TW201142363A - Liquid crystal lens - Google Patents

Liquid crystal lens Download PDF

Info

Publication number
TW201142363A
TW201142363A TW99115995A TW99115995A TW201142363A TW 201142363 A TW201142363 A TW 201142363A TW 99115995 A TW99115995 A TW 99115995A TW 99115995 A TW99115995 A TW 99115995A TW 201142363 A TW201142363 A TW 201142363A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal lens
transparent electrode
pair
electrode layers
Prior art date
Application number
TW99115995A
Other languages
Chinese (zh)
Other versions
TWI417576B (en
Inventor
Sheng-Chi Liu
Cheng-Chung Hu
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to TW99115995A priority Critical patent/TWI417576B/en
Publication of TW201142363A publication Critical patent/TW201142363A/en
Application granted granted Critical
Publication of TWI417576B publication Critical patent/TWI417576B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

The present invention discloses a liquid crystal lens, including an upper substrate; a lower substrate disposed opposite to the upper substrate; a pair of transparent electrode layers disposed on inner sides of the upper substrate and the lower substrate, wherein one of the pair of the transparent electrode layers includes an opening formed therein and the edge thereof includes a continuous sharp shaped portion; a pair of alignment films disposed on the inner sides of the pair of the transparent electrode layers; and a liquid crystal material layer disposed between the pair of the alignment films.

Description

201142363 六、發明說明: 【發明所屬之技術領域】 本發明係有關於液晶透鏡,特定而言係有關於一可改 變曲率之液晶透鏡。 【先前技術】 透鏡係基本之光學器件,在光學儀器與設備中隨處可 見。隨著光學技術之發展,對透鏡之要求越來越高:透鏡 焦距之連續可變、大焦距之透鏡以及相差小等。無論係哪 參 種’要想滿足要求都會使得光學系統變得龐大而複雜。 微型透鏡亦係一種重要的光學器件,目前用傳統之工 藝法製作主要有粒子交換法、模壓成型法、光敏玻璃熱成 型法及光刻膠熱溶成型法。由於所用材料與傳統工藝之限 制,使得用這些方法製作之微型透鏡有一個共同特點,就 是透鏡只有一個焦距。要得到一個較大之焦距範圍,需用 一組透鏡,通過機械調節透鏡間之間距才能實現。使用一 •,透鏡不僅增加器件成本,增大設備體積,而且不易有效 實現所需要之焦距。而且,透鏡組使用久了,由於震動等 原因可成會導致無法修正之偏心等問題。 一液晶透鏡可應用於很多領域,如光學成像相關領域、 二維(3D)顯示領域。以三維(3D)立體影像之顯示技術為 例2作3D立體影像顯示裝置係利用雙眼視差的基礎來 進行π 4,讓使用者的左眼僅觀看到給左眼的 給右眼的影像。利用雙眼視差產生立體感的 方式夕蘇配戴特殊器具來達成,常見的方法包含利用偏光 201142363 眼鏡、紅藍(綠)眼鏡、快門眼鏡及頭盘式顯示器等方式來 達成。然,上述之顯示方法不論成本高低都需要使用者配 戴特殊器具才得以觀看到立體影像,因而對使用者而古多 少都會造成不便之感覺,因此,近年來則著重於開發^需 要配戴任何特殊器具即可觀賞到立體影像的裸眼式3D立 體顯示裝置。 、不需要配戴任何特殊器具即可觀賞到立體影像的裸眼 鲁式3D立體顯示裝置以雙眼視差的基礎來設計則稱為視差 法稞目:式3D立體顯示裝置。此種3D立體顯示裝置係為於 顯不為(例如液晶顯示器)之光源陣列的前方設置視差屏障 (Parallax)或光柵等遮蔽物,而其中光源陣列並依序傳送左 眼影像及右眼影像,使得透過視差屏障讓使用者的左眼看 到左眼影像而使用者的右眼看到右眼影像。另外不需配戴 任何特殊器具即可觀賞立體影像之技術亦包含集成攝影 (Integral Photography,以下簡稱為Ip)立體顯示技術。主 _要技術原理係透過蜗眼透鏡(Fly,s_Eye [⑶幼以記錄全息 彩色立體圖像,其中蠅眼透鏡即為類似蠅眼排列組合而成 的微小凸透鏡陣列,也就是將一系列半球形小透鏡排列在 平面上,用來攝影或顯示圖像。由於蠅眼透鏡的製作方式 車乂為困難,因此不直接使用蠅眼透鏡,而以柱狀透鏡分別 以水平方向與垂直方向疊置來達到蠅眼透鏡之效果,由於 柱狀透鏡相較於蠅眼透鏡來說較容易製作,因此可減少製 作透鏡之成本。近年來,人們提出了採用液晶技術製作可 變焦微透鏡’液晶微透鏡採用光透射方式,具有控制簡平, 4 201142363 可靠性強及驅動電壓低等優點,其具有巨大之潛在應用性。 傳統之液晶透鏡係將適當電壓施加於透明電極上,以 於透明電極之間形成具有梯度變化之電場。液晶材料層在 受到此電場之驅動後將改變液晶之長軸方向。因此,入射 線極化光波將因具有不同折射率變化之液晶材料層產生光 波相位之變化,而得到如透鏡般之光學成像特性。 典型之傳統液晶透鏡係如第i圖所示。傳統之液晶透 鏡包含上基板HH、下基板1〇2、透明電極屬1〇3、配向膜 1〇5以及液晶材料層106。上基板1〇1及下基板1〇2係相對 設置。透明電極層103係設置於上基板1〇1及下基板ι〇2 之内側上。其中-個透明電極層1〇3包含開孔1〇4形成於 其中。配向膜105係、進一步設置於透明電極^ 1〇3之内側 上及開孔104内。液晶材料層1〇6係設置於配向膜1〇5之 間之空間内。電壓1G7則係施加於相對之透明電極層1〇3 上,以於透明電極層1 〇3之間形成電場。 • Λ述傳統液晶透鏡存在若干缺.點,例如無法同時具有 有效工作範圍大及短焦距之特性。如第2a圖及第圖所 示’當透明電極層103之範圍為寬時,傳統之液晶透鏡之 開孔104,即有效工作範圍,遂變為狹小,且其焦距亦會 鋟短。是故,雖上述傳統液晶透鏡之焦距短,光學成像性 佳,但其有效工作範圍小,透鏡開口率小。如第3a圖及 第3B圖所示,當透明電極層1〇3之範圍為窄時,傳統之 液晶透鏡之開孔104,即有效工作範圍,遂變為寬大。然 而,其焦距亦會變長,故光學成像性不佳。因此,雖上述 5 201142363 傳統液晶透鏡之有效工作範圍大,透鏡開口率大,彳曰其焦 距長,光學成像性差。 ...... 是故,現今仍需一能解決上述無法同時具有有效工作 範圍大及短焦距特性之問題之液晶透鏡。 【發明内容】 為解決上述傳統技術之問題,本發明係提供一種可改 變曲率之液晶透鏡。 於一觀點中,本發明係揭露一種液晶透鏡,包含上基 ♦板;下基板’其相對於上述上基板設置;—對透明電極層土, 其設置於上述上基板及上述下基板之内側上,其中該對透 明電極層之-包含開孔形成於其中,且其邊緣包含連續尖 狀部;-對配向膜,其設置於該對透明電極層之内側上及 開孔内;以及液晶材料層,其設置於該對配向膜之間。 本發明之一優點係為本發明之液晶透鏡具有有效工作 範圍大之特性。 ❿ 纟發明之—優點係為本發明之液晶透鏡具有透鏡開口 率大之特性。 本發明之-優點係為本發明之液晶透鏡具有短焦距之 本lx月之優點係為本發明之液晶透 姓,W·- 壓之特性201142363 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal lens, and more particularly to a liquid crystal lens having a changeable curvature. [Prior Art] Lens is the basic optical device that can be found everywhere in optical instruments and equipment. With the development of optical technology, the requirements for lenses are becoming higher and higher: the lens focal length is continuously variable, the lens with large focal length and the phase difference are small. Regardless of the type of planting, the optical system becomes bulky and complex to meet the requirements. Microlens is also an important optical device. At present, it is mainly made by particle exchange method, compression molding method, photosensitive glass thermal forming method and photoresist hot melt forming method. Due to the limitations of the materials used and the conventional processes, a microlens made by these methods has a common feature that the lens has only one focal length. To achieve a large focal length range, a set of lenses is required to mechanically adjust the distance between the lenses. With a lens, the lens not only increases the cost of the device, increases the size of the device, but also does not easily achieve the desired focal length. Further, since the lens group has been used for a long time, it may cause problems such as eccentricity that cannot be corrected due to vibration or the like. A liquid crystal lens can be applied to many fields, such as optical imaging related fields and two-dimensional (3D) display fields. Taking the display technology of three-dimensional (3D) stereoscopic image as an example 2, the 3D stereoscopic image display device performs π 4 on the basis of binocular parallax, so that the user's left eye only views the image for the left eye to the right eye. The use of binocular parallax to create a three-dimensional sense is achieved by wearing a special device. Common methods include using polarized 201142363 glasses, red and blue (green) glasses, shutter glasses, and a head-mounted display. However, the display method described above requires the user to wear a special device to view a stereoscopic image regardless of the cost, and thus it may cause inconvenience to the user. Therefore, in recent years, emphasis has been placed on development. A naked-eye 3D stereoscopic display device that can view stereoscopic images with special instruments. The naked eye of the stereoscopic image can be viewed without any special equipment. The Lu 3D stereoscopic display device is designed on the basis of binocular parallax, and is called a parallax method: a 3D stereoscopic display device. Such a 3D stereoscopic display device is configured to provide a parallax barrier such as a parallax barrier or a grating in front of a light source array (for example, a liquid crystal display), wherein the light source array sequentially transmits the left eye image and the right eye image. The left eye image is seen by the user's left eye and the right eye image is seen by the user's right eye through the parallax barrier. In addition, the technology of viewing stereoscopic images without wearing any special equipment also includes integrated photography (Integral Photography, hereinafter referred to as Ip) stereoscopic display technology. The main technical principle is to use a volley lens (Fly, s_Eye [(3) to record a holographic color stereo image, where the fly-eye lens is a small convex lens array combined with a fly-eye arrangement, that is, a series of hemispheres The lenslets are arranged on a plane for photographing or displaying images. Since the fly-eye lens is made in a difficult manner, the fly-eye lens is not directly used, but the lenticular lens is vertically stacked in the horizontal direction and the vertical direction. To achieve the effect of the fly-eye lens, since the lenticular lens is easier to manufacture than the fly-eye lens, the cost of manufacturing the lens can be reduced. In recent years, the adoption of liquid crystal technology to produce a zoomable microlens 'liquid crystal microlens has been proposed. The light transmission mode has the advantages of simple control, 4 201142363 high reliability and low driving voltage, and has great potential application. The conventional liquid crystal lens applies an appropriate voltage to the transparent electrode to form a transparent electrode. The electric field of the gradient change. The liquid crystal material layer will change the long axis direction of the liquid crystal after being driven by the electric field. The ray-polarized light wave will produce a lens-like optical imaging characteristic due to the change of the phase of the light wave due to the liquid crystal material layer having different refractive index changes. A typical conventional liquid crystal lens is shown in Fig. i. The conventional liquid crystal lens includes The substrate HH, the lower substrate 1〇2, the transparent electrode is 1〇3, the alignment film 1〇5, and the liquid crystal material layer 106. The upper substrate 1〇1 and the lower substrate 1〇2 are oppositely disposed. The transparent electrode layer 103 is disposed on the upper surface On the inner side of the substrate 1〇1 and the lower substrate ι2, one of the transparent electrode layers 1〇3 includes an opening 1〇4 formed therein. The alignment film 105 is further disposed on the inner side of the transparent electrode ^1〇3 And in the opening 104. The liquid crystal material layer 1〇6 is disposed in the space between the alignment films 1〇5. The voltage 1G7 is applied to the opposite transparent electrode layer 1〇3 for the transparent electrode layer 1〇3 An electric field is formed between the two. • There are some disadvantages in the conventional liquid crystal lens, for example, it is not possible to have both an effective working range and a short focal length. As shown in Fig. 2a and Fig. 2, when the transparent electrode layer 103 has a wide range When the traditional liquid crystal lens is opened 104, that is, the effective working range, the 遂 becomes narrow, and the focal length thereof is also shortened. Therefore, although the above-mentioned conventional liquid crystal lens has a short focal length and good optical imaging performance, its effective working range is small, and the lens aperture ratio is small. As shown in FIGS. 3a and 3B, when the range of the transparent electrode layer 1〇3 is narrow, the opening 104 of the conventional liquid crystal lens, that is, the effective working range, becomes wide. However, the focal length thereof also becomes long. Therefore, the optical imaging performance is not good. Therefore, although the above-mentioned 5 201142363 conventional liquid crystal lens has a large effective working range, a large aperture ratio of the lens, a long focal length, and poor optical imaging performance. The present invention can solve the above problems of the conventional technology, and provides a liquid crystal lens which can change the curvature. In one aspect, the present invention discloses a liquid crystal lens including an upper substrate; a lower substrate 'which is disposed relative to the upper substrate; and a transparent electrode layer disposed on an inner side of the upper substrate and the lower substrate , wherein the pair of transparent electrode layers comprise an opening formed therein, and an edge thereof comprises a continuous tip; a pair of alignment films disposed on an inner side of the pair of transparent electrode layers and in the opening; and a layer of liquid crystal material It is disposed between the pair of alignment films. An advantage of the present invention is that the liquid crystal lens of the present invention has a large effective working range.纟 纟 Inventively, the advantage is that the liquid crystal lens of the present invention has a characteristic that the aperture ratio of the lens is large. The advantage of the present invention is that the liquid crystal lens of the present invention has a short focal length, and the advantage of the present invention is the liquid crystal permeability of the present invention, and the characteristics of W·-pressure

此類及其他優點從以τ較佳實施例之敘述並伴隨後附 圖士及申請專利範圍將使讀者得以清。 f貫施方式J 201142363 本發明將以較佳實施例及觀點加以敘述,此類敘述係 解釋本發明之結構及程序,僅用以說明而非用以限制本發 明之申請專利範圍。因此,除說明書中之較佳實施例以外, 本發明亦可廣泛實行於其他實施例中。 本發明係揭露一種液晶透鏡。藉由將液晶透鏡之透明 電極層之邊緣設計為連續尖狀例如鋸齒狀,可使本發明之 液晶透鏡得具有透鏡開口率大、低施加電壓及短焦距之特 性。 如第4 A圖及第4B圖所示,於本發明之一實施例中, 本發明之液晶透鏡包含上基板20卜下基板202、一對透明 電極層203、一對配向膜2〇5以及液晶材料層2〇6。第4a 圖係為第4B圖之俯視圖。如第4B圖所示,上基板2〇1及 下^板202係彼此相對設置,而透明電極層2〇3係彼此相 對設置於上基板201及下基板202之内側上。於本發明之 實她例中,上基板201及下基板202之材料包含玻璃或 •任何其他透明射斗。於本發明之一實施例中,it明電極層 203之材料包含氧化錮錫丁比^^心,IT〇)、氧化銦 鋅(Indmin Zinc 〇xide,ΙΖ〇)或任何其他透明導電材料。 相對之透明電極層2〇3中之其中之一透明電極層2们 包含一開孔204形成於其中。開孔204係對應至本發明之 液晶透鏡之有效工作範圍。若開孔2〇4之範圍越大,則本 七月之液曰曰透鏡之有效工作範圍越大,亦即本發明之液晶 透鏡之開口率越大。配向膜2〇5係彼此相對設置於開孔_ 内以及透明電極層203之内側上’亦即相對之配向膜205 7 201142363 中之其中之一配向膜205之一部分係設置於開孔2〇4内, 其餘部份之配向膜205係設置於透明電極層2〇3之内側 上。於本發明之一實施例中,配向膜2〇5之材料包含聚亞 醯胺(polyimide,PI)。液晶材料層2〇6則係設置於相對之 配向膜205之間所形成之空間内。如第4B圖所示,在工 作狀態時,可將一電壓2〇7施加於透明電極層2们之上, 以於透明電極層203上累積電荷,進而於透明電極層2〇3 馨之間形成電場,以控制液晶材料層206之轴向分佈。 ^从圖所示,本發明之液晶透鏡之透明電極層2〇3 =罪近開孔204之邊緣上形成有.連續尖狀部咖。 明之一實施例中,連續尖狀部2〇8之形 、x :不規聽齒狀。如第4A圖所示,明」= ::齒狀可為複數個等邊三角形、等腰:角:: 所示,上述等邊三角形、等腰:角4幵邊二。如… 曲率越大。曲率越大,則連越尖,亦即 之電荷量越多。所累積之雷—旦 之尖端處所累積 之間所形成之電場則趟夫=里越多,則透明電極層203 場強度越大,電極層203之間形成之電 -大:則連則=之,若底邊長 二則連續尖狀部2〇8之尖端處 電,:、。曲率越 累積之電荷量越少,則透 累積之電何$越少。所 則越小。透明電極層203之間开^ 2〇3之間所形成之電場 形成之電場強度越小,則液 201142363 晶透鏡之焦距則越長。於一實施例中,底邊長a可為2微 米〜100微米,較佳為5微米。 於本發明之另一實施例These and other advantages will be apparent to those skilled in the art from the description of the preferred embodiments and the accompanying drawings and claims. The present invention will be described in terms of the preferred embodiments and the aspects of the invention, which are intended to illustrate and not to limit the scope of the invention. Therefore, the present invention may be widely practiced in other embodiments in addition to the preferred embodiments in the specification. The present invention discloses a liquid crystal lens. By designing the edge of the transparent electrode layer of the liquid crystal lens to have a continuous sharp shape such as a zigzag shape, the liquid crystal lens of the present invention can have a characteristic of a large aperture ratio, a low applied voltage, and a short focal length. As shown in FIG. 4A and FIG. 4B, in one embodiment of the present invention, the liquid crystal lens of the present invention comprises an upper substrate 20, a lower substrate 202, a pair of transparent electrode layers 203, a pair of alignment films 2〇5, and The liquid crystal material layer 2〇6. Figure 4a is a top view of Figure 4B. As shown in Fig. 4B, the upper substrate 2〇1 and the lower plate 202 are disposed opposite to each other, and the transparent electrode layers 2〇3 are disposed opposite to each other on the inner sides of the upper substrate 201 and the lower substrate 202. In the example of the present invention, the materials of the upper substrate 201 and the lower substrate 202 comprise glass or any other transparent jet. In one embodiment of the invention, the material of the electrode layer 203 comprises bismuth tin oxide (ITO), IT 〇), indium zinc oxide (Indmin Zinc 〇xide) or any other transparent conductive material. One of the transparent electrode layers 2 〇 3 of the transparent electrode layer 2 includes an opening 204 formed therein. The opening 204 corresponds to the effective working range of the liquid crystal lens of the present invention. If the range of the opening 2〇4 is larger, the effective working range of the liquid helium lens of this July is larger, that is, the aperture ratio of the liquid crystal lens of the present invention is larger. The alignment films 2〇5 are disposed opposite to each other in the opening _ and on the inner side of the transparent electrode layer 203, that is, one of the alignment films 205 7 201142363 is disposed in the opening 2 〇 4 The remaining portion of the alignment film 205 is disposed on the inner side of the transparent electrode layer 2〇3. In one embodiment of the invention, the material of the alignment film 2〇5 comprises polyimide (PI). The liquid crystal material layer 2〇6 is disposed in a space formed between the opposing alignment films 205. As shown in FIG. 4B, in the operating state, a voltage 2〇7 can be applied to the transparent electrode layer 2 to accumulate charges on the transparent electrode layer 203, and further between the transparent electrode layers 2〇3 An electric field is formed to control the axial distribution of the liquid crystal material layer 206. ^ As shown in the figure, the transparent electrode layer 2 〇 3 of the liquid crystal lens of the present invention has a continuous cusp formed on the edge of the opening 204. In one embodiment, the shape of the continuous tip portion 2〇8, x: irregular tooth shape. As shown in Fig. 4A, the Ming == :: tooth can be a plurality of equilateral triangles, isosceles: angle::, the above-mentioned equilateral triangle, isosceles: angle 4 幵 two. Such as... The greater the curvature. The greater the curvature, the sharper the connection, that is, the greater the amount of charge. The electric field formed between the accumulated thunder and the tip of the accumulated space is the more the coward = the more the field strength of the transparent electrode layer 203 is, the electric-large between the electrode layers 203 is formed: If the bottom side is two, the tip of the continuous tip 2〇8 is electrically charged, :. The less the amount of charge accumulated by the curvature, the less the accumulated electricity is. The smaller it is. The smaller the electric field strength formed by the electric field formed between the openings 2 and 3 between the transparent electrode layers 203, the longer the focal length of the liquid 201142363 lens. In one embodiment, the base length a may be from 2 micrometers to 100 micrometers, preferably 5 micrometers. Another embodiment of the present invention

一 如乐)A圖至第5C圖所 示,靠近開孔204之透明電極層亦可設置成複數條彼此相 隔一預定距離之帶狀透明電極層2〇3a。於本發明之一實施 例中,如第5A圖及第5B圖所示,上述複數條帶狀透明^ 極層2〇3a之一側或兩側之邊緣上可設置連續尖狀部2〇8。 於本發明之-實施例中,上述複數條帶狀透明電極層加&amp; 邊緣上之連續尖狀部208之曲率可隨距離 距離而改變。於-實施例中,如第5C圖所示,每:帶: 透明電極層2G3a邊緣上之連續尖狀部細之曲率與 透明電極層203a距離液日读於士 _ 離液曰曰透鏡中心之距離呈正相關。如第 、主圖^帶狀透明電極層2〇3a越靠近液晶透鏡之中 〜時,帶狀透明電極層2〇3a之邊 2〇8 ^ Λ , 遺、,彖上所形成之連續尖狀部 三角形、等腰二例如,1連續尖狀部208之形狀為等邊 則帶狀㈣或任意三角形所組成之規則鑛齒狀, 貝J,狀透明電極層2〇3a越靠 角形、等腰-few _近液阳透鏡之中心時等邊三 部咖越m 三角形之底邊長越大,連續尖狀 08越鈍。如第5C圖所示,者 遠離液晶透鏡之中心時,帶狀、“帶狀透明電極層20域 心成之連續尖狀部彻之曲 遠、象上所 咖之形狀為等邊三角形、 备例如’若連續尖狀部 成之規則_狀,㈣&amp;—㈣或任意三角形所組 之中心時犛碡二么…“電極層203a越遠離液晶透鏡 思二角形之底邊長 之中心時等邊二β ^ ^ e邊一角形、荨腰三角形或任 SJ. 9 201142363 越小,連續尖狀部208越尖。 藉由於透明電極層203之邊緣設置連續尖狀部2〇8, 可使電荷更容易累積於連續尖狀部2〇8之尖端處,而增加 透明電極層203上所累積之電荷量。若三角形底邊長以 短’若小於兩邊,則其相對應於底邊之夾角越尖,則累積 ,透明電極層203之連續尖狀部2()8之尖端處之電荷越 夕。當累積在連續尖狀部208之尖端處之電荷量越多,則 透明電極層203之間所形成之電場則將越大。透明電極層 2〇3之間形成之電場強度越大,則液晶透鏡之焦距則越 短。故在施加相同電壓下,連續尖狀部2〇8之設計可增加 透明電極層203之間所形成之電場強度,進而使液晶透鏡 之液晶材料層206轴向分佈所產生之液晶透鏡焦距縮短。 一般而言,開孔204之範圍越大,則液晶透鏡之焦距 亦越大。然而,透過本發明之連續尖狀部2〇8之設計,即 使為了讓本發明之液晶透鏡開口率增加而增加開孔204之 範圍,仍可透過增加連續尖狀部2〇8之曲率,即縮小第4A 圖所:之底邊長a,而增加連續尖狀部·之尖端處所累 積之電荷量,而使液晶透鏡仍保有短焦距之特性。再者, 由於連續尖狀部208之設計可使電荷更容易累積在透明電 極層203之連續尖狀部施之尖端處,故僅需施加低電壓, 就可產生所欲電場。因此,連續尖狀部2〇8之設計可使本 發明之液晶透鏡僅需施加低電壓,即可達到所欲電場,進 2達至J所欲之紐焦足巨。是故,如上所述,藉由連續尖狀部 208之設計,本發明之液晶透鏡可具有透鏡開口率大(即[穿 201142363 效工作範圍大)、短焦距、低施加電愿之特性。 p敘職為本發明之較佳實㈣卜此領域之技兹者 應付以湏會其係用以說明本發明而非用a#定n a π 張之專利權利!备圍。甘击 非用限疋本發明所主 =其等同領域而定。凡熟悉此領域之技藝者=〗 離本專利精神或範圍内, 明Μ M m 厅作之更動或潤飾,均屬於本發 月所揭不精神下所完成之等發 述之申請專利_内。 H以且應包含在下 【圖式簡單說明】 本發明可藉由說明書 ,曰甲之右干較佳實施例及詳細敘述 畀後附圖式而得以瞭解。圖 又1 明令之同-元件。缺而,^ 间之疋件符號係指本發 …、應理解者為,本發明之所有較佳 ^ 說⑽相以限制申請專利範圍,其中: ★圖係為傳統液晶透鏡之橫切面示意圖。 第2A圖係為具有寬範 之俯視圖。 極層之傳統液晶透鏡 第2Β圖係為具有寬範圍透 之橫切面示意圖。 ^層之傳統液晶透鏡 第3Α圖係為具有窄範圍 之俯視圖。 电拉層之傳統液晶透鏡 第3Β圖係為具有窄範圍透 之橫切面示意圖。 層之傳統液晶透鏡 第4Α圖係根據本發明之— 、 視圖。 ”&quot;員示液晶透鏡之俯 201142363 第4B圖係根據本發明之 切面示意圖。 實'細*例顯不液晶透鏡之橫 實施例顯示液晶透鏡中之 第5A圖係根據本發明 f狀透明電極層之示意圖。 第5B圖係根據本發明之 一 一 少册&amp;、乃一實施例顯示液晶透鏡中 V狀透明電極層之示意圖。 第5C圖係根據本發明之又另一實施例顯示液晶透鏡 中之可狀透明電極層之示意圖。 【主要元件符號說明】 101上基板 102下基板 103透明電極層 104開孔 105配向膜 10 6液晶材料層 107電壓 2〇1上基板 2〇2下基板 203透明電極層 2〇3a帶狀透明電極層 204開孔 205配向膜 206液晶材料層 207電壓 201142363 208連續尖狀部As shown in Fig. A to Fig. 5C, the transparent electrode layer adjacent to the opening 204 may be provided in a plurality of strip-shaped transparent electrode layers 2〇3a spaced apart from each other by a predetermined distance. In an embodiment of the present invention, as shown in FIGS. 5A and 5B, a continuous tip portion 2〇8 may be disposed on one side or both sides of the plurality of strip-shaped transparent electrode layers 2〇3a. . In an embodiment of the invention, the curvature of the plurality of strip-shaped transparent electrode layers plus the continuous tips 208 on the edges may vary with distance. In the embodiment, as shown in FIG. 5C, each: band: the curvature of the continuous tip portion on the edge of the transparent electrode layer 2G3a and the distance from the transparent electrode layer 203a are read at the center of the liquid-shield lens. The distance is positively related. For example, when the strip-shaped transparent electrode layer 2〇3a is closer to the liquid crystal lens, the edge of the strip-shaped transparent electrode layer 2〇3a is 2〇8^ Λ, and the continuous sharp shape formed on the crucible For example, the shape of the continuous triangular portion 208 is an equilateral edge, and the regular shape of the strip (4) or any triangle is regular. The shell J, the transparent electrode layer 2〇3a is more angular, isosceles. -few _ Near the center of the liquid lens, the three sides of the triangle are equal to each other. The length of the bottom of the triangle is larger, and the continuous pointed shape is more blunt. As shown in Fig. 5C, when the distance from the center of the liquid crystal lens is away, the strip-shaped, "continuously pointed portion of the strip-shaped transparent electrode layer 20 is completely curved, and the shape of the coffee bean is an equilateral triangle. For example, 'If the continuous tip is formed into a regular _ shape, (4) & - (4) or the center of any triangle is set... "The electrode layer 203a is farther away from the center of the bottom edge of the liquid crystal lens" The smaller the β ^ ^ e side angle, the waist triangle or the SJ. 9 201142363, the sharper the continuous tip 208. By providing the continuous tip portion 2〇8 at the edge of the transparent electrode layer 203, it is possible to more easily accumulate charge at the tip end of the continuous tip portion 2〇8, and the amount of charge accumulated on the transparent electrode layer 203 is increased. If the base of the triangle is shorter than the shorter sides, the sharper the angle corresponding to the bottom edge is accumulated, and the charge at the tip end of the continuous tip 2 () 8 of the transparent electrode layer 203 is over. The more the amount of charge accumulated at the tip end of the continuous tip 208, the larger the electric field formed between the transparent electrode layers 203 will be. The greater the electric field strength formed between the transparent electrode layers 2〇3, the shorter the focal length of the liquid crystal lens. Therefore, under the application of the same voltage, the design of the continuous tips 2〇8 can increase the electric field strength formed between the transparent electrode layers 203, thereby shortening the focal length of the liquid crystal lens generated by the axial distribution of the liquid crystal material layer 206 of the liquid crystal lens. In general, the larger the range of the openings 204, the larger the focal length of the liquid crystal lens. However, by the design of the continuous tip portion 2〇8 of the present invention, even if the opening aperture 204 is increased in order to increase the aperture ratio of the liquid crystal lens of the present invention, the curvature of the continuous tip portion 2〇8 can be increased, that is, Reducing Figure 4A: The base side length a increases the amount of charge accumulated at the tip of the continuous tip, so that the liquid crystal lens still retains the characteristics of short focal length. Moreover, since the continuous tapered portion 208 is designed to more easily accumulate charge at the tip end of the continuous tip portion of the transparent electrode layer 203, a desired electric field can be generated by applying only a low voltage. Therefore, the design of the continuous tip portion 2〇8 allows the liquid crystal lens of the present invention to apply a low voltage only to achieve a desired electric field, and to achieve the desired maximum focus. Therefore, as described above, the liquid crystal lens of the present invention can have a characteristic that the lens aperture ratio is large (i.e., [wearing 201142363 effective working range is large), short focal length, and low power application by the design of the continuous tip portion 208. p narration is the best practice of the invention (4) The technical person in this field is responsible for explaining the invention instead of using a# n a 专利 patent right! Prepare for the round. Gambling is not limited to the main body of the invention = its equivalent field. Anyone who is familiar with the field in this field = 〗 Within the spirit or scope of this patent, the modification or retouching of the Ming M M Hall is in the patent application _ completed in the spirit of this month. H and should be included in the following. [Brief Description of the Drawings] The present invention can be understood by the description, the preferred embodiment of the right armor and the detailed description of the following drawings. Figure 1 is the same as the same - components. In the meantime, the symbol of the item refers to the present invention. It should be understood that all the preferred embodiments of the present invention limit the scope of the patent application, wherein: ★ The figure is a schematic cross-sectional view of a conventional liquid crystal lens. Figure 2A is a top view with a wide range. The conventional liquid crystal lens of the polar layer is a schematic cross-sectional view having a wide range of transmission. The conventional liquid crystal lens of the layer is a plan view having a narrow range. A conventional liquid crystal lens of an electric drawing layer is a schematic cross-sectional view having a narrow range of transparency. A conventional liquid crystal lens of a layer is a view according to the present invention. </ br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> 5B is a schematic view showing a V-shaped transparent electrode layer in a liquid crystal lens according to one embodiment of the present invention. FIG. 5C is a view showing liquid crystal according to still another embodiment of the present invention. Schematic diagram of the transparent transparent electrode layer in the lens. [Main component symbol description] 101 Upper substrate 102 Lower substrate 103 Transparent electrode layer 104 Opening 105 Alignment film 106 Liquid crystal material layer 107 Voltage 2〇1 Upper substrate 2〇2 Lower substrate 203 transparent electrode layer 2〇3a strip transparent electrode layer 204 opening 205 alignment film 206 liquid crystal material layer 207 voltage 201142363 208 continuous tip

Claims (1)

201142363 七、申請專利範圍: 1· 一種液晶透鏡,包含: 一上基板; 一下基板,其相對於該上基板設置; 一對透明電極層,其設置於該上基板及該下基板之内側 上,其中該對透明電極層之其中之一者包含一開孔形成 於其中’且其邊緣包含連續尖狀部; 一對配向膜,其設置於該對透明電極層之内側上;以及 鲁 一液晶材料層’其設置於該對配向膜之間。 2. 如請求項1所述之液晶透鏡,其中該對配向膜之一部份 係設置於該開孔内。 3. 如請求項丨所述之液晶透鏡,其中該連續尖狀部之形狀 包含規則鋸齒狀。 4. 如請求項3所述之液晶透鏡,其中該規則鋸齒狀包含複 數等邊三角形、等腰三角形或任意三角形。 5. 如請求項4所述之液晶透鏡,其中該等邊三角形、等腰 三角形或任意彡角形之底邊長約為2微米〜10〇微米。 6_如請求項5所述之液晶透鏡,其中該等邊三角形、等腰 三角形或任意彡角形之底邊長較佳約為5微米。 201142363 7.如請求項1所述之液晶透鏡,其中該連續尖狀部之形狀 包含不規則鋸齒狀。 8. 如請求項1所述之液晶透鏡,其中該對透明電極層之材 料包含氧化銦錫(Indium Tin Oxide, ιΤ0)或氧化鋼辞 (Indium Zinc 〇xide, IZ0)。 9. 如請求項丨所述之液晶透鏡,其中該對配向膜之材料包 含聚亞醯胺(p〇lyimide,PI)。 〇.如5月求項i所述之液晶透鏡,其中該對透明電極層之盆 :之-者包含複數條帶狀透明電極層,其彼此相二預 定距離且其邊緣包含該連續尖狀部。201142363 VII. Patent application scope: 1. A liquid crystal lens comprising: an upper substrate; a lower substrate disposed relative to the upper substrate; a pair of transparent electrode layers disposed on an inner side of the upper substrate and the lower substrate, Wherein one of the pair of transparent electrode layers comprises an opening formed therein and the edge thereof comprises a continuous tip; a pair of alignment films disposed on the inner side of the pair of transparent electrode layers; and a liquid crystal material The layer 'is disposed between the pair of alignment films. 2. The liquid crystal lens of claim 1, wherein a portion of the pair of alignment films is disposed within the opening. 3. The liquid crystal lens of claim 1, wherein the continuous tip shape comprises a regular zigzag shape. 4. The liquid crystal lens of claim 3, wherein the regular zigzag shape comprises a plurality of equilateral triangles, an isosceles triangle or an arbitrary triangle. 5. The liquid crystal lens according to claim 4, wherein the equilateral triangle, the isosceles triangle or the arbitrarily formed base has a base length of about 2 micrometers to 10 micrometers. The liquid crystal lens according to claim 5, wherein a base length of the equilateral triangle, an isosceles triangle or an arbitrary corner is preferably about 5 μm. The liquid crystal lens of claim 1, wherein the continuous tip portion has an irregular zigzag shape. 8. The liquid crystal lens according to claim 1, wherein the material of the pair of transparent electrode layers comprises indium tin oxide (Indium Tin Oxide, ιΤ0) or oxidized steel (Indium Zinc 〇xide, IZ0). 9. The liquid crystal lens of claim 3, wherein the material of the pair of alignment films comprises polyplylimide (PI). The liquid crystal lens of claim i, wherein the pair of transparent electrode layer basins comprise a plurality of strip-shaped transparent electrode layers which are at a predetermined distance from each other and whose edges comprise the continuous tips . 其中該連續尖狀部之曲 距離該液晶透鏡中心之 11 ·如請求項10所述之液晶透鏡, 率隨該複數條帶狀透明電極層 距離而改變。Wherein the curvature of the continuous tip is away from the center of the liquid crystal lens. 11. The liquid crystal lens according to claim 10, the rate varies with the distance of the plurality of strip-shaped transparent electrode layers. 1515
TW99115995A 2010-05-19 2010-05-19 Liquid crystal lens TWI417576B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99115995A TWI417576B (en) 2010-05-19 2010-05-19 Liquid crystal lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99115995A TWI417576B (en) 2010-05-19 2010-05-19 Liquid crystal lens

Publications (2)

Publication Number Publication Date
TW201142363A true TW201142363A (en) 2011-12-01
TWI417576B TWI417576B (en) 2013-12-01

Family

ID=46765042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99115995A TWI417576B (en) 2010-05-19 2010-05-19 Liquid crystal lens

Country Status (1)

Country Link
TW (1) TWI417576B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454791B (en) * 2012-05-23 2014-10-01 Au Optronics Corp Electrically-driven liquid crystal lens panel and stereoscopic display panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577434B2 (en) * 2000-01-14 2003-06-10 Minolta Co., Ltd. Variable focal position spatial modulation device
EP1783537A4 (en) * 2004-07-20 2009-09-02 Asahi Glass Co Ltd Liquid crystal lens element and optical head device
JP2006313243A (en) * 2005-05-09 2006-11-16 Konica Minolta Holdings Inc Liquid crystal lens
TW200734731A (en) * 2006-03-14 2007-09-16 Chi Mei Optoelectronics Corp Multi-domain vertically alignment liquid crystal display panel
TWI370922B (en) * 2007-08-31 2012-08-21 Chimei Innolux Corp Liquid crystal display panel and liquid crystal display apparatus
TW201011392A (en) * 2008-09-09 2010-03-16 United Radiant Technology Corp Liquid crystal lens with double layer structure and method of manufacturing the same
TWM379805U (en) * 2009-12-03 2010-05-01 Emerging Display Tech Corp Capacitance touch panel with eliminating moire fringe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454791B (en) * 2012-05-23 2014-10-01 Au Optronics Corp Electrically-driven liquid crystal lens panel and stereoscopic display panel

Also Published As

Publication number Publication date
TWI417576B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
CN102236245B (en) Single-lens 2D/3D digital camera
CN106019605B (en) Nearly eye display device and method
JP6852896B2 (en) 3D display panel, 3D display device including it, and its manufacturing method
CN201765418U (en) Naked-eye stereoscopic display device
TWI417575B (en) Electrically-driven liquid crystal lens and stereoscopic display using the same
WO2011036736A1 (en) Stereoscopic image display device
WO2017000433A1 (en) Stereoscopic display substrate, manufacturing method therefor, and stereoscopic display device
TW200916831A (en) Directionally controlled illumination unit for autostereoscopic displays
CN103809228A (en) 3D image display apparatus including electrowetting lens array and 3D image pickup apparatus including electrowetting lens array
JP2014511497A (en) Fresnel lens structure and 2D / 3D conversion video display device using the same
JP2007226231A (en) Stereoscopic image conversion panel and stereoscopic image display apparatus having same
TW200931127A (en) Electrically-driven liquid crystal lens and stereoscopic display device using the same
US9383488B2 (en) Color filter substrate, manufacturing method therefor and 3D display device
EP3147702A1 (en) Display device
TWM396974U (en) Displaying apparatus for switching displaying modes
TWM398632U (en) Autostereoscopic display
TWI463213B (en) Image display device
US20160091727A1 (en) Polarizing control film and stereoscopic display device using the same
KR20130107953A (en) Display device
WO2023160258A1 (en) Light ray modulation element, glasses and 3d display system
TWM395187U (en) 2D and 3D switchable stereoscopic display and liquid crystal lenticular lens thereof
WO2015109719A1 (en) 3d glasses lens and manufacturing method therefor, and 3d glasses
US9448446B2 (en) Liquid crystal optical device, image display device, and imaging device
JP5793099B2 (en) Display device, electronic device and control circuit
JP2018136525A (en) Lenticular lens sheet for naked eye 3D and liquid crystal display module for naked eye 3D

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees