TW201140087A - Automated handling of electro-optical transducers used in LCD test equipment - Google Patents

Automated handling of electro-optical transducers used in LCD test equipment Download PDF

Info

Publication number
TW201140087A
TW201140087A TW100100640A TW100100640A TW201140087A TW 201140087 A TW201140087 A TW 201140087A TW 100100640 A TW100100640 A TW 100100640A TW 100100640 A TW100100640 A TW 100100640A TW 201140087 A TW201140087 A TW 201140087A
Authority
TW
Taiwan
Prior art keywords
electro
sensor element
computerized method
optic sensor
computer
Prior art date
Application number
TW100100640A
Other languages
Chinese (zh)
Inventor
Kent Nguyen
Kaushal Gangakhedkar
Neil Nguyen
Steve Aochi
Ngan Do
Original Assignee
Photon Dynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photon Dynamics Inc filed Critical Photon Dynamics Inc
Publication of TW201140087A publication Critical patent/TW201140087A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2825Testing of electronic circuits specially adapted for particular applications not provided for elsewhere in household appliances or professional audio/video equipment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

An LCD test system includes inspection heads, holders, a stage assembly and means for securing electro-optical transducer elements to the inspection heads. The one or more holders are adapted to house electro-optical transducer elements. The holders are placed on the stage assembly which is adapted to transfer the electro-optical transducer elements to the inspection heads using a computer control system. The LCD test system may also include cleaning stations and a stage assembly adapted to hold and move the cleaning stations. The cleaning stations are adapted to receive and house the electro-optical transducer elements.

