TW201206219A - Wireless communication system base station and data transmission synchronization method thereof - Google Patents

Wireless communication system base station and data transmission synchronization method thereof Download PDF

Info

Publication number
TW201206219A
TW201206219A TW99125456A TW99125456A TW201206219A TW 201206219 A TW201206219 A TW 201206219A TW 99125456 A TW99125456 A TW 99125456A TW 99125456 A TW99125456 A TW 99125456A TW 201206219 A TW201206219 A TW 201206219A
Authority
TW
Taiwan
Prior art keywords
time
downlink
data
rrh
unit
Prior art date
Application number
TW99125456A
Other languages
Chinese (zh)
Other versions
TWI498024B (en
Inventor
yong-hua Lin
zhen-bo Zhu
Lin Chen
Qing Wang
Rong Yan
Jian-Wen Chen
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Priority to TW099125456A priority Critical patent/TWI498024B/en
Publication of TW201206219A publication Critical patent/TW201206219A/en
Application granted granted Critical
Publication of TWI498024B publication Critical patent/TWI498024B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention discloses a remote radio header used for wireless communication system base station, a wireless communication system base station and a data transmission synchronization method thereof, wherein the wireless communication system base station comprises a remote radio header (RRH) and a baseband unit (BBU) communicably connected through a network, and wherein the BBU is used to process and transmit downlink data to the RRH, said wireless communication system base station further comprises: a time-delay measurement unit in the RRH which is used to measure a time-delay for the downlink data to arrive at the RRH from the BBU; a time-delay notification unit in the RRH for notifying from the RRH to the BBU of time-delay data on the time-delay measured by the time-delay measurement unit; a synchronization unit in the BBU for advancing the starting time for the BBU to process and transmit the downlink data by an amount of time obtained based on the time-delay data notified by the time-delay notification unit. The present invention can reduce or even eliminate the RRH reception time-delay caused by the BBU processing time-delay and data transmission jitter by measuring the time-delay for the downlink data frame to arrive at the RRH of the base station, and correcting the timing pulse for starting the downlink data processing and transmission on the BBU side.

Description

201206219 六、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於無線通訊系統,特定而言,係 關於在無線存取網路中之無線通訊系統基地台之基頻單 元與遠端無線電標頭之間的資料傳輸同步。 【先前技術】 …、線存取網路為無線網絡之一重要部分。在先前技術 中建議之下代無線存取網路之架構,提供基於開放資 訊科技架構的計算與傳輸資源池,以支持無線存取網 路。在軟體無線t (soft而eRadi〇, swr)技術之支持 下’各種無線標準中之軟體可在該種資源池上執行以提 供無線存取網路之諸功能,其不但可經由大規模負載均 衡改良資源利用’而且具有支持各種無線標準不同種 部署及不同商業模式之靈活性。 用於無線存取網路中之遠端無線電標頭(Rem你 Radio Header,RRH )技術允許基地台(加⑽,bs ) 之無線電標頭及天線遠離胃Bs《基頻單元(ΒμΑ — nit,BBU) ’且因此’該Bs可集中多個且以分散 之方式。P署RRH及天線。第i圖展示用於不同BBU板 之支持動態RRH串流切換之架構,其中複數個BBU板 充田資源池,以隨選方式提供用於rrh之程序資源。此 舉對於實施下-代無線存取網路架構而言為關鍵的。 201206219 在數位通訊網路中,可靠地傳輸音頻、視頻及資料需 要精確的時序及同步。在BBU與RRU之間的通訊的傳 統實施中,基地台之BBU及RRU係經由分時多工(Time Division Multiplexing, TDM)鏈路直接地連接,在該 TDm 鏈路上,資料係在該TDM鏈路的時脈上傳輸,且因此傳 輸時間延遲大體而言為固定的,且不產生傳輸抖動。此 外,由於使用基於DSP/FPGA等等的計算平臺,處驾時 間延遲大體而言亦是固定的,該等計算平臺不具有作業 系統。201206219 VI. Description of the Invention: Technical Field of the Invention The present invention relates generally to wireless communication systems, and more particularly to a baseband unit and a remote unit of a wireless communication system base station in a wireless access network. The data transfer between the radio headers is synchronized. [Prior Art] ..., the line access network is an important part of the wireless network. In the prior art, the architecture of the next generation wireless access network is proposed to provide a computing and transmission resource pool based on an open information technology architecture to support the wireless access network. Supported by software wireless t (soft and eRadi〇, swr) technology, software in various wireless standards can be implemented on such resource pools to provide wireless access network functions, which can be improved not only through large-scale load balancing. Resource utilization' and the flexibility to support different deployments of different wireless standards and different business models. The Remote Radio Header (RRH) technology for wireless access networks allows the base station (plus (10), bs) radio headers and antennas to be kept away from the stomach Bs "base frequency unit (ΒμΑ - nit, BBU) 'and therefore' the Bs can be concentrated in multiple ways and in a decentralized manner. P Department RRH and antenna. Figure i shows an architecture for supporting dynamic RRH streaming switching for different BBU boards, in which a plurality of BBU boards fill the resource pool to provide program resources for rrh in an optional manner. This is critical for implementing a lower-generation wireless access network architecture. 201206219 Reliable transmission of audio, video and data requires accurate timing and synchronization in digital communication networks. In the traditional implementation of communication between the BBU and the RRU, the BBU and the RRU of the base station are directly connected via a Time Division Multiplexing (TDM) link, on which the data is located in the TDM chain. The path of the path is transmitted, and thus the transmission time delay is generally fixed and does not cause transmission jitter. In addition, due to the use of computing platforms based on DSP/FPGA, etc., the driving time delay is also generally fixed, and these computing platforms do not have an operating system.

下一代無線存取網路架構普遍採用分時雙工(Time Division Duplex,TDD )無線通訊系統,為此BBU與RRU 之間的資料傳輸係基於由以太網絡、無限頻帶及切換組 成之封包切換網路,從而使資料傳輸時間延遲大體而言 為非固疋的,且傳輸抖動可能發生。由於基於開放資訊 科技架構之計算與傳輸資源池之使用,處理時間延遲在 作業系統(例如,任務排程等等)之影響下為非固定的。 【發明内容】 因此,本發明提供一種無線通訊系統基地台及其資料 傳輸同步方法。 在一態樣中,本發明提供該無線通訊系統基地台的一 遠端無線電標頭(Remote Radi〇Header RRH),其經由 網路可傳播地連接至該無線通訊系統基地台之一基頻單 元(Baseband Unit,BBU),其中該BBU係用以向該rrh 201206219 處理且傳輸下行鏈路資料,該RRH進—步包含· 一時間 延遲測量單元,其用於測量該下行鏈路資料自該bbu到 達該RRH之時間延遲;一時間延遲通知單元,其用於通 知該BBU根據由該時間延遲測量單元自該rrh測量的 時間延遲的時間延遲資料,該時間延遲資料係用以將該 BBU處理且傳輸該下行鏈路資料之起始時間前移基於 該時間延遲資料而獲得的時間長度。 在另-態樣中,本發明提供一無線通訊系統基地台, 其包含經由料可傳㈣連接之一冑端無線電標頭 (Rem〇teRadioHeader,RRH)及—基頻單元The next-generation wireless access network architecture generally adopts Time Division Duplex (TDD) wireless communication system. For this reason, the data transmission between BBU and RRU is based on packet switching network composed of Ethernet network, infinite frequency band and handover. The path, so that the data transmission time delay is generally non-solid, and transmission jitter may occur. Due to the use of computing and transmission resource pools based on the open IT architecture, processing time delays are not fixed under the influence of operating systems (eg, task scheduling, etc.). SUMMARY OF THE INVENTION Accordingly, the present invention provides a wireless communication system base station and a data transmission synchronization method thereof. In one aspect, the present invention provides a remote radio header (Remote Radi〇Header RRH) of the base station of the wireless communication system, which is communicably connected to a baseband unit of the base station of the wireless communication system via a network. (Baseband Unit, BBU), wherein the BBU is used to process and transmit downlink data to the rrh 201206219, the RRH further includes a time delay measurement unit for measuring the downlink data from the bBU a time delay to reach the RRH; a time delay notifying unit for notifying the BBU of the time delay data according to the time delay measured by the time delay measuring unit from the rrh, the time delay data being used to process the BBU and The start time of transmitting the downlink data advances the length of time obtained based on the time delay data. In another aspect, the present invention provides a wireless communication system base station including a relay radio head (RRH) and a baseband unit via a material transferable (four) connection.

Unit,卿),其中該BBU係用以向該職處理且傳輸 下行鏈路資料,該無線通訊系統基地台進一步包含:位 於該RRH中的-時間延遲測量單元,其用於測量該下行 鏈路資料自該聊到達該RRH之時間延遲;位於該腦 中的-時間延遲通知單元’其用於通知該_根據由該 時間延遲測|單自該RRH測量的時間延遲的時間延遲 資料;位於該刪中的一同步單元,其用於將該刪 處理且傳輸下行鏈路資料的起始時間前移,基於由該時 間延遲通知單元通知之時間延遲資料而獲得的時間長 度。 在另-態樣中’本發明提供—種用於無線通訊系統基 地台之資料傳輸之同步方法,該無線通訊线基地台包 含經由網路可傳播地連接之—遠端無線電標頭…讀 Μ。如紙_)及—基頻單元(Baseband Unit 201206219 BBU) ’其中该BBU係用以處理且傳輸下行鍵路資料至 4 RRH ’該方法包含:測量該下行鏈路資料自豸bBu到 達該RRH之時間延遲;通知該BBU根據自該厌明測量 的時間延遲的時間延遲資料;基於該通知的時間延遲資 料而獲得的時間長度’將該BBU處理且傳輸該下行鍵路 資料的起始時間前移。 本發明藉由測量下行鏈路資料訊框到達基地台之 的時間延遲,以校正用於起始在BBU方面之下行缝路資 料處理及傳輸之時序脈衝,可減少甚至消除由卿處理 時間延遲及資料傳輸抖動所引起的RRH接㈣間延遲。 【實施方式】 在下文中,將參閱諸圖式詳細描述本發明之實施,該 等圖式展示本發明之實施例、然而,本發明可以多種方 式實施’且並不視為限制該等揭示之方式。在不干擾熟 習該項技術者瞭解且實踐本發明之前提下,在該等實施 例:圖式中忽略與本發明之内容並非直接相關的部件及 細郎’以便強調本發明之内容,且熟習該項技術者可以 更清楚地瞭解本發明之精神。 首先’參閱第i圖’其展示無線通訊系統基地台的架 構,其中可實施本發明之技術解決方案。所展示的該基 地台包含若干遠端無線電標頭(Rem〇te Radi。❿我 贿)及經由網路(封包切換網路,諸如基於以太網絡 或基於無限頻帶之網路)可傳播地連接至該等㈣之若 干集令基頻單元。經由—切換(大體而言,接近該基頻 201206219 單元方面),任何RRH可連接至任何BBU以形成上行鏈 路或了行鍵路。該RRH經由功能組件(諸如類比數位轉 換器等等)自行動式通訊終端(未圖示)接收上行鍵路 資料,且隨後向該BBU傳輸資料以用於處理;該rrh 經由網路自該BBU接收下行鏈路資料,且隨後經由功能 組件(諸如數位類比轉換器等等)將下行鍵路資料傳輸 至該行動式通訊終端。 第圖綱要地展示無線通訊系統基地台之部分結構及 其操作方式。在第2圖展示的無線通訊系統基地台(其 亦於下文稱為基地台)中’僅圖示一遠端無線電標頭(苴 亦於下文稱為丽)及-基頻單元(其亦於下文稱為 BBU)’其中該RRH及該卿係經由封包切換網路(亦 稱作包裝切換網路,諸如以太網絡)可傳播地連接,且 以TDD通訊之方式傳達資料。 如第2圖所示,該RRH包含一收發機單元ι〇〇、一脈 衝發生器20、一類比數位轉換器(其亦於下文簡化為 A/D)130及-數位類比轉換器(其亦於下文簡化為d/a) 140。該BBU包含一資料處理單元2〇〇及一計時器25〇。 該RRH的收發機單元100係用以在A/D 13〇與該bbu 之間及D/A 140與該BBU之間接收且傳輸資料,且其進 一步包含一上行鏈路單元110及一下行鏈路單元12〇, 其中上行鏈路單元110係用以在網路上自A/D 13〇接收 資料,處王里該接&資料且向謂U傳輸該經處理資料; 下行鏈路單元120係用以在網路上自該BBu接收下行鏈 201206219 路資料’且向D/A 140傳輸該接收之下行鏈路資料。 該BBU之資料處理單元200係用以自該RRH接收且 處理該上行鏈路資料,且處理且傳輸該下行鏈路資料至 該RRt資料處理單元2〇〇進一步包含一上行鏈路資料 處理單元210及一下行鏈路資料處理單元22〇,其中該 上行鏈路資料處理單元用於自該RRH接收且處理該上行 鏈路資料’而該下行鏈路資料處理單元用於處理且傳輸 該下行鍵路資料至向該RRH的下行鏈路單元! 20。 在操作中’該基地台可在上行鏈路模式與下行鏈路模 式之間切換。 當基地台處於上行鏈路模式時,其通訊硬體電路充當 該BBU以接收資料,亦即,來自行動式通訊設備(未圖 不)之上行鏈路資料。A/D 13〇自該行動式通訊設備接 收類比仏號,將該等信號轉換成數位信號,且隨後將其 傳輸至該RRH之收發機單元1〇〇。收發機單元1〇〇處理 該等數位信號,例如,將該等數位信號分類且封裝成訊 框,且隨後在封包切換網路上將其傳輸至該BBU,以藉 由該BBU的資料處理單元2〇〇進行進一步處理。 當基地台處於下行鏈路模式時,其通訊硬體電路充當 該BBU以將資料(亦即,該下行鏈路資料)傳輸至該行 動式通訊設備。該BBU將已由資料處理單元2〇〇處理之 資料在該封包切換網路上傳輸至該RRH之該收發機單元 100。該收發機單元1 〇〇處理該接收資料,例如,自該等 訊框復原資料,且隨後將該經處理資料傳輸至D/A丨4〇, 201206219 該D/A將資料轉換成類比信號且隨後將其傳輸至該行動 式通訊設備。 脈衝發生器150係用以發出用於該RRH之各種電路模 組之時序脈衝,該等脈衝包括上行鏈路脈衝tul、下行 鏈路脈衝tdl及切換脈衝Ts。 在上行鏈路模式中,該上行鏈路脈衝Tul係用以觸發 A/D 130以自該行動式通訊設備接收上行鏈路資料。在 下打鏈路模式中,該下行鏈路脈衝TDL係用以觸發D/A 140以將下行鏈路資料傳輸至該行動式通訊設備。 該切換脈衝T s係用以觸發該上行鏈路模式與該下行鏈 路模式之間的切換。在下行鏈路模式中,繼該切換脈衝 Ts自脈衝發生器15〇發出之後,該D/A停止向該行動式 通訊設備傳輸資料,且該RRH之該等硬體電路切換至上 行鏈路資料處理狀態。在上行鏈路模式中,繼該切換脈 衝Ts自脈衝發生器150發出之後,該a/d停止自該行動 式通訊設備接收資料’且隨後談rRH之該等硬體電路切 換至下行鏈路資料處理狀態。 熟習該項技術者應瞭解由脈衝發生器15〇提供之該等 時序脈衝遠遠超過上述彼等脈衝,且上述彼等脈衝亦可 由實體上離散的不同脈衝發生器產生,本文對此將不進 一步描述。 計時器250可以發出用於該BBU之各種電路模組之時 序脈衝,包括時序基頻處理脈衝Tdp。該資料處理脈衝 Tdp係用以觸發資料處理單元200之下行鏈路資料處理 10 201206219 單元220之操作,亦即, 之該下行鏈路資料,例 行鏈路資料訊框(其於 至該RRH。 係用以起始處理待傳輸至該RRH 如將資料封裝成訊框且將該等下 下文簡化為下行鍵路訊框)傳輸 熟^該項技術者應瞭解,一下行鍵路訊框是由一訊框 標頭及-訊框本體組成的,且該訊框本體可以包含一或 多個資料樣本,該等資料緙 貢枓樣本中之每一個資料樣本為具 有某一長度之資料’例如,16位元或32位元。 該刪之收發機單元⑽自 框,且該咖可能花費—些時間來完全地接收 路訊框,且該時間稱A下籽仃鏈 柄為下仃鏈路訊框持續時間。同樣地, 自該刪傳輸至該咖之該上行鍵路資料訊框(其於 下文簡化為上行鏈路訊框)包含—訊框標頭及—或多個 資料樣本,且完全地值於 傳輸一上行鏈路訊框需要的時間稱 為上行鏈路訊框持續時間。 自-下行鍵路訊框之開始至一上行鍵路訊框之結束的 〗%建構-上行鏈路_下行鏈路週期。該上行鏈路-下行 =路週期之長度=下行鍵路訊框持續時間+下行鍵路模式. :::鏈路模式之間切換所需要的時間+上行鍵路訊框 =間。例如,在-組態中,該上行鍵路-下行鍵路 miGmS’其令該下行鏈路訊框持續時間為4.5ms, 〇下行鍵路模式與上行鏈路模式之間切換所需要㈣間為 ms,且該上行鏈路訊框持續時間為5 訂订鏈路脈衝Tdl之頻率經設置以與該上行鍵路·下 201206219 7路週期匹配。例如,若該上行鏈路下行鏈路週期為 ms則tdl之該頻率為1〇〇 Hz,亦即,脈衝發生器 每10ms發出一下行鏈路脈衝TDL。 在吊It;兄下’在RRH及BBU中之該等時序機制使 I u與該RRH之間的下行鍵路訊框同步,亦即,該 下行鏈路訊框與該下行鏈路脈衝^及該切換脈衝Ts同 步。換言之’當發出一下行鏈路脈衝&時,一下行鏈 路訊框之第-資料樣本應已到達收發機單元⑽且由收 發機早7L 1GG接收;當發出—切換脈衝了3時,該下行键 路訊框之最後的資料樣本應已到達收發機單元ι〇〇丨否 則,該全體下行鏈路訊框在當前週期期間將不會由DM 14 0傳輸至該行動式通訊設備。 、熟習該項技術者應瞭解’該下行鏈路訊框資料樣本到 達該收發機單元之時間可能受資料處理單元2〇〇之下行 鏈路資料處理及傳輸時間延遲(處理時間延遲),及傳= 線抖動兩者的影響。例如,該BBU之資料處理單元2〇〇 之該處理時間延遲可以使該下行鏈路訊框之該第一資料 樣本延遲到達該收發機單元。 下文參閱第3圖,描述本發明之各種實施。第3圖展 示根據本發明之一具體實施例之該無線通訊系統基地台 之°卩刀結構及其操作方式。第3圖展示之組件與第2圖 之組件大部分相同,只是第3圖亦包含位於該rrh中之 一時間延遲測量單元180及一時間延遲通知單元17〇, 及位於該BBU中之一同步單元290。 12 201206219 作為根據本發明之無線通訊系統基地台之該RRH之一 實施例而在第3圖中展示的該RRH,係經由網路可傳播 地連接至包含同步單元290之該BBU,以便建構根據本 發明之無線通訊系統基地台。下文將參閱諸圖式來詳細 描述該RRH及該基地台。 時間延遲測量單元18〇係用以測量該下行鏈路資料自 該BBU到達該rrh之時間延遲。該下行鏈路資料自該 BBU到達該收發機單元且因此到達該RRH之該時間延 遲,可藉由以下步驟來測量:在該RRH中設置一計時器 以分別記錄該下行鏈路資料應當到達該RRH之收發機單 兀100之時間及該下行鏈路資料實際到達該收發機單元 之時間’且隨後計算該兩個時間之間的差。下文將參閱 第5圖以進-步描述該時間延遲測量單元之特定實施。 時間延遲通知單元m係用以通知該bbu關於由時間 延遲測1早70 180測量之時間延遲之時間延遲資料。特 別而言’時間延遲通知單元17〇可接收關於下行鏈路資 料自該BBU到達該RRH之時間延遲之時間延遲資料, 適“也處理該時間延遲資料(例如,將其封裝成訊框), 且隨後將該訊框間斷地傳輸至該卿以用於傳輸該上行 鏈路訊框。根據本發明之—實施例,如第3圖之上半部 所示,時間延遲诵4 _ 去早兀170可以在自下行鏈路模式切 、至上_仃鏈路模式之後,緊接著由該上行鏈路單元進行 订鏈路訊框的傳輸,將時間延遲 BBU。根據本發 别主該 之實施例,為促進處理且傳輸該時 13 201206219 枓可在該麵之上行鍵路單元110中提供該 以且有兮t知單元,或替代地’可重建該上行鏈路單元 術者間延遲通知單元之功能,此舉對熟習該項技 描述。…明顯的且易於實施,此本文將不進—步 同步單元290係用以將該BBU處理幻#輸下行鍵路資 料的起始時間前移’基於由時間延遲通知單元通知 之時間延遲資料TD而獲得的時間長度。 舉1】而。,在根據-預定協定自該RRH接& (例如, 經由上行鍵路單元11G)該RRH時間延遲資料之後,該 BBU之資料處理單元(例如上行鏈路資料處理單 元2U))處理該時間延遲資料(例如,自一訊框復原時 間延遲請),且隨後將其傳輸至时單元29()。同步單 元290將該時間延遲㈣作為調整參數,例如,為資料 處理單元扇準備時間’以在其後處理且傳輸由該時間 延遲資料指示之時間延遲長度前移之該下行鍵路資料, 以使下一下行鏈路訊框可較早到達該RRH。 熟習該項技術者應瞭解,所測量到之訊框標頭時間延 遲Tdi"歸因於該BBU之資料處理單元處理該下 行鏈路資料之該處理時間延遲,且訊框標尾時間延遲凡2 表示該訊框標頭時間延遲Td|與一資料訊框傳輸之抖動 時間延遲的和。因此’一般而言,例如,若則 其常指示在該基地台之該資料傳輸中無抖動;另一方 面,若Td2顯著地大於Tdl,則指示在資料傳輸中有明顯 14 201206219 的抖動在本發明之實施中,可基於不同的時脈校正演 算法來校正時脈’以便調整資料處理單元200處理且傳 1下行鍵路資料之觸發或起始時間,亦即,將資料處 理^ 2GG處理且傳輸該下行鏈路資料之觸發或起始時 1月j移根據本發明之—具體實施例,及丁。之較大 者可作為參考參數以執行上述調整。例如’ ^ Td2大於Unit, Qing), wherein the BBU is used to process and transmit downlink data to the job, and the wireless communication system base station further includes: a time delay measurement unit located in the RRH, configured to measure the downlink The time delay of the data from the chat to the RRH; the time delay notification unit located in the brain is used to notify the time delay data based on the time delay measured by the time delay from the RRH; A deleted synchronization unit for advancing the start time of the deletion process and transmitting the downlink data, based on the length of time obtained by the time delay data notified by the time delay notification unit. In another aspect, the present invention provides a method for synchronizing data transmission for a base station of a wireless communication system, the wireless communication line base station including a remotely connectable radio header via a network. . Such as paper_) and - baseband unit (Baseband Unit 201206219 BBU) 'where the BBU is used to process and transmit downlink data to 4 RRH' The method includes measuring the downlink data from 豸bBu to the RRH Time delay; notifying the BBU of the time delay data according to the time delay from the pessimistic measurement; the length of time obtained based on the time delay data of the notification 'moving forward of the BBU processing and transmitting the downlink key data . By measuring the time delay of the downlink data frame arriving at the base station, the present invention corrects the timing pulse for starting the processing and transmission of the stitched data under the BBU, thereby reducing or even eliminating the processing time delay of the processing device. The delay between RRH and (4) caused by data transmission jitter. The embodiments of the present invention are described in detail below with reference to the drawings, which illustrate embodiments of the invention, however, . Before the present invention is understood and practiced without interfering with the skilled artisan, the components and the succinct that are not directly related to the contents of the present invention are omitted in the embodiments: the drawings are used to emphasize the contents of the present invention, and are familiar with The spirit of the invention will be more clearly understood by the skilled artisan. First, 'see Figure i', which shows the architecture of a wireless communication system base station in which the technical solution of the present invention can be implemented. The base station shown includes a number of remote radio headers (Rem〇te Radi) and can be communicatively connected via a network (packet switching network, such as an Ethernet based network or an infinite band based network) Some of these (4) sets of baseband units. Via-switching (generally, close to the baseband 201206219 unit aspect), any RRH can be connected to any BBU to form an uplink or a row key. The RRH receives uplink routing data from a mobile communication terminal (not shown) via a functional component (such as an analog digital converter, etc.) and then transmits the data to the BBU for processing; the rrh is from the BBU via the network The downlink data is received, and then the downlink data is transmitted to the mobile communication terminal via a functional component such as a digital analog converter or the like. The diagram outlines the structure of the wireless communication system base station and its operation. In the wireless communication system base station shown in FIG. 2 (which is also referred to as a base station hereinafter), only one remote radio header (hereinafter also referred to as 丽) and a baseband unit (which is also illustrated in FIG. Hereinafter referred to as BBU) 'where the RRH and the clerk are communicatively connected via a packet switching network (also referred to as a packet switching network, such as an Ethernet network) and communicate data in a TDD communication manner. As shown in FIG. 2, the RRH includes a transceiver unit ι, a pulse generator 20, an analog-to-digital converter (which is also simplified below as A/D) 130, and a digital analog converter (which is also It is simplified below as d/a) 140. The BBU includes a data processing unit 2 and a timer 25A. The transceiver unit 100 of the RRH is configured to receive and transmit data between the A/D 13 and the bbu and between the D/A 140 and the BBU, and further includes an uplink unit 110 and a downlink chain The uplink unit 110 is configured to receive data from the A/D 13〇 on the network, and the data is transmitted and transmitted to the user U; the downlink unit 120 is Used to receive downlink 201206219 data from the BBu on the network' and transmit the received downlink data to the D/A 140. The BBU data processing unit 200 is configured to receive and process the uplink data from the RRH, and process and transmit the downlink data to the RRt data processing unit 2, further including an uplink data processing unit 210. And a downlink data processing unit 22, wherein the uplink data processing unit is configured to receive and process the uplink data from the RRH, and the downlink data processing unit is configured to process and transmit the downlink information Data to the downlink unit to the RRH! 20. In operation, the base station can switch between uplink mode and downlink mode. When the base station is in uplink mode, its communication hardware circuit acts as the BBU to receive data, i.e., uplink data from the mobile communication device (not shown). The A/D 13 receives the analog nickname from the mobile communication device, converts the signals into digital signals, and then transmits them to the transceiver unit 1 of the RRH. The transceiver unit 1 processes the digital signals, for example, classifies and encapsulates the digital signals into frames, and then transmits them to the BBU on the packet switching network to be processed by the data processing unit 2 of the BBU. 