TW201207543A - Optical-beam manipulation device - Google Patents

Optical-beam manipulation device Download PDF

Info

Publication number
TW201207543A
TW201207543A TW099137538A TW99137538A TW201207543A TW 201207543 A TW201207543 A TW 201207543A TW 099137538 A TW099137538 A TW 099137538A TW 99137538 A TW99137538 A TW 99137538A TW 201207543 A TW201207543 A TW 201207543A
Authority
TW
Taiwan
Prior art keywords
electrodes
beam steering
steering device
voltage
lens
Prior art date
Application number
TW099137538A
Other languages
Chinese (zh)
Inventor
Boer Dirk Kornelis Gerhardus De
Marcellinus Petrus Carolus Michael Krijn
Steven Lawrence Nyabero
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201207543A publication Critical patent/TW201207543A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

An optical-beam manipulation device comprises first and second optically transparent substrates (3, 4), a liquid crystal layer (2) sandwiched therebetween, and in-plane switching electrodes (20) arranged at a side of said first substrate. The optical-beam manipulation device is controllable between optical-beam manipulation states, each permitting passage of light through said optical-beam manipulation device in a direction perpendicular thereto. The device comprises a dielectric layer (24) between the electrodes and the liquid crystal layer and having a thickness between 10nm and 10 μ m.

Description

201207543 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光束操控裝置,其在至少兩個光束操 控狀態之間可控制’每一狀態容許一光束通過該光束操控 裝置。 【先前技術】 一光束(例如,光)的主動操控對於範圍從一般照明至特 殊照明應用的多種應用係有用的’諸如一視訊閃光燈,其 中相機之縮放功能耦接至一主動光學元件之光束寬度控制 功能。液晶光學器件看起來更適宜於此目的。可藉由施加 「電%至一液晶單元中而控制在該液晶單元令液晶分子的 對準配向。使用該等液晶分子的此重新配向,可在一層液 B曰材料中建立—折射率梯度,此導致經過該液晶層的一光 線被重新疋向。藉此’一光束之方向及/或形狀 制。 "束操控裝置的一應用之特定利益係在自動立體顯示裝 干2=該自動立體顯示裝置包含:-顯示面板,該顯 不面板具有例如-規則陣列之顯示像素, 及一成像配置,以腺尤门、日 ”肩不, 使用置以將不同視圖引導至不同空間位置。熟知 且上覆於長凸鏡疋件’其等彼此平行延伸而提供, 凸鏡几件而觀察該等顯示像素。 ^ 每鏡與兩行顯示像素相關聯的-配置w 中之㈣㈣像素提供-各自二維子影像之一垂直 J5J382.doc 201207543 切片(slice)。凸鏡片引導此兩個切片及來自與其他凸鏡相 關聯之顯示像素行的對應切片,至位於該片前方的一使用 者之左眼及右眼,使得該使用者觀察一單一立體影像。因 此’凸鏡元件片提供一光輸出引導功能以建立視差視圖。 在其他配置中,每個凸鏡與在列方向上四個或四個以上 鄰近顯示像素的一群組相關聯。在每個群組中對應行的顯 示像素經適當配置以提供來自一各自二維子影像的一垂直 切片。隨著一使用者的頭部從左移動至右,感知到在建立 一系列之連續的、不同的、立體視圖,例如一身歷其境 (look-around)印象 〇 上文描述之裝置提供一有效的三維顯示 热而 解,為提供立體視圖,有必要縮減該裝置之水平解析度 在解析度上的此縮減對於某些應用係不利的,諸如用於從 短距離觀看的較小文字字符的顯示,或大體上較小的顯 示,諸如在手持式裝置中。出於此目@,已提議提供可在 一:杈式與三維(立體)模式之間切換之-顯示裝置。 實施此的彳式係提供—電可㈣凸鏡陣列。在該二維 模式中,該可切換農置之該等凸鏡元件操作於—「通過」 模式中,即,其笨w , 」 ,^ .. ^光學透明材料的一平面片相同的方 式運作。所形成之部;曰^_ ^ 不具有一較高解析度,等於該顯示面 板之本身的解析度, 字符的顒示H 於從較短觀看距離之較小文字 在二:;維:示模式當然無法提供-立體影像。 上文所描述的一光心可切換裳置之該等凸鏡元件提供如 W出引導功能。所得顯示可提供立體影 151382.doc 201207543 像’但具有上文提及之不可避免的解析度損失。 為提供可切換顯示模式,該可切換裝置之該等凸鏡元件 可形成為一電光材料(諸如一液晶材料)之一光束操控配 置’其具有在至少兩個值之間可切換的一折射率。接著藉 由施加一適當電位至配置於該等凸鏡元件之上方及下方的 平面電極處而使該裝置在該等模式之間切換。該電位使該 等凸鏡元件之折射率相對於一鄰近光學透明層之折射率而 改變。該可切換裝置之結構及操作的更詳細的描述可在美 國專利第6,069,650號中找到。 WO 2008/1 26049揭示一種光束操控裝置,其使用第一平 面内電極及第二平面内電極,第一平面内電極及第二平面 内電極在一液晶層内產生一平面内電場。此發現實現在該 液晶層中一較大的折射率梯度,使得出現光束之折射。藉 此可達成更有效的光束發散/收斂。在較佳之實施例中, 該光束操控裝置具有一組電極,該組電極被驅動至不同電 位,以定義跨該光束操控裝置之形狀的折射率變化的一平 滑變化。此文件亦揭示使用額外較厚層以藉由影響在該液 晶層中產生之電場而增加焦距。 【發明内容】 已發現在該光束操控裝置之尺寸儘可能減小的情況中, 光學缺陷變得明顯。本發明係基於認識到,該等缺陷結果 因為電極運作為光栅而引起繞射效應。 本發明之一目的係提供關於缺陷的一改良聲置。 該目的用本發明達成,本發明由獨立技術方案定義。附 15I382.doc 201207543 屬技術方案提供有利的實施例。 根據本發明且具有在該等電極與該液晶層之間施加的介 電層之該光束操控裝置之配置減少由該等電極引起的繞射 效應。發明者已發現在㈣料電極近處之電場,層導致 在該液aB層中形成繞射層。根據本發明之該等介電層減少 忒等電場’且隨其減少繞射層的形成及其等之繞射效應。 然而其等實行此是在未不利地影響該裝置之整體光束操控 功能。該介電層可例如包括氮化石夕,此係因減化石夕具有 適當的介電屬性。 在本發明之内文中的光束操控包含一光束(光)關於其傳 播方向及/或其橫截面形狀及/或其發散_收斂特性的操控。 可獨立於該光束之偏振狀態來應用該等操控。例如,可操 控一光束之線性偏振方向之任一者或兩者。 因此例如在一第一操控狀態中,該光束可具有一第一方 向及/或形狀及/或偏振,而在第二操控狀態中的該方向及/ 或該形狀及/或該等偏振可具有不同於該第一操控狀態之 方向及/或形狀及/或偏振。 在一貫施例中,該裝置在其第一操控狀態中可為具有一 第一焦距的一透鏡(亦稱為凸鏡元件或凸鏡),而在該第二 狀態中,其可為具有不同於該第一焦距的一第二焦距的一 透鏡。或者或另外,當該透鏡為一透鏡陣列的一部分時, 該透鏡在該第二狀態中的尺寸(諸如寬度、直徑、圓周或 節距)可不同於該第一狀態中的對應參數。此提供如上文 所定義之實施光束操控的一方式。再者’當使用於根據本 151382.doc • 6 · 201207543 發明之-自動立體顯示器中日夺,可調整該顯示器之深度模 式及/或多視圖模式。在該裝置之該第二狀態代表通過模 式之情況中,該自動立體裝置除了提供由該第一(透鏡)狀 態給出的3D觀看模式之外,亦制其第:狀,態提供戰 看模式。 每個透鏡較佳地與-組電極相關聯。該組電極定義當啟 動該裝置之透鏡功能時該液晶層中的折射率圖帛,且實現 該液晶層中的-平滑折射率梯度,及在該光束操控裝置之 切換(控制)期間從其第一光束操控狀態至其第二光束操控 狀態之折射率的一平滑轉變。 -組Μ施加至該等電極,^當由該裝置定義多個透鏡 時可施加相同組之電麼至該組電極之每個透鏡。在此情況 中’可於電壓線之一匯流排上提供該組電壓,該組之該等 電極在刀接碩處連接至該等電H可輯於鄰近雙凸透 之該 鏡之該等電極的相反順序施加該組錢至—雙凸透鏡 專電極。 、在、..且電壓中之電壓的變化’可如期望般定義及調整 透鏡形狀。再者’ #由改變該組電極,即,添加電極或從 一組移除電極,亦可改變透鏡之尺寸及/或圓周。 、根據本發明之該自動立體顯示裝置具有可調整之觀看模 式’且併人該光束操控裝置,特別受益於該光束操控裝置 之改良效能’此係因為通常由觀看者直接觀察此等顯示裝 車乂長的時間段’使仵光學缺陷(諸如不想要的繞射效應) 更容易注意到’且可變得特別令人討厭。 I51382.doc 201207543 該成像配置可包括—多維或—維陣列之雙凸透^ H 對於該自動立體顯示應用’較佳地使用—個―維陣列之平 行配向之半柱狀透鏡。一較佳的變體係一個一維陣列,其 中並排配置多個拉長的半柱狀凸鏡元件。 ’、 在-自動立體顯示器之該雙凸透鏡陣列的一實施中,不 同空間位置具有一角距A0,且盆中坐卷他撼 ^ 且具甲與母個雙凸透鏡相關聯 之電極數目滿足:201207543 VI. INSTRUCTIONS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a beam steering device that is controllable between at least two beam steering states. Each state allows a beam of light to pass through the beam steering device. [Prior Art] Active steering of a beam of light (eg, light) is useful for a variety of applications ranging from general illumination to special lighting applications, such as a video flash, where the zoom function of the camera is coupled to the beam width of an active optical component. control function. Liquid crystal optics appear to be more suitable for this purpose. The alignment of the liquid crystal molecules can be controlled in the liquid crystal cell by applying "electricity % to a liquid crystal cell. Using this realignment of the liquid crystal molecules, a refractive index gradient can be established in a layer of liquid B" material. This causes a light passing through the liquid crystal layer to be redirected, thereby making the direction and/or shape of a light beam. "A particular application of the beam steering device is in the auto-stereoscopic display. 2 = the auto-stereo The display device comprises: a display panel having display pixels such as a regular array, and an imaging configuration for guiding the different views to different spatial locations with the glandular, day and shoulder. It is well known and overlaid on the long convex mirror elements, which are provided in parallel with each other, and the convex mirrors are used to observe the display pixels. ^ Each mirror is associated with two rows of display pixels - in configuration w (4) (four) pixels are provided - one of the respective two-dimensional sub-images is vertical J5J382.doc 201207543 Slice. The convex lens directs the two slices and corresponding slices from the rows of display pixels associated with the other convex mirrors to the left and right eyes of a user located in front of the slice such that the user views a single stereoscopic image. Therefore, the convex mirror element piece provides a light output guiding function to establish a parallax view. In other configurations, each convex mirror is associated with a group of four or more adjacent display pixels in the column direction. The display pixels of the corresponding row in each group are suitably configured to provide a vertical slice from a respective two-dimensional sub-image. As a user's head moves from left to right, it is perceived that a series of consecutive, different, stereoscopic views are created, such as a look-around impression, the device described above provides an effective The three-dimensional display is thermally resolved, and in order to provide a stereoscopic view, it is necessary to reduce the horizontal resolution of the device. This reduction in resolution is disadvantageous for certain applications, such as display of smaller text characters for viewing from short distances. , or a substantially smaller display, such as in a handheld device. For this purpose, it has been proposed to provide a display device that can be switched between a 杈 and a three-dimensional (stereo) mode. The cymbal system that implements this provides an array of electrically (four) convex mirrors. In the two-dimensional mode, the convex mirror elements of the switchable farm operate in the "pass" mode, that is, the stupid w, ", ^.. ^ a planar sheet of optically transparent material operates in the same manner . The formed part; 曰^_ ^ does not have a higher resolution, which is equal to the resolution of the display panel itself, and the character H is displayed in a smaller text from a shorter viewing distance in two: dimension: mode Of course, it is impossible to provide - stereo imagery. The convex mirror elements of the optically switchable skirts described above provide a function of guiding out. The resulting display provides stereoscopic image 151382.doc 201207543 like 'but with the inevitable resolution loss mentioned above. To provide a switchable display mode, the convex mirror elements of the switchable device can be formed as a beam steering configuration of an electro-optic material (such as a liquid crystal material) having a refractive index switchable between at least two values . The device is then switched between the modes by applying an appropriate potential to the planar electrodes disposed above and below the convex mirror elements. This potential changes the refractive index of the convex mirror elements relative to the refractive index of an adjacent optically transparent layer. A more detailed description of the structure and operation of the switchable device can be found in U.S. Patent No. 6,069,650. WO 2008/1 26049 discloses a beam steering device that uses a first in-plane electrode and a second in-plane electrode, the first in-plane electrode and the second in-plane electrode generating an in-plane electric field in a liquid crystal layer. This finding achieves a large refractive index gradient in the liquid crystal layer such that refraction of the beam occurs. This allows for more efficient beam divergence/convergence. In a preferred embodiment, the beam steering device has a set of electrodes that are driven to different potentials to define a smooth change in refractive index change across the shape of the beam steering device. This document also discloses the use of an extra thicker layer to increase the focal length by affecting the electric field generated in the liquid crystal layer. SUMMARY OF THE INVENTION It has been found that optical defects become apparent in the case where the size of the beam steering device is as small as possible. The present invention is based on the recognition that the results of such defects cause diffraction effects due to the operation of the electrodes as gratings. It is an object of the present invention to provide an improved acoustic arrangement for defects. This object is achieved with the present invention, which is defined by an independent technical solution. An advantageous embodiment is provided in the accompanying technical solution of 15I382.doc 201207543. The configuration of the beam steering device according to the present invention and having a dielectric layer applied between the electrodes and the liquid crystal layer reduces the diffraction effect caused by the electrodes. The inventors have discovered that the electric field in the vicinity of the (four) material electrode causes the formation of a diffractive layer in the liquid aB layer. The dielectric layers according to the present invention reduce the electric field of 忒 and the diffraction effect of the formation of the diffractive layer and the like. However, this is done in such a way that it does not adversely affect the overall beam steering function of the device. The dielectric layer may, for example, comprise a nitrite, which has suitable dielectric properties due to reduced dialysis. Beam steering in the context of the present invention includes manipulation of a beam (light) with respect to its propagation direction and/or its cross-sectional shape and/or its divergence-convergence characteristics. These manipulations can be applied independently of the polarization state of the beam. For example, either or both of the linear polarization directions of a beam of light can be manipulated. Thus, for example, in a first steering state, the beam may have a first direction and/or shape and/or polarization, and in the second steering state the direction and/or the shape and/or the polarization may have Different from the direction and/or shape and/or polarization of the first steering state. In a consistent embodiment, the device may be a lens (also referred to as a convex mirror element or a convex mirror) having a first focal length in its first operational state, and in the second state it may be different a lens at a second focal length of the first focal length. Alternatively or additionally, when the lens is part of a lens array, the dimensions (such as width, diameter, circumference or pitch) of the lens in the second state may be different from corresponding parameters in the first state. This provides a way to implement beam steering as defined above. Further, when used in an autostereoscopic display according to the invention of 151382.doc • 6 · 201207543, the depth mode and/or multi view mode of the display can be adjusted. In the case where the second state of the device represents a pass mode, the autostereoscopic device provides a third view mode, which is given by the first (lens) state, and also provides a warhead mode. . Each lens is preferably associated with a set of electrodes. The set of electrodes defines a refractive index map in the liquid crystal layer when the lens function of the device is activated, and a smooth refractive index gradient in the liquid crystal layer is achieved, and during the switching (control) of the light beam steering device A smooth transition of the refractive index of a beam steering state to its second beam steering state. - Groups are applied to the electrodes, and when the plurality of lenses are defined by the device, the same set of electricity can be applied to each of the sets of electrodes. In this case, the set of voltages can be provided on one of the voltage lines of the set of electrodes, the electrodes of the set being connected to the isoelectric H at the knives and the electrodes of the mirror adjacent to the biconvex mirror. The opposite order applies the set of money to the lenticular lens. The change in voltage at , , and voltage can define and adjust the lens shape as desired. Furthermore, the size and/or circumference of the lens can be changed by changing the set of electrodes, i.e., adding or removing electrodes from a group. The autostereoscopic display device according to the present invention has an adjustable viewing mode 'and the beam steering device, especially benefiting from the improved performance of the beam steering device' because the display is usually viewed directly by the viewer. The long period of time 'makes the optical defects (such as unwanted diffraction effects) easier to notice' and can become particularly annoying. I51382.doc 201207543 The imaging configuration may comprise a double-convex lens of a multi-dimensional or -dimensional array for which the auto-stereoscopic display application 'preferably' uses a parallel array of semi-cylindrical lenses. A preferred variant system is a one-dimensional array in which a plurality of elongated semi-columnar convex mirror elements are arranged side by side. In an implementation of the lenticular lens array of the autostereoscopic display, the different spatial locations have an angular distance A0, and the number of electrodes associated with the parent lenticular lens is satisfied in the basin:

Ne!ec、 λ < 0,5 ~!^n'icu,^^0 長 其中Pienticular係該等雙凸透鏡之節距,且λ係該光束之波 此藉由維持一最小電極間距而進一步減少繞射效應,例 如使得避免第一及更高階的繞射效應。 施加至該組電極的電壓可隨跨該雙凸透鏡之各自電極的 位置而非線性地變化。此使得待控制之光學功能給出改良 的光學效能。例如,施加至該組電極之電壓可隨跨該雙凸 透鏡之各自電極的位置而成二次方變化。 該组電壓可由一階梯之阻抗提供,於鄰近阻抗之間的分 接點處提供電壓。此提供產生多個電壓值的一簡單方式。 ★該裝置及/或自動立體顯示器可具有一控制器,以將該 等組電壓提供至該等電極。此控制器較佳地係包括一電腦 晶片或積體電路的一電子裝置。 本發明亦提供控制一光束操控裝置的一方法,該方法受 益於該光束操控裝置之優點。 本發明提供用於在至少兩個視圖模式之間控制一自動立 151382.doc 201207543 體顯示器的一方法。 【實施方式】 本發明之該等態樣及其他態樣現將參考附圖而更詳細地 描述,附圖展示本發明之一項當前較佳實施例。 在下述描述中,本發明參考具有一直列式對準之液晶層 的一光束操控裝置而描述;當沒有電壓施加至電極時,包 括於LC層中之液晶(lc)分子經配向垂直於基板。應注意, 此決不限制本發明之範圍,其等同地適用於液晶層以任意 其他方式對準的光束操控裝置中,諸如平面配向其中LC 分子與基板在一平面内平行配向。在此配向中,LC分子可 平行於電極或垂直於電極而對準,或具有一混合配向,其 中LC刀子具有鄰近於第一基板的一第一配向,及垂直於該 第一配向、鄰近於第二基板的一第二配向。 此外,為不被非直接與本發明相關的細節模糊本發明, 對於熟S此項技術者熟知之進一步的層,諸如用於對準L匸 分子等等的對準層既沒有描繪於附圖中’又沒有在此詳細 描述。 應注意,圖式並不按比例繪製。然而’為給出適宜尺寸 的觀念’ T以說在電⑮中之-導體線的寬度㈣常為範圍 從1微米至20微呆。此外,導體線通常間隔開1〇微米至1〇〇 微米’且LC層之厚度大體上在5微米與5〇微米之間。 在一態樣中,本發明大體上係關於適宜於許多不同應用 的光束操控裝置,且在另一態樣中,本發明更明確地關於 額外的特徵,該等額外特徵利用對於一 3D顯示裝置或一 15l382.doc 201207543 2娜可切換顯示裝置尤其有益的光束操控裝^。將首先 描述光束操控裝置的-般概念及設計,接著描述尤其關於 3D顯示領域的額外特徵之解釋,儘管該等額外特徵亦具有 更一般的應用。 本發明建立於描述於W0 20〇8/126〇49中的做法。該光束 操控裝置之使用的所有實例描述於w〇 2〇〇8/126〇49中,且 所呈現的不同電極設計可利用於本發明之裝置中。所有該 等變動的描述將呈現於本申請案中,且閱讀者對於進一步 的細節請參考WO 2008/126049。 圖la至圖lc示意性繪示如w〇 2〇〇8/126〇49中所描述之一 例示性光束操控裝置,且本發明可應用於此裝置。 在圖la中展示一光束操控裝置丨,其包括一直列式對準 之液晶(LC)層2,該液晶層夾在第一透明基板3與第二透明 基板4之間。在該第一基板3上,面對該1^層2提供第一梳 狀透明電極5及第二梳狀透明電極6。藉由在該等電極$、6 上施加一電壓v,入射於該光束操控裝置上的一準直光束7 可被偏轉,如圖1 a中示意性地繪示。 圖lb係圖la中沿著線A_A,的一橫截面視圖’其示意性展 示未跨該等電極5、6施加電壓的情況。因為沒有施加電 壓,所以沒有形成電場,且結果,由對準層(圖中未展示) 影響LC分子之配向。在圖lb中所繪示之情況中,該等 分子係直列式對準的,且在此由三個平行光線Ua至Uc表 示之該入射光束7的形狀未因通過該光束操控裝置丨而改 變〇 151382.doc •10· 201207543 參考圖lc’其示意性展示跨該等電極5、6施加電壓v的 清況’現將更詳細描述利用圖丨a中之該光束操控裝置的光 束操控機制。 如圖1示意性地展示,包括於該LC層2中的液晶(LC) 分子10a至l〇c對準於該等電極5、6之間的電場線❶歸因於 此重新配向,形成具有不同折射率之該乙(:層2的區域。在 圖1c中繪示之例示性情況令,由以(局部)垂直於該光束操 控裝置的一方向照射到該光束操控裝置丨的一光束7歷經的 折射率在源自LC分子l〇a垂直於該[(^層2而配向的尋常折 射率η。與源自平行於該LC層2而配向iLC分子1〇c的非尋 常折射率ne之間變化。在具有「垂直」LC分子l〇a之其一 部分與具有「平行」LC分子l〇c之其一部分之間照射到該 光束操控裝置1的光將歷經一中間折射率,照射到Lc分子 l〇b。該分子對準遵循一平面内電場。此意謂著場線通過 電極之間’場線實質上在相同平面内。該等場線係管曲 的,且延伸至LC中,但該等場線在其等長度之至少一部分 上平行於該LC層之平面,以定義從一電極至另一電極的一 連續路徑。整體效應係定義在該乙(:層内的一梯度折射率 (GRIN)透鏡。 12(尋常光線)c代表未經 在圖lc中,三個光線12a、12b、 量’該方向垂直於 12b、12c通過該光 偏振光的具有一偏振方向之線性偏振分 該等LC分子之長軸,該三個光線丨2a、 束操控裝置1而實際上沒有歷經一折射率梯度。因此該等 光線12a至12c在通過該LC層2期間皆未顯著改變其方向1 15I382.doc •11 · 201207543 在另方面’代表在該等分子之長轴之平面中偏振光 (非尋常光線)的其他偏振分量(光線13a、l3b、i3c)歷經一 折射率梯度’且因此如圖lc中所指示般示意性地折射。 結果,在一非偏振之光束7中的該光的一最大5〇%係可 由圖la至圖lc申之該光束操控裝置丨而控制。 如W〇2_/126049中所描述’藉由堆臺光束操控元件, 可達成在一未偏振之光束中實質上所有光的控制。 如上文所提及,本發明係基於認識到,該光束操控裝置 之光學屬性在光學裝置之尺寸減小時惡化^ grin透鏡之 模擬暗示繞射係由電極形成iLC光柵結構所引起。所獲得 之折射率及角度里變曲線具有波動,在該等角度量變曲線 中觀察到的該等波動更突出。 每個透鏡具有兩個以上電極係有利的,以能夠改變跨該 透鏡的非線性電壓。圖2展示具有23個電極之一 grin透鏡 的一理論分析。對於兩個不同驅動電壓,於圖2(叻中展示 折射率量變曲線,且於圖2(b)中展示角度量變曲線。此等 標繪圖具有〇幻>1透鏡中繞射效應之結果的突出波動。 波動之數目對應於在一單一透鏡之下電極的數目。此暗 示在兩個相鄰電極之間的電場線形成在Lc層内的一不想要 的光柵,該光栅導致繞射。 〜 此認識已藉由用一雷射點照亮一 G R J N透鏡樣品(當其開 啟時)而證實,且發現觀察到一繞射圖案。所形成之繞^ 圖案合乎各自GRIN透鏡樣品之電極週期。 本發明在該等電極與該LC層之間提供一電介質(介電) 151382.doc 12 201207543 層。該介電層出於抑制鄰近電極之間相對較弱的電場的目 的而使用,同時防止所期望的抛物線電場線配向LC指向矢 而形成一透鏡。 圖3示意性地展示當實施為一 GRIN透鏡時如何使用介電 層以修改該光束操控裝置。 圖3(a)展示基本的GRIN透鏡設計,平面内電極20在一絕 緣體層21之表面處與該lc層22接觸,在該LC層22十定義 折射率圖案。圖3(b)展示在該等電極與該lc層之間的電介 質介電層24,其用於減少在該LC:層中的光柵效應。 一透明介電或絕緣層可用於抑制形成該Lc層中之光柵 結構的電場。氮化矽(以川4;心=6)係較佳的。該介電層的 厚度範圍從10奈米至10微米。一般而言,該介電層之厚度 係小於10微米,且其可小於5微米。該介電層之厚度較佳 地厚於100奈#。一較薄電介質介電層&使用避免透鏡功 月b被,ν響,使得該電介質介電層限制於該等繞射效應的抑 制0 圖4展示對於與圖2(a)中所呈現的相同的電極設計,當使 用一個5微米厚之電介質介電層%Ν4時所獲得之模^RIN 透鏡折射率量變曲線。此展示該等波動已被移除。 與沒有"電層的樣品相比較,具有介電層的樣品之實驗 亦展示相當程度上的改L從具有—介電層的—G讀樣 品處獲得之繞射圖案之第—階蜂值發現相當小。 該介電層24之—額外優點為其防止在鄰近電極之間的短 路。此等短路可尤其作為該裂置之尺寸小型化的一結果而 15I382.doc 201207543 發生,此導致該等電極位於更接近彼此。 可使用多種技術以沈積所期望之介電材料層。諸如化學 氣相沈積/低壓化學沈積之方法係較佳的以沈積氮化矽。予 如上文所提及,根據本發明之原理而設計之光束操控妒 置可具有3D顯示器之領域中特定的應用,諸如在兩個或多' 個觀看模式之間可切換的顯示器,一項突出的實例係 一 2D觀看模式及一 3D觀看模式的顯示器。 '、 圖5係一已知直接觀看自動立體顯示裝置1〇〇的一示意性 透視圖》已知之裝置100包括主動矩陣類型之一液晶顯示 面板103,其運作為一空間光調變器以產生顯示。 該顯示面板103具有一正交陣列之顯示像素,每個像素 再分成許多子像素105,根據正規標準增建而以列與行配 置。例如在所描述之實施例中,該等顯示像素可由三重子 像素組成,其巾該等子像素係紅色、綠色及藍色。為清晰 起見,在圖中僅展示較小數目個顯示子像素iG5。在實踐 中,該顯示面板103彳包括約_ +列及幾千行顯示子 105。 、 該液晶顯示面板103之結構係完全習知的。特定言之, 該面板103包括一對間隔開的透明玻璃基板,該等玻璃基 板之間提供一對準扭轉向列液晶材料或其他液晶材料。該 等基板在其等面對的表面上帶有透明銦錫氧化物(ITO)電 極之圖案。在該等基板之外表面上亦提供有偏振層。 。母個顯示子像素105可包括該等基板上相反的電極,電 木之間***液晶材料。該等顯示子像素1〇5之形狀及佈局 151382.doc 14 201207543 由該等電極之形狀及佈局決定。該等顯示子像素ι〇5係藉 由間隙而有規則地彼此間隔開。 每個顯示子像素105與一切換元件相關聯,諸如一薄膜 電晶體(TFT)或薄膜二極體(TFD)。該等顯示子像素經操作 以藉由提供定址信號至該等切換元件而產生顯示,且適宜 的定址方案對於熟習此項技術者係熟知的。 該顯示面板103由一光源107照亮’在此情況中光源1〇7 包括在該顯示像素陣列之區域上延伸的一平面背光。來自 w光源107之光經引導穿過該顯示面板1 ,該等個別之顯 示子像素105經驅動以調變該光且產生顯示。 在一黑色及白色顯示而非一彩色顯示的情況中,該顯示 面板具有黑色及白色像素,使得在上文對於彩色顯示給出 的描述中,該等顯示子像素係與黑色及白色顯示像素相 同。 該顯示裝置100亦配置於該顯示面板1〇3之顯示側上的包 括一凸鏡片109,其執行一觀看形成功能。該凸鏡片1〇9包 括彼此平行而延伸的一列凸鏡元件m,為清晰起見用誇 張的尺寸展示僅一凸鏡元件lu。 s亥等凸鏡元件11 1係以凸面柱狀透鏡之形式,且其等作 為一光輸出引導構件,以從該顯示面板1〇3提供不同影像 或視圖至位於該顯示裝置丨00前方的一使用者的眼睛處。 圖5中展示之該自動立體顯示裝置1〇〇可在不同方向提供 許多不同透視圖。特定言之,每個凸鏡元件丨丨丨在每一列 中上覆於一小群組之顯示子像素i 〇5上。該等凸鏡元件丄丄^ 151382.doc 201207543 將一群組之每個顯示子像素105在一不同方向投射,以便 形成許多+㈣圖。隨著該使用纟的頭部從左向右移動, 他/她的眼睛將繼而接收許多視圖之不同者。 已提議提供電可切換之透鏡元件,如上文所提及。此實 現在2D與3D模式之間切換顯示。 圖6及圖7示意性展示一陣列之電可切換凸鏡元件ιι5, 該等凸鏡元件可利用於該自動立體顯示器中。該陣列包括 一對透明玻璃基板119、121,於該對透明玻璃基板119、 121面對之表面上提供由銦錫氧化物(IT〇)形成的透明電極 123、125。使用一複製技術而形成的一倒轉透鏡結構丄27 提供於該等基板119、121之間,鄰近於該等基板之一上面 基板119。液晶材料129亦提供於該等基板119、12 1之間, 鄰近於該等基板之一較低基板121處。 s玄倒轉之透鏡結構12 7導致在該倒轉透鏡結構1 2 7與該較 低基板121之間該液晶材料129呈現平行、拉長的凸鏡形 狀’如圖2及圖3中展示之橫截面。與該液晶材料接觸的該 倒轉透鏡結構1 2 7之表面及該較低基板121之表面亦具有一 配向層(圖中未展示),用於配向該液晶材料。 圖6展示當沒有電位施加至該等電極123、125時的該陣 列。在此狀態中’對於一特定偏振的光,該液晶材料丨29 之折射率實質上高於該倒轉透鏡陣列127之折射率,且該 等凸鏡形狀因此提供一光輸出引導功能,即,一透鏡動 作,如所繪示。 圖7展示當約50伏特至100伏特的一交替電位施加至該等 15I382.doc -16- 201207543 電極123、125時的該陣列。在此狀態中,對於-特定偏振 的光,該液晶材料129之折射率實f上相同於該倒轉透鏡 陣列127之折射率’使得料&鏡形狀之光輪出引導功能 被取肩如所繪示。因此,在此狀態令,該陣列有效地運 作於一「通過」模式中。 熟習此項技術者將瞭解,一光偏振構件必須與上文所描 述之陣列協力使用’因為該液晶材料係雙折射的所以該 折射率切換僅《於-料偏振的光。該光偏振構件可提 供為該裝置之該顯示面板或該成像配置的部分。 適宜使用於圖5中所展:示之該顯示裝£中之可切換凸鏡 元件的陣列之結構及操作之進一步細節可在美國專利第 6,069,650號中找到。 圖8展示如上文所描述之—凸鏡類型之成像配置之操作 的原理,且展示背光130、顯示裝置134(諸如一lcd)及凸 鏡陣列13 8。 如圖6及圖7中所展示之該裝置之製造使用複製凸鏡,其 需要在生產設施上非標準的設備。如上文所描述之一光束 知控裝置之使用具有橫向控制之梯度折射率的透鏡功能, 因此簡化製程。 當該光束操控裝置用於實施雙凸透鏡時,該等電極與拉 長透鏡軸平行(使得透鏡形狀該透鏡寬度而定義)。 々在每個透鏡兩個以上電極之情況中,一組電壓施加至該 等電極’且相同組電麼施加至每個雙凸透鏡之該組電極。 為簡化至該等電極的電壓供應,可於電壓線之一匯流排 151382.doc •17· 201207543 140上提供該組電壓,如圖9中所展示。 圖9展示一佈局之部分,其中每個〇 38毫米寬的枉狀透 鏡係由23個不同電壓驅動。該圖展示四個柱狀透鏡之部 分’該四個柱狀透鏡之各者由以上下方向設置的23個IT〇 電極所覆蓋》 以對於鄰近雙凸透鏡之電極的相反順序施加該組電壓至 一雙凸透鏡之該等電極。此給出在該匯流排i 4〇與該等電 極線142之間展示的分接點之三角形連接圖案。 一增加斜率之電壓及一減小斜率之電壓導致相同的折射 率量變曲線。該等電極與該顯示器之高度一樣長(幾十公 分),即,該等電極在行方向上在該顯示器之整個高度上 延伸,但在該匯流排140之鄰近處僅展示該等電極142之頂 部。該匯流排線140係對於該等IT〇電極ι42在一不同深度 位準上,由一隔離層分離。該等分接點係藉由該兩個電極 層之間的連接介層孔實施。 圖10展不結構的三維略圖,且展示耦接至該電壓匯流排 140的電壓組144,及該氮化矽絕緣體146,介層孔穿過該 絕緣體而形成。 一典型以LC為基礎的〇^11^凸鏡具有幾十微米的一單元 間隙,且需要幾十伏特的DC電壓以驅動。驅動之最簡單 的方法係將期望之電壓從各自電壓源直接施加至該等電極 或匯流排線。然而,此係一昂貴的解決方案。 藉由知道需要施加至該等不同電極之電壓的期望比率, 可取而代之使用一電阻式分壓器或電容式分壓器以形成不 151382.doc 201207543 同之期望的電壓。圖"展示使用一階梯之阻抗以形成一組 電壓。 最簡單的實施係產生一組電壓,該等電壓隨跨該雙凸透 鏡的距離而線性地變化。然而,改良之透鏡效能可藉由提 供一更複雜的電壓量變曲線而獲得。在一實例中,可使用 跨該透鏡之距離而成二次方變化的一電壓量變曲線。 圖12展示具有多個線電極之構在該lc之一側處 的計算。 對於電壓隨距離的一線性變化在左邊具有三個標繪圖。 右邊二個對應的標繪圖係對於電壓隨距離的二次方變化。 在每個情況中’頂部的標繪圖展示偏轉角度15〇、對此的 線性擬合152及折射率對垂直於該等電極的距離〖54。中央 的標繪圖展示LC單元之橫截面,展示所計算之指向矢量變 曲線(小劃線)及等電位線。該等電極在層156中。底部的標 繪圖展示所施加的電壓對垂直於該等電極的距離(即,跨 該雙凸透鏡)。 對於線性電壓量變曲線的所得折射率量變曲線及偏轉角 度量變曲線並非理想,因為對於一良好的透鏡動作,該偏 轉角度量變曲線應儘可能接近直線區段。 藉由依距離為函數來改變電壓,可獲得一期望之折射率 量變曲線及偏轉角度量變曲線。在圖12之底部右邊標繪圖 中展示的二次方(抛物線)函數給出一相當大程度上改良的 所得折射率量變曲線及偏轉角度量變曲線。該偏轉角度量 變曲線基本上由直線區段組成,暗示一較好的透鏡動作。 15j382.doc 201207543 可用圖11中展示之阻抗階梯而(但非必需)實施所期望之 函數。以獲得期望之電壓量變曲線的此一方式選擇阻抗 值。例如’對於電阻器,可容易展示出’若在第η個與第1 個電阻器之間的電阻值比率係Rn/R〗=2n-1,則獲得二次方 電壓量變曲線Vn〇Cn2。 更一般而言’在該第η個與該第1個阻抗之間的阻抗值比 率係 4/1=211-1。 此可例如藉由使用具有一變化寬度的一電阻器條16〇而 達成,從該電阻器條處與該等電極的連接在選擇的位置處 分支’使得獲得所期望之電壓量變曲線。此展示於圖13 中。 電阻器僅係該等阻抗之一可行實施的一項實例。取而代 之可使用電容器。在此情況中,該等電極線本身之電容經 考慮以確保對於該阻抗階梯而使用之電容大於該等電極電 容。 上文之實例以離散步階形成所期望之電壓量變曲線。然 而或者,可獲得一連續電壓量變曲線。一實施例可為使用 具有變化厚度的一高歐姆連續電極板,其中該厚度量變曲 線經選擇使得獲得所期望之電阻量變曲線。用含有孔的一 高歐姆電極板的一準連續的解決方案亦可行的。接著在敞 開區域與電機區域之間的比率決定局部電壓。為避免電壓 量變曲線中的不連續性,該等孔應為較小的。 因此,藉由改變該電壓、组,可在該LC層中感應不同的 透鏡形狀。或者或另外,藉由調整電極之量及系集 151382.doc -20- 201207543 (enSemble),可改變該等凸鏡之寬度及節距。調整電極之 量及系集有利於改變待在3D模式中顯示之視圖的數目按 使用,可改變在一群組之子像素中引導至不同視圖中的子 像素的數目。如上文所解釋,額外的介電層減少該等繞射 效應。仍有一些殘餘電場留下而形成光柵結構。可藉由選 擇在一 GRIN透鏡下的電極之數目不要超過一定數目而最 小化對在光學品質上的影響。 對於使用一雙凸透鏡配置的一自動立體顯示器之實例, 使Δφ為殘餘繞射圖案之第〇階與第丨階峰值之間的角距(當 雷射點用於照壳該透鏡時)。使Δθ為兩個鄰近視圖之間 的角距;由顯示器之像素節距與凸鏡設計而決定。為了不 過多增加鄰近視圖之間的覆疊,較佳的為△衫,c為一 常數。此暗示在-GRIN透鏡下方之電極數目NeiW的一 上限。 因為Nelectrodes=plenticu|ar/d,且光柵定律近似給出 Δφ=λ/<1 : ^匕處d係電極節距,且Plenticular係雙凸透鏡之節距;入 係光的波長。 例如,在plenticular=0 377毫米且在鄰近視圖之間的距離 Δθ 2.6 的情況中,此產生 Nelectrodes:^16(基於(^〇.5且^55〇 奈米)。 較佳地’现5。因此,較佳地’ Ne|ecu〇des遵循上文 c=0.5的等式。 I51382.doc 21 201207543Ne!ec, λ < 0,5 ~!^n'icu, ^^0, where Pienticular is the pitch of the lenticular lenses, and λ is the wavelength of the beam which is further reduced by maintaining a minimum electrode spacing The diffractive effect, for example, makes it possible to avoid the first and higher order diffraction effects. The voltage applied to the set of electrodes can vary non-linearly with the position of the respective electrodes across the lenticular lens. This allows the optical function to be controlled to give improved optical performance. For example, the voltage applied to the set of electrodes can vary quadratically with the position of the respective electrodes across the lenticular lens. The set of voltages can be provided by a stepped impedance that provides a voltage at a tap between adjacent impedances. This provides a simple way to generate multiple voltage values. The device and/or autostereoscopic display can have a controller to provide the set of voltages to the electrodes. The controller preferably includes an electronic device of a computer chip or integrated circuit. The present invention also provides a method of controlling a beam steering device that benefits from the advantages of the beam steering device. The present invention provides a method for controlling an automated display 151382.doc 201207543 body display between at least two view modes. [Embodiment] These and other aspects of the invention will now be described in more detail with reference to the accompanying drawings. In the following description, the invention is described with reference to a beam steering device having a liquid crystal layer aligned in alignment; when no voltage is applied to the electrodes, the liquid crystal (lc) molecules included in the LC layer are aligned perpendicular to the substrate. It should be noted that this in no way limits the scope of the invention, which is equally applicable to beam steering devices in which the liquid crystal layer is aligned in any other manner, such as planar alignment in which LC molecules are aligned parallel to the substrate in a plane. In this alignment, the LC molecules may be aligned parallel to the electrodes or perpendicular to the electrodes, or have a mixed alignment, wherein the LC knives have a first alignment adjacent to the first substrate, and perpendicular to the first alignment, adjacent to a second alignment of the second substrate. In addition, in order not to obscure the present invention in detail that is not directly related to the present invention, further layers well known to those skilled in the art, such as alignment layers for aligning L匸 molecules, etc., are not depicted in the drawings. 'There is no detailed description here. It should be noted that the drawings are not drawn to scale. However, in order to give the idea of a suitable size, it is said that the width (4) of the conductor line in the electricity 15 is often in the range of from 1 micrometer to 20 microseconds. In addition, the conductor lines are typically spaced 1 〇 microns to 1 微米 microns and the thickness of the LC layer is generally between 5 microns and 5 microns. In one aspect, the present invention is generally directed to beam steering devices suitable for many different applications, and in another aspect, the present invention more specifically relates to additional features that utilize a 3D display device for a 3D display device Or a 15l382.doc 201207543 2 can switch the display device is particularly beneficial beam steering device. The general concept and design of the beam steering device will first be described, followed by an explanation of additional features in particular in the field of 3D display, although such additional features have more general applications. The present invention is based on the practice described in WO 20 8/126 49. All examples of the use of the beam steering device are described in w〇 2〇〇8/126〇49, and the different electrode designs presented can be utilized in the device of the present invention. A description of all such variations will appear in this application, and the reader is referred to WO 2008/126049 for further details. Figures la to lc schematically illustrate one exemplary beam steering device as described in w〇 2〇〇8/126〇49, and the present invention is applicable to this device. A light beam steering device 丨 is shown in Fig. 1a comprising a liquid crystal (LC) layer 2 aligned in alignment, the liquid crystal layer being sandwiched between a first transparent substrate 3 and a second transparent substrate 4. On the first substrate 3, a first comb-shaped transparent electrode 5 and a second comb-shaped transparent electrode 6 are provided facing the layer 2. By applying a voltage v across the electrodes $, 6, a collimated beam 7 incident on the beam steering device can be deflected, as schematically depicted in Figure 1a. Figure lb is a cross-sectional view along line A_A in Figure la, which schematically shows the case where no voltage is applied across the electrodes 5, 6. Since no voltage is applied, no electric field is formed, and as a result, the alignment of the LC molecules is affected by the alignment layer (not shown). In the case illustrated in FIG. 1b, the molecules are in-line aligned, and the shape of the incident beam 7 represented by the three parallel rays Ua to Uc is not changed by the beam steering device. 〇 151382.doc • 10· 201207543 Referring to Figure lc', which schematically shows the condition of applying a voltage v across the electrodes 5, 6 'The beam steering mechanism of the beam steering device in Figure a will now be described in more detail. As schematically shown in Fig. 1, the liquid crystal (LC) molecules 10a to 10c included in the LC layer 2 are aligned with the electric field lines between the electrodes 5, 6 due to this realignment, forming The B of different refractive indices (the region of layer 2. The exemplary case illustrated in Figure 1c is such that a beam 7 is illuminated to the beam steering device ( in a direction that is (partially) perpendicular to the beam steering device The refractive index experienced is derived from the LC molecule l〇a perpendicular to the [normal layer θ of the aligned layer η. and the extraordinary refractive index ne derived from the alignment of the LC layer 2 and the alignment of the iLC molecule 1〇c The light that illuminates the beam steering device 1 between a portion having a "vertical" LC molecule l〇a and a portion having a "parallel" LC molecule l〇c will illuminate through an intermediate refractive index. Lc molecule l〇b. The alignment of the molecule follows an electric field in a plane. This means that the field lines pass through the 'field lines' between the electrodes in substantially the same plane. These field lines are curved and extend into the LC. , but the field lines are parallel to the plane of the LC layer on at least a portion of their equal length to define A continuous path from one electrode to the other. The overall effect is defined in the B: a gradient index (GRIN) lens. 12 (ordinary light) c represents the three rays 12a not in Figure lc 12b, the amount 'the direction perpendicular to the 12b, 12c through the polarization of the light polarized light having a polarization direction of the long axis of the LC molecules, the three rays 丨 2a, the beam manipulation device 1 without actually going through a refractive index gradient. Therefore, the light rays 12a to 12c do not significantly change their direction during the passage of the LC layer 2. 1 15I382.doc •11 · 201207543 In other respects, it represents polarized light in the plane of the long axis of the molecules. The other polarization components (light rays 13a, l3b, i3c) of the (unusual light) undergo a refractive index gradient 'and are thus schematically refracted as indicated in lc. As a result, the light in a non-polarized beam 7 A maximum of 5% can be controlled by the beam steering device as shown in Figure 1 to Figure 126. As described in W〇2_/126049, by stacking the beam steering element, an unpolarized beam can be achieved. Essentially all light control. As mentioned, the present invention is based on the recognition that the optical properties of the beam steering device deteriorate as the size of the optical device decreases. The simulation of the grin lens implies that the diffraction system is caused by the electrode forming the iLC grating structure. The angle curves have fluctuations, and the fluctuations observed in the angle variation curves are more prominent. Each lens has two or more electrodes that are advantageous to be able to change the nonlinear voltage across the lens. Figure 2 shows A theoretical analysis of a grin lens of one of the 23 electrodes. For two different driving voltages, a refractive index variability curve is shown in Figure 2, and an angular variability curve is shown in Figure 2(b). These plots have outstanding fluctuations as a result of the diffraction effect in the illusion >1 lens. The number of fluctuations corresponds to the number of electrodes below a single lens. This implies that the electric field lines between two adjacent electrodes form an unwanted grating within the Lc layer which causes diffraction. ~ This knowledge has been confirmed by illuminating a G R J N lens sample with a laser spot (when it is turned on) and it was found that a diffraction pattern was observed. The resulting pattern of turns conforms to the electrode period of the respective GRIN lens sample. The present invention provides a dielectric (dielectric) layer 151382.doc 12 201207543 between the electrodes and the LC layer. The dielectric layer is used for the purpose of suppressing a relatively weak electric field between adjacent electrodes while preventing the desired parabolic electric field lines from aligning with the LC director to form a lens. Fig. 3 schematically shows how a dielectric layer can be used to modify the beam steering device when implemented as a GRIN lens. Fig. 3(a) shows a basic GRIN lens design in which an in-plane electrode 20 is in contact with the lc layer 22 at the surface of an insulator layer 21, at which the refractive index pattern is defined. Figure 3(b) shows a dielectric dielectric layer 24 between the electrodes and the lc layer for reducing the grating effect in the LC: layer. A transparent dielectric or insulating layer can be used to suppress the electric field that forms the grating structure in the Lc layer. Niobium nitride (Isokawa 4; heart = 6) is preferred. The thickness of the dielectric layer ranges from 10 nanometers to 10 micrometers. Generally, the thickness of the dielectric layer is less than 10 microns and it can be less than 5 microns. The thickness of the dielectric layer is preferably thicker than 100 nm. A thinner dielectric dielectric layer & use avoids lens power b, ν ringing, such that the dielectric dielectric layer is limited to the suppression of such diffraction effects. Figure 4 shows for the appearance of Figure 2(a) The same electrode design, the refractive index change curve of the RIN lens obtained when a 5 micron thick dielectric dielectric layer % Ν 4 was used. This shows that these fluctuations have been removed. The experiment with a sample with a dielectric layer also shows a considerable degree of change from the first-order bee value of the diffraction pattern obtained from the -G read sample with the dielectric layer compared to the sample without the "electrical layer. Found quite small. An additional advantage of the dielectric layer 24 is that it prevents short circuits between adjacent electrodes. These short circuits can occur, inter alia, as a result of the miniaturization of the size of the split, which occurs, which causes the electrodes to be located closer to each other. A variety of techniques can be used to deposit the desired layer of dielectric material. A method such as chemical vapor deposition/low pressure chemical deposition is preferred to deposit tantalum nitride. As mentioned above, a beam steering device designed in accordance with the principles of the present invention can have particular applications in the field of 3D displays, such as displays that are switchable between two or more 'view modes, one highlight The example is a display in a 2D viewing mode and a 3D viewing mode. ', Figure 5 is a schematic perspective view of a known direct viewing autostereoscopic display device 1". The known device 100 comprises one of the active matrix type liquid crystal display panels 103, which operate as a spatial light modulator to generate display. The display panel 103 has an orthogonal array of display pixels, each of which is subdivided into a plurality of sub-pixels 105, which are arranged in columns and rows according to a conventional standard. For example, in the described embodiment, the display pixels may be comprised of triple sub-pixels, the sub-pixels being red, green, and blue. For the sake of clarity, only a small number of display sub-pixels iG5 are shown in the figure. In practice, the display panel 103 includes approximately _ + columns and thousands of rows of display sub-105s. The structure of the liquid crystal display panel 103 is completely known. In particular, the panel 103 includes a pair of spaced apart transparent glass substrates with an aligned twisted nematic liquid crystal material or other liquid crystal material disposed between the glass substrates. The substrates are provided with a pattern of transparent indium tin oxide (ITO) electrodes on their facing surfaces. A polarizing layer is also provided on the outer surface of the substrates. . The mother display sub-pixel 105 may include opposite electrodes on the substrates, and a liquid crystal material is interposed between the electrodes. The shape and layout of the display sub-pixels 1〇5 151382.doc 14 201207543 are determined by the shape and layout of the electrodes. The display sub-pixels ι 〇 5 are regularly spaced apart from each other by a gap. Each display sub-pixel 105 is associated with a switching element such as a thin film transistor (TFT) or a thin film diode (TFD). The display sub-pixels are operative to produce a display by providing an address signal to the switching elements, and suitable addressing schemes are well known to those skilled in the art. The display panel 103 is illuminated by a light source 107. In this case, the light source 〇7 includes a planar backlight extending over the area of the display pixel array. Light from the w-light source 107 is directed through the display panel 1 and the individual display sub-pixels 105 are driven to modulate the light and produce a display. In the case of a black and white display instead of a color display, the display panel has black and white pixels such that in the above description for color display, the display sub-pixels are identical to the black and white display pixels. . The display device 100 is also disposed on the display side of the display panel 1〇3, and includes a convex lens 109 that performs a viewing forming function. The convex lens 1〇9 includes a row of convex mirror elements m extending parallel to each other, and only one convex mirror element lu is shown in an exaggerated size for the sake of clarity. The convex mirror element 11 1 is in the form of a convex lenticular lens, and the like as a light output guiding member to provide different images or views from the display panel 1 至 3 to a front side of the display device 丨00 At the user's eyes. The autostereoscopic display device 1 shown in Figure 5 can provide many different perspective views in different directions. Specifically, each of the convex mirror elements is overlaid on a small group of display sub-pixels i 〇 5 in each column. The convex mirror elements 丄丄^ 151382.doc 201207543 project each of the display sub-pixels 105 of a group in a different direction to form a plurality of + (four) patterns. As the head of the used cymbal moves from left to right, his/her eyes will then receive different views of many views. It has been proposed to provide electrically switchable lens elements as mentioned above. This actually switches between 2D and 3D modes. 6 and 7 schematically illustrate an array of electrically switchable convex mirror elements ιι, which can be utilized in the autostereoscopic display. The array includes a pair of transparent glass substrates 119, 121, and transparent electrodes 123, 125 formed of indium tin oxide (IT〇) are provided on the surfaces of the pair of transparent glass substrates 119, 121. An inverted lens structure 形成 27 formed using a replication technique is provided between the substrates 119, 121 adjacent to one of the substrates 119. A liquid crystal material 129 is also provided between the substrates 119, 12 1 adjacent to one of the lower substrates 121 of the substrates. The sinusoidal inverted lens structure 12 7 causes the liquid crystal material 129 to exhibit a parallel, elongated convex mirror shape between the inverted lens structure 1 27 and the lower substrate 121 'the cross section shown in FIGS. 2 and 3 . The surface of the inverted lens structure 127 in contact with the liquid crystal material and the surface of the lower substrate 121 also have an alignment layer (not shown) for aligning the liquid crystal material. Figure 6 shows the array when no potential is applied to the electrodes 123, 125. In this state, 'for a particular polarized light, the refractive index of the liquid crystal material 丨29 is substantially higher than the refractive index of the inverted lens array 127, and the convex mirror shapes thus provide a light output guiding function, ie, The lens acts as shown. Figure 7 shows the array when an alternating potential of about 50 volts to 100 volts is applied to the 15I 382.doc -16 - 201207543 electrodes 123, 125. In this state, for the light of the specific polarization, the refractive index of the liquid crystal material 129 is the same as the refractive index of the inverted lens array 127, so that the light-guided function of the material & mirror shape is taken as a shoulder. Show. Therefore, in this state, the array is effectively operated in a "pass" mode. Those skilled in the art will appreciate that a light polarizing member must be used in conjunction with the arrays described above. Because the liquid crystal material is birefringent, the index of refraction is only "light polarized." The light polarizing member can be provided as part of the display panel of the device or the imaging configuration. Suitable for use in Figure 5: Further details of the structure and operation of the array of switchable mirror elements shown in the display can be found in U.S. Patent No. 6,069,650. Figure 8 shows the principle of the operation of the convex mirror type imaging configuration as described above, and shows a backlight 130, a display device 134 (such as an lcd), and a convex mirror array 13 8 . The device shown in Figures 6 and 7 is manufactured using a replica convex mirror that requires non-standard equipment at the production facility. One of the beam steering devices described above uses a lens function with a laterally controlled gradient index, thus simplifying the process. When the beam steering device is used to implement a lenticular lens, the electrodes are parallel to the elongated lens axis (so that the lens shape is defined by the lens width). In the case of two or more electrodes per lens, a set of voltages is applied to the electrodes and the same set of electrodes is applied to the set of electrodes of each lenticular lens. To simplify the voltage supply to the electrodes, the set of voltages can be provided on one of the voltage lines 151382.doc • 17·201207543 140, as shown in FIG. Figure 9 shows a portion of a layout in which each 〇 38 mm wide braided lens is driven by 23 different voltages. The figure shows a portion of four lenticular lenses, each of which is covered by 23 IT 〇 electrodes disposed in the upper and lower directions, to apply the set of voltages to the opposite order of the electrodes adjacent to the lenticular lenses. The electrodes of the lenticular lens. This gives a triangular connection pattern of the tap points displayed between the bus bar i 4 and the electrode lines 142. A voltage that increases the slope and a voltage that decreases the slope result in the same refractive index curve. The electrodes are as long as the height of the display (tens of centimeters), i.e., the electrodes extend in the row direction over the entire height of the display, but only the top of the electrodes 142 are shown adjacent the bus bar 140 . The bus bar 140 is separated by an isolation layer at a different depth level for the IT electrodes ι 42. The tap points are implemented by connecting via holes between the two electrode layers. Figure 10 shows a three-dimensional outline of the structure, and shows a voltage group 144 coupled to the voltage busbar 140, and the tantalum nitride insulator 146 through which the via holes are formed. A typical LC-based 凸^^^ convex mirror has a cell gap of several tens of micrometers and requires a DC voltage of several tens of volts to drive. The easiest way to drive is to apply the desired voltage directly from the respective voltage source to the electrodes or bus bars. However, this is an expensive solution. By knowing the desired ratio of voltages that need to be applied to the different electrodes, a resistive voltage divider or capacitive voltage divider can be used instead to form the same desired voltage. Figure " shows the use of a step impedance to form a set of voltages. The simplest implementation produces a set of voltages that vary linearly with distance across the lenticular lens. However, improved lens performance can be obtained by providing a more complex voltage magnitude curve. In one example, a voltage magnitude curve that varies quadratically across the distance of the lens can be used. Figure 12 shows a calculation with a plurality of wire electrodes at one side of the lc. There is three plots on the left for a linear change in voltage with distance. The two corresponding plots on the right are the quadratic variations in voltage with distance. In each case the top plot shows a deflection angle of 15 〇, a linear fit 152 for this, and a refractive index versus distance perpendicular to the electrodes [54]. The central plot shows the cross section of the LC cell, showing the calculated directional vector curve (small line) and equipotential lines. The electrodes are in layer 156. The bottom plot shows the applied voltage versus the distance perpendicular to the electrodes (i.e., across the lenticular lens). The resulting refractive index variability curve and deflection angle metric curve for the linear voltage magnitude curve are not ideal because for a good lens action, the deflection angular variability curve should be as close as possible to the straight line segment. By varying the voltage as a function of distance, a desired refractive index change curve and a deflection angle change curve can be obtained. The quadratic (parabolic) function shown in the bottom right plot of Figure 12 gives a relatively large improvement in the resulting refractive index magnitude curve and deflection angle magnitude curve. The deflection angle measurement curve consists essentially of straight segments, suggesting a better lens action. 15j382.doc 201207543 The desired function can be implemented (but not required) using the impedance ladder shown in Figure 11. The impedance value is selected in this manner to obtain a desired voltage magnitude curve. For example, 'for the resistor, it can be easily shown that if the resistance value ratio Rn/R = 2n-1 between the nth and the first resistors, the quadratic voltage amount curve Vn 〇 Cn2 is obtained. More generally, the ratio of impedance values between the nth and the first impedance is 4/1 = 211-1. This can be achieved, for example, by using a resistor strip 16 having a varying width from which the connection to the electrodes branches at a selected location such that the desired voltage magnitude curve is obtained. This is shown in Figure 13. A resistor is only one example of a feasible implementation of one of these impedances. Instead, capacitors can be used. In this case, the capacitance of the electrode lines themselves is considered to ensure that the capacitance used for the impedance step is greater than the electrode capacitance. The above examples form a desired voltage quantity curve in discrete steps. Alternatively, a continuous voltage magnitude curve can be obtained. An embodiment may be to use a high ohmic continuous electrode plate having a varying thickness, wherein the thickness amount curve is selected such that a desired resistance amount curve is obtained. A quasi-continuous solution using a high ohmic electrode plate containing holes is also possible. The ratio between the open area and the motor area then determines the local voltage. In order to avoid discontinuities in the voltage curve, the holes should be small. Therefore, by changing the voltage, the group, different lens shapes can be induced in the LC layer. Alternatively or additionally, the width and pitch of the convex mirrors can be varied by adjusting the amount of electrodes and the set 151382.doc -20-201207543 (enSemble). Adjusting the amount and set of electrodes facilitates changing the number of views to be displayed in the 3D mode. By use, the number of sub-pixels that are directed into different views in a group of sub-pixels can be changed. As explained above, the additional dielectric layer reduces these diffraction effects. There are still some residual electric fields left to form a grating structure. The effect on the optical quality can be minimized by selecting the number of electrodes under a GRIN lens not to exceed a certain number. For an example of an autostereoscopic display using a lenticular configuration, Δφ is the angular separation between the 〇th order and the 丨th order peak of the residual diffraction pattern (when the laser spot is used to illuminate the lens). Let Δθ be the angular separation between two adjacent views; determined by the pixel pitch of the display and the convex mirror design. In order not to excessively increase the overlap between adjacent views, it is preferred to have a Δ shirt, and c is a constant. This implies an upper limit of the number of electrodes NeiW below the -GRIN lens. Since Nelectrodes=plenticu|ar/d, and the grating law approximates Δφ=λ/<1: ^ d is the electrode pitch of the system, and the pitch of the Plenticular lenticular lens; the wavelength of the incoming light. For example, in the case where plenticular = 377 mm and the distance Δθ 2.6 between adjacent views, this produces Nelectrodes: ^16 (based on (^〇.5 and ^55〇N). Preferably 'now 5. Therefore, it is preferable that 'Ne|ecu〇des follows the equation of c=0.5 above. I51382.doc 21 201207543

Ne|ectrc)des當然亦具有一下限:太低的一值將導致對理想 透鏡量變曲線的一偏差’且將繼而導致3 D品質的惡化。 氮化矽僅為適宜於該介電層的一介電材料的一實例。其 他實例係氧化ί夕、氮氧化砂或聚合物。 一般而言,當用期望之厚度沈積時該層需為透明的,且 應具有在範圍從1至20的一值 如上文所提及,多種可利用之額外修改揭示於w〇 2008/126049中。特定關注之一修改係在對於該等平面内 切換電極的該LC層之相對側上提供一相對電極(c〇unter electrode)。此可以一額外層之透明材料與—透明導體(諸 如銦錫氧化物(IT0))接觸的形式。此可用於藉由有效地壓 縮電場而減少該透鏡的厚度(且因此增加其焦長卜該層可 為接地的,且影響為其施加對電場上的條件,該等條件對 LC之層中需要的場分佈係有利的。 應注意,上文提及之修改及實施例繪示本發明,而辦 制本發明,且熟習此項技術者將在未脫離隨附中請專禾 圍的前提下能夠設計許多替代實施例。在請求項中,置 圓括弧之間的任意參考標記不應視為限制該請求項。詞 「包括」並不排除在-請求項中列出之元件或步驟之外 其他兀件或步驟的存在。在一元件前述的詞語「一」 「一個」並不排除複數個該等元件的存在。在該裴置^ 項列舉之許多構件中’許多該等構件可由一個或相同;: 之硬體而體現。某些措施敘述在相互不同的從 令’但僅就此事實,並不表示此等措施之組合不能利用 15l382.doc -22- 201207543 更具有優越性。 【圖式簡單說明】 圖la係可根據本發明而修改之一例示性光束操控裝置的 —透視圖; 圖ib係圖^之光束操控裝置沿著線A_A,在未跨電極施加 電壓時的一橫截面視圖; 圖1C係圖la之光束操控裝置沿著線A_A,在跨電極施加一 電壓V時的一橫截面視圖; 圖2a及圖2b展示一已知透鏡設計的特性; 圖3a及圖3b展示根據本發明如何修改一已知透鏡的設 計; 圖4展示由本發明獲得之改良的透鏡特性; 圖5展示一已知自動立體顯示裝置; 圖6及圖7用於繪示一已知可切換自動立體顯示裝置可如 何運作; 圖8展不一自動立體顯示裝置所需之透鏡功能; 圖9展示將電壓提供至該自動立體顯示裝置之該凸鏡陣 列之透鏡的一方法; 圖10展示圖9之配置的透視圖; 圖1展示使用⑯k 梯實施產生不同電壓的—第一方 法; 圖12用於解釋在該凸鏡陣列之透鏡之電極上的-非線性 電壓量變曲線的益處;及 圖13展示實施產生不同電壓的一第二方法。 151382.doc •23- 201207543 【主要元件符號說明】 1 光束操控裝置 2 液晶層 3 第一透明基板 4 第二透明基板 5 第一梳狀透明電極 6 第二梳狀透明電極 7 準直光束 10a至10c 液晶分子 11a至 11c 光線 12a至12c 光線 13a至13c 光線 20 電極 21 絕緣層 22 液晶層 24 電介質介電層/介電層 100 自動立體顯示裝置 103 顯不面板 105 子像素 107 光源 109 凸鏡片 111 凸鏡元件 115 電可切換凸鏡元件 119 基板 151382.doc -24- 201207543Ne|ectrc)des of course also has a lower limit: a value that is too low will result in a deviation from the ideal lens amount curve and will in turn lead to deterioration of the 3D quality. Tantalum nitride is only one example of a dielectric material suitable for the dielectric layer. Other examples are oxidation, oxynitride or polymers. In general, the layer needs to be transparent when deposited with the desired thickness and should have a value in the range from 1 to 20 as mentioned above, and various additional modifications available are disclosed in WO 2008/126049 . One of the specific concerns is to provide an opposing electrode on the opposite side of the LC layer for the switching electrodes in the planes. This may be in the form of an additional layer of transparent material in contact with a transparent conductor such as indium tin oxide (ITO). This can be used to reduce the thickness of the lens by effectively compressing the electric field (and thus increasing its focal length. The layer can be grounded and affecting the conditions imposed on it by the electric field, which are required in the layer of LC The field distribution is advantageous. It should be noted that the above-mentioned modifications and embodiments are illustrative of the present invention, and the present invention can be made, and those skilled in the art will be able to Many alternative embodiments are designed. In the request item, any reference mark between parentheses shall not be considered as limiting the request. The word "include" does not exclude the elements or steps listed in the - request item. The existence of a component or a step. The above-mentioned words "a" or "an" does not exclude the existence of a plurality of such elements. In the many components listed in the device, "many of these components may be one or the same. ;: The hardware is embodied. Some measures are described in different orders. 'But only this fact does not mean that the combination of these measures cannot be used. 15l382.doc -22- 201207543 is more advantageous. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a perspective view of an exemplary beam steering device according to the present invention; FIG. 2B is a cross-sectional view of the beam steering device along line A_A when no voltage is applied across the electrodes; 1C is a cross-sectional view of the beam steering device of FIG. 1a along line A_A when a voltage V is applied across the electrodes; FIGS. 2a and 2b show characteristics of a known lens design; FIGS. 3a and 3b show How to modify the design of a known lens; Figure 4 shows the improved lens characteristics obtained by the present invention; Figure 5 shows a known autostereoscopic display device; Figure 6 and Figure 7 show a known switchable autostereoscopic display How does the device operate; Figure 8 shows the lens function required for the autostereoscopic display device; Figure 9 shows a method of providing a voltage to the lens of the convex mirror array of the autostereoscopic display device; Figure 10 shows the configuration of Figure 9. Figure 1 shows a first method for generating different voltages using a 16k ladder; Figure 12 is a diagram for explaining the benefits of a -variable voltage magnitude curve on the electrodes of the lens of the convex mirror array; 13 shows a second method for generating different voltages. 151382.doc •23- 201207543 [Description of main component symbols] 1 Beam steering device 2 Liquid crystal layer 3 First transparent substrate 4 Second transparent substrate 5 First comb-shaped transparent electrode 6 Second Comb Transparent Electrode 7 Collimated Light Beams 10a to 10c Liquid Crystal Molecules 11a to 11c Light Rays 12a to 12c Light Rays 13a to 13c Light 20 Electrode 21 Insulating Layer 22 Liquid Crystal Layer 24 Dielectric Dielectric Layer/Dielectric Layer 100 Autostereoscopic Display Device 103 Display panel 105 sub-pixel 107 light source 109 convex lens 111 convex mirror element 115 electrically switchable convex mirror element 119 substrate 151382.doc -24- 201207543

121 123 125 127 129 130 134 138 140 142 144 146 150 152 154 156 160 LC 基板 電極 電極 倒轉透鏡陣列 液晶材料 背光 顯示裝置 透鏡陣列 電壓匯流排 電極 電壓組 絕緣體 偏轉角度 線性擬合 折射率相對垂直於電極之距離 層 電阻器條 液晶 151382.doc -25-121 123 125 127 129 130 134 138 140 142 144 146 150 152 154 156 160 LC substrate electrode electrode inverted lens array liquid crystal material backlight display device lens array voltage bus electrode voltage group insulator deflection angle linear fitting refractive index relatively perpendicular to the electrode Distance layer resistor strip liquid crystal 151382.doc -25-

Claims (1)

201207543 七、申請專利範圍: 1· 一種光束操控裝置,其包括第一及第二光學透明基板 (3、4)、夾在該第一透明基板與該第二透明基板之間的 一液晶材料(2 2 )及配置於該第一透明基板之一側處的電 極(20) ’用於配向該液晶材料的至少部分,其中該光束 操控裝置在至少第一與第二光束操控狀態之間可控制, 該等狀態彼此不同,每一狀態容許一光束通過該光束操 控褒置而從s玄%•光學透明基板之一者至另一者,其中♦玄 光束操控裝置包括在該等電極之至少部分與該液晶層之 間的一介電層(24) ’該介電層具有介於1〇奈米與1〇微米 之間的一厚度。 .2 ·如。青求項1之光束操控裝置’其包括一陣列之雙凸透鏡 (111)。 3. 如請求項2之光束操控裝置,其中每個雙凸透鏡(111)與 一組電極(20 ; 142)相關聯。 4. 如印求項3之光束操控裝置,其中一組電壓施加至該等 電極(20,142),且其中相同組之電壓施加至每一雙凸透 鏡之該組電極,且其令該組電極被設於電壓線的一匯流 排(140)上,该組之該等電極在分接頭處連接至該等電壓 線。 5. 如請求項4之光束操控裝置,其巾以對於鄰近雙凸透鏡 之》亥組電極的相反順序施加該組電壓至一雙凸透鏡之該 組電極(142)。 6·如請求項4之光束操控裝置,其中施加至該組電極(142) I5J382.doc 201207543 透鏡之各自電極的位置而非線性 之該等電壓隨跨該雙凸 地變化。201207543 VII. Patent Application Range: 1. A light beam manipulation device comprising first and second optically transparent substrates (3, 4), a liquid crystal material sandwiched between the first transparent substrate and the second transparent substrate ( 2 2) and an electrode (20) disposed at one side of the first transparent substrate for aligning at least a portion of the liquid crystal material, wherein the beam steering device is controllable between at least the first and second beam steering states The states are different from each other, each state allowing a beam to pass through the beam steering device from one of the sin% optically transparent substrates to the other, wherein the zonal beam steering device is included in at least a portion of the electrodes A dielectric layer (24) between the liquid crystal layer and the dielectric layer has a thickness between 1 nanometer and 1 micrometer. .2 · 如. The beam steering device of the invention 1 includes an array of lenticular lenses (111). 3. The beam steering device of claim 2, wherein each lenticular lens (111) is associated with a set of electrodes (20; 142). 4. The beam steering device of claim 3, wherein a set of voltages is applied to the electrodes (20, 142), and wherein a voltage of the same group is applied to the set of electrodes of each lenticular lens, and the set of electrodes is They are disposed on a bus bar (140) of the voltage line, and the electrodes of the group are connected to the voltage lines at the tap. 5. The beam steering device of claim 4, wherein the set of voltages is applied to the set of electrodes (142) of a lenticular lens in the reverse order of the adjacent sets of lenticular lenses. 6. The beam steering device of claim 4, wherein the voltages applied to the set of electrodes (142) I5J382.doc 201207543 respective electrodes are non-linear and vary across the biconvex. 如請求項6之光束操控裝置 之該等電壓隨跨該雙凸透鏡 方變化》 ,其中施加至該組電極(丨42) 之各自電極的位置而成二次 8.如請求項3之光束操控裝置’其中一組電壓施加至該等 電極(2〇;142),且其中由—階梯之阻抗%,,驟 供S亥組電壓,於鄰近eg 、 洲边阻抗之間的分接點處提供該等電 壓。 9. -種自動立體顯示裝置(刚)’其在可觀看—立體影像之 一 3D觀看模式與不同於該第—觀看模式的—第二觀模 式之間可切換,該自動立體顯示裝置包括: -顯示面板(旧),其具有—陣列之顯示像素〇〇5)以 用於產生-顯示,該等顯示像素係以列及行配置;及 一成像配置(1〇9),其在ϋ像模式中將來自不同 像素的輸出引導至不同空間位置,以啟用該3d觀看模 式’且其在-第二成像模式中操作以提供該第二觀看模式 其中該成像配置(1〇9)包括如請求項!中之一光束操控 裝置,第一光束塑形狀態用於提供該第一成像模式,I 第二光束塑形狀態用於提供該第二成像模式。 1 〇·如明求項9之自動立體顯示裝置,其中該第二觀看模式 係-2D觀看模式’且其中該第二光束塑形狀態係一通過 狀態,其中該裝置作為用於提供該成像配置的一 2D成像 模式的一透明板。 151382.doc 201207543 u·如請求項9或10之自動立體顯 衮置,其中該光束操控 、在”第-狀態中包括-陣列之平行雙凸透鏡⑴”, 其中每個雙凸透鏡與-組電極相關聯,且其中該等不同 工間位置具有一角距ΔΘ,且复中血4 ,、甲與母個雙凸透鏡相關聯 的電極(20 ; 142)之數目滿足: ^ efearodes ^0.5 λ 其中plenticular係該等雙凸透鏡之節距,且λ係該光的波 長。 12. -種使用—控制根據前述請求項中任_項之—光束操控 裝置而操控一光束之方法, 其中該方法包括: 藉由跨該等電極(2〇; 142)施加一電壓以藉此產生一平 面内電場,且將該平面内電場透過一介電層(24)施加至 该LC層,而在光束操控狀態之間控制該光束操控裝置, 八中母狀態谷許光以垂直於該光束操控裝置的一方向 通過忒光束操控裝置,且該介電層具有在1〇奈米與1〇微 米之間的一厚度。 13. 如叫求項12之方法,其用於控制一自動立體顯示裝置 (100)之一透鏡之透鏡功能。 14. 如請求項13之方法,其中該成像配置包括一陣列之平行 又凸透鏡(1Π)’其中每個雙凸透鏡與一組電極(2〇; 142) 相關聯’其中施加至該組電極之電壓隨跨該雙凸透鏡之 該等各自電極的位置而非線性地變化。 151382.doc 201207543 15.如請求項14之方法,其中施加至該組電極之該等電壓隨 跨該雙凸透鏡(111)之該等各自電極的位置而成二次方變 化0 151382.docThe voltages of the beam steering device of claim 6 vary with the lenticular lens, wherein the positions of the respective electrodes applied to the set of electrodes (丨42) are quadratic. 8. The beam steering device of claim 3 'A set of voltages is applied to the electrodes (2〇; 142), and wherein the impedance of the step is %, the voltage is supplied to the S-group voltage, and the junction is provided at a junction point between the adjacent eg and the edge impedances Equal voltage. 9. An autostereoscopic display device (just) that is switchable between a viewable one-dimensional 3D viewing mode and a second viewing mode different from the first-view mode, the auto-stereoscopic display device comprising: a display panel (old) having an array of display pixels 〇〇 5 for generating - display, the display pixels being arranged in columns and rows; and an imaging configuration (1 〇 9), which is in the image The outputs from different pixels are directed to different spatial locations in the mode to enable the 3d viewing mode 'and in the second imaging mode to provide the second viewing mode wherein the imaging configuration (1〇9) includes as requested item! In one of the beam steering devices, a first beam shaping state is used to provide the first imaging mode, and a second beam shaping state is used to provide the second imaging mode. 1. The autostereoscopic display device of claim 9, wherein the second viewing mode is a -2D viewing mode 'and wherein the second beam shaping state is a pass state, wherein the device is configured to provide the imaging configuration A transparent board for a 2D imaging mode. 151382.doc 201207543 u. The autostereoscopic display of claim 9 or 10, wherein the beam is manipulated, including "array parallel lenticular lenses (1)" in the "state - state", wherein each lenticular lens is associated with a set of electrodes And wherein the different inter-station positions have an angular distance ΔΘ, and the number of electrodes (20; 142) associated with the parent lenticular lens satisfies: ^ efearodes ^0.5 λ where the plenticular is The pitch of the lenticular lens, and λ is the wavelength of the light. 12. A method of controlling a beam of light by a beam steering device according to any of the preceding claims, wherein the method comprises: applying a voltage across the electrodes (2〇; 142) An in-plane electric field is generated, and an electric field in the plane is applied to the LC layer through a dielectric layer (24), and the beam steering device is controlled between the beam steering states, and the eighth intermediate state of the valley light is controlled perpendicular to the beam One direction of the device passes through the xenon beam steering device and the dielectric layer has a thickness between 1 nanometer and 1 inch. 13. The method of claim 12 for controlling the lens function of a lens of an autostereoscopic display device (100). 14. The method of claim 13, wherein the imaging configuration comprises an array of parallel and convex lenses (1) each of which is associated with a set of electrodes (2〇; 142) 'voltage applied to the set of electrodes It varies non-linearly with the position of the respective electrodes across the lenticular lens. 15. The method of claim 14, wherein the voltages applied to the set of electrodes vary quadratically with the position of the respective electrodes across the lenticular lens (111).
TW099137538A 2009-11-03 2010-11-01 Optical-beam manipulation device TW201207543A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09174890 2009-11-03

Publications (1)

Publication Number Publication Date
TW201207543A true TW201207543A (en) 2012-02-16

Family

ID=43502660

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099137538A TW201207543A (en) 2009-11-03 2010-11-01 Optical-beam manipulation device

Country Status (2)

Country Link
TW (1) TW201207543A (en)
WO (1) WO2011055280A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454791B (en) * 2012-05-23 2014-10-01 Au Optronics Corp Electrically-driven liquid crystal lens panel and stereoscopic display panel
CN106773446A (en) * 2017-01-18 2017-05-31 张家港康得新光电材料有限公司 Display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743656A (en) * 1993-08-02 1995-02-14 Nippon Telegr & Teleph Corp <Ntt> Spacial light beam coupler
GB9623682D0 (en) 1996-11-14 1997-01-08 Philips Electronics Nv Autostereoscopic display apparatus
US7057700B2 (en) * 2001-01-23 2006-06-06 Ricoh Company, Ltd. Light deflection element, light deflection device and image display device
JP2006259182A (en) * 2005-03-16 2006-09-28 Ricoh Co Ltd Optical path shifting device and image display device
US7489383B2 (en) * 2005-04-22 2009-02-10 Ricoh Company, Ltd. Optical axis deflecting method, optical axis deflecting element, optical path deflecting unit, method of driving optical axis deflecting element, and image display apparatus
JP5545664B2 (en) 2007-04-17 2014-07-09 コーニンクレッカ フィリップス エヌ ヴェ Beam shaping device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454791B (en) * 2012-05-23 2014-10-01 Au Optronics Corp Electrically-driven liquid crystal lens panel and stereoscopic display panel
CN106773446A (en) * 2017-01-18 2017-05-31 张家港康得新光电材料有限公司 Display device

Also Published As

Publication number Publication date
WO2011055280A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
US11598995B2 (en) Beam shaping device
KR101649234B1 (en) Liquid Crystal Lens Electrically driven and Stereoscopy Display Device
JP5877979B2 (en) Image display device using diffraction element
JP5841131B2 (en) Switchable single-multiview mode display
US10036894B2 (en) Image display and liquid crystal lens therefor
WO2011036736A1 (en) Stereoscopic image display device
EP2287659A2 (en) Switchable autostereoscopic display having emissive (electroluminescent) pixels and a switchable birefringent cylindrical lens array
KR20120130397A (en) Lens module and display device having the same
WO2020037941A1 (en) Display apparatus and controlling method thereof
JP2011164527A (en) Liquid crystal lens and display device
US8264625B2 (en) Display device and method of displaying three dimensional stereoscopic images
TWM398632U (en) Autostereoscopic display
TWI471608B (en) Naked eye type and glasses type switchable stereoscopic display device
KR101939271B1 (en) Complex spatial light modulator and 3D image display having the same
KR20130106719A (en) Prism using a liquid crystal
TWI479243B (en) Liquid crystal optical element and image display device
TW201207543A (en) Optical-beam manipulation device
KR101940763B1 (en) Hybrid 3 dimensional stereography image display device
KR101301955B1 (en) Lens pitch control method for Liquid crystal Lens
Huang et al. 33.3: High Performance Liquid Crystal Micro‐Lens Array Applied to Light Field Display