Description

201140087 六、發明說明: 交互參考相關申請案 本專利申請案根據35 USC 119(e),以2010年1月8曰提 出申請且名稱為”自動處理使用於液晶顯示器測試設備中 的電光傳感器之技術,,之美國臨時申請案第61/293,579號為 基礎’主張其優先權,其全部内容係併入此案以供參考。 【發明所屬之技彳椅領域】 發明領域 本發明係有關於一種自動處理使用於液晶顯示器測試 設備中的電光傳感器之技術。 發明背景 本發明係有關於使用於液晶(LC)或有機發光二極體 (OLED)顯示器中的薄膜電晶體(TFT)陣列的電檢察的機器。 於平面液晶顯示器的製造中,為了確認已製造的顯示 器中的瑕疵,係執行各種不同的檢驗階段。其中一種類型 的檢查為使用於顯示器中的薄膜電晶體陣列的電檢察。這 類陣列測試器的一個範例為商業上可從Photon Dynamics, Inc. an Orbotech Company of San Jose,CA取得的 Array Checker AC5080。 透過使用於例如美國專利第4,983,911、5,097,201、及 5,124,635號中所敘述的電壓映像(Voltage Imaging ®)測試 裝置及方法,該陣列測試器(或者於此參照為”陣列檢查器” 或”AC”)可確認液晶顯示器中的瑕疵。因為液晶顯示器係包 201140087 含一像素陣列,當電性驅動該液晶顯示器時,某些關於瑕 '疵的像素電性行為不同於正常像素,且因此可使用電壓映 像感測器檢測這樣的不同。 此等電壓映像感測器典型地依靠電光傳感器,其依次 可基於液晶材料(如向列曲線排列狀態或扭曲向列分子)或 其他電雙折射晶體(例如’如钽酸鋰或铌酸鋰的波克斯晶體 (Pockels Crystals))。於Orbotech的陣列檢查器的實例中,電 光材料係貼附於夾在透明電極與反射薄膜之間的重量約5 lbs.的玻璃載體。所產生的總成係參照為一,’調變器”,使用 元件符號10識別於第1A圖中。參考第1B圖,調變器1〇係安 裝於一調變器空氣軸承底座20,該調變器空氣軸承底座2〇 係依附於一由映像感測器(如CCD攝影機)6〇所覆蓋的光學 透鏡總成40。一照明器80係依附至該攝影機6(^所構成的 總成係參照為電壓映像光學系統(VI〇S)1〇〇—如第1圖中所 示0 第2A圖及第2B圖分別為該調變器空氣軸承底座20的 示意圖的前視及上視圖。參考第2A圖,於檢驗期間,在測 試以確保該電光傳感器(調變器)與TFT玻璃面板210上的像 素電極之間的實質的電容偶合,該調變器係放置於距該TFT 玻璃面板210足夠小的距離。此距離典型地大約25-80 um, 係藉由使用數個(例如3個)可調節流量的注入器220的空氣 軸承所維持。調變器感測回饋類比信號225測量作用於該電 光材料上的透明電極的偏電壓。該調變器底座包括可攫取 並定位或釋放該調變器的一組夾鉗230。該等夾鉗適於以氣 201140087 體驅動以將該調變器牢固於該檢驗頭。第 "^圖亦顯示 一於漂洋板240中的調變器容納凹口 235。該漂浮板係—固 於該調變ϋ底座25G。此外’每—調魏可具有可被該檢驗 頭上的無線射頻識別讀取器2 7 〇所感測之其本身的無線射 頻識別標籤260。 由於數個原因,進入陣列測試系統中的調變器成相似 的電光傳感器總成係為必要的,例如: 1) 移除/安裝電光傳感器元件; 2) 清理該電光傳感器元件的感測(面板側)表面,以移除子 擾測試過程及可能在測試中損害該面板的粒子及其他碎 屑,並且最佳化該傳感器元件本身的使用壽命; 3) 調整該空氣軸承設定,為了確保調變器在測試中為水斗· 且於一板之上並飛在正確的高度。典型地,此調整係實行 於每個調變器交換之後,或當需要調整以維持適當的信號 強度及一致性的任何時候。 上述過程牵涉到該電光元件的密集的手動處理,真因 此需要身體進入該系統内部的檢驗頭。然而,因顯杀器製 造於其上的玻璃的尺寸增加,所以陣列測試系統於其中之 使用於製造過程的設備的尺寸亦增加。同樣地,為了保持 足夠的生產量,檢驗頭的數量因玻璃尺寸增加而增如。例 如,Gen5(1100mmxl300 mm)AC系統使用單—電壓睐像光 學系統,雖然Genl0(2850 mmx3050 mm且較大)使用4個。 系統的尺寸及頭的數量的增加,使得直接進入電光傳感器 越來越困難,如同陣列測試系統300示意圖的第3圖中所例 5 201140087 示說明。對於處理較Gen8大的玻璃基體的系統,對操作員 而言,實際上不可能從系統的側邊安全抵達所有¥1〇8 1〇〇 檢驗頭(3個或更多個)。這對於那些使用龍門式結構(如 Orbotech Gen8陣列檢查器)的系統尤其是確實的,因為它 們一般使用主龍門梁320於玻璃任一侧的縱向方向移動於 其上之高的升降器31〇(典型地由花崗岩所製造由於玻璃 裝載機器人室330存在於前側,係不可能從系統前方進入。 系統的背面為操作員可安全地停滯於環境室340圍繞工具 的封閉體(適當地由連鎖系統所停用的平台所提供)内部的 唯一處,但由於例如電子櫃350或探針組構站36〇(使用於組 構子系統在測試中傳遞電驅動信號至面板被檢驗的配置) 的子系統的存在,甚至在那裡亦非常困難抵達檢驗頭。注 意到,於分離進入的系統(split access system)中,後方進入 是不可能的,但側邊進入係較為簡單,因為沒有系統長度 的升降器。 另一關於手動處理電光傳感器元件及它們安裝於其中 的底座的議題為安全及損害的議題。操作員越需要密切身 體鄰近檢驗頭工作,與系統上的移動部件碰撞而應有的傷 害的機會越大一注意到,於AC系統上的vios頭具有大約 200 lbs的移動質量、L7G的發展加速度、及速度加快超過j m/s !同樣地,操作員在檢驗中可能會掉落電光傳感器元件 至該板、平鋪夾頭370、或系統的其他部件上,由此導致該 板、傳感器元件、及/或系統的損害。 第4圖為先前技藝中已知的調變器交換程序4〇〇的流程 201140087 Z如同第4圖中所顯示,傳統地實行替換AC系統中的調 交益(或相似地’安裳新的調變器)係藉由選擇他—彻$檢 驗頭' 從控制電腦的圖形使用者介面發出彻交換序列、以 。移動^15所選擇的將*生交換的vI〇s頭至__可進入區 或接著’第一操作員將-容器放置於420該調變器(或者 於此參&$電光傳感1^元件或僅為傳㈣)下方,若有任何 存在’同時第二操作員按壓腳驅動機械開關以打開或釋放 425保H周變II的夾甜(第2A及圖中的元件挪)。第— 刼作員接收430掉落於該容器中的調變器。第二操作員可遠 端地釋放腳開關,因此關閉435該等調變器夾钳。接著,-裝有新的調變器的容器係由第-操作員放置於440空的調 文器底座下面。之後,第二操作員再一次按壓腳開關以遠 端地打開44 5該等調變器夾钳。紐,第-操作員將該調變 器手動裝載45G進人該底座。然後,第二操作員釋放腳開 關’遠端地關^^455該等夾钳以將新的調變器攫取於底座之 中。旦可女全進行,測試檢驗可接著藉由GUI重啟460。 於依靠電光傳感器的陣列測試系統中,在測試以確保 兩段防止著地(touchdown)的時間之間的電容偶合中,該傳 感器需要被保持於面板上方之小(取決於傳感器類型及操 作模式,例如約50 Um)且一致的距離。此典型地係藉由有 多個合併於保持傳感H元件朗變^的底座中的空氣注入 器(第2Α·Β圖中的元件22G)的空氣麻之方式而確保。通 常,係使用3個注入器(定位於等邊三角形的角),因為3個點 定義一平面。個別控制通過該等注入器的每一者的流量, 201140087 、於這點之上提升(增加流量)或降低(減少流量)該調變 器般’此調整係於測試中該檢驗頭降低(“間隙(gapping),,) 至板的第一地點時所實行。為了調整,係典梨地使用該映 象感別器上所檢測到的信號。例如,於先前的陣列檢查器 系統中,係藉由手動個別調整每一注入器的流量,以得到 於間隙位置(I-偏壓;)之所欲的未加工的檢測到的信號,或^ 偏壓信號與盡可能地提升至接近目標高度值的頭所記錄的 钇唬之間之所欲的差異,而完成調平。於先前產生陣列測 弋器系統中,係使用可手動調整的閥以控制該等注入器的 每—者的壓力而完成每__空氣注人氣的流量調整。 C發明内容】 發明概要 依照本發明的一個實施例,一種自動處理使用於液晶 貝示器測试系統中的電光傳感器元件的電腦化方法,部分 地包括,將電光㈣器放置於定位在平台總成上的保持器 中改變該平台總成相關於一檢驗頭的位置以將該電光傳 感器7L件固定至該檢驗頭、以及將該電光傳感器從該 器轉移至卿。 寻 曰依照本發明的數個不同實施例,該自動處理使用於液 :顯不器測試系統中的電光傳感器元件的電腦化方法,部 刀地亦包括,使該檢驗頭對準該保持器、垂直移動該檢驗 =朝㈣保持器、以及垂直移動該保持器朝向該檢驗頭。 於另1施例中,該方法包括,於轉移該電光傳感器之前 及之後’確認該電光傳感器元件存在於該檢驗頭及保持器 8 201140087 上。於另-實施例中,該電祕感器元件 中以防止人體接觸。 、谷益 依照本發明的-個實施例,一種液晶顯示器測試系統 部分地包括-或多個檢驗頭、—或多個保持器、—平台總 成、一或多個電光傳感器元件、一夾钳、以及—電腦控制 系統。該等保持㈣適於覆蓋該等電光傳感器元件。該平 台總成_於保持該保持器,及將該等電光傳感器元件從 。亥等保持ϋ轉移至料檢驗頭。該夾_適於將該等電光 傳感器元件牢固至該等檢驗頭。 依照本發明的某些實施例,該平台總成更適於運載探 針接觸總成。該等保持器係可調整於許多方向,而使得能 夠調整該等電光傳感n元件至檢驗頭的平面。該等保持器 具有垂直的順從性,以減少該等檢驗頭與電光傳感器元件 之間任何殘餘的未校準。該等保持器包括一或多個校準基 準。—於檢驗頭上的攝影機係適於查看該等校準基準使得 月b夠將該等保持器校準該攝影機。感測器係適於確認該等 電光傳感器元件存在於及鄰近保持器中及檢驗頭上。該等 感測器非必需地可為鄰近感測器及/或無線射頻識別讀取 器。該夾鉗非必需地可為氣體驅動夾鉗。 依照本發明的一個實施例,—種清理液晶顯示器測試 系統的電光傳感器的電腦化方法,部分地包括,將一有至 少—個清理站的第一平台總成運送至一第二平台總成、移 動該第二平台總成相關於該第—平台總成的位置、將電光 傳感器元件定位於該清理站中、以及遞送一第一氣流以從 9 201140087 電光傳感器元件的表面鬆脫並移除粒子。該第二平台總成 部分地包括至少一個檢驗頭及至少一個電光傳感器元件。 依照本發明的某些實施例,該清理液晶顯示器測試系 統的電光傳感器的電腦化方法,部分地亦包括,使該檢驗 頭帶對準該清理站、垂直移動該檢驗頭朝向該清理站、垂 直移動該保持器朝向該檢驗頭、及/或於開始清理過程之前 確認該等電光傳感器元件鄰近該清理站。於其他實施例 中,該氣流中的第一氣體部分地包括乾淨的乾燥空氣或氮 氣、或離子化而能夠移除受靜電引力所吸引的粒子。 依照本發明的某些實施例,該清理液晶顯示器測試系 統的電光傳感器的電腦化方法,部分地包括,從數個喷口 將水排除,以及於排除水之後從一或多個喷嘴遞送空氣或 一第二氣流而使該電光傳感器元件乾燥。該方法更部分地 包括,使用一或多個設置於該檢驗頭上的校準基準以將該 電光傳感器元件對準該清理站。該方法更部分地包括,於 遞送該第一氣體之前,使用一或多個感測器以確認該電光 傳感器元件鄰近該清理站。該方法更部分地包括,於遞送 該第一氣體之前,使用該等感測器以確認該電光傳感器元 件鄰近該清理站。 依照本發明的某些實施例,該清理液晶顯示器測試系 統的電光傳感器的電腦化方法,部分地包括,使該第一平 台總成適於運載探針接觸總成。該方法更包括,藉由於數 個方向調整該清理站,而調整該電光傳感器元件相對於該 檢驗頭的平面。該方法更包括,藉由於該清理站中具有垂 10 201140087 直順從性,而減少該檢驗頭與電光傳感器元件之間殘餘的 未校準。 依照本發明的一個實施例,一種液晶顯示器測試系統 部分地包括一檢驗頭、至少一個清理站、及一適於保持並 移動該清理站的平台總成。該清理站係適於接受並覆蓋電 光傳感器元件。該清理站部分地包括一或多個用於遞送第 一氣流至該電光傳感器元件的表面以從其表面鬆脫並移除 粒子的喷嘴。 依照本發明的某些實施例,於氣流中的第一氣體可為 乾淨的乾燥空氣或氮氣、或離子化而能夠移除受靜電引力 所吸引的粒子。該清理站部分地包括數個適於排除水的喷 口、及適於在排除水之後遞送空氣或第二氣體而使該電光 傳感器元件乾燥的喷嘴。該平台總成更適於運載探針接觸 總成。該清理站係可調整於數個方向,使得能夠調整該電 光傳感器元件相對於該檢驗頭的平面。該清理站具有具有 垂直的順從性以減少該檢驗頭與電光傳感器元件之間殘餘 的未校準。該清理站可部分地包括一或多個校準基準。該 檢驗頭部分地包括一攝影機。該系統部分地包括一或多個 適於在遞送第一氣體之前確認該電光傳感器元件鄰近該清 理站的感測器。 於本發明的一個實施例中,一種用於在測試中遠端調 整液晶顯示器測試系統的電光傳感器元件與面板之間的距 離的電腦化方法,部分地包括,於測試中將該電光傳感器 元件定位於該面板上方、及遠端控制透過一或多個孔口所 11 201140087 注入的氣體的流量及壓力。該氣流係使用於將該電光傳感 器元件定位於距該面板已知的垂直距離中。 依照本發明的某些實施例,該用於在測試中遠端調整 液晶顯示器測試系統的電光傳感器元件與面板之間的距離 的電腦化方法,部分地亦包括,使用閉合迴路控制系統以 調整垂直距離,直到一檢驗頭上的映像感測器上檢測到目 標信號值。該方法部分地更包括,藉由選擇數個使用電磁 閥而耦接至該等孔口的每一者的固定孔口流量控制閥中的 一個,以控制於該等孔口的每一者的氣體的流量與壓力。 該方法部分地更包括,於數個不同位置或於每一面板測試 開始時執行該調整。該方法部分地更包括,首先選擇第一 固定孔口流量控制閥、及視需要而選擇第二固定孔口流量 控制閥。該第一孔口流量控制閥部分地包括一比該第二孔 口流量控制閥較狹窄的孔口。 依照本發明的一個實施例,一種液晶顯示器測試系統 部分地包括一電光傳感器元件、一或多個於該電光傳感器 元件上用於注入氣體的孔口、及一適於控制氣體流量與壓 力的電腦。氣體流量係使用於將該電光傳感器元件定位於 距一面板已知的垂直距離中。 依照本發明的某些實施例,該液晶顯示器測試系統部 分地亦包括一適於自動調整該垂直距離直到映像感測器上 檢測到目標信號值的閉合迴路控制系統。該檢驗頭係適於 保持該液晶顯示器系統的電光傳感器元件。數個固定孔口 流量控制閥係耦接至該等孔口的每一者,以控制氣體的流 12 201140087 篁與壓力。一電磁閥係耦接至該等固定孔口流量控制閥, 並且係適於選擇該等固定孔口流量控制閥中的一個。一第 一固定孔口流量控制閥部分地包括一比第二孔口流量控制 閥較狹窄的孔口。另—實施例部分地包括—_於該等固 定孔口流量控侧與孔Π的每—者之間以防止回流的止回 閥。該電磁閥係適於首先選擇該第一固定孔口流量控制 閥、並視需要而選擇該第二固定孔口流量控制閥。 圖式簡單說明 第1A圖為先前技藝中已知的調變器的示意圖; 第1B圖為先前技藝中已知的電壓映像光學系統(vi〇s) 的不意圖; 第2A圖為先前技藝中已知的調變器空氣軸承底座的前 視圖示意圖; 第2B圖為該先前技藝中已知的調變器空氣軸承底座的 上視圖示意圖; 第3圖為強調進入議題之先前技藝中已知的陣列測試 系統的示意圖; 第4圖為先前技藝中已知的調變器交換程序的流程圖; 第5圖為依照本發明的一個實施例的自動調變器交換 台的示意圖; 第6A及6B圖分別為依照本發明的—個實施例的調變 器交換夾的前視及上視圖; 第7A圖為敘述依照本發明的一個實施例而用於自動卸 載調變器的序列的流程圖; 13 201140087 第7B圖為敘述依照本發明的一個實施例而用於自動裝 載調變器的序列的流程圖; 第8 A及8 B圖分別為依照本發明的一個實施例的調變 器清理站的前視及上視圖; 第9圖為依照本發明的一個實施例而使用於自動清理 調變器的序列的流程圖; 第10A及10B圖顯示依照本發明的一個實施例的遠端 空氣軸承控制空氣力學及自動控制的一些組件。 【實方包方式j 較佳實施例之詳細說明 為了容易進入例如產生7檢驗頭及以後的大型陣列測 試系統的檢驗頭,並且為了防止對操作員的傷害及對陣列 測試系統中的設備、玻璃基體與電光傳感器元件的損害, 本發明的實施例提供自動處理這類系統中的電光傳感器元 件,部分地包括,裝載/卸載、清理、及藉由改進調整的準 確性及重複性並降低執行此操作所需要的時間而調整空氣 軸承。為達到上述目的,除了其他優點,本發明的實施例 提供將於下文詳細敘述的⑴自動調變器交換器、(ii)自動調 變器清理站、及(iii)調變器空氣軸承的遠端調整。 自動調變器交換台(ΑΜΕ) 第5圖為依照本發明的一個實施例的自動調變器交換 台500的示意圖。如同將於下文詳細敘述,除了其他優點, 自動調變器交換台500藉由自動交換陣列測試系統上的電 光傳感器元件,克服了進入的議題以及於傳統系統中的安 14 201140087 全與損害風險。為達到此,自動調變器交換台5⑼包括一些 設置於在檢驗中傳達驅動面板的信號的龍門平台中的一個 之上的交換失。此等龍門平台係於此參照為探針桿(PB), 且適於運載在測試中遞送電驅動信號至面板的探針接觸總 成。於一實施例中,每—陣列檢查器系統有兩個探針桿。 該等調變器交換夾520係典型地放置於後側探針桿53〇,並 定位在後側探針桿530的行程範圍的後側末端。以此組構, 可以對操作員及設備的最小風險而將調變器放置於交換失 之中(或者於此參照為保持器)或從其中取回。該等交換夾的 數1可取決於檢驗頭的數量。於一實施例中,每一頭有一 個父換夾。於另一貫施例中,具有比頭較少的交換夾。又 於其他實施例中,有2個交換夹對應3個頭。 第6 A及6 B圖分別為依照本發明的一個實施例的調變 器交換夾520的示意圖的前視及上視圖。調變器交換夾52〇 係顯示為具有適於接收調變器10的接收器環610。於某些實 施例中,父換夾52〇包括例如接收調變器以防止人體接觸的 運載箱620的第二調變器容器、保持器、或箱。接收器環61〇 係定位於可調整基座630的頂部,可調整基座63〇可於所有6 個自由度中調整足夠的範圍(例如,多達25〇um)而使其與調 變器放置於其中的每一空氣軸承底座共面。可藉由水平螺 絲或螺栓及自鎖螺帽64〇的方式鎖固最後的調整。此外,接 收器環藉由放置於環610與可調整基座63〇之間的〇形環645 的方式而具有固有的垂直順從性,允許其化去或減少該失 中的調變器的平面與調變器底座的平面之間任何殘餘的未 15 201140087 校準。如所示,接收器環具有3個定位或校準銷65〇以準確 地將調變器定位於該夾的内部,並防止調變器(或其容器保 持器620)於交換過程其間在該夾中的側向動作。 為了相對於檢驗頭而定位交換夾(及因此放置於其中 的調變器),一校準瞄準圈660(或者於此參照為校準基準或 才示S己)係固疋於g亥接收器環的每一側邊之上。可用一依附至 該檢驗頭的側邊的光學攝影機而查看該校準標記。可根據 所5己錄的猫準圈位置及光學攝影機系統的中央與調變器空 氣軸承底座(即,檢驗光學儀器)之間(已知)的偏移,而調整 牽涉該交換台的平台(於AC系統的實例中的VIOS X平台及 後側探針桿龍門)的正確X、γ及㊀位置。 一些設置於交換夾及檢驗頭上的感測器使得能夠監測 交換過程並防止碰撞。於本發明的某些實施例中,係於每 一夾上使用三個鄰近感測器。一參照為調變器鄰近感測器 670的第一鄰近感測器感測調變器存在於該接收器環之 中。一參照為調變器存在感測器680的第二鄰近感測器於裝 載調變器時(例如,從調變器底座裝載於檢驗頭上)感測該調 變器。一參照為箱感測器690的第二鄰近感測器感測交換夾 上的第一調變器谷器、保持器、或箱(若使用)。此外,若每 一調變器係裝備有其本身的無線射頻識別標籤,可使用檢 驗頭上的無線射頻識別讀取器以確認調變器交換成功並於 交換其間追蹤調變器。亦可使用調變器的感測回饋類比信 號以確認調變器交換成功。 第7A圖為敘述依照本發明的一個實施例而用於自動卸 16 201140087 載調變器的序列的流程圖750。前側探針桿(未運載交換夾) 可停放752於該系統的前側。運載該等檢驗頭的主要龍門可 移動754至一預定縱向(Y-)交換位置,例如其行程的後側末 端(此可使乂換時間減至最少)。該龍門亦可維持於其目前的 位置。该等帶有需要被交換的調變器的檢驗頭(固定於X/Z 平台組合上),係於z_方向向上移動756至預定側向(X-)交換 位置。此等X位置應對應該後側探針桿上的交換夾的X-位 置。該Z-位置應對應使用於查看校準標記的攝影機的焦 距,假定該等檢驗頭與交換夾之間沒有機械干涉。將後側 探針桿(運載應為空的交換夾—此可使用鄰近感測器而確 認758)移動至主要龍門的下方’並且記錄762該等校準標記 的位置(若其等未落入使用於查看其等的光學攝影機的視 野中’可使用764螺旋搜尋程序)。 基於所記錄的位置’可調整766該後側探針桿的γ方 向、及Θ或Z-位置與該等檢驗頭的X-位置。該等檢驗頭係 降低768至交換位置高度(此可藉由如上文所敘述的存在感 測器而判定770),並將該調變器釋放772至交換夾之上。— 旦使用存在感測器確認774該調變器存在於該夾之中,將該 等檢驗頭再次升起776 ’並且將該後側探針桿於γ方向移動 至其行程的後側末端。操作員此刻可移除77 8已從檢驗頭上 移除的調變器。 於某些實施例中,使用於攫取或釋放調變器的調變器 底座夾鉗,係由一位於測試器放置於其中的環境室的外側 的按紐所驅動。 17 201140087 第7B圖為敘述依照本發明的 如顯示於流程圖750中並於上:中,係假定已使用例 上卸載調-51各私咕 斤敘述的序列而從檢驗頭 檢驗^ 考第π圖’係^由首先選擇观一侧 檢驗頌並從控制電腦的 序列而達到自動㈣ 介面發自動交換 膽曰ί 調變器。接著,該等檢驗頭及後側 干軸706至一為了裝载/卸載進入(類似上述的卸載 驟3)而預先定義的位置。操作員安裝並校準观該調變 益對齊容ϋ進人後娜針桿上對應的交換夾。操作員離開 "亥系統的封閉體’並於安全時繼續該過程序列。 接著,忒系統使用感測器自動檢查712調變器存在於交 換夾之中。若讀器未存在於該失之中,該過程序列中止 732。若感測器成功檢測到調變器位於該夾之中,後側探針 桿龍門移動714至主要龍門下方的一預先定義的交換位 置。接著’該系統使用夾上的校準標記及檢驗頭上的光學 攝影機以自動校準716該檢驗頭、主要龍門、及後側探針桿 (類似上述的卸載步驟4)。若自動校準失敗,該過程序列中 止732。若自動校準為成功的,該檢驗頭漸漸地下降718至 交換高度(類似上述的卸載步驟5)。為了將調變器固定至該 檢驗頭,該系統使用感測器檢查720該調變器是否鄰近。若 鄰近檢查720失敗,該過程序列中止732。若該鄰近檢查成 功,操作員遠端驅動檢驗頭上的調變器底座上的調變器夾 鉗,以從該夾攫取772該調變器。 接者,該系統使用感測器自動確認724以確定該調變器 201140087 係成功地由該檢驗頭鉗緊。若鉗緊檢查724失敗,該過程序 列中止732。若成功地鉗緊該調變器,升起該檢驗頭726。 接著,該等檢驗頭及探針桿軸移動728至為了裝載/卸載進 入而預先定義的位置。接著,操作員進入730該系統的封閉 體以從後側探針桿龍門中移除空的容器。 整個調變器交換過程係由電腦所控制。至少有三個主 要用作控制軟體的組件,即運動控制、校準、及使用者介 面。該軟體的運動控制組件確保該等牵涉到為了於正確序 列交換而移動至正確位置的轴。該運動控制亦牽涉防止一 轴與另一軸碰撞的連鎖。該軟體的校準控制判定校準瞄準 圈相對於光學攝影機視野中心的偏移,並據以判定用於調 變器交換的平台位置的修正。該軟體的使用者介面組件使 得使用者能夠安全地對於每一頭操作交換過程(例如,運 動、校準、裝載/卸載)的不同平台。 自動調變器清理站(AMCS) 傳統清理AC系統中的調變器牽涉到從其底座移除該 調變器;以溶劑吸入式光學擦拭清理並將其再次放回。 依照本發明的一個實施例的自動調變器清理站藉由能 夠實行清理陣列測試系統上的電光傳感器元件的自動方 法,克服了進入的議題以及目前手動程序固有的安全與損 害的風險。第8A及8B圖分別為依照本發明的一個實施例的 調變器清理站540的示意圖的前視及上視圖。調變器清理站 800包括一適於從檢驗頭接收調變器10的接收器環810、以 及一或多個適於連續或脈衝注入可鬆脫因靜電引力而存在 19 201140087 =表面之粒子的離子化空氣或N2的噴嘴_於清理操作以 清理站係精由放置於接收器環與調變器U)之間的清 ,間83°的真空密封820的方式而保持於負壓,藉此移除 透過離子化所鬆脫的任何粒子。係透過線式離化 器(inline ΓΓ)ί喷嘴84崎供㈣吻;_過分離孔口(未 真空β可藉由電腦控制的螺線管_44分別 ==關暇氣(或ν2)及真空的供應。清理氣流㈣的方向 =r中的粗箭頭所指示。此外,具有無塵室捲布輥 =㈣裝於自動調變器清理站中,以擦拭該調變器 2表面。《,可於㈣巾的喷口所提供 的離t水並接著使料同站中的嘴嘴所提供的(加熱過 器献氣錢氣叫社方式,心成清理該調變 該等清理站可相似於該調變器交換h於—實施例 Μ该ί清理站包括調正插針85〇、校㈣準_〇、及鄰 5:則益870。本發明的某些實施例包括多數個清理站 相^1同第5圖中所例示說明。本發明的某些實施例包括 ^㈣清理站及檢驗頭。㈣些實施财,執行清理 =的組件可整合於調變器交換爽之中。又於其他實施例 理的組件係與使用於交換調變器的組件分 離’並且固定於前側探針桿(第5圖中的元件51〇)上。 第9圖為為依照本發明的一個實施例而使用於自動清 /周變器的序列的流程圖_。如同第9圖中所例示說明, 係藉由選擇罐被清理的_頭、並從控制電腦的圖形 20 201140087 :__自動清理序列’而完成 该>月理過程的操作序列係相似於交換過程。 文盗。 錢側&針桿(4運冑清理站)停放 等具有所選擇的調變考的浐齡π甘 彳、克的後側。該 -平台組合之上㈣定於主要龍門上的 理,,位置。此料位㈣Γ 至預定的側向(x·),,清 位置。於位料Γ _針桿切奸夹他 4位置對應於制於查看校準標記的攝影機的隹 疋该4檢驗頭與清理站之間沒有機械干涉m、 龍門可移動至-例如前側探針桿上方的預定的,,清理 置,或者可保持於其目前的位置。該前側探針桿(運載交換 動ΓΓ該主要龍門的下方(若尚未於該處),並且記錄 该專权料記的位置(若未落入使用於查看其等的光學攝 影機的視野中,可使用螺旋搜尋程序)。於自動校準908期 間,可基於所記錄的位置以調整該前側探針桿的丫及㊀位置 與該等檢驗賴X·位置。若自動校準失敗,該過程序列中 止918。若自動校準為成功的,該等檢驗頭漸漸地下降910 至清理站之中。接著,該系統檢查912固定至清理站的調變 器是否鄰近(此可藉由如上文所敘述的存在感測器而判 定),但並未鬆開該調變器。若鄰近檢查912失敗,該過程 序列中止918。若鄰近檢查成功’清理過程開始914。於清 理完成之後,檢驗過程正常地重啟916。 注意到’如同於交換的實例中,整個過程係由電腦所 控制,包括牽涉到清理的空氣與真空的驅動與時間安排。 調變器空氣軸承的遠端調整 21 201140087 依照本發明的一個實施例,係藉由使用兩個固定孔口 流量控制閥(一個有窄的孔口,另一個有宽的孔口)而能夠遠 端控制每一注入器的流量,以克服進入的議題及目前手動 程序所固有的安全與損害的風險。於每一注入器,係透過 專用電磁閥逆流而完成孔口的選擇。相較於現有的設計, 每一注入器通道中的空氣流量的範圍可因此增加,並且可 於電腦控制之下而於流過對應的寬孔口與窄孔口之高流量 範圍與低流量範圍之間遠端切換。本發明的一實施例中的 遠端空氣軸承控制空氣力學與自動控制的詳細内容係分別 顯示於第10A及10B圖中。可藉由透過軟體控制該等孔口及 空氣壓力,而細微地調整該調變器在測試中於面板上的高 度。此調整可由操作員遠端地實行,或者可於沒有操作員 介入的情況下自動化操作。演算法反覆地以小的增加量增 加或減少空氣軸承的壓力,直到達到間隙目標為止。演算 法首先選擇通過窄孔口的低空氣流量以判定是否達到該間 隙目標,並且視需要而選擇用於高空氣流量的寬孔口以增 加空氣流量而達到該目標。因此,氣流可使用於將電光傳 感器元件定位於距該面板已知的垂直距離中。使用此自動 化形式,使得能夠於不同位置或於每一受測試面板開始時 (例如於每一面板的第一地點,而非僅僅於面板的每一板在 該板包括多數個面板之處的第一地點)實行更頻繁的空氣 軸承調整,且能夠於該板上實行更準確的間隙控制並最佳 化調變器的使用壽命。 第10A圖顯示依照本發明的一個實施例的遠端空氣軸 22 201140087 承控制空氣力學1000。飛行g (flight drawer)1005提供3個轉 接至分別的流量控制閥1010、1〇15及1020的注入器流線 A-C’該等流量控制閥1〇1〇、1〇15及1〇2〇透過穿過繞道(cable track)1025之分別的寬或窄孔口線而各自耦接至分別通道 的空氣流。每一氣流通道的一對線路係耗接通過電壓映像 光學系統100中的分別的寬及窄孔口 1030及1035,並透過空 氣聯結器耦接至調變器底座2 0上分別的流線A - C。該飛行g 對每一注入器通道提供一遠端控制壓力範圍。每一通道中 的壓力係饋入導引加壓空氣至分別對應高或低空氣流量範 圍的寬或窄固定孔口的流量控制閥^來自固定孔口的流量 係接著導引至保持調變器的調變器底座。空氣接著流入調 變器空氣軸承喷嘴A、B及C。每一孔口的順流檢查閥ι037 係使用於隔離每一注入器通道中未使用的寬或窄接腳,以 防止額外的回流空氣量,不影響空氣軸承的剛性。 第10B圖顯示依照本發明的一個實施例的遠端空氣轴 承自動控制1050。Delta-Tau 34AA-2控制器1055藉由.驅動流 量控制閥1010、1015及1020之分別的光隔離功率電晶體 1060-1070 ’耦接控制信號A-C及類比接地(AGND)至每一電 壓映像光學系統100的一組飛行組件。係從飛行匣提供+V 電源至每一流量控制閥。每一流量控制閥一般係適於耦接 來自飛行匣1005的空氣流至窄孔口,除非啟動三個控制信 號A-C的其中一個以發送空氣流至寬孔口。 【圖式簡單説明3 第1A圖為先前技藝中已知的調變器的示意圖; 23 201140087 第1B圖為先前技藝中已知的電壓映像光學系統(VIOS) 的不意圖, 第2A圖為先前技藝中已知的調變器空氣轴承底座的前 視圖示意圖; 第2B圖為該先前技藝中已知的調變器空氣軸承底座的 上視圖不意圖, 第3圖為強調進入議題之先前技藝中已知的陣列測試 系統的不意圖, 第4圖為先前技藝中已知的調變器交換程序的流程圖; 第5圖為依照本發明的一個實施例的自動調變器交換 台的示意圖; 第6A及6B圖分別為依照本發明的一個實施例的調變 器交換夾的前視及上視圖; 第7 A圖為敘述依照本發明的一個實施例而用於自動卸 載調變器的序列的流程圖; 第7 B圖為敘述依照本發明的一個實施例而用於自動裝 載調變器的序列的流程圖; 第8 A及8 B圖分別為依照本發明的一個實施例的調變 器清理站的前視及上視圖; 第9圖為依照本發明的一個實施例而使用於自動清理 調變器的序列的流程圖; 第10A及10B圖顯示依照本發明的一個實施例的遠端 空氣軸承控制空氣力學及自動控制的一些組件。 【主要元件符號說明】 24 201140087 ίο...調變器 20.. .調變器空氣轴承底座 40.. .光學透鏡總成 60.. .映像感測器 80.. .照明器 100.. .電壓映像光學系統 210.. . TFT玻璃面板 220.. .注入器 225.. .感測回饋類比信號 230.. .夾鉗 235.. .調變器容納凹口 240.. .漂浮板 250.. .調變器底座 260.. .無線射頻識別標籤 270.. .無線射頻識別讀取器 300.. .陣列測試系統 310·.·升降器 320…主龍門梁 330…玻璃裝載機器人室 340.. .環境室 350.. .電子櫃 360.. .探針組構站 370.. .平鋪夾頭 400…流程圖 405-460…步驟 500.. .自動調變器交換台 510.. .前側探針桿 520.. .調變器交換夾 530.. .後側探針桿 540.. .調變器清理站 610.. .接收器環 620.. .運載箱 630.. .可調整基座 640.. .自鎖螺帽 645.. .0.環 650.. .調正插針 660.. .校準瞄準圈 670.. .調變器鄰近感測器 680.. .調變器存在感測器 690.. .箱感測器 700.. .流程圖 702-732…步驟 750…流程圖 752-778...步驟 800.. .調變器清理站 810.. .接收器環 820.. .真空密封 830.. .清理空間 25 201140087 840.. .喷嘴 842.. .螺線管 844.. .螺線管 846.. .清理氣流 850.. .調正插針 860.. .校準瞄準圈 870.. .鄰近感測器 900.. .流程圖 902-918…步驟 1000.. .空氣軸承控制空氣力學 1005.. .飛行匣 1010…流量控制閥 1015.. .流量控制閥 1020…流量控制閥 1025.. .纜道 1030.. .寬孔口 1035···窄孔口 1037.. .檢查閥 1050.. .遠端空氣軸承自動控制 1055.. .控制器 26201140087 VI. INSTRUCTIONS: Cross-Reference Related Applications This patent application is based on 35 USC 119(e), and is filed on January 8, 2010, and is entitled "Automatic Processing of Electro-Optical Sensors Used in Liquid Crystal Display Test Equipment" The U.S. Provisional Application Serial No. 61/293,579, the entire disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in the the the the the the the BACKGROUND OF THE INVENTION The present invention relates to electrical inspection of thin film transistor (TFT) arrays used in liquid crystal (LC) or organic light emitting diode (OLED) displays. In the manufacture of flat-panel liquid crystal displays, in order to confirm flaws in the manufactured display, various inspection stages are performed. One type of inspection is electrical inspection of a thin film transistor array used in the display. An example of a tester is commercially available from Photon Dynamics, Inc.  Array Checker AC5080 from an Orbotech Company of San Jose, CA. The array tester (or referred to herein as an "array checker" or "AC") is used by a voltage imaging device and method as described in, for example, U.S. Patent Nos. 4,983,911, 5,097,201, and 5,124,635. The flaw in the liquid crystal display can be confirmed. Since the liquid crystal display package 201140087 includes a pixel array, when electrically driving the liquid crystal display, some of the pixel electrical behaviors about 瑕 '疵 are different from normal pixels, and thus the voltage image sensor can be used to detect such a difference. Such voltage mapping sensors typically rely on electro-optical sensors, which in turn may be based on liquid crystal materials (such as nematic curves or twisted nematic molecules) or other electrically birefringent crystals (eg, such as lithium niobate or lithium niobate). Pockels Crystals). In the example of Orbotech's array inspector, the electro-optic material is attached to the sandwiched between the transparent electrode and the reflective film to a weight of about 5 lbs. Glass carrier. The resulting assembly is referenced to one, 'Transformer', It is identified in Figure 1A using the component symbol 10. Referring to Figure 1B, The modulator 1 is mounted on a modulator air bearing base 20, The modulator air bearing base 2 is attached to an optical lens assembly 40 covered by a video sensor (e.g., a CCD camera). An illuminator 80 is attached to the camera 6 (the assembly formed by the reference is a voltage mapping optical system (VI〇S) 1 〇〇 - as shown in Fig. 1 0, 2A and 2B are respectively Front and top views of the schematic of the modulator air bearing base 20. Referring to Figure 2A, During the inspection, In testing to ensure substantial capacitive coupling between the electro-optic sensor (modulator) and the pixel electrode on the TFT glass panel 210, The modulator is placed at a distance that is sufficiently small from the TFT glass panel 210. This distance is typically about 25-80 um,  It is maintained by an air bearing that uses several (e.g., three) adjustable flow rate injectors 220. The modulator sense feedback analog signal 225 measures the bias voltage of the transparent electrode applied to the electro-optic material. The modulator base includes a set of tongs 230 that can pick up and position or release the modulator. The clamps are adapted to be driven with a gas 201140087 to secure the modulator to the test head. " The figure also shows a modulator receiving recess 235 in the drifting board 240. The floating plate is fixed to the shifting base 25G. In addition, each radio can have its own radio frequency identification tag 260 that can be sensed by the radio frequency identification reader on the inspection head.  For several reasons, It is necessary to enter the modulator in the array test system into a similar electro-optic sensor assembly. E.g:  1) remove/install the electro-optic sensor element;  2) cleaning the sensing (panel side) surface of the electro-optic sensor element, To remove the sub-disturbance test process and possibly damage the particles and other debris of the panel during the test, And optimizing the service life of the sensor element itself;  3) Adjust the air bearing setting, In order to ensure that the regulator is a water bucket in the test and on a board and fly to the correct height. Typically, This adjustment is performed after each modulator exchange. Or whenever adjustments are needed to maintain proper signal strength and consistency.  The above process involves intensive manual processing of the electro-optic element, It is therefore necessary for the body to enter the inspection head inside the system. however, The size of the glass on which the killer is made increases, Therefore, the size of the equipment used in the manufacturing process of the array test system is also increased. Similarly, In order to maintain sufficient production, The number of inspection heads increases as the size of the glass increases. E.g, The Gen5 (1100mmxl300 mm) AC system uses a single-voltage opto-optical system. Although Genl0 (2850 mm x 3050 mm and larger) uses 4 pieces.  The size of the system and the number of heads increase, Making it more and more difficult to directly enter the electro-optical sensor, As illustrated in Figure 3 of the schematic diagram of the array test system 300, 5 201140087 is illustrated. For systems that handle larger glass substrates than Gen8, For the operator, It is virtually impossible to safely reach all ¥1〇8 1〇〇 inspection heads (3 or more) from the side of the system. This is especially true for systems that use gantry structures such as the Orbotech Gen8 Array Inspector. Because they generally use the tall hoist 31 移动 on which the main gantry beam 320 moves in the longitudinal direction of either side of the glass (typically made of granite since the glass loading robot chamber 330 is present on the front side, It is impossible to enter from the front of the system.  The back of the system is the only place inside the interior where the operator can safely stagnate around the enclosure of the tool (provided by the platform that is deactivated by the interlocking system), However, due to the existence of subsystems such as the electronic cabinet 350 or the probe fabric station 36 (used in the configuration in which the fabric subsystem passes the electrical drive signal to the panel inspected during the test), It is very difficult to arrive at the inspection head even there. Note that In the split access system, It is impossible to enter at the rear. But the side entry system is simpler. Because there is no system length lifter.  Another issue concerning the manual handling of electro-optic sensor elements and the bases in which they are mounted is a matter of safety and damage. The more the operator needs to work closely with the inspection head, The greater the chance of injury to a moving part on the system, the greater the chance of noticing, The vios head on the AC system has a moving mass of approximately 200 lbs, L7G development acceleration, And the speed is faster than j m/s! Similarly, The operator may drop the electro-optic sensor element to the board during the inspection, Tile chuck 370, Or other parts of the system, Resulting in the board, Sensor element, And/or damage to the system.  Figure 4 is a flow chart of the modulator exchange program 4〇〇 known in the prior art. 201140087 Z is as shown in Fig. 4, Traditionally, the transfer benefit in the replacement AC system (or similarly, the new modulator) is issued by switching the graphical user interface of the controlling computer from the selection of the "he-checking head", With . Move the ^1 selected to swap the vI〇s header to the __accessible area or then the 'first operator will-place the container to 420 the modulator (or this reference) $ electro-optical sensing 1 ^ component or just under (four)), If there is any 'the same time, the second operator presses the foot to drive the mechanical switch to open or release the sweetness of the 425 H-change II (2A and the component shift in the figure). The first player receives 430 the modulator that has fallen into the container. The second operator can release the foot switch remotely, Therefore, 435 of the modulator clamps are closed. then, - The container with the new modulator is placed by the first operator under the 440 empty tuner base. after that, The second operator again presses the foot switch to open 44 5 the modulator clamps distally. New Zealand, The first operator manually loads the modulator into the base of the 45G. then, The second operator releases the foot switch 'remotely closes the ^^455 to clamp the new modulator into the base. Can be carried out by women, The test check can then be restarted 460 by the GUI.  In an array test system that relies on electro-optical sensors, In the capacitive coupling between tests to ensure that the two sections are protected from touchdown, The sensor needs to be kept small above the panel (depending on the sensor type and operating mode, For example, about 50 Um) and a consistent distance. This is typically ensured by the air impingement of an air injector (element 22G in the second panel) that is incorporated in the base that holds the sensing H-element. usually, Use 3 injectors (located at the corners of the equilateral triangle), Because 3 points define a plane. Individually controlling the flow through each of the injectors,  201140087, Above this point (boosting the flow) or lowering (reducing the flow) the modulator is like this adjustment is due to the test head being lowered ("gapping", , ) Implemented at the first location of the board. In order to adjust, The signal detected on the image sensor is used by the representative pear. E.g, In the previous array checker system, By manually adjusting the flow rate of each injector manually, To obtain the gap position (I-bias; ) the desired raw detected signal, Or ^ the desired difference between the bias signal and the enthalpy recorded by the head as close as possible to the target height value, And complete the leveling. In the previous generation of array detector systems, Each __air-injected flow adjustment is accomplished using a manually adjustable valve to control the pressure of each of the injectors.  C SUMMARY OF INVENTION Summary of the Invention In accordance with an embodiment of the present invention, A computerized method for automatically processing electro-optic sensor elements used in a liquid crystal display test system, In part, Positioning the electro-optic device in a holder positioned on the platform assembly to change the position of the platform assembly relative to a test head to fix the electro-optic sensor 7L to the test head, And transferring the electro-optic sensor from the device to the clerk.  Looking for a number of different embodiments in accordance with the present invention, This automatic processing is used for liquids: a computerized method of electro-optical sensor elements in a test system, The knife is also included, Aligning the test head with the holder, Move the test vertically = towards (four) holder, And moving the holder vertically toward the inspection head.  In the other example, The method includes Before and after the transfer of the electro-optic sensor, it is confirmed that the electro-optic sensor element is present on the test head and the holder 8 201140087. In another embodiment, The electric sensor element is used to prevent human contact.  , 谷益 According to an embodiment of the invention, A liquid crystal display test system partially includes - or a plurality of inspection heads, - or multiple holders, - platform assembly, One or more electro-optic sensor elements, a clamp, And - computer control system. The holdings (4) are adapted to cover the electro-optic sensor elements. The platform assembly - for holding the holder, And the electro-optical sensor elements are removed from. Hai et al. kept the cockroach and transferred it to the material inspection head. The clips are adapted to secure the electro-optical sensor elements to the test heads.  In accordance with certain embodiments of the present invention, The platform assembly is more suitable for carrying a probe contact assembly. The retainers can be adjusted in many directions. This makes it possible to adjust the plane of the electro-optic sensing n elements to the test head. The retainers have vertical compliance, To reduce any residual uncalibrated between the test head and the electro-optic sensor element. The holders include one or more calibration standards. - The camera on the inspection head is adapted to view the calibration references such that the month b is sufficient to calibrate the holder to the camera. The sensor is adapted to confirm that the electro-optic sensor elements are present in and adjacent to the holder and to the test head. The sensors may optionally be proximity sensors and/or radio frequency identification readers. The clamp may optionally be a gas driven clamp.  In accordance with an embodiment of the present invention, a computerized method of cleaning an electro-optical sensor of a liquid crystal display test system, In part, Transporting the first platform assembly of at least one cleaning station to a second platform assembly, Moving the second platform assembly in relation to the position of the first platform assembly, Positioning the electro-optic sensor element in the cleaning station, And delivering a first gas stream to release and remove particles from the surface of the 9 201140087 electro-optic sensor element. The second platform assembly includes, in part, at least one inspection head and at least one electro-optic sensor element.  In accordance with certain embodiments of the present invention, The computerized method of cleaning the electro-optic sensor of the liquid crystal display test system, Partially included, Aligning the inspection headband with the cleaning station, Moving the inspection head vertically toward the cleaning station, Moving the holder vertically toward the test head, And/or confirming that the electro-optic sensor elements are adjacent to the cleaning station prior to initiating the cleaning process. In other embodiments, The first gas in the gas stream partially includes clean dry air or nitrogen, Or ionized to remove particles attracted by electrostatic attraction.  In accordance with certain embodiments of the present invention, The computerized method of cleaning the electro-optic sensor of the liquid crystal display test system, In part, Remove water from several nozzles, And drying the electro-optic sensor element by delivering air or a second gas stream from one or more nozzles after draining water. The method includes, in part, One or more calibration references disposed on the inspection head are used to align the electro-optic sensor element to the cleaning station. The method includes, in part, Before delivering the first gas, One or more sensors are used to confirm that the electro-optic sensor element is adjacent to the cleaning station. The method includes, in part, Before delivering the first gas, The sensors are used to confirm that the electro-optic sensor element is adjacent to the cleaning station.  In accordance with certain embodiments of the present invention, The computerized method of cleaning the electro-optic sensor of the liquid crystal display test system, In part, The first platform assembly is adapted to carry a probe contact assembly. The method further includes By adjusting the cleaning station in several directions, The plane of the electro-optic sensor element relative to the test head is adjusted. The method further includes By virtue of the straightening of the 2011 10,487 straight line, The residual uncalibrated between the test head and the electro-optic sensor element is reduced.  In accordance with an embodiment of the present invention, A liquid crystal display test system partially includes a test head, At least one cleaning station, And a platform assembly adapted to hold and move the cleaning station. The cleaning station is adapted to receive and cover the electro-optic sensor elements. The cleaning station includes, in part, one or more nozzles for delivering a first gas stream to a surface of the electro-optic sensor element to release and remove particles from its surface.  In accordance with certain embodiments of the present invention, The first gas in the gas stream can be clean dry air or nitrogen, Or ionized to remove particles attracted by electrostatic attraction. The cleaning station partially includes a plurality of spouts suitable for draining water, And a nozzle adapted to deliver the air or the second gas after the water is removed to dry the electro-optic sensor element. The platform assembly is more suitable for carrying probe contact assemblies. The cleaning station can be adjusted in several directions. It is enabled to adjust the plane of the electro-optic sensor element relative to the test head. The cleaning station has vertical compliance to reduce residual uncalibration between the inspection head and the electro-optic sensor element. The cleaning station may partially include one or more calibration references. The inspection head includes, in part, a camera. The system includes, in part, one or more sensors adapted to confirm that the electro-optic sensor element is adjacent to the cleaning station prior to delivering the first gas.  In an embodiment of the invention, A computerized method for remotely adjusting the distance between an electro-optic sensor element and a panel of a liquid crystal display test system during testing, In part, Positioning the electro-optic sensor element above the panel during the test, And remotely controlling the flow and pressure of the gas injected through one or more orifices 11 201140087. The air flow is used to position the electro-optic sensor element in a known vertical distance from the panel.  In accordance with certain embodiments of the present invention, a computerized method for remotely adjusting the distance between an electro-optical sensor element of a liquid crystal display test system and a panel during testing, Partially included, Use a closed loop control system to adjust the vertical distance, The target signal value is detected until the image sensor on a test head. The method partially includes, By selecting a plurality of fixed orifice flow control valves coupled to each of the orifices using a solenoid valve, The flow and pressure of the gas that is controlled by each of the orifices.  The method partially includes, This adjustment is performed at several different locations or at the beginning of each panel test. The method partially includes, First select the first fixed orifice flow control valve, And select the second fixed orifice flow control valve as needed. The first orifice flow control valve includes, in part, an orifice that is narrower than the second orifice flow control valve.  In accordance with an embodiment of the present invention, A liquid crystal display test system partially includes an electro-optic sensor element, One or more orifices for injecting gas onto the electro-optic sensor element, And a computer suitable for controlling gas flow and pressure. The gas flow is used to position the electro-optic sensor element in a known vertical distance from a panel.  In accordance with certain embodiments of the present invention, The liquid crystal display test system also includes a closed loop control system adapted to automatically adjust the vertical distance until a target signal value is detected on the image sensor. The inspection head is adapted to hold an electro-optic sensor element of the liquid crystal display system. a plurality of fixed orifice flow control valves coupled to each of the orifices, To control the flow of gas 12 201140087 篁 and pressure. a solenoid valve is coupled to the fixed orifice flow control valve,  And is adapted to select one of the fixed orifice flow control valves. A first fixed orifice flow control valve includes, in part, an orifice that is narrower than the second orifice flow control valve. Alternatively, the embodiment includes, in part, a check valve between the flow control side of the fixed orifice and each of the orifices to prevent backflow. The solenoid valve is adapted to first select the first fixed orifice flow control valve, The second fixed orifice flow control valve is selected as needed.  BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A is a schematic illustration of a modulator known in the prior art;  Figure 1B is a schematic illustration of a voltage mapping optical system (vi〇s) known in the prior art;  Figure 2A is a front elevational view of a modulator air bearing mount known in the prior art;  Figure 2B is a top plan view of the modulator air bearing mount known in the prior art;  Figure 3 is a schematic diagram of an array test system known in the prior art that emphasizes entry into the agenda;  Figure 4 is a flow diagram of a modulator exchange procedure known in the prior art;  Figure 5 is a schematic illustration of an auto-tuner switching station in accordance with one embodiment of the present invention;  6A and 6B are front and top views, respectively, of a modulator exchange clip in accordance with an embodiment of the present invention;  Figure 7A is a flow chart depicting a sequence for automatically unloading a modulator in accordance with one embodiment of the present invention;  13 201140087 Figure 7B is a flow chart depicting a sequence for automatically loading a modulator in accordance with one embodiment of the present invention;  8A and 8B are front and top views, respectively, of a modulator cleaning station in accordance with an embodiment of the present invention;  Figure 9 is a flow diagram of a sequence for automatically cleaning a modulator in accordance with one embodiment of the present invention;  Figures 10A and 10B show some components of a remote air bearing control aerodynamics and automatic control in accordance with one embodiment of the present invention.  [Real package method j Detailed description of the preferred embodiment In order to easily enter, for example, a test head that produces a 7-test head and a large array test system later, And to prevent damage to the operator and to the equipment in the array test system, Damage to the glass substrate and electro-optic sensor elements,  Embodiments of the present invention provide for automated processing of electro-optic sensor elements in such systems, In part, Loading/unloading, Clean up, And adjust the air bearing by improving the accuracy and repeatability of the adjustment and reducing the time required to perform this operation. In order to achieve the above objectives, Among other advantages, Embodiments of the present invention provide (1) an auto-tuner switch, which will be described in detail below, (ii) Automatic regulator cleaning station, And (iii) the distal adjustment of the modulator air bearing.  Automatic Modulator Switching Station (ΑΜΕ) Figure 5 is a schematic diagram of an auto-tuner switching station 500 in accordance with one embodiment of the present invention. As will be described in detail below, Among other advantages,  The auto-tuner switching station 500 tests the electro-optical sensor elements on the system by automatically switching the array. Overcome the entry issues as well as the risk of damage in the traditional system. To achieve this, The auto-tuner exchange 5 (9) includes exchange losses placed on one of the gantry platforms that communicate the signals of the drive panel during inspection. These gantry platforms are referred to herein as probe rods (PB).  It is also suitable for carrying a probe contact assembly that delivers an electrical drive signal to the panel during the test. In an embodiment, Each—the array checker system has two probe tips.  The modulator exchange clips 520 are typically placed on the rear probe rod 53〇, And positioned at the rear end of the stroke range of the rear probe rod 530. With this structure,  The modulator can be placed in or out of the exchange (or referenced as a holder) with minimal risk to the operator and equipment. The number 1 of the exchanges may depend on the number of inspection heads. In an embodiment, There is a parent change folder at each end. In another example, Has fewer exchange clips than the head. In still other embodiments, There are 2 exchange clips corresponding to 3 heads.  6A and 6B are front and top views, respectively, of a schematic diagram of a modulator exchange clip 520 in accordance with one embodiment of the present invention. The modulator exchange clip 52 is shown as having a receiver ring 610 adapted to receive the modulator 10. In some embodiments, The parent changer 52 includes, for example, a second modulator container of the carry case 620 that receives the modulator to prevent human contact, Holder, Or box. The receiver ring 61 is positioned at the top of the adjustable base 630. Adjustable base 63〇 adjusts a sufficient range of all 6 degrees of freedom (for example, Up to 25 μm) is coplanar with each air bearing base in which the modulator is placed. The final adjustment can be locked by means of horizontal screws or bolts and self-locking nuts 64 。. In addition, The receiver ring has inherent vertical compliance by means of a beak ring 645 placed between the ring 610 and the adjustable base 63〇, Allows it to de-orient or reduce any residual non-201140087 calibration between the plane of the failed modulator and the plane of the modulator base. As shown, The receiver ring has three positioning or calibration pins 65〇 to accurately position the modulator inside the clip, And preventing the modulator (or its container holder 620) from moving laterally in the clip during the exchange process.  In order to position the exchange clip (and thus the modulator placed therein) relative to the inspection head, A calibrated aiming ring 660 (or reference herein as a calibration reference or suffix) is attached to each side of the g-receiver ring. The calibration mark can be viewed with an optical camera attached to the side of the test head. According to the position of the cat's quasi-circle and the center of the optical camera system and the air bearing base of the modulator (ie, Verify (known) offset between optical instruments) And adjust the correct X, the platform involved in the switch (the VIOS X platform in the example of the AC system and the rear probe gantry) γ and a position.  Some sensors placed on the exchange clamp and the inspection head enable monitoring of the exchange process and preventing collisions. In some embodiments of the invention, Three adjacent sensors are used on each clip. A first proximity sensor sensing modulator, referred to as modulator proximity sensor 670, is present in the receiver ring. A reference to the second proximity sensor of the modulator presence sensor 680 when loading the modulator (eg, The modulator is sensed by loading it from the modulator base onto the test head. A second proximity sensor that senses the box sensor 690 senses the first modulator bar on the exchange clip, Holder, Or box (if used). In addition, If each modulator is equipped with its own radio frequency identification tag, A radio frequency identification reader on the inspection head can be used to confirm that the modulator exchange was successful and to track the modulator during the exchange. The sense feedback analog signal of the modulator can also be used to confirm that the modulator exchange is successful.  Figure 7A is a flow diagram 750 illustrating a sequence for automatically unloading a 201140087 load modulator in accordance with one embodiment of the present invention. The front probe bar (not carrying the exchange clip) can be parked 752 on the front side of the system. The main gantry carrying the test heads can be moved 754 to a predetermined longitudinal (Y-) exchange position, For example, the rear end of its travel (this minimizes the changeover time). The gantry can also be maintained in its current position. These inspection heads with the modulators that need to be exchanged (fixed to the X/Z platform combination), Moves 756 upward in the z_ direction to the predetermined lateral (X-) swap position. These X positions respond to the X-position of the exchange clip on the rear probe rod. The Z-position should correspond to the focal length of the camera used to view the calibration mark. It is assumed that there is no mechanical interference between the test heads and the exchange clamps. Move the rear probe rod (the exchange clamp that should be empty - this can be confirmed 758 with the proximity sensor) to the bottom of the main gantry and record 762 the position of the calibration mark (if it does not fall into use) 'The 764 spiral search program can be used to view the field of view of the optical camera.  The gamma direction of the rear probe rod can be adjusted 766 based on the recorded position ' And the Z or Z-position and the X-position of the test heads. The test heads are lowered 768 to the exchange position height (this can be determined 770 by the presence of the sensor as described above), And release the modulator 772 onto the exchange clip. - using the presence sensor to confirm 774 that the modulator is present in the clip, The test heads are raised again 776' and the rear probe rod is moved in the gamma direction to the rear end of its stroke. The operator can now remove the damper that has been removed from the inspection head.  In some embodiments, Modulator for picking up or releasing the modulator, base clamp, It is driven by a button located outside the environmental chamber in which the tester is placed.  17 201140087 Figure 7B is a diagram of the present invention as shown in flowchart 750 and above: in, It is assumed that the sequence described in the unloading of the privilege is used to verify the sequence from the test head. The first π picture is selected from the first side of the test and from the sequence of the control computer to the automatic (four) interface. Automatically exchanges the biliary 曰 modulator. then, The test heads and the rear side main shafts 706 are at a predetermined position for loading/unloading into (similar to the unloading step 3 described above). The operator installs and calibrates the adjustment to the corresponding exchange clamp on the needle bar. Operator leaves " The enclosure of the system is 'and continues this sequence of processes when safe.  then, The system uses the sensor to automatically check that the 712 modulator is present in the exchange clip. If the reader does not exist in the loss, The sequence of processes is aborted 732. If the sensor successfully detects that the modulator is in the clip, The rear probe gantry moves 714 to a predefined swap position below the main gantry. Then the system uses the calibration marks on the clips and the optical camera on the test head to automatically calibrate 716 the test head, Main gantry, And the rear side probe rod (similar to the unloading step 4 described above). If the automatic calibration fails, The sequence of processes is aborted 732. If the automatic calibration is successful, The test head is gradually lowered 718 to the exchange height (similar to the unloading step 5 described above). In order to fix the modulator to the test head, The system uses a sensor to check 720 if the modulator is adjacent. If the proximity check 720 fails, The sequence of processes is aborted 732. If the proximity check is successful, The operator remotely drives the modulator clamp on the modulator base on the test head, To extract 772 the modulator from the clip.  Receiver, The system uses the sensor to automatically validate 724 to determine that the modulator 201140087 was successfully clamped by the test head. If the clamp check 724 fails, This program column aborts 732. If the modulator is successfully clamped, The test head 726 is raised.  then, The test head and probe shaft move 728 to a pre-defined position for loading/unloading access. then, The operator enters 730 the closure of the system to remove the empty container from the rear probe stem gantry.  The entire modulator switching process is controlled by a computer. There are at least three components that are primarily used as control software. Motion control, calibration, And user interface. The motion control component of the software ensures that the axes involved moving to the correct position for proper sequence exchange. This motion control also involves a chain that prevents one axis from colliding with another. The software's calibration control determines the offset of the calibration aiming circle relative to the optical camera's field of view. And based on this, the correction of the position of the platform for the modulator exchange is determined. The user interface component of the software enables the user to safely exchange the process for each head (eg, Movement, calibration, Different platforms for loading/unloading).  Automatic Modulator Clearing Station (AMCS) Traditionally cleaning the modulator in an AC system involves removing the modulator from its base; Clean with a solvent-sucking optical wipe and put it back again.  An automatic modulator cleaning station in accordance with one embodiment of the present invention is capable of performing an automated method of cleaning an electro-optic sensor element on an array test system, Overcome the issues of entry and the risks inherent in the safety and damage inherent in manual processes. 8A and 8B are front and top views, respectively, of a schematic diagram of a modulator cleaning station 540 in accordance with one embodiment of the present invention. The modulator cleaning station 800 includes a receiver ring 810 adapted to receive the modulator 10 from the inspection head, And one or more nozzles suitable for continuous or pulsed injection of the ionizing air or N2 that are present due to electrostatic attraction 19 201140087 = surface particles _ in the cleaning operation to clean the station system by placing the receiver ring and adjusting Clear between the transformers U), Maintaining a negative pressure with a 83° vacuum seal 820 This removes any particles that are loosened by ionization. Through the line ionizer (inline ΓΓ) ί nozzle 84 Qi (4) kiss; _ Over-separation orifice (no vacuum β can be supplied by computer-controlled solenoid _44 == off gas (or ν2) and vacuum supply. Clear the direction of the airflow (4) as indicated by the thick arrow in the r. In addition, With clean room roll roller = (4) installed in the automatic modulator cleaning station, To wipe the surface of the modulator 2. ", It can be provided by the spout of the (four) towel and then provided by the nozzle in the same station (heating the gas, calling the company, The cleanup station can be similar to the modulator exchange h. - The embodiment ί the cleaning station includes the adjustment pin 85〇, School (4) And neighbor 5: Then benefit 870. Some embodiments of the invention include a plurality of cleaning stations and are illustrated in Figure 5. Some embodiments of the invention include ^ (4) cleaning stations and inspection heads. (4) Some implementation of the financial, Execution cleanup = components can be integrated into the modulator exchange. Further, the components of the other embodiments are separated from the components used for the exchange modulator and are fixed to the front probe bar (element 51A in Fig. 5).  Figure 9 is a flow chart _ of a sequence for use in an automatic clear/circumferential transformer in accordance with one embodiment of the present invention. As illustrated in Figure 9,  By selecting the tank to be cleaned up, And from the control computer graphics 20 201140087: __Automatically clean up sequence' and complete the > The sequence of operations of the monthly process is similar to the exchange process.  Theft.  Money side & Needle bar (4 transport cleaning station) parking, etc., with the selected modulation test, 浐 甘 彳, The back side of the gram. On the platform combination (4) on the main gantry, , position. This level (4) Γ to the predetermined lateral direction (x·), , Clear location. In the position Γ _ needle bar clipping folder 4 position corresponds to the camera made to view the calibration mark 疋 疋 there is no mechanical interference between the 4 test head and the cleaning station m,  The gantry can be moved to - for example, a predetermined one above the front probe rod, , Clean up, Or can be kept in its current location. The front side probe rod (the carrier is exchanged below the main gantry (if not already there), And record the location of the exclusive material record (if it does not fall into the field of view of the optical camera used to view it, A spiral search program can be used). During the automatic calibration 908, The position of the front probe rod and a position and the test position can be adjusted based on the recorded position. If the automatic calibration fails, The sequence of processes is aborted 918. If the automatic calibration is successful, The inspection heads gradually descended 910 to the clearing station. then, The system checks 912 whether the modulators fixed to the cleaning station are adjacent (this can be determined by the presence of a sensor as described above), But the modulator has not been released. If the proximity check 912 fails, The sequence of the process is aborted 918. If the proximity check succeeds, the cleanup process begins 914. After the cleanup is completed, The verification process normally restarts 916.  Noticed that, as in the case of exchange, The entire process is controlled by a computer. This includes the drive and timing of the air and vacuum involved in cleaning.  Remote adjustment of the modulator air bearing 21 201140087 in accordance with an embodiment of the present invention, By using two fixed orifice flow control valves (one with a narrow orifice, The other has a wide aperture) that allows remote control of the flow rate of each injector. To overcome the entry issues and the risks inherent in the safety and damage inherent in current manual procedures. For each injector, The orifice is selected by countercurrent flow through a dedicated solenoid valve. Compared to existing designs,  The range of air flow in each injector channel can therefore be increased, And it can be switched between the high flow range and the low flow range of the corresponding wide and narrow orifices under computer control. Details of the aerodynamic and automatic control of the distal air bearing control in an embodiment of the present invention are shown in Figs. 10A and 10B, respectively. The orifices and air pressure can be controlled by software, The fineness of the modulator on the panel during the test is finely adjusted. This adjustment can be performed remotely by the operator. Or it can be automated without operator intervention. The algorithm repeatedly increases or decreases the pressure of the air bearing with a small increase, Until the gap target is reached. The algorithm first selects the low air flow through the narrow orifice to determine if the gap target is reached. A wide orifice for high air flow is selected as needed to increase air flow to achieve this goal. therefore, The air flow can be used to position the electro-optic sensor element in a known vertical distance from the panel. Use this automated form, Enabling at different locations or at the beginning of each panel being tested (eg, at the first location of each panel, More frequent air bearing adjustments are implemented rather than just the first location of each panel of the panel where the panel includes a plurality of panels. It also enables more accurate gap control on the board and optimizes the life of the modulator.  Figure 10A shows a distal air shaft 22 201140087 under controlled aerodynamics 1000 in accordance with one embodiment of the present invention. Flight g (flight drawer) 1005 provides three transfers to separate flow control valves 1010, 1注入15 and 1020 injector flow lines A-C’ these flow control valves 1〇1〇, 1〇15 and 1〇2〇 are each coupled to the air flow of the respective channels through respective wide or narrow aperture lines passing through the cable track 1025. A pair of lines of each airflow path are drawn through respective wide and narrow apertures 1030 and 1035 in the voltage mapping optical system 100. And connected to the flow lines A - C respectively on the modulator base 20 through the air coupling. This flight g provides a remote control pressure range for each injector channel. The pressure in each channel is fed into a flow control valve that directs pressurized air to a wide or narrow fixed orifice corresponding to a high or low air flow range, respectively. The flow from the fixed orifice is then directed to the hold modulator. Modulator base. The air then flows into the modulator air bearing nozzle A, B and C. The downstream check valve ι037 for each orifice is used to isolate unused wide or narrow pins in each injector channel. To prevent extra return air, Does not affect the rigidity of the air bearing.  Figure 10B shows a distal air bearing automatic control 1050 in accordance with one embodiment of the present invention. Delta-Tau 34AA-2 controller 1055 by. The respective optically isolated power transistors 1060-1070' of the drive flow control valves 1010, 1015, and 1020 are coupled to a control signal A-C and an analog ground (AGND) to a set of flight components of each of the voltage mapping optical systems 100. The +V power is supplied from the aircraft to each flow control valve. Each flow control valve is generally adapted to couple air flow from the flight weir 1005 to a narrow orifice unless one of the three control signals A-C is activated to deliver air flow to the wide orifice. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic diagram of a modulator known in the prior art; 23 201140087 FIG. 1B is a schematic diagram of a voltage mapping optical system (VIOS) known in the prior art, and FIG. 2A is a prior view. A front view of a modulator air bearing mount known in the art; FIG. 2B is a top view of the modulator air bearing base known in the prior art, and FIG. 3 is a prior art emphasizing entry into the agenda. A schematic diagram of a known array test system, FIG. 4 is a flow chart of a modulator exchange procedure known in the prior art; FIG. 5 is a schematic diagram of an automatic modulator switchboard in accordance with an embodiment of the present invention; 6A and 6B are front and top views, respectively, of a modulator exchange clip in accordance with one embodiment of the present invention; FIG. 7A is a diagram illustrating a sequence for automatically unloading a modulator in accordance with an embodiment of the present invention Figure 7B is a flow chart depicting a sequence for automatically loading a modulator in accordance with one embodiment of the present invention; Figures 8A and 8B are respectively modulations in accordance with one embodiment of the present invention. Cleaning station Front and top views; Figure 9 is a flow diagram of a sequence for automatically cleaning the modulator in accordance with one embodiment of the present invention; Figures 10A and 10B show a remote air bearing in accordance with one embodiment of the present invention. Some components that control aerodynamics and automatic control. [Main component symbol description] 24 201140087 ίο. . . Modulator 20. .  . Modulator air bearing base 40. .  . Optical lens assembly 60. .  . Image sensor 80. .  . Illuminator 100. .  . Voltage mapping optical system 210. .  .  TFT glass panel 220. .  . Injector 225. .  . Sensing feedback analog signal 230. .  . Clamp 235. .  . The modulator accommodates the recess 240. .  . Floating board 250. .  . Modulator base 260. .  . Radio frequency identification tag 270. .  . Radio frequency identification reader 300. .  . Array test system 310·. · Lifter 320... Main gantry beam 330... Glass loading robot room 340. .  . Environmental room 350. .  . Electronic cabinet 360. .  . Probe fabric station 370. .  . Tile chuck 400...flow chart 405-460...step 500. .  . Automatic modulator exchange 510. .  . Front probe rod 520. .  . Modulator exchange clamp 530. .  . Rear probe rod 540. .  . Modulator cleaning station 610. .  . Receiver ring 620. .  . Carrying box 630. .  . Adjustable base 640. .  . Self-locking nut 645. .  . 0. Ring 650. .  . Adjust the pin 660. .  . Calibrating the aiming ring 670. .  . Modulator proximity sensor 680. .  . Detector presence sensor 690. .  . Box sensor 700. .  . Flowchart 702-732...Step 750...Flowchart 752-778. . . Step 800. .  . Modulator cleaning station 810. .  . Receiver ring 820. .  . Vacuum seal 830. .  . Clean up the space 25 201140087 840. .  . Nozzle 842. .  . Solenoid 844. .  . Solenoid 846. .  . Clear airflow 850. .  . Adjust the pin 860. .  . Calibrating the aiming ring 870. .  . Proximity sensor 900. .  . Flowchart 902-918...Steps 1000. .  . Air bearing control aerodynamics 1005. .  . Flight 匣 1010... flow control valve 1015. .  . Flow control valve 1020... flow control valve 1025. .  . Cableway 1030. .  . Wide aperture 1035···Narrow aperture 1037. .  . Check valve 1050. .  . Remote air bearing automatic control 1055. .  . Controller 26

Claims (1)

201140087 七、申請專利範圍: 1. 一種用以自動處理使用於液晶顯示器測試系統中的電光 傳感器元件的電腦化方法,該電腦化方法包含: 使用電腦將電光傳感器元件放置於定位在一平台 總成上的保持器之中; 使用該電腦改變該平台總成相對於一檢驗頭的位 置,以便將該電光傳感器元件固定至該檢驗頭;以及 使用該電腦將該電光傳感器從該保持器轉移至該 檢驗頭。 如申μ專利範圍第1項之電腦化方法,其中該電光傳感器 元件係放置於一容器中以防止人體接觸。 3.如申印專利範圍第1項之電腦化方法,其中係使用該電腦 使該檢驗頭校準於該保持器。 •如申印專利範圍第1項之電腦化方法,其中係使用該電腦 將該檢驗頭朝向該保持器垂直移動。 5 ·如申請專利範圍第丨項之電腦化方法,其中係使用該電腦 將該保持器朝向該檢驗頭垂直移動。 6·如申請專利範圍第1項之電腦化方法,其中,於轉移該電 光傳感器之前及之後,藉由該電腦確認該電光傳感器元 件存在於該檢驗頭及保持器上。 7. —種液晶顯示器測試系統,包含: 一或多個檢驗頭; 一或多個適於收容一或多個電光傳感器元件的保 持器; 27 201140087 -適於保持該_或多個 總成更適於使用^ 十。〜成,該平台 感器元件二?腦控制系統將該-或多個電光傳 頭;以及 4多個保持器轉移至該1多個檢驗 或多個檢驗頭的個電先傳感a件牢固至該一 總成更適於運 8·如申請專利範圍第7項之系統,其中該平台 載探針接觸總成。 9·如申請專利範圍第7項之系統,其中該一或多個保持器係 可^整於♦多方向,而使得能夠調整該-或多個電光傳 感器7L件至該一或多個檢驗頭的平面。 U).如申請專利範圍第7項之系統,其中該一或多個保持器 具有-垂直順從性,以減少該—或多個檢驗頭與該—或 多個電光傳感器元件之間任何殘餘的未校準。 11·如申請專利範圍第7項之系統,其中該__或多個保持器 包括一或多個校準基準,且其中一設置於該一或多個檢 驗頭上的攝影機係適於查看該等校準基準,而使得能夠 將該一或多個保持器校準該攝影機。 12_如申請專利範圍第7項之系統,其中該系統更包含一或 多個感測器’其適於確認該一或多個電光傳感器元件存 在於及鄰近該一或多個保持器之中及該一或多個檢驗頭 之上。 13.如申請專利範圍第12項之系統,其中該一或多個感測器 為鄰近感測器及/或無線射頻識別讀取器。 28 201140087 Μ.如申請專利範圍第7項之系統,其中該夾鉗為—氣體驅 動失甜。 15.—種清理液日日B顯示器職系統的電光傳感器的電腦化 方法,該電腦化方法包含: 使用該電腦將一具有上面設置有至少一個清理站 的第一平台總成運送至一第二平台總成,該第二平台總 成包含至少一個檢驗頭及至少一個電光傳感器元件;。 使用該電腦移動該第二平台總成相對於該第一平 台總成的位置; 使用該電腦將該至少一個的電光傳感器元件定位 於該至少一個的清理站中;以及 使用該電腦遞送—第一氣流,以從該至少一個的電 光傳感器元件的表面鬆脫並移除粒子。 以如申請專利範圍第15項之電腦化方法,其中使用該電腦 引導該至少一個的檢驗頭來與該至少一個的清理站校 準。 如巾請專纖0第15項之電腦化方法,其巾係使用該電 腦將该至少一個的檢驗頭朝向該至少一個的清理站垂直 移動。 18. 如申請專利範圍第15項之電腦化方法,其中係使用該電 月6)將亥至V、個的清理站朝向該至少一個的檢驗頭垂直 移動。 19. 如申請專利範圍第15項之電腦化方法其中使用該電 腦,於開始清理過程之前,確認該至少一個的電光傳感 29 201140087 器元件鄰近該至少一個的清理站。 20. 如申請專利範圍第15項之電腦化方法,其中該氣流中的 該第一氣體係從乾淨的乾燥空氣或氮氣所組成的群組中 選擇。 21. 如申請專利範圍第15項之電腦化方法,其中該氣流中的 該第一氣體係遭離子化,而能夠移除受靜電引力所吸引 的粒子。 22. 如申請專利範圍第15項之電腦化方法,更包含: 使用該電腦從複數個喷口將水排除;以及 於排除水之後,使用該電腦從一或多個喷嘴遞送空 氣或一第二氣流,以使該至少一個的電光傳感器元件乾 燥。 23. 如申請專利範圍第15項之電腦化方法,其中該第一平台 總成更適於運載探針接觸總成。 24. 如申請專利範圍第15項之電腦化方法,更包含藉由於複 數個方向調整該至少一個的清理站,而調整該電光傳感 器元件相對於該至少一個的檢驗頭的平面。 25. 如申請專利範圍第15項之電腦化方法,更包含藉由於該 至少一個的清理站中具有一垂直順從性,而減少該至少 一個的檢驗頭與電光傳感器元件之間殘餘的未校準。 26. 如申請專利範圍第15項之電腦化方法,更包含使用該電 腦而利用一或多個於該至少一個的清理站上的校準基準 及設置於該至少一個的檢驗頭上的攝影機,來將該至少 一個的電光傳感器元件與該至少一個的清理站校準。 30 201140087 27·如申請專利範圍第15項之電腦化方法,更包含於遞送該 第—氣體之前,使用該電腦而利用一或多個感測器,以 確認該至少一個的電光傳感器元件鄰近該至少一個的清 理站。 28. —種液晶顯示器測試系統,包含·· 一檢驗頭; 至少一個適於接受並收容一電光傳感器元件的清 理站;以及 適於保持並移動該至少一個的清理站的平台總 成,其中該至少一個的清理站包含一或多個喷嘴,其用 以遞送一第一氣流至該電光傳感器元件的表面,以從該 電光傳感器元件的表面鬆脫並移除粒子。 29. 如申請專利範圍第28項之系統,其中於該氣流中的該第 —氣體係從乾淨的乾燥空氣或氮氣所組成的群組中選 擇。 如申請專利範圍第28項之系統,其中於該氣流中的該第 氣體係遭離子化,而能夠移除受靜電引力所吸引的粒 子。 31. 如申請專利範圍第28項之系統,其中該至少一個的清理 站包含複數個喷口及喷嘴,鮮嘴σ係適於排除水,該 等喷嘴係適於在騎水之後翁空氣或—第二氣體而使 該電光傳感器元件乾燥。 32. 如申料利範圍第獅之系統,其巾該平台總成更適於 運載探針接觸總成。 31 201140087 33. 如申請專利範圍第28項之系統,其中該至少 一個的清理 站係可調整於複數個方向,使得能夠調整該電光傳感器 元件相對於該檢驗頭的平面。 34. 如申清專利範圍第33項之系統,其中該至少一個的清理 站具有一垂直順從性,以減少該檢驗頭與該電光傳感器 元件之間殘餘的未校準。 35. 如申請專利範圍第28項之系統,其中該至少一個的清理 站包含一或多個校準基準,其中該檢驗頭包含一攝影機。 36. 如申請專利範圍第28項之系統,其中該系統包含一或多 個感測器,其適於在遞送第一氣體之前確認該電光傳感 器元件鄰近該至少一個的清理站。 37· —種用於在測試中遠端調整液晶顯示器測試系統的電 光傳感器元件與面板之間的距離的電腦化方法,該電腦 化方法包含: 於測試中,使用該電腦將該電光傳感器元件定位於 該面板上方;以及 使用該電腦遠端控制透過一或多個孔口所注入的 氣體的流量及壓力,該氣體流量係使用於將該電光傳感 器元件定位於距該面板一已知的垂直距離_。 38. 如申請專利範圍第37項之電腦化方法,其中係使用該電 腦而使用一閉合迴路控制系統以調整該垂直距離,直到 一設置於適於保持該液晶顯示器系統的該電光傳感器元 件的檢驗頭上的映像感剖器上檢測到目標信號值為止。 39. 如申請專利範圍第37項之電腦化方法,其中係使用該電 32 201140087 腦,藉由選擇複數個使用-電磁閥_接至該—或多個 孔口的每-者的固定孔口流量控制閥中的—個以控制 於該一或多個孔口的每一者的氣體的流量與壓力。 40.如申請專利範圍第38項之電腦化方法,其中係使用該電 腦以於數個不同位置或於每—面板測試開始時執行賴 整。 ° 41 _如申請專利範圍第3 9項之電腦化方法其中該等複數個 固定孔口流量控制閥中的—第—個包括比該等複數個固 定孔口流量控制閥中的一第二個較狹窄的一孔口。 42. 如申請專利範圍第39項之電腦化方法,其中係藉由使用 一耦接於該等複數個固定孔口流量控制閥的每一者與該 一或多個孔口之間的止回閥以防止回流。 43. 如申請專利範圍第41項之電腦化方法其中係使用該電 腦首先選擇該等複數個固定孔口流量控制閥中的該第一 個,並視需要而選擇該等複數個固定孔口流量控制閥中 的該第二個。 44. 一種液晶顯示器測試系統,包含: 一電光傳感器元件; 一或多個設置於該電光傳感器元件上用於注入氣 體的孔口;以及 一適於控制該氣體的流量與壓力的電腦,該氣體流 量係使用於在測試中將該電光傳感器元件定位於距一 面板已知的垂直距離中。 4 5.如申請專利範圍第4 4項之系統’其中該液晶顯示器系統 33 201140087 更包含一閉合迴路控制系統,適於自動調整該垂直距 離,直到一設置於一適於保持該液晶顯示器系統的電光 傳感器元件的檢驗頭上的映像感測器上檢測到目標信號 值為止。 46·如申請專利範圍第44項之系統,其中該液晶顯示器系統 更包含: 複數個搞接至該一或多個孔口的每一者以控制該 氣體的流量與壓力的固定孔口流量控制閥;以及 一柄接至該等複數個固定孔口流量控制閥的電磁 閥,該電磁閥係適於選擇該等複數個固定孔口流量控制 間中的一個。 47. 如申請專利範圍第46項之系統,其中該等複數個固定孔 口流量控制閥中的一第一個包含比該等固定孔口流量控 制閥中的一第二個較狹窄的一孔口。 48. 如申請專利範圍第46項之系統,其中該液晶顯示器系統 更包含: 一耦接於該等複數個固定孔口流量控制閥的每一 者與a亥一或多個孔口之間以防止回流的止回閥。 4 9 ·如申請專利範圍第4 7項之系統,其中該電磁閥係適於首 先選擇該等複數個固定孔口流量控制閥中的該第—個, 並視需要而選擇該等複數個固定孔口流量控制閥中的該 第二個。 34201140087 VII. Patent Application Range: 1. A computerized method for automatically processing electro-optical sensor components used in a liquid crystal display test system, the computerized method comprising: placing a electro-optic sensor component in a platform assembly using a computer In the upper holder; using the computer to change the position of the platform assembly relative to a test head to secure the electro-optic sensor element to the test head; and using the computer to transfer the electro-optic sensor from the holder to the Inspection head. The computerized method of claim 1, wherein the electro-optical sensor element is placed in a container to prevent human contact. 3. The computerized method of claim 1, wherein the computer is used to calibrate the test head to the holder. • The computerized method of claim 1, wherein the computer is used to move the test head vertically toward the holder. 5. The computerized method of claim </ RTI> wherein the use of the computer moves the holder vertically toward the test head. 6. The computerized method of claim 1, wherein the electro-optic sensor element is present on the inspection head and the holder before and after the transfer of the electro-optical sensor. 7. A liquid crystal display test system comprising: one or more inspection heads; one or more holders adapted to receive one or more electro-optic sensor elements; 27 201140087 - adapted to hold the or more assemblies Suitable for use ^ ten. 〜成, the platform sensor element two? The brain control system transmits the one or more electro-optic heads; and the more than four holders are transferred to the one of the plurality of test heads or the plurality of test heads. The system is more suitable for transporting the assembly according to claim 7, wherein the platform carries the probe contact assembly. 9. The system of claim 7, wherein the one or more retainers are configurable in a plurality of directions to enable adjustment of the one or more electro-optic sensors 7L to the one or more test heads The plane. U). The system of claim 7, wherein the one or more retainers have a vertical compliance to reduce any residual between the test head and the plurality of electro-optic sensor elements Not calibrated. 11. The system of claim 7, wherein the __ or plurality of holders comprise one or more calibration references, and wherein one of the cameras disposed on the one or more inspection heads is adapted to view the calibrations A reference that enables the one or more holders to be calibrated to the camera. The system of claim 7, wherein the system further comprises one or more sensors adapted to confirm that the one or more electro-optic sensor elements are present in and adjacent to the one or more retainers And above the one or more inspection heads. 13. The system of claim 12, wherein the one or more sensors are proximity sensors and/or radio frequency identification readers. 28 201140087 Μ. The system of claim 7, wherein the clamp is - gas driven to lose sweetness. 15. A computerized method of electro-optical sensor for a cleaning liquid daily B-display system, the computerized method comprising: using the computer to transport a first platform assembly having at least one cleaning station disposed thereon to a second a platform assembly, the second platform assembly including at least one inspection head and at least one electro-optic sensor element; Using the computer to move the position of the second platform assembly relative to the first platform assembly; using the computer to position the at least one electro-optic sensor element in the at least one cleaning station; and using the computer to deliver - first Airflow to release and remove particles from the surface of the at least one electro-optic sensor element. The computerized method of claim 15, wherein the computer is used to guide the at least one inspection head to calibrate with the at least one cleaning station. For example, the computerized method of the fifteenth item of the special fiber, the towel is used to vertically move the at least one inspection head toward the at least one cleaning station. 18. The computerized method of claim 15, wherein the cleaning station is moved vertically toward the at least one inspection head using the electricity month 6). 19. The computerized method of claim 15 wherein the computer is used, prior to initiating the cleaning process, confirming that the at least one electro-optical sensor 29 201140087 device component is adjacent to the at least one cleaning station. 20. The computerized method of claim 15, wherein the first gas system in the gas stream is selected from the group consisting of clean dry air or nitrogen. 21. The computerized method of claim 15, wherein the first gas system in the gas stream is ionized to remove particles attracted by electrostatic attraction. 22. The computerized method of claim 15 further comprising: using the computer to remove water from the plurality of nozzles; and, after draining the water, using the computer to deliver air or a second airflow from the one or more nozzles So that the at least one electro-optic sensor element is dried. 23. The computerized method of claim 15, wherein the first platform assembly is more suitable for carrying a probe contact assembly. 24. The computerized method of claim 15, further comprising adjusting a plane of the electro-optic sensor element relative to the at least one inspection head by adjusting the at least one cleaning station in a plurality of directions. 25. The computerized method of claim 15, further comprising reducing residual uncalibrated between the at least one inspection head and the electro-optic sensor element by virtue of having a vertical compliance in the at least one cleaning station. 26. The computerized method of claim 15 further comprising using the computer to utilize one or more calibration standards on the at least one cleaning station and a camera disposed on the at least one inspection head The at least one electro-optic sensor element is calibrated to the at least one cleaning station. 30 201140087 27. The computerized method of claim 15 further comprising, prior to delivering the first gas, using the computer to utilize one or more sensors to confirm that the at least one electro-optic sensor element is adjacent to the At least one cleaning station. 28. A liquid crystal display test system comprising: a test head; at least one cleaning station adapted to receive and house an electro-optic sensor element; and a platform assembly adapted to hold and move the at least one cleaning station, wherein At least one cleaning station includes one or more nozzles for delivering a first gas stream to a surface of the electro-optic sensor element to release and remove particles from the surface of the electro-optic sensor element. 29. The system of claim 28, wherein the first gas system in the gas stream is selected from the group consisting of clean dry air or nitrogen. A system of claim 28, wherein the first gas system in the gas stream is ionized to remove particles attracted by electrostatic attraction. 31. The system of claim 28, wherein the at least one cleaning station comprises a plurality of spouts and nozzles, the fresh nozzles σ being adapted to exclude water, the nozzles being adapted to be airborne after riding water or The electro-optical sensor element is dried by two gases. 32. In the case of the lion's system, the platform assembly is more suitable for carrying the probe contact assembly. The system of claim 28, wherein the at least one cleaning station is adjustable in a plurality of directions such that the plane of the electro-optic sensor element relative to the inspection head can be adjusted. 34. The system of claim 33, wherein the at least one cleaning station has a vertical compliance to reduce residual uncalibration between the inspection head and the electro-optic sensor element. 35. The system of claim 28, wherein the at least one cleaning station comprises one or more calibration references, wherein the inspection head comprises a camera. 36. The system of claim 28, wherein the system comprises one or more sensors adapted to confirm that the electro-optic sensor element is adjacent to the at least one cleaning station prior to delivering the first gas. 37. A computerized method for remotely adjusting the distance between an electro-optical sensor element of a liquid crystal display test system and a panel during testing, the computerized method comprising: locating the electro-optic sensor component using the computer during testing Above the panel; and using the computer to remotely control the flow and pressure of gas injected through the one or more orifices for positioning the electro-optic sensor element at a known vertical distance from the panel _. 38. The computerized method of claim 37, wherein the computer is used to use a closed loop control system to adjust the vertical distance until an inspection is performed on the electro-optic sensor element adapted to hold the liquid crystal display system. The target signal value is detected on the image sensor on the head. 39. The computerized method of claim 37, wherein the circuit 32 201140087 brain is used, by selecting a plurality of fixed orifices using - solenoid valves connected to the - or a plurality of orifices One of the flow control valves controls the flow and pressure of the gas to each of the one or more orifices. 40. The computerized method of claim 38, wherein the computer is used to perform the determination at several different locations or at the beginning of each panel test. ° 41 _ The computerized method of claim 39, wherein the first one of the plurality of fixed orifice flow control valves comprises a second one of the plurality of fixed orifice flow control valves A narrower opening. 42. The computerized method of claim 39, wherein by using a check coupled between each of the plurality of fixed orifice flow control valves and the one or more orifices Valve to prevent backflow. 43. The computerized method of claim 41, wherein the computer first selects the first one of the plurality of fixed orifice flow control valves, and selects the plurality of fixed orifice flows as needed Control the second one in the valve. 44. A liquid crystal display test system comprising: an electro-optic sensor element; one or more apertures disposed on the electro-optic sensor element for injecting gas; and a computer adapted to control flow and pressure of the gas, the gas The flow is used to position the electro-optic sensor element in a vertical distance known to a panel during testing. 4 5. The system of claim 4, wherein the liquid crystal display system 33 201140087 further comprises a closed loop control system adapted to automatically adjust the vertical distance until a setting is suitable for maintaining the liquid crystal display system. The target signal value is detected on the image sensor on the inspection head of the electro-optic sensor element. 46. The system of claim 44, wherein the liquid crystal display system further comprises: a plurality of fixed orifice flow controls that are coupled to each of the one or more orifices to control flow and pressure of the gas And a solenoid valve coupled to the plurality of fixed orifice flow control valves, the solenoid valve being adapted to select one of the plurality of fixed orifice flow control chambers. 47. The system of claim 46, wherein a first one of the plurality of fixed orifice flow control valves comprises a narrower bore than a second one of the fixed orifice flow control valves mouth. 48. The system of claim 46, wherein the liquid crystal display system further comprises: a coupling between each of the plurality of fixed orifice flow control valves and one or more apertures Check valve to prevent backflow. 4 9 - The system of claim 4, wherein the solenoid valve is adapted to first select the first one of the plurality of fixed orifice flow control valves, and select the plurality of fixed ones as needed The second of the orifice flow control valves. 34
TW100100640A 2010-01-08 2011-01-07 Automated handling of electro-optical transducers used in LCD test equipment TW201140087A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US29357910P 2010-01-08 2010-01-08

Publications (1)

Publication Number Publication Date
TW201140087A true TW201140087A (en) 2011-11-16

Family

ID=44305787

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100100640A TW201140087A (en) 2010-01-08 2011-01-07 Automated handling of electro-optical transducers used in LCD test equipment
TW104212194U TWM527544U (en) 2010-01-08 2011-01-07 LCD test system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104212194U TWM527544U (en) 2010-01-08 2011-01-07 LCD test system

Country Status (5)

Country Link
JP (1) JP3180834U (en)
KR (1) KR200476873Y1 (en)
CN (1) CN202903959U (en)
TW (2) TW201140087A (en)
WO (1) WO2011085123A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617819B (en) * 2015-09-30 2018-03-11 Seiko Epson Corp Electronic component conveying device and electronic component inspection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654605B1 (en) * 2016-11-25 2024-04-03 세메스 주식회사 Array tester
CN107817409A (en) * 2017-10-23 2018-03-20 惠水县凡趣创意科技有限公司 A kind of computer hardware Automated condtrol detection platform

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983911A (en) * 1990-02-15 1991-01-08 Photon Dynamics, Inc. Voltage imaging system using electro-optics
US6146135A (en) * 1991-08-19 2000-11-14 Tadahiro Ohmi Oxide film forming method
US5387788A (en) * 1991-12-04 1995-02-07 Photon Dynamics, Inc. Method and apparatus for positioning and biasing an electro-optic modulator of an electro-optic imaging system
US5954911A (en) * 1995-10-12 1999-09-21 Semitool, Inc. Semiconductor processing using vapor mixtures
US6149506A (en) * 1998-10-07 2000-11-21 Keltech Engineering Lapping apparatus and method for high speed lapping with a rotatable abrasive platen
US6882899B2 (en) * 2000-05-16 2005-04-19 Photon Dynamics, Inc. Sensing head positioning system using two-stage offset air bearings
US6892437B2 (en) * 2002-03-13 2005-05-17 Lg. Philips Lcd Co., Ltd. Apparatus and method for manufacturing liquid crystal display device
DE10310616B3 (en) * 2003-03-10 2004-09-09 Infineon Technologies Ag Data switching device with electro-optical converter has socket for optical fiber with module at end with optically active region connected to electronic circuit
WO2005119748A1 (en) * 2004-06-04 2005-12-15 Tokyo Electron Limited Substrate cleaning method and computer readable recording medium
US20070292245A1 (en) * 2006-05-25 2007-12-20 Nikon Corporation Stage assembly with secure device holder
US7468611B2 (en) * 2006-10-20 2008-12-23 Photon Dynamics, Inc. Continuous linear scanning of large flat panel media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617819B (en) * 2015-09-30 2018-03-11 Seiko Epson Corp Electronic component conveying device and electronic component inspection device

Also Published As

Publication number Publication date
CN202903959U (en) 2013-04-24
KR200476873Y1 (en) 2015-04-17
WO2011085123A1 (en) 2011-07-14
TWM527544U (en) 2016-08-21
JP3180834U (en) 2013-01-17
KR20120006369U (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP7085042B2 (en) Probe system
TWI503548B (en) Probe system
US6515494B1 (en) Silicon wafer probe station using back-side imaging
US11346861B2 (en) Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection apparatus
KR100829892B1 (en) Apparatus for Inspecting of Display Panel
TWM493053U (en) Improved automatic probe configuration station and method therefor
KR20140078755A (en) Roll to roll tester and method of testing flexible substrates roll to roll
TW201140087A (en) Automated handling of electro-optical transducers used in LCD test equipment
CN101988903A (en) Apparatus for array test with cleaner of optic fiber chuck
KR101695283B1 (en) Apparatus for testing thin film transistor substrate
US20140312330A1 (en) Inspection system for oled display panels
TWI391650B (en) Substrate quality tester
KR101115879B1 (en) Apparatus for testing array
CN202013722U (en) Electric property detecting device
JPH08262091A (en) Inspection apparatus
KR102388619B1 (en) Apparatus and Method for treating substrate
CN212646510U (en) Automatic detector for wafer dislocation
KR20180091510A (en) Display cell test equipment
US20100014749A1 (en) Method and device for adjusting the deposit position of a semiconductor wafer in an oven
JP3407341B2 (en) Display device inspection equipment
KR20150095377A (en) Automatically compensating location apparatus for probe card of probe test apparatus for flat pannel display
KR20130013286A (en) Testing apparatus of flexibe printed circuit board
KR20080076195A (en) Thin film transistor substrate inspection apparatus
KR101796593B1 (en) Array test apparatus
KR102098789B1 (en) Apparatus of manufacturing display cells and method of controlling temperature thereof