之材 質可為金、銀、銅、銘、或錄,該負介電係數物質層η 之材質亦可為厚度小於1 〇〇奈米的情況下能被波長大於 350奈米之可見光或紅外光的入射電磁波激發出表面電漿 共振現象之金屬材料,該第二折射係數物質層12可為二氧 化鈦、三氧化二鋁、氧化鋅、或二氧化錫,該第三折射係 數物質層14之材質可為有機溶劑或膠態物質,該導體層 15之材質可為金屬、電子陶瓷或半導體材料。 又於所述之光電能轉換元件中,該光電能轉換物質層 13之材質可為染料分子、有機共輛高分子(organic conjugated polymer )、或發光材料,該染料分子可為釕錯 合物染料分子(ruthenium complex dye molecule ),該有機 共軛高分子可為聚[2-曱氧基-5-(2-乙基己氧基)-l,4-苯撑乙 烯撑](Poly[2-methoxy-5-(2-ethylhexyloxy)-l,4-phenyl enevinylene],MEH-PPV),該發光材料可為三(8-經基口查 琳)鋁(Tris(8-hydroxyquinolinato) aluminum,縮寫為 Alq3 ) ° 於本發明之光電能轉換元件中’該負介電係數物質層 9 111722 201212250 該第二折射係數物質層12之厚度可小於或等於卿 於本發明之較佳實施形態中,該光電能轉換元件係採 用-乳切玻璃纖維(silieaglassfibe〇為第—折射係數 基材10,其折射係數可為M4且直徑約為125微米;該 玻璃纖維表面沿著徑向依賴以㈣厚度為20奈米的金 薄膜(即負介電係數物質層i i )與2 〇奈米的銳二礦結構 一氧化鈦薄臈(即第二折射係數物質層12),其中,咳金 薄膜係同時作為激發表面㈣極化子的來源料電能^換 7C件之其中—電極,該二氧化鈦薄膜表面與例如釕錯合物 的染料分子(即光電能轉換物質層13)接合,該染料分子 可吸收光子並將之轉換成電子;第三折射係數物質層Μ 係為溶於有機溶劑的液態電解質,其包含乙腈、與兩種磁 離子(I,ΙΓ)’該有機溶劑之折射係數為1 346且低於二 氧化石夕玻璃纖維之折射係數,以提供人射光在二氧化石夕玻 璃纖維之表面處發生全内反射(total internal邊如⑺小 該二氧化鈦薄膜之折射係數為2·7,並用來促進金薄膜盘 第三折射係數物質们4之間產生的表面電_化子具有 長程傳遞(propagation)的能力;鑛有翻顆粒催化劑的電 極(即導體層15)係作為光電能轉換元件之另一電極;以 及太陽光由外露之該二氧切玻璃纖維之側表面(即入射 面10〗)入射。 上述光電能轉換元件之多層薄膜結構係可藉由真空 錢膜系統以缝金_,並以科層沈積(atGmic _ 111722 10 201212250 deposition,簡稱 ALD)方 膜,由於玻璃纖維之截面輪廓為圓开:又而勻?二氧化鈦薄 圓柱面,為求錢_均勾,所以_ ==面為 :玻_維旋轉鍍膜模組,以作為該;:夾 供沿者玻璃纖維軸向旋轉與整體鑛膜模組公轉的^能奸 的二 =,係為本發明之光電能轉換元件之模擬 程式為基礎並利用有限元素分析方^威(MaXWdl)方 ΜΜ^^^ 、析方法的电磁場模擬軟體, 模擬對象係針對具有軸對稱結構之二氧化石夕2〇 (半 奈米)/金薄膜21 (厚度為2〇奈米) ^ 度為20奈米)/空氣24 (严 鈦22 (居 槿,JL且古a (予又為500奈米)之柱狀多層結 軸,其中,空氣折射係數為卜並以波 不米之電磁波入射至入射面201來進行該光電能 =凡件的徑向電場模擬,第2圖的右邊係顯示電場數值 的罝尺,單位是伏特/米。 • *第2圖可知,在二氧化鈦22與空氣24的界面處有 表面電聚共振所造成的電場增強現象,該電場若接觸光電 能轉換物質層將可增強量子轉換效率以增加發電效果。需 補,況明„疋’第2圖中的白色區域是代表其數值已經超 過®尺的範圍’且為了省去不必要的模擬時間,所以已經 將氧化石夕20的半徑大幅縮減,並省略了光電能轉換物質 層的設置。 ' 由上可知,本發明之光電能轉換元件之表面電漿共振 效應係利用全内反射的架構所產生的瞬逝波激發表面電聚 111722 \ 1 201212250 極化子產生與傳遞。 在全内反射激發金屬薄膜(即負介電係數物質層11) 產生表面電漿共振的方式中’若金屬薄膜處於均勻的介電 質中’亦即金屬薄膜兩側為相同介電係數(dieiectric constant)或折射係數的介質’則在金屬薄膜的兩個表面各 自產生的表面電漿會產生耦合’其耦合的程度會隨著金屬 薄膜的厚度而改變;隨著金屬薄膜厚度的增加,耦合的表 面電椠會由對稱表面電衆極化子(symmetric surface plasmon polaritons )轉移到反對稱表面電漿極化子 (antisymmetric surface plasmon polaritons),該對稱表面 電漿極化子因具有低衰減(low attenuation)係數,所以又 稱為長程傳遞表面電漿極化子(long-range surface plasmon polariton)’其適合將高電場區域擴增至大面積範圍,而適 合大面積應用的元件;相對地,該反對稱表面電漿極化子 則稱為短程傳遞表面電黎極化子(short-range surface plasmon polariton)。 承上述,若將太陽能電池建構在具有長程表面電漿極 化子的光電能轉換元件上,則長程表面電漿共振所造成的 電場增強效應將使光電能轉換元件的量子轉換效率增加, 而增進太陽能電池的光電轉換效率。 不過,在許多元件的實際應用中,並不容易使金屬薄 膜處於完全均勻的介電質中;反而是非對稱(asymmetric ) 的介電質較容易實現,亦即金屬薄膜兩側之介質具有不同 的折射係數或介電係數’在此環境中,亦會發生搞合的長 111722 201212250 •程與短程表面電漿極化子;但是,一般發生長程表面電衆 極化子的金㈣膜厚度落在1G奈㈣尺度内(此厚度稱為 刀斷厚度(cutoffthickness)」),然而,實際製程上並不 容易製作超薄(例如厚度小於1〇奈米)、厚度均勻且連續 的金屬薄膜,因此,本發明係加人第二折射係數物質層(如 氧化鈦22)於負介電係數物質層(如金薄膜21)表面後, 可以增加金薄膜的切斷厚度,使該切斷厚度大於金薄膜在 度,如此可於此不對稱環境下實現長 、電水極化子’進*有助於大面積的表面電漿電場增 強效應。 如弟3圖所示,係為本發明之光電能轉換元件之模擬 虞的座標圖’由模擬結果得知,當第二折射係數物質層 二:==的,至1°奈米時,其金薄膜: 至20^V * '丁米’又當第二折射係數物質層的厚度增加 示米日守’其切斷厚度增加為35奈米,此厚度在梦程 二: 皮認:是較容易製作厚度均句的薄膜的厚度條、 可知,雖然隨著金薄膜厚度增加,表面 ^ 距離隨著遞減,但至少將不對于的傳遞 切斷厚度由1〇夺米辦加;境中電欺極化子的 λ… a至35 '丁、米’使得鍍製均勻金镇晅 達到可行的地步,因此二氧化鈦薄膜的加入使光電 月匕轉換兀件朝向實現應用方向邁進一大步。 要注意的是,本發明之光電能轉換 太陽能電池外,還可岸用於蓼上 卞于】』應用於 域,但不以此為限;發先二極體或光偵測器之領 111722 13 201212250 第二實施形態: 如第4圖所示,係本發明之光電化學能轉換元件 面圖。如圖所示’本發明之光電能轉換元件係包括二 折射係數基材30;負介電係數物質層31,係設於 射係數基材30上;第二折射係數物質層32,係均勾地< 於該負介電係數物質層31 h且該第二折射係數物質層又 32之折射係數係大於該第—折射係數基#%之折射伏 數;以及第三折射係數物質層34,係設於該第二折射係^ 物質層32上’且該第三折射係數物制34之折射係奸 小於該第-折射係數基材3〇之折射係數,該第三折射係^ 物質層34在與第二折射係數物質層%之界面處係供 化學反應。 於本實施形態之光電化學能轉換元件中,該第—折射 係數基材30係為例如平板狀結構,且該第一折射係數基材 30在任一縱向位置上之橫截面的形狀與大小均相同;當 然’該第-折射係數基材30巾可為圓柱狀、搞圓柱狀或角 柱狀之結構,惟其結構配置均相似,故在此不加以贅述。 依上所述之光電化學能轉換元件,於外露之該第一折 射係數基材30之侧表面復具有入射面3〇1,該入射面3⑴ 係供電磁波(例如太陽光)由外入射至該第一折射係數基 材30内,且該第一折射係數基材3〇係為對於該電磁波之 穿透率大於30°/。之材質所構成,以增進該電磁波於該第一 折射係數基材30的傳遞距離。 於上述之光電能轉換元件中,該第一折射係數基材3〇 111722 14 201212250 之材質可為二氧化矽、玻璃或透明塑膠,該負介電係數物 質層31之材質可為金、銀、銅、鋁、或鎊,該負介電係數 物質層31之材質亦可為厚度小於100奈米的情況下能被波 長大於350奈米之可見光或紅外光的入射電磁波激發出表 面電漿共振現象之金屬材料,該第二折射係數物質層32 可為二氧化鈦、三氧化二鋁、氧化鋅、或二氧化錫。 於本發明之光電能轉換元件中,該負介電係數物質層 31與該第二折射係數物質層32之厚度係小於或等於100 奈米。 表面電漿共振與長程傳遞的效應除了可應用於如第 一實施形態的太陽能電池的光電能轉換元件之外,也可如 本實施形態地應用在光電化學能轉換元件上,譬如:光觸 媒反應器(pliotocatalyst reactor )或生醫化學感測器 (biomedical and chemical sensor)等,長程表面電漿的高 電場區域不僅可提昇光觸媒電子電洞分離的生命期(life time),並增力口光催化反應的速率,且於該第三折射係數物 質層在與第二折射係數物質層之界面處產生電荷傳遞與化 學反應,又因為高電場區域可拓展至大尺寸的反應面積, 而能進一步增加整體反應效率。 依上所述,本發明之光電能轉換元件與光電化學能轉 換元件係利用入射光在第一折射係數基材與第三折射係數 物質層之間以全内反射方式激發負介電係數物質層的表面 電漿共振效應,該表面電漿共振效應產生之表面電漿極化 子使得電場能長程傳遞,此舉將表面電漿共振的面積擴大 15 111722 201212250 至整個光電能轉換元件,其結果將增加對入射光的吸收與 散射效率,進而提升整體元件的光電轉換效率;再者,本 發明係在該第一折射係數基材與第三折射係數物質層之間 增加第二折射係數物質層於負介電係數物質層上,以將非 對稱介質中的長程表面電漿極化子的切斷厚度增加到金屬 薄膜製程上較易達到之均勻且連續的厚度,而使得利用表 面電漿共振技術之大面積光電能轉換元件得以產品化;而 且,相較於習知金屬奈米週期性結構的合成方法,本發明 的光電能轉換元件之製程係簡便許多且成本也較低。 上述實施形態係用以例示性說明本發明之原理及其 功效,而非用於限制本發明。任何熟習此項技藝之人士均 可在不違背本發明之精神及範疇下,對上述實施形態進行 修改。因此本發明之權利保護範圍,應如後述之申請專利 範圍所列。 【圖式簡單說明】 第〗A與1B圖係為本發明之光電能轉換元件之剖面 圖,其中,第1B圖係第1A圖之另一實施態樣; 第2圖係為本發明之光電能轉換元件之模擬的徑向電 場分佈圖; 第3圖係為本發明之光電能轉換元件之模擬數據的座 才示圖,以及 第4圖係為本發明之光電化學能轉換元件之剖面圖。 