〇〇 Further processing. When the base station is in downlink mode, its communication hardware circuit acts as the BBU to transmit data (i.e., the downlink data) to the mobile communication device. The BBU transmits the data that has been processed by the data processing unit 2 to the transceiver unit 100 of the RRH over the packet switching network. The transceiver unit 1 processes the received data, for example, recovering data from the frames, and then transmitting the processed data to the D/A port, 201206219. The D/A converts the data into an analog signal and It is then transmitted to the mobile communication device. The pulse generator 150 is operative to issue timing pulses for various circuit blocks of the RRH, including the uplink pulse tul, the downlink pulse tdl, and the switching pulse Ts. In the uplink mode, the uplink pulse Tul is used to trigger the A/D 130 to receive uplink data from the mobile communication device. In the downlink mode, the downlink pulse TDL is used to trigger D/A 140 to transmit downlink data to the mobile communication device. The switching pulse Ts is used to trigger a switch between the uplink mode and the downlink mode. In the downlink mode, after the switching pulse Ts is sent from the pulse generator 15, the D/A stops transmitting data to the mobile communication device, and the hardware circuits of the RRH switch to the uplink data. Processing status. In the uplink mode, after the switching pulse Ts is sent from the pulse generator 150, the a/d stops receiving data from the mobile communication device' and then the hardware circuits of the rRH switch to the downlink data. Processing status. Those skilled in the art will appreciate that the timing pulses provided by the pulse generator 15A far exceed the above-described pulses, and that the above pulses may also be generated by physically different discrete pulse generators. description. The timer 250 can issue timing pulses for various circuit modules of the BBU, including the timing baseband processing pulse Tdp. The data processing pulse Tdp is used to trigger the operation of the data processing unit 200 under the downlink data processing 10 201206219 unit 220, that is, the downlink data, the routine data frame (which is to the RRH). The system is used to initiate processing to be transmitted to the RRH, such as encapsulating the data into a frame and simplifying the hereinafter to a downlink key frame. The skilled person should understand that the downlink key frame is The frame header and the frame body are composed, and the frame body may include one or more data samples, and each of the data samples in the Gongga sample is data having a certain length 'for example, 16 or 32 bits. The deleted transceiver unit (10) is self-contained, and the coffee may take some time to completely receive the frame, and the time is called the A seed chain chain is the downlink link frame duration. Similarly, the uplink data frame (which is simplified below as an uplink frame) from the deletion to the coffee includes a frame header and/or a plurality of data samples, and is completely valued for transmission. The time required for an uplink frame is called the uplink frame duration. The %-construction-uplink_downlink period from the beginning of the auto-downlink frame to the end of an uplink route frame. The uplink-downstream = length of the road cycle = downlink keyframe duration + downlink mode. ::: time required to switch between link modes + uplink keyframe = interval. For example, in the -configuration, the uplink-downlink miGmS' has a downlink frame duration of 4.5 ms, and the transition between the downlink mode and the uplink mode is required. Ms, and the uplink frame duration is 5 The frequency of the subscribed link pulse Tdl is set to match the uplink path and the next 201206219 7 way period. For example, if the uplink downlink period is ms then the frequency of tdl is 1 〇〇 Hz, that is, the pulse generator issues a downlink pulse TDL every 10 ms. The timing mechanism in the RRH and the BBU synchronizes the downlink information frame between the Iu and the RRH, that is, the downlink frame and the downlink pulse. The switching pulse Ts is synchronized. In other words, when the downlink pulse & is sent, the first data fragment of the downlink frame should have arrived at the transceiver unit (10) and received by the transceiver 7L 1GG; when the switch-to-switch pulse is 3, The last data sample of the downlink data frame should have arrived at the transceiver unit ι. Otherwise, the entire downlink frame will not be transmitted by the DM 14 0 to the mobile communication device during the current period. Those skilled in the art should understand that the time at which the downlink frame data sample arrives at the transceiver unit may be subject to downlink data processing and transmission time delay (processing time delay) under the data processing unit 2, and = The effect of both line jitter. For example, the processing time delay of the data processing unit 2 of the BBU may delay the first data sample of the downlink frame to reach the transceiver unit. Various embodiments of the invention are described below with reference to Figure 3. Figure 3 shows a trowel structure and operation of the base station of the wireless communication system in accordance with an embodiment of the present invention. The components shown in FIG. 3 are mostly the same as those of the components of FIG. 2, except that FIG. 3 also includes one time delay measuring unit 180 and a time delay notifying unit 17 located in the rrh, and one of the BBUs is synchronized. Unit 290. 12 201206219 The RRH shown in FIG. 3 as an embodiment of the RRH of the base station of the wireless communication system according to the present invention is communicably connected to the BBU including the synchronization unit 290 via the network for construction according to The base station of the wireless communication system of the present invention. The RRH and the base station will be described in detail below with reference to the drawings. The time delay measurement unit 18 is configured to measure the time delay of the downlink data from the BBU to the rrh. The time delay of the downlink data from the BBU to the transceiver unit and thus to the RRH can be measured by: setting a timer in the RRH to separately record that the downlink data should arrive at the The time of the RRH transceiver unit 100 and the time at which the downlink data actually arrives at the transceiver unit' and then the difference between the two times is calculated. A specific implementation of the time delay measurement unit will be described in further detail below with reference to FIG. The time delay notification unit m is used to notify the bbu of the time delay data on the time delay measured by the time delay measurement 1 early 70 180. In particular, the 'time delay notification unit 17' may receive time delay data regarding the time delay of the downlink data from the BBU to the RRH, and "should also process the time delay data (eg, package it into a frame), And then the frame is intermittently transmitted to the clerk for transmission of the uplink frame. According to an embodiment of the present invention, as shown in the upper half of FIG. 3, the time delay 诵4 _ goes early 170 may delay the time BBU after the downlink mode switch, the uplink_link mode, and the uplink link frame transmission by the uplink unit. According to the embodiment of the present invention, In order to facilitate the processing and transmission of the time 13 201206219, the function may be provided in the upstream link unit 110 of the face, or alternatively, the function of the uplink unit inter-operator delay notification unit may be reconstructed. This is a familiar and familiar description of the technology.... It is obvious and easy to implement. In this paper, the synchronization synchronization unit 290 is used to advance the start time of the BBU processing phantom downlink data. Time delay The length of time obtained by the unit notification time delay data TD. The BBU is obtained after the RRH time delay data is received from the RRH according to the predetermined agreement (for example, via the uplink key unit 11G). The data processing unit (e.g., uplink data processing unit 2U) processes the time delay data (e.g., from a frame recovery time delay) and then transmits it to time unit 29(). Synchronization unit 290 will The time delay (4) is used as an adjustment parameter, for example, preparing the data processing unit fan for the time delay to forward the downlink data to the next downlink in the subsequent processing and transmitting the time delay length indicated by the time delay data. The frame may arrive at the RRH earlier. Those skilled in the art should understand that the measured frame header time delay Tdi" is due to the processing time delay of the BBU's data processing unit processing the downlink data, And the frame tail time delay is 2, which represents the sum of the frame header time delay Td| and the jitter time delay of a data frame transmission. Therefore, in general, for example, if Indicating that there is no jitter in the data transmission of the base station; on the other hand, if Td2 is significantly larger than Tdl, indicating that there is a significant 14 201206219 jitter in the data transmission, in the implementation of the present invention, based on different clock corrections The algorithm is used to correct the clock 'in order to adjust the trigger or start time of the data processing unit 200 to process and pass the downlink data, that is, the data processing and the triggering or start of transmitting the downlink data. January j shifting according to the present invention - the specific embodiment, and the larger one can be used as a reference parameter to perform the above adjustment. For example, ' ^ Td2 is greater than

Tdl’則資料處理單元2〇〇處理且傳輸該下行鏈路資料之 起始時間可被前移時間長度Td2。 繁於抖動為快速變化的,若每次皆基於執行該調 整’則全系統容易進人—不穩定狀態。根據本發明之一 具體實施例’例如’若Tdi與^之間的差異不顯著,則 β月b僅採用Td,作為參考參數來執行該調整,例如將 資料處理單元200處理且傳輸該下行鏈路資料之起 間前移時間長度Tdl。 當然’實務上’視Tdl及Td2之特定範圍而定可使用 更複雜之參考參數以用於調整。根據本發明之一實施 例,例如,一段時間上(Td2_Tdi)之平均值與當前L 之和可作為參考參數以執行該調整。例如,在當前上― 鏈路-下行鏈路週期之前# W週期中之每一:二二 (Td2_Tdl)的平均值與當前Tdl的和可用作參考參數來 執行該調整,其中N為大於1之整數。 根據本發明之-實施例,該同步單元可實施為具備在 習知技術中之時序校正單元,該時序校正單元可基於用 於觸發下行鏈路資料處理單元20。以起始該下行二路資 15 201206219 料處理及傳輸之時序基頻處 A1 爽里脈衝、及該時間延遲資 料,產生時間延遲時鐘脈衝 ^ X取代該時序基頻處理脈 衝’以便將該下行鏈路資料處 D _ 貝针處理早兀處理且傳輸該下行 鏈路資料之^始時間前移上述之時間長度。參閱第4 圓’第4圖示意地展示根據本發明之該具體實施例繼使 用該時序校正單元之後,用於緬 〇 用於觸發該下行鏈路資料處理 單元以處理且傳輸該下行鏈路眘 艰塔育枓之時序基頻處理脈衝 的變化。第4圖之左下部展干扒 展不心正刖之時序基頻處理脈 衝’且右下部展示料岐遲時序基㈣理脈衝,亦即, 由該時序校正單元調整之時序基頻處理脈衝。使用其上 方所示的相同高頻系統時鐘脈衝作為參考,以比較第4 圖左下部之該時序基頻處理脈衝與右下部之該時間延遲 時序基頻處理脈衝’可見,該時間延遲時序基頻處理脈 衝具有較高頻率’且因此由該時間延遲時序基頻處理脈 衝觸發之下行鍵路資料處理單元處理且傳輸該下行 鍵路資料的起始時間將被前移。 第3圖展示根據本發明之一具體實施例之時序校正單 疋292 ’其中時序校正單元292冑自計時器250輸出之 時序基頻處理脈衝TDP作為-輸人,且將充#調整參數 之時間延遲資料TD作為另一輸入,且輸出一時間延遲時 序基頻處理脈衝TDP,。熟習電子電路之技術者可理解, 該時序校正單元292可為在習知技術中容易實現之電路 結構,且因此本文將不進—步描述。應注意,儘管第3 圖所示之時序校正單元292將該時序基頻處理脈衝 16 201206219 作為一輸入’但在實用實施中如熟習該項技術者所熟 知’由該校正單元輪出之該時間延遲時序基頻處理脈衝 tdp’亦可為該時序校正單元之一輸入,以便形成一回 饋,關於此方面本文將不詳細描述。 接下來’將進一步描述本發明之時間延遲測量單元之 該具體實施例。在使用該RRH中之脈衝發生器15〇以產 生用於觸發D/A 140之該下行鏈路資料至該行動式通訊 設備之傳輸的該下行鏈路脈衝Tdl的情況下,本發明之 訊框標頭時間延遲測量構件181,可用以藉由獲得該下 订键路脈衝之時間,而獲得D/A 14()開始向該行動式通 訊設備傳輸下行鏈路資料的時間;另外,因為此為下行 鍵路單ib 120自該卿接收到的該下行鏈路訊框之第一 ;斗樣本戶斤以可自該下行鍵路單元獲得該下行鍵路訊 框,第一資料樣本到達該RRH之時間。因此,在具備兩 :汁時器及一減法器之情況下,該訊框標頭時間延遲測 1構件可實現為用於測量該下行鏈路脈衝^產生之時 間與當該卿之該下行鏈路訊框之第―資料樣本到達該 下订鍵路單元時的時間之間的時間差之構件。同樣地, 2訊框標尾時間延遲測量構件182可進一步簡單地實現 為用於測量該切換脈衝Ts產生的時間與當該卿之該 下仃鏈路訊框之最後資料樣本 時間之間的第二時間差之構件心下仃鏈路早元時的 第5圖示意性地展示根據 之w H地 月之時間延遲測量構件 之電路實施之-具體實施例。如第5圖所示,該訊框標 17 201206219 頭時間延遲測量構件⑻包含一計數器5i〇、一減法器 52〇及-除法器53G,其中該計數器將該下行鏈路脈衝 tdl及差拍時鐘脈衝CLKda作為其輸人,該下行键路脈 衝TDL為自該下行鏈路單元指示該下行鍵路訊框之第一 資料樣本已到達下行鍵路單元12〇之_通知;其中該差 拍時鐘脈衝CLKda為由該系統時脈提供之差拍時鐘脈 衝’其用於由D/A 14G逐個進行該τ行鍵路資料之諸資 料樣本之數位/類比轉換,與脈衝I及^比較,該差 拍時鐘脈衝為一高頻脈衝,且亦可由相同的脈衝發生器 150產生。 計數器510對時鐘脈衝咖^連續計數。如第$圖所 不’當發出一下行鏈路脈衝Tdl肖’計數器51〇經觸發 以輸出當前的計數值Cn;例如,由下行鍵路單元12〇 發㈣通知指示該下行鍵路訊框之第—資料樣本已到達 下仃鍵路早几120,該通知觸發計數器51〇以輸出當前 的計數值c12;且經由該減法器之操作獲得c"與 Q如方塊53〇中以「/ΟΙ」所示該 、對值除以該差拍時鐘脈衝CLKda之頻率F 4以得 到訊框標頭時間延遲Tdp上述電路可表示為··Tdl' then the data processing unit 2 processes and the start time of transmitting the downlink data can be advanced by the length of time Td2. When the jitter is fast-changing, if the adjustment is performed every time, the whole system is easy to enter the unstable state. According to an embodiment of the present invention, for example, if the difference between Tdi and ^ is not significant, then β month b uses only Td as a reference parameter to perform the adjustment, for example, processing and transmitting the downlink by data processing unit 200 The length of time between the start of the road data is Tdl. Of course, 'practical' can use more complex reference parameters for adjustment depending on the specific range of Tdl and Td2. According to an embodiment of the present invention, for example, the sum of the average of the (Td2_Tdi) and the current L over a period of time can be used as a reference parameter to perform the adjustment. For example, the sum of the average of the #W periods before the current "link-downlink period: the sum of the two (Td2_Tdl) and the current Tdl can be used as a reference parameter to perform the adjustment, where N is greater than 1 The integer. In accordance with an embodiment of the present invention, the synchronization unit can be implemented with a timing correction unit in the prior art, which timing correction unit can be based on the downlink data processing unit 20 for triggering. Initiating the downlink second channel 15 201206219 material processing and transmission timing base frequency A1 Shuangli pulse, and the time delay data, generating a time delay clock pulse ^ X replace the timing base frequency processing pulse 'to replace the downlink The path data D _ beacon processing is processed early and the start time of transmitting the downlink data is advanced by the above time length. Referring to the 4th circle, FIG. 4 is a schematic diagram showing the use of the timing correction unit for the purpose of triggering the downlink data processing unit to process and transmit the downlink caution after the timing correction unit is used according to the embodiment of the present invention. The timing of the fundamental frequency of the difficult tower breeding process changes the pulse. The lower left part of Fig. 4 shows the timing of the fundamental frequency processing pulse and the lower right shows the late timing base (four) processing pulse, that is, the timing fundamental frequency processing pulse adjusted by the timing correction unit. Using the same high frequency system clock pulse shown above as a reference to compare the timing baseband processing pulse at the lower left of FIG. 4 with the time delay timing baseband processing pulse of the lower right portion, which is visible, the time delay timing fundamental frequency The processing pulse has a higher frequency' and thus the start time of the downlink data processing unit and the transmission of the downstream key data by the time delay timing fundamental frequency processing pulse trigger will be advanced. 3 shows a timing correction unit 292 ′ according to an embodiment of the present invention in which the timing correction unit 292 outputs the timing fundamental frequency processing pulse TDP from the timer 250 as the input, and the time of the charging parameter is adjusted. The delay data TD is used as another input, and a time delay timing fundamental frequency processing pulse TDP is output. Those skilled in the art will appreciate that the timing correction unit 292 can be a circuit structure that is readily implemented in the prior art and will therefore not be described in further detail herein. It should be noted that although the timing correction unit 292 shown in FIG. 3 takes the time-base processing pulse 16 201206219 as an input 'but in a practical implementation, as is well known to those skilled in the art, the time taken by the correction unit The delayed timing baseband processing pulse tdp' may also be input to one of the timing correction units to form a feedback, which will not be described in detail herein. This specific embodiment of the time delay measuring unit of the present invention will be further described hereinafter. In the case where the pulse generator 15 in the RRH is used to generate the downlink pulse Tdl for triggering the transmission of the downlink data of the D/A 140 to the mobile communication device, the frame of the present invention The header time delay measuring component 181 can be used to obtain the time when the D/A 14() starts transmitting downlink data to the mobile communication device by obtaining the time of the subscribed key pulse; in addition, because this is The downlink key ib 120 receives the first downlink frame from the clerk; the bucket sample user can obtain the downlink information frame from the downlink key unit, and the first data sample arrives at the RRH time. Therefore, in the case of two: juice timer and a subtractor, the frame header time delay measuring component 1 can be implemented to measure the time of the downlink pulse generation and when the downlink of the clearing The component of the time difference between the time when the data sample arrives at the subscription key unit. Similarly, the 2-frame end time delay measuring component 182 can be further simply implemented to measure the time between the generation of the switching pulse Ts and the time of the last data sample of the squat link frame of the clerk. Figure 5 of the second time difference component sub-link link early time diagram schematically shows the circuit implementation of the time delay measurement component according to the time interval of the H H - a specific embodiment. As shown in FIG. 5, the frame header 17 201206219 head time delay measuring component (8) includes a counter 5i, a subtractor 52A, and a divider 53G, wherein the counter uses the downlink pulse tdl and the beat clock. The pulse CLKda is input as the input, and the downlink key pulse TDL is a notification indicating that the first data sample of the downlink information frame has arrived at the downlink key unit 12 from the downlink unit; wherein the beat clock pulse CLKda is the beat clock pulse provided by the system clock. It is used for digital/analog conversion of data samples of the τ line key data by D/A 14G, and compared with pulses I and ^, the beat The clock pulse is a high frequency pulse and can also be generated by the same pulse generator 150. The counter 510 continuously counts the clock pulses. As shown in the figure #, when the downlink pulse Tdl is sent, the counter 51 is triggered to output the current count value Cn; for example, the downlink key unit 12 sends a (four) notification to indicate the downlink information frame. The first data sample has reached the lower 仃 key line a few 120 earlier, and the notification triggers the counter 51 〇 to output the current count value c12; and the operation of the subtractor obtains c" and Q as in the box 53 以 "/ΟΙ" The paired value is divided by the frequency F 4 of the beat clock pulse CLKda to obtain the frame header time delay Tdp. The above circuit can be expressed as...

Tdi = |C…c12|/f_CLKda 其中^為當該TDL發出時計數器510之當前計數值, c12為u下行鏈路訊框之第—資料樣本到Tdi = |C...c12|/f_CLKda where ^ is the current count value of the counter 510 when the TDL is issued, c12 is the first of the u downlink frame - the data sample is

DA -之當前計數值,且f_CLKda為該差拍時鐘脈衝叫 之頻率。 18 201206219 由計數器、加法器及除法器形成之具有相同功能之另 電路(未詳細圖示)可用以計算訊框標尾時間延遲 Td2=|C21-C22|/F_CLKDA。 其中Cu為當該切換脈衝Ts到達時該計數器之當前計 數值;C22為當該下行鏈路訊框之最後資料樣本到達時該 計數器之當前計數值。 x 用於0十算Tdl及Td2之上述電路僅為說明性的,且各種 變化亦是可能的,例如,雖然用於計算Td|及Tu之該等 電路刀別含有各別的計數器,但該等電路可共享一減法 器及一除法器;甚至該兩個計數器可為同一計數器。對 於熟習該項技術者而言,报明顯可用各種其他方式來實 施時間延遲測量構件i80。 上文已參閱第1_5圖對根據本發明之無線通訊系統基 地台之各種實施進行了描述。熟習該項技術者可理解, 雖並未明確闡述但可由上述描述衍生之其他實施亦可自 上述各種實施例獲得。 在相同的發明概念下,本發明亦提供一種用於無線通 訊系統基地台之資料傳輸同步方法β第6圖示意地展示 根據本發明之一具體實施例之方法流程圖。 應用根據本發明之該實施例之資料傳輸同步方法的該 無線通訊系統基地台,包含經由網路可傳播地連接的— 遠端無線電標頭(Remote Radio Header, R_RH )及一基頻 單元(Baseband Unit,BBU )’其中該BBU係用於處理且 傳輸下行鏈路資料至該RRH«>如圖式所示,本發明之資 19 201206219 料傳輸同步方法包含以下步驟: 首先開始於步驟610,測量該下行鍵路資料自該卿 到達該RRH之時間延遲; t步驟620處,自該RRH至該_通知關於該測量 的時間延遲的時間延遲資料Td ; 在步驟㈣處,基於該通知的時間延遲資料而獲得的 度,將該咖處理且傳輸該下行鏈路資料的起始 時間刖移。 根據本發明之一且體眚 八體貫施例,該下行鏈路資料自該 丽到達該RRH之該時間延遲可用以下方式測量測量 中容納之該數位/類比(D/A)轉換器開始向該 通訊設備傳輸下行鏈路資料時的時間與當該下行 鍵路資料之資料訊框之第—f料樣本到達該刪時的時 間之間的時間I Tdl,該時間差在此亦稱為第—時間差。 =該第一時間差Tdl係包含於在步驟㈣處關於自 :料了 ί該BBU通知之該測量時間延遲之該時間延遲 貝D中,且該時間長度等於該第一時間差Tdl ^ 根據本發明之一具體實施例,該下行鏈路J料自該 到達該RRH之該時間延遲可用以下方式測量測量 線通訊系統基地台自下行鏈路模式切換至上行鏈 資料::的時間與當該下行鍵路資料之資料訊框之最後 =本到達該RRH時的時間之間的時間差Td2,該時 丄外二稱為第二時間差。因此,除該第-時間差Tdl Μ第二時間差Td2亦包含於在步驟㈣處關於自 20 201206219 該RRH至該BBU通知之钤如 資料Td中。 之該測量時間延遲之該時間延遲 根據本發明之一具體實施 有該第-時間差Tdl切第/該時間延遲諸TD含 % ^ '"第—時間差Td2之情況下,在步 驟630處,基於該通知 7 μ τ η咕 時間延遲資料中的該第一時間 dl及該第二時間差τ 行鏈路# # Μ # & 4 將该BBU處理且傳輸該下 =起始時間前移等於該第一時間差k與該 第-時間差Td2中之較大者的時間長度。 根據本發明之另一且 該通知之時Η征遞二 在步驟㈣處’基於 時門差 貝料中的該第一時間差Ten及該第二 時間差Td2,使該BBU ^ 始時間前移的時間長产,等;?路資料處理及傳輸之起 期之又等於备則上行鏈路-下行鏈路週 二、個週期中的每—個週期的τ =與當前L的和,…為大於1的整數。 始==之,實施例,測量當該D/A轉換器開 該/丁 '通訊《備傳輸下行鍵路資料時的時間與當 下行鍵路資料之眘姻_ >DA - the current count value, and f_CLKda is the frequency at which the beat clock is called. 18 201206219 Another circuit (not shown in detail) formed by the counter, adder and divider with the same function can be used to calculate the frame end time delay Td2=|C21-C22|/F_CLKDA. Where Cu is the current count value of the counter when the switching pulse Ts arrives; C22 is the current count value of the counter when the last data sample of the downlink frame arrives. x The above circuits for 0-time calculations Tdl and Td2 are merely illustrative, and various variations are also possible. For example, although the circuit cutters for calculating Td| and Tu have separate counters, The circuits can share a subtractor and a divider; even the two counters can be the same counter. For those skilled in the art, it is apparent that the time delay measurement component i80 can be implemented in a variety of other ways. Various implementations of the wireless communication system base station in accordance with the present invention have been described above with reference to Figures 1-5. It will be understood by those skilled in the art that other implementations that may be derived from the above description may be obtained from the various embodiments described above. Under the same inventive concept, the present invention also provides a data transmission synchronization method for a wireless communication system base station. FIG. 6 is a schematic flow chart showing a method according to an embodiment of the present invention. The wireless communication system base station to which the data transmission synchronization method according to the embodiment of the present invention is applied includes a remote radio header (R_RH) and a baseband unit (Baseband) communicably connected via a network. Unit, BBU) 'where the BBU is used to process and transmit downlink data to the RRH«> As shown in the figure, the method 19 201206219 material transmission synchronization method of the present invention comprises the following steps: First, starting at step 610, Measuring a time delay of the downlink link data from the clerk to the RRH; t at step 620, from the RRH to the _notifying the time delay data Td regarding the time delay of the measurement; at the step (4), based on the time of the notification The degree obtained by delaying the data shifts the start time of processing and transmitting the downlink data. According to one embodiment of the present invention, the time delay of the downlink data from the MN to the RRH can be measured in the following manner by measuring the digital/analog ratio (D/A) converter received in the measurement. The time between the time when the communication device transmits the downlink data and the time when the first sample of the data frame of the downlink data track reaches the deletion time, the time difference is also referred to herein as the first Time difference. = the first time difference Tdl is included in the time delay in the step (4) with respect to the measurement time delay of the BBU notification, and the length of time is equal to the first time difference Tdl ^ according to the present invention In a specific embodiment, the time delay of the downlink J material from the arrival of the RRH can be measured in the following manner: the time when the measurement line communication system base station switches from the downlink mode to the uplink data: and the downlink link The last time of the data frame of the data = the time difference Td2 between the times when the RRH is reached, and the second time is called the second time difference. Therefore, the second time difference Td2 in addition to the first time difference Tdl 亦 is also included in the data Td at step (4) regarding the RRH from 20 201206219 to the BBU notification. The time delay of the measurement time delay according to one embodiment of the present invention is such that the first time difference Td1/the time delay TD includes %^'"the first time difference Td2, at step 630, based on The first time dl and the second time difference τ in the 7 μ τ η time delay data are notified. # # amp # & 4 The BBU is processed and transmitted. The lower = start time advance is equal to the first The length of time of the larger of the time difference k and the first time difference Td2. According to another aspect of the present invention, at the time of the notification, at the step (4), the time of the BBU ^ start time is advanced based on the first time difference Ten and the second time difference Td2 in the time difference difference material Long-term production, etc.; the beginning of the data processing and transmission is equal to the standby uplink-downlink Tuesday, every cycle of the cycle τ = the sum of the current L, ... is greater than 1 The integer. Start ==, the embodiment, measuring the time when the D/A converter is turned on / D'communication "preparing the transmission of the downlink data and the caution of the downlink data _ >

時的時門t PI , 5 ^ ^ ^ _ #料樣本到達該RRH 啤間之間的第一時間葚 行鏈路脈衝τ ”田由測量當產生該下 财衝丁DL以用於觸發該D/A轉 =傳:下行鏈路資料時的時間,與當該下行::: 間樣本自該_到達該下行鍵路單元時的時 ,間差作為該第—時間差Td丨來實現。 生明之一具體實施例,使用-脈衝發生器以產 '毛該無線通訊系統基地台在上行鏈路模式與下 21 201206219 :鏈賴式之間切換之切換脈衝Ts,且測量當該無線通 地台自下行鍵路模式切換至上行鍵路模時 =當該下行鍵路資料之資料訊框之最後資料樣本: 達該RRH時的日卑pq + Μ ^ & 吁的時間之間的第二時間差τ 當該脈衝發生器產生用於觸發該無線通訊系統基= =鏈路模式與下行鍵路模式之間切換的切換脈衝^時 7時間與當該下行鏈路訊框之最後資料樣本自該卿到 =下行鍵路單元時的時間之間的時間差作為該第二時 間差Td2來實現。 根:本發明之一具體實施例’將該bbu處理且傳輸該 仃鏈路資料的起料間前移,基於料知的時間延遲 抖而獲得的時間長度,進一步包含:基於由該BBU内 之二時器產生的’用於觸發該刪之該下行鍵路資料處 理單元以起始該下行鏈路資料處理及傳輸的時序基頻處 理脈衝、及該時間延遲資料,產生一時間延遲時鐘脈衝丨 乂該時間延遲時鐘脈衝取代由該計時器產生之該時序基 頻處理脈衝’以觸發卿之該下行鍵路資料處理單元來 起始該下行鍵路資料處理及傳輸,以便將該下行鍵路資 料處理單元處理且傳輸該下行鏈路資料之起始時間 該時間長度。 上文已概述用於本發明之無線通訊系統基地台之資料 傳輸同步方法。應注意,為達簡潔之目的,忽略了與對 :根據本發明之無線通訊系統基地台所揭示的内容相同 或類似的許多細節。然而’熟習該項技術者可理解,根 22 201206219 據無線通訊系統基地台之上述描述及其在本發明甲之各 種實施,可實施本發明之各種實施。 已參閱諸圖式對本發明及本發明之一些示例性實施例 進行了描述,然而,應瞭解,本發明並非嚴格地限制於 彼等實施例。熟習該項技術者在不脫離本發明之範圍及 精神之情況下可進行各種修改及變化,且所有該等修改 及變化意欲包括在由附加申請專利範圍所定義之本發明 之範圍裏。 熟習該項技術者將理解本發明可體現為裝置、方法及 電腦程式產品n例如,本發明可完全實施於硬體 中,完全實施於軟體(包括韌體、常駐軟體或微碼)中, 或實施於軟體與硬體之組合(在本文中通常稱為「電 路」、「模組」或「系統」)中。另外,本發明可在任何具 有電腦可用程式碼之有形表達媒體中體現為電腦程式產 品° 可利用-或多個電腦可用或電腦可讀媒體之任何組 合。舉例而言(但並非限制),㈣腦可用或電腦可讀媒 體可為電子的、磁性的、光學的、電磁的、紅外線或半 系統裝置、设備或傳播媒體。該電腦可讀媒體之 更具體實例(為非詳盡清單)包括:具有-或多個電線 :電性連接、可攜式電腦磁片、硬碟、隨機存取記憶體 二_)、唯讀記憶體(麵)、可擦除可程式准讀記憶 例如,EPROM或快閃記憶體)、光纖、可攜式光碟 條己憶體(CD-R0M)、光學儲存設備、諸如彼等支持 23 201206219 網際網路或内部網路者之傳輸媒體、或磁性儲存設備。 應注意電腦可用丨電腦可讀媒體甚至可以是紙或在其上 列印程式之其他適當媒體,只要該程式可經由(例如) 電子地掃描該紙或其他媒體而電子地獲得,然後編譯, 解譯’或以適當之方式處理,且然後(若必要)儲存在 電腦記憶體中。在本文件之上下文中,電腦可用或電腦 可讀媒體可為任何可含有、儲存、傳達、傳播或傳送該 程式以供指令執行系統、裝置或設備使用或與其相關聯 之媒體。該電腦可用媒體可包括具有電腦可用程式碼體 現於其中並在基頻令或作為載波之部分而傳播的資料信 號。可使用任何適當媒體來傳輸該電腦可用程式碼,該 等媒體包#(但不限於)無線、線路、光纖電纜、灯及 其類似物。 可用或多個程式设計語言之任何組合以編寫用於執 行本申明案之操作之電腦程序碼,該等程式設計語言包 括物件導向私式设計語言,諸如java、、C++, 及其類似語言;及習知程序程式設計語言,諸如「c」程 式設計語言或類似的程式設計語言。該程式碼可完全在 使用者電腦上執行,部分在使用者電腦上執行,作為單 獨套裝軟體,部分在使用者電腦上執行且部分在遠程電 腦上執行,或完全在遠程電腦或伺服器上執行。在後者 的清丨兄中,該达程電腦可經由任何類型之網路連接至該 使用者之電腦,該網路包括區域網絡(LAN)或廣域網 絡(WAN),或可連接至外部電腦(例如,經由使用網際 24 201206219 網路服務提供者之網際網路)。 另外,可由電腦程式指令實施流程圖及/或方塊圖中之 每一個方塊’及流程圖及/或方塊圖中之方塊的組合。該 等電腦程式指令可提供給通用電腦、專用電腦或其他可 程式資料處理裝置之處理器以產生一機器,以便於可經 由該電腦或其他可程式資料處理裝置之處理器執行之該 等指令,建立用於實施流程圖及/或方塊圖中之諸方塊指 定的功能/操作的構件。 s 该等電腦程式指令亦可儲存在電腦可讀媒體中,該電 腦可讀媒體可以特定方式指示電腦或其他可程式資料處 理裝置來作用,以便於儲存在該電腦可讀媒體中之該等 指令生產包括指令構件之製品,該指令構件實施流程圓 及/或方塊圖之諸方塊中指定的功能/操作。 該等電腦程式指令亦可載入電腦或其他可程式資料處 理裝置上,以引起待在該電腦或其他可程式裝置上執行 的一系列操作步驟,以產生電腦實施程序,以便於在該 電腦或其他可程式裝置上執行之該等指令提供用於實施 流程圖及/或方塊圖之諸方塊中指定的功能/操作的程序。 圖式中的流程圖及方塊圖圖示根據本發明之各種具體 實施例m方法及電腦程式產品的可能實施的架 構功月匕性及操作。就此而言,流程圖或方塊圖中之每 一方塊可表示-模組、程式段、或代碼的一部分,該方 鬼匕a用於實施該或該等指定邏輯函數之一或多個可執 行指7。亦應注意,在一些替代實施中,該方塊註解之 25 201206219 功能可能以不同於圖式註解之次序發生。例如’連續展 示之兩方塊事實上可大體同時執行,或有時可以反向次 序執行該等方塊,取決於涉及之功能性。亦應注意方塊 圖及/或流程圖令之每一方塊、及方塊圖及/或流程圖中之 諸方塊之組合,可由執行該等指定的功能或操作的基於 專用硬體之系統、或專用硬體及電腦指令之組合實施。 【圖式簡單說明】 本發明之上述及其他目的、特徵及優點將自展示於隨 附圖式之本發明的諸具體實施例的細節描述變得更加明 白,在隨附圖式中相似或相同的元件符號在本發明的實 施例中係用以指示相似或相同的元件或部件。 第1圖示意地展示可實施本發明之技術解決方案於其 第2圖示意地展示無線通 其操作方式; 訊系統基地台之部分結構及 明之一具體實施例之無線 及其操作方式; 月之具體實施例之基頻 第3圖示意地展示根據本發 通訊系統基地台的部分結構, 第4圖示意地展示根據本發 處理脈衝的變化; 具體實施例之時間 第5圖示意地展示根據本發明之 延遲測量單元的電路;及 第6 流程圖 圖示意地展示根據本發明之 具體貫施例之方法 【主要元件符號說明】 26 201206219 100收發機單元 110上行鍵路單元 120下行鏈路單元 130類比數位轉換器 140數位類比轉換器 150脈衝發生器 170時間延遲通知單元 1 8 0時間延遲測量單元 1 8 1訊框標頭時間延遲測量構件 1 82訊框標尾時間延遲測量構件 200資料處理單元 2 1 0上行鏈路資料處理單元 220下行鏈路資料處理單元 250計時器 290同步單元 292時序校正單元 5 1 0計數器 520減法器 530除法器 610步驟 620步驟 630步驟 27When the time gate t PI , 5 ^ ^ ^ _ # material sample arrives at the first time between the RRH beer room, the link pulse τ "field" is measured when the next wealth DL is generated for triggering the D /A ==Transmit: The time when the downlink data is used, and when the downlink::: sample arrives at the downlink link unit from the _, the difference is implemented as the first time difference Td丨. In a specific embodiment, a pulse generator Ts is used to generate a switching pulse Ts between the uplink mode and the next 21 201206219: chain, and the wireless base station is measured. When the downlink key mode is switched to the uplink key mode = the last data sample of the data frame of the downlink data: the second time difference τ between the time pq + Μ ^ & When the pulse generator generates a switching pulse for triggering switching between the base station == link mode and the downlink mode, the time is 7 and when the last data sample of the downlink frame is from the = the time difference between the time when the downlink unit is down as the second time Td2 is implemented. Root: A specific embodiment of the present invention, the time length obtained by the bbu processing and transmitting the data of the link link data, based on the time delay of the known time delay, further includes: The time base frequency processing pulse generated by the second timer in the BBU for triggering the deletion of the downlink data processing unit to start the downlink data processing and transmission, and the time delay data, generating a time Delaying a clock pulse, the time delay clock pulse replacing the timing baseband processing pulse generated by the timer to trigger the downlink data processing unit to initiate the downlink data processing and transmission to The time length of the start time of processing and transmitting the downlink data by the downlink data processing unit. The data transmission synchronization method for the base station of the wireless communication system of the present invention has been outlined above. It should be noted that for the sake of simplicity Ignore the many details of the same or similar content revealed by the base station of the wireless communication system according to the present invention. However, 'the familiarity with the item It will be understood by the skilled person that the invention can be implemented in accordance with the above description of the wireless communication system base station and its various implementations of the present invention. The invention has been described with reference to the drawings and some exemplary embodiments of the invention. The present invention has been described, however, it should be understood that the invention is not to be construed as being limited to the embodiments. The modifications and variations are intended to be included within the scope of the present invention as defined by the appended claims. The skilled artisan will understand that the invention can be embodied as a device, a method, and a computer program product. For example, the present invention can be fully implemented in hardware. It is implemented entirely in software (including firmware, resident software or microcode), or in a combination of software and hardware (commonly referred to herein as "circuit," "module," or "system"). In addition, the present invention can be embodied in a computer program product in any tangible medium having computer usable code. Any combination of computer usable or computer readable media can be utilized. By way of example and not limitation, (4) brain-use or computer-readable media can be electronic, magnetic, optical, electromagnetic, infrared, or semi-system devices, devices, or media. More specific examples of the computer readable medium (in a non-exhaustive list) include: having - or multiple wires: electrical connection, portable computer disk, hard disk, random access memory 2), read only memory Body (face), erasable programmable read memory (eg EPROM or flash memory), optical fiber, portable CD-ROM (CD-R0M), optical storage device, such as their support 23 201206219 Internet A transmission medium or magnetic storage device for a network or internal network. It should be noted that the computer can be used with a computer readable medium or even paper or other suitable medium on which the program can be printed, as long as the program can be electronically obtained, for example, by electronically scanning the paper or other media, and then compiled and solved. Translate 'either in a proper manner and then (if necessary) stored in computer memory. In the context of this document, a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer usable medium may include a data signal having a computer usable code embodied therein and propagated at a baseband or as part of a carrier. The computer usable code can be transmitted using any suitable medium, such as, but not limited to, wireless, wire, fiber optic cable, lights, and the like. Any combination of programming languages may be used to write computer program code for performing the operations of the present invention, including object oriented private design languages such as java, C++, and the like. And conventional programming languages such as the "c" programming language or a similar programming language. The code can be executed entirely on the user's computer, partly on the user's computer, as a separate software package, partly on the user's computer and partly on the remote computer, or entirely on the remote computer or server. . In the latter's Qing Brothers, the Dacheng computer can be connected to the user's computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or can be connected to an external computer ( For example, via the internet using the Internet 24 201206219 Internet Service Provider). In addition, each block of the flowcharts and/or block diagrams and combinations of blocks in the flowcharts and/or block diagrams can be implemented by computer program instructions. The computer program instructions can be provided to a processor of a general purpose computer, a special purpose computer or other programmable data processing device to generate a machine for execution of the instructions via a processor of the computer or other programmable data processing device. Building means for implementing the functions/operations specified by the blocks in the flowcharts and/or block diagrams. The computer program instructions can also be stored in a computer readable medium, which can be in a specific manner instructing a computer or other programmable data processing device to facilitate the storage of such instructions in the computer readable medium. The production includes an article of instruction components that implement the functions/operations specified in the blocks of the process circle and/or block diagram. The computer program instructions may also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to generate a computer implemented program for facilitating the computer or The instructions executed on other programmable devices provide a program for implementing the functions/operations specified in the blocks of the flowcharts and/or block diagrams. The flowchart and block diagrams in the drawings illustrate the architecture and operation of possible implementations of various embodiments of the present invention and computer program products. In this regard, each block in the flowchart or block diagram can represent a module, a program segment, or a portion of code that is used to implement one or more of the specified logical functions. Refers to 7. It should also be noted that in some alternative implementations, the 25 201206219 function of the block annotation may occur in an order different from the schema annotations. For example, the two blocks shown in succession may in fact be executed substantially simultaneously, or sometimes in reverse order, depending on the functionality involved. It should also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system, or dedicated, for performing the specified functions or operations. The combination of hardware and computer instructions is implemented. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more apparent from the Detailed Description The element symbols are used in the embodiments of the invention to indicate similar or identical elements or components. 1 is a schematic diagram showing a technical solution in which the present invention can be implemented, and FIG. 2 is a schematic diagram showing the operation mode of the wireless communication system; part of the structure of the base station of the communication system and a wireless embodiment of the specific embodiment; FIG. 3 is a schematic diagram showing a partial structure of a base station according to the present communication system, and FIG. 4 is a schematic view showing a variation of a processing pulse according to the present invention; FIG. 5 is a schematic diagram showing the time according to the present embodiment. The circuit of the delay measuring unit of the invention; and the sixth flowchart diagram schematically show the method according to the specific embodiment of the present invention. [Main component symbol description] 26 201206219 100 transceiver unit 110 uplink key unit 120 downlink unit 130 Analog to digital converter 140 digital analog converter 150 pulse generator 170 time delay notification unit 1 8 0 time delay measurement unit 1 8 1 frame header time delay measurement component 1 82 frame tail time delay measurement component 200 data processing unit 2 10 uplink data processing unit 220 downlink data processing unit 250 timer 290 when synchronizing unit 292 Correction unit 510 subtractor 530, a divider 520 the counter 610 step 620 step 630 step 27

Claims (1)

201206219 七、申請專利範圍: 1. 一種用於一無線通訊系統基地台之遠端無線電標頭 (Remote Radio Header,RRH ),該遠端無線電標頭 (RRH)係經由一網路可傳播地耦合至該無線通訊系統 基地〇之一基頻單元(Baseband Unit, BBU ),其中該BBU 處理且傳輸下行鏈路資料至該RRH,該遠端無線電標頭 (RRH )進一步包含·· 一時間延遲測量單元,其用於測量該下行鏈路資料自該 BBU到達該rrh之一時間延遲; 一時間延遲通知單元,其用於自該RRH至該BBU通知 關於由該時間延遲測量單元測量的該時間延遲的時間延 遲資料,該時間延遲資料係用於將該BBU處理且傳輸該 下行鏈路資料的起料間前移基於該日夺間延遲資料而獲 得的一時間長度。 2.如申請專利範圍帛!帛所述之遠端無線電標頭 (RRH)’其進—步包含用於將該下行鏈路資料傳輸至一 無線通訊設備之一數位類比(D/A)轉換器,其中該 延遲測量單元包含: X B 一訊框標頭時間延遲測量構件,其用⑽量^ D㈣ 換裔開始向該無線通訊設備傳輸訂行鏈”料時的時 間與當該下行鏈路資料之資料訊框之第一資料樣 該RRH時的時間之間的一第一時間差'I , 其中該時間延遲資料包含該第一時間差τ 。 28 201206219 3·如申請專利範㈣2項所述之遠端無線電標頭 (RRH)’其中該遠端無線電標頭(rrh)定位於复中之 該無線通㈣統基地台係在下行鍵路模式與上行鍵路模 式之間切換’且該時間延遲測量單元進一步包含: 一訊框標尾時間延遲測眚描 丄 其用於測量當該無線通 訊系統基地台自該T行鍵路模式切換至該上行鏈路模式 時的時間與當該下行鍵路資料之資料訊框之最後資料樣 本到達該RRH時的時間之間的-第二時間差〜; 其中該時間延遲資剩> 鱼 jW > 遲貢枓進-步包含該第二時間差Td2。 4·如"專利範圍第2項所述之遠端無線電桿頭 (RH),其中該時間長度等於該第一時間差l。 5.如申料利範圍第3項所述之遠端 (RRH)’其中該時間 ··,線電‘碩 二時間差k之較大者 第—時間〜該第 6.如申請專利範圍第3項所述之遠 (RRH),其中該時 …、線電標領 及寻γ田則上行鍵 逦期之首…過期中的每_遇期的核第:時广 與該第_時間差Td2之間的差的平均值與.Tdl 其中N為大於1之一整數。 cn的和, 29 201206219 7·如申請專利範圍第2項所述之遠端無線電標頭 (RRH),其進一步包含一下行鏈路單元及—脈衝發生 器,該下行鏈路單元用於自該BBU接收下行鏈路資料, 該脈衝發生器用於產生—下行鏈路脈冑Td“x用於觸發 該D/A轉換器以向該行動式通訊設備傳輸下行鏈路資 料,其中該訊框標頭時間延遲測量構件進—步包含: 用於測量當產生該下行鏈路脈衝Tdl時的時間與當該下 行鍵路訊框之該第—資料樣本自該BBU到達該下行鍵路 單元時的時間之間的該第一時間差Tdi的構件。 8.如申請專利範圍第3項所述之遠端無線電標頭 ⑽H) ’其進—步包含―下行鏈路單元及—脈衝發生 器,該下行鏈路單元用於自該卿接收下行鏈路資料, 該脈衝發生益用於產生—切換脈衝Ts以用於觸發該無線 通訊系統基地台以在下行鏈路模式與上行鍵路模式之間 切換’其中該訊框標尾時間延遲測董構件進—步包含: 用於測量當發出該切換脈衝Ts時的時間與當該下行鍵路 訊框之該最後資料樣本自該卿到達該下行鍵路單元時 的時間之間的該第二時間差Td2的構件。 9. -種無線itd統基地台,包含—基頻單元(b則 及如申請專利範圍第!項至第8項中之任一項其中之用 於-無線通訊系統基地台的遠端無線電標頭(rrh),該 遠端無線電標頭係經由一網路可傳播地連接,其中該 30 201206219 BBU進一步包含: 一同步單元,其用於將該BBU處理且傳輸該下行鏈路資 料的該起始時間前移基於由該時間延遲通知單元通知之 該時間延遲資料而獲得的該時間長度。 1 〇·如申請專利範圍第9項所述之無線通訊系統基地 台,其中該BBU進一步包含一下行鏈路資料處理單元及 汁時器,該下行鏈路資料處理單元用於處理且傳輸該 下行鏈路資料,該計時器用於產生__時序基頻處理脈衝 以用於觸發該下行鏈路資料處理單元來起始該下行鏈路 資料處理及傳I;且該同#單元m含一時序校正 單元,該時序校正單元用於基於用於觸發該下行鏈路資 料處理單元來起㈣τ行鏈路㈣處理及傳輸之該時序 基頻處理脈衝、及該時間延遲諸,產生—時間延遲時 鐘脈衝以取代用&觸發該下行鍵路資料處理單元來起始 該下行鏈路資料處理及傳輸之該時序基頻處理脈衝,: 便將該下行鏈路資料處理單元處理且傳輸該下行鍵路資 料之該起始時間前移該時間長度。 11. -種用於一無線通訊系統基地台之資料傳輸同步方 法’該無線通訊系統基地台包含經由—網路可傳播地連 接之一遠端無線電標頭(RRH)及-基頻單元(BBU), 其中該BBU係、用以處理且傳輸下行鍵路資料至該 RRH,該同步方法包含以下步驟· 31 201206219 測量該下行鍵路資料自胃BBU到達該rrh之一時間延 遲; 自該咖至該刪通知關於該測量之時間延遲之時間 延遲資料,其中該時間延遲資料係用於將該卿處理且 傳輸該下行鍵路資料的起始時間前移基於該通知的時間 延遲資料而獲得的一時間長度。 12.如申請專利範圍第u項所述之同步方法,其中該 RRH進-步包含用於將該下行鍵路資料傳輸至―無線通 訊設備之-數位類比(D/A)轉換器,且測量該下行鍵路 資料自該BBU到遠該々 .ηη 剡運该RRH之一時間延遲之該步驟包含 以下步驟: 測量當該D/A轉換器# — # & t 辩換喆開始向该無線通訊設備傳輸該下行 鍵路資料時㈣間與當該下行㈣資敎資料訊框之第 -資料樣本到達該咖時的時間之間的_第一時間差 Tdi, 其中該時間延遲資料包含該第一時間差Tdi。 u.如中請專·圍第12項所述之同步方法,其中該無 線通訊系統基地台在下杆絲技描―命' *下仃鏈路模式與上㈣路模式之間 切換’且測量該下行鍵路資料线刪 一時間延遲之該步驟進一步包含以下步驟㈣顧之 測量當該無線通訊系統基地台自下行鍵路模式切換至上 行鏈路模式時的時:Η & 、 吁的時間與當該下行键路資料之資料訊框之 32 201206219 最後資料樣本到達該RRH時的時間之間的―第二時間差 Td2 ' 其中該時間延遲資料τ進一步包含 ^匕3这第二時間差Td2 » 之同步方法,其中該時 14.如申請專利範圍第12項所述 間長度等於該第一時間差丁们。 其中該時 Td2中之較 15.如申請專利範圍第13項所述之同步方法 間長度等於該第一時間差Tdi及該第二時間差 大者。 16‘如申請專利範圍第其中該時 間長度為當前上行鍵路下行鍵路週期之㈣^固㈣ 中的每一週期的該第二時間i Td2與該第一時間差& 之間的差的平均值與當前T的和, dl n 於1之 17·如申請專利範圍第12項所述之同步方法, RRH進—步包含—下行鍵路單元及―脈衝發生器,、該; 订鏈路單元用於自豸BBU接收該下行鏈路資料财 發Φ 3¾ ra 士人+ 自乂脈衝 轉換t生—下行鏈路脈衝^以用於觸發該隐 〜二以向“動式通訊設備傳輸該下行鏈路資料,測 里田該D/A轉換器開始向該無線通訊設備傳輪 路資料時的時間與當該下行鍵路資料訊框之資 33 201206219 該第一資料樣本到達該RRH時的時間之間的該第一時間 差Tdl的該步驟進—步包含以下步驟: 測量當產生該下行鏈路脈衝TDL時的時間與當該下行鏈 路訊框之該第—資料樣本自該BBU到達該下行鏈路單元 時的時間之間的該第一時間差Tdl。 I8.如申請專利範圍第13項所述之同步方法,其中該 RRH進一步包含—下行鏈路單元及一脈衝發生器,該下 行鏈路單元用於自該BBU接收該下行鏈路資料,該脈衝 發生器用於產生—切換脈衝Ts以用於觸發該無線通訊系 統基地台在下行鏈路模式與上行鍵路模式之間切換測 量當該無線通訊系統基地台自下行鏈路模式切換至上行 鍵路模式時的時間與當該下行料f料之資料訊框之該 最後資料樣本到達該RRH時的時間之間的該第二時間差 Td2的該步驟進一步包含以下步驟: ^當產生該切換脈衝了3時的時間與當該下行鏈路訊框 ^最後㈣樣本自該卿料訂行料以時的時 間之間的該第二時間差Td2。 19.如申請專利範園第 H $至第18項巾之任-項之同 万法’其中該BBU進一步白入 π / « & ± 匕3 一下行鏈路資料處理單 该下行鏈路資料,該計時器用 且傳· 衝以用於觸發訂行鏈路f料處 處A 負针處理卓兀以起始該下行查 34 201206219 路資料處理及傳輸,且該方法進一步包含以下步驟: 基於用於觸發該下行鏈路資料處理單元來起始該下行鍵 路資料處理及傳輸之該時序基頻處理脈衝'及該時間延 遲資料,產生一時間延遲時鐘脈衝以取代用於觸發該下 仃鏈路資料處理單元以起始該下行鏈路資料處理及傳輪 之該時序基頻處理脈衝以便將該下行鏈路資料處理單 凡處理且傳輸該下行鏈路資料之該起始時間前移該時間 長度。 35201206219 VII. Patent application scope: 1. A Remote Radio Header (RRH) for a wireless communication system base station. The remote radio header (RRH) is communicably coupled via a network. To a baseband unit (BBU) of the wireless communication system base, wherein the BBU processes and transmits downlink data to the RRH, and the remote radio header (RRH) further includes a time delay measurement a unit for measuring a time delay of the downlink data from the BBU to the rrh; a time delay notification unit for notifying the time delay from the RRH to the BBU for measurement by the time delay measurement unit Time delay data, which is a length of time obtained by the BBU processing and the inter-feed forward of transmitting the downlink data based on the inter-day delay data. 2. If you apply for a patent scope! The remote radio header (RRH) of the second step includes a digital analogy (D/A) converter for transmitting the downlink data to a wireless communication device, wherein the delay measurement unit includes : XB frame header time delay measurement component, which uses (10) quantity ^ D (4) to change the time when the subscriber starts to transmit the subscription chain to the wireless communication device and the first data of the data frame of the downlink data A first time difference 'I between the times of the RRH, wherein the time delay data includes the first time difference τ. 28 201206219 3. The remote radio header (RRH) as described in claim 2 (4) The remote radio header (rrh) is located in the middle of the wireless communication (four) unified base station to switch between the downlink key mode and the uplink key mode, and the time delay measurement unit further includes: a frame label The tail time delay test is used to measure the time when the base station of the wireless communication system switches from the T-line mode to the uplink mode and the last data of the data frame of the downlink dataThe second time difference between the time when the RRH arrives; wherein the time delay is left over> The fish jW > The late Gonggong-step includes the second time difference Td2. 4·如 " Patent Range 2 The remote radio head (RH) of the item, wherein the length of time is equal to the first time difference l. 5. The far end (RRH) as described in item 3 of the claim area, wherein the line The larger of the time difference of the second time difference - the time - the sixth. As described in the third paragraph of the patent application scope (RRH), where the time ..., the line electric standard and the γ field are up key 逦The first of the period... the nucleus of each period in the expiration: the average of the difference between the time and the _time difference Td2 and .Tdl where N is an integer greater than 1. The sum of cn, 29 201206219 7· The remote radio header (RRH) of claim 2, further comprising a downlink unit and a pulse generator, the downlink unit configured to receive downlink data from the BBU, A pulse generator is used to generate a -downlink pulse Td"x for triggering the D/A converter to communicate with the mobile Transmitting downlink data, wherein the frame header time delay measuring component further comprises: measuring time when the downlink pulse Tdl is generated and when the first data sample of the downlink signal frame A component of the first time difference Tdi between the times when the BBU reaches the downlink key unit. 8. The remote radio header (10) H) of claim 3, wherein the step further comprises a downlink unit and a pulse generator, the downlink unit being configured to receive a downlink from the clear Data, the pulse generation is used to generate a switching pulse Ts for triggering the wireless communication system base station to switch between the downlink mode and the uplink mode mode, wherein the frame tail time delay is measured The step includes: measuring the second time difference Td2 between when the switching pulse Ts is issued and when the last data sample of the downlink information frame arrives at the downlink key unit from the Qing member. 9. A wireless itd base station comprising a baseband unit (b and a remote radio standard for use in a wireless communication system base station, as in any one of claims [...] to [8] a rr, the remote radio header is communicably connected via a network, wherein the 30 201206219 BBU further comprises: a synchronization unit for processing the BBU and transmitting the downlink data The start time advances the length of time obtained based on the time delay data notified by the time delay notification unit. 1 〇 The wireless communication system base station according to claim 9 of the patent application, wherein the BBU further includes a line a link data processing unit for processing and transmitting the downlink data, the timer for generating a __timed baseband processing pulse for triggering the downlink data processing a unit to start the downlink data processing and transmitting I; and the same unit m includes a timing correction unit, and the timing correction unit is configured to use the downlink data processing unit for triggering The time base frequency processing pulse processed and transmitted by the τ line link (4), and the time delay, generating a time delay clock pulse instead of triggering the downlink data processing unit to start the downlink The time base processing pulse of the data processing and transmission: the start time of processing and transmitting the downlink data of the downlink data processing unit is advanced by the length of time. A data transmission synchronization method for a communication system base station's wireless communication system base station includes a remote radio header (RRH) and a base frequency unit (BBU) communicably connected via a network, wherein the BBU system To process and transmit the downlink data to the RRH, the synchronization method includes the following steps: 31 201206219 measuring the time delay of the downlink data from the stomach BBU to the rrh; from the coffee to the deletion notification about the measurement time Delayed time delay data, wherein the time delay data is used to advance the start time of processing and transmitting the downlink route data based on the notification time A time length obtained by delaying the data. 12. The synchronization method of claim 5, wherein the RRH further comprises a digital analogy for transmitting the downlink data to a "wireless communication device" ( The D/A converter, and measuring the downlink data from the BBU to the remote 々.ηη, the step of delaying the RRH, the step comprising the following steps: measuring when the D/A converter # — # &amp t The first time difference Tdi between the time when the downlink link data is transmitted to the wireless communication device and the time when the data sample of the downlink (4) resource data frame arrives at The time delay data includes the first time difference Tdi. u. For example, please refer to the synchronization method described in Item 12, wherein the wireless communication system base station switches between the lower wire and the upper (four) mode and the measurement is performed. The step of deleting the time delay of the downlink data line further includes the following steps: (4) measuring when the base station of the wireless communication system switches from the downlink mode to the uplink mode: Η & When the data frame of the downlink data is 32 201206219, the second time difference Td2 between the time when the last data sample reaches the RRH, wherein the time delay data τ further includes the synchronization of the second time difference Td2 » The method, wherein the length of time as described in item 12 of the patent application is equal to the first time difference. Wherein the ratio of the Td2 is 15. The length of the synchronization method as described in claim 13 of the patent application is equal to the first time difference Tdi and the second time difference. 16', as in the scope of the patent application, wherein the length of time is the average of the difference between the second time i Td2 of each cycle in the current uplink keydown cycle period and the first time difference & The sum of the value and the current T, dl n is 1 to 17. The synchronization method as described in claim 12 of the patent scope, the RRH step-by-step includes the downlink link unit and the "pulse generator", and the link unit Used to receive the downlink data from the BBU, and to convert the t-transmission pulse to the second transmission to transmit the downlink to the "mobile communication device". The data of the road, between the time when the D/A converter starts to transmit the roundabout data to the wireless communication device and the time when the downlink data information frame 33 201206219 the first data sample arrives at the RRH The step of the first time difference Tdl further comprises the steps of: measuring the time when the downlink pulse TDL is generated and when the first data item of the downlink frame arrives at the downlink from the BBU The time between the time of the unit The first time difference Tdl. The synchronization method of claim 13, wherein the RRH further comprises a downlink unit and a pulse generator, the downlink unit is configured to receive the downlink from the BBU Road data, the pulse generator is used to generate a switching pulse Ts for triggering the wireless communication system base station to switch between downlink mode and uplink mode mode. When the wireless communication system base station switches from the downlink mode The step of the second time difference Td2 between the time to the uplink mode and the time when the last data sample of the data frame of the downstream material reaches the RRH further includes the following steps: The second time difference Td2 between the time when the pulse is switched by 3 and the time when the downlink frame (the last) (four) sample is ordered from the material. 19. The 18th item of the towel - the same as the law of the law, where the BBU further whiten into π / « & ± 匕 3 a downlink data processing list of the downlink data, the timer used and transmitted At the triggering of the subscribed link f, a negative needle handles the Zhuoyu to initiate the downlink check 34 201206219 data processing and transmission, and the method further comprises the following steps: starting from triggering the downlink data processing unit The timing baseband processing pulse 'and the time delay data from the downlink key data processing and transmission, generating a time delay clock pulse instead of triggering the downlink link data processing unit to start the downlink data The timing baseband processing pulse of the processing and routing is performed to advance the downlink data processing and the start time of transmitting the downlink data by the length of time. 35
TW099125456A 2010-07-30 2010-07-30 Wireless communication system base station and data transmission synchronization method thereof TWI498024B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099125456A TWI498024B (en) 2010-07-30 2010-07-30 Wireless communication system base station and data transmission synchronization method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099125456A TWI498024B (en) 2010-07-30 2010-07-30 Wireless communication system base station and data transmission synchronization method thereof

Publications (2)

Publication Number Publication Date
TW201206219A true TW201206219A (en) 2012-02-01
TWI498024B TWI498024B (en) 2015-08-21

Family

ID=46761870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099125456A TWI498024B (en) 2010-07-30 2010-07-30 Wireless communication system base station and data transmission synchronization method thereof

Country Status (1)

Country Link
TW (1) TWI498024B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610508A (en) * 2014-11-24 2016-05-25 普天信息技术有限公司 Method and device for downlink optical fiber delay compensation for LTE (Long Term Evolution) cell merging
TWI633798B (en) * 2016-02-12 2018-08-21 台揚科技股份有限公司 Method for radio source scheduling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11503515B2 (en) * 2019-05-01 2022-11-15 Institute For Information Industry User equipment and base station for mobile communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385933B2 (en) * 2000-03-17 2008-06-10 British Telecommunications Public Limited Company Synchronised data delivery
US20040057543A1 (en) * 2002-09-24 2004-03-25 Arie Huijgen Synchronizing radio units in a main-remote radio base station and in a hybrid radio base station
CN101146257B (en) * 2007-10-16 2011-08-31 深圳国人通信有限公司 Method and system for improving synchronization precision of data transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610508A (en) * 2014-11-24 2016-05-25 普天信息技术有限公司 Method and device for downlink optical fiber delay compensation for LTE (Long Term Evolution) cell merging
CN105610508B (en) * 2014-11-24 2019-03-15 普天信息技术有限公司 The downlink optical fiber delay compensation method and device of LTE cell combining
TWI633798B (en) * 2016-02-12 2018-08-21 台揚科技股份有限公司 Method for radio source scheduling
US10231256B2 (en) 2016-02-12 2019-03-12 Microelectronics Technology Inc. Method for radio source scheduling

Also Published As

Publication number Publication date
TWI498024B (en) 2015-08-21

Similar Documents

Publication Publication Date Title
JP5593388B2 (en) Wireless communication system
CN102859941B (en) Renewal to the accumulative residence time being grouped in packet exchange communication network
CN102244603B (en) Method, equipment and system for transmitting message bearing time
JP4981073B2 (en) Transmission of synchronization signals in packet networks
US9219540B2 (en) Method and system for phase compensation in multi-path communication device
CN110324889A (en) Clock synchronizing method, communication device and communication equipment
US10444788B2 (en) Device, system, and method for synchronizing time partition windows
CN102088397B (en) Communication network element and clock frequency correction system and method
WO2016078349A1 (en) Data transmission method, communication device, and communication system
US11503557B2 (en) Time synchronization in integrated 5G wireless and time-sensitive networking systems
CN109842455A (en) Communication processing method and device
US9019949B2 (en) Adapter, base band processing unit and base station system
WO2015109819A1 (en) Time slot synchronization training method for optical burst transport network node, node device and network
MX2022003747A (en) Packet forwarding method, device and system.
TW201206219A (en) Wireless communication system base station and data transmission synchronization method thereof
CN104270218B (en) Frequency calibrating method
CN103533630B (en) Eat dishes without rice or wine method for synchronizing time and system, wireless device, radio equipment controller
CN104410894B (en) A kind of method and apparatus of wireless environment document-video in-pace
WO2010102565A1 (en) Method, apparatus and system for time synchronization
CN106791908B (en) A kind of live video stream storage method for supporting cloud platform to use double buffering
CN103889044B (en) A kind of method and apparatus of air interface synchronization
Freire et al. Analysis of controlled packet departure to support Ethernet fronthaul synchronization via PTP
JP6049535B2 (en) Wireless communication system
EP1630979A1 (en) Method and system for updating clocks in components of a communications network
CN109462555B (en) Mixed priority data transmission scheduling method and device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees