TW201145925A - Interference and noise estimation in an OFDM system - Google Patents

Interference and noise estimation in an OFDM system Download PDF

Info

Publication number
TW201145925A
TW201145925A TW100115537A TW100115537A TW201145925A TW 201145925 A TW201145925 A TW 201145925A TW 100115537 A TW100115537 A TW 100115537A TW 100115537 A TW100115537 A TW 100115537A TW 201145925 A TW201145925 A TW 201145925A
Authority
TW
Taiwan
Prior art keywords
unassigned
received power
noise
band
subcarrier
Prior art date
Application number
TW100115537A
Other languages
Chinese (zh)
Other versions
TWI459773B (en
Inventor
Arak Sutivong
Ayman Fawzy Naguib
Avneesh Agrawal
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201145925A publication Critical patent/TW201145925A/en
Application granted granted Critical
Publication of TWI459773B publication Critical patent/TWI459773B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Abstract

Noise and interference can be independently measured in a multiple user Orthogonal Frequency Division Multiplexing (OFDM) system. Co-channel interference is measured in a frequency hopping, multiple user, OFDM system by tracking the sub-carriers assigned to all users in a particular service area or cell. The composite noise plus interference can be determined by measuring the amount of received power in a sub-carrier whenever it is not assigned to any user in the cell. A value is stored for each sub-carrier in the system and the value of noise plus interference can be a weighted average of the present value with previously stored values. The noise component can be independently determined in a synchronous system. In the synchronous system, all users in a system may periodically be prohibited from broadcasting over a sub-carrier and the received power in the sub-carrier measured during the period having no broadcasts.

Description

201145925 六、發明說明: 相關專·利交叉參考 本申凊案要求2003年5月14曰提出申請的美國臨時專利 申清案第60/470,724號之優先權,其以提及方式完整併入 本文中。 【發明所屬之技術領域】 本發明係關於無線通信領域《更特定言之,本發明係關 於用於正交分率多工(0FDM)系統之噪音估計的系統與方 法。 【先前技術】 在無線通信系統中不同的操作均需依賴發送大量資料。 分配至通信系統的頻譜或頻寬經常會受到政府規定的限 制。因此,需要不斷最佳化既定通信頻寬中的資料通量。 由於需同時支援多個使用者,使得在既定通信頻帶中最 佳化資料通量的問題變得複雜β各使用者會有不同的通信 需求。一使用者會傳送低速率信號,例如語音信號而另 一使用者會傳送南速率資料信號’例如影像。通信系統可 採用一有效利用通信頻帶之方法,以支援多個使用者。 無線通仏系統可以多種不同方式實施。例如,可在無線 通信系統中使用分頻多重進接(Frequency Divisi〇n Multiple Access ; FDMA)、分時多重進接(Time Divisi〇n Multiple Access ; TDMA)、分碼多重存取(c〇de Divisi〇n Multiple Access ; CDMA)以及正交分率多工(〇rth〇g〇nal Frequency Division Multiplexing ; 〇FDM)。各個不同通信 152684.doc s 201145925 系統具有與特定系統方面有關的優點與缺點。 圖1係一典型正交分率多工系統中信號的頻率時間表 不。正交分率多工系統具有分配的頻譜120。將分配的頻 譜120分割為多個載波,例如13〇&至13〇d以及至 132d。正交分率多工系統中的多個載波亦可稱作次载波。 各個次載波例如130a係使用低速率資料流調變。此外,如 系統名稱所表示,各次載波例如13〇a係與所有其他次載波 例如130b至130d以及132a至132d正交》 次載波,例如130a至130d,可被構造成藉由閘控開啟或 關閉次載波以使彼此正交。使用矩形窗閘控開啟或關閉的 次載波,例如130a,可產生具有(sin (χ))/χ形狀的頻譜。 可選擇次載波,例如130a與130b,之矩形閘控週期與頻率 間隔量,以使經調變的第一次載波13〇a之頻譜在其他次載 波’例如130b至130d,之中心頻率處歸零。 正交分率多工系統可配置成藉由分配給各使用者部份的 次載波而支援多個使用者。例如,可向第一使用者分配第 一組次載波130a至130d,而向第二使用者分配第二組次載 波132a至132d。分配給使用者的次載波數量不必相同,而 且次載波無需處於鄰近頻帶中。 因此,在時域中發射數個正交分率多工符號11〇&至 11 On ’從而產生正交次載波130a至I30d以及132a至13 2d之 頻譜。各次載波例如130a均係獨立調變。可分配給一個別 通信鏈路一或多個次載波13〇&至130(1。此外,指派給特定 使用者的次載波數量會隨時間變化。 152684.doc 201145925 因此’正交分率多工係無線通道上高資料速率發射的理 想多工技術,該等通道可在無線通信系統中實施,例如可 支援大量使用者的蜂巢通m但是,蜂㈣統使用頻 率再使用概念來增強頻譜使用之效率。頻率再使用會引入 同頻干擾(co-channel interference ; CCI),其係該等系統中 性能劣化的主要原因。如上所述,一正交分率多工系統中 的相同細胞或扇區中的所有使用者彼此正交,原因在於所 有次載波係正交。因此,在相同的細胞或扇區内,多重次 載波實質上不會對彼此造成干擾。但是,相鄰的細胞或^ 區由於頻率再使用而使用相同的頻率空間。因此在正交 分率多工系統中,不同細胞或扇區内的使用者係干擾的來 源,並且會造成相鄰細胞或扇區之CCI的主要來源。 較為理想地係能決定正交分率多工無線通***中的 CCI位準。接收器處需要CCI位準的主要原因有二。接收 器可在具有一發射器之封閉功率控制迴路中運作,並需要 瞭解CCI位準以調整在各次載波上發射之功率位準以保持 特定性能所需之信號對干擾加噪音比(signal tQ interference P1US n〇ise ratio ; SNIR)。接收器亦需要對用 於通道解碼器運/ί乍的載波對干擾(Carrier t〇 Interferenee; C/Ι)或SINR值的CCI估計。 【發明内容】 本發明揭示一種用於決定正交分率多工系統之噪音估計 之方法與設備。可藉由偵測未指派次載波頻帶中所接收功 率而決定噪音估計。若未指派次載波頻帶對應於局部未指 152684.doc 201145925 =载波’所接收功率則表示次載波頻帶中噪音加干擾之 估計。若未指派次載波頻帶對應於泛系統未指派次載波, 則所接收功率表示次載波頻帶中噪音底部之估計。 -方面,本發㈣—㈣㈣音估計之方法其包含接 收正交分率多工符號以及在未 辰'人載波頻帶中谓測所接 收力率。另-方面,本發明係_種決定。桑音估計之方法, 其包含在無線蜂巢通信系統中接收正交分率多工符號,盆 中該等符號對應於-符號。本方法包括在符號週油 決定^指派之次載波’以及決定未指派次錢頻帶中的所 接收信號功率。功㈣存在記憶體中,並與先前儲存的值 相平均’以產生噪音估計。 另一方面,本發明係一種用於估計正交分率多工系統中 嗓音之設備。該設備包括一配置成無線接收正交分率多工 符號之接收器以及-配置成偵測接收器所接收的信號之所 接收功率位準的谓測器。處理器包括於一用於在符號週期 内決定未指派次载波以及至少部份基於所接收功率位準決 定噪音估計之設備中。 【實施方式] 。圖2頦示了具有若干結合次載波噪音與干擾偵測的接收 器之蜂巢正交分率多工無線通信系統2〇〇之功能性方塊 圖。正交分率多工系統2〇〇包括數個可為數個終端機22〇a 至2200提供通信之基地台21〇a至210g。基地台例如210a可 以係一用於與終端機例如22〇a通信之固定台,其亦可稱做 接取點、節點B或某些其他術語。 152684.doc 201145925 各種終端機220a至220〇可散佈於正交分率多工系統2〇〇 中,並且各終端機可以係固定,例如22〇k ,亦可以係行 動,例如220b。一終端機例如220a亦可稱作一行動台、一 遠端台、一使用者設備(user equipment ; UE)、一接取終 4機或某些其他術語。各終端機例如22〇3在任何既定時間 與下行鏈路與/或上行鏈路上的一或可能多個基地台通 仏。各終端機,例如220m ,可包括一正交分率多工發射器 3 00m與一正父分率多工接收器4〇〇m,以實現與一或多個 基地台通信。正交分率多工發射器3〇〇m與正交分率多工接 收器400m之具體實施例在圖3與4中有進一步詳細說明。在 圖2中,終端機220a至220〇從基地台21〇a至210g接收例如 前導、信號及使用者特定資料發射。 正交分率多工系統200中的各基地台例如2丨〇a可提供對 特疋地理區域的涵蓋,例如2〇2a。各基地台之涵蓋區域一 般取決於多個因素(例如地形、障礙物等),但是,為簡單 起見,其通常由圖2所示之理想六邊形表示。基地台與/或 其涵蓋區域亦通常稱作「細胞」,取決於使用該術語的上 下文。 為增加容量’可將各基地台例如21〇a之涵蓋區域分割為 多個扇區。若將各細胞分割為三個扇區,則經分割細胞的 各扇區經常由理想的120。楔表示,其表示細胞的1/3 ^各扇 區可由一對應的基地收發器子系統(BTS)例如212d服務。 BTS 212d包括一正交分率多工發射器3〇〇(1與一正交分率多 工接收器400d,該發射器3〇〇d與該接收器400d分別在圖3 152684.doc201145925 VI. INSTRUCTIONS: The relevant special and profit cross-references refer to the priority of US Provisional Patent Application No. 60/470,724, filed on May 14, 2003, which is hereby incorporated by reference. in. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the field of wireless communications. More specifically, the present invention relates to systems and methods for noise estimation for orthogonal fractional multiplex (OFDM) systems. [Prior Art] Different operations in a wireless communication system rely on sending a large amount of data. The spectrum or bandwidth allocated to a communication system is often subject to government restrictions. Therefore, there is a need to continuously optimize the data throughput in a given communication bandwidth. The need to support multiple users at the same time complicates the problem of optimizing data throughput in a given communication band. β Users will have different communication needs. A user will transmit a low rate signal, such as a voice signal, and another user will transmit a south rate data signal, such as an image. The communication system can employ a method of effectively utilizing the communication band to support multiple users. Wireless overnight systems can be implemented in many different ways. For example, Frequency Divide Multiple Access (FDMA), Time Divisive Multiple Access (TDMA), and Code Division Multiple Access (c〇de) can be used in a wireless communication system. Divisi〇n Multiple Access; CDMA) and Orthogonal Fraction Multiplexing (〇Fth〇g〇nal Frequency Division Multiplexing; 〇FDM). Different communications 152684.doc s 201145925 The system has advantages and disadvantages related to specific system aspects. Figure 1 is a frequency schedule of signals in a typical orthogonal division multiplex system. The orthogonal fractional multiplex system has an allocated spectrum 120. The allocated spectrum 120 is divided into a plurality of carriers, such as 13 〇 & to 13 〇 d and to 132d. Multiple carriers in an orthogonal fractional multiplex system may also be referred to as secondary carriers. Each subcarrier, such as 130a, uses low rate data stream modulation. In addition, as indicated by the system name, each subcarrier, for example, 13 〇a is orthogonal to all other subcarriers, such as 130b to 130d and 132a to 132d, and the subcarriers, for example, 130a to 130d, may be configured to be turned on by gating or The secondary carriers are turned off to be orthogonal to each other. A subcarrier that is turned on or off using a rectangular window, such as 130a, produces a spectrum with a (sin (χ))/χ shape. The sub-carriers, for example, 130a and 130b, may be selected for the rectangular gating period and the frequency interval, such that the spectrum of the modulated first subcarrier 13〇a is returned at the center frequency of the other subcarriers 'eg, 130b to 130d. zero. The orthogonal fractional multiplex system can be configured to support multiple users by subcarriers assigned to each user portion. For example, a first set of secondary carriers 130a through 130d may be assigned to a first user and a second set of secondary carriers 132a through 132d may be assigned to a second user. The number of secondary carriers allocated to the user does not have to be the same, and the secondary carrier does not need to be in the adjacent frequency band. Therefore, a plurality of orthogonal fractional multiplex symbols 11 〇 & to 11 On ′ are transmitted in the time domain to thereby generate spectra of orthogonal subcarriers 130a to I30d and 132a to 13 2d. Each subcarrier, for example 130a, is independently modulated. One or more secondary carriers 13 〇 & to 130 (1.) The number of secondary carriers assigned to a particular user may vary over time. 152684.doc 201145925 Therefore, 'the orthogonal division rate is large An ideal multiplexed technology for high data rate transmission on the wireless channel of the system. These channels can be implemented in wireless communication systems, for example, to support a large number of users. However, the bee (four) system uses the concept of frequency reuse to enhance spectrum usage. Efficiency. Frequency reuse introduces co-channel interference (CCI), which is the main cause of performance degradation in such systems. As mentioned above, the same cell or fan in an orthogonal fractional multiplex system All users in the zone are orthogonal to each other because all subcarriers are orthogonal. Therefore, multiple subcarriers do not substantially interfere with each other within the same cell or sector. However, adjacent cells or ^ The area uses the same frequency space due to frequency reuse. Therefore, in the orthogonal fractional multiplex system, users in different cells or sectors are the source of interference and will cause The main source of CCI for adjacent cells or sectors. Ideally, the CCI level in the orthogonal fractional multiplex wireless communication receiver can be determined. There are two main reasons for the CCI level at the receiver. Operates in a closed power control loop with a transmitter and requires knowledge of the CCI level to adjust the power level transmitted on each carrier to maintain the specific performance required for signal-to-interference plus noise ratio (signal tQ interference P1US n SNise ratio ; SNIR) The receiver also needs CCI estimation for carrier-to-interference (C/Ι) or SINR value for channel decoder operation. SUMMARY OF THE INVENTION A method and apparatus for determining a noise estimate for an orthogonal fractional multiplex system. The noise estimate can be determined by detecting the received power in the unassigned subcarrier band. If the unassigned subcarrier band corresponds to a local unreferenced 152684. Doc 201145925 = Carrier's received power represents an estimate of noise plus interference in the subcarrier band. If the unassigned subcarrier band corresponds to the ubiquitous system unassigned subcarrier, the received work An estimate of the bottom of the noise in the subcarrier frequency band. - Aspect, the method of (4) - (iv) (four) sound estimation includes receiving the orthogonal fractional multiplex symbol and pre-measuring the received force rate in the non-personal carrier frequency band. In one aspect, the invention is a method of determining a Sanyin estimate, comprising receiving orthogonal odds multiplex symbols in a wireless cellular communication system, the symbols in the basin corresponding to a - symbol. The method includes determining a symbol in the oil ^ Assigned secondary carrier 'and determines the received signal power in the unassigned secondary money band. Work (4) is stored in memory and averaged with previously stored values' to produce a noise estimate. In another aspect, the invention is an apparatus for estimating arpeggios in an orthogonal fractional multiplex system. The apparatus includes a receiver configured to wirelessly receive a quadrature fractional multiplex symbol and a predator configured to detect a received power level of a signal received by the receiver. The processor is included in a device for determining an unassigned secondary carrier during a symbol period and for determining a noise estimate based at least in part on the received power level. [Embodiment] Figure 2 illustrates a functional block diagram of a cellular orthogonal fractional multiplex wireless communication system having a plurality of receivers incorporating secondary carrier noise and interference detection. The orthogonal division multiplex system 2 includes a plurality of base stations 21A to 210g that can provide communication for a plurality of terminals 22A to 2200. The base station, e.g., 210a, can be a fixed station for communicating with a terminal, such as 22A, which can also be referred to as an access point, a Node B, or some other terminology. 152684.doc 201145925 The various terminals 220a to 220〇 can be interspersed in the orthogonal fractional multiplex system 2〇〇, and each terminal can be fixed, for example, 22〇k, or can be actuated, for example, 220b. A terminal, such as 220a, may also be referred to as a mobile station, a remote station, a user equipment (UE), an access terminal, or some other terminology. Each terminal, e.g., 22〇3, communicates with one or possibly multiple base stations on the downlink and/or uplink at any given time. Each terminal, e.g., 220m, may include a quadrature fractional multiplex transmitter 300m and a positive fractional multiplex receiver 4〇〇m to enable communication with one or more base stations. A specific embodiment of a quadrature fractional multiplex transmitter 3 〇〇 m and an orthogonal fraction multiplex receiver 400 m is further illustrated in Figures 3 and 4. In Figure 2, terminals 220a through 220b receive, for example, preamble, signal, and user specific data transmissions from base stations 21a through 210g. Each base station in the orthogonal fractional multiplex system 200, e.g., 2丨〇a, may provide coverage for a particular geographic area, such as 2〇2a. The coverage area of each base station generally depends on a number of factors (e.g., terrain, obstacles, etc.), but for simplicity, it is typically represented by the ideal hexagon shown in Figure 2. The base station and/or its coverage area are also commonly referred to as "cells", depending on the context in which the term is used. In order to increase the capacity, the coverage area of each base station, for example, 21〇a, can be divided into a plurality of sectors. If each cell is divided into three sectors, the sectors of the segmented cells are often ideally 120. The wedge representation, which represents 1/3 of each cell, can be served by a corresponding base transceiver subsystem (BTS) such as 212d. The BTS 212d includes a quadrature fractional multiplex transmitter 3' (1 and a quadrature fractional multiplex receiver 400d, the transmitter 3〇〇d and the receiver 400d are respectively shown in Fig. 3 152684.doc

S 201145925 與4中有更詳細之說明。就經分割細胞而言,該細胞的基 地台經常包括服務該細胞之扇區的所有BTS,術語「扇 區」亦經常用於指代BTS與/或其涵蓋區域,取決於使用該 術語的上下文。 如以下將進一步詳細討論,各基地台例如2丨〇&通常實施 一配置成提供至終端機例如520a之下行鏈路(亦可稱作正 向鏈路)通信之發射器。此外,各基地台例如21〇&亦可實 施一配置成接收來自終端機例如52〇a之上行鏈路(亦可稱 作反向鏈路)通信之接收器。 在下行鏈路方向中,基地台發射器從信號源接收信號, k號源可以係一公眾交換電話網路(Public Switched Telephone Network ; PSTN)或某些其他信號源。基地台發 射器隨後將信號轉換為正交分率多工信號,並將該信號發 射至一或多個終端機。基地台發射器可將信號數位化,將 k號多工為數個並列信號’並對應於並列信號路徑的數量 調變次載波的預定數量。次載波的數量可以恆定或變化。 此外,次載波可彼此相鄰’以定義鄰近頻帶’或可彼此脫 節以佔據數個獨立的頻帶。基地台可以一恆定方法指派次 載波,例如在次載波數量固定、偽隨機或隨機的情況下。 基地台發射器亦可包括可將正交分率多工基頻信號轉換為 所兩發射頻帶之類比或射頻(Radi〇 FreqUency ; rf)部份。 在正交分率多工系統200中,頻率再使用可出現在每一 細胞中。即’第一基地台例如2丨〇d在第一細胞例如2〇2d中 使用的上行與下行鏈路頻率可由基地台2i〇a_c與21〇e-g在 152684.doc 201145925 相鄰細胞202a-c與202e-g中使用。如上所述,各基地台發 射器造成鄰近接收器所經受的同頻干擾(co-channel interference ; CCI),在此情況下鄰近接收器係鄰近終端接 收器。例如,第一基地台2 1 Of中的發射器對相鄰細胞202c 與202d中的終端機220e與220g造成CCI,終端機220e與 220g不與第一基地台2 10f通信。為將相鄰終端機所經受的 CCI量最小化,基地台發射器可以係封閉迴路功率控制系 統的部份。 為將細胞(例如202f)外的終端機所經受的CCI量最小 化,基地台發射器應將其發射至各終端機220m與2201的RF 功率最小化,基地台210f與終端機220m與2201進行通信。 部份基於各次載波頻帶中噪音位準之決定以及基於終端機 發射及基地台接收器接收的功率控制信號,基地台發射器 可調整發射功率。 基地台例如21 Ob可嘗試保持各次載波的預定SINR或C/I 值,以便保持對終端機例如220b-d的預定服務品質。大於 預定值的SINR或C/Ι可小幅影響終端機例如520b所經歷之 服務品質,但會導致所有相鄰細胞202a、202d與202e的 CCI增加。反之,低於預定位準的SINR或C/Ι值可導致終端 機220b所經受之服務品質會大幅下降。 基地台接收器可量測作為可設定發射信號之SINR或C/I 的功率控制迴路之部份的各次載波頻帶中的噪音與干擾位 準。基地台接收器量測各次載波頻帶中的噪音與干擾位 準,並儲存該等位準。在將次載波指派至通信鏈路時,基 •10- 152684.docS 201145925 and 4 have more detailed description. In the case of a segmented cell, the base station of the cell often includes all BTSs that serve the sector of the cell, and the term "sector" is also often used to refer to the BTS and/or its covered area, depending on the context in which the term is used. . As will be discussed in further detail below, each base station, e.g., 2&', typically implements a transmitter configured to provide downlink (also referred to as forward link) communication to a terminal, such as 520a. In addition, each base station, e.g., 21&, may also implement a receiver configured to receive uplink (also referred to as reverse link) communications from a terminal such as 52A. In the downlink direction, the base station transmitter receives signals from the source, and the k source can be a Public Switched Telephone Network (PSTN) or some other source. The base station transmitter then converts the signal to a quadrature fractional multiplex signal and transmits the signal to one or more terminals. The base station transmitter can digitize the signal, multiply the k number into a number of parallel signals' and modulate the predetermined number of subcarriers corresponding to the number of parallel signal paths. The number of subcarriers can be constant or varied. Furthermore, the secondary carriers may be adjacent to each other 'to define adjacent frequency bands' or may be disconnected from each other to occupy a number of independent frequency bands. The base station can assign a secondary carrier in a constant manner, such as where the number of secondary carriers is fixed, pseudo-random or random. The base station transmitter may also include an analog or radio frequency (Radi〇 FreqUency; rf) portion that converts the orthogonal fractionated multiplexed baseband signal into two transmit frequency bands. In the orthogonal fractional multiplex system 200, frequency reuse can occur in each cell. That is, the uplink and downlink frequencies used by the first base station, such as 2丨〇d, in the first cell, such as 2〇2d, can be used by the base stations 2i〇a_c and 21〇eg at 152684.doc 201145925 adjacent cells 202a-c Used in 202e-g. As noted above, each base station transmitter causes co-channel interference (CCI) experienced by adjacent receivers, in which case the proximity receiver is adjacent to the terminal receiver. For example, the transmitter in the first base station 2 1 Of causes CCI to the terminals 220e and 220g in the adjacent cells 202c and 202d, and the terminals 220e and 220g do not communicate with the first base station 2 10f. To minimize the amount of CCI experienced by adjacent terminals, the base station transmitter can be part of a closed loop power control system. In order to minimize the amount of CCI experienced by the terminal outside the cell (e.g., 202f), the base station transmitter should minimize the RF power transmitted to each of the terminals 220m and 2201, and the base station 210f and the terminal 220m and 2201. Communication. The base station transmitter can adjust the transmit power based in part on the decision of the noise level in each subcarrier frequency band and based on the power control signals received by the terminal and the receiver of the base station. The base station, e.g., 21 Ob, may attempt to maintain a predetermined SINR or C/I value for each subcarrier in order to maintain a predetermined quality of service to the terminal, e.g., 220b-d. SINR or C/Ι greater than a predetermined value may slightly affect the quality of service experienced by the terminal, e.g., 520b, but may result in an increase in the CCI of all adjacent cells 202a, 202d, and 202e. Conversely, a SINR or C/Ι value below a predetermined level may result in a significant degradation in the quality of service experienced by the terminal 220b. The base station receiver can measure the noise and interference levels in each of the carrier frequency bands as part of the power control loop that can set the SINR or C/I of the transmitted signal. The base station receiver measures noise and interference levels in each carrier frequency band and stores the levels. When assigning a secondary carrier to a communication link, base 10 - 152684.doc

S 201145925 地台發射器在決定分配給各次載波之功率時會檢查噪音與 干擾位準。因此,基地台發射器可保持將其他細胞中終端 機所經受之CCI最小化的各次載波的預定SINR4 C/I。 在另一項具體實施例中,終端機例如220i可嘗試保持獲 考于預定服務品質所需的最小已接收SINR或C/Ι。當所接收 的SINR或C/Ι高於預定位準時,終端機22〇i可發射一信號 至基地台210f,以請求基地台210f降低發射信號功率。或 者,當所接收的SINR或C/Ι低於預定位準時,終端機22〇i 可發射一信號至基地台2 1 Of,以請求基地台2丨〇f提高發射 k號功率。因此,藉由將發射至任何既定終端機之功率最 小化,相鄰細胞中的終端機所經受的CCI量最小化。 圖3係一正交分率多工發射器3〇〇之功能性方塊圖該發 射器可併入例如一基地台收發器或終端機中。正交分率多 工發射器300之功能性方塊圖包括詳細說明發射器基頻部 份之基頻區段,但並未顯示可包括於發射器3〇〇中的信號 處理、資料源介面或RF區段。 正交分率多工發射器300包括與一或多個資料流對應之 一或多個資料源302。當正交分率多工發射器3〇〇係一基地 台發射器時,資料源302可包括來自一外部網路例如psTN 網路之資料流。各資料流可針對分離的終端機。資料源 3〇2所提供的資料可以係多重並列資料流、串列資料流、 多工資料流或資料流之組合^資料源302可向調變器31〇提 供資料。調變器310處理並調變輸入的資料源。如技術中 已熟知,調變器310可包括可實施交錯、編碼、分組與調 152684.doc -11 - 201145925 之功能性組塊。調變器31〇 錯。例如…… +限於實施特定類型之交 j如’调變器可針對各終端 資料。 τ 了合,、竭機獨立地按組塊來交錯源 於一 ir,10亦可配置成實施編碼。同樣,發射器3〇〇不限 門二類型之編碼。例如’調變器310可實施李德所羅 或捲積編碼。編碼率可以係以,亦可係隨指派給 一、、%機之通㈣路之次載波數量而變化1如,當將第 :數量的次载波指派給終端機時,調變器则可以編碼器 -+的編碼率實施捲積編碼’當將第二數量的次載波指派 ’° ’、端機時,以二分之一編碼率實施捲積編碼。在另一範 例中,調變器可以隨指派給終端機之次載波數量而變化的 編碼率實施李德所羅門編碼。 調變器31G亦可配置成制預定格式調變資料。例如, 調變器310可實施正交振幅調變((^Γ輕e ulation ’ QAM) '正交相移鍵控phaseS 201145925 The ground transmitter checks the noise and interference levels when deciding the power to be assigned to each carrier. Thus, the base station transmitter can maintain a predetermined SINR4 C/I for each subcarrier that minimizes the CCI experienced by the terminals in other cells. In another embodiment, the terminal, e.g., 220i, may attempt to maintain the minimum received SINR or C/Ι required to qualify for the predetermined quality of service. When the received SINR or C/Ι is above a predetermined level, the terminal 22〇i may transmit a signal to the base station 210f to request the base station 210f to reduce the transmit signal power. Alternatively, when the received SINR or C/Ι is lower than the predetermined level, the terminal 22〇i may transmit a signal to the base station 2 1 Of to request the base station 2丨〇f to increase the transmission of the k-number power. Therefore, by minimizing the power transmitted to any given terminal, the amount of CCI experienced by the terminals in adjacent cells is minimized. Figure 3 is a functional block diagram of a Orthogonal Rate Multiplexed Transmitter. The transmitter can be incorporated into, for example, a base station transceiver or terminal. The functional block diagram of the orthogonal fractional multiplex transmitter 300 includes a detailed description of the fundamental frequency portion of the fundamental portion of the transmitter, but does not show signal processing, data source interfaces, or may be included in the transmitter 3's. RF section. The orthogonal fractionation multiplex transmitter 300 includes one or more data sources 302 corresponding to one or more data streams. When the orthogonal rate multiplex transmitter 3 is a base station transmitter, the data source 302 can include a data stream from an external network, such as a psTN network. Each data stream can be directed to a separate terminal. The data source 3〇2 can be a combination of multiple parallel data streams, serial data streams, multiplexed data streams or data streams. The data source 302 can provide data to the modulator 31. The modulator 310 processes and modulates the input data source. As is well known in the art, modulator 310 can include functional blocks that can implement interleaving, encoding, grouping, and tuning 152684.doc -11 - 201145925. The modulator 31 is wrong. For example... + limited to the implementation of a specific type of j. The modulator can be used for each terminal. The τ is combined, and the exhaustion is independently interleaved in blocks by an ir, and 10 can also be configured to implement coding. Similarly, the transmitter 3 is not limited to the encoding of the second type. For example, the modulator 310 can implement Lederstrom or convolutional coding. The coding rate may be, or may vary according to the number of subcarriers assigned to the (4) way of the first and the second machine. For example, when the number of subcarriers is assigned to the terminal, the modulator may encode. The coding rate of the -+ is performed by convolutional coding. When the second number of secondary carriers are assigned '°', the end machine is implemented, and convolutional coding is performed at a half coding rate. In another example, the modulator can implement a Reed Solomon code with a code rate that varies with the number of subcarriers assigned to the terminal. The modulator 31G can also be configured to produce predetermined format modulation data. For example, the modulator 310 can implement quadrature amplitude modulation ((Γ e e ulation ' QAM) 'orthogonal phase shift keying phase

Shift Keying ; QPSK)、二進制相移鍵控(Βί^ ph咖Shift Keying; QPSK), Binary Phase Shift Keying (Βί^ ph

Shift Keying; BPSK)或某些其他調變格式。在另一項具體 實施例中,調變器310將資料處理為一用於調變次載波之 格式。 調變1§ 3 10亦可包括用於調整指派給次載波之資料符號 振幅之放大器或增益級。調變器31〇可基於次載波調整放 大器之增益,各次載波之增益至少部份取決於次載波頻寬 中的噪音與干擾。 調變器310之輸出耦合至1:Ν多工器32〇之輸入,其中1^表 -12· 132684.docShift Keying; BPSK) or some other modulation format. In another specific embodiment, modulator 310 processes the data into a format for modulating the secondary carrier. Modulation 1 § 3 10 may also include an amplifier or gain stage for adjusting the amplitude of the data symbols assigned to the secondary carrier. The modulator 31 can adjust the gain of the amplifier based on the secondary carrier, and the gain of each carrier depends at least in part on noise and interference in the subcarrier bandwidth. The output of the modulator 310 is coupled to the input of 1: multiplexer 32 ,, where 1 ^ Table -12· 132684.doc

S 201145925 不在通信系統之發射鏈路中使用的次載波的最大數量。多 工器320亦可稱做「争列至並列轉換器」,因為多工器32〇 從調變器310接收串列資料,並將其轉換為並列格式以 連接複數個次載波。 次載波指派模組312可控制調變器31〇與多工器32〇。用 於支援源資料的次載波數量可以係並通常係小於在通信系 統之發射鏈路中所使用的次載波的最大數量。指派給特定 通信鏈路的次載波數量會隨時間變化。此外,即使分配給 特定通信鏈路的次載波數量相同,次載波的識別項亦會隨 時間變化。 次載波可隨機地或偽隨機地指派給通信鏈路。由於次載 波的識別項會變化,通信鏈路所佔據的頻帶會隨時間變 化。通信系統可以係一實施預定跳頻方法的跳頻系統。 次載波指派模組3 12可實施跳頻方法,並可追蹤所使用 的次載波組及分配給通信鏈路的次載波組。例如,在具有 三個正向鏈路信號的基地台中,次載波指派模組3丨2可指 派給第一通信鏈路第一組次載波,指派給第二通信鏈路第 二組次載波’指派給第三通信鏈路第三組次載波。各組中 的次載波數量可以相同亦可不同。次載波指派模組3 12可 追蹤數個分配給通信鏈路之次載波以及閒置的、能夠指派 給通信鏈路的數個次載波。 次載波指派模組312可控制調變器310以提供所需的編 碼,以及支援指派次載波組所需的調變。此外,次載波指 派模組312可控制多工器320以便將來自調變器310的資料 152684.doc •13· 201145925 提供至與指派次載波相對應之多工器通道》因此,次載波 指派模組312可控制指派給特定通信鏈路之次載波的識別 項和數量。次載波指派模組3 12亦可追蹤間置的次載波以 及可分配給通信鏈路之次載波的識別項。 多工器320之輸出麵合至反向快速傅立葉轉換(j;nverseS 201145925 The maximum number of secondary carriers not used in the transmit link of the communication system. The multiplexer 320 may also be referred to as a "snap-to-parallel converter" because the multiplexer 32 receives the serial data from the modulator 310 and converts it into a side-by-side format to connect a plurality of secondary carriers. The secondary carrier assignment module 312 can control the modulator 31 and the multiplexer 32A. The number of secondary carriers used to support the source data may be, and typically is, less than the maximum number of secondary carriers used in the transmission link of the communication system. The number of secondary carriers assigned to a particular communication link will vary over time. In addition, even if the number of secondary carriers allocated to a particular communication link is the same, the identification of the secondary carrier changes over time. The secondary carriers may be assigned to the communication link randomly or pseudo-randomly. Since the identification of the secondary carrier changes, the frequency band occupied by the communication link changes over time. The communication system can be a frequency hopping system that implements a predetermined frequency hopping method. The secondary carrier assignment module 3 12 can implement a frequency hopping method and can track the used secondary carrier groups and the secondary carrier groups assigned to the communication links. For example, in a base station having three forward link signals, the secondary carrier assignment module 丨2 can be assigned to the first set of secondary carriers of the first communication link and to the second set of secondary carriers of the second communication link. Assigned to the third set of secondary carriers of the third communication link. The number of secondary carriers in each group may be the same or different. The secondary carrier assignment module 3 12 can track a number of secondary carriers assigned to the communication link and a number of idle secondary carriers that can be assigned to the communication link. The subcarrier assignment module 312 can control the modulator 310 to provide the required encoding and to support the modulation required to assign the subcarrier group. In addition, the secondary carrier assignment module 312 can control the multiplexer 320 to provide the data 152684.doc •13·201145925 from the modulator 310 to the multiplexer channel corresponding to the assigned secondary carrier. Therefore, the secondary carrier assignment mode Group 312 can control the identification and number of secondary carriers assigned to a particular communication link. The secondary carrier assignment module 3 12 can also track the inter-subcarriers and the identification of the secondary carriers that can be assigned to the communication link. The output face of the multiplexer 320 is coupled to the inverse fast Fourier transform (j; nverse

Fast Fourier Transform; IFFT)模組 330。寬度等於或大於 次載波總量的並列匯流排322將多工器320的並列輸出耦合 至IFFT模組330。 傅立葉轉換可實施從時域至頻域的映射。因此,反向傅 立葉轉換可實施從頻域至時域之映射。IFFT模組33〇將調 變次載波轉化為時域信號。傅立葉轉換特性可確保次載波 仏號均勻間隔並彼此正交。 IFFT模組330的並列輸出可使用另一並列匯流排332耦合 於解多工器340 »解多工器34〇將並列調變資料流轉換為串 列資料流。解多工器340之輸出則可耦合至保護頻帶產生 器(圖中未顯示),再耦合至數位至類比轉換器(Digital to Analog Converter ; DAC)(圖中未顯示)。保護頻帶產生器 在連續的正交分率多工符號之前***一時間週期,以將通 信鏈路中多路徑引起的符號間干擾的影響最小化。DAC的 輸出輕合至可將正交分率多卫信號升頻至所需發射頻帶之 RF發射器(圖中未顯示)。 圖4A至4B係正交分率多工接收器4〇〇具體實施例之功能 性方塊圖。正交分率多卫接收器彻可在基地台或諸如行 動終端機之終端機中實施。圖从之正交分率多工接枚器 I52684.doc 201145925 400主要在數位域中實施噪音估計器,而圖4B之正交分率 多工接收器400主要在類比域中實施噪音估計器。 圖4A之正交分率多工接收器400以天線402接收由互補正 交分率多工發射器發射的RF信號。天線42〇之輸出輕合至 一可過濾、放大所接收正交分率多工信號並將其降頻至基 頻的接收器410。 接收器410之基頻輸出耦合至配置成移除發射器處插於 正父分率多工符號之間的保護間隔的保護移除模組。 保護移除模組420之輸出麵合至可將類比基頻信號轉化為 數位形式k號之類比至數位轉換器(Anai〇g Digitai Converter ; ADC)422。ADC 422之輸出耦合至可將串列基 頻信號轉化為N個並列資料路徑之多工器424。數字N表示 正交分率多工次載波的總量。各並列資料路徑中的符號表 示正交分率多工信號之閘控時域符號。 並列資料路徑麵合至快速傅立葉轉換(Fast F〇uder Transform ; FFT)模組430之輸入。FFT模組wo將閘控時域 “號轉化為頻域彳5说。FFT模組430的各個輸出表示調變次 載波。 FFT模組43 0之並列輸出耦合至解調變正交分率多工次載 波之解調變器440。解調變器440可配置成僅解調變接收器 400所接收次載波的一子集,或可對應所有次載波,配置 成解調變所有FFT模組430之輸出。解調變器44〇輸出可以 係單一符號,亦可係複數個符號。例如,若次載波係正交 調變,則解調變器440可輸出解調變符號之同相與正交信 152684.doc -15- 201145925 號成分。 解調變器彻之輸出麵合至偵測器45〇。偵測器45〇係配 置成偵測^載波頻帶中的所接收功率。㈣器45〇係藉 由偵測或決;t例如解調變次載波信號之功率、振幅、平方 ^巾田度專以及與所接收功率相關聯之解調變次載波信 號之某些其他表示形式。例如,正交調變信號之平方幅度 可藉由對同相及正交信號成分之平方求和而決定。價測器 4J〇包括複數個偵測器或包括可在下一解調變符號出現之 前決定所需次載波信號之偵測值之單一偵測器。 處理器460與包括處理器可讀指令之記憶體47〇連接。記 憶體470亦可包括用於儲存及更新偵測次載波噪音值之可 重寫入健存位置。 分配至特定通信鏈路的次載波會在各符號邊界處變化。 可識別分配給至接收器400之通信鏈路的次載波之跳頻序 列或跳頻資訊亦可儲存於記憶體47〇中。處理器46〇使用跳 頻資訊以將FFT模組430、解調變器440以及偵測器450之性 此最佳化。因此’處理器460能使用跳頻序列或其他跳頻 資訊來識別分配給通信鏈路的次載波以及間置的次載波。 例如’當不及總量的次載波分配給至接收器4〇0的通信 鏈路時’處理器460可控制FFT模組430以僅決定對應於已 分配次載波的FFT輸出信號。在另一項具體實施例中,處 理器460可控制FFT模組430 ’以決定對應於分配給至接收 器400之通信鏈路的次載波的輸出信號加上對應於間置以 及未分配給任何通信鏈路之次載波的輸出。處理器460可Fast Fourier Transform; IFFT) module 330. A parallel bus 322 having a width equal to or greater than the total number of subcarriers couples the parallel output of multiplexer 320 to IFFT module 330. Fourier transforms can implement mapping from the time domain to the frequency domain. Therefore, the inverse Fourier transform can implement mapping from the frequency domain to the time domain. The IFFT module 33 converts the modulated subcarrier into a time domain signal. The Fourier transform feature ensures that the subcarrier apostrophes are evenly spaced and orthogonal to each other. The parallel output of the IFFT module 330 can be coupled to the demultiplexer 340 by using a parallel bus 332. The demultiplexer 34 converts the parallel modulated data stream into a serial data stream. The output of the demultiplexer 340 can be coupled to a guard band generator (not shown) and coupled to a digital to analog converter (DAC) (not shown). The guard band generator inserts a time period before successive orthogonal rate multiplex symbols to minimize the effects of intersymbol interference caused by multipath in the communication link. The output of the DAC is coupled to an RF transmitter (not shown) that upconverts the Orthogonal Rate Multi-Guard signal to the desired transmit band. 4A through 4B are functional block diagrams of a specific embodiment of an orthogonal fractional multiplex receiver. The Orthogonal Rate Multi-Guard Receiver can be implemented in a base station or a terminal such as a mobile terminal. The figure is from the orthogonal fractional multiplexer I52684.doc 201145925 400 mainly implements the noise estimator in the digital domain, and the orthogonal fractional multiplex receiver 400 of Fig. 4B mainly implements the noise estimator in the analog domain. The quadrature fractionated multiplex receiver 400 of Figure 4A receives the RF signal transmitted by the complementary orthogonal fraction multiplex transmitter with antenna 402. The output of antenna 42 is coupled to a receiver 410 that filters, amplifies, and down-converts the received orthogonal fractional multiplex signal to the base frequency. The baseband output of the receiver 410 is coupled to a guard removal module configured to remove a guard interval inserted between the positive father fractional multiplex symbols at the transmitter. The output of the protection removal module 420 is coupled to an analog-to-digital converter (ADC) 422 that converts the analog baseband signal into a digital form k. The output of ADC 422 is coupled to a multiplexer 424 that converts the serial baseband signals into N parallel data paths. The number N represents the total amount of orthogonal fractional multiple subcarriers. The symbols in each side-by-side data path represent the gated time domain symbols of the orthogonal fractional multiplex signal. The parallel data path is integrated into the input of the Fast Fourier Transform (FFT) module 430. The FFT module will convert the gated time domain "number into the frequency domain 彳5. The respective outputs of the FFT module 430 represent the modulated subcarriers. The parallel output of the FFT module 43 0 is coupled to the demodulation variable orthogonal fraction. The subcarrier demodulation transformer 440. The demodulation transformer 440 can be configured to demodulate only a subset of the subcarriers received by the variable receiver 400, or can be configured to demodulate all FFT modules corresponding to all subcarriers. The output of the demodulator 44 〇 may be a single symbol or a plurality of symbols. For example, if the secondary carrier is quadrature modulated, the demodulator 440 may output the in-phase and positive demodulation symbols. Signal 152684.doc -15- 201145925. The output of the demodulator is integrated into the detector 45. The detector 45 is configured to detect the received power in the carrier frequency band. The 〇 is detected or determined by t; for example, demodulating the power, amplitude, squared, and other forms of the demodulated subcarrier signal associated with the received power. The squared amplitude of the quadrature modulated signal can be obtained by square the components of the in-phase and quadrature signals. And the price detector 4J includes a plurality of detectors or a single detector including a detection value that can determine a desired subcarrier signal before the next demodulation symbol appears. The processor 460 and the processor include The memory of the read command is connected. The memory 470 may also include a rewritable memory location for storing and updating the detected secondary carrier noise value. The secondary carrier assigned to a particular communication link will be at each symbol boundary. The hopping sequence or frequency hopping information that identifies the secondary carrier assigned to the communication link to the receiver 400 can also be stored in the memory 47. The processor 46 uses the frequency hopping information to FFT the module 430, The demodulation transformer 440 and the detector 450 are optimized for this purpose. Thus the processor 460 can use a frequency hopping sequence or other frequency hopping information to identify the secondary carrier assigned to the communication link and the intervening secondary carrier. 'When less than the total number of subcarriers is allocated to the communication link to the receiver 4〇0, the processor 460 can control the FFT module 430 to determine only the FFT output signal corresponding to the assigned secondary carrier. In an embodiment, the processor 46 The FFT module 430' can be controlled to determine the output signal corresponding to the secondary carrier assigned to the communication link to the receiver 400 plus the output corresponding to the inter-carrier and the secondary carrier not assigned to any of the communication links. 460 can

152684.doc ^ S 201145925 藉由減少決定所需之FFT輸出信號數量來減輕FFT模組43〇 上的部份負載。 處理器460亦可控制解調變器44〇僅解調變fft模組43〇向 其提供輸幻5號之此等信號。此外,處理器46()可控制伯 測器450以僅偵測對應於閒置或未分配之次載波之次載波 信號。Φ於㈣器450可限制於㈣未分配次載波中的噪 音位準,制器45G可配置成在解調變器之前#測信號。 但是,將债測器450置於解調變器44〇之後具有優勢原因 在於積測H 45G偵測到㈣音將會已經歷與該次載波中的 符號所經歷之信號處理相同之處理。因此,解調變嘆音所 經歷的h號處理之統計特性將類似於解調變符號所經歷的 統計特性。 每‘-人載波未分配給通信鏈路時,處王里器46〇可藉由偵 測次載波中解㈣噪音之功率來追蹤线波中的噪音。未 指派的次載波之偵測功率表示該次載波頻帶中干擾加噪音 力率S ® 5可對應於次載波將^貞測功率儲存於記憶體 470之一位置。在跳頻正交分率多工系統中,未指派之欠 載波的識別項隨時間變化’並會在各符號邊界處變化。 處理器46G可料獨立記憶體位置中第—次載波之數個 ::率量測。處理器偏隨後可平均預定數量的偵測功 功:量測:者’處理器_可藉由加權由部份取決於偵測 老化之因素所作的各儲存㈣功率量測,叶算# 音與干擾的加權平均。在另—項具體實施例中,處木 460可儲存㈣劈音與干擾功率於記憶體稽中的—對應位 152684.doc 17 201145925 置。藉由以第—量加權儲存 以第一量加權新偵測功率 及將和餘存於對應於次載波的記憶體位置中處理器 460即可更新特定次載波152684.doc ^ S 201145925 Reduces the partial load on the FFT module 43〇 by reducing the number of FFT output signals required for the decision. The processor 460 can also control the demodulator 44 to demodulate only the fft module 43 to provide the semaphore 5 signals. In addition, processor 46() can control detector 450 to detect only secondary carrier signals corresponding to idle or unassigned secondary carriers. The Φ to (4) device 450 can be limited to (4) the noise level in the unassigned subcarrier, and the controller 45G can be configured to measure the signal before the demodulation. However, placing the debt detector 450 in the demodulation transformer 44 is advantageous because the H 45G detects that the (four) tones will have undergone the same processing as the signal processing experienced by the symbols in the subcarrier. Therefore, the statistical characteristics of the h-number process experienced by demodulating the singer will be similar to the statistical characteristics experienced by the demodulated sign. When each ‘-person carrier is not assigned to the communication link, the priest 46 〇 can track the noise in the line wave by detecting the power of the solution (four) noise in the subcarrier. The detected power of the unassigned subcarrier indicates that the interference plus noise rate S ® 5 in the subcarrier band can be stored in one of the memories 470 corresponding to the subcarrier. In a frequency hopping orthogonal partition multiplex system, the identification of unassigned undercarriers varies with time' and varies at each symbol boundary. The processor 46G can measure the number of the first-order carriers in the independent memory location. The processor can then average a predetermined number of detection work: measurement: the processor can be weighted by each of the storage (four) power measurements made by factors that depend on the detection of aging, the leaf calculation #音与The weighted average of the interference. In another embodiment, the wood 460 can store (iv) the voice and interference power in the memory - the corresponding bit 152684.doc 17 201145925. The specific subcarrier can be updated by weighting the new detected power by the first amount and weighting the new detected power with the sum and remaining in the memory location corresponding to the secondary carrier.

Js與干擾值。使用此替代性 =方法’僅需要N個儲存位置來储存_次載波噪音與 干擾估計。可觀察到,其他儲存與更新次載波 擾值之方法亦可用。 〃 ^ 未指派次載波之債測功率表示該次載波的總噪音與干 擾’除非頻帶中沒有干擾源在廣播。當次載波頻帶中沒有 干擾源在廣播時’偵測功率表示噪音底部的偵測功率。 正交分率多工系、、统可藉由將所有發射器同步以及定義所 有發射器不在特定次載波上進行發射的—週期,保證沒有 系統干擾源在次載波頻帶中廣播干擾信號。即,在噪音估 計器係在終端機處的一接收器内實施的情況下,正交分率 多工系統中的所有基地台可在預定符號週期内週期性地停 止在一或多個預定次載波頻率上發射。正交分率多工系統 中的通信在在單一次載波未作指派的週期内不會停止,因 為所有其他次載波可繼續分配給通信鏈路。因此,可藉由 將發射器同步以及週期性地於一或多個符號週期内停止將 各次載波分配給任何通信鏈路,決定各次載波頻帶之不具 干擾之噪音的位準。隨後,在未指派期間針對次載波頻帶 決定無干擾源的噪音功率。 圖4B係正交分率多工接收器400之另一項具體實施例之 功能性方塊圖’其中使用類比裝置偵測噪音與干擾。接收 器400最初使用天線402接收正交分率多工信號,並將天線 I52684.doc .18.Js and interference value. Using this alternative = method' requires only N storage locations to store _ secondary carrier noise and interference estimates. It can be observed that other methods of storing and updating the subcarrier interference value can also be used. 〃 ^ The debt measurement power of the unassigned subcarrier indicates the total noise and interference of the subcarrier' unless there is no interference source in the band broadcasting. When there is no interference source in the subcarrier frequency band during broadcast, the detected power indicates the detected power at the bottom of the noise. Orthogonal fractional multiplex systems, by synchronizing all transmitters and defining that all transmitters are not transmitting on a particular secondary carrier, ensure that no system interference sources broadcast interfering signals in the secondary carrier frequency band. That is, in the case where the noise estimator is implemented in a receiver at the terminal, all base stations in the orthogonal fractional multiplex system can be periodically stopped for one or more predetermined times within a predetermined symbol period. Transmit on the carrier frequency. Communication in an orthogonal fractional multiplex system does not stop during a period in which a single primary carrier is not assigned, since all other secondary carriers can continue to be assigned to the communication link. Thus, the level of non-interfering noise for each subcarrier band can be determined by synchronizing the transmitter and periodically allocating each subcarrier to any communication link within one or more symbol periods. Subsequently, the noise power of the interference-free source is determined for the subcarrier band during the unassigned period. Figure 4B is a functional block diagram of another embodiment of a quadrature fractionated multiplex receiver 400 wherein analog devices are used to detect noise and interference. Receiver 400 initially receives an orthogonal fractional multiplex signal using antenna 402 and will antenna I52684.doc.18.

S 201145925 之輸出耦合至接收器410。如在先前具體實施例中,接 收器41〇可過遽、放大所接收正交分率多工信號並將其降 頻至基頻。接收器41〇之輸出輕合至遽波器彻之輸入。接 收器410之基頻輸出亦可輕合至其他信號處理級㈤令未 頁示)ί列如保護移除模組、FFT模組以及解調變器。 在^項具體實施例中,遽波器係—具有與通信系統 ^次載波數量相等數量之基頻遽波器之滤波器組。各遽》皮 器可配置成具有與次載波之信號頻寬實質上相等之頻寬。 在另「項具體實施例中,據波器·係一具有一或多個可 =e、L系統中任何次载波頻帶之可調濾波器之濾波器 組。將可調據波器調至未分配給至接收器4〇〇之通信鏈路 載波頻Τ可調濾、波器之頻帶可實質上與次載波 之頻帶相等。 Φ 遽波器之輸出耗合至僧測器彻。滤波器彻之輸出 可以係一或多個減油士轴· 、 夕/愿,皮4琥。濾波器480之輸出信號的數量 可與通6系統中次載波的數量一樣多。 偵則森490可配置成偵測各遽波信號之功率。谓測器柳 I:括私❹個功率偵測器。功率偵測器可對應於濾波器 之輸出。或者,—或多個功率偵測器可用於連續偵測 來自各滤波輸出之功率。 偵測器490之輪出鉍人s A ^ 』出耦合至ADC 494之輸入。ADC 494可包 括複數個轉換益,各轉換器對應於偵測器49〇輸出之一。 或者ADC 494可包括依順序轉換各债測器例輸出之 一 ADC。 152684.doc •19- 201145925 與記憶體47〇連接的處理器46〇可耦合至ADC 494之輪 出。處理器460可使用儲存在記憶體47〇中的處理器可讀指 令,控制ADC 494僅轉換感興趣之偵測功率位準。此外,曰 處理器460可如前一具體實施例一般,追蹤跳頻序列並更 新_噪音與干擾位準。在同步系統中’噪音位準可獨立 於干擾位準而制,該系統十可對所有發射器加以控制以 於預定持續時間内週期性地停止在預定次載波上發射。 圖5係預定時間週期内,部份正交分率多工頻帶5〇〇之頻 譜圖。正交分率多工頻帶5〇〇包括數個次載波,各次載波 佔據一預定頻帶,例如502a ^複數個通信鏈路可同時佔據 正交分率多工頻帶500。複數個通信鏈路僅可使用系統中 總共可用次載波數量的一子集。 例如,可向第一通信鏈路分配四個佔據四個頻帶5〇2a_d 之次載波。顯示次載波以及對應的頻帶502a-d位於一鄰近 頻帶上但是’分配給特定通信鏈路的次載波無需相鄰, 、^係正交分率多工系統中任何可用次載波。可向第二 通k鏈路分配—第二組次載波,並因此分配第二組次載波 ,帶522a d。同樣地,可分別向第三與第四通信鍵路分配 /、第四組次載波。第三組次載波對應於第三組頻帶 542a-c ,而始 叫第四組次載波對應於第四組次載波頻帶 562a-c。 分配給特定通信鏈路的次載波的數量 可隨時間變化以及 、番 丄 ;k信鏈路上的負載而變化。因此,資料速率越高的 ' 刀配到的次載波數量越高。分配至通信鏈路的次 152684.doc 201145925 載波的數量會在各符號邊界處變化。因此,分配在正交分 率多工系統中的次載波的數量與位置可在各符號邊界處^ 化。 由於分配到的次載波的總量會不與正交分率多工系統中 可用的次載波總量對應,可能會有一或多個次載波並未分 配給任何通信鏈路,而處於閒置狀態。例如,顯示三個次 頻帶510a-c、530a-c、5 50a-e在正交分率多工頻帶5〇〇中未 分配給任何通信鏈路.同樣,未指派的次載波以及因而對 應的次載波頻帶,無需相鄰,亦不必出現於分配的次載波 之間。例如,部份或所有未指派之次載波可出現於頻帶— 端。 接收器可藉由在次載波未指派時制次載波頻帶中的功 率來估計並更新次載波中噪音加干擾之估計。未指派之次 載波可表示局部未指派之次載波,例如有接收器位於其$ 的細胞或扇區内。其他細胞或細胞之扇區可將次載波分配 給通信鍵路。 _ 例如,諸如終端機中之接收器的第一接收器可使用第一 頻帶502a-d中的第一組次載波與基地台建立通信鍵路。第 f接收器可藉由決定例如未指派次载波頻帶53〇&中的功率 來估計未指派次載波頻帶53〇a中的噪音與干擾。如先前所 述接收器可藉由將先前健存的功率位準與最新量測的功 率位準加以平均來更新先前儲存於記憶體中的估計。或 者,對應於最新噪音與干擾估計之最新決定的功率位準可 用於決^預定數量之最新嚼音加干擾估計之加權平均。 152684.doc -21· 201145925 預定持續時間内,例如—符 此汗,在同步系統中 * » ^ 1/ g ^}* - 號持續時間内,-或多個次載波可指派給所有發射器。因 此,在符號時間週期内,次載波未指派給特定正交分率夕 Γ系統的所有細胞°隨後針較系統未指派次載波,接ΐ 器可於發射器未在頻帶中發射的週期内,藉由決定次載波 頻帶(例如测)中的功率而估計噪音底部。接收器亦可藉 由平均或加權平均數個估計而更新噪音估計。接收器可‘ 獨儲存各次載波頻帶之噪音底部的估計。因此,接收卜 週期性地更新各次載波頻帶中的噪音底部以及澡音與干= 位準。 圖6係決定及更新正交分率多卫次載波頻帶中噪音與干 擾位準之方法600之流程圖。方法6〇〇可於正交分率多工系 統之接收II中實施。接收器可以係例如終端機中的接收 器。作為替代或補充方案’接收器可以係例如基 器中的接收器。 方法600始於步驟602,其中接收器在時間上與發射器同 步。接收器可例如將時間參考與發射器巾的時間參考同 步。出於各種與噪音估計不相關之原因,需要接收器與發 射器同步》例如,接收器會需要與發射器同步以決定在一 或多個符號週期内分配給其通信鏈路的次載波。 接收器隨後會進行至步驟610,其中接收器決定在下一 符號週期内的不使用的、或未指派的次載波。發射器可將 該資訊於額外負擔訊息中傳送至接收器。因此,接收器所 接收的訊息可表示既定符號週期内所指派的次載波。或 152684.doc ·The output of S 201145925 is coupled to receiver 410. As in the previous embodiment, the receiver 41 can over-amplify, amplify, and down-convert the received orthogonal fractional multiplex signal to the fundamental frequency. The output of the receiver 41 is lightly coupled to the input of the chopper. The baseband output of the receiver 410 can also be tapped to other signal processing stages (5) so that it is not shown), such as the protection removal module, the FFT module, and the demodulation transformer. In a specific embodiment, the chopper is a filter bank having a number of fundamental frequency choppers equal to the number of subcarriers of the communication system. Each of the skins can be configured to have a bandwidth substantially equal to the signal bandwidth of the secondary carrier. In another embodiment, the filter is a filter bank having one or more tunable filters of any subcarrier frequency band in the e system, and the adjustable data filter is adjusted to The frequency band of the communication link allocated to the receiver 4〇〇 can be tunably filtered, and the frequency band of the waver can be substantially equal to the frequency band of the secondary carrier. Φ The output of the chopper is integrated into the detector. The output can be one or more of the oil reduction axis, the eve, and the skin. The number of output signals of the filter 480 can be as many as the number of secondary carriers in the system. The Detective 490 can be configured to Detecting the power of each chopping signal. The predator Liu I: includes a power detector. The power detector can correspond to the output of the filter. Or, or multiple power detectors can be used for continuous detection. The power from each filtered output is measured. The detector 490 is out of the input s A ^ 』 is coupled to the input of the ADC 494. The ADC 494 can include a plurality of conversion benefits, each converter corresponding to the detector 49 〇 output 1. The ADC 494 may include an ADC that sequentially converts each of the output of the debt detector. 152684.doc •19 - 201145925 The processor 46A coupled to the memory 47A can be coupled to the rotation of the ADC 494. The processor 460 can use the processor readable instructions stored in the memory 47A to control the ADC 494 to only convert the interested detectors. In addition, the processor 460 can track the frequency hopping sequence and update the _noise and interference level as in the previous embodiment. In the synchronous system, the noise level can be independent of the interference level. The system can control all of the transmitters to periodically stop transmitting on the predetermined subcarriers for a predetermined duration. Figure 5 is a spectrogram of a portion of the orthogonal fractional multiplex band 5 预定 in a predetermined time period. The orthogonal fraction multiplex band 5 〇〇 includes a plurality of subcarriers, each subcarrier occupies a predetermined frequency band, for example, 502a ^ a plurality of communication links can simultaneously occupy the orthogonal fraction multiplex band 500. The plurality of communication links Only a subset of the total number of available secondary carriers in the system can be used. For example, four secondary carriers occupying four frequency bands 5〇2a_d can be allocated to the first communication link. The display secondary carrier and the corresponding frequency band 502a-d are located at one adjacent The subcarriers on the frequency band but 'assigned to a specific communication link need not be adjacent, any available subcarriers in the orthogonal fractional multiplex system. The second pass k link may be allocated - the second set of subcarriers, and Therefore, a second set of subcarriers is allocated, with a band 522a d. Similarly, a fourth set of subcarriers can be assigned to the third and fourth communication links, respectively, and the third set of subcarriers corresponds to the third set of bands 542a-c, And the fourth set of subcarriers originally corresponds to the fourth set of subcarrier bands 562a-c. The number of subcarriers allocated to a particular communication link may vary over time as well as the load on the k-link. The higher the data rate, the higher the number of subcarriers assigned by the knife. The number of carriers assigned to the communication link 152684.doc 201145925 The number of carriers will vary at each symbol boundary. Therefore, the number and location of subcarriers allocated in the orthogonal fractional multiplex system can be normalized at the boundary of each symbol. Since the total amount of subcarriers allocated does not correspond to the total number of subcarriers available in the OFDM system, there may be one or more subcarriers that are not allocated to any communication link and are in an idle state. For example, it is shown that the three sub-bands 510a-c, 530a-c, 5 50a-e are not allocated to any communication link in the orthogonal fraction multiplex band 5 .. Similarly, the unassigned sub-carriers and thus the corresponding The subcarrier band does not need to be adjacent and does not have to appear between the allocated subcarriers. For example, some or all of the unassigned subcarriers may appear at the band-end. The receiver can estimate and update the estimate of noise plus interference in the secondary carrier by making power in the secondary carrier band when the secondary carrier is unassigned. The unassigned secondary carrier may represent a sub-carrier that is not locally assigned, such as a cell or sector in which the receiver is located. Sectors of other cells or cells may assign secondary carriers to communication links. For example, a first receiver, such as a receiver in a terminal, can establish a communication link with a base station using a first set of secondary carriers in the first frequency band 502a-d. The fth receiver can estimate the noise and interference in the unassigned subcarrier band 53a by determining, for example, the power in the unassigned subcarrier band 53 〇 & The receiver, as previously described, can update the estimate previously stored in the memory by averaging the previously stored power level with the most recently measured power level. Alternatively, the power level corresponding to the latest decision of the latest noise and interference estimate can be used to determine the weighted average of the predetermined number of recent chewing and interference estimates. 152684.doc -21· 201145925 For the predetermined duration, for example, this sweat, in the synchronization system * » ^ 1/ g ^}* - The duration of the number, - or multiple subcarriers can be assigned to all transmitters. Therefore, during the symbol time period, the secondary carrier is not assigned to all cells of the particular orthogonal fraction system, and then the secondary carrier is not assigned by the system, and the interface can be in the period in which the transmitter is not transmitting in the frequency band, The noise floor is estimated by determining the power in the subcarrier frequency band (eg, measurement). The receiver can also update the noise estimate by means of an average or weighted average estimate. The receiver can ‘store an estimate of the noise floor at each carrier band. Therefore, the reception buffer periodically updates the noise bottom and the bath tone and the dry = level in each carrier band. 6 is a flow diagram of a method 600 of determining and updating noise and interference levels in a frequency division orthogonal subcarrier frequency band. Method 6 can be implemented in Receive II of an orthogonal fractional multiplex system. The receiver can be, for example, a receiver in a terminal. Alternatively or in addition, the receiver may be, for example, a receiver in a base unit. The method 600 begins at step 602 where the receiver is synchronized with the transmitter in time. The receiver can, for example, synchronize the time reference with the time reference of the transmitter towel. The receiver is required to synchronize with the transmitter for various reasons unrelated to noise estimation. For example, the receiver may need to synchronize with the transmitter to determine the secondary carrier assigned to its communication link during one or more symbol periods. The receiver then proceeds to step 610 where the receiver determines unused or unassigned secondary carriers for the next symbol period. The transmitter can transmit the information to the receiver in an extra burden message. Thus, the message received by the receiver can represent the assigned secondary carrier within a given symbol period. Or 152684.doc ·

S 201145925 者,次載波的指派可以係偽隨機,以及接收器已在先前同 步步驟中將一局部產生的偽隨機序列與發射器同步。在替 代性具體實施例中,接收器基於内部產生的序列(例如局 部產生的偽隨機序列或内部產生的跳頻序列)決定未指派 的次載波。 接收器進行至步驟620,其中接收所發射的正交分率多 工馆號。所接收符號可包括分配給具有接收器之通信鏈路 的此等指派次載波以及未分配給具有接收器之通信鏈路的 次載波。 接收器進行至步驟622,其中接收器將所接收的信號轉 化為基頻正交分率多工信號。所接收的信號通常係使用rf 鏈路作為RF正交分率多工符號無線發射至接收器。接收器 通常將所接收的信號轉換為基頻信號以便於信號處理。 在將所接收的信號轉換為基頻信號後,接收器進行至步 驟624 ’其中將保護間隔從所接收的信號中移除。如先前 關於正交分率多工發射器之說明中所述,***保護間隔以 提供多路徑免疫。 在移除保護間隔之後,接收_器進行至步驟630,其中信 號在ADC中數位化。在數位化信號後,接收器進行至步驟 632 ’其中將信號從串列信號轉換為數個並列信號。並列 信號的數量可與正交分率多工系統中次載波的數量一樣 高,並通常與該數量相等。 在串列至並列轉換之後,接收器進行至步驟640,其中 接收器對並列資料實施FFT。FFT將時域正交分率多工信 152684.doc •23· 201145925 號轉化為頻域中的調變次載波》 接收器進行至步驟650,其中至少部份來自FFT的調變次 載波輸出得以解調變。接收器通常將分配給具有接收器之 通信鏈路的次載波解調變,並解調變未指派之次載波。 接收器隨後進行至步驟66〇,其中偵測未指派之次載波 以提供噪音與干擾估計。若次載波係泛系統未指派次載 波,則偵測到的輸出表示該次載波頻帶的噪音底部之估 計。 接收器隨後進行至步驟67〇並更新儲存在記憶體中的噪 音加干擾與噪音底部估計。如先前所述,接收器可儲存預 疋數量的最新決定噪音加干擾估計,並實施估計之平均。 同樣地,接收器可決定預定數量的最新決定噪音底部估計 的平均。 接收器進行至步驟680,其中將噪音估計傳達至發射 盗。例如,若接收器係一終端機接收器,則終端機接收器 可將噪音估計傳達至基地台收發器中的一發射器。終端機 接收器可首先將噪音估計傳達至一相關聯終端機發射器。 終端機發射器隨後可將噪音估計發射至基地台接收器。基 地台接收器繼而會將噪音估計傳達至基地台發射器。基地 台發射器可使用噪音估計調整發射器在對應於劈音估計的 次載波上所發射的功率位準。 基地台接收H可同樣地藉由首純用基地台發射器發射 噪音估計至終端機接收器,將所接收的噪音估計傳達至終 端機發射器。 152684.docIn S 201145925, the assignment of the secondary carriers may be pseudo-random, and the receiver has synchronized a locally generated pseudo-random sequence with the transmitter in a previous synchronization step. In an alternative embodiment, the receiver determines an unassigned secondary carrier based on an internally generated sequence (e.g., a locally generated pseudo-random sequence or an internally generated hopping sequence). The receiver proceeds to step 620 where the transmitted orthogonal fraction multi-join number is received. The received symbols may include such assigned secondary carriers assigned to a communication link having a receiver and secondary carriers not assigned to a communication link having a receiver. The receiver proceeds to step 622 where the receiver converts the received signal to a fundamental frequency orthogonal rate multiplex signal. The received signal is typically transmitted wirelessly to the receiver using an rf link as an RF orthogonal fractional multiplex symbol. The receiver typically converts the received signal to a baseband signal for signal processing. After converting the received signal to the baseband signal, the receiver proceeds to step 624' where the guard interval is removed from the received signal. The guard interval is inserted to provide multipath immunity as described previously in the description of the orthogonal fractionation multiplex transmitter. After the guard interval is removed, the Receiver proceeds to step 630 where the signal is digitized in the ADC. After digitizing the signal, the receiver proceeds to step 632' where the signal is converted from the serial signal to a plurality of parallel signals. The number of parallel signals can be as high as, and usually equal to, the number of secondary carriers in a quadrature fractional multiplex system. After the serial to parallel conversion, the receiver proceeds to step 640 where the receiver performs an FFT on the parallel data. The FFT converts the time domain orthogonal division rate multiplex signal 152684.doc • 23·201145925 into the modulated subcarrier in the frequency domain. The receiver proceeds to step 650, at least part of which is derived from the FFT modulated subcarrier output. Demodulation changes. The receiver typically demodulates the secondary carrier assigned to the communication link with the receiver and demodulates the unassigned secondary carrier. The receiver then proceeds to step 66, where the unassigned secondary carrier is detected to provide noise and interference estimates. If the secondary carrier system does not assign a secondary carrier, the detected output represents an estimate of the noise floor at that subcarrier frequency band. The receiver then proceeds to step 67 and updates the noise plus interference and noise floor estimates stored in the memory. As previously described, the receiver can store the pre-determined number of latest determined noise plus interference estimates and implement an estimated average. Similarly, the receiver can determine the average of the predetermined number of latest determined noise bottom estimates. The receiver proceeds to step 680 where the noise estimate is communicated to the pirate. For example, if the receiver is a terminal receiver, the terminal receiver can communicate the noise estimate to a transmitter in the base station transceiver. The terminal receiver can first communicate the noise estimate to an associated terminal transmitter. The terminal transmitter can then transmit a noise estimate to the base station receiver. The base station receiver then communicates the noise estimate to the base station transmitter. The base station transmitter can use the noise estimate to adjust the power level transmitted by the transmitter on the secondary carrier corresponding to the arpeggio estimate. The base station receiving H can likewise transmit the noise estimate to the terminal receiver by the first pure base station transmitter, and communicate the received noise estimate to the terminal transmitter. 152684.doc

S ,24- 201145925 在步驟690處’接收器部份基於使用未指派次載波決定 的噪音估計決定隨後所接符號之信號品質。例如,接收器 可估計一未指派次載波之噪音加干擾之估計。在下一符號 週期,接收器可在相同的先前未指派次載波上接收符號。S, 24-201145925 At step 690, the receiver portion determines the signal quality of the subsequently connected symbols based on the noise estimate determined using the unassigned secondary carrier. For example, the receiver can estimate an estimate of the noise plus interference for an unassigned secondary carrier. At the next symbol period, the receiver can receive symbols on the same previously unassigned secondary carrier.

接收器隨後可部份基於先前決定之噪音估計決定諸如C/I 或SINR的信號品質。同樣地,當接收器決定噪音底部估計 時,接收器能決定隨後於相同次載波上接收之符號的 SNR 〇 由於未指派次載波的數量與位置通常隨機地或偽隨機地 變化,接收器能週期性地更新正交分率多工系統中各次載 波頻帶之噪音加干擾及噪音底部估計。接收器因而可產生 並更新噪音加干擾及噪音底部之估計(其可傳達至 級)以最小化CCI。 已參考各種裝置或元件說明電性連接、耦合與連接。連 接以及耦合可以係直接亦可係間接。第一與第二裝置之間 的連接可以係直接連接亦可係間接連接。間接連接可包括 可處理從第一裝置至第二裝置之信號的内插元件。 一熟習技術人士會瞭解’可使用任何不同科技及技術代表 資訊及信號。例如,以上說明中可能提及的資料、指人、 命令、資訊、信號、位元、符號及晶片可由電壓、電流、 電磁波、磁場或磁粒子、光場或光粒子或任何其組i 示。 的 熟習技術人士可以瞭解結合本文揭露 各種說明性邏輯組塊、模組、電路、 的具體實施例說 及凟算法步驟可 明 以 1526S4.doc -25- 201145925 電子硬體、電腦軟體或兩者的組合來實現。為了清楚說明 硬體及軟體之此互通性’以上已就其功能性總體說明各種 說明性組件、組塊、模組、電路及步驟。此類功能係實施 為硬體或軟體取決於整體系統所用的特定應用及設計限 制。熟習技術人士可以用各特別應用的不同方法實現所述 功此,但不應視為能背離本發明範圍。 結合在此揭示的具體實施例所說明的各種說明性邏輯組 塊、模組及電路,可採用通用處理器、一數位信號處理器 (DSP)、一特定應用積體電路(ASIC)、一現場可程式化閘 極陣列(FPGA)或其他可程式化邏輯裝置、離㈣極或電晶 體邏輯、離散硬體組件或設計用以執行在此說明的功能之 任何組合來實施或執行。一通用處理器可以為一微處理 器’但是在另-項具體實施例中,該處理器可以為任一處 理器、控制器、微控制器或狀態機。一處理器也可以實施 為-電腦裝置的組合,例如,一Dsp及一微處理器組合、 複數個微處理器、一或更多微處理器連結一 DSP核心或任 何其他配置結構。The receiver can then determine the signal quality, such as C/I or SINR, based in part on previously determined noise estimates. Similarly, when the receiver determines the noise bottom estimate, the receiver can determine the SNR of the symbols subsequently received on the same secondary carrier. 〇 The receiver can cycle periodically because the number and location of unassigned secondary carriers typically change randomly or pseudo-randomly. The noise plus interference and noise floor estimation of each subcarrier frequency band in the orthogonal fractional multiplex system are updated. The receiver can thus generate and update an estimate of the noise plus interference and noise floor (which can be communicated to the stage) to minimize CCI. Electrical connections, couplings, and connections have been described with reference to various devices or components. Connections and couplings can be direct or indirect. The connection between the first and second devices may be either a direct connection or an indirect connection. The indirect connection can include an interpolating element that can process signals from the first device to the second device. A skilled person will understand that 'different technology and technology can be used to represent information and signals. For example, the materials, persons, commands, information, signals, bits, symbols, and wafers that may be mentioned in the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or light particles, or any combination thereof. Those skilled in the art will appreciate that the various illustrative logical blocks, modules, circuits, and embodiments of the present disclosure can be understood to be 1526S4.doc -25-201145925 electronic hardware, computer software, or both. Combined to achieve. To clearly illustrate this interoperability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above in terms of their functionality. The implementation of such functionality as hardware or software depends on the specific application and design constraints used in the overall system. It will be apparent to those skilled in the art that the present invention can be practiced in various ways in various specific applications, but should not be construed as departing from the scope of the invention. In conjunction with the various illustrative logical blocks, modules, and circuits illustrated in the specific embodiments disclosed herein, a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field may be employed. A programmable gate array (FPGA) or other programmable logic device, off-tetra (polar) or transistor logic, discrete hardware components, or any combination of functions designed to perform the functions described herein can be implemented or executed. A general purpose processor may be a microprocessor 'but in another embodiment, the processor may be any processor, controller, microcontroller or state machine. A processor can also be implemented as a combination of computer devices, e.g., a Dsp and a microprocessor combination, a plurality of microprocessors, one or more microprocessors coupled to a DSP core or any other configuration.

結合在此揭示的該等具體實施而說明的一方法或演算法 之步驟可直接在硬體、在由一處理器執行的一軟體模組或 在該等二者之一組合中執行。軟體模組可駐留於RAM記憶 體、快閃記憶體、ROM記憶體、EPR〇M記憶體' EEpR〇M °己隐體、暫存器、硬碟、可抽取磁碟、CD-ROM、或此技 術中所熟知之任何其他形式的儲存媒體巾。—種示範性儲 存媒體係_合至處理器,以致於處理器可自儲存媒體中讀 152684.docThe method or algorithm steps described in connection with the specific implementations disclosed herein can be performed directly in hardware, in a software module executed by a processor, or in a combination of the two. The software module can reside in RAM memory, flash memory, ROM memory, EPR 〇M memory ' EEpR 〇 M ° crypto, scratchpad, hard disk, removable disk, CD-ROM, or Any other form of storage media towel known in the art. An exemplary storage medium is coupled to the processor so that the processor can read from the storage medium 152684.doc

S • 26 _ 201145925 取資訊,以及寫入資訊到儲存媒體。在另外的範例中,該 儲存媒體可與該處理器整合。該處理器及該儲存媒體可駐 留於一 ASIC中。 上述對該等已揭露之具體實施例所作的說明可讓熟習技 術人士製造或利用本發明。熟習技術人士應明白該等具體 實施例可進行各種修改,而且在此定義的一般原理可應用 於其他具體實施例而不背離本發明之精神或範嘴。因此, 本發明並不意味著受限於本文所示的該等具體實施例,而 係符合與在此揭示的該等原理及新穎特徵相一致的最廣範 疇。 【圖式簡單說明】 檢視以上詳細說明與隨附圖式之後,本發明之上述方面 及其他方面、特徵與優點即將顯而易見。在圖式中,相同 參考字元表示相同或功能等效之元件。 圖1係一典型正交分率多工系統之功能性頻率時間表 示〇 圖2係在蜂巢環境中實施的正交分率多工系統之功能性 方塊圖。 圖3係正交分率多工發射器之功能性方塊圖。 圖4A至4B係正交分率多工接收器之功能性方塊圖。 圖5係正交分率多工頻帶之部份的頻譜圖。 圖6係決定正交分率多工系統之噪音與干擾之方法的流 程圖。 【主要元件符號說明】 152684.doc •27· 201145925 110a至110η 正交分率多工符號 120 頻譜 130a、130b、130c、130d 載波 132a、132b、132c、132d 載波 200 正交分率多工無線通信系統 202a至202g 細胞 210a至210g 基地台 212d 基地收發器子系統 220a至220〇 終端機 300 ' 300d ' 300m 正交分率多工發射器 302 資料源 310 調變器 312 次載波指派模組 320 多工器 330 反向快速傅立葉轉換模組 332 匯流排 340 解多工器 400 、 400d 、 400m 正交分率多工接收器 402 天線 410 接收器 420 保護移除模組 422 類比至數位轉換器 424 多工器 430 152684.doc -28- 快速傅立葉轉換模組S • 26 _ 201145925 Take information and write information to the storage medium. In another example, the storage medium can be integrated with the processor. The processor and the storage medium can reside in an ASIC. The above description of the specific embodiments disclosed herein will enable those skilled in the art to make or use the invention. A person skilled in the art will appreciate that the specific embodiments can be variously modified, and the general principles defined herein can be applied to other specific embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not intended to be limited to the specific embodiments shown herein, but is to be accorded to the broadest scope of the principles and novel features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS The above aspects and other aspects, features and advantages of the present invention will become apparent from the Detailed Description of the Drawing. In the drawings, the same reference characters indicate the same or functionally equivalent elements. Figure 1 is a functional frequency schedule of a typical orthogonal fractional multiplex system. Figure 2 is a functional block diagram of an orthogonal fractional multiplex system implemented in a cellular environment. Figure 3 is a functional block diagram of an orthogonal fractional multiplex transmitter. 4A to 4B are functional block diagrams of orthogonal fractional multiplex receivers. Figure 5 is a spectrogram of a portion of an orthogonal fractional multiplexed frequency band. Figure 6 is a flow diagram of a method of determining noise and interference in an orthogonal fractional multiplex system. [Description of main component symbols] 152684.doc •27· 201145925 110a to 110η orthogonal division multiplex symbol 120 spectrum 130a, 130b, 130c, 130d carrier 132a, 132b, 132c, 132d carrier 200 orthogonal division multiplex wireless communication System 202a to 202g cells 210a to 210g base station 212d base transceiver subsystem 220a to 220 〇 terminal machine 300 ' 300d ' 300m orthogonal rate multiplex transmitter 302 data source 310 modulator 312 subcarrier assignment module 320 Counter 330 Reverse Fast Fourier Transform Module 332 Bus 340 Demultiplexer 400, 400d, 400m Orthogonal Frequency Division Multiplexer 402 Antenna 410 Receiver 420 Protection Removal Module 422 Analog to Digital Converter 424 430 152684.doc -28- Fast Fourier Transform Module

S 201145925 440 解調變器 450 偵測器 460 處理器 470 記憶體 480 渡波器 490 偵測器 494 ADC 500 正交分率多工頻帶 520 終端機 502a至 502d 頻帶 510a至 510c 次頻帶 522a至 522d 頻帶 530a至 530c 次頻帶 542a至 542c 頻帶 550a至 550e 次頻帶 562a至 562c 頻帶 600 方法 602 步驟 610 步驟 620 步驟 622 步驟 624 步驟 630 步驟 632 步驟 152684.doc •29- 201145925 640 步驟 650 步驟 660 步驟 670 步驟 680 步驟 690 步驟 -30- 152684.doc sS 201145925 440 Demodulator 450 Detector 460 Processor 470 Memory 480 Wave 490 Detector 494 ADC 500 Orthogonal Frequency Division multiplex Band 520 Terminals 502a to 502d Bands 510a to 510c Subbands 522a to 522d Band 530a to 530c sub-band 542a to 542c band 550a to 550e sub-band 562a to 562c band 600 Method 602 Step 610 Step 620 Step 622 Step 624 Step 630 Step 632 Step 152684.doc • 29- 201145925 640 Step 650 Step 660 Step 670 Step 680 Step 690 Steps -30- 152684.doc s

Claims (1)

201145925 七、申請專利範圍: 1. 種估计一正交分率多工(OFDM)系統之噪音之方法, 該方法包含: 偵測一未指派次載波頻帶中OFDM符號之一已接收功 率; δ十算該已接收功率及至少一先前儲存已接收功率量測 之加權平均,以產生對應於該未指派次載波頻帶之一 市音估計,其中該加權平均基於該至少一先前儲存已接 收功率量測之一時間使用權重;及 通仏該噪音估計至傳輸該等〇FDM符號之一傳輸器, 其中該傳輸器基於該噪音估計調整一傳輸功率。 2. 如凊求項1之方法,其進一步包含: 在偵測該已接收功率前解調變該等OFDM符號。 3. 如明求項2之方法’其中該〇FDM通信系統係用於建置一 預定跳頻序列之一跳頻系統。 4. 如睛求項3之方法’其中該未指派次載波頻帶於每一該 等OFDM符號之邊界處改變。 5. 如請求項丨之方法,其中該偵測步驟包含偵測該未指派 波頻帶中一幅度、一振幅或一平方幅度之一。 6_如請求項1之方法,其中該偵測步驟包含偵測一四分之 一相差成分之一平方與一同相成分之一平方之一和。 7.如請求項1之方法,其進一步包含: 轉換該等OFDM符號為基頻OFDM符號; 自該等基頻OFDM符號移除一保護間隔; 152684.doc 201145925 在一時間域中轉換該等基頻OFDM符號為數位基頻 OFDM符號;及 使用一傅立葉轉換(FFT)轉換該等數位基頻OFDM符號 為已調變次載波。 8. 9. 10. 11. 如請求項1之方法,其進一步包含: 部分基於一内部已產生序列決定該未指派次載波頻 帶。 如請求項8之方法,其進一步包含: 若該未指派次載波頻帶不包含一系統寬未指派次載波 頻帶,儲存所偵測之該已接收功率作為一噪音加上干擾 估計;及 若該未指派次載波頻道包含該系統寬未指派次載波頻 帶,儲存所偵測之該已接收功率作為一噪音層估計。 如4求項9之方法’其進一步包含與該傳輸器同步一時 間參考。 一用於估計一正交分率多工(0FDM)系統之噪音之設 備,該設備包含: 々偵測H ’其用於偵測—未指派次載波頻帶中沉譲 符號之一已接收功率; 處理器’其用於計算該已接收功率及至少—先前儲 存已接收功率量測之—加權平均,以產生對應於該未指 =载^帶之—噪音估計,其中該加權平均基於該至 先月j儲存已接收功率量測之一時間使用若干個 重;及 152684.doc 201145925 一天線,其用於通信該噪音估計至傳輸該等OFDM符 號之一傳輸器,其中該傳輸器基於該嗓音估計調整一傳 輸功率。 12. 如請求項丨丨之設備,其進一步包含一解調變器,其用於 在债測該已接收功率前解調變該等OFDM符號。 13. 如請求項12之設備,其中該〇fdm通信系統係用於建置 一預定跳頻序列之一跳頻系統。 14. 如請求項13之設備,其中該未指派次載波頻帶於每一該 等OF〇M符號之邊界處改變。 1 5.如請求項丨丨之設備,其中該偵測器包含偵測該未指派波 頻帶中—幅度、一振幅或一平方幅度之一。 1 6_如請求項丨丨之設備,其中該偵測器進一步組態成用以決 定一四分之一相差成分之一平方與一同相成分之一平方 之一和D 17.如請求項丨丨之設備,其進一步包含: 一接收器,其用於轉換該等OFDM符號為基頻OFDM 符號; 一保護移除模組,其用於自該等基頻OFDM符號移除 一保護間隔; 一類比數位轉換器(ADC),其用於在一時間域中轉換 該等基頻OFDM符號為數位基頻OFDM符號;及 一傅力葉轉換(FFT)模組’其用於使用一傅立葉轉換 (FFT)轉換該等數位基頻0FDM符號為已調變次載波。 18·如請求項11之設備’其中該處理器進一步經組態以部分 ]52684.doc 201145925 一 s 土; 一内部已產生序列決定該未指派次載波頻帶。 19.如叫求項18之設備,其該處理器進一步經組態以使用一 。己憶體用來:若該未指派次載波頻帶不包含一系統寬未 才曰派-欠載波頻帶,儲存所偵測之該已接收功率作為一噪 曰加上干擾估計,及若該未指派次載波頻道包含該系統 寬未扣派次載波頻帶,儲存所偵測之該已接收功率作為 一噪音層估計《> 2〇.如明求項19之設備,其中該處理器進一步經組態以與該 傳輸器同步一時間參考。 21.種估計一正交分率多工(0FDM)系統之噪音之設備, 該设備包含: 用於偵測一未指派次載波頻帶中OFDM符號之一已接 收功率之構件; 用於計算該已接收功率及至少一先前儲存已接收功率 量測之一加權平均之構件,以產生對應於該未指派次載 波頻帶之一噪音估計’其中該加權平均基於該至少一先 前儲存已接收功率量測之一時間使用若干個權重;及 。用於通k該噪音估計至傳輸該等〇fdm符號之一傳輸 器之構件,其中該傳輸器基於該噪音估計調整一傳輸功 率。 22. 如吋求項21之设備,其進一步包含用於在偵測該已接收 功率前解調變該等OFDM符號之構件。 23. 如請求項22之設備,其中該〇ρΌΜ通信系統係用於建置 一預定跳頻序列之一跳頻系統。 I52684.doc S -4 201145925 24.如請求項23之設備,其中該未指浓次載波頻帶於每一該 等OFDM符號之邊界處改變。 2 5 ·如請求項21之設備,其中該彳貞測構件包含彳貞測該未指派 波頻帶中一幅度、一振幅或一平方幅度之一。 26·如請求項21之設備’其中該偵測構件包含偵測一四分之 一相差成分之一平方與一同相成分之一平方之一和。 27·如請求項21之構件,其進一步包含: 用於轉換该專OFDM符號為基頻OFDM符號之構件; 用於自該等基頻OFDM符號移除一保護間隔之構件; 用於在一時間域中轉換該等基頻OFDM符號為數位基 頻OFDM符號之構件;及 用於使用一傅立葉轉換(FFT)轉換該等數位基頻〇fdm 符號為已調變次載波之構件。 28. 如§青求項21之設備,其進一步包含用於部分基於一内部 已產生序列決定該未指派次載波頻帶之構件。 29. 如請求項28之設備,其進一步包含: 若該未指派次載波頻帶不包含一系統寬未指派次载波 頻帶’用於儲存所偵測之該已接收功率作為一噪音加上 干擾估計之構件;及 若該未指派次載波頻道包含該系統寬未指派次載波頻 帶’用於儲存所偵測之該已接收功率作為—嗔音層估士十 之構件。 30. 如請求項29之設備’其進一步包含用於與該傳輸器同步 一時間參考之構件。 152684.doc 201145925 31. —種儲存有一電腦程式之電腦可讀取媒體,其中該電腦 程式之執行係用於: 谓測一未指派次載波頻帶中0FDM符號之一已接收功 率; 計算該已接收功率及至少一先前儲存以接收功率量測 之一加權平均,以產生對應於該未指派次載波頻帶之一 哚音估計,其中該加權平均基於該至少一先前儲存已接 收功率量測之一時間使用若干個權重;及 通信該噪音估計至傳輸該等〇FDM符號之一傳輸器, 其中s亥傳輸器基於該噪音估計調整一傳輸功率。 152684.doc S •6201145925 VII. Patent Application Range: 1. A method for estimating noise of an orthogonal division ratio multiplex (OFDM) system, the method comprising: detecting a received power of an OFDM symbol in an unassigned subcarrier frequency band; Calculating a weighted average of the received power and the at least one previously stored received power measurement to generate a traffic estimate corresponding to the unassigned secondary carrier frequency band, wherein the weighted average is based on the at least one previously stored received power measurement One of the time uses the weight; and the noise is estimated to transmit to one of the 〇FDM symbols, wherein the transmitter adjusts a transmission power based on the noise estimate. 2. The method of claim 1, further comprising: demodulating the OFDM symbols prior to detecting the received power. 3. The method of claim 2 wherein the 〇FDM communication system is used to construct a frequency hopping system of a predetermined frequency hopping sequence. 4. The method of claim 3 wherein the unassigned subcarrier frequency band changes at the boundary of each of the OFDM symbols. 5. The method of claim 1, wherein the detecting step comprises detecting one of an amplitude, an amplitude, or a squared amplitude in the unassigned wave band. 6) The method of claim 1, wherein the detecting step comprises detecting a sum of a square of one of the phase difference components and a square of one of the in-phase components. 7. The method of claim 1, further comprising: converting the OFDM symbols to a baseband OFDM symbol; removing a guard interval from the baseband OFDM symbols; 152684.doc 201145925 Converting the bases in a time domain The frequency OFDM symbols are digital baseband OFDM symbols; and the Fourier transform (FFT) is used to convert the digital base frequency OFDM symbols into modulated subcarriers. 8. 9. 10. 11. The method of claim 1, further comprising: determining the unassigned subcarrier frequency band based in part on an internally generated sequence. The method of claim 8, further comprising: if the unassigned subcarrier band does not include a system wide unassigned subcarrier band, storing the detected received power as a noise plus interference estimate; and if the The assigned subcarrier channel includes the system wide unassigned subcarrier frequency band, and the detected received power is stored as a noise floor estimate. The method of claim 9, which further comprises synchronizing a reference with the transmitter. A device for estimating the noise of an orthogonal fractional multiplex (OFDM) system, the device comprising: 々 detecting H' for detecting - one of the sinking symbols in the unassigned subcarrier band has received power; The processor 'is used to calculate the received power and at least - the previously stored received power measurement - a weighted average to generate a noise estimate corresponding to the unreferenced = carrier band, wherein the weighted average is based on the previous month j storing a received power measurement at a time using a plurality of weights; and 152684.doc 201145925 an antenna for communicating the noise estimate to one of the transmitters transmitting the OFDM symbols, wherein the transmitter adjusts based on the arpeggio estimate A transmission power. 12. The device of claim 1, further comprising a demodulation transformer for demodulating the OFDM symbols prior to the debt measurement of the received power. 13. The device of claim 12, wherein the 〇fdm communication system is for constructing a frequency hopping system of a predetermined frequency hopping sequence. 14. The apparatus of claim 13, wherein the unassigned subcarrier frequency band changes at a boundary of each of the OF 〇 M symbols. 1 5. The device of claim 1, wherein the detector comprises detecting one of an amplitude, an amplitude, or a squared amplitude in the unassigned wave band. 1 6_ The device of claim 1 wherein the detector is further configured to determine one of a square of a phase difference component and one of a square component of the in-phase component and D 17. as claimed. The device further includes: a receiver for converting the OFDM symbols into a baseband OFDM symbol; a protection removal module for removing a guard interval from the baseband OFDM symbols; An analog-to-digital converter (ADC) for converting the baseband OFDM symbols into digital baseband OFDM symbols in a time domain; and a Fourier transform (FFT) module for using a Fourier transform (FFT) Converting the digital base frequency OFDM symbols to modulated subcarriers. 18. The device of claim 11 wherein the processor is further configured to be partially 52684.doc 201145925 a s earth; an internally generated sequence determines the unassigned subcarrier band. 19. The device of claim 18, wherein the processor is further configured to use one. The memory is used to: if the unassigned subcarrier frequency band does not include a system wide non-derivative-under carrier frequency band, store the detected received power as a noise plus interference estimation, and if the unassigned The subcarrier channel includes the system wide un-deducted subcarrier frequency band, and the detected received power is stored as a noise layer estimation. > 2〇. The device of claim 19, wherein the processor is further configured Synchronize with the transmitter for a time reference. 21. Apparatus for estimating noise of an orthogonal fractional multiplex (OFDM) system, the apparatus comprising: means for detecting received power of one of OFDM symbols in an unassigned subcarrier frequency band; Means of received power and at least one weighted average of one of the previously stored received power measurements to generate a noise estimate corresponding to the unassigned secondary carrier frequency band, wherein the weighted average is based on the at least one previously stored received power measurement One time uses several weights; and. The means for estimating the noise to a transmitter transmitting one of the 〇fdm symbols, wherein the transmitter adjusts a transmission power based on the noise estimate. 22. The device of claim 21, further comprising means for demodulating the OFDM symbols prior to detecting the received power. 23. The device of claim 22, wherein the communication system is for constructing a frequency hopping system of a predetermined frequency hopping sequence. 24. The device of claim 23, wherein the unrestricted rich carrier frequency band changes at a boundary of each of the OFDM symbols. The device of claim 21, wherein the detecting component comprises detecting one of an amplitude, an amplitude, or a squared amplitude in the unassigned wave band. 26. The device of claim 21 wherein the detecting means comprises detecting a sum of a square of one of the phase difference components and a square of one of the in-phase components. 27. The component of claim 21, further comprising: means for converting the dedicated OFDM symbol to a baseband OFDM symbol; means for removing a guard interval from the baseband OFDM symbols; Transforming the baseband OFDM symbols into components of a digital baseband OFDM symbol; and means for converting the equal-bit fundamental frequency 〇fdm symbols to modulated subcarriers using a Fourier transform (FFT). 28. The apparatus of claim 21, further comprising means for determining the unassigned subcarrier frequency band based in part on an internally generated sequence. 29. The device of claim 28, further comprising: if the unassigned subcarrier band does not include a system wide unassigned subcarrier band 'for storing the detected received power as a noise plus interference estimate And if the unassigned secondary carrier channel includes the system wide unassigned secondary carrier frequency band 'for storing the detected received power as a component of the sound layer. 30. The device of claim 29, which further comprises means for synchronizing a time reference with the transmitter. 152684.doc 201145925 31. A computer readable medium storing a computer program, wherein the computer program is executed to: predict the received power of one of the 0FDM symbols in an unassigned subcarrier frequency band; calculate the received And a weighted average of at least one previously stored to receive power measurement to generate a voice estimate corresponding to the unassigned secondary carrier band, wherein the weighted average is based on the at least one previously stored received power measurement Using a plurality of weights; and communicating the noise estimate to one of the transmitters transmitting the 〇FDM symbols, wherein the sig-transmitter adjusts a transmission power based on the noise estimate. 152684.doc S •6
TW100115537A 2003-05-14 2004-05-14 Interference and noise estimation in an ofdm system TWI459773B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47072403P 2003-05-14 2003-05-14
US10/809,538 US8477592B2 (en) 2003-05-14 2004-03-24 Interference and noise estimation in an OFDM system

Publications (2)

Publication Number Publication Date
TW201145925A true TW201145925A (en) 2011-12-16
TWI459773B TWI459773B (en) 2014-11-01

Family

ID=33479265

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100115537A TWI459773B (en) 2003-05-14 2004-05-14 Interference and noise estimation in an ofdm system
TW093113587A TWI369877B (en) 2003-05-14 2004-05-14 Method and apparatus of interference and noise estimation in an ofdm system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW093113587A TWI369877B (en) 2003-05-14 2004-05-14 Method and apparatus of interference and noise estimation in an ofdm system

Country Status (18)

Country Link
US (1) US8477592B2 (en)
EP (1) EP1623195B1 (en)
JP (1) JP4611990B2 (en)
KR (1) KR101119766B1 (en)
CN (1) CN1823485B (en)
AU (1) AU2004241441B2 (en)
BR (1) BRPI0410256B1 (en)
CA (1) CA2525805C (en)
CL (1) CL43761B (en)
ES (1) ES2708822T3 (en)
HU (1) HUE042789T2 (en)
IL (2) IL171916A (en)
MX (1) MXPA05012531A (en)
NO (1) NO20055917L (en)
NZ (1) NZ543583A (en)
RU (1) RU2005138861A (en)
TW (2) TWI459773B (en)
WO (1) WO2004104530A2 (en)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996763B2 (en) * 2003-01-10 2006-02-07 Qualcomm Incorporated Operation of a forward link acknowledgement channel for the reverse link data
US8081598B2 (en) * 2003-02-18 2011-12-20 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8150407B2 (en) * 2003-02-18 2012-04-03 Qualcomm Incorporated System and method for scheduling transmissions in a wireless communication system
US7660282B2 (en) * 2003-02-18 2010-02-09 Qualcomm Incorporated Congestion control in a wireless data network
US7155236B2 (en) 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8391249B2 (en) * 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US8023950B2 (en) 2003-02-18 2011-09-20 Qualcomm Incorporated Systems and methods for using selectable frame durations in a wireless communication system
US20040160922A1 (en) * 2003-02-18 2004-08-19 Sanjiv Nanda Method and apparatus for controlling data rate of a reverse link in a communication system
US7286846B2 (en) * 2003-02-18 2007-10-23 Qualcomm, Incorporated Systems and methods for performing outer loop power control in wireless communication systems
US8705588B2 (en) 2003-03-06 2014-04-22 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US7215930B2 (en) * 2003-03-06 2007-05-08 Qualcomm, Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US8452316B2 (en) * 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US7197692B2 (en) 2004-06-18 2007-03-27 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
CN102868511B (en) * 2004-10-29 2016-08-03 夏普株式会社 Communication means and transmitting set
EP1843497B1 (en) 2005-01-18 2018-06-20 Sharp Kabushiki Kaisha Wireless communication apparatus and wireless communication method
US8848574B2 (en) * 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US8942639B2 (en) 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US8769046B2 (en) 2005-03-23 2014-07-01 Qualcomm Incorporated Methods and apparatus for using multiple wireless links with a wireless terminal
US7787897B2 (en) * 2005-05-23 2010-08-31 Cisco Technology, Inc. Method for up-link transmit power management in a wireless broadband terminal
US8000302B2 (en) * 2005-06-23 2011-08-16 Qualcomm Incorporated Adaptive multi-channel modem
KR100648926B1 (en) * 2005-07-11 2006-11-27 삼성전자주식회사 Image forming apparatus having function of embedding user identification information into scan data and method thereof
US7813409B2 (en) * 2005-09-27 2010-10-12 Nortel Networks Limited Secure network using orthogonal frequency division multiplexing spread spectrum communications
JP5430938B2 (en) * 2005-10-27 2014-03-05 クゥアルコム・インコーポレイテッド Method and apparatus for estimating reverse link loading in a wireless communication system
US8385435B2 (en) * 2006-02-09 2013-02-26 Broadcom Corporation Measuring interference and noise power using non-content burst periods
US8260340B2 (en) * 2006-02-17 2012-09-04 Alcatel Lucent Methods of reverse link power control
KR100679836B1 (en) * 2006-03-02 2007-02-06 엘지전자 주식회사 Method for discriminating interference between channels in short range communication
JP2007329588A (en) * 2006-06-06 2007-12-20 Fujitsu Ltd Transmission apparatus and transmission method
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
KR101016469B1 (en) 2006-10-24 2011-02-24 콸콤 인코포레이티드 Guard independent signal mapping
US8588054B2 (en) 2006-10-26 2013-11-19 Qualcomm Incorporated Silence intervals in wireless communications
JP2008193223A (en) * 2007-02-01 2008-08-21 Sanyo Electric Co Ltd Estimating method and estimating device using the same, and reception device and radio reception system
JP4633189B2 (en) * 2007-03-16 2011-02-16 株式会社エヌ・ティ・ティ・ドコモ COMMUNICATION SYSTEM, TRANSMISSION DEVICE, COMMUNICATION METHOD
US8290439B2 (en) * 2007-06-28 2012-10-16 Intel Corporation Systems and methods for cross-platform radio frequency interference mitigation
EP2509267B1 (en) * 2007-08-15 2015-02-11 Marvell World Trade Ltd. Pilot design for universal frequency reuse in cellular orthogonal frequency-division multiplexing systems
WO2009052754A1 (en) * 2007-10-16 2009-04-30 Mediatek Inc. Interference measurement mechanism for frequency reuse in cellular ofdma systems
US9125163B2 (en) 2007-11-16 2015-09-01 Qualcomm Incorporated Persistent interference mitigation in a wireless communication
CN101471737B (en) * 2007-12-25 2013-04-10 大唐移动通信设备有限公司 Method and device for regulating calibration transmission power
CN102007743B (en) * 2008-02-13 2015-04-08 电视广播有限公司 Band-efficient method and system for transmitting/receiving a communication signal using a channel band
JP4894950B2 (en) * 2008-03-04 2012-03-14 富士通株式会社 Broadcast equipment
US8543149B2 (en) * 2008-04-04 2013-09-24 Samsung Electronics Co., Ltd Message-based approach for improved interference power estimation
US8351367B2 (en) * 2008-04-24 2013-01-08 Marvell World Trade Ltd. Signaling of unused resources
US7848221B2 (en) * 2008-07-14 2010-12-07 Motorola Mobility, Inc. Method and system for detecting adjacent channel interference from OFDM/OFDMA based broadband wireless access
JP5030891B2 (en) * 2008-08-19 2012-09-19 日本電信電話株式会社 Noise power estimation apparatus, reception apparatus, noise power estimation method, and reception method
US8971241B2 (en) * 2008-09-30 2015-03-03 Qualcolmm Incorporated Techniques for supporting relay operation in wireless communication systems
US9203564B2 (en) * 2008-10-20 2015-12-01 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
US8761227B2 (en) 2008-10-27 2014-06-24 Snu R & Db Foundation Apparatus and method for avoiding interference noise in FHSS system
CN101789816B (en) * 2009-01-22 2012-12-05 北京信威通信技术股份有限公司 Method and device for detecting symbols of OFDMA multiaerial system
US9160426B2 (en) * 2009-04-24 2015-10-13 Electronics And Telecommunications Research Institute Cooperative communication method in cellular wireless communication system and terminal for performing the method
GB2470771B (en) * 2009-06-05 2012-07-18 Picochip Designs Ltd A method and device in a communication network
CN101599939B (en) * 2009-07-10 2011-09-28 北京天碁科技有限公司 Method and device for estimating reference signal received power of orthogonal frequency division multiplexing system
US8929324B2 (en) 2009-07-16 2015-01-06 Qualcomm Incorporated Facilitating noise estimation in wireless communication
CN102006603B (en) * 2009-08-28 2015-05-13 中兴通讯股份有限公司 Transmission power obtaining method and channel quality/interference intensity measuring method and system
CN102055704B (en) 2009-11-10 2013-05-08 中兴通讯股份有限公司 Method and device for noise estimation in orthogonal frequency division multiplexing (OFDM) system
CN102130870B (en) * 2010-01-15 2013-04-17 华为技术有限公司 Method and device for measuring interference
CN102143505B (en) * 2010-02-03 2013-10-02 华为技术有限公司 Method, device and system for measuring carrier wave polymerization cell
CN101867961B (en) * 2010-06-21 2015-06-03 中兴通讯股份有限公司 Method, device and system for measuring antenna aperture background noise of base station
KR101480531B1 (en) * 2010-09-13 2015-01-08 한국전자통신연구원 Apparatus and method for controling subcarrier spacing in wireless communication system
RU2469488C1 (en) * 2011-06-08 2012-12-10 Открытое акционерное общество "Научно-производственное объединение "Импульс" Method of radio signal demodulation with phase difference modulation
US9564980B2 (en) 2011-09-09 2017-02-07 Samsung Electronics Co., Ltd. Mobile telecommunication system with noise ratio estimation mechanism and method of operation thereof
US8565181B2 (en) 2012-02-06 2013-10-22 Neocific, Inc. Methods and apparatus for multi-carrier communications with efficient control signaling
WO2013136512A1 (en) * 2012-03-16 2013-09-19 富士通株式会社 Light transmission apparatus and light transmission method
US9219509B1 (en) * 2012-05-04 2015-12-22 Rambus Inc. System performance improvement using data reordering and/or inversion
KR101442515B1 (en) * 2013-06-17 2014-10-22 주식회사 엠티아이 Apparatus for detecting spurious wave and method of the same
DE102014103853B4 (en) * 2014-03-20 2016-02-18 Intel IP Corporation A method and apparatus for noise source timing detection and estimation of noise and noise parameters
US9537575B2 (en) 2014-08-08 2017-01-03 Nxgen Partners Ip, Llc Modulation and multiple access technique using orbital angular momentum
US9473253B1 (en) 2015-05-22 2016-10-18 Qualcomm Incorporated Robust active self-interference cancellation in the presence of external in-band signals using guard region signal measurements
BR112019006157A2 (en) * 2016-09-29 2019-08-20 Huawei Tech Co Ltd random access preamble sequence generation method and user equipment
US10651928B2 (en) * 2017-12-20 2020-05-12 Hughes Network Systems, Llc System and method of adaptive interference avoidance in multi-beam satellite communications network
US11962358B2 (en) * 2022-03-31 2024-04-16 Dell Products, L.P. Power detection in the frequency domain on a subcarrier by subcarrier basis

Family Cites Families (316)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2149518A (en) 1937-05-25 1939-03-07 Sr Thomas Frank Line holding device
BE653080A (en) 1963-09-17 1964-12-31
US4768023A (en) 1987-03-12 1988-08-30 Xie Alex J Diaper wetness signalling system
CN1031540C (en) 1990-09-19 1996-04-10 菲利浦光灯制造公司 Record carrier on which main data file and control file have been recorded, method of and device for recording main dta file and control file and device for reading record carrier
GB9023605D0 (en) 1990-10-30 1990-12-12 British Telecomm Digital radio
IL100213A (en) 1990-12-07 1995-03-30 Qualcomm Inc CDMA microcellular telephone system and distributed antenna system therefor
US5210770A (en) 1991-09-27 1993-05-11 Lockheed Missiles & Space Company, Inc. Multiple-signal spread-spectrum transceiver
AU678961B2 (en) 1991-11-22 1997-06-19 Alcon Laboratories, Inc. Angiostatic steroids
EP0559348A3 (en) 1992-03-02 1993-11-03 AT&T Corp. Rate control loop processor for perceptual encoder/decoder
JP3251640B2 (en) 1992-06-18 2002-01-28 株式会社東芝 Data transmission method and device
US5404355A (en) 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
US5406585A (en) 1992-11-30 1995-04-11 Motorola, Inc. Method and apparatus for trellis decoding in a multiple-access system
MY121989A (en) 1992-12-14 2006-03-31 Ironbar Pty Ltd Tie device, and anapparatus and method for tying said tie device
US5553062A (en) 1993-04-22 1996-09-03 Interdigital Communication Corporation Spread spectrum CDMA interference canceler system and method
US5394433A (en) 1993-04-22 1995-02-28 International Business Machines Corporation Frequency hopping pattern assignment and control in multiple autonomous collocated radio networks
IT1270938B (en) 1993-05-14 1997-05-16 Cselt Centro Studi Lab Telecom PROCEDURE FOR THE CONTROL OF THE TRANSMISSION ON A SAME CHANNEL OF INFORMATION FLOWS AT VARIABLE SPEED IN COMMUNICATION SYSTEMS BETWEEN MOBILE VEHICLES, AND A SYSTEM USING SUCH PROCEDURE
US5463342A (en) 1993-09-30 1995-10-31 Westinghouse Electric Corp. Method and apparatus for enhancing signal-to-noise ratio and improving sensitivity and signal detector employing same
SE503548C2 (en) 1993-10-01 1996-07-01 Telia Ab Device in OFDM multi-user system
ZA948133B (en) 1993-10-28 1996-05-17 Qualcomm Inc Method and apparatus for reducing the average transmit power from a sectorized base station
US5490165A (en) 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
US6157668A (en) 1993-10-28 2000-12-05 Qualcomm Inc. Method and apparatus for reducing the average transmit power of a base station
CA2174343C (en) 1993-11-01 2003-10-14 Ephraim Zehavi Method and apparatus for the transmission of variable rate digital data
US5732391A (en) 1994-03-09 1998-03-24 Motorola, Inc. Method and apparatus of reducing processing steps in an audio compression system using psychoacoustic parameters
US6134218A (en) 1994-04-28 2000-10-17 Pmc-Sierra (Maryland), Inc. Many dimensional congestion detection system and method
US5544156A (en) 1994-04-29 1996-08-06 Telefonaktiebolaget Lm Ericsson Direct sequence CDMA coherent uplink detector
US5697053A (en) 1994-07-28 1997-12-09 Lucent Technologies Inc. Method of power control and cell site selection
KR0156478B1 (en) 1994-09-15 1998-11-16 구자홍 Apparatus and method of charging wireless telephone
KR970011690B1 (en) 1994-11-22 1997-07-14 삼성전자 주식회사 Data receiver & transmitter of spread spectrum using pilot channel
US5592470A (en) 1994-12-21 1997-01-07 At&T Broadband wireless system and network architecture providing broadband/narrowband service with optimal static and dynamic bandwidth/channel allocation
US5553083B1 (en) 1995-01-19 2000-05-16 Starburst Comm Corp Method for quickly and reliably transmitting frames of data over communications links
FR2730883B1 (en) 1995-02-17 1997-04-04 Alcatel Telspace DEVICE FOR INITIALIZING A VITERBI DECODER COMPRISED IN A RECEIVER OF SIGNALS TRANSMITTED IN THE FORM OF PACKETS TRANSMITTER, RECEIVER AND CORRESPONDING METHOD
FI98172C (en) 1995-05-24 1997-04-25 Nokia Telecommunications Oy Method for transmitting a pilot signal and a cellular radio system
GB2301751B (en) 1995-06-02 2000-02-09 Dsc Communications Control message transmission in telecommunications systems
US6597913B2 (en) 1995-06-05 2003-07-22 Motorola, Inc. Distributed dynamic channel management in cellular systems
US6111911A (en) 1995-06-07 2000-08-29 Sanconix, Inc Direct sequence frequency ambiguity resolving receiver
US5726978A (en) 1995-06-22 1998-03-10 Telefonaktiebolaget L M Ericsson Publ. Adaptive channel allocation in a frequency division multiplexed system
KR100331437B1 (en) 1995-06-30 2002-08-08 삼성전자 주식회사 Adaptive bit switch apparatus of dmt system and method thereof
US5752193A (en) 1995-09-01 1998-05-12 Motorola, Inc. Method and apparatus for communicating in a wireless communication system
US6230203B1 (en) 1995-10-20 2001-05-08 Scientific-Atlanta, Inc. System and method for providing statistics for flexible billing in a cable environment
JPH09116475A (en) 1995-10-23 1997-05-02 Nec Corp Time diversity transmission/reception system
JP2737730B2 (en) 1995-11-30 1998-04-08 日本電気株式会社 Spread spectrum transceiver
KR0170190B1 (en) 1995-12-06 1999-03-30 정선종 Control method of traffic load of cdma mobile communication system
US5991271A (en) 1995-12-20 1999-11-23 Us West, Inc. Signal-to-channel mapping for multi-channel, multi-signal transmission systems
US5862451A (en) 1996-01-22 1999-01-19 Motorola, Inc. Channel quality management in a cable telephony system
WO1997028505A1 (en) 1996-01-31 1997-08-07 Ipsilon Networks, Inc. Improved method and apparatus for dynamically shifting between routing and switching packets in a transmission network
US5774809A (en) 1996-02-12 1998-06-30 Nokia Mobile Phones Limited Simplified mobile assisted handoff of signal between cells
US6005876A (en) 1996-03-08 1999-12-21 At&T Corp Method and apparatus for mobile data communication
US5754537A (en) 1996-03-08 1998-05-19 Telefonaktiebolaget L M Ericsson (Publ) Method and system for transmitting background noise data
US6134215A (en) 1996-04-02 2000-10-17 Qualcomm Incorpoated Using orthogonal waveforms to enable multiple transmitters to share a single CDM channel
US5745480A (en) 1996-04-03 1998-04-28 Adicom Wireless, Inc. Multi-rate wireless communications system
JP3385299B2 (en) 1996-05-20 2003-03-10 三菱電機株式会社 Spread spectrum communication equipment
US6396804B2 (en) 1996-05-28 2002-05-28 Qualcomm Incorporated High data rate CDMA wireless communication system
US5859840A (en) 1996-05-31 1999-01-12 Qualcomm Incorporated Spread spectrum communication system which defines channel groups comprising selected channels that are additional to a primary channel and transmits group messages during call set up
US5938749A (en) 1996-06-03 1999-08-17 Whittaker Communications Inc. Queue measurement apparatus and methodology
EP1662742B1 (en) 1996-06-24 2013-02-06 Ntt Docomo, Inc. Data reception method, data transmission system and receiver
US6061359A (en) 1996-08-02 2000-05-09 Golden Bridge Technology, Inc. Increased-capacity, packet spread-spectrum system and method
US5647366A (en) 1996-09-17 1997-07-15 Siemens Medical Systems, Inc. Method and system for automatic measurements of doppler waveforms
US5764551A (en) 1996-10-15 1998-06-09 The United States Of America As Represented By The Secretary Of The Army Fast high-signal-to-noise ratio equivalent time processor
US6038216A (en) 1996-11-01 2000-03-14 Packeteer, Inc. Method for explicit data rate control in a packet communication environment without data rate supervision
US5809059A (en) 1996-11-21 1998-09-15 Motorola, Inc. Method and apparatus for spread spectrum channel assignment
US5956642A (en) 1996-11-25 1999-09-21 Telefonaktiebolaget L M Ericsson Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system
JPH10173594A (en) 1996-12-06 1998-06-26 Hitachi Ltd Code division multiple access communication system and sending power control method
US6046980A (en) 1996-12-09 2000-04-04 Packeteer, Inc. System for managing flow bandwidth utilization at network, transport and application layers in store and forward network
US5987326A (en) 1997-02-11 1999-11-16 Qualcomm Incorporated Transmit power reduction for a high speed CDMA link in soft handoff
US6335922B1 (en) 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
US5991284A (en) 1997-02-13 1999-11-23 Qualcomm Inc. Subchannel control loop
RU2115246C1 (en) 1997-04-07 1998-07-10 Военная академия связи Method of transmission of data packs in general- purpose communication channel and control device
US5914950A (en) 1997-04-08 1999-06-22 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US5923650A (en) 1997-04-08 1999-07-13 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US6396867B1 (en) 1997-04-25 2002-05-28 Qualcomm Incorporated Method and apparatus for forward link power control
KR100236982B1 (en) 1997-04-25 2000-01-15 정선종 Method for controlling handoff of mobile terminal in cdma cellular system
US6052594A (en) 1997-04-30 2000-04-18 At&T Corp. System and method for dynamically assigning channels for wireless packet communications
US5991273A (en) 1997-05-01 1999-11-23 Nortel Networks Corporation Determining SINR in a communications system
US6009122A (en) 1997-05-12 1999-12-28 Amati Communciations Corporation Method and apparatus for superframe bit allocation
KR100214293B1 (en) 1997-05-29 1999-08-02 윤종용 Soft swap handoff for cdma cellular system
US6064692A (en) 1997-06-20 2000-05-16 Amati Communications Corporation Protocol for transceiver initialization
US6426960B2 (en) 1997-06-24 2002-07-30 Qualcomm Incorporated Increased capacity data transmission in a CDMA wireless communication system
US6115357A (en) 1997-07-01 2000-09-05 Packeteer, Inc. Method for pacing data flow in a packet-based network
KR100247967B1 (en) 1997-07-09 2000-03-15 윤종용 Co-channel interference detector and method terefor
US6222875B1 (en) 1997-07-11 2001-04-24 Telefonaktiebolaget Lm Ericsson (Publ) Low-delay rate detection for variable rate communication systems
FI104143B1 (en) 1997-07-31 1999-11-15 Nokia Networks Oy A method for controlling communications resources
US20010012271A1 (en) 1997-08-04 2001-08-09 Arthur W. Berger Improved acknowledgement of bandwidth requests for the block transfer of data
US6031865A (en) 1997-08-04 2000-02-29 Motorola, Inc. Rapidly decorrelating spreading sequences for DS-CDMA transceivers
US6108374A (en) 1997-08-25 2000-08-22 Lucent Technologies, Inc. System and method for measuring channel quality information
US6131016A (en) 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
US5956368A (en) 1997-08-29 1999-09-21 Telefonaktiebolaget Lm Ericsson Downlink channel handling within a spread spectrum communications system
US6144654A (en) 1997-09-03 2000-11-07 Motorola, Inc. Method of combining and separating groups of multiple CDMA-encoded data signals and apparatus therefor
DE69735152T2 (en) * 1997-09-09 2006-09-28 Sony Deutschland Gmbh Detection method for transmitter identification signals in the zero symbol of a DAB signal
FI973650A (en) 1997-09-10 1999-03-11 Nokia Mobile Phones Ltd Method and arrangement for transmitting specialized cell information in a cellular radio system
US6130882A (en) 1997-09-25 2000-10-10 Motorola, Inc. Method and apparatus for configuring a communication system
US6567416B1 (en) 1997-10-14 2003-05-20 Lucent Technologies Inc. Method for access control in a multiple access system for communications networks
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6101168A (en) 1997-11-13 2000-08-08 Qualcomm Inc. Method and apparatus for time efficient retransmission using symbol accumulation
US5857174A (en) 1997-11-21 1999-01-05 Dugan; John W. Real estate appraisal method and device for standardizing real property marketing analysis by using pre-adjusted appraised comparable sales
KR100246537B1 (en) 1997-11-25 2000-03-15 정선종 Pilot symbol aidea dual channel QPSK for CDMA system
KR100269593B1 (en) 1997-12-02 2000-10-16 정선종 Orthogonal complex spreading based modulation method for multichannel transmission
US6128283A (en) 1997-12-03 2000-10-03 Nortel Networks Corporation Method and apparatus for data transmission using a positive group acknowledgement protocol
US6094459A (en) 1997-12-16 2000-07-25 Integrated Telecom Express Circuit for configuring data and energy parameters in a multi-channel communications system
US6084917A (en) 1997-12-16 2000-07-04 Integrated Telecom Express Circuit for configuring and dynamically adapting data and energy parameters in a multi-channel communications system
US6088387A (en) 1997-12-31 2000-07-11 At&T Corp. Multi-channel parallel/serial concatenated convolutional codes and trellis coded modulation encoder/decoder
US6259746B1 (en) 1998-01-14 2001-07-10 Motorola Inc. Method for allocating data and power in a discrete multi-tone communication system
JPH11313043A (en) * 1998-02-27 1999-11-09 Nec Corp Multicarrier transmission system, transmission equipment and transmission method
US6141388A (en) 1998-03-11 2000-10-31 Ericsson Inc. Received signal quality determination method and systems for convolutionally encoded communication channels
US6201954B1 (en) 1998-03-25 2001-03-13 Qualcomm Inc. Method and system for providing an estimate of the signal strength of a received signal
KR100338662B1 (en) 1998-03-31 2002-07-18 윤종용 Apparatus and method for communication channel in a cdma communication system
US5973642A (en) 1998-04-01 1999-10-26 At&T Corp. Adaptive antenna arrays for orthogonal frequency division multiplexing systems with co-channel interference
JP3028800B2 (en) 1998-05-01 2000-04-04 日本電気株式会社 CDMA cellular system and spreading code detection method in CDMA cellular system
ES2328992T3 (en) 1998-05-04 2009-11-19 Nokia Corporation SYNCHRONIZATION PROCEDURE OF A BASE STATION NETWORK.
KR100291476B1 (en) 1998-05-25 2001-07-12 윤종용 A method and a system for controlling a pilot measurement request order in cellular system
US6507585B1 (en) 1998-05-27 2003-01-14 3Com Corporation Multi-carrier LAN adapter device using frequency domain equalizer
US6744754B1 (en) 1998-06-09 2004-06-01 Lg Information & Communications, Ltd. Control of forward link power CDMA mobile communication system
US6201576B1 (en) 1998-06-26 2001-03-13 Lucent Technologies Inc. Apparatus and method for detecting an NTSC signal in an HDTV transmission signal
US6208858B1 (en) 1998-07-21 2001-03-27 Qualcomm Incorporated System and method for reducing call dropping rates in a multi-beam communication system
KR100306286B1 (en) 1998-08-04 2001-09-29 윤종용 Channel communication apparatus and method of cdma communication system
WO2000013364A1 (en) 1998-08-26 2000-03-09 Nokia Networks Oy Bidirectional arq apparatus and method
US6590879B1 (en) 1998-08-28 2003-07-08 Nortel Networks Limited Method, mobile station, basestation and mobile communications system for performing handoff independently for groups of physical direct sequence-code division multiple access channels
US6310869B1 (en) 1998-08-31 2001-10-30 Qualcomm Incorporated Method and apparatus for reducing amplitude variations and interference in communication signals, such as in wireless communication signals employing inserted pilot symbols
US6347080B2 (en) 1998-09-09 2002-02-12 Qualcomm, Inc. Energy based communication rate detection system and method
WO2000019732A2 (en) 1998-09-29 2000-04-06 Samsung Electronics Co., Ltd. Device and method for generating spreading code and spreading channel signals using spreading code in cdma communication system
DE19848116A1 (en) 1998-10-19 2000-05-04 Siemens Ag Method and radio communication system for signaling control
DE69837333T2 (en) 1998-10-19 2007-12-20 Nortel Matra Cellular A method and apparatus for establishing a radio connection with a destination base station in a cellular or wireless mobile communication system
JP2000134662A (en) 1998-10-26 2000-05-12 Fujitsu Ltd Mobile communication system and mobile machine
US6512925B1 (en) 1998-12-03 2003-01-28 Qualcomm, Incorporated Method and apparatus for controlling transmission power while in soft handoff
US6505058B1 (en) 1998-12-04 2003-01-07 Motorola, Inc. Method for determining whether to wake up a mobile station
WO2000038444A1 (en) 1998-12-18 2000-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Selective and efficient messaging in a mobile communications system
SE514328C2 (en) 1998-12-18 2001-02-12 Ericsson Telefon Ab L M Method and arrangement of a radio communication system for carrying out message transmission
US6788728B1 (en) 1999-01-12 2004-09-07 Sony Corporation System and method for reducing peak-to-average ratio of the reverse link modulator in a CDMA phone system
US6205129B1 (en) 1999-01-15 2001-03-20 Qualcomm Inc. Method and apparatus for variable and fixed forward link rate control in a mobile radio communications system
US6442130B1 (en) 1999-01-21 2002-08-27 Cisco Technology, Inc. System for interference cancellation
KR100526537B1 (en) 1999-02-13 2005-11-08 삼성전자주식회사 Apparatus and method for allocating orthogonal codes in cdma communication system having variable rate channel structure
US6317435B1 (en) 1999-03-08 2001-11-13 Qualcomm Incorporated Method and apparatus for maximizing the use of available capacity in a communication system
US6473418B1 (en) 1999-03-11 2002-10-29 Flarion Technologies, Inc. Orthogonal frequency division multiplexing based spread spectrum multiple access
US6535723B1 (en) 1999-03-15 2003-03-18 Lucent Technologies Inc. Method of power control for a wireless communication system having multiple information rates
US6621796B1 (en) 1999-03-22 2003-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Discard mechanism for selective repeat automatic repeat request
US6169759B1 (en) 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
US6496496B1 (en) 1999-04-22 2002-12-17 Nortel Networks Limited Crucial control message transmission method and systems
US6167273A (en) 1999-04-28 2000-12-26 Nokia Mobile Phones Ltd. Apparatus, and associated method, for effectuating power control to maintain desired QoS levels in the performance of a communication service
US6233455B1 (en) 1999-05-03 2001-05-15 Nortel Networks Limited Method for utilizing negative T—COMP to improve handoff reliability
GB9910449D0 (en) 1999-05-07 1999-07-07 Koninkl Philips Electronics Nv Radio communication system
US6414988B1 (en) 1999-05-12 2002-07-02 Qualcomm Incorporated Amplitude and phase estimation method in a wireless communication system
JP3486576B2 (en) 1999-05-18 2004-01-13 シャープ株式会社 OFDM receiver and frequency offset compensation method thereof
DE10027216B4 (en) 1999-05-31 2008-10-16 Electronics And Telecommunications Research Institute Apparatus and method for modulating a data message by using Orthogonal Variable Spreading Factor (OVSF) codes in a mobile communication system
KR100406531B1 (en) 1999-05-31 2003-11-22 한국전자통신연구원 Apparatus and method for modulating data message by employing orthogonal variable spreading factor (ovsf) codes in mobile communication system
US6775544B2 (en) * 1999-06-03 2004-08-10 At&T Wireless Services, Inc. Automatic diagnostic for detection of interference in wireless communication system
JP2000349740A (en) 1999-06-08 2000-12-15 Matsushita Electric Ind Co Ltd Transmitter-receiver
FI109072B (en) 1999-06-16 2002-05-15 Nokia Corp Method and Arrangement for Selecting a Channel Encoding and Interleaving Procedure in Some Packet Data Connections
US6490461B1 (en) 1999-06-24 2002-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Power control based on combined quality estimates
US6456653B1 (en) 1999-08-25 2002-09-24 Lucent Technologies Inc. Fast and accurate signal-to-noise ratio estimation technique for OFDM systems
JP3412689B2 (en) 1999-08-26 2003-06-03 日本電気株式会社 Mobile phone
US6208699B1 (en) 1999-09-01 2001-03-27 Qualcomm Incorporated Method and apparatus for detecting zero rate frames in a communications system
US6571104B1 (en) 1999-09-07 2003-05-27 Lucent Technologies Inc. Power control with effective Eb/N0
US6609007B1 (en) 1999-09-14 2003-08-19 Lucent Technologies Inc. Apparatus and method for controlling the transmission power of the forward link of a wireless communication system
WO2001026264A1 (en) 1999-09-30 2001-04-12 Fujitsu Limited Transmitter, receiver, and transmitting method in multi-carrier transmission system
SE515050C2 (en) 1999-10-01 2001-06-05 Ericsson Telefon Ab L M Method and device in mobile radio systems with the possibility of switching channel coding scheme and switching from frequency hopping channel to non frequency hopping channel
US6816827B1 (en) 1999-10-01 2004-11-09 Nec Corporation Verification method for combinational loop systems
KR100329644B1 (en) 1999-12-02 2002-03-21 박종섭 Hand-off performance method using motion station location measuring method of mobile communication system
US7110785B1 (en) 1999-12-03 2006-09-19 Nortel Networks Limited Performing power control in a mobile communications system
KR100354337B1 (en) 1999-12-04 2002-09-28 한국과학기술원 Transmission and Receiving using Spreading Modulation for Spread Spectrum Communications and thereof Apparatus
US6917603B2 (en) 2000-01-20 2005-07-12 Nortel Networks Limited Servicing multiple high speed data users in shared packets of a high speed wireless channel
US6570444B2 (en) 2000-01-26 2003-05-27 Pmc-Sierra, Inc. Low noise wideband digital predistortion amplifier
KR100387034B1 (en) 2000-02-01 2003-06-11 삼성전자주식회사 Apparatus and method for scheduling packet data service in wireless communication system
JP3826653B2 (en) 2000-02-25 2006-09-27 Kddi株式会社 Subcarrier allocation method for wireless communication system
US6760303B1 (en) 2000-03-29 2004-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching based on cell load
US6876641B2 (en) 2000-04-14 2005-04-05 Via Telecom Co., Ltd. Fast feedback channel with flexible bit reliability for wireless communications
US6694469B1 (en) 2000-04-14 2004-02-17 Qualcomm Incorporated Method and an apparatus for a quick retransmission of signals in a communication system
US6862457B1 (en) 2000-06-21 2005-03-01 Qualcomm Incorporated Method and apparatus for adaptive reverse link power control using mobility profiles
CN1306729C (en) 2000-06-21 2007-03-21 三星电子株式会社 Communication method in mobile communication system and method for determining gating mode
KR20020001093A (en) 2000-06-24 2002-01-09 이원창 one-touch type brake releasing system for train using an air pressure
JP4330767B2 (en) 2000-06-26 2009-09-16 株式会社エヌ・ティ・ティ・ドコモ Communication method and base station apparatus performing automatic retransmission request
JP2002009734A (en) 2000-06-27 2002-01-11 Denso Corp Communication system employing ofdm system
KR100434459B1 (en) 2000-06-27 2004-06-05 삼성전자주식회사 Method and apparatus for controlling transmission of data packet in mobile telecommunication system
KR100605973B1 (en) 2000-06-27 2006-07-28 삼성전자주식회사 Method and apparatus for link adaptation in mobile communication system
JP3583353B2 (en) 2000-07-03 2004-11-04 松下電器産業株式会社 Communication terminal device and base station device
AU2001267891A1 (en) 2000-07-03 2002-01-14 Matsushita Electric Industrial Co., Ltd. Base station unit and method for radio communication
KR100387057B1 (en) 2000-07-04 2003-06-12 삼성전자주식회사 Method and apparatus for determining reverse data rate in mobile communication system
EP1176750A1 (en) 2000-07-25 2002-01-30 Telefonaktiebolaget L M Ericsson (Publ) Link quality determination of a transmission link in an OFDM transmission system
EP1176778A1 (en) 2000-07-29 2002-01-30 Micronas GmbH Data transmission method
WO2002013395A2 (en) 2000-08-04 2002-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Spreading factor detector
US6952561B1 (en) 2000-08-31 2005-10-04 Lucent Technologies Inc. Enhanced metric for bit detection on fading channels with unknown statistics
US6977888B1 (en) 2000-09-14 2005-12-20 Telefonaktiebolaget L M Ericsson (Publ) Hybrid ARQ for packet data transmission
JP4121851B2 (en) 2000-10-09 2008-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Information communication method and apparatus using the method
US7072315B1 (en) 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
DE10050330A1 (en) 2000-10-11 2002-04-25 Infineon Technologies Ag Signal strength compensation device for mobile radio receiver uses mean value of signal strength for previously received data symbols
AU2002214853A1 (en) 2000-10-20 2002-04-29 Nortel Networks Limited Multi-user detector for direct sequence - code division multiple access (ds/cdma) channels
ATE398864T1 (en) 2000-10-24 2008-07-15 Nortel Networks Ltd SHARED CHANNEL STRUCTURE, ARQ SYSTEMS AND METHODS
US6973098B1 (en) 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
KR100354168B1 (en) 2000-10-31 2002-09-27 엘지전자 주식회사 Method and system for handoff communication mobile CDMA
US6678523B1 (en) 2000-11-03 2004-01-13 Motorola, Inc. Closed loop method for reverse link soft handoff hybrid automatic repeat request
WO2002037693A2 (en) 2000-11-06 2002-05-10 Cute Ltd. Reliable detection of a transport format identifier in a transport format identification field of a digital communication system
KR100464485B1 (en) 2000-11-09 2004-12-31 엘지전자 주식회사 A method and a device of transmitting high-speed packet data
JP2002159061A (en) 2000-11-21 2002-05-31 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd Cdma mobile communication system
KR20020043139A (en) 2000-12-01 2002-06-08 윤종용 Scheduling Method for high data rate service in Wireless communication System
US6711208B2 (en) 2000-12-04 2004-03-23 Qualcomm, Incorporated Estimation of traffic-to-pilot ratios
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US7068702B2 (en) 2001-01-12 2006-06-27 Mediatek Incorporation Method and apparatus for selective collision avoidance frequency hopping
KR100469711B1 (en) 2001-01-18 2005-02-02 삼성전자주식회사 Apparatus and method for controlling reverse transmission in mobile communication system
US7164669B2 (en) 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
WO2002060145A2 (en) 2001-01-25 2002-08-01 Bandspeed, Inc. Method for adaptive bit assignment and fine gain setting in a multi-carrier communications system
WO2002060142A2 (en) 2001-01-25 2002-08-01 Bandspeed, Inc. Method for bit assignment and fine gain setting in a multi-carrier communications system
US7272199B2 (en) 2001-01-25 2007-09-18 Bandspeed, Inc. Adaptive adjustment of time and frequency domain equalizers in communications systems
JP2002232943A (en) 2001-01-29 2002-08-16 Sony Corp Data transmission processing method, data reception processing method, transmitter, receiver, and cellular wireless communication system
EP1292057A4 (en) 2001-02-06 2005-06-22 Mitsubishi Electric Corp Error correcting/decoding method
US6741862B2 (en) 2001-02-07 2004-05-25 Airvana, Inc. Enhanced reverse-link rate control in wireless communication
US7126930B2 (en) 2001-02-10 2006-10-24 Qualcomm, Incorporated Method and apparatus for transmitting messages in a wireless communication system
DE60219977T2 (en) 2001-02-12 2008-01-17 Lg Electronics Inc. Data transfer rate control on the uplink for each mobile station
US8605686B2 (en) 2001-02-12 2013-12-10 Qualcomm Incorporated Method and apparatus for power control in a wireless communication system
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US6549561B2 (en) * 2001-02-21 2003-04-15 Magis Networks, Inc. OFDM pilot tone tracking for wireless LAN
US7164654B2 (en) 2001-03-09 2007-01-16 Denso Corporation ARQ parameter retransmission control for variable data rate channels
KR100469701B1 (en) 2001-03-10 2005-02-02 삼성전자주식회사 Apparatus and method for communicating packet data control channel in mobile communication system
US20020131522A1 (en) 2001-03-14 2002-09-19 Tilman Felgentreff Method and apparatus for the digital predistortion linearization, frequency response compensation linearization and feedforward linearization of a transmit signal
KR100753500B1 (en) 2001-03-21 2007-08-31 엘지전자 주식회사 Method for Link Adaptation using Hybrid Automatic Repeat Request in Reverse Link, System for the same
DE60238225D1 (en) 2001-03-21 2010-12-23 Lg Electronics Inc Retransmission of data through a reverse link in an automatic repeat request packet data transmission system
CN1500317B (en) 2001-03-26 2015-01-14 三星电子株式会社 Method of controlling reverse transmission in mobile communication system
US6701151B2 (en) 2001-03-27 2004-03-02 Ericsson Inc. Short access for realizing a signaling radio bearer in geran
KR100800884B1 (en) 2001-03-29 2008-02-04 삼성전자주식회사 Transmission controlling method of reverse rink in mobile communication system
KR100429526B1 (en) 2001-03-29 2004-05-03 삼성전자주식회사 Data rate information transmitting/receiving method and device in a mobile communication system
US7286558B2 (en) 2001-03-29 2007-10-23 Samsung Electronics Co., Ltd. Method and device for transmitting/receiving data rate information in a mobile communication system
US8199696B2 (en) 2001-03-29 2012-06-12 Qualcomm Incorporated Method and apparatus for power control in a wireless communication system
US7069035B2 (en) 2001-03-30 2006-06-27 Qualcomm, Incorporated Method and apparatus for power control in a communication system
WO2002082108A1 (en) 2001-04-03 2002-10-17 Nokia Corporation Reverse link handoff mechanism with hybrid-arq and cell site selection in cdma2000 1xev-dv systems
US6982946B2 (en) 2001-04-05 2006-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Partly orthogonal multiple code trees
US6836666B2 (en) 2001-05-08 2004-12-28 Lucent Technologies Inc. Method to control uplink transmissions in a wireless communication system
KR100724847B1 (en) 2001-05-09 2007-06-04 삼성전자주식회사 Apparatus and method for codding decodding in cdma wireless communication system
ATE369674T1 (en) 2001-05-14 2007-08-15 Lg Electronics Inc METHOD FOR CONTROLLING DATA TRANSMISSION IN A RADIO COMMUNICATIONS SYSTEM
US7158504B2 (en) 2001-05-21 2007-01-02 Lucent Technologies, Inc. Multiple mode data communication system and method and forward and/or reverse link control channel structure
KR100736476B1 (en) 2001-06-02 2007-07-06 엘지전자 주식회사 Method for generating indication code of rate indicator channel in a mobile communication and apparatus thereof
US6895235B2 (en) 2001-06-05 2005-05-17 Telcordia Technologies, Inc. Adaptive load and coverage management system and method
JP3427381B2 (en) 2001-06-20 2003-07-14 富士通株式会社 Noise cancellation method and apparatus
KR100985043B1 (en) 2001-06-27 2010-10-04 노오텔 네트웍스 리미티드 Mapping information in wireless communications systems
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
JP2003018117A (en) 2001-07-04 2003-01-17 Nippon Telegr & Teleph Corp <Ntt> Multiple access equipment and multiple access method
US7336954B2 (en) 2001-07-05 2008-02-26 Qualcomm Incorporated Method and apparatus for soft handoff between base stations using different frame formats
KR100747524B1 (en) 2001-07-07 2007-08-08 엘지전자 주식회사 Method for controlling signal power in variable data rate mode
JP2004535136A (en) 2001-07-10 2004-11-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ How to send data packets
JP3607643B2 (en) 2001-07-13 2005-01-05 松下電器産業株式会社 Multicarrier transmission apparatus, multicarrier reception apparatus, and multicarrier radio communication method
US6917581B2 (en) 2001-07-17 2005-07-12 Ipr Licensing, Inc. Use of orthogonal or near orthogonal codes in reverse link
US6904286B1 (en) 2001-07-18 2005-06-07 Cisco Technology, Inc. Method and system of integrated rate control for a traffic flow across wireline and wireless networks
US6751264B2 (en) 2001-07-27 2004-06-15 Motorola, Inc. Receiver and method therefor
US7221653B2 (en) 2001-07-30 2007-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Fast flow control methods for communication networks
US20030028251A1 (en) 2001-07-30 2003-02-06 Mathews Hallett H. Methods and devices for interbody spinal stabilization
US7269186B2 (en) 2001-08-06 2007-09-11 Qualcomm Incorporated Protocol for framing a payload
JP2003060609A (en) 2001-08-10 2003-02-28 Mitsubishi Electric Corp Communication method and apparatus thereof
GB0120033D0 (en) 2001-08-16 2001-10-10 Fujitsu Ltd Cell selection
US7190964B2 (en) 2001-08-20 2007-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Reverse link power control in 1xEV-DV systems
JP4286476B2 (en) 2001-08-20 2009-07-01 株式会社日立国際電気 Orthogonal frequency division multiplexing modulation receiver
US20030039317A1 (en) 2001-08-21 2003-02-27 Taylor Douglas Hamilton Method and apparatus for constructing a sub-carrier map
JP4247288B2 (en) 2001-08-27 2009-04-02 パナソニック株式会社 Wireless communication method and wireless communication device
JP4138280B2 (en) 2001-08-29 2008-08-27 エプソントヨコム株式会社 OFDM communication device
US6865389B2 (en) 2001-09-05 2005-03-08 Telefonaktiegolaget Lm Ericsson System and method for a virtual soft handover in a high data rate network based on data transmission information
US6665309B2 (en) 2001-09-20 2003-12-16 Nokia Corporation Apparatus, and associated method, for generating assignment information used pursuant to channel allocation in a radio communication system
KR100807886B1 (en) 2001-09-24 2008-02-27 에스케이 텔레콤주식회사 Receiver of orthogonal frequency division multiple system
US7103021B2 (en) 2001-09-25 2006-09-05 Qualcomm Incorporated Method and apparatus for communications of data rate control information in a CDMA communication system
US7076001B2 (en) 2001-10-16 2006-07-11 Harris Corporation System and method for an in-service decision-directed signal to noise ratio estimator
US6680925B2 (en) 2001-10-16 2004-01-20 Qualcomm Incorporated Method and system for selecting a best serving sector in a CDMA data communication system
US20030081538A1 (en) 2001-10-18 2003-05-01 Walton Jay R. Multiple-access hybrid OFDM-CDMA system
US6563885B1 (en) 2001-10-24 2003-05-13 Texas Instruments Incorporated Decimated noise estimation and/or beamforming for wireless communications
US7289529B2 (en) 2001-10-31 2007-10-30 At&T Corp. Method and system for optimally serving stations on wireless LANs using a controlled contention/resource reservation protocol of the IEEE 802.11e standard
US6898418B2 (en) 2001-11-02 2005-05-24 Texas Instruments Incorporated Method of and apparatus for implementing adaptive downstream modulation in a fixed wireless communication system
US7245600B2 (en) 2001-11-05 2007-07-17 Qualcomm, Inc. Method and apparatus for determining reverse link load level for reverse link data scheduling in a CDMA communication system
FI112547B (en) 2001-12-21 2003-12-15 Nokia Corp A method for performing repetition in a positioning receiver and an electronic device
KR100405662B1 (en) 2001-12-28 2003-11-14 엘지전자 주식회사 Handoff Apparatus inter different mobile communication generation system each other and method thereof
US7039013B2 (en) 2001-12-31 2006-05-02 Nokia Corporation Packet flow control method and device
KR100433899B1 (en) 2002-01-14 2004-06-04 삼성전자주식회사 Apparatus and method for determining soft hand-over in cdma mobile communication system
US20030152102A1 (en) 2002-02-12 2003-08-14 William Morgan Method and apparatus for predicting a frame type
US7336640B2 (en) 2002-02-19 2008-02-26 Texas Instruments Incorporated Method and apparatus for CDMA demodulation
US7197085B1 (en) * 2002-03-08 2007-03-27 Andrew Corporation Frequency-dependent magnitude pre-distortion for reducing spurious emissions in communication networks
US20040198276A1 (en) 2002-03-26 2004-10-07 Jose Tellado Multiple channel wireless receiver
KR100456693B1 (en) 2002-03-28 2004-11-10 삼성전자주식회사 Method for minimizing setupt time by the optimization of bit allocation on multi-canannel communication system
US7079856B2 (en) 2002-04-05 2006-07-18 Lucent Technologies Inc. Data flow control between a base station and a mobile station
KR100617674B1 (en) 2002-05-07 2006-08-28 삼성전자주식회사 Multiple walsh code demodulator using chip combiner and method thereof
US7539165B2 (en) 2002-05-24 2009-05-26 Antti Toskala Method and apparatus for distributed signaling for uplink rate control
US7116708B2 (en) 2002-06-27 2006-10-03 Nortel Networks Limited Controlling the rate of data transfer over a wireless link
JP2004032518A (en) 2002-06-27 2004-01-29 Sony Corp Diversity receiving method and reception apparatus
US7257101B2 (en) 2002-07-03 2007-08-14 Arraycomm, Llc Selective power control messaging
US7269389B2 (en) 2002-07-03 2007-09-11 Arraycomm, Llc Selective power control messaging
US7313167B2 (en) 2002-09-30 2007-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Signal-to-noise ratio estimation of CDMA signals
SE0203056D0 (en) 2002-10-11 2002-10-11 Ericsson Telefon Ab L M Method and apparatus in a telecommunication system
US7463702B2 (en) 2002-11-12 2008-12-09 Agere Systems Inc. System and method for one-pass blind transport format detection
JP3583414B2 (en) 2002-11-14 2004-11-04 松下電器産業株式会社 CDMA transmitting apparatus and CDMA receiving apparatus
US7499486B2 (en) 2002-11-27 2009-03-03 Agere Systems Inc. Data transmission rate adaptation in a wireless communication system
US7016651B1 (en) * 2002-12-17 2006-03-21 Marvell International Ltd. Apparatus and method for measuring signal quality of a wireless communications link
JP4095665B2 (en) 2002-12-27 2008-06-04 ソフトバンクテレコム株式会社 Channel assignment method
US20040228349A1 (en) 2003-01-10 2004-11-18 Sophie Vrzic Semi-distributed scheduling scheme for the reverse link of wireless systems
US6996763B2 (en) 2003-01-10 2006-02-07 Qualcomm Incorporated Operation of a forward link acknowledgement channel for the reverse link data
US7155249B2 (en) 2003-01-10 2006-12-26 Qualcomm Incorporated Modified power control for hybrid ARQ on the reverse link
US8165148B2 (en) 2003-01-13 2012-04-24 Qualcomm Incorporated System and method for rate assignment
CA2515291C (en) 2003-02-13 2010-10-12 Nokia Corporation System and method for improved uplink signal detection and reduced uplink signal power
US7299402B2 (en) 2003-02-14 2007-11-20 Telefonaktiebolaget Lm Ericsson (Publ) Power control for reverse packet data channel in CDMA systems
US7155236B2 (en) 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US20040160922A1 (en) 2003-02-18 2004-08-19 Sanjiv Nanda Method and apparatus for controlling data rate of a reverse link in a communication system
US8150407B2 (en) 2003-02-18 2012-04-03 Qualcomm Incorporated System and method for scheduling transmissions in a wireless communication system
US20050176456A1 (en) 2003-02-18 2005-08-11 Tao Chen Systems and methods for performing outer loop power control in wireless communication systems
US7286846B2 (en) 2003-02-18 2007-10-23 Qualcomm, Incorporated Systems and methods for performing outer loop power control in wireless communication systems
US7418064B2 (en) 2003-02-18 2008-08-26 Qualcomm, Incorporated Systems and methods for hierarchically demodulating and decoding a data signal using a pilot signal and an additional signal
US7660282B2 (en) 2003-02-18 2010-02-09 Qualcomm Incorporated Congestion control in a wireless data network
US7280562B2 (en) 2003-02-18 2007-10-09 Qualcomm Incorporated Variable packet lengths for high packet data rate communications
US8023950B2 (en) 2003-02-18 2011-09-20 Qualcomm Incorporated Systems and methods for using selectable frame durations in a wireless communication system
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US7505780B2 (en) 2003-02-18 2009-03-17 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8081598B2 (en) 2003-02-18 2011-12-20 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8705588B2 (en) 2003-03-06 2014-04-22 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US7215930B2 (en) 2003-03-06 2007-05-08 Qualcomm, Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication
US7327716B2 (en) 2003-03-06 2008-02-05 Nortel Networks Limited Reverse link enhancement for CDMA 2000 Release D
US7423992B2 (en) 2003-04-16 2008-09-09 Sony Corporation Time slot and carrier frequency allocation in a network
JP3697521B2 (en) 2003-04-21 2005-09-21 独立行政法人情報通信研究機構 Receiving device, receiving method, and program
US6882855B2 (en) 2003-05-09 2005-04-19 Motorola, Inc. Method and apparatus for CDMA soft handoff for dispatch group members
KR101049103B1 (en) 2003-05-12 2011-07-14 엘지전자 주식회사 How to determine data rate in mobile communication system
US7012912B2 (en) 2003-05-14 2006-03-14 Qualcomm Incorporated Power control and scheduling in an OFDM system
RU2325045C2 (en) 2003-06-10 2008-05-20 Нокиа Корпорейшн Method and device for off-line and target switch of mobile station transmission
US7126928B2 (en) 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
US7315527B2 (en) 2003-08-05 2008-01-01 Qualcomm Incorporated Extended acknowledgement and rate control channel
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US7706403B2 (en) 2003-11-25 2010-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Queuing delay based rate control
US7257406B2 (en) 2004-07-23 2007-08-14 Qualcomm, Incorporated Restrictive reuse set management
CN1263675C (en) 2004-08-30 2006-07-12 湖北教育学院 Inert thick salt medium method for preparing nanometer powder

Also Published As

Publication number Publication date
BRPI0410256A (en) 2006-05-16
IL211748A0 (en) 2011-05-31
JP4611990B2 (en) 2011-01-12
KR20060014049A (en) 2006-02-14
TWI369877B (en) 2012-08-01
BRPI0410256B1 (en) 2020-02-04
WO2004104530A2 (en) 2004-12-02
HUE042789T2 (en) 2019-07-29
EP1623195B1 (en) 2018-11-14
US20050002324A1 (en) 2005-01-06
CL43761B (en) 2005-03-28
AU2004241441A1 (en) 2004-12-02
CA2525805A1 (en) 2004-12-02
TW200525961A (en) 2005-08-01
EP1623195A4 (en) 2011-08-31
KR101119766B1 (en) 2012-03-23
US8477592B2 (en) 2013-07-02
MXPA05012531A (en) 2006-02-22
JP2007500489A (en) 2007-01-11
NO20055917L (en) 2006-01-20
RU2005138861A (en) 2006-06-10
NZ543583A (en) 2008-05-30
IL171916A0 (en) 2006-04-10
IL171916A (en) 2011-04-28
EP1623195A2 (en) 2006-02-08
AU2004241441B2 (en) 2009-09-24
CN1823485B (en) 2012-06-06
CA2525805C (en) 2013-07-16
TWI459773B (en) 2014-11-01
ES2708822T3 (en) 2019-04-11
CN1823485A (en) 2006-08-23
WO2004104530A3 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
TW201145925A (en) Interference and noise estimation in an OFDM system
KR101024510B1 (en) Power control and scheduling in an ofdm system
US7660275B2 (en) Local and wide-area transmissions in a wireless broadcast network
US20050094550A1 (en) Apparatus and method for transmitting/receiving pilot signals in an OFDM communication system
US20070165696A1 (en) Soft handoff with interference cancellation in a wireless frequency hopping communication system
MXPA00004691A (en) Broadcast network selection techniques for hybrid radiocommunication systems comprising both a cellular communication system and a radio broadcast system