【主要元件符號說明】 30 第一折射係數基材 111722 201212250 101 ' 301 入射面 11、31 負介電係數物質層 12、32 第二折射係數物質層 13 光電能轉換物質層 14、34 第三折射係數物質層 15 導體層 20 二氧化矽 200 對稱軸 • 201 入射面 21 金薄膜 22 二氧化鈦 24 空氣However, since the forming method of the metal nanostructure is expensive, and the preparation method thereof is not easily extended to the industry of a large area of radix, the application range is greatly limited. Therefore, how to solve the problem of the conventional photoelectric energy conversion component to save its cost and enhance its application range has become a problem to be solved. SUMMARY OF THE INVENTION In the absence of the above-mentioned prior art, the present invention provides an optoelectronic f-converting element comprising: a first refractive index substrate; a negative dielectric coefficient material layer disposed at the first refractive index a substrate having a second refractive index material disposed on the negative dielectric constant material, wherein the refractive index of the second refractive index material is greater than a refractive index of the first refractive index substrate; a conversion material layer is disposed on the second refractive index material layer; a third refractive index material layer is disposed on the photoelectric energy conversion material layer, and a refractive index of the first refractive index material layer is smaller than the first a refractive index of the refractive index substrate; and a conductor layer disposed on the third refractive index material layer in the photoelectric conversion element, wherein the photoelectric conversion material layer is made of a dye molecule or an organic conjugate Molecular, or luminescent material, the dyed 5 111722 201212250 η material molecule can be a ruthenium complex dye molecule, the organic conjugated polymer can be poly [2-decyloxy-5-(2-ethylhexyloxy) -1,4-Blocked B Support], and the luminescent material may be tris (8-yl noise by Lin) Ming. In the foregoing photoelectric energy conversion element, the material of the third refractive index material layer may be an organic solvent or a colloidal substance, and the material of the conductor layer may be a metal, an electronic ceramic or a semiconductor material. The present invention provides a photoelectrochemical energy conversion element comprising: a first refractive index substrate; a negative dielectric material layer disposed on the first refractive index substrate; and a second refractive index material layer disposed on The negative dielectric constant is on the object, and the refractive index of the second refractive index material layer is greater than the refractive index of the first refractive index substrate; and the third refractive index material layer is disposed on the second refractive index material And a refractive index of the third refractive index material layer is smaller than a refractive index of the first refractive index substrate, and the third refractive index material layer is chemically reacted at an interface with the second refractive index material layer . According to the photoelectric energy conversion element and the photoelectrochemical energy conversion element, the side surface of the exposed first refractive index substrate may have a radiation surface for externally incident electromagnetic waves to the first refractive index. The substrate having a first refractive index of 5 kel in the coefficient substrate may be composed of a material having a transmittance of more than 30% for the electromagnetic wave. In the photoelectric energy conversion element and the photoelectrochemical energy conversion element, the first refractive index substrate may be in the form of a flat plate, a columnar shape, a cylindrical shape or a columnar shape, and the first refractive index substrate is in any The cross section on the longitudinal device has the same shape and size. 111722 6 201212250 In the photoelectric energy conversion device and the photoelectrochemical energy conversion device of the present invention, the material of the first refractive index substrate may be ceria, glass or transparent plastic, and the material of the negative dielectric material layer may be Gold, silver, copper, aluminum, or recorded, etc., the second refractive index material layer may be titanium dioxide, aluminum oxide, zinc oxide, or tin dioxide. In the above photoelectric energy conversion element and photoelectrochemical energy conversion element, the thickness of the negative dielectric constant material layer must be less than or equal to 100 nm, and the thickness of the second refractive index material layer may be less than or equal to 100 nm. In summary, the photoelectric energy conversion element and the photoelectrochemical energy conversion element of the present invention use the incident light to excite the negative dielectric constant material layer between the first refractive index substrate and the third refractive index material layer by total internal reflection. Surface plasmon resonance effect, the surface plasmon generated by the surface plasma resonance effect enables the electric field to transfer over a long distance, and expands the surface plasma resonance area to the entire photoelectric energy conversion element to increase the absorption and scattering of incident light. Efficiency, thereby improving the photoelectric conversion efficiency of the overall component; further, the invention adds a second refractive index material layer to the negative dielectric constant material layer to increase the long-range surface plasma polariton of the component in the asymmetric medium The negative dielectric constant film cuts the thickness and further extends the transfer distance of the surface plasma polaron, so that the photoelectric energy conversion element utilizing the large-area surface plasma resonance technology is commercialized; Knowing the technology, the process of the photoelectric energy conversion element of the present invention is simple and cost-effective. [Embodiment] Hereinafter, the embodiments of the present invention will be described by way of specific embodiments, and those skilled in the art can easily understand the advantages and effects of the present invention by the contents disclosed in the present specification. The invention may be embodied in other different forms, and various modifications and changes can be made without departing from the spirit of the invention. First Embodiment: A cross-sectional view of a photoelectric energy conversion element of the present invention as shown in Fig. 1A. As shown in the figure, the photoelectric conversion device of the present invention comprises: a first refractive index substrate 10; a negative dielectric material layer u, which is disposed on the first refractive index substrate 10, and the negative dielectric constant material The layer u is used to generate a surface plasma resonance effect at the interface of the adjacent substances; the second refractive index material layer 12 is uniformly disposed on the negative dielectric constant material layer u, and the second refractive index material layer The refractive index of 12 is greater than the refractive index of the first refractive index substrate 10; the photoelectric conversion material layer is disposed on the second refractive index material layer 12; and the third refractive index material layer 14' is The photoelectric conversion material layer 13 has a refractive index smaller than a refractive index of the first refractive index substrate; and a conductor layer 15 is disposed on the third refractive index material layer 14 on. In the photoelectric energy conversion element of the present embodiment, the first refractive index substrate 10 is a cylindrical structure such as glass fiber, and the shape of the first refractive index substrate in the longitudinal-longitudinal position of the first refractive index substrate The same as the size of the same; of course, the first refractive index substrate 1G may also be flat (such as the structure of the figure W, elliptical column or angular column, but the structure is similar, so will not be described here. The photoelectric conversion element described above has an incident surface 1 〇1 on the side surface of the exposed first refractive system Π1722 8 201212250, and the incident surface 1 〇1 is for electromagnetic waves (for example, sunlight). Externally incident into the first refractive index substrate 1〇, and the first refractive index substrate 10 may be made of a material having a transmittance of more than 30% for the electromagnetic wave to enhance the electromagnetic wave at the first refractive index In the photoelectric conversion device, the material of the first refractive index substrate may be made of sulphur dioxide or glass, and the material of the negative-density material layer 11 may be gold. Silver, bronze, Ming, or recorded, The material of the negative dielectric constant material layer η may also be a metal material capable of exciting a surface plasma resonance phenomenon by an incident electromagnetic wave of visible light or infrared light having a wavelength greater than 350 nm when the thickness is less than 1 〇〇 nanometer. The second refractive index material layer 12 may be titanium dioxide, aluminum oxide, zinc oxide, or tin dioxide. The material of the third refractive index material layer 14 may be an organic solvent or a colloidal material, and the material of the conductive layer 15 may be a metal, an electronic ceramic or a semiconductor material. In the photoelectric energy conversion element, the photoelectric conversion material layer 13 may be a dye molecule, an organic conjugated polymer, or a luminescent material. The molecule may be a ruthenium complex dye molecule, and the organic conjugated polymer may be poly[2-decyloxy-5-(2-ethylhexyloxy)-l,4-phenylene. (Poly[2-methoxy-5-(2-ethylhexyloxy)-l,4-phenyl enevinylene], MEH-PPV), the luminescent material can be three (8-base-based chalin) aluminum (Tris ( 8-hydroxyquinolinato) aluminum, abbreviated as Alq3) ° In the photoelectric energy conversion device of the present invention, the negative dielectric constant material layer 9 111722 201212250 may have a thickness of the second refractive index material layer 12 which is less than or equal to a preferred embodiment of the present invention, the photoelectric energy conversion element system Using - cleavage glass fiber (silieaglassfibe 〇 is the first - refractive index substrate 10, the refractive index of which can be M4 and a diameter of about 125 microns; the surface of the glass fiber depends on the radial direction of (4) a gold film having a thickness of 20 nm (ie, negative dielectric constant material layer ii) and 2 〇 nanometer sharp dimetal structure titanium oxide thin 臈 (ie, second refractive index material layer 12), wherein the cough film is simultaneously used as the excitation surface (four) polaron The source material is electrically exchanged for the electrode of the 7C member, and the surface of the titanium dioxide film is bonded to a dye molecule such as a ruthenium complex (ie, the photoelectric energy conversion substance layer 13), and the dye molecule can absorb photons and convert it into electrons; The third refractive index material layer is a liquid electrolyte dissolved in an organic solvent, which comprises acetonitrile and two kinds of magnetic ions (I, ΙΓ). The organic solvent has a refractive index of 1 346 and less than two. The refractive index of the fossil ray glass fiber is to provide total internal reflection at the surface of the silica glass fiber by the human light (total internal edge such as (7) small, the refractive index of the titanium dioxide film is 2.7, and is used to promote the gold film disk The surface electrical conductivity generated by the third refractive index material 4 has the capability of long-range propagation; the electrode with the tumbling catalyst (ie, the conductor layer 15) serves as the other electrode of the photoelectric energy conversion element; The sunlight is incident on the side surface (i.e., the incident surface 10) of the exposed dioxent glass fiber. The multilayer film structure of the above photoelectric energy conversion element can be sewn by a vacuum film system, and deposited by a layer deposition method (atGmic _ 111722 10 201212250 deposition, ALD for short), because the cross section of the glass fiber is rounded. : Again and evenly? Titanium dioxide thin cylindrical surface, for the money _ all hook, so _ == surface: glass _ dimensional rotating coating module, as this;: clip for the glass fiber axial rotation and the overall mineral film The module=2 is the electromagnetic field simulation software based on the simulation program of the photoelectric energy conversion component of the present invention and using the finite element analysis method MaXWdl square ΜΜ^^^ The simulation object is for a silica dioxide with an axisymmetric structure (2 nanometers) / gold film 21 (thickness is 2 nanometers) ^ degree is 20 nm) / air 24 (strict titanium 22 (Kurori, JL and ancient a (previously 500 nm) columnar multi-layered axis, wherein the air refractive index is bu and is incident on the incident surface 201 by electromagnetic waves of wave-to-meter to perform the photoelectric energy = radial electric field of the piece Simulation, the right side of Figure 2 shows the scale of the electric field, the unit Volts/m. • * Figure 2 shows that there is an electric field enhancement phenomenon caused by surface electropolymerization resonance at the interface between titanium dioxide 22 and air 24, which can enhance the quantum conversion efficiency to increase power generation if it contacts the photoelectric energy conversion substance layer. The effect needs to be compensated. The white area in Fig. 2 is the range whose value has exceeded the ruler' and the radius of the oxidized stone eve 20 has been greatly reduced in order to save unnecessary simulation time. The arrangement of the photoelectric energy conversion substance layer is omitted. From the above, the surface plasma resonance effect of the photoelectric energy conversion element of the present invention utilizes an evanescent wave generated by a total internal reflection structure to excite the surface electropolymerization 111722 \ 1 201212250 Polaron generation and transmission. In the manner of total internal reflection excitation metal film (ie, negative dielectric material layer 11) to generate surface plasma resonance, 'if the metal film is in a uniform dielectric', that is, on both sides of the metal film For a dielectric having the same dielectric constant (dieiectric constant) or refractive index, the surface plasma generated on each of the two surfaces of the metal film will be coupled. The degree of bonding varies with the thickness of the metal film; as the thickness of the metal film increases, the coupled surface electrode will be transferred from the symmetric surface plasmon polaritons to the antisymmetric surface plasma polarization. Antisymmetric surface plasmon polaritons, which have a low attenuation coefficient, are also called long-range surface plasmon polariton The high electric field region is amplified to a large area and is suitable for large-area applications; in contrast, the anti-symmetric surface plasma polaron is called a short-range surface plasmon polariton. In view of the above, if a solar cell is constructed on a photoelectric energy conversion element having a long-range surface plasma polaron, the electric field enhancement effect caused by long-range surface plasma resonance will increase the quantum conversion efficiency of the photoelectric conversion element, and enhance Photoelectric conversion efficiency of solar cells. However, in the practical application of many components, it is not easy to make the metal film in a completely uniform dielectric; instead, the asymmetric dielectric is easier to implement, that is, the medium on both sides of the metal film has different Refractive index or dielectric coefficient 