TW201139600A - Tape for wafer processing - Google Patents

Tape for wafer processing Download PDF

Info

Publication number
TW201139600A
TW201139600A TW99114662A TW99114662A TW201139600A TW 201139600 A TW201139600 A TW 201139600A TW 99114662 A TW99114662 A TW 99114662A TW 99114662 A TW99114662 A TW 99114662A TW 201139600 A TW201139600 A TW 201139600A
Authority
TW
Taiwan
Prior art keywords
adhesive layer
adhesive
mass
parts
film
Prior art date
Application number
TW99114662A
Other languages
Chinese (zh)
Other versions
TWI431092B (en
Inventor
Yeong-Seok Kim
Yasumasa Morishima
Shinichi Ishiwata
Masami Aoyama
Kunihiko Ishiguro
Toshihiro Suzuki
Takanori Yamakawa
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to TW99114662A priority Critical patent/TWI431092B/en
Publication of TW201139600A publication Critical patent/TW201139600A/en
Application granted granted Critical
Publication of TWI431092B publication Critical patent/TWI431092B/en

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Dicing (AREA)

Abstract

This invention provides a tape for wafer processing, in which peeling off an adhesive layer and a bonding layer is made easy to increase the pickup success rate of semiconductor chips in a pickup step being increased, and damage of thin semiconductor chips caused by enlarging pin hoist strength and hoist height is prevented. A chip processing tape (10) has an adhesive film (12) consisting of a substrate film (12a) and an adhesive layer (12b), a bonding agent layer (13) laminated on the adhesive film (12). The adhesion strength (B) of the adhesive film (12) under 80 DEG C is less than 0.9N, and the ratio (A/B) of the adhesion strength (A) of the bonding agent layer (13) under 80 DEG C to the adhesion strength (B) of the adhesive film (12) under 80 DEG C ranges from 6.0 to 7.0.

Description

201139600 六、發明說明: 【發明所屬之技術領域】 本發明有關一種用於半導體晶圓的切割步驟' 拾取步 驟、晶粒接合(die bonding)步驟的晶圓加工用膠帶。 【先前技術】 在半導體裝置的製造步驟中,實施將半導體晶圓切斷 分離(切割)爲半導體晶片單元的步驟、拾取分離的半導 體晶片的步驟、進一步將拾取的晶片黏接於引線架及封裝 基板等的晶粒接合(安裝)步驟。 近年來,作爲在上述半導體裝置的製造步驟中使用的 晶圓加工用膠帶,提出有例如在基材薄膜上設置有黏著劑 層的晶圓加工用膠帶、具有在黏著劑層上進一步層合有接 著劑層的構造的晶圓加工用膠帶(晶粒接合膜:DDF ), 並已經實用化(例如參照專利文獻1 )。 但是,由於上述的晶粒接合薄膜在從製造到使用之間 的接著劑層和黏著劑層的接觸時間必然延長,因此,在使 用前兩層已經融合,在拾取單片化的帶接著劑層的半導體 晶片的步驟中,存在在接著劑層和黏著劑層之間無法順利 剝離的問題。 因此’作爲解決此種問題的晶圓加工用膠帶,已知有 一種晶圓加工用膠帶,其藉由對構成黏著劑層的具有碳-碳雙鍵的輻射線聚合性化合物的碘價 '及構成接著劑層的 含環氧基丙烯酸共聚物的玻璃轉移溫度(Tg )進行規定, -5- 201139600 可將帶接著劑層的半導體晶片容易地從黏著劑層剝離(例 如參照專利文獻2 )。 專利文獻1 :日本特開平2-32181號公報 專利文獻2:日本特開2005_303275號公報 1 容 內 明 發 [發明欲解決之課題] 在上述專利文獻2中記載的晶圓加工用膠帶中,藉由 規定構成黏著劑層的具有碳-碳雙鍵的輻射線聚合性化合 物的碘價’實現輻射線照射後的黏著力的降低,藉由規定 含環氧基丙烯酸共聚物的玻璃轉移溫度(Tg),實現B階 段狀態下的接著劑層或晶圓加工用膠帶的膠黏力的降低。 即’對黏著劑層及接著劑層,分別以使容易剝離的方式進 行改善。 但是,對黏著劑層和接著劑層之間的關係未做考慮, 而有藉由組合,剝離容易性不充分,無法將帶接著劑層的 半導體晶片(以下,稱爲半導體晶片)從晶圓加工用膠帶 的黏著劑層適當地拾取之問題。 另外,在拾取時’爲了使黏著劑層和接著劑層之間的 剝離容易,進行有將從晶圓加工用膠帶的下側利用銷( pin )頂起半導體晶片的力和頂起高度加以增大,但是, 近年來,半導體晶片有變薄的趨勢,於半導體晶片變薄的 情況下,若增大頂起力,亦有晶片破損之問題。 因此,本發明爲了解決上述的問題點而完成者,其目 -6 - 201139600 的在於提供一種晶圓加工用膠帶,藉由使黏著劑層和接著 劑層之間的剝離變容易,提高拾取步驟中的半導體晶片的 拾取成功率,同時,可以防止因增大銷的頂起力及頂起高 度引起的薄半導體晶片的破損。 [用以解決課題之手段] 本發明者等對上述的課題進行積極硏究,結果發現, 在依次形成有基材薄膜、黏著劑層和接著劑層的晶圓加工 用膠帶中,在將80 °C時的接著劑層的膠黏力設爲A、將 8 0°C時的黏著劑層的膠黏力設爲B時,藉由使用設爲 0.9 ( N )、且6.0S ( A/B ) <7.0的晶圓加工用膠帶,可 使黏著劑層和接著劑層之間的剝離變得容易,拾取步驟中 的半導體晶片的拾取成功率提高,進而發現,強度低的薄 半導體晶片亦可無破損地進行拾取,從而完成了本發明。 .即,本發明第一方面提供一種晶圓加工用膠帶,其係 依次形成有基材薄膜、黏著劑層和接著劑層,其特徵在於 ,在將80°C時的前述接著劑層的膠黏力設爲A、將80°C 時的前述黏著劑層的膠黏力設爲B時,Β^0·9(Ν),且 6.0 < ( Α/Β )幺 7.0。 藉由使用本發明的晶圓加工用膠帶,黏著劑層和接著 劑層之間的剝離變得容易,在拾取步驟中,可以容易地將 半導體晶片從晶圓加工用膠帶的黏著劑層進行拾取。因此 ,與以往相比’可以提高半導體晶片的拾取成功率。另外 ,由於在薄的半導體晶片的情況下在不增大銷的頂起力及 201139600 頂起高度的情況下亦可拾取半導體晶片,因此’可以不使 強度低的半導體晶片破損而進行拾取。 【實施方式】 以下,根據圖式對本發明實施形態進行詳細說明。 圖1是表示一實施形態的晶圓加工用膠帶10的剖面 圖。該晶圓加工用膠帶10具有:由薄膜狀的基材薄膜 和形成於其上的黏著劑層12b構成的黏著薄膜12、層合於 該黏著膜12上的接著劑層13。藉此,在晶圓加工用膠帶 10上,依序形成有基材薄膜12a、黏著劑層12b、接著劑 層13。 另外,黏著劑層1 2b可由一層黏著劑層構成’亦可由 層合有兩層以上黏著劑層的黏著劑層構成。此外,在圖1 中’顯示爲了保護接著劑層13,而在晶圓加工用膠帶10 上設置有剝離襯裏1 1的狀態。 黏著膜12及接著劑層13亦可根據使用步驟或裝置預 先切割成特定形狀(預切割)。本發明的晶圓加工用膠帶 1〇包含切成每片半導體晶片之形態以及將形成有複數個此 單片半導體晶片的長條薄膜捲繞在輥上的形態》 以下,對本實施形態的晶圓加工用膠帶1 〇的各構成 要素進行詳細說明。 (接著劑層) 接著劑層1 3,係在黏著半導體晶片1等並切割後,在 -8 - 201139600 拾取半導體晶片2時,從黏著薄膜1 2剝離,附著在半導 體晶片2上’用作將半導體晶片2固定在基板或引線架上 時的接著劑。因此’對接著劑層13在拾取步驟中,具有 可以在保持附著在單片化的半導體晶片2上的狀態下,從 黏著薄膜12剝離的剝離性,而且,在晶粒接合步驟中, 具有用以將半導體晶片2黏接固定於基板或引線架之充分 黏接可靠性。 接著劑層1 3爲將接著劑預先進行薄膜化而得的接著 劑層’可以使用例如用於接著劑的公知的聚醯亞胺樹脂、 聚醯胺樹脂、聚醚醯亞胺樹脂、聚醯胺醯亞胺樹脂、聚酯 樹脂、聚酯醯亞胺樹脂、苯氧樹脂、聚颯樹脂、聚醚颯樹 脂、聚苯硫醚樹脂、聚醚酮樹脂、氯化聚丙烯樹脂、丙烯 酸樹脂、聚胺酯樹脂、環氧樹脂、聚丙烯醯胺樹脂、三聚 氰胺樹脂等或其混合物。另外,爲了強化對晶片及引線架 的黏接力,希望將矽烷偶合劑或鈦偶合劑作爲添加劑添加 於前述材料及其混合物中。 接著劑層13的厚度並無特別限制,通常較好爲5~ 100 μιη左右。另外,接著劑層13可以層合在黏著薄膜12的 黏著劑層1 2 b的整個面上,也可以將預先切割成對應於貼 合的半導體晶圓1的形狀(預切割)的接著劑層層合在黏 者劑層12b的一部分上。層合有切割成對應於半導體晶圓 1的形狀的接著劑層1 3時,如圖2所示,在貼合有半導體 晶圓1的部分具有接著劑層1 3,在貼合有切割用的環形架 2〇的部分無接著劑層13而僅存在黏著薄膜12的黏著劑層 -9 - 201139600 12b。一般而言,接著劑層13難以從被黏體剝離,因此’ 藉由使用預切割了的接著劑層13,可得到可使環形架20 貼合於黏著薄膜12上,且在使用後的薄膜剝離時在環形 架20上不易產生殘糊之效果。 (黏著薄膜) 黏著薄膜12係在切割半導體晶圓1時,具有不使半 導體晶圓1剝離之充分膠黏力,在切割後,在拾取半導體 晶片2時,具有可以容易地從接著劑層1 3剝離之低黏著 力者。在本實施方式中’如圖1所示,黏著薄膜12使用 在基材薄膜l2a上設有黏著劑層12b的黏著薄膜。 作爲黏著薄膜12的基材薄膜12a,只要是現有公知的 基材薄膜’就可無特別限制地使用,但是如後述,由於在 本實施形態中,由於使用能量固化性的材料中的輻射線固 化性的材料作爲黏著劑層i 2b,因此,使用具有輻射線透 射性的基材薄膜。 例如,作爲基材薄膜丨2a的材料,可以列舉:聚乙 、聚丙烯、乙烯-丙烯共聚物、聚丁烯_〗、聚_4甲基戊释 1乙烯-乙酸乙烯酯共聚物、乙烯-丙烯酸乙酯共聚物、 嫌-丙稀酸甲醋共聚物、乙烯_丙燒酸共聚物、離聚物等 嫌烴的均聚物或共聚物或其等之混合物:聚胺醋、苯 I乙fr㈣聚物或戊㈣共聚物、聚醯胺.多元醇共 物等熱塑性彈性體及其等之混合物。另外,基材薄膜ι 可爲將選自該等中的2種以上的材料混合而成的基材薄 -10- 201139600 ,亦可爲將該等進行單層或多層化而得的基材薄膜。基材 薄膜1 2a的厚度沒有特別限定,可以適當設定,但較佳爲 50〜200μηι 〇 在本實施形態中,藉由對黏著薄膜1 2照射紫外線等 輻射線,使黏著劑層1 2b固化,容易從接著劑層1 3上剝 離黏著劑層12b,因此,對於在黏著劑層12b的樹脂,較 好於黏著劑中所使用的公知的氯化聚丙烯樹脂、丙烯酸樹 脂、聚酯樹脂、聚胺酯樹脂、環氧樹脂、加成反應型有機 聚矽氧烷系樹脂、矽丙烯酸酯樹脂 '乙烯-乙酸乙烯酯共 聚物、乙烯-丙烯酸乙酯共聚物、乙烯-丙烯酸甲酯共聚物 、乙烯-丙烯酸共聚物、聚異戊二烯或苯乙烯-丁二烯共聚 物或其加氫物等各種彈性體等或在其混合物中,適當配合 輻射線聚合性化合物而製備黏著劑。另外,亦可添加各種 界面活性劑或表面平滑劑。黏著劑層1 2 b的厚度沒有特別 限定,可以適當設定,但較好爲5〜30 μηι。 該輻射線聚合性化合物可以使用例如藉由光照射可以 三維網狀化的分子內具有至少2個以上光聚合性碳-碳雙 鍵的低分子量化合物、取代基中具有光聚合性碳·碳雙鍵 基團的聚合物或低聚物。具體而言,可以使用三羥甲基丙 烷三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸 酯、二季戊四醇單羥基五丙烯酸酯、二季戊四醇六丙烯酸 酯、1,4-丁二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、聚 乙二醇二丙烯酸酯、低聚酯丙烯酸酯等、矽丙烯酸酯等、 丙烯酸或各種丙烯酸酯類的共聚物等。 -11 - 201139600 另外,除如上所述的丙烯酸酯類化合物之外,亦 用胺酯丙烯酸酯類低聚物。胺酯丙烯酸酯類低聚物係 有羥基的丙烯酸酯或甲基丙烯酸酯(例如丙烯酸2-羥 、甲基丙烯酸2 -羥乙酯、丙烯酸2 -羥丙酯、甲基丙 2_羥丙酯 '聚乙二醇丙烯酸酯 '聚乙二醇甲基丙烯酸 )與末端異氰酸酯胺酯預聚物反應而得到者,所述末 氰酸酯胺酯預聚物是使聚酯型或聚醚型等多元醇化合 多元異氰酸酯化合物(例如2,4_甲苯二異氰酸醋、2: 苯二異氰酸酯、1,3-苯二甲基二異氰酸酯、ι,4-苯二 二異氰酸酯、二苯基甲烷4,4-二異氰酸酯等)反應而 的。又,黏著劑層l2b亦可爲混合選自上述樹脂中的 以上者。 又,黏著劑層12b的樹脂,除對黏著薄膜12照 射線而使黏著劑層1 2 b固化的輻射線聚合性化合物之 也可以適當配合丙烯酸類黏著劑、光聚合引發劑、固 等而製備黏著劑層12b。 使用光聚合引發劑時,可以使用例如苯偶因異丙 苯偶因異丁酸、二苯甲酮、米希勒酮、氯噻噸酮、十 基噻噸酮 '二甲基噻噸酮、二乙基噻噸酮、苄基二甲 酮、α-羥基環己基苯基酮、2-羥基甲基苯基丙烷等》 本實施形態的晶圓加工用膠帶1 〇,在具有以下構 面具有特徵。 在將80°C時的接著劑層13的膠黏力設爲Α、將 時的黏著劑層12b的膠黏力設爲B時,滿足B<〇.91 可使 使具 乙酯 烯酸 酯等 端異 物與 6-甲 甲基 得到 2種 射輻 外, 化劑 醚、 二烷 基縮 成方 8 0°C :N) -12- 201139600 ,且 6.0S ( A/B ) S 7.0。 就降低黏著劑層〗2b及接著劑層13的80°C時的膠黏 力而言’宜使用50°C以上且100°C以下左右的低沸點溶劑 。作爲沸點50 °C以上且1 〇〇°C以下的溶劑,較好爲乙酸乙 酯或甲基乙基酮(MEK ),可以以單體或混合物的形式使 用。在使用100°C以上且200°C以下左右的高沸點的溶劑 時,宜將殘溶濃度設定爲1 %以下。進而,就降低黏著劑 層l2b的80 °C時的膠黏力而言,宜使光引發劑的量增多, 相對於聚合物100質量份,較好設定爲1~20質量份,更 好設定爲2〜15質量份。 另外,提高構成黏著劑層的聚合物的玻璃轉移溫度( Tg )亦有效。玻璃轉移溫度(Tg )較好爲-40~-7(TC,更 好爲_5〇〜- 60°C。進而,就降低黏著劑層12b的80°C時的 膠黏力而言,宜增大固化劑的含量,相對於聚合物共聚物 較好爲0.0 1〜0 . 1 5質量份,更好爲使固化劑的含量相對於 聚合物共聚物設定爲0.01 ~0·02質量份。 另外,就降低接著劑層13的801時的膠黏力而言, 宜提高塡料含量,較好相對於聚合物iOO質量份爲5〜100 質量份,更好爲10〜50質量份。進而,就降低接著劑層13 的80°C時的膠黏力而言,宜使固化劑的含量增多,相對於 環氧樹脂100質量份,固化劑宜爲50〜200質量份,更好 爲70〜150質量份。另外,構成接著劑層的環氧樹脂的環 氧當量較好爲l〇〇g/eq~400g/eq,更好爲200〜300g/eq。就 提高黏著劑層12b及接著劑層13的80。(:時的膠黏力而言 -13- 201139600 ,亦可進行與上述相反。 (晶圓加工用膠帶的使用方法) 在半導體裝置的製造步驟中,晶圓加工用膠帶10如 下使用。在圖2中,顯示在晶圓加工用膠帶10上貼合有 半導體晶圓1和環形架20的情形。首先,如圖2所示, 將黏著薄膜12的黏著劑層12b黏貼在環形架20上,使半 導體晶圓1與接著劑層1 3貼合。其黏貼順序並無限制, 可在使半導體晶圓1與接著劑層13貼合後,再將黏著薄 膜12的黏著劑層12b黏貼在環形架20上。另外,亦可同 時進行黏著薄膜12向環形架20的黏貼和半導體晶圓1向 接著劑層1 3的貼合。 接下來,實施半導體晶圓1的切割步驟(圖3),接 著,實施對黏著薄膜12照射能量線、例如紫外線的步驟 。具體而言,爲了利用切割刀21切割半導體晶圓1和接 著劑層1 3,利用吸附台22從黏著薄膜1 2的下面側吸附支 撐晶圓加工用膠帶1 0。接著,利用切割刀2 1將半導體晶 圓1和接著劑層1 3切割成2單元半導體晶片而進行單片 化,然後,從黏著薄膜1 2的下表面側照射能量線。藉由 該能量線照射,使黏著劑層1 2b固化,使其膠黏力降低。 又,可取代能量線的照射,利用加熱等外部刺激而使黏著 薄膜12的黏著劑層l2b的膠黏力降低。黏著劑層12b由 兩層以上的黏著劑層層合而構成的情況下,可以藉由能量 線照射使各黏著劑層中的一層或所有層固化,使各黏著劑 -14- 201139600 層中的一層或所有層的膠黏力降低。 其後’如圖4所示,實施將保持有經切割的半導體晶 片2及接著劑層13的黏著薄膜12沿環形架20的圓周方 向拉伸的擴展步驟。具體而言,相對保持有經切割的複數 半導體晶片2及接著劑層1 3的狀態的黏著薄膜1 2,使中 空圓柱形狀的頂出構件30從黏著薄膜12的下表面側上升 ,將黏著薄膜12沿環形架20的圓周方向拉伸。藉由擴展 步驟’加寬半導體晶片2之間的間隔,提高利用CCD攝 像機等進行的半導體晶片2的識別性,同時,可以防止在 拾取時由於鄰接的半導體晶片2彼此的接觸而產生的半導 體晶片2彼此再接著。 實施擴展步驟後,如圖5所示,在保持將黏著薄膜12 擴展的狀態下’實施拾取半導體晶片2的拾取步驟。具體 而言’從黏著片1 2的下表面側利用銷3 1將半導體晶片2 頂出,同時,從黏著膜1 2的上表面側用吸附夾具3 2吸附 半導體晶片2 ’由此,將單片化的半導體晶片2與接著劑 層1 3 —起拾取。 接下來’實施拾取步驟後,實施晶粒接合步驟。具體 而言’利用在拾取步驟中與半導體晶片2 —起被拾取的接 著劑層1 3,將半導體晶片2與引線架或包裝基板等接著》 (實施例) 接著,對本發明的實施例進行說明,但本發明不限定 於這些實施例。首先,對基材薄膜12a及下述的表1所示 -15- 201139600 的黏著劑層組成物1 A~1G進行調製後’在基材 上塗敷黏著劑層組成物1A〜1G,以使黏著劑』 1A〜1G乾燥後的厚度爲ΙΟμιη’在110°C乾燥3 成黏著薄膜12。接著,對下述的表2所示的接著 物2 A〜2H進行調製,在由脫模處理的厚度2 5 μπι 二甲酸乙二醇酯構成的剝離襯底11上塗敷接著 物2Α~2Η,以使接著劑層組成物2Α-2Η乾燥後 40μιη,在110°C乾燥3分鐘,在剝離襯裏11上 劑層13。接著,在將黏著薄膜12及接著劑層13 圖2所示的形狀後,在黏著薄膜12的黏著劑層 合接著劑層1 3,製成如下述表3所示的實施例1 述表4所示的比較例1~9。 (基材薄膜12a) 作爲膜狀的基材薄膜12a,使用厚度1〇〇μ„! 彈性體之聚丙烯。 (黏著劑層組成物的調製) 作爲黏著劑層組成物1 Α~ 1 G,藉由如下表i 成分的配合,調製黏著劑層組成物。 薄膜12a S組成物 分鐘,作 劑層組成 的聚對苯 劑層組成 的厚度爲 製成接著 裁斷爲如 1 2 b側貼 -3及如下 的添加了 所示的各 -16- 201139600 [表1] 黏著劑層組成物 1A 1B 1C 1D 1E 1F 聚合物共聚物(1) 33 33 33 33 ---- 33 聚合物共聚物(2) 33 ---- 固化劑 0.5 0.5 0.5 0.5 0.5 0.2 光聚合引發劑 3 3 3 1 4 —— 3 溶劑⑴ 80 溶劑⑴ 80 80 80 80 —— 80 <黏著劑層組成物1 A> 黏著劑組成物1A如表1所示,爲添加聚合物共聚物 (1 ) 33質量份、固化劑(異氰酸酯)0.5質量份、光聚 合引發劑(1-羥基-環己基-苯基-酮)3質量份、溶劑(i )8 0質量份並進行混合的組成物。又,聚合物共聚物(上 )爲具有輻射線固化性碳-碳雙鍵官能基的丙烯酸^乙基 己酯和丙烯酸2-羥基烷基酯類的共聚物,玻璃轉移溫度( Tg )爲-5 3 °C。另外,溶劑(1 )爲甲苯。 <黏著劑層組成物1 B > 黏著劑組成物1B如表1所示,爲添加聚合物共聚物 (1 ) 33質量份、固化劑(異氰酸酯化合物)〇.5質量份 '光聚合引發劑(1-羥基-環己基·苯基-酮)3質量份 '溶 劑(2 ) 8 0質量份並混合而成的組成物。又,溶劑(2 )爲 乙酸乙酯。 <黏著劑層組成物1 C > -17- 201139600 黏著劑組成物1 C如表1所示,爲添加聚合物共聚物 (2) 33質量份、固化劑(異氰酸酯化合物)0.5質量份 、光聚合引發劑(1-羥基-環己基-苯基-酮)3質量份、溶 劑(2) 80質量份並混合而成的組成物。又,聚合物共聚 物(2)爲具有輻射線固化性碳-碳雙鍵的官能基的丙烯酸 2-乙基己酯和丙烯酸2-羥基烷基酯類的共聚物,玻璃轉移 溫度(T g )爲-7 2 °C » <黏著劑層組成物1D> 黏著劑組成物1D如表1所示,爲添加聚合物共聚物 (1 ) 33質量份、固化劑(異氰酸酯化合物).0.5質量份 、光聚合引發劑(1-羥基-環己基·苯基-酮)1質量份、溶 劑(2 ) 8 0質量份並混合而成的組成物。 <黏著劑層組成物1E> 黏著劑組成物1 E如表1所示,爲添加聚合物共聚物 (Π 33質量份、固化劑(異氰酸酯化合物)0_5質量份 、光聚合引發劑(1-羥基-環己基-苯基-酮)4質量份、溶 劑(2 ) 8 0質量份並混合而成的組成物。 <黏著劑層組成物 黏著劑組成物1 F如表1所示,爲添加聚合物共聚物 (1 ) 33質量份、固化劑(異氰酸酯化合物)0.2質量份 、光聚合引發劑(1-羥基-環己基-苯基-酮)3質量份、溶 -18- .201139600 劑(2 ) 8 0質量份並混合而成的組成物。 <黏著劑層組成物1G> 黏著劑層組成物1 G如表1所示,爲添加聚合物共聚 物(2 ) 33質量份、固化劑(異氰酸酯)〇.5質量份、光 聚合引發劑(1-羥基-環己基-苯基-酮)3質量份、溶劑( 1 ) 80質量份並混合而成的組成物。 將上述黏著劑層組成物1A~1G在基材薄膜12a上以 使乾燥膜厚爲ΙΟμιη之方式進行塗敷,在110 °C.乾燥3分 鐘,製作黏著薄膜1 2。 作爲黏著劑層組成物2A〜2 Η,藉由下述的表2所示的 各成分的配合,調製接著劑層組成物。 [表2] 接著劑層組成物 2Α 2Β 2C 2D 2Ε 2F 2G 2Η 丙烯酸樹脂(1) 16 16 16 19 16 丙烯酸樹脂(2) 16 16 19 環氧樹脂 4 4 4 4 1 4 4 1 塡料 2 2 2 1 2 3 2 2 固化劑 4 4 4 4 4 4 4 4 固化促進劑 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 溶劑⑴ 80 80 80 溶劑(2) 80 80 80 80 80 <接著劑層組成物2Α> 將環氧樹脂4質量份、矽烷偶合劑(γ-锍基丙基三甲 氧基矽烷)、塡料2質量份添加溶劑(2) 80質量份並進[S] -19 - 201139600 行攪拌混合,進而使用珠磨機混煉90分鐘。其後,將丙 嫌酸樹脂(1 ) 1 6質量份、固化劑4質量份、固化促進劑 0.2質量份進行攪拌混合,並進行真空脫氣,得到接著劑 層組成物2A。環氧樹脂爲聯苯型環氧樹脂(環氧當量265 、分子量1 200、軟化點63°C )。塡料爲平均粒徑16nm的 二氧化矽塡料。又,溶劑(2)爲甲基乙基酮(MEK)和 乙酸乙酯的混合物。丙烯酸樹脂(1)的重均分子量(Mw )爲8〇萬,玻璃轉移溫度(Tg)爲17°C。作爲固化劑, 使用市售的.DICY15 (日本環氧樹脂(股)),作爲固化 促進劑’使用市售的Curesol 2PZ (四國化成股份有限公 司)。 <接著劑層組成物2B> 如表2所示,使用丙烯酸樹脂(1) 16質量份、環氧 樹脂4質量份、塡料2質量份、固化劑4質量份、固化促 進劑0 · 2質量份、溶劑(1 ) 8 0質量份,與接著劑層組成 物2A同樣地得到接著劑層組成物2B。溶劑(1 )爲甲苯 和環己酮的混合物。 <接著劑層組成物2C> 如表2所示,使用丙烯酸樹脂(2) 16質量份、環氧 樹脂4質量份 '塡料2質量份、固化劑4質量份、固化促 進劑〇 · 2質量份、溶劑(2 ) 8 0質量份,與接著劑層組成 物2 A同樣地得到接著劑層組成物2C。丙烯酸樹脂(2 ) -20- 201139600 的重均分子量(Mw)爲85萬,玻璃轉移溫度(Tg)爲-15 。(:。 <接著劑層組成物2D> 如表2所示,使用丙烯酸樹脂(1) 16質量份、環氧 樹脂4質量份、塡料1質量份、固化劑4質量份、固化促 進劑0.2質量份、溶劑(2 ) 80質量份,與接著劑層組成 物2 A同樣地得到接著劑層組成物2 D。 <接著劑層組成物2E> 如表2所示,使用丙烯酸樹脂(1) 19質量份、環氧 樹脂1質量份、塡料2質量份 '固化劑4質量份、固化促 進劑〇.2質量份、溶劑(2 ) 80質量份,與接著劑層組成 物2 A同樣地得到接著劑層組成物2 E。 <接著劑層組成物2F> 如表2所示,使用丙烯酸樹脂(1) 16質量份、環氧 樹脂4質量份、塡料3質量份、固化劑4質量份、固化促 進劑〇.2質量份、溶劑(2 ) 80質量份,與接著劑層組成 物2 A同樣地得到接著劑層組成物2 F。 <接著劑層組成物2 G > 如表2所示,使用丙烯酸樹脂(2) 16質量份、環氧 樹脂4質量份、塡料2質量份、固化劑4質量份、固化促 -21 - 201139600 進劑0.2質量份、溶劑(1) 80質量份’與接著劑層組成 物2A同樣地得到接著劑層組成物2G - <接著劑層組成物2H> 如表2所示,使用丙烯酸樹脂(2) 19質量份、環氧 樹脂1質量份、塡料2質量份、固化劑4質量份、固化促 進劑0.2質量份、溶劑(1 ) 80質量份,與接著劑層組成 物2A同樣地得到接著劑層組成物2H。 將上述接著劑層組成物2A〜2H塗布在厚度25μηι的經 脫模處理的聚對苯二甲酸乙二醇酯(PET )膜上,加熱乾 燥,形成膜厚爲4〇μπι的B階段狀態的塗膜,製作接著薄 膜。 將製作好的黏著薄膜12及接著薄膜分別切割爲直徑 370mm、320mm的圓形,且將黏著薄膜12的黏著劑層i2b 和接著薄膜的接著劑層13貼合。最後,將接著薄膜的 PET膜從接著劑層13剝離,得到下述表3所示的實施例 1~3晶圓加工用膠帶10’及下述表4所示的比較例卜9的 晶圓加工用膠帶。 -22- 201139600 [表3] 實施例1 實施例2 實施例3 黏著劑層組成物 1B 1E 1F 接著劑層組成物 2A 2A 2F 接著劑層的8(TC時得膠黏力A (Ν) 3.651 3.651 3.584 黏著劑層的80°C時得膠黏力B (N) 0.531 0.556 0.584 8〇°C時得膠黏力比(A/B) 6.9 6.5 6.1 拾取成功率(%) 100 100 100 [表4] 比較 例1 比較 例2 比較 例3 比較 例4 比較 例5 比較 例6 比較 例7 比較 例8 比較 例9 黏著劑層組成物 1A 1B 1C 1B 1B 1B 1D 1G 1G 接著劑層組成物 2A 2B 2A 2C 2D 2E 2A 2G 2H 接著劑層的80°C時 得膠黏力A (N) 3.651 3.967 3.651 3.896 3.772 4.093 3.651 5.624 6.295 黏著劑層的80°C時 得膠黏力B (N) 0.864 0.531 0.618 0.531 0.531 0.531 0.851 0.908 0.908 80°C時得膠黏力比 (A/B) 4.2 7.5 5.9 7.3 7.1 7.7 4.3 6.2 6.9 拾取成功率(%) 32 28 81 22 76 9 28 0 0 表3顯示構成實施例1〜3的晶圓加工用膠帶1〇的黏 著劑層組成物和接著劑層組成物的組合。另外_,顯示各實 施例1〜3的接著劑層13的80°C時的膠黏力A(N)、黏 著劑層12b的80°C時的膠黏力B ( N ) 、80°C時的接著劑 層1 3和黏著劑層1 2b的膠黏力比(A/B )、拾取成功率( % )。另外,拾取中銷的頂起高度爲450μηι。 表4顯示構成比較例1〜9的晶圓加工用膠帶的黏著劑 層組成物和接著劑層組成物的組合。另外’顯示各比較例[ -23- 201139600 1〜7的接著劑層13的80 °c時的膠黏力A(N)、黏著劑層 12b的80 eC時的膠黏力B(N) 、80 °C時的接著劑層13和 黏著劑層12b的膠黏力比(A/B )、拾取成功率(% )。 另外,拾取中銷的頂起高度爲450μπι。 <膠黏力的測定> 將實施例1〜3的各晶圓加工用膠帶10及比較例1〜9 的各晶圓加工用膠帶的黏著膠帶12維持在8 0 °C,同時, 以JIS Z 023 7爲基準,使用RHESCA製膠黏力測定試驗機 對黏著劑層1 2b的膠黏力進行測定。將實施例1〜3的各晶 圓加工用膠帶1〇及比較例1〜9的各晶圓加工用膠帶的接 著劑薄膜維持在80°C,同時,以JIS Z 0237爲基準,使 用RHESCA製膠黏力測定試驗機對接著劑層13的膠黏力 進行測定。 <拾取成功率的測定> 在70°C,用10秒鐘將厚度ΙΟΟμπι的矽晶圓(半導體 晶片)1加熱貼合於實施例1〜3的各晶圓加工用膠帶1 〇及 比較例1〜9的各晶圓加工用膠帶上,然後’切割爲lOmmx 1 Omm的半導體晶片2。其後藉由空冷式高壓水銀燈( 80W/cm、照射距離i〇cm)對黏著劑層!2b以200J/cm2照 射紫外線。其後,對位於矽晶圓(半導體晶圓)1的中央 部的50個的半導體晶片2,利用晶粒接合裝置(NEC machinery製、商品名CPS-100FM)進行拾取’求出拾取 -24 - 201139600 成功率,對其結果進行評價。又,將經拾取的半導體晶片 2中從黏著劑層1 2b剝離並保持有接著劑層1 3的晶片作爲 拾取成功的晶片,算出拾取成功率。 實施例1中,黏著劑層12b的8 0°C時的膠黏力(以下 ,稱爲膠黏力B)爲規定的膠黏力B的上述〇·9(Ν)以下 的範圍的0.531 (Ν),且接著劑層13的80 °C時的膠黏力 (以下稱爲膠黏力A)與黏著劑層12b的8 0°C時的膠黏力 (膠黏力B )的膠黏力比(A/B )爲規定膠黏力比(A/B ) 的上述6.0以上且7.0以下的範圍內的6.9,因此,拾取成 功率爲1 0 0 %。 實施例2中,膠黏力B爲規定膠黏力B的上述0.9( N )以下的範圍的 0.5 66 ( N ),且膠黏力比(A/B )爲規 定膠黏力比(A/B )的上述6.0以上且7.0以下的範圍內的 6 · 5,因此,拾取成功率爲1 〇 〇 %。 實施例3中,膠黏力B爲規定膠黏力B的上述0.9 ( N )以下的範圍的 〇_5 84 ( N ),且膠黏力比(A/B )爲規 定膠黏力比(A/B )的上述6.0以上且7.0以下的範圍內的 6·1,因此,拾取成功率爲100%。 比較例1中.,膠黏力B爲規定膠黏力B的上述〇.9 ( N)以下的範圍的0.8 64 (N),但膠黏力比(A/B )爲比 規定膠黏力比(A/B)的上述6.0以上且7.0以下的範圍的 下限値小的4.2,因此,拾取成功率降低爲32%。 比較例2中,膠黏力B爲規定膠黏力B的上述〇.9( N)以下的範圍的0.531 (N),但膨黏力比(A/B)爲比 -25- 201139600 規定膠黏力比(A/B )的上述範圍6.0以上且7.0以下的範 圍的上限値大的7 · 5,因此,拾取成功率降低爲2 8 %。 比較例3中,膠黏力B爲規定膠黏力B的上述0.9 ( N )以下的範圍的〇·618 ( N ),但膠黏力比(A/B )爲比 規定膠黏力比(A/B )的上述6.0以上且7_0以下的範圍的 下限値小的5.9 ’因此,拾取成功率降低爲8 1 %。 比較例4中,膠黏力B爲規定膠黏力B的上述0.9( N)以下的範圍的0.531 (N),但膠黏力比(A/B )爲比 規定膠黏力比(A/B )的上述6.0以上且7.0以下的範圍的 上限値大的7.3,因此,拾取成功率降低爲22%。 比較例5中,膠黏力B爲規定膠黏力B的上述0.9( N)以下的範圍的0.531 (N),但膠黏力比(A/B )爲比 規定膠黏力比(A/B )的上述6_0以上且7.〇以下的範圍的 上限値大的7.1,因此,拾取成功率降低爲7 6%。 比較例6中,膠黏力B爲規定膠黏力B的上述0.9 ( N)以下的範圍的0.531 (N),但膠黏力比(A/B)爲比 規定膠黏力比(A/B )的上述6.0以上且7.0以下的範圍的 上限値大的7.7,因此,拾取成功率降低爲9%。 比較例7中,膠黏力B爲規定膠黏力B的上述0.9( N)以下的範圍的0.851 (N),但膠黏力比(A/B)爲比 規定膠黏力比(A/B)的上述6.0以上且7·〇以下的範圍的 下限値小的4 · 3,因此,拾取成功率降低爲2 8 %。 比較例8中,膠黏力比(Α/Β )爲規定膠黏力比(Α/Β )的上述6.0以上且7.0以下的範圍內的6.2,但膠黏力Β -26- 201139600 爲比規定膠黏力B的上述0.9 (N)以下的範圍上限値大 的0.908 (N),因此,拾取成功率降低爲0%。 比較例9中,膠黏力比(A/B )爲規定膠黏力比(A/B )的上述6.0以上且7.0以下的範圍內的6.9,但膠黏力B 爲比規定膠黏力B的上述〇.9(N)以下的範圍上限値大 的〇 · 9 0 8 ( N ),因此,拾取成功率降低爲〇 %。 在本實施形態的晶圓加工用膠帶1〇中,在將80°C時 的接著劑層13的膠黏力設爲 A、將8(TC時的黏著劑層 12b的膠黏力設爲B時,滿足BS0.9CN),且6.0S ( A/B ) < 7_0。 黏著劑層12b的80°C時的膠黏力B爲0.9(N)以下 ,且接著劑層13的80°C時的膠黏力A與黏著劑層l2b的 80°C時的膠黏力B的膠黏力之比(A/B)在6.0以上且7.0 以下的範圍內,黏著劑層1 2b和接著劑層1 3之間的剝離 變得容易。 如上所述,可以在拾取步驟中,容易地將附著有接著 劑層1 3的狀態的半導體晶片2從晶圓加工用膠帶1 0的黏 著劑層1 2b進行拾取。因此,可以使附著有接著劑層1 3 的狀態的半導體晶片2的拾取成功率比以往提高。另外, 即使在薄半導體晶片2的情況下,由於黏著劑層1 2b和接 著劑層1 3之間的剝離容易,所以也可以不增大銷的頂起 力及頂起高度而拾取半導體晶片2,因此,可以在強度低 的半導體晶片2不破損的情況下進行拾取* -27- 201139600 【圖式簡單說明】 圖1是表示本發明實施形態的晶圓加工用膠帶的剖面 圖, 圖2是在晶圓加工用膠帶上貼合半導體晶圓的圖; 圖3是用於說明切割步驟的圖; 圖4是用於說明擴展步驟的圖; 圖5是用於說明拾取步驟的圖; 【主要元件符號說明】 1 :半導體晶圓 2 :半導體晶片 1 0 :晶圓加工用膠帶 12a :基材薄膜 1 2 b :黏著劑層 12 :黏著薄膜 1 3 :接著劑層 20 :環形架 2 1 :切割刀 2 2 :吸附台 3 0 :頂出構件 31 :銷 3 2 :吸附夾具 -28-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer processing tape for a semiconductor wafer wafer cutting step 'pickup step, die bonding step. [Prior Art] In the manufacturing step of the semiconductor device, a step of cutting (cutting) the semiconductor wafer into semiconductor wafer units, a step of picking up the separated semiconductor wafer, and further bonding the picked wafer to the lead frame and the package are performed. A die bonding (mounting) step of a substrate or the like. In recent years, as a tape for wafer processing used in the manufacturing process of the above-described semiconductor device, for example, a tape for wafer processing having an adhesive layer provided on a base film has been proposed, and a laminate is further laminated on the adhesive layer. A wafer processing tape (die bond film: DDF) having a structure of a drug layer is used (see, for example, Patent Document 1). However, since the contact time of the above-mentioned die-bonding film between the adhesive layer and the adhesive layer from manufacture to use is inevitably extended, the two layers have been fused before use, and the singulated adhesive layer is picked up. In the step of the semiconductor wafer, there is a problem that it cannot be smoothly peeled off between the adhesive layer and the adhesive layer. Therefore, as a tape for wafer processing for solving such a problem, a tape for wafer processing is known which has an iodine value of a radiation-polymerizable compound having a carbon-carbon double bond constituting an adhesive layer. The glass transition temperature (Tg) of the epoxy group-containing acrylic copolymer constituting the adhesive layer is defined. -5-201139600 The semiconductor wafer with the adhesive layer can be easily peeled off from the adhesive layer (see, for example, Patent Document 2). [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2005-303275. The iodine value of the radiation-polymerizable compound having a carbon-carbon double bond constituting the adhesive layer is reduced in adhesion after radiation irradiation, and the glass transition temperature (Tg) of the epoxy group-containing acrylic copolymer is specified. The adhesive strength of the adhesive layer or the wafer processing tape in the B-stage state is reduced. That is, the adhesive layer and the adhesive layer are each improved so as to be easily peeled off. However, the relationship between the adhesive layer and the adhesive layer is not considered, and by the combination, the ease of peeling is insufficient, and the semiconductor wafer with the adhesive layer (hereinafter referred to as a semiconductor wafer) cannot be removed from the wafer. The problem of the adhesive layer of the processing tape being properly picked up. In addition, at the time of picking up, in order to facilitate the peeling between the adhesive layer and the adhesive layer, the force and the jacking height of the semiconductor wafer from the lower side of the wafer processing tape by the pin are increased. Large, however, in recent years, semiconductor wafers have a tendency to become thinner. In the case where the semiconductor wafer is thinned, if the jacking force is increased, there is also a problem that the wafer is broken. Therefore, the present invention has been made in order to solve the above problems, and its object is to provide a tape for wafer processing which is improved in peeling by the adhesion between the adhesive layer and the adhesive layer, thereby improving the picking step. The pick-up success rate of the semiconductor wafer in the middle, and at the same time, it is possible to prevent breakage of the thin semiconductor wafer due to an increase in the jacking force and the jack-up height of the pin. [Means for Solving the Problem] The present inventors have actively studied the above-mentioned problems, and as a result, found that in the wafer processing tape in which the base film, the adhesive layer, and the adhesive layer are sequentially formed, 80 The adhesive strength of the adhesive layer at °C is set to A, and when the adhesive force of the adhesive layer at 80 °C is set to B, it is set to 0.9 (N) and 6.0S (A/). B) <7.0 The wafer processing tape can facilitate the peeling between the adhesive layer and the adhesive layer, and the pick-up success rate of the semiconductor wafer in the pick-up step is improved, and it is found that the thin semiconductor wafer having low strength can also be obtained. The pickup was carried out without damage, thereby completing the present invention. That is, the first aspect of the present invention provides a tape for wafer processing, which is formed with a base film, an adhesive layer, and an adhesive layer in this order, wherein the adhesive of the adhesive layer at 80 ° C is used. When the adhesive force is set to A and the adhesive force of the above-mentioned adhesive layer at 80 ° C is set to B, Β^0·9 (Ν), and 6.0 < ( Α / Β ) 幺 7.0. By using the tape for wafer processing of the present invention, peeling between the adhesive layer and the adhesive layer becomes easy, and in the picking up step, the semiconductor wafer can be easily picked up from the adhesive layer of the wafer processing tape. . Therefore, the pick-up success rate of the semiconductor wafer can be improved as compared with the prior art. Further, in the case of a thin semiconductor wafer, the semiconductor wafer can be picked up without increasing the jacking force of the pin and the jacking height of 201139600. Therefore, the semiconductor wafer can be picked up without breaking the semiconductor wafer having low strength. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Fig. 1 is a cross-sectional view showing a wafer processing tape 10 according to an embodiment. The wafer processing tape 10 has an adhesive film 12 composed of a film-form base film and an adhesive layer 12b formed thereon, and an adhesive layer 13 laminated on the adhesive film 12. Thereby, the base film 12a, the adhesive layer 12b, and the adhesive layer 13 are sequentially formed on the wafer processing tape 10. Further, the adhesive layer 12 2 may be composed of a layer of an adhesive layer or may be composed of an adhesive layer in which two or more adhesive layers are laminated. Further, in Fig. 1, a state in which the release liner 11 is provided on the wafer processing tape 10 in order to protect the adhesive layer 13 is shown. The adhesive film 12 and the adhesive layer 13 may also be previously cut into a specific shape (pre-cut) according to the use procedure or apparatus. The wafer processing tape 1 of the present invention includes a form in which each of the semiconductor wafers is cut and a long film in which a plurality of the single semiconductor wafers are formed are wound on a roll. Hereinafter, the wafer of the present embodiment is used. Each component of the processing tape 1 〇 will be described in detail. (Binder layer) The adhesive layer 13 is attached to the semiconductor wafer 2 after picking up the semiconductor wafer 2 at -8 - 201139600 after the semiconductor wafer 1 or the like is bonded and diced, and is attached to the semiconductor wafer 2 An adhesive when the semiconductor wafer 2 is fixed on a substrate or a lead frame. Therefore, the adhesive layer 13 has peelability which can be peeled off from the adhesive film 12 in a state in which it can be adhered to the singulated semiconductor wafer 2 in the pick-up step, and is used in the die bonding step. The bonding reliability of the semiconductor wafer 2 is fixed to the substrate or the lead frame. The adhesive layer 13 is an adhesive layer obtained by previously thinning the adhesive agent. For example, a known polyimine resin, a polyamide resin, a polyether quinone resin, or a polyfluorene for use as an adhesive can be used. Amine imine resin, polyester resin, polyester phthalimide resin, phenoxy resin, polyfluorene resin, polyether oxime resin, polyphenylene sulfide resin, polyether ketone resin, chlorinated polypropylene resin, acrylic resin, A polyurethane resin, an epoxy resin, a polypropylene decylamine resin, a melamine resin or the like or a mixture thereof. Further, in order to enhance the adhesion to the wafer and the lead frame, it is desirable to add a decane coupling agent or a titanium coupling agent as an additive to the above materials and mixtures thereof. The thickness of the subsequent agent layer 13 is not particularly limited, but is usually preferably about 5 to 100 μm. Further, the adhesive layer 13 may be laminated on the entire surface of the adhesive layer 1 2 b of the adhesive film 12, or may be previously cut into an adhesive layer corresponding to the shape (pre-cut) of the bonded semiconductor wafer 1. Laminated on a portion of the adhesive layer 12b. When the adhesive layer 13 cut into the shape corresponding to the semiconductor wafer 1 is laminated, as shown in FIG. 2, the adhesive layer 13 is provided in the part where the semiconductor wafer 1 is bonded, and the dicing is used for bonding. The portion of the annular frame 2 has no adhesive layer 13 and only the adhesive layer 9 - 201139600 12b of the adhesive film 12 is present. In general, the adhesive layer 13 is difficult to peel off from the adherend, so that by using the pre-cut adhesive layer 13, it is possible to obtain a film in which the ring frame 20 can be attached to the adhesive film 12, and after use. When peeling off, the effect of the residual paste is less likely to occur on the ring frame 20. (Adhesive film) The adhesive film 12 has a sufficient adhesive force for not peeling off the semiconductor wafer 1 when the semiconductor wafer 1 is diced, and can be easily removed from the adhesive layer 1 after picking up the semiconductor wafer 2 after dicing. 3 peeling low adhesion. In the present embodiment, as shown in Fig. 1, the adhesive film 12 is an adhesive film in which an adhesive layer 12b is provided on a base film 12a. The base film 12a as the adhesive film 12 can be used without any particular limitation as long as it is a conventionally known base film. However, as will be described later, in the present embodiment, radiation curing in an energy curable material is used. The material is used as the adhesive layer i 2b, and therefore, a substrate film having radiation transmittance is used. For example, as a material of the base film 丨 2a, polyethylene, polypropylene, ethylene-propylene copolymer, polybutene _, poly-4 methyl pentyl ether ethylene-vinyl acetate copolymer, ethylene- a homopolymer or copolymer of an acrylate copolymer, an acrylic acid-acrylic acid copolymer, an ethylene-propionic acid copolymer, an ionomer, or the like, or a mixture thereof: polyamine vinegar, benzene I A thermoplastic elastomer such as a fr (tetra) polymer or a pentylene copolymer, a polyamine or a polyol complex, and the like. In addition, the base film ι may be a base material which is obtained by mixing two or more kinds of materials selected from the above-mentioned materials, such as a thin film, and may be a single-layer or multi-layered base film. . The thickness of the base film 1 2a is not particularly limited and may be appropriately set, but is preferably 50 to 200 μm. In the present embodiment, the adhesive film 12 b is cured by irradiating the adhesive film 12 with radiation such as ultraviolet rays. The adhesive layer 12b is easily peeled off from the adhesive layer 13, and therefore, for the resin in the adhesive layer 12b, a known chlorinated polypropylene resin, acrylic resin, polyester resin, polyurethane which is preferably used in the adhesive is preferred. Resin, epoxy resin, addition reaction type organic polyoxyalkylene resin, hydrazine acrylate resin 'ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-acrylic acid An adhesive is prepared by appropriately blending a radiation-polymerizable compound with various elastomers such as a copolymer, a polyisoprene or a styrene-butadiene copolymer or a hydrogenated product thereof, or a mixture thereof. In addition, various surfactants or surface smoothing agents may be added. The thickness of the adhesive layer 1 2 b is not particularly limited and may be appropriately set, but is preferably 5 to 30 μm. The radiation polymerizable compound can be, for example, a low molecular weight compound having at least two photopolymerizable carbon-carbon double bonds in a molecule which can be three-dimensionally networked by light irradiation, and a photopolymerizable carbon·carbon double in the substituent. A polymer or oligomer of a bond group. Specifically, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoacrylate, etc., hydrazine acrylate, etc., acrylic acid or a copolymer of various acrylates. -11 - 201139600 Further, in addition to the above acrylate compound, an amine ester acrylate oligomer is also used. The urethane acrylate oligomer is a hydroxy acrylate or methacrylate (for example, 2-hydroxy acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-propyl hydroxypropyl acrylate) 'Polyethylene glycol acrylate 'polyethylene glycol methacrylic acid) is obtained by reacting with a terminal isocyanate amine ester prepolymer which is a polyester type or a polyether type Polyol compounded polyisocyanate compound (for example, 2,4-toluene diisocyanate, 2: phenyl diisocyanate, 1,3-benzenedimethyl diisocyanate, iota-4-phenyl diisocyanate, diphenylmethane 4 , 4-diisocyanate, etc.). Further, the adhesive layer 12b may be a mixture of the above resins selected from the above resins. Further, the resin of the adhesive layer 12b may be prepared by appropriately mixing an acryl-based adhesive, a photopolymerization initiator, a solid, etc., in addition to the radiation-polymerizable compound which cures the adhesive layer 12b by irradiating a line to the adhesive film 12. Adhesive layer 12b. When a photopolymerization initiator is used, for example, benzoin cumene isobutyric acid, benzophenone, michelone, chlorothioxanthone, decyl thioxanthone dimethyl thioxanthone, Diethyl thioxanthone, benzyl dimethyl ketone, α-hydroxycyclohexyl phenyl ketone, 2-hydroxymethyl phenyl propane, etc. The wafer processing tape 1 of the present embodiment has the following surface area feature. When the adhesive strength of the adhesive layer 13 at 80 ° C is Α and the adhesive force of the adhesive layer 12 b is set to B, the B is satisfied. <〇.91 It is possible to obtain two types of radiation from the terminal foreign material such as ethyl acrylate and 6-methyl group, and the ether and dialkyl group are reduced to 80 ° C : N) -12- 201139600 and 6.0S (A/B) S 7.0. In order to reduce the adhesive strength at 80 ° C of the adhesive layer 2b and the adhesive layer 13, a low boiling point solvent of 50 ° C or more and 100 ° C or less is preferably used. The solvent having a boiling point of 50 ° C or higher and 1 ° C or lower is preferably ethyl acetate or methyl ethyl ketone (MEK), and may be used in the form of a monomer or a mixture. When a solvent having a high boiling point of 100 ° C or more and 200 ° C or less is used, it is preferred to set the residual concentration to 1% or less. Further, in order to reduce the adhesive strength at 80 ° C of the adhesive layer 12 b, the amount of the photoinitiator is preferably increased, and it is preferably set to 1 to 20 parts by mass based on 100 parts by mass of the polymer, and is preferably set. It is 2 to 15 parts by mass. Further, it is also effective to increase the glass transition temperature (Tg) of the polymer constituting the adhesive layer. The glass transition temperature (Tg) is preferably from -40 to -7 (TC, more preferably from _5 〇 to -60 ° C. Further, in terms of reducing the adhesive strength at 80 ° C of the adhesive layer 12 b, The content of the curing agent is preferably 0.01 to 0.5 parts by mass, more preferably the content of the curing agent is 0.01 to 0.02 parts by mass based on the polymer copolymer. Further, in order to reduce the adhesive strength at the time of 801 of the adhesive layer 13, it is preferable to increase the content of the dip, preferably from 5 to 100 parts by mass, more preferably from 10 to 50 parts by mass, per 100 parts by mass of the polymer. In order to reduce the adhesive strength of the adhesive layer 13 at 80 ° C, the content of the curing agent is preferably increased, and the curing agent is preferably 50 to 200 parts by mass, more preferably 70% by mass based on 100 parts by mass of the epoxy resin. The epoxy equivalent of the epoxy resin constituting the adhesive layer is preferably from 10 g/eq to 400 g/eq, more preferably from 200 to 300 g/eq, in order to improve the adhesive layer 12b and then 80 of the agent layer 13 (in the case of the adhesiveness of -13-201139600), the reverse of the above may be performed. (Method of using a tape for wafer processing) In a semiconductor device In the manufacturing step, the wafer processing tape 10 is used as follows. In Fig. 2, the semiconductor wafer 1 and the ring frame 20 are bonded to the wafer processing tape 10. First, as shown in Fig. 2, The adhesive layer 12b of the adhesive film 12 is adhered to the ring frame 20, and the semiconductor wafer 1 is bonded to the adhesive layer 13. The order of bonding is not limited, and the semiconductor wafer 1 and the adhesive layer 13 can be bonded together. Thereafter, the adhesive layer 12b of the adhesive film 12 is adhered to the ring frame 20. Further, the adhesion of the adhesive film 12 to the ring frame 20 and the bonding of the semiconductor wafer 1 to the adhesive layer 13 can be simultaneously performed. Next, a dicing step (FIG. 3) of the semiconductor wafer 1 is performed, followed by a step of irradiating the adhesive film 12 with an energy ray, such as ultraviolet ray. Specifically, in order to diced the semiconductor wafer 1 and the adhesive layer 1 with the dicing blade 21. 3. The wafer processing tape 10 is suction-supported from the lower surface side of the adhesive film 12 by the adsorption stage 22. Next, the semiconductor wafer 1 and the adhesive layer 13 are cut into two unit semiconductor wafers by the dicing blade 2 1 . Uniform, then, stick The lower surface side of the film 12 is irradiated with an energy ray. By the irradiation of the energy ray, the adhesive layer 12b is cured to lower the adhesive force. Further, instead of the energy ray, the external stimuli such as heating can be used for adhesion. The adhesive force of the adhesive layer 12b of the film 12 is lowered. When the adhesive layer 12b is formed by laminating two or more adhesive layers, one or all layers in each adhesive layer can be irradiated by energy rays. Curing reduces the adhesion of one or all of the layers in each of the adhesive-14-201139600 layers. Thereafter, as shown in Fig. 4, an expanding step of stretching the adhesive film 12 of the cut semiconductor wafer 2 and the adhesive layer 13 in the circumferential direction of the ring frame 20 is carried out. Specifically, the adhesive film 12 in a state in which the plurality of semiconductor wafers 2 and the adhesive layer 13 are cut is held, and the hollow cylindrical shape ejecting member 30 is lifted from the lower surface side of the adhesive film 12 to adhere the film. 12 is stretched in the circumferential direction of the ring frame 20. By expanding the interval between the semiconductor wafers 2 by the expansion step, the identification of the semiconductor wafer 2 by the CCD camera or the like is improved, and at the same time, the semiconductor wafer generated by the contact of the adjacent semiconductor wafers 2 at the time of pickup can be prevented. 2 follow each other. After the expansion step is carried out, as shown in Fig. 5, the pickup step of picking up the semiconductor wafer 2 is carried out while keeping the adhesive film 12 expanded. Specifically, the semiconductor wafer 2 is ejected by the pin 3 1 from the lower surface side of the adhesive sheet 12, and the semiconductor wafer 2 is adsorbed by the adsorption jig 3 2 from the upper surface side of the adhesive film 12. The sliced semiconductor wafer 2 is picked up together with the adhesive layer 13. Next, after performing the picking step, a die bonding step is performed. Specifically, 'the semiconductor wafer 2 is attached to the lead frame or the package substrate and the like by the adhesive layer 13 picked up together with the semiconductor wafer 2 in the pickup step. (Embodiment) Next, an embodiment of the present invention will be described. However, the invention is not limited to the embodiments. First, after the base film 12a and the adhesive layer compositions 1A to 1G of -15 to 201139600 shown in Table 1 below are prepared, the adhesive layer compositions 1A to 1G are applied to the substrate to adhere them. The adhesive 1" to 1G was dried to a thickness of ΙΟμιη' and dried at 110 ° C to form an adhesive film 12. Next, the subsequent materials 2 A to 2H shown in Table 2 below were prepared, and the substrate 2 Α 2 Η was applied onto the release substrate 11 made of a release-treated thickness of 2 5 μπι diethylene glycol. After the adhesive layer composition 2Α-2Η was dried, 40 μm, and dried at 110 ° C for 3 minutes, the top layer 13 was peeled off from the liner 11 . Next, after the adhesive film 12 and the adhesive layer 13 have the shape shown in FIG. 2, the adhesive layer 13 is laminated on the adhesive film 12 to form the first embodiment shown in Table 3 below. Comparative Examples 1 to 9 are shown. (Substrate film 12a) As the film-form base film 12a, polypropylene having a thickness of 1 μm!! elastomer (modulation of the adhesive layer composition) is used as the adhesive layer composition 1 Α~1 G, The composition of the adhesive layer is prepared by the combination of the components of the following Table i. The film 12a S is composed of a minute, and the thickness of the polyparaphenylene agent layer composed of the composition layer is made to be cut into a side such as 1 2 b. And each of the following shows added -16-201139600 [Table 1] Adhesive layer composition 1A 1B 1C 1D 1E 1F Polymer copolymer (1) 33 33 33 33 ---- 33 Polymer copolymer (2 33 ---- Curing agent 0.5 0.5 0.5 0.5 0.5 0.2 Photopolymerization initiator 3 3 3 1 4 —— 3 Solvent (1) 80 Solvent (1) 80 80 80 80 —— 80 <Adhesive Layer Composition 1 A> As shown in Table 1, the adhesive composition 1A was 33 parts by mass of the polymer copolymer (1), 0.5 parts by mass of a curing agent (isocyanate), and a photopolymerization initiator (1). 3 parts by mass of a hydroxy-cyclohexyl-phenyl-one), and a composition in which the solvent (i) was 80 parts by mass and mixed. Further, the polymer copolymer (top) is a copolymer of ethylhexyl acrylate and 2-hydroxyalkyl acrylate having a radiation-curable carbon-carbon double bond functional group, and the glass transition temperature (Tg) is - 5 3 °C. Further, the solvent (1) is toluene. <Adhesive Layer Composition 1 B > As shown in Table 1, the adhesive composition 1B was 33 parts by mass of the added polymer copolymer (1), and a curing agent (isocyanate compound) 〇 5 parts by mass of photopolymerization. A compound (1-hydroxy-cyclohexyl phenyl-one) was added in an amount of 3 parts by mass of a solvent (2) in an amount of 80 parts by mass. Further, the solvent (2) was ethyl acetate. <Adhesive Layer Composition 1 C > -17- 201139600 As shown in Table 1, the adhesive composition 1 C is 33 parts by mass of a polymer copolymer (2), and 0.5 parts by mass of a curing agent (isocyanate compound). A composition obtained by mixing 3 parts by mass of a photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone) and 80 parts by mass of a solvent (2). Further, the polymer copolymer (2) is a copolymer of 2-ethylhexyl acrylate and 2-hydroxyalkyl acrylate having a functional group of a radiation-curable carbon-carbon double bond, and the glass transition temperature (T g ) ) is -7 2 °C » <Adhesive Layer Composition 1D> As shown in Table 1, the adhesive composition 1D is 33 parts by mass of a polymer copolymer (1), a curing agent (isocyanate compound), 0.5 parts by mass, and a photopolymerization initiator (1). A composition obtained by mixing 1 part by mass of a solvent of (hydroxy)-cyclohexyl-phenyl-one) and 80 parts by mass of a solvent (2). <Adhesive Layer Composition 1E> As shown in Table 1, the adhesive composition 1 E is a polymer copolymer (33 parts by mass, a curing agent (isocyanate compound) 0-5 parts by mass, and a photopolymerization initiator (1) A composition obtained by mixing 4 parts by mass of a hydroxy-cyclohexyl-phenyl-one) and 80 parts by mass of a solvent (2). <Adhesive Layer Composition Adhesive Composition 1 F As shown in Table 1, 33 parts by mass of the polymer copolymer (1), 0.2 parts by mass of a curing agent (isocyanate compound), and a photopolymerization initiator (1-hydroxyl group) - cyclohexyl-phenyl-ketone) 3 parts by mass, dissolved -18-. 201139600 (2) 80 parts by mass and mixed. <Adhesive Layer Composition 1G> As shown in Table 1, 33 parts by mass of the polymer copolymer (2), a curing agent (isocyanate), 5 parts by mass, and a photopolymerization initiator were added. A composition obtained by mixing 3 parts by mass of (1-hydroxy-cyclohexyl-phenyl-ketone) and 80 parts by mass of a solvent (1). The adhesive layer compositions 1A to 1G were applied to the base film 12a so that the dry film thickness was ΙΟμηη, and dried at 110 ° C for 3 minutes to prepare an adhesive film 12 . As the adhesive layer compositions 2A to 2, the adhesive layer composition was prepared by blending the respective components shown in Table 2 below. [Table 2] Next layer composition 2Α 2Β 2C 2D 2Ε 2F 2G 2Η Acrylic resin (1) 16 16 16 19 16 Acrylic resin (2) 16 16 19 Epoxy resin 4 4 4 4 1 4 4 1 Dip 2 2 2 1 2 3 2 2 Curing agent 4 4 4 4 4 4 4 4 Curing accelerator 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Solvent (1) 80 80 80 Solvent (2) 80 80 80 80 80 <Binder layer composition 2Α> 4 parts by mass of epoxy resin, decane coupling agent (γ-mercaptopropyltrimethoxydecane), 2 parts by mass of dilute solvent, (2) 80 parts by mass, and [S] -19 - 201139600 The mixture was stirred and mixed and further kneaded for 90 minutes using a bead mill. Then, 16 parts by mass of the acrylic acid (1), 4 parts by mass of the curing agent, and 0.2 parts by mass of the curing accelerator were stirred and mixed, and vacuum degassed to obtain an adhesive layer composition 2A. The epoxy resin is a biphenyl type epoxy resin (epoxy equivalent 265, molecular weight 1 200, softening point 63 ° C). The dip is a ceria material having an average particle diameter of 16 nm. Further, the solvent (2) is a mixture of methyl ethyl ketone (MEK) and ethyl acetate. The acrylic resin (1) had a weight average molecular weight (Mw) of 80,000 and a glass transition temperature (Tg) of 17 °C. As a curing agent, a commercially available .DICY15 (Japanese epoxy resin) was used as a curing accelerator, and a commercially available Curesol 2PZ (Shikoku Chemical Co., Ltd.) was used. <Binder Layer Composition 2B> As shown in Table 2, 16 parts by mass of the acrylic resin (1), 4 parts by mass of the epoxy resin, 2 parts by mass of the dip, 4 parts by mass of the curing agent, and a curing accelerator 0·2 were used. In the same manner as the adhesive layer composition 2A, the adhesive layer composition 2B was obtained in an amount of 80 parts by mass of the solvent (1). The solvent (1) is a mixture of toluene and cyclohexanone. <Binder layer composition 2C> As shown in Table 2, 16 parts by mass of the acrylic resin (2), 4 parts by mass of the epoxy resin, 2 parts by mass of the coating material, 4 parts by mass of the curing agent, and a curing accelerator 〇· 2 were used. In the same manner as the adhesive layer composition 2 A, the adhesive layer composition 2C was obtained in an amount of 80 parts by mass of the solvent (2). The acrylic resin (2) -20- 201139600 has a weight average molecular weight (Mw) of 850,000 and a glass transition temperature (Tg) of -15. (:. <Adhesive layer composition 2D> As shown in Table 2, 16 parts by mass of the acrylic resin (1), 4 parts by mass of the epoxy resin, 1 part by mass of the tantalum, 4 parts by mass of the curing agent, and 0.2 part by mass of the curing accelerator were used. 80 parts by mass of the solvent (2), the adhesive layer composition 2 D was obtained in the same manner as the adhesive layer composition 2 A. <Adhesive layer composition 2E> As shown in Table 2, 19 parts by mass of the acrylic resin (1), 1 part by mass of the epoxy resin, 2 parts by mass of the coating material, 4 parts by mass of the curing agent, and a curing accelerator 〇.2 were used. In the same manner as the adhesive layer composition 2 A, the adhesive layer composition 2 E was obtained in an amount of 80 parts by mass of the solvent (2). <Binder layer composition 2F> As shown in Table 2, 16 parts by mass of the acrylic resin (1), 4 parts by mass of the epoxy resin, 3 parts by mass of the tantalum, 4 parts by mass of the curing agent, and a curing accelerator 〇.2 were used. In the same manner as the adhesive layer composition 2 A, the adhesive layer composition 2 F was obtained in an amount of 80 parts by mass of the solvent (2). <Binder layer composition 2 G > As shown in Table 2, 16 parts by mass of the acrylic resin (2), 4 parts by mass of the epoxy resin, 2 parts by mass of the tantalum, 4 parts by mass of the curing agent, and a curing accelerator 21 were used. - 201139600 Ingredient 0.2 parts by mass, Solvent (1) 80 parts by mass 'Binder layer composition 2G was obtained in the same manner as the adhesive layer composition 2A. <Adhesive layer composition 2H> As shown in Table 2, 19 parts by mass of the acrylic resin (2), 1 part by mass of the epoxy resin, 2 parts by mass of the dip, 4 parts by mass of the curing agent, and 0.2 part by mass of the curing accelerator were used. 80 parts by mass of the solvent (1), the adhesive layer composition 2H was obtained in the same manner as the adhesive layer composition 2A. The above-mentioned adhesive layer compositions 2A to 2H were coated on a release-treated polyethylene terephthalate (PET) film having a thickness of 25 μm, and dried by heating to form a B-stage state having a film thickness of 4 μm. The film was applied to make a film. The prepared adhesive film 12 and the subsequent film were respectively cut into circular shapes of 370 mm and 320 mm in diameter, and the adhesive layer i2b of the adhesive film 12 and the adhesive layer 13 adhering to the film were bonded. Finally, the PET film of the subsequent film was peeled off from the adhesive layer 13, and the wafers 10' for wafer processing of Examples 1-3 shown in Table 3 below and the wafer of Comparative Example 9 shown in Table 4 below were obtained. Processing tape. -22- 201139600 [Table 3] Example 1 Example 2 Example 3 Adhesive layer composition 1B 1E 1F Adhesive layer composition 2A 2A 2F Adhesive layer 8 (TC adhesiveness A (Ν) 3.651 3.651 3.584 Adhesive strength at 80 ° C for adhesive layer B (N) 0.531 0.556 0.584 8 〇 ° C to obtain adhesive ratio (A / B) 6.9 6.5 6.1 Pickup success rate (%) 100 100 100 [Table 4] Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Adhesive Layer Composition 1A 1B 1C 1B 1B 1B 1D 1G 1G Substrate Layer Composition 2A 2B 2A 2C 2D 2E 2A 2G 2H The adhesive layer at 80 ° C gives a tacky force A (N) 3.651 3.967 3.651 3.896 3.772 4.093 3.651 5.624 6.295 Adhesive layer B at 80 ° C B (N) 0.864 0.531 0.618 0.531 0.531 0.531 0.851 0.908 0.908 Adhesive strength ratio (A/B) at 80 °C 4.2 7.5 5.9 7.3 7.1 7.7 4.3 6.2 6.9 Pickup success rate (%) 32 28 81 22 76 9 28 0 0 Table 3 shows the composition implementation The combination of the adhesive layer composition of the wafer processing tape 1 and the adhesive layer composition of Examples 1 to 3, and _, each of Examples 1 to 3 is shown. Adhesive force A (N) at 80 ° C of the agent layer 13 , adhesive force B ( N ) at 80 ° C of the adhesive layer 12 b, adhesive layer 13 and adhesive layer at 80 ° C The adhesive strength ratio (A/B) of 1 2b and the pick-up success rate (%). In addition, the pick-up height of the pickup pin was 450 μm. Table 4 shows the adhesives of the wafer processing tapes constituting Comparative Examples 1 to 9. a combination of a layer composition and an adhesive layer composition. Further, 'the adhesive strength A (N) at 80 ° C of the adhesive layer 13 of each comparative example [ -23- 201139600 1 to 7 and the adhesive layer 12b are shown. The adhesive force B(N) at 80 eC, the adhesive force ratio (A/B) of the adhesive layer 13 and the adhesive layer 12b at 80 °C, and the pick-up success rate (%). The jacking height is 450 μm. <Measurement of Adhesive Strength> The adhesive tape 12 of each of the wafer processing tapes 10 of Examples 1 to 3 and the respective wafer processing tapes of Comparative Examples 1 to 9 was maintained at 80 ° C, and Based on JIS Z 023 7 , the adhesive strength of the adhesive layer 12 b was measured using a RHESCA adhesive strength tester. The adhesive film of each of the wafer processing tapes 1 to 3 of Examples 1 to 3 and the respective wafer processing tapes of Comparative Examples 1 to 9 was maintained at 80 ° C, and JIS Z 0237 was used as a reference, and RHESCA system was used. The adhesive force tester measures the adhesive force of the adhesive layer 13. <Measurement of Pickup Success Rate> The wafer (semiconductor wafer) 1 having a thickness of ΙΟΟμπι was heat-bonded to each of the wafer processing tapes 1 of Examples 1 to 3 at 70 ° C for 10 seconds and compared. Each of the wafer processing tapes of Examples 1 to 9 was then 'cut into a semiconductor wafer 2 of 10 mm x 1 Omm. Thereafter, the adhesive layer is applied by an air-cooled high-pressure mercury lamp (80 W/cm, irradiation distance i 〇 cm)! 2b irradiates ultraviolet rays at 200 J/cm2. Then, 50 semiconductor wafers 2 located in the center portion of the wafer (semiconductor wafer) 1 are picked up by a die bonding apparatus (manufactured by NEC Machinery, trade name CPS-100FM) to obtain a pickup-24. 201139600 Success rate, evaluation of its results. Further, the wafer from which the adhesive layer 1 2b was peeled off from the adhesive layer 12b and held by the adhesive layer 13 was picked up as a successfully picked wafer, and the picking success rate was calculated. In the first embodiment, the adhesive strength at 80 ° C (hereinafter referred to as the adhesive force B) of the adhesive layer 12b is 0.531 of the range of the above-mentioned 〇·9 (Ν) of the predetermined adhesive force B ( Ν), and the adhesive strength of the adhesive layer 13 at 80 ° C (hereinafter referred to as adhesive force A) and the adhesive force of the adhesive layer 12b at 80 ° C (adhesive force B) The force ratio (A/B) is 6.9 in the range of 6.0 or more and 7.0 or less of the predetermined adhesive strength ratio (A/B). Therefore, the pick-up success rate is 100%. In the second embodiment, the adhesive force B is 0.5 66 (N ) in the range of 0.9 (N) or less of the predetermined adhesive force B, and the adhesive force ratio (A/B) is a predetermined adhesive ratio (A/). B) is 6.5 in the range of 6.0 or more and 7.0 or less, and therefore, the picking success rate is 1%. In the third embodiment, the adhesive force B is 〇_5 84 ( N ) in the range of 0.9 ( N ) or less of the predetermined adhesive force B, and the adhesive force ratio (A/B ) is a predetermined adhesive ratio ( A/B) is 6.1 in the range of 6.0 or more and 7.0 or less, and therefore, the picking success rate is 100%. In Comparative Example 1, the adhesive force B is 0.8 64 (N) of the range of the above 〇.9 (N) which is the predetermined adhesive force B, but the adhesive strength ratio (A/B) is a predetermined adhesive force. The ratio of the lower limit of the range of 6.0 or more and 7.0 or less of (A/B) is 4.2, so that the pick-up success rate is reduced to 32%. In Comparative Example 2, the adhesive force B is 0.531 (N) in the range of the above 〇.9 (N) which is the predetermined adhesive force B, but the expansion adhesive ratio (A/B) is a ratio of -25 to 201139600. The upper limit of the range of the viscosity ratio (A/B) of 6.0 or more and 7.0 or less is 7.5%, so that the pick-up success rate is reduced to 28%. In Comparative Example 3, the adhesive force B is 〇·618 ( N ) in the range of 0.9 ( N ) or less of the predetermined adhesive force B, but the adhesive force ratio (A/B ) is a ratio of the predetermined adhesive force ( The lower limit 値 of the range of 6.0 or more and 7_0 or less of A/B above is 5.9 ', so the pick-up success rate is reduced to 81%. In Comparative Example 4, the adhesive force B was 0.531 (N) in the range of 0.9 (N) or less of the predetermined adhesive force B, but the adhesive force ratio (A/B) was a ratio of the specified adhesive force (A/). In B), the upper limit of the range of 6.0 or more and 7.0 or less is 7.3, and the pick-up success rate is reduced to 22%. In Comparative Example 5, the adhesive force B was 0.531 (N) in the range of 0.9 (N) or less of the predetermined adhesive force B, but the adhesive force ratio (A/B) was a ratio of the specified adhesive force (A/). The upper limit of the above range of 6_0 or more and 7.〇 below B) is 7.1, so the pick-up success rate is reduced to 7 6%. In Comparative Example 6, the adhesive force B was 0.531 (N) in the range of 0.9 (N) or less of the predetermined adhesive force B, but the adhesive ratio (A/B) was a ratio of the specified adhesive force (A/). The upper limit of the above range of 6.0 or more and 7.0 or less of B) is 7.7, so that the pick-up success rate is reduced to 9%. In Comparative Example 7, the adhesive force B was 0.851 (N) in the range of 0.9 (N) or less of the predetermined adhesive force B, but the adhesive ratio (A/B) was a ratio of the specified adhesive force (A/). In B), the lower limit of the range of 6.0 or more and 7·〇 or less is 4·3, and therefore the pick-up success rate is reduced to 28%. In Comparative Example 8, the adhesive strength ratio (Α/Β) was 6.2 in the range of 6.0 or more and 7.0 or less of the predetermined adhesive strength ratio (Α/Β), but the adhesive force Β -26 - 201139600 was a ratio. The upper limit of the range of 0.9 (N) or less of the adhesive force B is 0.908 (N), and therefore, the pick-up success rate is reduced to 0%. In Comparative Example 9, the adhesive strength ratio (A/B) was 6.9 in the range of 6.0 or more and 7.0 or less of the predetermined adhesive strength ratio (A/B), but the adhesive force B was a predetermined adhesive force B. The upper limit of the range below 〇.9(N) is 〇·9 0 8 (N), and therefore, the pick-up success rate is reduced to 〇%. In the wafer processing tape 1 of the present embodiment, the adhesive strength of the adhesive layer 13 at 80 ° C is set to A, and the adhesive force of the adhesive layer 12b at 8 (the B is set to B). When satisfied, BS0.9CN), and 6.0S (A/B) < 7_0. The adhesive force B of the adhesive layer 12b at 80 ° C is 0.9 (N) or less, and the adhesive force A at 80 ° C of the adhesive layer 13 and the adhesive strength at 80 ° C of the adhesive layer 12 b. When the ratio (A/B) of the adhesive force of B is in the range of 6.0 or more and 7.0 or less, peeling between the adhesive layer 12b and the adhesive layer 13 becomes easy. As described above, the semiconductor wafer 2 in a state in which the adhesive layer 13 is adhered can be easily picked up from the adhesive layer 1 2b of the wafer processing tape 10 in the pickup step. Therefore, the pickup success rate of the semiconductor wafer 2 in a state in which the adhesive layer 13 is adhered can be improved as compared with the related art. Further, even in the case of the thin semiconductor wafer 2, since the peeling between the adhesive layer 12b and the adhesive layer 13 is easy, the semiconductor wafer 2 can be picked up without increasing the jacking force and the jacking height of the pin. Therefore, the semiconductor wafer 2 having low strength can be picked up without damage. -27-201139600 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a tape for wafer processing according to an embodiment of the present invention, and Fig. 2 is a view FIG. 3 is a view for explaining a cutting step; FIG. 4 is a view for explaining a step of expanding; FIG. 5 is a view for explaining a picking step; Description of component symbols: 1 : Semiconductor wafer 2 : Semiconductor wafer 10 : Wafer processing tape 12a : Substrate film 1 2 b : Adhesive layer 12 : Adhesive film 1 3 : Adhesive layer 20 : Ring frame 2 1 : Cutting knife 2 2 : adsorption stage 3 0 : ejection member 31 : pin 3 2 : adsorption fixture -28-

Claims (1)

.201139600 七、申請專利範圍: 1. 一種晶圓加工用膠帶,其係依次形成有基材薄膜、 黏著劑層和接著劑層的晶圓加工用膠帶,其特徵爲 在將80t時的前述接著劑層的膠黏力設爲A、將80 °C時的前述黏著劑層的膠黏力設爲B時,BS 0.9N,且 6.0 < A/B < 7.0。.201139600 VII. Patent Application Range: 1. A wafer processing tape, which is a wafer processing tape in which a base film, an adhesive layer and an adhesive layer are sequentially formed, which is characterized by the above-mentioned 80 t The adhesive strength of the agent layer was set to A, and when the adhesive force of the above-mentioned adhesive layer at 80 °C was B, BS 0.9N, and 6.0 < A/B < 7.0. -29--29-
TW99114662A 2010-05-07 2010-05-07 Wafer processing tape TWI431092B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99114662A TWI431092B (en) 2010-05-07 2010-05-07 Wafer processing tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99114662A TWI431092B (en) 2010-05-07 2010-05-07 Wafer processing tape

Publications (2)

Publication Number Publication Date
TW201139600A true TW201139600A (en) 2011-11-16
TWI431092B TWI431092B (en) 2014-03-21

Family

ID=46760094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99114662A TWI431092B (en) 2010-05-07 2010-05-07 Wafer processing tape

Country Status (1)

Country Link
TW (1) TWI431092B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645466B (en) * 2012-11-07 2018-12-21 Semiconductor Components Industries L.L.C. Semiconductor die singulation method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645466B (en) * 2012-11-07 2018-12-21 Semiconductor Components Industries L.L.C. Semiconductor die singulation method and apparatus

Also Published As

Publication number Publication date
TWI431092B (en) 2014-03-21

Similar Documents

Publication Publication Date Title
TWI428419B (en) Cut crystal sticky film
TWI443726B (en) Dicing/die bond film
TWI432548B (en) Tape of holding chip, method for holding chip-shaped work, method of semiconductor appratus for using tape of holding chip, method of fabricating tape for holding chip
TW201215655A (en) Dicing-diebonding film, method for producing dicing-diebonding film, and method for producing semiconductor device
TW201137069A (en) Dicing and die-bonding film
TW201145378A (en) Method for processing wafer
TW201448066A (en) Reinforcing sheet and process for producing semiconductor device through secondary mounting
JP2007109808A (en) Adhesive tape for semiconductor wafer dicing die bond
JP4630377B2 (en) Manufacturing method of semiconductor device
TW201510162A (en) Die bond film with dicing tape and production method of semiconductor device
JP6574787B2 (en) Sheet laminate for resin film formation
JP5184409B2 (en) Wafer processing tape
JP5583080B2 (en) Wafer processing tape and semiconductor processing method using the same
JP2003096412A (en) Adhesive sheet for dicing of semiconductor part and method for producing semiconductor part
JP5911284B2 (en) LAMINATED SHEET AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING LAMINATED SHEET
TWI363869B (en)
JP4785095B2 (en) Wafer processing tape
TW201139600A (en) Tape for wafer processing
TW201134907A (en) Tape for wafer processing
JP4999117B2 (en) Wafer processing tape
JP5566749B2 (en) Wafer processing tape
JP5578911B2 (en) Wafer processing tape
JP2010251480A (en) Method of manufacturing semiconductor device and tape for wafer processing
WO2023281996A1 (en) Adhesive tape
JP2014192463A (en) Resin film formation sheet