TW201204641A - Water treatment device and method - Google Patents

Water treatment device and method Download PDF

Info

Publication number
TW201204641A
TW201204641A TW099125178A TW99125178A TW201204641A TW 201204641 A TW201204641 A TW 201204641A TW 099125178 A TW099125178 A TW 099125178A TW 99125178 A TW99125178 A TW 99125178A TW 201204641 A TW201204641 A TW 201204641A
Authority
TW
Taiwan
Prior art keywords
unit
stream
conduit
electrical separation
precipitation
Prior art date
Application number
TW099125178A
Other languages
Chinese (zh)
Other versions
TWI527764B (en
Inventor
Ri-Hua Xiong
Wei Cai
Andrew Jon Zaske
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Priority to TW099125178A priority Critical patent/TWI527764B/en
Publication of TW201204641A publication Critical patent/TW201204641A/en
Application granted granted Critical
Publication of TWI527764B publication Critical patent/TWI527764B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A water treatment device (100) comprises: a membrane desalination unit (102); a first conduit (104) transporting a first stream of feed water (106) to the membrane desalination unit; a second conduit (108) transporting a first stream of product water (110) of lower salinity than the first stream of feed water out of the membrane desalination unit; an electrical separation unit (112); a third conduit (114) transporting a first stream of reject water (116) of higher salinity than the first stream of feed water from the membrane desalination unit to the electrical separation unit; a fourth conduit (118) transporting a second stream of product water (120) of lower salinity than the first stream of reject water out from the electrical separation unit; a precipitation unit (122); a fifth conduit (124) transporting a second stream of reject water (126) of higher salinity than the first stream of reject water from the electrical separation unit to the precipitation unit; a sixth conduit (128) transporting a second stream of feed water (130) of lower salinity than the second stream of reject water from the precipitation unit to the electrical separation device; a seventh conduit (132) releasing a discharge stream of water (134); and a chemical injection unit (136) in communication with at least one of the electrical separation device and the precipitation unit. Associated method is also provided.

Description

201204641 六、發明說明: 【發明所屬之技術領域】 本發明大體上係關於液體處理裝置及方法。更特定言 之’本發明係關於水處理裝置及方法。 【先前技術】 由於產品水品質之可靠性,故薄膜脫鹽裝置(例如奈米 過濾薄膜裝置或逆滲透薄膜裝置)係用於飲料工廠中以獲 得產品水。然而,由於薄膜脫鹽裝置具有於薄膜上之結垢 趨勢之問題,故一般薄膜脫鹽裝置之產品水回收率係在約 50%至約90%之範圍内。進水之剩餘1〇〜5〇%通常係以廢水 排出。每天全世界的飲料工廠消耗大量可用水,由此需要 大量水源由薄膜脫鹽裝置處理並排出大量廢水,其導致高 成本及大量廢物且並非所期望的。 此外’人類及幾乎全世界之每一工葉亦需求愈來愈多的 可用水且無法負擔排出更多廢水。 因此,需要開發一種新穎水處理裝置及方法。 【發明内容】 在一態樣中,提供一種水處理裝置,其包括:—薄膜脫 鹽單先;一第-導管’其與該薄膜脫鹽單元相連及經組態 以將第一進水流運輸至該薄膜脫鹽單元;一第二導管,其 與該薄膜脫鹽單元相連且經組態以將較該第—進水流鹽度 低的第一產品水流從該薄膜脫鹽單元運輸出;—電分離單 X ;:第三導管’其與該薄膜脫鹽單元及該電分離單元相 連且經組態以將較該第一進水流鹽度高的第一廢水流自該 149889.doc 201204641 薄膜脫鹽單元運輸至該電分離單元;一第四導管,其與該 電分離單元相連且經組態以將較該第一廢水流鹽度低的第 二產品水流從該電分離單元運輸出;一沉澱單元;一第五 導管’其與該沉澱單元及該電分離單元相連且經組態以將 較該第一廢水流鹽度高之第二廢水流自該電分離單元運輸 ‘ 至該沉澱單元;一第六導管,其與該沉澱單元及該電分離 單元相連且經組態以將較該第二廢水流鹽度低的第二進水 流自該沉澱單元運輸至該電分離單元;一第七導管,其與 該沉澱單元相連且經組態以釋放出一排放水流;及一化學 注入單元’其與該電分離單元及該沉澱單元中之至少一者 相連。 在另一態樣中,本發明提供一種方法。該方法包括:提 供一薄膜脫鹽單元;提供與該薄膜脫鹽單元相連並經組態 以將第一進水流運輸至該薄膜脫鹽單元的一第一導管;提 供與該薄膜脫鹽單元相連並經組態以將較該第一進水流鹽 度低的第一產品水流從該薄膜脫鹽單元運輸出的一第二導 官,提供一電分離單元;提供與該薄膜脫鹽單元及該電分 離單元相連並經組態以將較該第一進水流鹽度高的第一廢 " 水流自該薄膜脫鹽單元運輪至該電分離單元的一第三導 - 官,提供與該電分離單元相連並經組態以將較該第一廢水 流鹽度低的第二產品水流從該電分離單元運輸出的一第四 導管,提供一沉澱單元;提供與該沉澱單元及該電分離單 元相連並經組態以將較該第一廢水流鹽度高之第二廢水流 自該電分離單元運輸至該沉澱單元的一第五導管;提供與 149889.doc 201204641 該沉澱單元及該電分離單元相連並經組態以將較該第二廢 水流鹽度低的第二進水流自該沉澱單元運輸至該電分離單 元的一第六導管;提供與該沉澱單元相連並經組態以釋放 出一排放水流的一第七導管;及提供與該電分離單元及該 沉澱單元中之至少一者相連的一化學注入單元。 連同附圖’自本發明較佳實施例的以下詳細描述可更佳 地理解此等及其他優點及特徵。 【實施方式】 以下參照附圖將描述本發明之較佳實施例。在以下描述 中,不詳細描述已知功能或結構以避免於不必要細節處混 淆本發明。 如遍及技術說明書與申請專利範圍使用的近似片語可用 於修飾允許改變而不導致與此相關的基本功能的變化的任 何數量表示。因此,由一術語或諸術語(諸如「約」或 「大體上」)修飾之數值不限於指定之精確數值。在一些 實例中’近似片語可對應於用於量測數值的儀器之精確 度。此外’如本文使用之後綴「(S)」通常意指包括其修飾 之術語的單數及複數兩者,由此包括一或多個彼術語。 圖1係根據本發明之一實施例的一水處理裝置1 〇〇的概要 圖。該水處理裝置1 00包括:一薄膜脫鹽單元1 〇2 ;與該薄 膜脫鹽單元相連並經組態以將第一進水流106運輸至該薄 膜脫鹽單元之一第一導管104;與該薄膜脫鹽單元相連並 經組態以將較該第一進水流鹽度低的第一產品水流丨1()從 該薄膜脫鹽單元運輸出的一第二導管108; —電分離單元 I49889.doc 201204641 112 ;與該薄膜脫鹽單元及該電分離單元相連並經組態以 將較該第一進水流鹽度高的第一廢水流丨丨6自該薄膜脫鹽 單元運輸至該電分離單元的一第三導管114;與該薄膜脫 鹽單元相連並經組態以將較該第一廢水流鹽度低的第二產 品水流120從該電分離早元運輸出的一第四導管118 ; 一沉 殿卓元12 2 ’與§玄沉殿早元及該電分離單元相連並經組態 以將較該第一廢水流鹽度高之第二廢水流丨26自該電分離 單元運輸至該沉殿單元的一第五導管124 ;與該沉澱單元 及該電分離單元相連並經組態以將較該第二廢水流鹽度低 的第二進水流130自該沉澱單元運輸至該電分離單元的一 第六導管128 ;與該沉澱單元相連並經組態以釋放出一排 放水流134的一第七導管132 ;及與該電分離單元及該沉澱 單元中之至少一者相連的一化學注入單元136。 在所述之實施例中,第四導管11 8係與第一導管1 〇4相連 並經組態以運輸第二產品水流120以與第一進水流1〇6混 合。薄膜脫鹽單元102可包括一奈米過濾薄獏裝置,一逆 滲透薄膜裝置或其組合。一般薄膜脫鹽装置之產品水回收 率係在約50%至約90%之範圍内。電分離單元112可包括一 倒極式電透析(EDR)脫鹽裝置’一超電容器脫鹽(SCD)裝置 或其組合。EDR或SCD另加沉澱單元之水回收率一般係在 約80%至約99%之範圍内。因此,水處理裝置1〇〇之總水回 收率係在約90%至約99.9%的範圍内且第一產品水流11 〇之 體積流率係在第一進水流106體積流率之約90%至約99.9% 的範圍内。就如需要高品質水的飲料工廠之應用而言,水 149889.doc 201204641 處理裝置100產生更多可用產品水及排放少量廢水。 在一些實施例中,第四導管118可不與第一導管104相連 且經組態以將第二產品水流120運輸至另一水處理裝置(未 顯示)中或直接運出。以此方式,水處理裝置100之產品水 係以兩分離流110、120之形式。總水回收率仍很高。 在一些實例中,由於藉由電分離單元與沉澱單元處理的 水之高濃縮,故一些所溶解之鹼(諸如重碳酸鹽)將變為不 可溶解或很難溶解的鹽(例如碳酸鈣(CaC〇3))以在電分離單 元中積聚/積垢。在一些實施例中,化學注入單元136包括 提供鹽酸或硫酸的-酸注入單元以藉由令鹽酸或硫酸與重 碳酸鹽反應而降低鹼度。 化學注入單元136可與電分離單元及/或沉澱單元直接相 連,或經由第三導管114及/或第五導管124相連。 在所述之實例中,水處理裝置1〇〇包括與第六導管128相 連的一過濾裝置138以防止顆粒(未顯示,若有)進入電分離 單元112。過濾裝置138可包括一筒式過濾器。 在另一態樣中,提供一種方法。該方法包括:提供一薄 膜脫鹽單元102 ;提供與該薄膜脫鹽單元相連並經組態以 將第一進水流106運輸至該薄膜脫鹽單元的一第一導管 1〇4 ;提供與該薄膜脫鹽單元相連並經組態以將較該第一 進水流鹽度低的第一產品水流丨丨〇從該薄膜脫鹽單元輸送 離開的一第二導管108 ;提供一電分離單元112 ;提供與該 薄膜脫鹽單元及該電分離單元相連並經組態以將較該第一 進水流鹽度高的第一廢水流116自該薄膜脫鹽單元運輸至 149889.doc 201204641 該電分離單元的一第三導管114;提供與該電分離單元相 連並經組態以將較該第一廢水流鹽度低的第二產品水流 120從該電分離單元輸送出的一第四導管丨丨^;提供一沉澱 單元122 ;提供與該沉澱單元及該電分離單元相連並經組 態以將較該第一廢水流鹽度高之第二廢水流126自該電分 離單元運輸至該沉澱單元的一第五導管124 ;提供與該沉 澱單元及該電分離單元相連並經組態以將較該第二廢水流 鹽度低的第二進水流130自該沉澱單元運輸至該電分離單 元的一第六導官128 ;提供與該沉殺單元相連並經組態以 釋放出一排放水流134的一第七導管132 ;及提供與該電分 離單元及該沉澱單元中之至少一者相連的一化學注入單元 就某些配置而言,電分離單元可係SCD裝置。術語 SCD裝置」通常可指用於海水淡化或其他微咸水去離子 至家用及工業用途的可201204641 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to a liquid processing apparatus and method. More specifically, the present invention relates to a water treatment apparatus and method. [Prior Art] Due to the reliability of the product water quality, a film desalination device (e.g., a nanofiltration membrane device or a reverse osmosis membrane device) is used in a beverage factory to obtain product water. However, since the film desalination apparatus has a problem of fouling tendency on the film, the product water recovery rate of the general film desalination apparatus is in the range of about 50% to about 90%. The remaining 1〇~5〇% of the influent water is usually discharged as waste water. Every day, beverage factories around the world consume a large amount of usable water, thereby requiring a large amount of water to be treated by the membrane desalination unit and discharging a large amount of waste water, which results in high cost and large amount of waste and is not desirable. In addition, humans and almost every blade in the world are also in need of more water and cannot afford to discharge more wastewater. Therefore, there is a need to develop a novel water treatment apparatus and method. SUMMARY OF THE INVENTION In one aspect, a water treatment apparatus is provided comprising: a membrane desalination unit; a first conduit coupled to the membrane desalination unit and configured to transport the first influent stream to the a film desalination unit; a second conduit connected to the film desalination unit and configured to transport a first product water stream having a lower salinity than the first influent stream from the film desalination unit; - electroseparation single X; a third conduit 'connected to the membrane desalination unit and the electrical separation unit and configured to transport a first wastewater stream having a higher salinity than the first influent stream from the 149889.doc 201204641 membrane desalination unit to the electricity a separation unit; a fourth conduit connected to the electrical separation unit and configured to transport a second product water stream having a lower salinity than the first wastewater stream from the electrical separation unit; a precipitation unit; a conduit 'connected to the precipitation unit and the electrical separation unit and configured to transport a second wastewater stream having a higher salinity than the first wastewater stream from the electrical separation unit to the precipitation unit; a sixth conduit, And the precipitate The unit is coupled to the electrical separation unit and configured to transport a second incoming stream having a lower salinity than the second wastewater stream from the precipitation unit to the electrical separation unit; a seventh conduit coupled to the precipitation unit and Configured to release a discharge stream; and a chemical injection unit 'connected to at least one of the electrical separation unit and the precipitation unit. In another aspect, the invention provides a method. The method includes: providing a film desalination unit; providing a first conduit connected to the film desalination unit and configured to transport a first influent stream to the membrane desalination unit; providing connection to the membrane desalination unit and configured Providing a second separation unit for transporting a first product water stream having a lower salinity than the first influent stream from the membrane desalination unit; providing an electrical separation unit; providing a connection with the membrane desalination unit and the electrical separation unit Configuring to transport a first waste " water stream having a higher salinity than the first influent stream from the membrane desalination unit to a third conductor of the electrical separation unit, to provide connection to the electrical separation unit and to Providing a fourth unit conduit for transporting a second product water stream having a lower salinity than the first wastewater stream from the electrical separation unit, providing a precipitation unit; providing and configuring the precipitation unit and the electrical separation unit And transporting a second wastewater stream having a higher salinity than the first wastewater stream from the electrical separation unit to a fifth conduit of the precipitation unit; providing the precipitation unit and the electrical separation unit with 149889.doc 201204641 And configured to transport a second incoming stream having a lower salinity than the second wastewater stream from the precipitation unit to a sixth conduit of the electrical separation unit; providing a connection to the precipitation unit and configured to release a seventh conduit for discharging the water stream; and a chemical injection unit coupled to at least one of the electrical separation unit and the precipitation unit. These and other advantages and features will be better understood from the following detailed description of the preferred embodiments. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, well-known functions or structures are not described in detail to avoid obscuring the invention in unnecessary detail. Approximate phrases as used throughout the specification and claims can be used to modify any quantitative representation that is a change that does not. Therefore, a numerical value modified by a term or term (such as "about" or "substantially") is not limited to the precise value specified. In some instances the 'approximate phrase' may correspond to the accuracy of the instrument used to measure the value. In addition, the suffix "(S)" as used herein is meant to include both the singular and the plural, and the singular and plural terms. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of a water treatment apparatus 1 according to an embodiment of the present invention. The water treatment device 100 includes: a membrane desalination unit 1 〇 2; coupled to the membrane desalination unit and configured to transport the first feed stream 106 to one of the membrane desalination units, a first conduit 104; desalting the membrane a second conduit 108 that is connected and configured to transport a first product water stream 1 () having a lower salinity than the first influent stream from the membrane desalination unit; - an electrical separation unit I49889.doc 201204641 112; Connecting to the film desalination unit and the electrical separation unit and configured to transport a first wastewater stream 6 having a higher salinity than the first influent stream from the membrane desalination unit to a third conduit of the electrical separation unit a fourth conduit 118 connected to the membrane desalination unit and configured to transport a second product water stream 120 having a lower salinity than the first wastewater stream from the electrical separation element; 2' is connected to the XX Xuan Shen Dian and the electrical separation unit and configured to transport a second wastewater stream 26 having a higher salinity than the first wastewater stream from the electrical separation unit to the sink unit a fifth conduit 124; with the precipitation unit and the electrical separation unit And configured to transport a second incoming stream 130 having a lower salinity than the second wastewater stream from the precipitation unit to a sixth conduit 128 of the electrical separation unit; connected to the precipitation unit and configured to release a seventh conduit 132 that discharges a water stream 134; and a chemical injection unit 136 that is coupled to at least one of the electrical separation unit and the precipitation unit. In the illustrated embodiment, the fourth conduit 118 is coupled to the first conduit 1 〇4 and configured to transport the second product water stream 120 for mixing with the first incoming water stream 〇6. The film desalination unit 102 can include a nanofiltration membrane unit, a reverse osmosis membrane unit, or a combination thereof. The product water recovery of a typical film desalination apparatus is in the range of from about 50% to about 90%. The electrical separation unit 112 can include an inverted electrodialysis (EDR) desalination device' an ultracapacitor desalination (SCD) device or a combination thereof. The water recovery of the EDR or SCD plus precipitation unit is generally in the range of from about 80% to about 99%. Therefore, the total water recovery rate of the water treatment device 1 is in the range of about 90% to about 99.9% and the volume flow rate of the first product water stream 11 系 is about 90% of the volume flow rate of the first influent stream 106. To the range of approximately 99.9%. In applications such as beverage factories that require high quality water, the water treatment unit 100 produces more available product water and emits a small amount of wastewater. In some embodiments, the fourth conduit 118 may not be coupled to the first conduit 104 and configured to transport the second product water stream 120 to another water treatment device (not shown) or to be shipped directly. In this manner, the product water of the water treatment device 100 is in the form of two separate streams 110,120. Total water recovery is still high. In some instances, some of the dissolved base (such as bicarbonate) will become insoluble or difficult to dissolve due to the high concentration of water treated by the electrolysis unit and the precipitation unit (eg, calcium carbonate (CaC) 〇 3)) to accumulate/scale in the electrical separation unit. In some embodiments, chemical injection unit 136 includes an acid injection unit that provides hydrochloric acid or sulfuric acid to reduce alkalinity by reacting hydrochloric acid or sulfuric acid with bicarbonate. The chemical injection unit 136 can be directly connected to the electrical separation unit and/or the precipitation unit or via the third conduit 114 and/or the fifth conduit 124. In the depicted example, the water treatment device 1A includes a filtration device 138 coupled to the sixth conduit 128 to prevent particles (not shown, if any) from entering the electrical separation unit 112. Filter device 138 can include a cartridge filter. In another aspect, a method is provided. The method includes: providing a film desalination unit 102; providing a first conduit 1〇 connected to the film desalination unit and configured to transport the first feed stream 106 to the film desalination unit; providing a desalination unit with the film a second conduit 108 connected and configured to transport a first product stream having a lower salinity than the first influent stream from the membrane desalination unit; providing an electrical separation unit 112; providing desalination with the membrane The unit and the electrical separation unit are connected and configured to transport a first wastewater stream 116 having a higher salinity than the first influent stream from the membrane desalination unit to a third conduit 114 of the electrical separation unit 149889.doc 201204641; Providing a fourth conduit 相连 connected to the electrical separation unit and configured to deliver a second product water stream 120 having a lower salinity than the first wastewater stream from the electrical separation unit; providing a precipitation unit 122; Providing a fifth conduit 124 connected to the precipitation unit and the electrical separation unit and configured to transport a second wastewater stream 126 having a higher salinity than the first wastewater stream from the electrical separation unit to the precipitation unit; With the And a second separation stream 130 having a lower salinity than the second wastewater stream is transported from the precipitation unit to a sixth pilot 128 of the electrical separation unit; a seventh conduit 132 connected to the culling unit and configured to release a discharge stream 134; and a chemical injection unit coupled to at least one of the electrical separation unit and the precipitation unit, in some configurations The electrical separation unit can be an SCD device. The term SCD device can generally refer to the use of seawater desalination or other brackish water deionization for domestic and industrial use.

故電極可分別用作陽極與陰極。 149889.doc 化以將鹽或其他離子化雜質之量降至家用及 容許含量的超電容器。在某些應用中,超電 可包括一或多個超電容器脫鹽單元(未顯示) 非限制實例中,每一超電容器脫鹽單元可至 201204641 在超電容器脫鹽裝置112之充電狀態期間,自薄膜脫鹽 裝置ι〇2之輸入流116流經一閥(未顯示)並進入用於脫鹽之 SCD裝置中。在此狀態中,一輸入流13〇至scd裝置m的 流動路徑係藉由閥(未顯示)閉合。來自電源之正電荷與負 電荷分別堆積在陽極⑷與陰極⑷表面上並吸引來自離子 化輸入流116的陰離子與陽離子,此導致其等分別地吸附 於陽極與陰極之表面上。由於電荷在陽極⑷與陰極〇)上 積累’故一排出流(諸如自SCD裝置112流經閥(未顯示)之 輸出流120)可具有相較輸入流116更低之鹽度(鹽或其他離 子雜質之濃度)。 在超電容器脫鹽裝置112之放電狀態期間,經吸附之陰 離子與陽離子分別自陽極⑷與陰極⑷表面解離。輸入流 13〇係藉由泵(未顯示)自沉澱單元ι22泵送,並流經過渡器 (未顯示)及閥(未顯示)以進入SCD裝置112以自此攜載離子 (陰離子與陽離子)。自SCD裝置112流出並流經閥(未顯示) 的排出流126具有較輸入流1 3 〇更高之鹽度(鹽或其他離子 雜質的濃度)。在此狀態中,輸入流116至SCD裝置112的流 動路從係藉由閥(未顯示)閉合。在某些應用中,可不提供 過濾器。 , SCD裝置放電完全後,將SCD裝置置於充電狀態一段時 間以籌備隨後之放電。亦即,SCD裝置之充電及放電係交 替進行以分別處理輸入流116與13 0。 當水於放電狀態之SCD單元及沉澱單元中循環時,水中 鹽或其他離子雜質的濃度會增加以在沉澱單元丨22中產生 149889.doc 201204641 沉澱。直徑大於指定直徑的沉澱顆粒(固體)可藉由重力沉 降於沉澱單元122之下部。直徑小於指定直徑的其他沉殿 顆粒可分散於水中。 當流134之沉澱率加上排料率等於自輸入流116之帶電物 移除率時,其中該等速率係—或多次充電_放電循環期間 的平均數,在SCD單元與沉澱單元間循環之流的飽和度及 過飽和度可穩定且可建立動態平衡。 在某些實例中’可利用以放電狀態釋放的能量來驅動電 袭置(未顯示),諸如電燈泡或可利用諸如雙向DC·%轉換 器之能量回收單元而予以回收。 在興堆疊在一起之SCD單元相 -V rp-j Ά γ , 電容器脫鹽裝置可包括—對電極、附接於各自電極之一 龍電器、置於該對電極間的_或多個雙極電極、 在一些實施例中,集電器可組態為-平板 母一對相鄰電極間的複數個間隔物用於以充電狀態處理第 廢水流m及以放電狀態處理第二進水流⑽。每 電極具有由離子不可滲透層分隔之正面及負面。- 落或-薄片且由金屬或金屬合金形成。網、-欽、姑、錶或姥。金屬合金可例如包括不鐘:可例如包括 施例中,集電器可包括 。在其他實 ^枯石墨或塑膠材料, 烯之聚烯烴。在竿此廂 可包括聚乙 或金屬顆粒混合以達到特定導電級別。^電性兔黑 電極及/或雙極電極可包括可導 料,且可具有尺寸小及表面積大的顆粒。在導電材 二男例中, 149889.doc 201204641 導電材料可包括-或多種碳材料。碳材料之非 括活性碳顆粒、多孔碳顆粒、碳纖維、碳氣凝膠、= 穩相碳微珠或其組合m實财,導電材料 導性複合物,諸如猛或鐵或兩者之氧化物或鈦、錯 鎢之碳化物或其組合。 ’、 另外,間隔物可包括用以分隔電極對之任何離子可渗 ,、不導電材料,包含薄膜及多孔及無孔材料。在非限^ 實例中’間隔物可具有或自身可經分隔以形成流動通道, 電極對間用於處理之液體流經該流動通道。 在某些實例中’電極、集電器及/或雙極電極可呈彼此 平行放置以形成堆4結構的平板之形式。在其他實例中, 電極、集電器及/或雙極電極可具有各種形狀,諸如一薄 片、-塊體或一圓柱體。此外’電極、集電器及/或雙極 電極可以變化組態佈置。例如,電極、集電器及/或雙極 電極可以其間之螺旋及連續間隔共心放置。 就某二配置而5 ’電分離單元可係倒極式電透析(edr) 裝置術》。EDR」可指示利用離子交換薄膜以自水或其 他流體移除離子或帶電物之電化學分離方法。 如所知’在一些非限制實例中,EDR裝置包括經組態以 分別用作-陽極與-陰極之—對電極。複數個交替陰離子 可滲透薄膜與陽離子可滲透薄膜係置於陽極與陰極之間以 於其間形成複數個交替之稀釋通道及濃縮通道。陰離子可 渗透薄膜(s)係、經組態以可通過陰離子。陽離子可滲透薄膜 (s)係經組態以可通過陽離子。此外,EDR裝置可進一步包 149889.doc 201204641 鄰薄膜間的複數個間 括置於每一對薄膜間及置於電極與相 隔物。 因此,當將電流施加於EDR裝置112時,諸如流ιΐ6與 叫如圖!所示)之水分料經各自交替之稀釋及濃縮通 道。在稀釋通道中,離子化第—流116。第一流ιΐ6中之陽 離子朝陰極移動通過陽離子可滲透薄膜以進入相鄰通道 中。陰離子朝陽極移動通過陰離子可滲透薄膜以進入其他 相鄰通道中。在置於-稀釋通道之每—側的相鄰通道(濃 縮通道)中,儘管電場施加力於離子以朝向各自電極(例如 陰離子被拉向陽極),但陽離子不能移動通過陰離子可滲 透薄膜,且陰離子不能移動通過陽離子可滲透薄膜。因 此,陰離子與陽離子保留並濃縮於濃縮通道中。 結果,第二進水流130流經濃縮通道以將濃縮之陰離子 與陽離子自EDR單元U2協載出以使排出流126可具有較輸 入流130更高的鹽度。液體在EDR單元U2中之循環後鹽 或其他雜質可沉澱於沉澱單元122中。 在一些實例中,例如每隔15至50分鐘,可顛倒EDR裝置 112電極之極性以降低陰離子與陽離子在濃縮通道中的積 垢趨勢。因此,以反極性狀態,自正常極性狀態之稀釋通 道可用作第二流13 0之濃縮通道,而自正常極性狀態的濃 縮通道可用作輸入流116之稀釋通道。 在一些EDR應用中’電極可包括可導熱或不可導熱之導 電材料’且可具有尺寸小及表面積大的顆粒。間隔物可包 括任何離子可滲透、不導電材料’包含薄膜及多孔及無孔 149889.doc -13- 201204641 材料°在非限制實例中,陰離子可滲透薄膜可包括四級胺 基團。陽離子可渗透薄膜可包括確酸基或叛酸基。 在一些實施例中’鹽或其他雜質之飽和度或過飽和度極 冋時才會極快地沉澱。例如,硫酸鈣(CaS〇4)經常達到約 400 /〇之過飽和度,約5分鐘内出現沉澱此不利於沉澱系 統。因此,在某些實例中,可將晶種顆粒(未顯示)加入沉 版單元中以於鹽或其他離子雜質之較低過飽和度下快速沉 殿於其表面上。另外’可提供攪拌裝置及/或泵用以促進 晶種顆粒於沉澱單元中之懸浮。 在非限制實例t,晶種顆粒可具有約1至約500微米範圍 内的平均直徑,且可在沉澱單元之沉澱區域内具有水重量 的約〇·1重量。/〇(wt%)至約3〇 wt%的濃度範圍。在一些實例 中,晶種顆粒可具有約5至約1〇〇微米範圍内之平均直徑, 且在沉澱區域中可具有液體重量之約〇_1 wt%至約20 wt% 又範圍在某些應用中,晶種顆粒可包括引起沉殿的 固體顆粒’包括(但不限於)CaSG4顆粒及其等水合物。Therefore, the electrodes can be used as an anode and a cathode, respectively. 149889.doc to reduce the amount of salt or other ionized impurities to household and acceptable levels of ultracapacitors. In some applications, the superconductor may include one or more ultracapacitor desalination units (not shown). In a non-limiting example, each ultracapacitor desalination unit may be decanted from the membrane during the state of charge of the ultracapacitor desalination device 112 to 201204641. The input stream 116 of device ι 2 flows through a valve (not shown) and into the SCD device for desalination. In this state, the flow path of an input stream 13 to the scd device m is closed by a valve (not shown). Positive and negative charges from the power source are deposited on the surfaces of the anode (4) and cathode (4), respectively, and attract anions and cations from the ionization input stream 116, which causes them to be adsorbed on the surfaces of the anode and cathode, respectively. Since the charge accumulates on the anode (4) and the cathode 〇), an effluent stream (such as the output stream 120 flowing through the valve (not shown) from the SCD device 112) may have a lower salinity (salt or other) than the input stream 116. The concentration of ionic impurities). During the discharge state of the ultracapacitor desalination device 112, the adsorbed anions and cations dissociate from the surface of the anode (4) and the cathode (4), respectively. The input stream 13 is pumped from the precipitation unit ι 22 by a pump (not shown) and passed through a transition (not shown) and a valve (not shown) to enter the SCD device 112 to carry ions (anions and cations) therefrom. . The effluent stream 126 flowing from the SCD device 112 and flowing through a valve (not shown) has a higher salinity (concentration of salt or other ionic impurities) than the input stream 13 〇. In this state, the flow path from input stream 116 to SCD device 112 is closed by a valve (not shown). In some applications, filters are not available. After the SCD device is fully discharged, the SCD device is placed in a state of charge for a period of time to prepare for subsequent discharge. That is, the charging and discharging of the SCD device alternates to process the input streams 116 and 130, respectively. When water circulates in the SCD unit and the precipitation unit in the discharged state, the concentration of salt or other ionic impurities in the water increases to produce a precipitate of 149889.doc 201204641 in the precipitation unit 丨22. Precipitated particles (solids) having a diameter larger than a specified diameter can be deposited by gravity below the lower portion of the precipitation unit 122. Other sinking particles smaller than the specified diameter can be dispersed in the water. When the precipitation rate of stream 134 plus the discharge rate is equal to the charge removal rate from input stream 116, wherein the rate is - or the average of multiple charge-discharge cycles, is cycled between the SCD unit and the precipitation unit. The saturation and supersaturation of the flow can be stabilized and a dynamic equilibrium can be established. In some instances, the energy released in the discharge state can be utilized to drive an electrical attack (not shown), such as an electric bulb or can be recovered using an energy recovery unit such as a bidirectional DC·% converter. In a SCD cell phase-V rp-j Ά γ stacked together, the capacitor desalination device may comprise a counter electrode, a heater attached to the respective electrode, a _ or a plurality of bipolar electrodes disposed between the pair of electrodes In some embodiments, the current collector can be configured to - a plurality of spacers between a pair of adjacent electrodes of the flat mother for processing the wastewater stream m in a charged state and processing the second influent stream (10) in a discharged state. Each electrode has a front side and a negative side separated by an ion impermeable layer. - Drop or - flakes and formed of metal or metal alloy. Net, - Chin, Gu, Table or 姥. The metal alloy may, for example, include a clock: for example, including, in the embodiment, the current collector may include . In other solid graphite or plastic materials, polyolefins. In this case, a mixture of polyethylene or metal particles may be included to achieve a particular level of conductivity. ^Electrical rabbit black The electrode and/or bipolar electrode may comprise a conductive material and may have particles of small size and large surface area. In the case of two male materials, 149889.doc 201204641 conductive materials may include - or a variety of carbon materials. Carbonaceous materials include non-activated carbon particles, porous carbon particles, carbon fibers, carbon aerogels, = stable phase carbon microbeads or combinations thereof, conductive materials, conductive composites, such as fierce or iron or both oxides Or titanium, a tungsten carbide or a combination thereof. In addition, the spacers may include any ion permeable, non-conductive material to separate the electrode pairs, including thin films and porous and non-porous materials. In a non-limiting example, the spacers may or may themselves be separated to form a flow channel through which the liquid for processing between the pair of electrodes flows. In some instances the 'electrodes, current collectors and/or bipolar electrodes may be in the form of a flat plate placed parallel to each other to form a stack 4 structure. In other examples, the electrodes, current collectors, and/or bipolar electrodes can have a variety of shapes, such as a sheet, a block, or a cylinder. Furthermore, the electrodes, current collectors and/or bipolar electrodes can be arranged in varying configurations. For example, the electrodes, current collectors, and/or bipolar electrodes can be placed concentrically with a spiral and continuous spacing therebetween. For a second configuration, the 5' electrical separation unit can be an inverted electrodialysis (edr) device. EDR" may indicate an electrochemical separation method that utilizes an ion exchange membrane to remove ions or charged species from water or other fluids. As is known, in some non-limiting examples, an EDR device includes a counter electrode configured to function as an -anode and a cathode, respectively. A plurality of alternating anion permeable membranes and a cation permeable membrane are disposed between the anode and the cathode to form a plurality of alternating dilution channels and concentration channels therebetween. An anion permeable membrane (s) system, configured to pass an anion. The cationic permeable membrane (s) is configured to pass cations. In addition, the EDR device can further include a plurality of inter-films between 149889.doc 201204641 disposed between each pair of films and placed between the electrodes and the spacers. Therefore, when a current is applied to the EDR device 112, such as the flow ΐ6 and the picture! The moisture stock shown) is alternately diluted and concentrated. In the dilution channel, the first stream 116 is ionized. The cations in the first stream ι 6 move toward the cathode through the cation permeable membrane to enter the adjacent channels. The anions move toward the anode through the anion permeable membrane to enter other adjacent channels. In an adjacent channel (concentration channel) on each side of the -dilution channel, although the electric field exerts a force on the ions toward the respective electrodes (eg, the anion is pulled toward the anode), the cation cannot move through the anion permeable membrane, and The anion cannot move through the cationically permeable membrane. Thus, the anion and cation are retained and concentrated in the concentration channel. As a result, the second influent stream 130 flows through the concentration channel to co-load the concentrated anion and cations from the EDR unit U2 such that the effluent stream 126 can have a higher salinity than the input stream 130. Salt or other impurities may be precipitated in the precipitation unit 122 after circulation of the liquid in the EDR unit U2. In some instances, such as every 15 to 50 minutes, the polarity of the electrodes of the EDR device 112 can be reversed to reduce the tendency of anions and cations to accumulate in the concentration channels. Therefore, in the reverse polarity state, the dilution channel from the normal polarity state can be used as the concentration channel of the second stream 130, and the concentration channel from the normal polarity state can be used as the dilution channel of the input stream 116. In some EDR applications, the electrodes may comprise electrically conductive or non-thermally conductive electrically conductive materials and may have particles of small size and large surface area. The spacers can comprise any ion permeable, electrically non-conductive material' comprising a film and porous and non-porous. 149889.doc -13 - 201204641 Materials. In a non-limiting example, the anionic permeable film can comprise a quaternary amine group. The cationically permeable film can include an acid group or a tick acid group. In some embodiments, the precipitation or saturation of the salt or other impurities is extremely rapid when it is extremely saturated. For example, calcium sulphate (CaS 〇 4) often reaches a supersaturation of about 400 / ,, and precipitation occurs in about 5 minutes, which is not conducive to the precipitation system. Thus, in some instances, seed particles (not shown) may be added to the plated unit to rapidly settle on the surface of the salt or other ionic impurities at a lower supersaturation. Additionally, a stirring device and/or pump may be provided to promote suspension of the seed particles in the precipitation unit. In a non-limiting example t, the seed particles can have an average diameter in the range of from about 1 to about 500 microns and can have a weight of about 〇·1 by weight of the water in the precipitation zone of the precipitation unit. /〇(wt%) to a concentration range of about 3〇 wt%. In some examples, the seed particles may have an average diameter in the range of from about 5 to about 1 〇〇 micron and may have a liquid weight of from about 〇_1 wt% to about 20 wt% in the precipitation zone. In use, the seed particles may include solid particles that cause the sink to include 'but not limited to, CaSG4 particles and their hydrates.

CaS〇4顆粒可具有約1〇微米至約2〇〇微米範圍内的平均直 I在二實例中,CaS〇4晶種顆粒濃度在沉澱區域申可 為液體重$之約G1 wt%至約2 Q wt%,以使離開沉激單元 122的溶液中的CaS〇4濃度可受控於約1〇〇%至約州餘和 範圍内。 應注意晶種顆粒不限於任何特定晶種顆粒且可基於指定 應用而選擇。 實例 149889.doc 14 201204641 以下實例於實施所申請之專利時提供一般技術者額外指 導。因此,此實例不如隨附申請專利範圍所界定限制本發 明。 利用奈米過濾(NF)薄膜或逆滲透(R〇)薄膜之實驗不予進 行且以實例之形式於下表1中顯示工業^^單元之進料流、 . 產品流及廢棄流中之主要離子物及溶解總固體(tds)。在 工業NF薄膜裝置之進料流、產品流及廢棄流中無或幾乎無 懸浮固體。 表1 組成(ppm wt/wt) Ca2+ Mg2+ Na+ K+ HCO3- S〇42· cr TDS 進料流 27 25 70 3.2 183 105 54 467 產品流 0.8 0.9 23 0.7 17.1 1.1 23 67 廢棄流 171 162 445 23 898 843 338 2880 圖2顯示於試驗性實例中所用且包括一倒極式電透析 (EDR)單元11及一沉澱單元i 2的水處理裝置之部分概要 圖。 於實驗室中製備水以具有與表丨之廢棄流相同的組成, 模擬為NF廢棄流54。將NF廢棄流54注入一進料罐5〇中並 與酸注入流64混合以至少部份中和其鹼度。經由一酸注入 泵62自一酸罐(酸注入單元)6〇泵送酸注入流64。酸注入流 64包括如以下式所示與鹼進行反應之鹽酸(濃度約37重量 %) : HC1+HCCV今H2〇 + c〇2+cr。自進料罐50釋放所得的 二氧化碳氣體。於進料罐中使用攪拌裝置(未顯示)以加強 混合及反應。氣體備用裝置或其他脫氣裝置(未顯示)亦可 149889.doc •15- 201204641 用於進料罐中或單獨位置處以加強二氧化碳氣體自水之移 除。可加入進料罐50中的酸添加劑包括(但不限於)鹽酸及 硫酸。 進料罐50中之鹼度減小後,在回流閥3丨之引導下,經由 進料泵52沿著如實線33所示之第一輸入管將水流13泵入 EDR單元η的稀釋通道中。同時,在回流閥之引導下, 經由濃縮再循環泵18沿著如實線34所示之第一輸入管將自 /冗歲單元12之固液分離區域24之濃縮流丨7引入EDR單元i i 之濃縮通道中。在濃縮再循環泵丨8與EDR單元丨丨之間使用 筒式過濾器19以防止顆粒進入edr單元11中。 當經由一電源(未顯示)將電流施加於EDR單元】丨時,稀 釋通道中之陽離子朝著陰極移動通過陽離子交換薄膜以進 入相鄰濃縮通道中。陰離子朝著陽極移動通過陰離子交換 薄膜以進入其他相鄰濃縮通道中。在置於一稀釋通道之每 一側的相鄰濃縮通道中,儘管電場施力於朝向各電極之離 子(例如陰離子被拉向陽極),但陽離子不可移動通過陰離 子可滲透薄膜,且陰離子不可移動通過陽離子交換薄膜。 因此,陰離子與陽離子保留並濃縮於濃縮通道中。 結果,流經EDR單元11之稀釋通道的進料流丨3可經部份 脫鹽化以使相應之排出流丨4具有較輸入流丨3更低之鹽度。 濃縮流17流經濃縮通道以自EDR裝置n檇載出濃縮之陰離 子與陽離子以使相應之排出流16具有較輸入流17更高的趟 度。分別經由回流閥35與36之控制,產品流14與鹽水輪出 流16流出並進入如實線37與38所示之各自第一輸出管中。 I49889.doc -16- 201204641 將鹽水流16注入沉澱單元12之沉澱區域28中。 為減少濃縮通道中之陰離子交換薄膜與陽離子交換薄膜 的積垢趨勢,故可每隔1000秒顛倒EDR單元11之電極極 性。因此,在反極性狀態中,自正常極性狀態之稀釋通道 用作濃縮通道以接受濃縮流17,而自正常極性狀態的濃縮 通道用作稀釋通道以接受進料流1 3。流1 3與1 7沿著如由虛 線39與40所示之各自第二輸入管進入EDR裝置11。稀釋流 14與排出流16沿如虛線41與42所示之各自第二輸出管流 動。 沉澱單元12之外部容器20包括直徑為250 mm及高度為 500 mm之圓柱形上部及圓錐角為90度之圓錐形下部。沉殿 單元12之總操作體積係約20升。在開始實驗之前,添加石 膏顆粒(200 g)作為晶種顆粒於沉澱元件2丨及限定元件22中 之沉澱區域28内並藉由攪拌裝置23之攪拌維持懸浮以增強 於沉澱單元12中之沉澱。 將進料流13與濃縮流1 7兩者之流率設為〇 5升/分〇pm)。 在沉澱單元12中出現沉澱。為維持晶種顆粒於沉澱單元12 中之穩定量,在每一循環(2〇〇〇秒)中,藉由泵25以排放流 30自沉澱單元12之圓柱形下部排放約3〇〇 ml之漿液。泵25 協助再循環流43返回沉澱單元12中或協助排放流3〇用於排 放漿液。閥26控制排放流30及再循環流43。同時,為保持 ’儿/1又單元12中之恒定水體積,為安全起見,將溢出流29設 計成自沉澱單元12之固液分離區域24中之溢出水。排放流 3〇與溢出流29合併形成流27。泵25之流速係約6升/分。閥 149889.doc 201204641 204係置於容器20下部以便於排空容器20。 在每一循環中,藉由溢出流29排放約400 ml之水。因 此,排出水之總體積為約700 ml/循環,而總進水體積為約 16.7升。然後計算EDR單元11與沉澱單元12之水回收率為 約95.8%。表2顯示進入及離開EDR單元11及沉澱單元12之 每一流的主要組成。由於於進料罐50中添加鹽酸及其與重 碳酸鹽之反應,故流13較表1中之廢棄流具有更高之氣化 物濃度及更低之重碳酸鹽濃度。 表2 組成 (ppm wt/wt) Ca2+ Mg2+ Na+ K+ HC03' S〇42' cr TDS TSS 流13 171 162 445 23 〜0 843 861 2505 0 流14 13 14 66 2.6 〜0 50 28 174 0 流17 760 2960 7649 414 〜0 10851 19861 42495 〜0 流16 874 2960 7649 414 〜0 11092 19861 42850 ~0 流27 760 2960 7649 414 ~0 10851 19861 42495 13188 以上結果亦顯示EDR單元11之產品流14中溶解總固體 (TDS)係處於使產品流14可以NF單元之進料流送回的範圍 内。 就舉具有約85%之水回收率的工業NF單元之實例並請返 回參照圖1,但經由第一導管104將體積流率為1296.4 lpm 之第一進水流106運輸至薄膜脫鹽單元102中時,經由與薄 膜脫鹽單元(工業NF單元)及電分離單元112相連的第三導The CaS〇4 particles may have an average straight I in the range of from about 1 μm to about 2 μm. In the second example, the CaS〇4 seed particle concentration in the precipitation zone is about a liquid weight of about G1 wt% to about 2 Q wt%, such that the concentration of CaS〇4 in the solution leaving the stimulation unit 122 can be controlled from about 1% to about the remainder of the range. It should be noted that the seed particles are not limited to any particular seed particles and may be selected based on the particular application. EXAMPLES 149889.doc 14 201204641 The following examples provide additional guidance to the general practitioner when implementing the claimed patent. Therefore, this example does not limit the invention as defined by the scope of the appended claims. Experiments using nanofiltration (NF) membranes or reverse osmosis (R〇) membranes were not carried out and in the form of examples are shown in Table 1 below for the feed stream of the industrial unit, the main stream of product streams and waste streams. Ions and dissolved total solids (tds). There are no or almost no suspended solids in the feed stream, product stream and waste stream of the industrial NF membrane unit. Table 1 Composition (ppm wt/wt) Ca2+ Mg2+ Na+ K+ HCO3- S〇42· cr TDS Feed stream 27 25 70 3.2 183 105 54 467 Product stream 0.8 0.9 23 0.7 17.1 1.1 23 67 Waste stream 171 162 445 23 898 843 338 2880 Figure 2 shows a partial schematic view of a water treatment device used in a pilot example and including an inverted electrodialysis (EDR) unit 11 and a precipitation unit i 2 . Water was prepared in the laboratory to have the same composition as the waste stream of the watchhead, simulated as the NF waste stream 54. The NF waste stream 54 is injected into a feed tank 5 and mixed with the acid injection stream 64 to at least partially neutralize its alkalinity. The acid injection stream 64 is pumped from an acid tank (acid injection unit) 6 through an acid injection pump 62. The acid injection stream 64 comprises hydrochloric acid (concentration of about 37% by weight) which is reacted with a base as shown in the following formula: HC1 + HCCV to H2 〇 + c 〇 2 + cr. The resulting carbon dioxide gas is released from the feed tank 50. A stirring device (not shown) is used in the feed tank to enhance mixing and reaction. Gas backup devices or other degassing devices (not shown) may also be used in feed tanks or in separate locations to enhance the removal of carbon dioxide from water. Acid additives that can be added to the feed tank 50 include, but are not limited to, hydrochloric acid and sulfuric acid. After the alkalinity in the feed tank 50 is reduced, the water stream 13 is pumped into the dilution channel of the EDR unit n via the feed pump 52 along the first input tube as indicated by the solid line 33, under the guidance of the return valve 3丨. . At the same time, under the guidance of the return valve, the concentrated flow 7 of the solid-liquid separation region 24 of the/year-old unit 12 is introduced into the EDR unit ii via the concentrated recirculation pump 18 along the first input tube as indicated by the solid line 34. Concentrated in the channel. A cartridge filter 19 is used between the concentrated recirculation pump 8 and the EDR unit to prevent particles from entering the edr unit 11. When a current is applied to the EDR unit via a power source (not shown), the cations in the dilution channel move toward the cathode through the cation exchange membrane to enter the adjacent concentration channel. The anions move toward the anode through the anion exchange membrane to enter other adjacent concentration channels. In an adjacent concentration channel placed on each side of a dilution channel, although an electric field exerts an ion directed toward each electrode (eg, an anion is pulled toward the anode), the cation is immovable through the anion permeable membrane and the anion is immovable The membrane is exchanged by a cation. Thus, the anion and cation are retained and concentrated in the concentration channel. As a result, the feed stream 3 flowing through the dilution passage of the EDR unit 11 can be partially desalted so that the corresponding discharge stream 4 has a lower salinity than the input stream 3. Concentrated stream 17 is passed through a concentration channel to carry concentrated anions and cations from the EDR unit n檇 such that the corresponding effluent stream 16 has a higher temperature than input stream 17. Product stream 14 and brine wheel outlet 16 exit and enter respective first output tubes as indicated by solid lines 37 and 38, via control of return valves 35 and 36, respectively. I49889.doc -16- 201204641 A brine stream 16 is injected into the precipitation zone 28 of the precipitation unit 12. In order to reduce the tendency of the anion exchange membrane and the cation exchange membrane in the concentration passage, the electrode polarity of the EDR unit 11 can be reversed every 1000 seconds. Thus, in the reverse polarity state, the dilution channel from the normal polarity state acts as a concentration channel to accept the concentrate stream 17, while the concentration channel from the normal polarity state acts as a dilution channel to accept the feed stream 13. Streams 13 and 17 enter EDR device 11 along respective second input tubes as indicated by dashed lines 39 and 40. The dilution stream 14 and the exhaust stream 16 flow along respective second output tubes as indicated by dashed lines 41 and 42. The outer container 20 of the sedimentation unit 12 includes a cylindrical upper portion having a diameter of 250 mm and a height of 500 mm and a conical lower portion having a conical angle of 90 degrees. The total operating volume of the chamber 12 is approximately 20 liters. Prior to the start of the experiment, gypsum particles (200 g) were added as seed particles in the precipitation zone 2 and the precipitation zone 28 in the defining element 22 and maintained in suspension by stirring with a stirring device 23 to enhance precipitation in the precipitation unit 12. . The flow rate of both the feed stream 13 and the concentrate stream 17 was set to 〇 5 liters / min pm). A precipitate appears in the precipitation unit 12. In order to maintain the stable amount of the seed particles in the precipitation unit 12, in each cycle (2 sec), the pump 25 is discharged from the cylindrical lower portion of the precipitation unit 12 by the discharge stream 30 by about 3 〇〇 ml. Slurry. Pump 25 assists recycle stream 43 to return to precipitation unit 12 or assists discharge stream 3 for discharging slurry. Valve 26 controls exhaust stream 30 and recycle stream 43. At the same time, in order to maintain a constant water volume in the unit/1, the overflow stream 29 is designed to overflow from the solid-liquid separation region 24 of the precipitation unit 12 for safety. The discharge stream 3〇 merges with the overflow stream 29 to form a stream 27. The flow rate of the pump 25 is about 6 liters/min. Valve 149889.doc 201204641 204 is placed in the lower portion of the container 20 to facilitate emptying of the container 20. In each cycle, about 400 ml of water is discharged by overflow stream 29. Therefore, the total volume of the discharged water is about 700 ml/cycle, and the total influent volume is about 16.7 liters. Then, the water recovery rate of the EDR unit 11 and the precipitation unit 12 was calculated to be about 95.8%. Table 2 shows the main composition of each class entering and leaving the EDR unit 11 and the precipitation unit 12. Since hydrochloric acid was added to the feed tank 50 and its reaction with the bicarbonate, the stream 13 had a higher gasification concentration and a lower bicarbonate concentration than the waste stream in Table 1. Table 2 Composition (ppm wt/wt) Ca2+ Mg2+ Na+ K+ HC03' S〇42' cr TDS TSS Stream 13 171 162 445 23 ~0 843 861 2505 0 Stream 14 13 14 66 2.6 ~0 50 28 174 0 Stream 17 760 2960 7649 414 ~ 0 10851 19861 42495 ~ 0 Stream 16 874 2960 7649 414 ~ 0 11092 19861 42850 ~ 0 Stream 27 760 2960 7649 414 ~ 0 10851 19861 42495 13188 The above results also show that the total solids dissolved in the product stream 14 of the EDR unit 11 ( The TDS) is in a range that allows product stream 14 to be returned to the feed stream of the NF unit. An example of an industrial NF unit having a water recovery of about 85% is returned and reference is made to FIG. 1, but the first influent stream 106 having a volumetric flow rate of 1296.4 lpm is transported via the first conduit 104 to the membrane desalination unit 102. Through a third lead connected to the film desalination unit (industrial NF unit) and the electrical separation unit 112

I 管114將體積流率為227.1 lpm且具有較第一進水進料流106 鹽度高的第一廢水流116自薄膜脫鹽單元102運輸至電分離 -18· 149889.doc 201204641 早元112。第四導管118連接電分離單元丨丨2且經組態以將 較第一廢水流鹽度低之第二產品水流12〇(體積流率為217 6 1pm)自電分離單元112運輸出以與第一進水流1〇6混合。因 此,至薄膜脫鹽單元1 〇2(nf單元)之總進料流的體積流率 為1514.0 lpm。以85%之水回收率,薄膜單元之第一產品 水流110具有1286·9 lpm之體積流率。 第五導官124與沉澱單元及電分離單元112連接且經 組態以將較第一廢水流116鹽度高之第二廢水流126自電分 離單元112運輸至沉澱單元122。與沉澱單元122及電分離 單元112相連的第六導管128係經組態以將較第二廢水流 1 2 6鹽度低的第一進水流1 3 0自沉殿單元運輸至電分離單 元。與沉殿單元相連之第七導管132係經組態以釋放一排 放水流134。以上實驗結果顯示電分離單元丨12與沉澱單元 122具有95.8%之水回收率,因此排放水流i34之平均體積 流率係9.5 lpm。 因此’總裝置100(即NF102+EDR112+沉殿單元l22)具 有體積流率為1296.4 lpm之進料流,體積流率為1286 9 lpm之產品流及體積流率為9 5 lpm之廢棄流。因此,總裝 置100之水回收率係99.3%。可有效移除重碳酸鹽且在裝置 100中無積垢。 雖然已於典型實施例中闡述及描述本發明,但不應限於 所示細節,此因可不脫離本發明主旨以任何方式進行修掷 及替代之故。如此,熟習此項技術者僅利用常規實驗可推 起文中揭示之本發明的其他修飾及對等物,且咸信所有此 149889.doc -19· 201204641 等修飾及對等物係在如由以下申請專利範圍所界定之本發 明的主旨及範圍中。 【圖式簡單說明】 圖1係根據本發明之一實施例的一水處理裝置的概要 圖;及 圖2係試驗性實例中所用的包括一倒極式電透析(Edr)單 元及一沉澱單元的一水處理裝置的部分概要圖。 【主要元件符號說明】 149889.doc 11 倒極式電透析(EDR)單元 12 沉澱單元 13 水流 14, 16 排出流 17 濃縮流 18 泵 19 筒式過濾器 20 容器 21 沉澱元件 22 限定元件 23 攪拌裝置 24 固液分離區域 25 泵 27 流 28 沉澱區域 29 溢出流 loc -20· 201204641 30 3 1,32, 35, 36, 204 33, 34, 37, 38 39, 40, 41, 42 43 50 52 54 60 62 64 100 102 104 106 108 110 112 114 116 118 120 122 124 排放流 閥 實線 虛線 再循壤流 進料罐 進料泵 NF廢棄流 酸罐(酸注入單元) 酸注入泵 酸注入流 水處理裝置 薄膜脫鹽單元 第一導管 第一進水流 第二導管 第一產品水流 電分離單元 第三導管 第一廢水流 第四導管 第—產品水流 沉澱單元 第五導管 149889.doc -21 - 201204641 126 第二廢水流 128 第六導管 130 第一進水流 132 第七導管 134 排放水流 136 化學注入單元 138 過濾裝置 149889.doc -22-I tube 114 transports first wastewater stream 116 having a volumetric flow rate of 227.1 lpm and having a higher salinity than first influent feed stream 106 from membrane desalination unit 102 to electrical separation -18 149 889.doc 201204641 early 112. The fourth conduit 118 is coupled to the electrical separation unit 丨丨2 and is configured to transport a second product water stream 12 〇 (volume flow rate 217 6 1 pm) having a lower salinity than the first wastewater stream from the electrical separation unit 112 to The first influent stream is mixed 1〇6. Therefore, the volumetric flow rate to the total feed stream to the membrane desalination unit 1 〇 2 (nf unit) was 1514.0 lpm. At a water recovery of 85%, the first product stream 110 of the membrane unit has a volumetric flow rate of 1286·9 lpm. The fifth pilot 124 is coupled to the precipitation unit and the electrical separation unit 112 and is configured to transport the second wastewater stream 126 having a higher salinity than the first wastewater stream 116 from the electrical separation unit 112 to the precipitation unit 122. A sixth conduit 128 coupled to the precipitation unit 122 and the electrical separation unit 112 is configured to transport a first incoming water stream 1 3 0 having a lower salinity than the second wastewater stream from the sink unit to the electrical separation unit. A seventh conduit 132 coupled to the sink unit is configured to release a row of drain streams 134. The above experimental results show that the electric separation unit 丨12 and the precipitation unit 122 have a water recovery rate of 95.8%, so the average volume flow rate of the discharge water stream i34 is 9.5 lpm. Therefore, the total unit 100 (i.e., NF102 + EDR112 + sink unit l22) has a feed stream having a volumetric flow rate of 1296.4 lpm, a product flow rate of 1286 9 lpm, and a waste stream having a volume flow rate of 95 lpm. Therefore, the water recovery rate of the total unit 100 is 99.3%. The bicarbonate is effectively removed and there is no fouling in the device 100. Although the present invention has been illustrated and described in the exemplary embodiments, the invention is not limited to the details shown in the drawings, and may be modified and replaced in any manner without departing from the spirit of the invention. Thus, those skilled in the art will be able to devise other modifications and equivalents of the present invention as disclosed herein by way of routine experimentation, and all such modifications and equivalents as 149889.doc -19.201204641 are as follows The spirit and scope of the invention as defined by the scope of the invention is claimed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a water treatment apparatus according to an embodiment of the present invention; and FIG. 2 is an experimental example including an inverted electrodialysis (Edr) unit and a precipitation unit. A partial schematic view of a water treatment unit. [Description of main component symbols] 149889.doc 11 Electrodesis electrodialysis (EDR) unit 12 Precipitation unit 13 Water flow 14, 16 Effluent flow 17 Concentrated flow 18 Pump 19 Cartridge filter 20 Container 21 Sedimentation element 22 Defining element 23 Stirring device 24 Solid-liquid separation zone 25 Pump 27 Flow 28 Precipitation zone 29 Overflow loc -20· 201204641 30 3 1,32, 35, 36, 204 33, 34, 37, 38 39, 40, 41, 42 43 50 52 54 60 62 64 100 102 104 106 108 110 112 114 116 118 120 122 124 Discharge flow valve solid line dotted line and further flow feed tank feed pump NF waste flow acid tank (acid injection unit) acid injection pump acid injection water treatment device film Desalination unit first conduit first inlet flow second conduit first product water flow electricity separation unit third conduit first wastewater flow fourth conduit first product water flow sedimentation unit fifth conduit 149889.doc -21 - 201204641 126 second wastewater flow 128 sixth conduit 130 first influent stream 132 seventh duct 134 discharge water stream 136 chemical injection unit 138 filtration unit 149889.doc -22-

Claims (1)

201204641 七、申請專利範圍: 1. 一種水處理裝置(100),其包括: 一薄膜脫鹽單元(1〇2); 第一導管(104),其與該薄膜脫鹽單元相連且經組態 以將第進水流(106)運輸至該薄膜脫鹽單元; ' 一第二導管(108),其與該薄膜脫鹽單元相連且經組態 以將較該第—進水流鹽度低的第-產品水流(110)自該薄 膜脫鹽單元運輸出來; 一電分離單元(112); 一第二導管(114),其與該薄膜脫鹽單元及該電分離單 元相連且經組態以將較該第一進水流鹽度高的第一廢水 流(U6)自該薄膜脫鹽單元運輸至該電分離單元; 一第四導管(118),其與該電分離單元相連且經組態以 將較該第一廢水流鹽度低的第二產品水流(120)自讓電分 離單元運輸出來; 一沉澱單元(122); 一第五導管(124) ’其與該沉澱單元及該電分離單元相 連且經組態以將較該第一廢水流鹽度高之第二廢水流 , (126)自該電分離單元運輸至該沉澱單元; , 一第六導管(128),其與該沉澱單元及該電分離單元相 連且經組態以將較該第二廢水流鹽度低的第二進水流 (13 0)自該沉澱單元運輸至該電分離單元; 一第七導管(132),其與該沉澱單元相連且經組態以釋 放出一排放水流(134);及 149889.doc 201204641 一化學注入單元(i 3 6),其與該電分離單元及該沉澱單 元中之至少一者相連。 2. 如請求項1之水處理裝置,其中該第四導管係與該第一 導管相連且經組態以運輸該第二產品水流以與該第一進 水流混合。 3. 如請求項1之水處理裝置,其中該薄膜脫鹽單元包括一 奈米過濾薄膜裝置或一逆滲透薄膜裝置。 4. 如請求項1之水處理裝置’其中該電分離單元包括一倒 極式電透析脫鹽裝置或一超電容器脫鹽裝置。 5·如請求項1之水處理裝置,其中該化學注入單元包括一 酸(包括鹽酸或硫酸)注入單元。 6·如請求項1之水處理裝置’其中該化學注入單元(136)係 與該第三導管及該第五導管中之至少一者相連。 7.如吻求項1之水處理裝置,其進一步包括與該第五導管 相連之一過濾裝置(138)。 8· 一種水處理方法,其包括: 提供一薄膜脫鹽單元(1〇2); 提供一第一導管(104) ’其與該薄膜脫鹽單元相連並經 組態以將第一進水流(106)運輸至該薄膜脫鹽單元; 提供一第二導管(108) ’其與該薄膜脫鹽單元相連並經 組態以將較該第一進水流純度高的第一產品水流(11〇)自 該薄膜脫鹽單元運輸出; 提供一電分離單元(112); 提供一第三導管(114),其與該薄膜脫鹽單元及該電分 149889.doc 201204641 離單元相連並經級態以將較該第一進水流鹽度高的第一 廢水流(11 6)自該薄膜脫鹽單元運輸至該電分離單元; 提供一第四導管(118),其與該電分離單元相連並經組 態以將較該第一廢水流鹽度低的第二產品水流(1 20)自該 電分離單元運輸出; 提供一沉澱單元(122); 提供一第五導管(124),其與該沉澱單元及該電分離單 元相連並經組態以將較該第一廢水流鹽度高之第二廢水 流(126)自該電分離單元運輸至該沉澱單元; 提供一第六導管(128),其與該沉澱單元及該電分離單 元相連並經組態以將較該第二廢水流鹽度低的第二進水 流(130)自該沉澱單元運輸至該電分離單元; 提供一第七導管(132),其與該沉澱單元相連並經組態 以釋放出一排放水流(134);及 提供一化學注入單元(136),其與該電分離單元及該沉 澱單元中之至少一者相連。 9. 如請求項8之水處理方法,其中該薄臈脫鹽單元包括一 奈米過濾薄膜裝置或一逆滲透薄膜裝置且其中該電分離 單元包括一倒極式電透析脫鹽裝置或—超電容器脫鹽裝 置。 10. 如請求項9之水處理方法,其+該化學;主入單元包括鹽 酸或硫酸。 149889.doc201204641 VII. Patent Application Range: 1. A water treatment device (100) comprising: a film desalination unit (1〇2); a first conduit (104) connected to the film desalination unit and configured to a first influent stream (106) is transported to the membrane desalination unit; a second conduit (108) coupled to the membrane desalination unit and configured to deliver a first product water stream having a lower salinity than the first influent stream ( 110) transported from the film desalination unit; an electrical separation unit (112); a second conduit (114) coupled to the membrane desalination unit and the electrical separation unit and configured to compare the first incoming water stream A first salinity stream (U6) having a high salinity is transported from the membrane desalination unit to the electrical separation unit; a fourth conduit (118) connected to the electrical separation unit and configured to be compared to the first wastewater stream A second product water stream (120) having a low salinity is transported from the electrical separation unit; a precipitation unit (122); a fifth conduit (124) 'which is connected to the precipitation unit and the electrical separation unit and configured to a second wastewater stream having a higher salinity than the first wastewater stream (126) transporting from the electrical separation unit to the precipitation unit; a sixth conduit (128) coupled to the precipitation unit and the electrical separation unit and configured to have a lower salinity than the second wastewater stream a second influent stream (130) is transported from the precipitation unit to the electrical separation unit; a seventh conduit (132) coupled to the precipitation unit and configured to release a discharge stream (134); and 149889 .doc 201204641 A chemical injection unit (i 36) connected to at least one of the electrical separation unit and the precipitation unit. 2. The water treatment device of claim 1, wherein the fourth conduit is coupled to the first conduit and configured to transport the second product water stream for mixing with the first feed stream. 3. The water treatment device of claim 1, wherein the film desalination unit comprises a nanofiltration membrane device or a reverse osmosis membrane device. 4. The water treatment device of claim 1, wherein the electrical separation unit comprises an inverted electrodialysis desalination device or an ultracapacitor desalination device. 5. The water treatment device of claim 1, wherein the chemical injection unit comprises an acid (including hydrochloric acid or sulfuric acid) injection unit. 6. The water treatment device of claim 1 wherein the chemical injection unit (136) is coupled to at least one of the third conduit and the fifth conduit. 7. The water treatment device of claim 1, further comprising a filtering device (138) coupled to the fifth conduit. 8. A water treatment method comprising: providing a film desalination unit (1〇2); providing a first conduit (104) that is coupled to the membrane desalination unit and configured to direct the first influent stream (106) Transported to the film desalination unit; providing a second conduit (108) that is coupled to the membrane desalination unit and configured to desalinate the first product water stream (11 Torr) having a higher purity than the first feed stream from the membrane The unit is transported out; an electrical separation unit (112) is provided; a third conduit (114) is provided, which is connected to the membrane desalination unit and the electrical component 149889.doc 201204641 and is leveled to be compared with the first a first wastewater stream having a high salinity (11 6) is transported from the membrane desalination unit to the electrical separation unit; a fourth conduit (118) is provided, which is coupled to the electrical separation unit and configured to a second product water stream (1 20) having a low salinity flow is transported from the electric separation unit; a precipitation unit (122) is provided; a fifth conduit (124) is provided, and the precipitation unit and the electrical separation unit are provided Connected and configured to be compared to the first waste a second wastewater stream (126) having a high salinity is transported from the electrical separation unit to the precipitation unit; a sixth conduit (128) is provided that is coupled to the precipitation unit and the electrical separation unit and configured to a second influent stream (130) having a low salinity of the second wastewater stream is transported from the precipitating unit to the electrolysis unit; a seventh conduit (132) is provided which is coupled to the precipitating unit and configured to release a Discharging a water stream (134); and providing a chemical injection unit (136) coupled to at least one of the electrical separation unit and the precipitation unit. 9. The water treatment method of claim 8, wherein the thin demineralization unit comprises a nanofiltration membrane device or a reverse osmosis membrane device and wherein the electrical separation unit comprises an inverted electrodialysis desalination device or an ultracapacitor desalination Device. 10. The method of water treatment of claim 9, which comprises + the chemistry; the main unit comprises hydrochloric acid or sulphuric acid. 149889.doc
TW099125178A 2010-07-29 2010-07-29 Water treatment device and method TWI527764B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099125178A TWI527764B (en) 2010-07-29 2010-07-29 Water treatment device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099125178A TWI527764B (en) 2010-07-29 2010-07-29 Water treatment device and method

Publications (2)

Publication Number Publication Date
TW201204641A true TW201204641A (en) 2012-02-01
TWI527764B TWI527764B (en) 2016-04-01

Family

ID=46761359

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099125178A TWI527764B (en) 2010-07-29 2010-07-29 Water treatment device and method

Country Status (1)

Country Link
TW (1) TWI527764B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460135B (en) * 2012-12-25 2014-11-11 Ind Tech Res Inst Capacitive deionization device
TWI561833B (en) * 2015-02-13 2016-12-11 Hon Tech Inc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460135B (en) * 2012-12-25 2014-11-11 Ind Tech Res Inst Capacitive deionization device
TWI561833B (en) * 2015-02-13 2016-12-11 Hon Tech Inc

Also Published As

Publication number Publication date
TWI527764B (en) 2016-04-01

Similar Documents

Publication Publication Date Title
JP5816622B2 (en) Desalination system and method
JP5785196B2 (en) Water treatment apparatus and method
US8864911B2 (en) Method for removing ionic species from desalination unit
US10214433B2 (en) Brine treatment scaling control system and method
TW200815294A (en) Non-faraday based systems, devices and methods for removing ionic species from liquid
CN103130362A (en) Water treatment device and method
WO2005123606A1 (en) Liquid treatment device
WO2014052025A1 (en) A system and method for the treatment of hydraulic fracturing backflow water
TW201326054A (en) Desalination system and method
WO2013009485A1 (en) Desalination systems and methods
US20110114567A1 (en) Precipitation device, method and associated system
TWI527764B (en) Water treatment device and method
CN102139169B (en) Settler, method and the system containing this settler
KR20210070359A (en) High recovery electrodialysis method
TWM616926U (en) Expanded water purification system