'In this environment, the length of the 111722 201212250 process and the short-range surface plasma polaron will also occur; however, the gold (four) film thickness of the long-range surface electrical polaron generally falls. In the 1G nanometer (four) scale (this thickness is called cutoffthickness), however, it is not easy to produce an ultrathin (for example, a thickness less than 1 nanometer), uniform thickness and continuous metal film in the actual process, therefore, In the present invention, after adding a second refractive index material layer (such as titanium oxide 22) on the surface of the negative dielectric material layer (such as gold film 21), the thickness of the gold film can be increased, so that the thickness is larger than that of the gold film. In this degree, it is possible to achieve a long, electro-hydraulic polaron 'into* in this asymmetrical environment to contribute to the large-area surface electric plasma electric field enhancement effect. As shown in Figure 3, the coordinate diagram of the analog 虞 of the photoelectric energy conversion element of the present invention is known from the simulation results. When the second refractive index material layer is two: ==, to 1° nanometer, Gold film: to 20^V * 'Dingmi' and when the thickness of the second refractive index material layer is increased, the meter thickness is increased to 35 nm, and the thickness is in the dream course: It is easy to make a thickness strip of a film with a uniform thickness. It is known that although the thickness of the gold film increases as the thickness of the gold film increases, at least the thickness of the transfer is not changed. The λ...a to 35 'd, m' of the polaron makes the plating of the uniform gold enamel reach a feasible level, so the addition of the titanium dioxide film makes the photoelectric yoke conversion element a big step towards the application direction. It should be noted that, in addition to the photoelectric energy conversion solar cell of the present invention, it can also be applied to the domain, but not limited thereto; the first diode or the photodetector collar 111722 13 201212250 Second Embodiment: As shown in Fig. 4, it is a plan view of a photoelectrochemical energy conversion element of the present invention. As shown in the figure, the photoelectric conversion device of the present invention comprises a two-refractive index substrate 30; a negative dielectric material layer 31 is disposed on the coefficient of mass substrate 30; and a second refractive index material layer 32 is And the negative refractive index material layer 31 h and the refractive index of the second refractive index material layer 32 is greater than the refractive index of the first refractive index base #%; and the third refractive index material layer 34, The second refractive index material layer 32 is disposed on the second refractive index material layer 32 and the refractive index of the third refractive index material 34 is smaller than the refractive index of the first refractive index substrate 3〇, and the third refractive index material layer 34 A chemical reaction is applied at the interface with the second refractive index material layer. In the photoelectrochemical energy conversion device of the present embodiment, the first refractive index substrate 30 is, for example, a flat plate structure, and the first refractive index substrate 30 has the same cross-sectional shape and size at any longitudinal position. Of course, the first refractive index substrate 30 may have a cylindrical shape, a cylindrical shape or a prismatic structure, but the structural configurations are similar, and thus will not be described herein. According to the photoelectrochemical energy conversion device, the side surface of the exposed first refractive index substrate 30 has an incident surface 3〇1, and the incident surface 3(1) is externally incident to the electromagnetic wave (for example, sunlight). The first refractive index substrate 3 is in the first refractive index substrate 30, and the transmittance for the electromagnetic wave is greater than 30°/. The material is formed to increase the transmission distance of the electromagnetic wave to the first refractive index substrate 30. In the above photoelectric conversion device, the material of the first refractive index substrate 3〇111722 14 201212250 may be ceria, glass or transparent plastic, and the material of the negative dielectric material layer 31 may be gold or silver. Copper, aluminum, or pound, the material of the negative dielectric constant material layer 31 may also be a surface electromagnetic resonance phenomenon that can be excited by visible electromagnetic waves of visible light or infrared light having a wavelength of more than 350 nm when the thickness is less than 100 nm. The metal material, the second refractive index material layer 32 may be titanium dioxide, aluminum oxide, zinc oxide, or tin dioxide. In the photoelectric energy conversion element of the present invention, the thickness of the negative dielectric constant material layer 31 and the second refractive index material layer 32 is less than or equal to 100 nm. The effects of surface plasma resonance and long-range transfer can be applied to a photoelectrochemical energy conversion element as in the present embodiment, in addition to the photoelectric energy conversion element of the solar cell according to the first embodiment, for example, a photocatalytic reactor. (pliotocatalyst reactor) or biomedical and chemical sensor, etc., the high electric field region of long-range surface plasma not only enhances the life time of photocatalyst electron hole separation, but also enhances photocatalytic reaction Rate, and the charge transfer and chemical reaction occurs at the interface of the third refractive index material layer at the interface with the second refractive index material layer, and the overall reaction can be further increased because the high electric field region can be extended to a large-sized reaction area. effectiveness. According to the above, the photoelectric energy conversion element and the photoelectrochemical energy conversion element of the present invention use the incident light to excite the negative dielectric constant material layer between the first refractive index substrate and the third refractive index material layer by total internal reflection. Surface plasma resonance effect, the surface plasma polariton generated by the surface plasma resonance effect enables long-distance transmission of the electric field, which expands the surface resonance resonance area by 15 111722 201212250 to the entire photoelectric energy conversion element, and the result will be Increasing the absorption and scattering efficiency of the incident light, thereby improving the photoelectric conversion efficiency of the whole component; further, the invention adds a second refractive index material layer between the first refractive index substrate and the third refractive index material layer The negative dielectric constant material layer is used to increase the cut thickness of the long-range surface plasma polaron in the asymmetric medium to a uniform and continuous thickness which is easily achieved in the metal thin film process, so that the surface plasma resonance technique is utilized. The large-area photoelectric energy conversion element is commercialized; and, compared with the synthetic method of the conventional metal nano periodic structure, the present invention The photovoltaic energy conversion process based element of many simple and lower cost. The embodiments described above are intended to illustrate the principles of the invention and its advantages, and are not intended to limit the invention. Any of the above-described embodiments may be modified by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the scope of the patent application described hereinafter. BRIEF DESCRIPTION OF THE DRAWINGS FIG. A and FIG. 1B are cross-sectional views of a photoelectric energy conversion element of the present invention, wherein FIG. 1B is another embodiment of FIG. 1A; FIG. 2 is a photovoltaic of the present invention. A simulated radial electric field distribution diagram of the conversion element; Fig. 3 is a block diagram of the simulation data of the photoelectric energy conversion element of the present invention, and Fig. 4 is a sectional view of the photoelectrochemical energy conversion element of the present invention . [Description of main component symbols] 30 First refractive index substrate 111722 201212250 101 '301 Incidence surface 11, 31 Negative dielectric coefficient material layer 12, 32 Second refractive index material layer 13 Photoelectric energy conversion substance layer 14, 34 Third refraction Coefficient material layer 15 Conductor layer 20 Ceria 200 Symmetry axis • 201 Incidence surface 21 Gold film 22 Titanium dioxide 24 Air

Claims (1)

201212250 七、申請專利範圍: 1. 一種光電能轉換元件,係包括: 第一折射係數基材; 負介電係數物質層’係設於該第_折射係數基材 上; 第二折射係數物質層,係設於該負介電係數物質 上,且該第二折射係數物質層之折射係數係大於該第一 折射係數基材之折射係數; 光屯旎轉換物質層,係設於該第二折射係數物質層 上; 第二折射係數物質層,係設於該光電能轉換物質層 上,且該第三折射係數物質層之折射係數係小於該第一 折射係數基材之折射係數;以及 導體層’係設於該第三折射係數物質層上。 2·如申請專利範圍第1項所述之光電能轉換元件,其申, 於外露之該第一折射係數基材之側表面復具有入射 面,該入射面係供電磁波由外入射至該第一折射係數基 材内。 3. 如申請專利範圍第2項所述之光電能轉換元件,其中, 該第一折射係數基材係由對於該電磁波之穿透率大於 30%之材質所構成。 4. 如申請專利範圍第】項所述之光電能轉換元件,其中, 該第一折射係數基材之材質係為二氧化矽或玻璃。 5. 如申請專利範圍第丨項所述之光電能轉換元件,其中, 111722 18 201212250 "亥弟-折射係數基材係為平板狀、圓柱狀、橢圓柱狀或 角柱=之結構,且該第—折射係數基材在任—縱向位置 上之橫截面的形狀與大小均相同。 6. 如申睛專利範g第丨項所述之光電能轉換元件,盆中, 該負介電係數物質層之材質係為金、銀、銅、紹、或錄。 7. 請專利範圍帛!項所述之光電能轉換元件,其中, 该第二折射係數物質層係為二氧化鈦、三氧化二銘、氧 鲁 化鋅、或二氧化錫。 8. 如申凊專利範圍第】項所述之光電能轉換元件,其中, 該光電能轉換物質層之材質係^染料分子、有機共扼高 分子、或發光材料。 ° 9·如申請專利範圍第8項所述之光電能轉換元件,其中, 遠染料分子係為釕錯合物染料分子。 10.如申請專利範圍第8項所述之光電能轉換元件,其中, 該有機共軛高分子係為聚[2_曱氧基_5·(2_乙基己氧 • 基卜1,‘苯撑乙烯撑]。 u.如申請專利H圍第8項所述之光電能轉換元件,其中, 该發光材料係為三(8_羥基喹啉)鋁。 I2.如申請專利範圍第1項所述之光電能轉換元件,其中, 忒第二折射係數物質層之材質係為有機溶劑或膠银物 質。 〜 U♦如申請專利範圍第1項所述之光電能轉換元件,其中, 該導體層之材質係為金屬、電子陶瓷或半導體材料。 M.如申請專利範圍第丨項所述之光電能轉換元件,其中, 19 111722 201212250 t 該負介電係數物質層之厚度係小於或等於】〇 〇奈米。 〗5.如申請專利範圍第1項所述之光電能轉換元件,其中 該第二折射係數物質層之厚度係小於或等於削奈来, 16·—種光電化學能轉換元件,係包括·· 第一折射係數基材; 負介電係數物質層,係設於該第一折射係 上; 第一折射係數物質層,係設於該負介電係數物質 上,且該第二折射係數物質層之折射係數係大於該第— 折射係數基材之折射係數;以及 第三折射係數物質層,係設於該第二折射係數物質 層上,該第三折射係數物質層之折射係數係小於該第一 折射係數基材之折射係數,且該第三折射係數物質層在 與第二折射係數物質層之界面處係供產生化學反應。 Π.如申請專利範圍第16項所述之光電化學能轉換元^件, 其中,於外露之該第一折射係數基材之側表面復具有入 射面,該入射面係供電磁波由外入射至該第一折射係數 基材内。 18. 如申請專利範圍第17項所述之光電化學能轉換元件, 其中,該第一折射係數基材係由對於該電磁波之穿透率 大於30%之材質所構成。 19. 如申請專利範圍第16項所述之光電化學能轉換元件, 其中,該第一折射係數基材之材質係為二氧化矽、玻璃 或透明塑膠。 111722 20 201212250 申請專鄉圍第16項所述之光電化學能轉換元件, 其中,该第一折射係數基材係為平板狀、 柱狀或角她之結構,且該P折射係數基材在任一縱 向位置上之橫截面的形狀與大小均相同。 21:申請專利範㈣16項所述之光電化學能轉換元件, 其中,該負介電係數物質層之材質係為金、銀、銅、鋁、 或諦。 鲁22.如申請專利範圍第16項所述之光電化學能轉換元件, 其中,戎第二折射係數物質層係為二氧化鈦、三氧化二 鋁、氧化鋅、或二氧化錫。 23=申請專利範圍第16項所述之光電化學能轉換元件, 其中’該負介電係數物質層之厚度係小於或等於100夺 米。 /、 24.^申請專利範圍第16賴述之光電化學能轉換元件, 其中,该第二折射係數物質層之厚度係小於或等於100 • 奈米。 1)1722 21201212250 VII. Patent application scope: 1. A photoelectric energy conversion component, comprising: a first refractive index substrate; a negative dielectric coefficient material layer is disposed on the _refractive index substrate; a second refractive index material layer Is disposed on the negative dielectric constant material, and the refractive index of the second refractive index material layer is greater than the refractive index of the first refractive index substrate; the pupil conversion material layer is disposed on the second refractive index a second refractive index material layer is disposed on the photoelectric conversion material layer, and a refractive index of the third refractive index material layer is smaller than a refractive index of the first refractive index substrate; and a conductor layer ' is disposed on the third refractive index material layer. 2. The photoelectric energy conversion element according to claim 1, wherein the side surface of the exposed first refractive index substrate has an incident surface, and the incident surface is for externally incident electromagnetic waves to the first A refractive index within the substrate. 3. The photoelectric energy conversion element according to claim 2, wherein the first refractive index substrate is composed of a material having a transmittance of the electromagnetic wave of more than 30%. 4. The photoelectric energy conversion element according to the above aspect of the invention, wherein the material of the first refractive index substrate is ceria or glass. 5. The photoelectric energy conversion element according to claim 2, wherein: 111722 18 201212250 "Hai-refractive index substrate is a flat, cylindrical, elliptical column or corner column = structure The cross-sectional shape of the first-refractive index substrate in any of the longitudinal positions is the same in shape and size. 6. The photoelectric energy conversion element according to the above-mentioned claim, wherein the material of the negative dielectric constant material layer is gold, silver, copper, Shao, or recorded. 7. Please patent scope! The photoelectric conversion element according to the item, wherein the second refractive index material layer is titanium dioxide, bismuth trioxide, zinc oxynitride, or tin dioxide. 8. The photoelectric energy conversion element according to the above aspect of the invention, wherein the material of the photoelectric energy conversion substance layer is a dye molecule, an organic conjugated high molecule, or a luminescent material. The photoelectric energy conversion element according to claim 8, wherein the far dye molecule is a ruthenium complex dye molecule. 10. The photoelectric energy conversion element according to claim 8, wherein the organic conjugated polymer is poly[2_decyloxy_5·(2_ethylhexyloxy) kib 1, The phenylene hydride support material is the photoelectric energy conversion element according to claim 8, wherein the luminescent material is tris(8-hydroxyquinoline) aluminum. I2. The photoelectric energy conversion element, wherein the material of the second refractive index material layer is an organic solvent or a silver oxide material. The photoelectric conversion element according to claim 1, wherein the conductor The material of the layer is a metal, an electronic ceramic or a semiconductor material. The photoelectric energy conversion element according to the invention of claim 1, wherein the thickness of the negative dielectric constant material layer is less than or equal to 5. The photoelectric energy conversion element according to claim 1, wherein the thickness of the second refractive index material layer is less than or equal to that of the chip, and the photoelectrochemical energy conversion element , including ·· first refractive index substrate a negative dielectric constant material layer is disposed on the first refractive system; a first refractive index material layer is disposed on the negative dielectric constant material, and a refractive index of the second refractive index material layer is greater than the first — a refractive index of the refractive index substrate; and a third refractive index material layer disposed on the second refractive index material layer, the refractive index of the third refractive index material layer being less than the refractive index of the first refractive index substrate a coefficient, and the third refractive index material layer is chemically reacted at an interface with the second refractive index material layer. The photoelectrochemical energy conversion element according to claim 16, wherein The side surface of the exposed first refractive index substrate has an incident surface for electromagnetic waves to be externally incident into the first refractive index substrate. 18. Photoelectrochemistry according to claim 17 The energy conversion device, wherein the first refractive index substrate is made of a material having a transmittance of more than 30% for the electromagnetic wave. 19. Photoelectrochemistry according to claim 16 The energy conversion element, wherein the material of the first refractive index substrate is cerium oxide, glass or transparent plastic. 111722 20 201212250 Applying the photoelectrochemical energy conversion element according to item 16 of the hometown, wherein the first The substrate of the refractive index is a flat, columnar or angular structure, and the P-refractive index substrate has the same cross-sectional shape and size at any longitudinal position. 21: Optoelectronics as described in claim 16 (4) The chemical energy conversion element, wherein the material of the negative dielectric constant material layer is gold, silver, copper, aluminum, or ruthenium. The photoelectrochemical energy conversion element according to claim 16, wherein The second refractive index material layer is titanium dioxide, aluminum oxide, zinc oxide, or tin dioxide. The photoelectrochemical energy conversion element of claim 16, wherein the thickness of the negative dielectric constant material layer is less than or equal to 100 m. /, 24.^ The photoelectrochemical energy conversion element of claim 16 is claimed, wherein the thickness of the second refractive index material layer is less than or equal to 100 • nanometer. 1) 1722 21
TW99130825A 2010-09-13 2010-09-13 Light/electric energy converting element and light/electric/chemical energy converting element TWI445187B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99130825A TWI445187B (en) 2010-09-13 2010-09-13 Light/electric energy converting element and light/electric/chemical energy converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99130825A TWI445187B (en) 2010-09-13 2010-09-13 Light/electric energy converting element and light/electric/chemical energy converting element

Publications (2)

Publication Number Publication Date
TW201212250A true TW201212250A (en) 2012-03-16
TWI445187B TWI445187B (en) 2014-07-11

Family

ID=46764537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99130825A TWI445187B (en) 2010-09-13 2010-09-13 Light/electric energy converting element and light/electric/chemical energy converting element

Country Status (1)

Country Link
TW (1) TWI445187B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756764B (en) * 2020-07-31 2022-03-01 國立中興大學 Photocurrent electrode and photoelectric immunosensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756764B (en) * 2020-07-31 2022-03-01 國立中興大學 Photocurrent electrode and photoelectric immunosensing device

Also Published As

Publication number Publication date
TWI445187B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
Wang et al. Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection
Carretero-Palacios et al. Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide
Wang et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings
Cao et al. Light propagation in flexible thin-film amorphous silicon solar cells with nanotextured metal back reflectors
Leung et al. Efficient photon capturing with ordered three-dimensional nanowell arrays
Muskens et al. Design of light scattering in nanowire materials for photovoltaic applications
Jung et al. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells
Han et al. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics
Garnett et al. Light trapping in silicon nanowire solar cells
Sundararajan et al. Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode
Schmitt et al. Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology
Lee et al. Graphene quantum dot layers with energy-down-shift effect on crystalline-silicon solar cells
Hu et al. TiO2 nanocolumn arrays for more efficient and stable perovskite solar cells
Zhan et al. Micro‐Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications
Wang et al. Toward efficient and omnidirectional n-type Si solar cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures
Yen et al. Plasmon-induced efficiency enhancement on dye-sensitized solar cell by a 3D TNW-AuNP layer
Lee et al. Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator
Yao et al. Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer
Yalamanchili et al. Enhanced absorption and< 1% spectrum-and-angle-averaged reflection in tapered microwire arrays
Lee et al. Extreme light absorption by multiple plasmonic layers on upgraded metallurgical grade silicon solar cells
Li et al. Self-assembly of carbon Black/AAO templates on nanoporous Si for broadband infrared absorption
Juan et al. Plasmonic Au nanooctahedrons enhance light harvesting and photocarrier extraction in perovskite solar cell
Zhang et al. Broadband light harvesting for highly efficient hot-electron application based on conformal metallic nanorod arrays
Wang et al. Large-scale bio-inspired flexible antireflective film with scale-insensitivity arrays
Yao et al. Long-lived multilayer coatings for smart windows: integration of energy-saving, antifogging, and self-healing functions

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees