TW201137062A - Photosensitive ink compositions and transparent conductors and method of using the same - Google Patents

Photosensitive ink compositions and transparent conductors and method of using the same Download PDF

Info

Publication number
TW201137062A
TW201137062A TW100104169A TW100104169A TW201137062A TW 201137062 A TW201137062 A TW 201137062A TW 100104169 A TW100104169 A TW 100104169A TW 100104169 A TW100104169 A TW 100104169A TW 201137062 A TW201137062 A TW 201137062A
Authority
TW
Taiwan
Prior art keywords
film
ink composition
conductive
region
photosensitive compound
Prior art date
Application number
TW100104169A
Other languages
Chinese (zh)
Other versions
TWI563042B (en
Inventor
Pierre-Marc Allemand
Original Assignee
Cambrios Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2011/023732 external-priority patent/WO2011097470A2/en
Application filed by Cambrios Technologies Corp filed Critical Cambrios Technologies Corp
Publication of TW201137062A publication Critical patent/TW201137062A/en
Application granted granted Critical
Publication of TWI563042B publication Critical patent/TWI563042B/en

Links

Abstract

This disclosure is related to photosensitive ink compositions comprising conductive nanostructures and a photosensitive compound, and method of using the same.

Description

201137062 六、發明說明: 【發明所屬之技術領域】 本揭示内容係關於包含導電奈米結構之感光性墨水組合 物、以及其使用或圖案化之方法。 本申請案根據35 U.S.C. § 119(e)主張於2010年2月5曰申 β月之美國臨時申請案第61/3 02,013號、於2011年2月4曰申 請之美國專利申請案第13/〇21,274號及於2011年2月4申請 之國際申請案第pCT/US2〇11/23732號的權利,該等申請案 之全文以引用方式併入本文中。 【先前技術】 透明導體係光學透明且導電的膜。其廣泛用於顯示器、 觸摸面板、光伏打(PV)、各種類型的電子紙張、靜電屏 蔽、加熱或抗反射塗層(例如’窗)等領域中。多種技術已 製造基於一或多種導電介質(例如金屬奈米結構、透明導 電氧化物(例如,經由溶膠-凝膠法)、導電聚合物及/或碳 奈米管)之透明導體。 為製備基於奈米結構之導電膜,將墨水組合物(其係導 電奈米結構於懸浮流體中之懸浮液)沈積於透明基板上。 一般而言,透明導體進一步包括上面沈積或塗佈有導電膜 之透明基板。 可端視最終用途形成具有預定電及光學性質、以及預定 圖案之透明導體。業内需要直接圖案化基於奈米結構之導 電膜。 【發明内容】 153948.doc 201137062 本文閱述適用於形成基於奈米結構之導電膜之感光性墨 水組合物、以及其直接光圖案化之方法。 一個實施例提供墨水組合物,其包含:複數個導電奈米 結構;黏合材料;感光性化合物;及極性溶劑。在更特定 實施例中,可交聯聚合物係聚乙烯吡咯啶酮或經基丙基甲 基纖維素。 又一實施例提供方法,其包含:將墨水組合物沈積於基 板上’其中該墨水組合物包含複數個導電奈米結構可交 聯聚合物、光起始劑及極性溶劑;藉由去除極性溶劑以形 成互連奈米線薄膜;及將該薄膜之一部分暴露於uv光源 以使該薄膜暴露部分中之可交聯聚合物交聯。 另一實施例提供導電膜,其包含:複數個互連導電奈米 結構,黏合材料,其中該等互連導電奈米結構係嵌入該黏 合材料中;及感光性化合物。 再-實施例提供方法,其包含:藉由將墨水組合物沈積 於基板上以在該基板上形成互連導電奈米結構薄膜,其中 該墨水組合物包含複數個導電奈米結構、黏合劑材料、可 熱活化感光性化合物及極性溶劑;及去除該極性溶劑;在 該薄膜上放置遮罩’其中該遮罩包括開口並將該薄膜界定 為遮蓋區域及未遮蓋區域,該未遮蓋區域對應於該開口; 在第一溫度下經由該遮罩之該開口使該薄膜暴露於。、光 源以使該未遮蓋區域中之該感光性化合物發生光降解;及 在黑暗甲在第二溫度下將該薄膜暴露於熱源以使該遮蓋區 域中之該感光性化合物發生熱降解。 153948.doc -4- 201137062 【實施方式】 在圖式中’相同的參考編號標記相似的元件或行為。圖 式中元件之大小及相對位置未必按比例繪出。舉例而令, 各種元件之形狀及角度未按比例繪出,且該等元件中之一 些係任意擴大及放置以改良圖式之清晰度。此外,圖式中 所繪元件之特定形狀非欲表達任何關於特定元件實際形狀 之資訊’且僅為易於識別而選擇。 在各實施例中,纟文所料明導體係由冑電奈米結構之 液體懸浮液(其亦稱為「墨水組合物」或「墨水」)澆注而 成的薄膜。除導電奈米結構以外,墨水組合物亦包含黏合 劑材料(例如,可交聯聚合物)、感光性化合物(例如,光起 始劑)及極性溶劑。如本文所進一步詳細闡述,墨水組合 物及由其形成之透明導體(導電膜)因存在感光性化合物而 具有感光性,感光性化合物吸收光子並經歷化學或物理轉 化。可端視墨水及所得透明導體中感光性化合物之類型採 用各種方法使光學圖像在透明導體中顯影。 奈米結構 本文所用「導電奈米結構」或「奈米結構」通常係指奈 米級導電結構,其至少一個尺寸(即,寬度或直徑)小於5〇〇 nm ’更通常’小於1〇〇 nm或50 nm。在各實施例中,奈米 結構之寬度或直徑在以下範圍内:10 nm至40 nm、20 nm 至 40 nm、5 nm至 20 nm、10 nm至 30 nm、40 nm至 60 nm、 50 nm至 70 nm ° 縱向地,奈米結構之長度超過500 nm、或超過i 、或 153948.doc 201137062 超過10 μιη。在各管她Λ,丄 例中’奈米結構之長度在5 口111至3〇 μιη範圍内、或在以下益 . 範圍内:15 μηι至 50 μιη、25 μιη至 75 μΠ1 3〇 叫至60 μΐΏ、40 帅至8〇 μη、或 50 jum至 100 μιη。 不米、’、°構可為任1狀或幾何形狀ms奈米結構 —個方式_助其「縱橫比」,其係'指奈米結 構之長度與寬度(或直徑)之比率。在某些實施例中,奈米 結構係以各向同性方 注万式成型(即,縱橫比=1)。典型各向同 性或實質上各向同性之奈米結構包括奈米粒子。在較佳實 施例中’奈米結構係以各向異性方式成型(即,縱橫比^ 1)。各向異性奈米結構沿其長度方向通常具有縱向軸。實 例性各向異性奈米結構包括奈米線(縱橫比為至少⑺且更 通常為至少50之固體奈米結構)、奈米棒(縱橫比小於狀 固體奈米結構)及奈米管(中空奈米結構)。 奈米結構可為任-導電材料。更通常,纟米結構係由金 屬材料形成,金屬材料包括元素金屬(例如,過渡金屬)或 金屬化合物(例如,金屬氧化物p金屬材料亦可為雙金屬 材料或金屬合金,金屬合金包含兩種或更多種類型的金 屬。適宜之金屬包括但不限於銀、金、銅、鎳、鍍金之 銀、翻及纪。 在各實施例中,奈米結構係銀奈米線。 在其他實施例中,奈米結構係金奈米管。 在其他實施例中,奈米結構係鍍金之銀奈米線。 可根據(例如)共同待決及共同擁有申請案美國申請案第 11/766,552號、第 1 1/504822 號及第 12/1062446 號(全部歸屬 153948.doc 201137062 於Cambrios Technologies公司名下)中所述方法來製備適用 於形成本文所述墨水組合物之奈米結構,該等申請案之全 文以引用方式併入本文中。 在其他實施例中,墨水組合物中之奈米結構具有預定大 小分佈,其中整個群體中之某一百分比(例如,超過9〇〇/〇) 之奈米結構處於大小(長度及/或寬度)限值内。關於在給定 總數奈米結構中控制大小分佈之更詳細說明可見於共同待 決及共同擁有申請案美國專利申請案第13/〇〇7,3〇5號(歸屬 於Cambrios Technologies公司名下)中,該申請案之全文以 引用方式併入本文中。 在各實施例中,奈米結構係以約〇1_〇5%卜~)、〇5_ 1% (w/w)、1-5〇/〇 (w/w)或 5_10%(w/w)存於墨水組合物中。 較佳地,奈米結構係以約U (w/w)、1% (〜~)或1〇% (w/w)存於墨水組合物中。 黏合材料 除奈米結構以外’墨水組合物進一步包含黏合材料其 通常可溶於或可溶混於極性溶劑(墨水組合物之主要组份) 中。在由墨水組合物形成之導電膜中,黏合材料用於使奈 米結構黏合在-起並促進奈米結構黏著至基板。在各實施 例中’給定黏合材料之物理特徵可f彡料電狀黏度、内 聚性及黏著性。在某些情形(例如,圖案化)下,導電膜中 之黏合材料(亦稱為「黏合劑) 」)了進一步經歷物理或化學 轉化(例如固化或交聯)》201137062 VI. Description of the Invention: [Technical Field of the Invention] The present disclosure relates to a photosensitive ink composition comprising a conductive nanostructure, and a method of using or patterning the same. This application is based on 35 USC § 119(e) claims US Patent Application No. 61/3 02,013, filed on February 5, 2010, and US Patent Application No. 13/ filed on February 4, 2011 </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Prior Art] A transparent conductive system is an optically transparent and electrically conductive film. It is widely used in the fields of displays, touch panels, photovoltaic (PV), various types of electronic paper, electrostatic shielding, heating or anti-reflective coatings (e.g., 'windows'). A variety of techniques have been made to produce transparent conductors based on one or more conductive media (e.g., metal nanostructures, transparent conductive oxides (e.g., via sol-gel processes), conductive polymers, and/or carbon nanotubes). To prepare a conductive film based on a nanostructure, an ink composition which is a suspension of a conductive nanostructure in a suspension fluid is deposited on a transparent substrate. In general, the transparent conductor further includes a transparent substrate on which a conductive film is deposited or coated. The transparent conductor can have a predetermined electrical and optical properties, as well as a predetermined pattern, depending on the end use. There is a need in the industry to directly pattern conductive films based on nanostructures. SUMMARY OF THE INVENTION A photosensitive ink composition suitable for forming a conductive film based on a nanostructure and a method of direct photo patterning thereof are described herein. One embodiment provides an ink composition comprising: a plurality of conductive nanostructures; an adhesive material; a photosensitive compound; and a polar solvent. In a more specific embodiment, the crosslinkable polymer is polyvinylpyrrolidone or propylpropylmethylcellulose. Yet another embodiment provides a method comprising: depositing an ink composition on a substrate, wherein the ink composition comprises a plurality of conductive nanostructure crosslinkable polymers, a photoinitiator, and a polar solvent; by removing a polar solvent Forming an interconnected nanowire film; and exposing a portion of the film to a uv source to crosslink the crosslinkable polymer in the exposed portion of the film. Another embodiment provides a conductive film comprising: a plurality of interconnected conductive nanostructures, an adhesive material, wherein the interconnected conductive nanostructures are embedded in the adhesive; and a photosensitive compound. Further, the embodiment provides a method comprising: forming an interconnected conductive nanostructure film on the substrate by depositing an ink composition on the substrate, wherein the ink composition comprises a plurality of conductive nanostructures, a binder material a heat-activatable photosensitive compound and a polar solvent; and removing the polar solvent; placing a mask on the film, wherein the mask includes an opening and defining the film as a covered area and an uncovered area, the uncovered area corresponding to The opening; exposing the film to the opening through the opening at a first temperature. And a light source for photodegrading the photosensitive compound in the uncovered region; and exposing the film to a heat source at a second temperature in darkness to thermally degrade the photosensitive compound in the masking region. 153948.doc -4- 201137062 [Embodiment] In the drawings, the same reference numerals are used to identify similar elements or acts. The size and relative position of the elements in the drawings are not necessarily to scale. For example, the shapes and angles of the various elements are not drawn to scale, and some of the elements are arbitrarily expanded and placed to improve the clarity of the drawings. In addition, the particular shapes of the elements depicted in the figures are not intended to convey any information about the actual shape of the particular element. In each of the examples, a thin film made of a liquid suspension of a neodymium nanostructure (also referred to as "ink composition" or "ink") was prepared. In addition to the conductive nanostructure, the ink composition also contains a binder material (e.g., a crosslinkable polymer), a photosensitive compound (e.g., a photoinitiator), and a polar solvent. As explained in further detail herein, the ink composition and the transparent conductor (conductive film) formed therefrom are photosensitive due to the presence of a photosensitive compound which absorbs photons and undergoes chemical or physical conversion. The optical image can be developed in a transparent conductor by various methods depending on the type of photosensitive compound in the ink and the resulting transparent conductor. Nanostructures As used herein, "conductive nanostructure" or "nanostructure" generally refers to a nanoscale conductive structure having at least one dimension (ie, width or diameter) less than 5 〇〇 nm 'more typically 'less than 1 〇〇 Nm or 50 nm. In various embodiments, the width or diameter of the nanostructure is in the range of 10 nm to 40 nm, 20 nm to 40 nm, 5 nm to 20 nm, 10 nm to 30 nm, 40 nm to 60 nm, 50 nm. To 70 nm ° longitudinally, the length of the nanostructure exceeds 500 nm, or exceeds i, or 153948.doc 201137062 exceeds 10 μιη. In each tube, in the case, the length of the 'nano structure is in the range of 5 to 111 to 3 〇 μηη, or in the following range: 15 μηι to 50 μηη, 25 μιη to 75 μΠ1 3 〇 to 60 μΐΏ, 40 handsome to 8〇μη, or 50 jum to 100 μιη. The non-meter, ', ° structure can be any shape or geometry of the ms nanostructure - a way to help its "aspect ratio", which is the ratio of the length to the width (or diameter) of the nanostructure. In some embodiments, the nanostructures are formed in an isotropic manner (i.e., aspect ratio = 1). Typical isotropic or substantially isotropic nanostructures include nanoparticles. In a preferred embodiment the 'nanostructures are formed in an anisotropic manner (i.e., aspect ratio ^1). Anisotropic nanostructures typically have a longitudinal axis along their length. Exemplary anisotropic nanostructures include nanowires (solid nanostructures having an aspect ratio of at least (7) and more typically at least 50), nanorods (having an aspect ratio smaller than a solid nanostructure), and nanotubes (hollow) Nano structure). The nanostructure can be any-conductive material. More generally, the glutinous rice structure is formed of a metal material including an elemental metal (for example, a transition metal) or a metal compound (for example, the metal oxide p metal material may also be a bimetal material or a metal alloy, and the metal alloy includes two types. More or more types of metals. Suitable metals include, but are not limited to, silver, gold, copper, nickel, gold-plated silver, and gyro. In various embodiments, the nanostructures are silver nanowires. In the other embodiments, the nanostructures are gold-plated silver nanowires. According to, for example, co-pending and co-owned application US Application No. 11/766,552, Processes suitable for forming the ink compositions described herein by the methods described in Nos. 1 1/504,822 and 12/1062446, all to 153, 948, doc, 2011, 370, PCT under the name of Cambrios Technologies, the applications The entire disclosure is incorporated herein by reference. In other embodiments, the nanostructures in the ink composition have a predetermined size distribution with a percentage of the entire population For example, a nanostructure of more than 9 〇〇/〇) is within the size (length and/or width) limits. A more detailed description of the control of the size distribution in a given total nanostructure can be found in co-pending and co-ownership. The application is filed in U.S. Patent Application Serial No. 13/J. No. No. No. No. No. No. No. No. No. No. No. No. No. No. Nos. It is stored in the ink composition at about 〇1_〇5% ~~), 〇5_1% (w/w), 1-5 〇/〇 (w/w) or 5-10% (w/w). Preferably, the nanostructure is present in the ink composition at about U (w/w), 1% (~~) or 1% (w/w). Adhesive material In addition to the nanostructure, the 'ink composition further comprises a binder which is generally soluble or miscible in a polar solvent (the main component of the ink composition). In the conductive film formed of the ink composition, the adhesive material serves to adhere the nanostructure and promote adhesion of the nanostructure to the substrate. In each of the examples, the physical characteristics of a given adhesive material can be used to determine the electrical viscosity, cohesiveness, and adhesion. In some cases (e.g., patterning), the bonding material (also referred to as "binder") in the conductive film undergoes further physical or chemical conversion (e.g., curing or crosslinking).

在某些實施例中,黏合材料在 A 何枓係可交聯聚合物。本文所用 153948.doc 201137062 可交聯聚合物」或「聚合物」係指在感光性化合物(例 如,光起始劑)存在下並響應在紫外(UV)範圍(1〇 4〇〇 nm) 或可見範圍(400-750 nm)内之光輻照而在兩個或更多個聚 合物键之間形成化學鍵的實質上線性聚合物。 根據各實施例,可交聯聚合物可溶於或可溶混於墨水組 合物中且部分充當黏度調節劑,其調節墨水黏度及其中奈 米結構之可分散性。 聚合物之線性聚合物鏈可在光輻照下交聯。在某些實施 例中’光輻照使得感光性化合物(例如,光起始劑)釋放高 反應性物質(例如,基團、陽離子或陰離子)。由初始光輻 照產生之反應性物質引發在聚合物键中形成反應性物質, 因而形成橋接或交聯兩種或更多種聚合物鍵之化學鍵。含 有諸如羥基、羰基、羧基及烯烴基團等化學部分之聚合物 鍵具有感光性’此乃因該等基團易於發生或可使其相鄰原 子(例如,碳)易於發生自由基反應。 端視可交聯聚合物之特定化學結構而定,交聯製程導致 形成至少一種類型的化學鍵,即共價鍵、離子鍵或氫鍵。 可交聯聚合物之特定化學結構進一步影響交聯度,即,所 形成橋接聚合物鍵之鍵之數量。 父聯製程通常促成可交聯聚合物性質之改良。因此,韓 照後,可交聯聚合物轉化為交聯聚合物,其性質與可交聯 聚合物之性質不同。值得注意的是,交聯聚合物失去原始 線性聚合物鍵之全部或部分撓性。另外,交聯聚合物實質 上比線性可交聯聚合物更不易溶於給定溶劑。可能與線性 153948.doc 201137062 聚合物之性質不同的可交聯聚合物之其他性質包括(例如) 增加之黏度及黏著性。 在某些實施例中,適宜之可交聯聚合物可為含羥基或含 敌基之纖維素聚合物,例如經基丙基甲基纖維素 (HPMC)、羥基丙基曱基纖維素鄰苯二甲酸酯、羥基丙基 纖維素(HPC)、羥基丁基曱基纖維素、乙基羥基乙基纖維 素、缓曱基-經基乙基纖維素鈉及羧曱基乙基纖維素。 在其他實施例中,適宜之可交聯聚合物可為親水性聚合 物,其包括但不限於,聚乙烯醇(PVA)、聚乙烯。比咯啶酮 (PVP)、聚丙烯醯胺、聚丙烯酸酯、聚環氧乙烷、聚乙烯 亞胺'陰離子型及陽離子型聚電解質(即,帶電水溶性聚 合物’例如聚丙烯酸之鈉鹽)、及聚(2-乙基·2·噁唑琳)。 在較佳實施例中,可交聯聚合物係PVP。通常,ρνρ之 分子量係在50,000道爾頓至2,000,000道爾頓範圍内。適用 於本文所述墨水組合物之PVP包括(例如)LUVITEC® Κ,其 係購自BASF(德國)。 在又一較佳實施例中,可交聯聚合物係HPMC。通常, HPMC之分子量在120,〇〇〇道爾頓範圍内。適用於本文所述 墨水組合物之HPMC包括(例如)METHOCEL 311®,其購自 Dow Chemicals,且可視情況根據共同待決及共同擁有美 國專利申請案第12/773,734號中所述方法實施純化,該申 請案之全文以引用方式併入本文中。 應瞭解,可交聯聚合物可能在一個條件下能夠交聯,但 在另一條件下不能交聯》 153948.doc 201137062 在各實施例中,可交聯聚合物係以約〇,^ (w/w)、 0.5-1% (w/w)、(w/w)或 5-1〇% (w/w)存於墨水組合物 中。較佳地,可交聯聚合物係以約(M (w/w)、(w/w)或 1 〇% (w/w)存於墨水組合物中。 感光性化合物 本文所用「感光性化合物」係指在吸收光(在uv範圍或 可見範圍内)後經歷快速光反應以產生高反應性物質(例如 自由基及帶電物質(陽離子或陰離子))的化合物。通常,感 光性化合物含有一或多個光不穩定鍵,其在暴露於uv_vis 光時具有高反應性或不穩定。另外,適用於本文所述墨水 組合物之感光性化合物可溶於或可溶混於墨水組合物中, 即,如本文所述’其可溶於極性溶劑中。 在某些實施例中,感光性化合物亦稱為「光起始劑」, 此乃因其產生能夠引發在黏合劑材料(例如,可交聯聚合 物)中進一步形成反應性物質以在聚合物鏈中形成化學鍵 的反應性物質。因此,感光性透明導體可以與光阻圖案化 類似之方式圖案化。舉例而言,暴露於光轄照之透明導體 區域中之黏合劑材料(例如,可交聯聚合物)形成交聯聚合 物;而非暴露區域中之黏合劑材料可與嵌入其中之奈米線 -起去除。因此’可使光輻照後透料體中之潛像在溶液 相中顯影以獲得其中奈米結構嵌入交聯聚合物中之導電區 域及不含奈米結構之不導電區域。 適宜之光起始劑包括(例如)W0 2007/044184中所述之水 溶性甲酸苯甲醯基苯基醋化合物,該參考文獻之全文以引 153948.doc •10· 201137062 用方式併入本文中。 其他適宜之光起始劑包括偶氮型水溶性光起始劑,其包 括彼等賭自Wako Pure Chemical Industry有限公司(日本) 者。一個實例係4,4’-二疊氮基-2,2,-二苯乙烯二磺酸二鈉 鹽° 較佳光起始劑係IRGACURE® 754,即,氧基-苯基-乙酸 2-[2-侧氧基-2-苯基-乙醯氧基-乙氧基]_乙基酯(cibaIn certain embodiments, the bonding material is a crosslinkable polymer in the A. As used herein, 153948.doc 201137062 crosslinkable polymer" or "polymer" means in the presence of a photosensitive compound (eg, a photoinitiator) and in response to the ultraviolet (UV) range (1〇4〇〇nm) or A substantially linear polymer that forms a chemical bond between two or more polymer bonds in the visible range (400-750 nm). According to various embodiments, the crosslinkable polymer is soluble or miscible in the ink composition and partially acts as a viscosity modifier which adjusts the ink viscosity and the dispersibility of the mid-nanostructure. The linear polymer chains of the polymer can be crosslinked under light irradiation. In certain embodiments &lt;photoirradiation causes a photosensitive compound (e.g., a photoinitiator) to release a highly reactive species (e.g., a group, a cation, or an anion). The reactive species produced by the initial light irradiation initiate the formation of reactive species in the polymer bonds, thus forming chemical bonds that bridge or crosslink two or more polymer bonds. Polymer bonds containing a chemical moiety such as a hydroxyl group, a carbonyl group, a carboxyl group, and an olefin group are photosensitive. This is because such groups are liable to occur or their neighboring atoms (e.g., carbon) are susceptible to radical reactions. Depending on the particular chemical structure of the crosslinkable polymer, the cross-linking process results in the formation of at least one type of chemical bond, i.e., a covalent bond, an ionic bond, or a hydrogen bond. The particular chemical structure of the crosslinkable polymer further affects the degree of crosslinking, i.e., the number of bonds that form the bridging polymer bonds. The parent-linked process generally contributes to an improvement in the properties of the crosslinkable polymer. Therefore, after the Korean photo, the crosslinkable polymer is converted into a crosslinked polymer having a property different from that of the crosslinkable polymer. It is worth noting that the crosslinked polymer loses all or part of the flexibility of the original linear polymer bond. Additionally, crosslinked polymers are substantially less soluble in a given solvent than linear crosslinkable polymers. Other properties of the crosslinkable polymer that may differ from the properties of the linear 153948.doc 201137062 polymer include, for example, increased viscosity and adhesion. In certain embodiments, a suitable crosslinkable polymer can be a hydroxyl-containing or an ester-containing cellulosic polymer, such as propylpropylmethylcellulose (HPMC), hydroxypropyl fluorenyl cellulose ortho-benzene. Dicarboxylate, hydroxypropylcellulose (HPC), hydroxybutylmercaptocellulose, ethylhydroxyethylcellulose, decyl-perylethylcellulose sodium and carboxymethylidenecellulose. In other embodiments, suitable crosslinkable polymers can be hydrophilic polymers including, but not limited to, polyvinyl alcohol (PVA), polyethylene. Pyrrolidone (PVP), polyacrylamide, polyacrylate, polyethylene oxide, polyethyleneimine 'anionic and cationic polyelectrolytes (ie, charged water-soluble polymers such as sodium polyacrylate) ), and poly (2-ethyl·2·oxazole). In a preferred embodiment, the crosslinkable polymer is PVP. Typically, the molecular weight of ρνρ is in the range of 50,000 Daltons to 2,000,000 Daltons. PVP suitable for use in the ink compositions described herein include, for example, LUVITEC®®, which is commercially available from BASF (Germany). In yet another preferred embodiment, the crosslinkable polymer is HPMC. Typically, HPMC has a molecular weight in the range of 120, in the range of 〇〇〇Dalton. HPMC suitable for use in the ink compositions described herein include, for example, METHOCEL 311®, available from Dow Chemicals, and may be purified as described in the co-pending and co-owned U.S. Patent Application Serial No. 12/773,734, The entire disclosure of this application is hereby incorporated by reference. It will be appreciated that crosslinkable polymers may be crosslinkable under one condition, but not crosslink under another condition. 153948.doc 201137062 In various embodiments, the crosslinkable polymer is about 〇, ^ (w /w), 0.5-1% (w/w), (w/w) or 5-1% by weight (w/w) is present in the ink composition. Preferably, the crosslinkable polymer is present in the ink composition at about (M (w/w), (w/w) or 1% (w/w). Photosensitive compound "Photosensitive compound" as used herein. "A compound that undergoes a rapid photoreaction after absorption of light (in the uv range or visible range) to produce highly reactive species such as free radicals and charged species (cations or anions). Typically, the photosensitive compound contains one or a plurality of photolabile bonds which are highly reactive or unstable upon exposure to uv_vis light. Additionally, photosensitive compounds suitable for use in the ink compositions described herein are soluble or miscible in the ink composition, ie As described herein, it is soluble in a polar solvent. In certain embodiments, the photosensitive compound is also referred to as a "photoinitiator" because its production can be initiated in a binder material (eg, can be cross-linked) A reactive material is further formed in the polymer) to form a chemical bond in the polymer chain. Therefore, the photosensitive transparent conductor can be patterned in a manner similar to photoresist patterning. For example, exposure to light through The binder material in the conductor region (for example, a crosslinkable polymer) forms a crosslinked polymer; the binder material in the non-exposed region can be removed from the nanowire embedded therein. The latent image in the transparent body is developed in the solution phase to obtain a conductive region in which the nanostructure is embedded in the crosslinked polymer and a non-conductive region containing no nanostructure. Suitable photoinitiators include, for example, The water-soluble benzhydryl phenyl vinegar compound described in WO 2007/044184, the entire disclosure of which is hereby incorporated herein by reference in its entirety in its entirety herein in Nitrogen-type water-soluble photoinitiators, including those gambling from Wako Pure Chemical Industry Co., Ltd. (Japan). One example is 4,4'-diazido-2,2,-stilbene disulfonic acid. Disodium salt ° Preferred photoinitiator is IRGACURE® 754, ie, oxy-phenyl-acetic acid 2-[2-o-oxy-2-phenyl-ethyloxy-ethoxy]-ethyl Ester (ciba

Specialty Chemicals, NY, USA,BASF部門)。 在各實施例中’光起始劑係以約〇 〇〇5_〇 〇1〇/〇 (w/w)、 0.01-0.05% (w/w) ' 0.05-0.1% (w/w) ' 0.1-0.5% (w/w) ' 0.5-1% (w/w)存於墨水組合物中。較佳地,光起始劑係以 約0.01% (w/w)、0.1% (w/w)或1% (w/w)存於墨水組合物 中。 在其他實施例中,感光性化合物在第一溫度下經歷光降 解而對黏合劑材料或奈米結構無明顯影響。然而,可在第 一(更鬲)溫度下使此一感光性化合物發生熱降解,產生具 有腐姓性並損壞奈米結構之降解產物。 如本文所進一步詳細論述,可藉由依次暴露於光輻照及 ’、、、對包3可熱活化感光性化合物之透明導體實施圖案化。 因此,暴露於光輻照(例如,經由遮罩開口)之區域中之感 光性化合物發生降解或自毀,而不會影響黏合劑材料或奈 米線。在黑暗中實施後續熱處理時,先前遮蓋區域中之感 光性化合物被熱活化,藉此熱降解產物可有效蝕刻或以其 他方式損壞奈米線,導致遮蓋區域中之電阻較高。另一方 153948.doc 201137062 面’由於初始光輻照已破壞未遮蓋區域中之任一可熱活化 感光性化合物,故其中之電阻仍不受影響。 在各實施例中,可熱活化感光性化合物包括陽離子型感 光性化合物或陰離子型感光性化合物。具體而言,陽離子 型感光性化合物包括光酸產生劑,其通常與化學增幅型光 阻聯 〇 使用。Moon S.Y.等人,Journal of PolymerSpecialty Chemicals, NY, USA, BASF Division). In each of the examples, the photoinitiator is about 〇〇5_〇〇1〇/〇(w/w), 0.01-0.05% (w/w) '0.05-0.1% (w/w) ' 0.1-0.5% (w/w) '0.5-1% (w/w) is stored in the ink composition. Preferably, the photoinitiator is present in the ink composition at about 0.01% (w/w), 0.1% (w/w) or 1% (w/w). In other embodiments, the photosensitive compound undergoes light degradation at the first temperature without significant effect on the binder material or nanostructure. However, this photosensitive compound can be thermally degraded at the first (and more) temperature to produce a degradation product having a rot property and damaging the nanostructure. As discussed in further detail herein, the transparent conductor of the thermally activatable photosensitive compound of the package 3 can be patterned by sequential exposure to light irradiation and &apos;. Thus, the photosensitive compound exposed to light irradiation (e.g., via the opening of the mask) degrades or self-destructs without affecting the binder material or the nanowire. When a subsequent heat treatment is carried out in the dark, the photosensitive compound in the previously covered region is thermally activated, whereby the thermal degradation product can effectively etch or otherwise damage the nanowire, resulting in a higher electrical resistance in the covered region. The other side is 153948.doc 201137062 Face's resistance is still unaffected because the initial light irradiation has destroyed any of the heat-activatable photosensitive compounds in the uncovered area. In each of the examples, the heat-activatable photosensitive compound includes a cationic photosensitive compound or an anionic photosensitive compound. Specifically, the cationic photosensitive compound includes a photoacid generator which is usually used in combination with a chemically amplified photoresist. Moon S.Y. et al., Journal of Polymer

Science : C部分:Photochemistry Reviews,(8): 157-173, (2007)。該等感光性化合物通常可溶於極性溶劑中並在光 輻照後降解為酸(陽離子)。所產生的酸通常無法充分轉化 而會損壞金屬奈米結構或導致黏合劑材料交聯。另一方 面,當在無光輻照加熱時,本揭示内容之光酸產生劑降解 成能夠損壞金屬奈米結構之腐蝕性降解產物,因而降低個 別奈米結構之導電性以及奈米結構間之互連性。 貫例性陽離子型感光性化合物包括但不限於鏽鹽,例如 一方基鎖鹽、二方基銕鹽及二偶氮鑌鹽。Crivello J.V,, Journal of Polymer Science: Part A: Polymer Chemistry, (37): 4241-4254,(1999),該參考文獻之全文以引用方式併 入本文中。 二芳基錤鹽包含二芳基錤陽離子及抗衡離子。通常,二 芳基部分係二苯基、二萘基或苯基萘基,其中該等苯基或 萘基部分可視情況經烷基、芳基、豳素、烷氧基、幾基及 諸如此類取代。抗衡離子可為氣離子、硝酸根、四氟硼酸 根、六氟磷酸根、六氟砷酸根或六氟銻酸根。較佳光酸產 生劑係二苯基錤硝酸鹽(DPIN)。額外實例性二芳基鐄鹽包 153948.doc •12- 201137062 括(例如)雙(4-第三丁基苯基)錤對曱苯磺酸鹽、雙(4-第三 丁基苯基)鎭對曱苯磺酸鹽、雙(4-第三丁基苯基)錤三氟曱 磺酸鹽、雙(4-第三丁基苯基)錤全氟-1-丁烷磺酸鹽、雙(4-第三丁基苯基)錤三氟曱磺酸鹽、二苯基錤對甲苯磺酸鹽 及二苯基錤全氟-1-丁烷磺酸鹽。 三芳基疏鹽包含三芳基锍陽離子及抗衡離子。通常,三 芳基部分係三苯基、三萘基、二苯基萘基或苯基-二萘 基,其中該等苯基或萘基部分可視情況經烷基、芳基、鹵 素、烷氧基、羧基及諸如此類取代。抗衡離子可為氣離 子、硝酸根、四氟硼酸根、六氟磷酸根、六氟砷酸根或六 氟銻酸根。實例性三芳基銃鹽包括(例如)(4-溴苯基)二苯 基锍三氟曱磺酸鹽、(4-氯苯基)二苯基锍三氟曱磺酸鹽、 (4-氟苯基)二苯基銃三氟甲磺酸鹽、(4-碘苯基)二苯基鎳三 氟曱磺酸鹽、(4-甲氧基苯基)二苯基锍三氟曱磺酸鹽、(4-甲基苯基)二苯基銕三氟甲磺酸鹽、(4-甲基硫苯基)甲基苯 基锍三氟曱磺酸鹽、(4-苯氧基苯基)二苯基銃三氟曱磺酸 鹽、(4-苯基硫苯基)二苯基銃三氟曱磺酸鹽、(4-第三丁基 苯基)二苯基锍三氟曱磺酸鹽、(第三丁氧基羰基曱氧基萘 基)-二苯基錡三氟甲磺酸鹽、1-萘基二苯基銕三氟曱磺酸 鹽、boc-曱氧基苯基二苯基鈑三氟曱磺酸鹽、三芳基銃六 氟銻酸鹽、三芳基疏六氟磷酸根、三苯基銃全氟-1-丁烷磺 酸鹽、三苯基锍三氟曱磺酸鹽、叁(4-第三丁基苯基)疏全 氟-1-丁烷磺酸鹽及叁(4-第三丁基苯基)锍三氟甲磺酸鹽。 除上文所述二芳基錤鹽及三芳基疏鹽以外,其他實例性 153948.doc -13- 201137062 陽離子型感光性化合物包括2-(4-甲氧基苯乙烯基)_4,6_雙 (三氣甲基)-1,3,5-三嗪、N-經基萘二曱酿亞胺三氟曱項酸 鹽及N-羥基-5-降冰片烯-2,3_二甲醯亞胺全氟-i_ 丁烷績酸 鹽。本文所述之所有陽離子型感光性化合物均可自Sigma_ Aldrich® (St. Louis,MO)購得。 極性溶劑 墨水組合物之主體係由極性溶劑組成,極性溶劑溶解墨 水成份並防止奈米結構聚集。本文所用「極性溶劑」係指 Snyder極性指數至少為4之流體。Snyder極性指數係溶劑與 各種極性測試溶質之間相互作用程度的相對量度(參見 Snyder L.R. 「Classification of the Solvent Properties of Common Liquids」,Journal of Chromatography Science, 16: 223,(1978),該參考文獻以引用方式併入本文中)。 在各實施例中,極性溶劑係質子溶劑,其係包含鍵結至 電負性原子(例如氧及氮)之氫原子的化合物。因此,質子 溶劑通常包括羥基及/或胺基。 在較佳實施例中’極性溶劑含有至少一個羥基。就此而 言’「單羥基極性溶劑」係指含有單個羥基之極性溶劑(如 本文所定義)’而「多羥基極性溶劑」係指含有至少兩個 羥基之極性溶劑(如本文所定義)(例如,二醇)。 在各實施例中,極性溶劑之沸點不超過250。(:,通常, 不超過200°C,更通常,不超過150。(:。 適宜之極性溶劑包括(例如)水、單羥基及多羥基醇,例 如甲醇、乙醇、正丙醇、丙烷-2-二醇及甘油、乙二醇、丙 153948.doc 201137062 二醇、丙烷-1,3-二醇、丁烷-1,4-二醇、2-丁烯-1,4-二醇及 諸如此類、或兩種或更多種該等二醇之混合物。 在某些實施例中,適宜之極性溶劑可為進一步經一或多 個醚部分改質之多元醇,其只要仍保留至少一個羥基即 可。該等極性溶劑包括丙二醇單曱基醚(PGME)、乙二醇 單甲基(EGME)、丙烧-1,3-二醇單曱基謎及諸如此類。 可選組份 除以使組份以外,墨水組合物可進一步包含可選組份, 其包括表面活性劑及一或多種共溶劑。 典型表面活性劑係(例如)乙氧基化物、烧氧基化物、環 氧乙烷及環氧丙烷及其共聚物、磺酸鹽、硫酸鹽、二磺酸 鹽、磺基琥珀酸鹽、磷酸酯及氟表面活性劑(例如, DuPont之Zonyl®)。在一個實施例中,表面活性劑係以墨 水組合物總重量的約〇.〇 1 %存在。 適宜表面活性劑之代表性實例包括氟表面活性劑,例如 ZONYL®表面活性劑,其包括ZONYL® FSN、ZONYL® FSO、ZONYL® FSA、ZONYL® FSH (DuPont Chemicals, Wilmington,DE)及NOVECTM (3M,St. Paul, MN)。其他實 例性表面活性劑包括基於烷基酚乙氧基化物之非離子型表 面活性劑。較佳表面活性劑包括(例如)辛基酚乙氧基化物 (例如TRITONTM(X-100、X-114、X-45))及壬基酚乙氧基化 物(例如 TERGITOLTM)(Dow Chemical公司,Midland MI)。 其他實例性非離子型表面活性劑包括基於乙炔系物之表面 活性劑’例如 DYNOL® (604, 607)(Air Products and 153948.doc -15- 201137062Science : Part C: Photochemistry Reviews, (8): 157-173, (2007). These photosensitive compounds are usually soluble in a polar solvent and decomposed into an acid (cation) after irradiation with light. The acid produced is generally not sufficiently converted to damage the metal nanostructure or cause crosslinking of the binder material. On the other hand, when heated in the absence of light irradiation, the photoacid generator of the present disclosure degrades into corrosive degradation products capable of damaging the metal nanostructure, thereby reducing the electrical conductivity of the individual nanostructures and the structure between the nanostructures. Interconnectivity. Peripheral cationic photosensitive compounds include, but are not limited to, rust salts such as a one-part lock salt, a two-partium sulfonium salt, and a diarsenazo salt. Crivello J.V,, Journal of Polymer Science: Part A: Polymer Chemistry, (37): 4241-4254, (1999), the entire contents of which is hereby incorporated by reference. The diarylsulfonium salt contains a diarylsulfonium cation and a counter ion. Typically, the diaryl moiety is diphenyl, dinaphthyl or phenylnaphthyl, wherein the phenyl or naphthyl moiety may be optionally substituted by alkyl, aryl, halogen, alkoxy, aryl and the like. . The counter ion can be a gas ion, a nitrate, a tetrafluoroborate, a hexafluorophosphate, a hexafluoroarsenate or a hexafluoroantimonate. A preferred photoacid generator is diphenylphosphonium nitrate (DPIN). Additional exemplary diarylsulfonium salt packs 153948.doc • 12- 201137062 includes, for example, bis(4-tert-butylphenyl)phosphonium terephthalate, bis(4-tert-butylphenyl)鎭p-toluenesulfonate, bis(4-t-butylphenyl)phosphonium trifluorosulfonate, bis(4-t-butylphenyl)phosphonium perfluoro-1-butanesulfonate, Bis(4-t-butylphenyl)phosphonium trifluorosulfonate, diphenylphosphonium p-toluenesulfonate and diphenylphosphonium perfluoro-1-butanesulfonate. The triarylsulfonium salt contains a triarylsulfonium cation and a counter ion. Typically, the triaryl moiety is triphenyl, trinaphthyl, diphenylnaphthyl or phenyl-dinaphthyl, wherein the phenyl or naphthyl moiety may optionally be alkyl, aryl, halo, alkoxy , carboxyl groups and the like. The counter ion can be a gas ion, a nitrate, a tetrafluoroborate, a hexafluorophosphate, a hexafluoroarsenate or a hexafluoroantimonate. Exemplary triarylsulfonium salts include, for example, (4-bromophenyl)diphenylphosphonium trifluorosulfonate, (4-chlorophenyl)diphenylphosphonium trifluorosulfonate, (4-fluoro) Phenyl)diphenylphosphonium trifluoromethanesulfonate, (4-iodophenyl)diphenylnickafluorotrifluorosulfonate, (4-methoxyphenyl)diphenylphosphonium trifluorosulfonate Salt, (4-methylphenyl)diphenylphosphonium trifluoromethanesulfonate, (4-methylthiophenyl)methylphenylphosphonium trifluorosulfonate, (4-phenoxyphenyl) Diphenylphosphonium trifluorosulfonate, (4-phenylthiophenyl)diphenylphosphonium trifluorosulfonate, (4-t-butylphenyl)diphenylsulfonium trifluorosulfonate Acid salt, (t-butoxycarbonyl decyloxynaphthyl)-diphenylfluorene trifluoromethanesulfonate, 1-naphthyldiphenylphosphonium trifluorosulfonate, boc-decyloxyphenyl Diphenylphosphonium trifluorosulfonate, triarylsulfonium hexafluoroantimonate, triarylsulfonium hexafluorophosphate, triphenylsulfonium perfluoro-1-butanesulfonate, triphenylsulfonium trifluoride Sulfonate, cerium (4-tert-butylphenyl), perfluoro-1-butane sulfonate and cerium (4-tert-butylphenyl) fluorene triflate . In addition to the above described diarylsulfonium salts and triarylsulfonates, other exemplary 153948.doc -13-201137062 cationic photosensitive compounds include 2-(4-methoxystyryl)-4,6-double (tri-gasmethyl)-1,3,5-triazine, N-trans-naphthalene diterpenic acid imine trifluoromethane hydrochloride and N-hydroxy-5-norbornene-2,3-dimethylhydrazine Imine perfluoro-i-butane acid salt. All of the cationic photosensitive compounds described herein are commercially available from Sigma Aldrich® (St. Louis, MO). Polar Solvent The main system of the ink composition consists of a polar solvent that dissolves the ink component and prevents the nanostructure from agglomerating. As used herein, "polar solvent" means a fluid having a Snyder polarity index of at least 4. The Snyder Polar Index is a relative measure of the degree of interaction between a solvent and various polar test solutes (see Snyder LR "Classification of the Solvent Properties of Common Liquids", Journal of Chromatography Science, 16: 223, (1978), which This is incorporated herein by reference. In each of the examples, the polar solvent is a protic solvent which is a compound containing a hydrogen atom bonded to an electronegative atom such as oxygen and nitrogen. Thus, protic solvents typically include hydroxyl and/or amine groups. In a preferred embodiment the 'polar solvent contains at least one hydroxyl group. In this context, 'a monohydroxy polar solvent' refers to a polar solvent containing a single hydroxyl group (as defined herein) and 'polyhydroxy polar solvent' refers to a polar solvent (as defined herein) containing at least two hydroxyl groups (eg, as defined herein) (eg, as defined herein) , diol). In various embodiments, the boiling point of the polar solvent does not exceed 250. (:, usually, does not exceed 200 ° C, more usually, does not exceed 150. (: Suitable polar solvents include, for example, water, mono- and polyhydric alcohols such as methanol, ethanol, n-propanol, propane-2 -diols and glycerol, ethylene glycol, propane 153948.doc 201137062 diol, propane-1,3-diol, butane-1,4-diol, 2-butene-1,4-diol and the like Or a mixture of two or more such diols. In certain embodiments, a suitable polar solvent may be a polyol further modified with one or more ether moieties, as long as at least one hydroxyl group remains. The polar solvents include propylene glycol monodecyl ether (PGME), ethylene glycol monomethyl (EGME), propane-1,3-diol monoterpene, and the like. Optional components divided by groups In addition, the ink composition may further comprise optional components comprising a surfactant and one or more co-solvents. Typical surfactants are, for example, ethoxylates, alkoxylates, ethylene oxide and rings. Oxypropane and its copolymers, sulfonates, sulfates, disulfonates, sulfosuccinates, phosphates and fluorine Surfactant (for example, Zonyl® from DuPont). In one embodiment, the surfactant is present in an amount of about 0.1% by weight based on the total weight of the ink composition. Representative examples of suitable surfactants include fluorosurfactants. For example, ZONYL® surfactants include ZONYL® FSN, ZONYL® FSO, ZONYL® FSA, ZONYL® FSH (DuPont Chemicals, Wilmington, DE) and NOVECTM (3M, St. Paul, MN). Other exemplary surface activities The agent includes a nonionic surfactant based on an alkylphenol ethoxylate. Preferred surfactants include, for example, octylphenol ethoxylates (eg, TRITONTM (X-100, X-114, X-45). And nonylphenol ethoxylates (eg TERGITOLTM) (Dow Chemical, Midland MI). Other exemplary nonionic surfactants include acetylene based surfactants such as DYNOL® (604, 607) ( Air Products and 153948.doc -15- 201137062

Chemicals公司,AUent〇Wn,pA)及正十二烷基p_D麥芽糖 苷。 共溶劑可為又一如本文所述極性溶劑。舉例而言,在各 實施例中,墨水組合物包含水及PGME二者或 甲醇。 墨水組合物 墨水組合物以預定比率組合本文所述組份,該預定比率 可視所用基板及沈積方法有所不同。 在各實施例中,可交聯聚合物與奈米結構(例如,金屬 奈米線)之比率較佳在約5至約0.000625範圍内,更通常為 約1 ;且光起始劑與可交聯聚合物之比率為約〇 〇1至〇1。 墨水組合物通常具有在1 (:|&gt;至1000 cP範圍内之黏度。較 佳黏度机圍係介於約1 cP與1 〇〇 cp之間(例如,對於旋塗而 言)。 在其他各實施例中’墨水組合物包含下列組份(以墨水 組合物總重量之重量百分比計): 金屬奈米線:0·1°/。至1%或1%至10% ; 黏合劑材料:〇·1°/❶至1%或1%至10% ; 感光性化合物:0.01%至0.1%或0.1%至1% ;及 表面活性劑:0%至0.001%或0.01%至〇.1〇/0。 用於沈積金屬奈米線之典型墨水組合物以重量計包含 0.0025%至0.1%的表面活性劑(例如,較佳範圍係〇 〇〇250/〇 至 0.05%(對於 ZONYL® FSO-100 而言)或 0.005% 至 0.025%(對於 TRITON™ Χ-100 而言))、0.02% 至 4% 的可交 153948.doc • 16 - 201137062 聯聚合物(例如,較佳範圍係0.02°/(&gt;至〇·5%(對於HPMC而 言))、0.01 %至1.5%的金屬奈米線、0.005%至0.5%的光起 始劑及94.5%至99.0%的極性溶劑。 在上文實施例中之每一者中’提供奈米結構係金屬奈米 線(例如,銀奈米線)之某些實施例。 一個實施例提供包含複數個奈米結構、包含HPMC之可 交聯聚合物、光起始劑、水及視情況PGME之墨水組合 物。更特定而言,奈米結構係銀奈米線。 在一個實施例中,墨水組合物包含12 mg IRGACURE® 754、5 g PGME及5 g調配物’該調配物包含0.38%-0.4%銀 奈米線、0.4% HPMC、0.0025% TRITON™ X-100及水。 又一實施例提供包含複數個奈米結構、包含PVP之可交 聯聚合物、光起始劑、水及視情況PGME的墨水組合物。 更特定而言’奈米結構係銀奈米線。 在一個實施例中,墨水組合物以重量百分比計包含〇. 1 % IRGACURE® 754、1% PVP (MW =1,300,000)、0.5%銀奈米 線、85% PGME及 14%水。 在另一實施例中,墨水組合物以重量百分比計包含0.4% 二苯基錤琐酸鹽、〇.4% HPMC、0.2%銀奈米線、1〇〇 ppm TRITON™ X-100及水.° 薄膜形成 可根據(例如)共同待決美國專利申請案第11/504,822號 中所述方法將墨水組合物沈積於基板上。 因此,本闡述一種方法,其包含:將墨水組合物沈積於 153948.doc •17· 201137062 基板上’其中該墨水組合物包含複數個奈米結構、可交聯 聚合物、光起始劑及極性溶劑;及使該溶劑乾燥。 旋塗係用於在基板上沈積均勻膜之典型技術。藉由控制 負載量、旋塗速度及時間,可形成不同厚度的薄膜。應瞭 解’懸浮流體之黏度及剪切行為以及奈米線間之相互作用 可影響所沈積奈米線之分佈及互連性。 舉例而言’可將本文所述墨水組合物以400-2000 rpm之 速度經60秒旋塗於玻璃基板上,其中加速度為1〇〇〇 rpm/s。可進一步對該薄膜實施某些後處理(包括在5〇它下 烘烤90秒並在140°C下烘烤90秒p可在加熱或不加熱之情 況下進一步使用加壓處理來調節最終膜規格。 如熟悉此項技術者所瞭解,可使用其他沈積技術,例 如’由窄通道計量之沉降流動、在模具中流動(die fl〇w)、 在斜坡上流動、狹縫式塗佈、凹版塗佈、微凹版塗佈、珠 粒塗佈、浸塗、狹縫模具式塗佈及諸如此類。亦可使用印 刷技術在具有或不具有圖案之基板上直接印刷墨水組合 物。舉例而言,可使用噴墨、柔版印刷及絲網印刷。 基板可為上面沈積有奈米線之任一材料。基板可為剛性 或撓性的。較佳地,基板視情況亦係透明的,即,在可見 區域(400 nm-700 nm)中材料之光透射率為至少8〇%。 剛性基板之實例包括玻璃、聚碳酸自旨、丙稀酸系物及諸 如此類。具體而言’可使用特種玻璃,例如無驗玻璃(例 如’棚&lt;5夕酸鹽)、低驗玻璃及零膨脹玻璃-陶竞。特種玻璃 尤其適用於薄的平板顯示器系統(包括液晶顯示器 153948.doc • 18 · 201137062 (LCD))。 撓性基板之實例包括但不限於:聚酯(例如,聚對苯二 曱酸乙二酯(PET)、聚萘二甲酸酯及聚碳酸酯)、聚烯烴(例 如,直鏈、直鏈及環狀聚烯烴)、乙烯基聚合物(例如,聚 氣乙烯、聚偏二氣乙烯、聚乙烯醇縮醛、聚苯乙烯、聚丙 烯酸酯及諸如此類)、纖維素酯酯基底(例如,三乙酸纖維 素、乙酸纖維素)、聚砜(例如聚醚砜)、聚醯亞胺、聚矽氧 及其他習用聚合物膜。 可藉由空氣乾燥、在氮吹掃下乾燥或在烘箱中烘烤來實 施乾燥。本文所述極性溶劑具有相對較低之沸點(例如, 不超過250°C)以便其可容易地去除。通常,在14〇&lt;t或更低 溫度下乾燥(例如,烘烤)足以促進溶劑去除及膜形成。 如此形成之薄膜係導電的,其中藉由在奈米結構中連續 實體接觸來建立一或多個導電路徑。 導電膜之導電性通常藉由「膜電阻」、「電阻率」或「片 電阻」(其由ohm/sq(或「Ω/口」)表示)來量測。膜電阻至少 與表面負載密度、奈米結構之大小/形狀及奈米結構成份 之固有電學性質有關係。如本文所使用,若薄膜片電阻不 向於10 Ω/□,則認為其係導電的。較佳地,片電阻不高於 ΙΟ4 Ω/口、3,000 Ω/口、1,〇〇〇 Ω/口或 3 50 Ω/□、或 1〇〇 Ω/口。 通常’由金屬奈米結構所形咸的導電網絡之片電阻在以下 範圍内:10 Ω/□至 1〇〇〇 Ω/口、100 Ω/□至 750 Ω/口、50 Ω/口 至 200 Ω/口、100 Ω/□至 500 Ω/□、或 100 Ω/□至 250 Ω/□、或 10 Ω/□至 200 Ω/口、10 Ω/□至 50 Ω/□、或 1 Ω/□至 10 Ω/口。 153948.doc -19- 201137062 視情況’基於奈米結構之透明導體在可見區域(彻, nm)中具有高光透射率。通常,當在可見區域中光透射率 超過85%時,認為透明導體係光學透明的。更通常,光透 射率超過90%、或超過93%、或超過95%。 濁度係光學透明之另一指標。通常認為濁度係因受主體 及表面粗糙度二者影響由光散射及反射/折射產生的。在 各實施例中,透明導體之濁度不超過1〇%、不超過8%、不 超過5°/。或不超過ι〇/0。 因此,一個實施例提供包含複數個互連奈米結構、黏合 劑材料(例如,可交聯聚合物)及感光性化合物之導電薄 膜。在其他實施例中,導電薄膜具有超過85%之光透射率 及不超過1000 Ω/□之片電阻。其他各實施例係關於片電阻 不超過750 Ω/□、不超過500 Ω/□、不超過400 Ω/□、不超 過200 Ω/□或不超過1〇〇 Q/□之導電薄膜。 光圓案化 1.溶劑顯影 在某些實施例中,可直接對本文所述感光性薄膜實施光 圖案化。通常,該薄膜包含能夠在光輻照後引發黏合劑材 料(例如,可交聯聚合物)交聯的光起始劑。更特定而言, 如圖1A中所示,在形成薄膜1 〇後,使用遮罩20在該薄膜上 界定符合遮罩中一或多個開口或孔30之圖案。由此將薄膜 10界定為遮蓋區域及未遮蓋區域,藉此未遮蓋區域對應於 遮罩中之一或多種開口 30。此後,如圖1B中所示,將薄膜 暴露於UV光源以僅使未遮蓋區域40中之可交聯聚合物交 153948.doc •20· 201137062 聯。可使其中聚合物未能交聯之遮蓋區域50溶解(例如, 膜顯影)並去除奈米線。膜顯影由此露出對應於遮罩中開 口 30之導電區域40之圖案。 因此,一個實施例提供一種方法,其包含:藉由將墨水 組合物沈積於基板上以在該基板上形成互連導電奈米結構 薄膜,其中該墨水組合物包含複數個導電奈米結構、可交 聯聚合物、光起始劑及極性溶劑;及去除該極性溶劑;及 將該薄膜之一部分暴露於UV光源以使該薄膜暴露部分中 之可交聯聚合物交聯。 在又一貫施例中,本文闡述—種方法,其包含:藉由將 墨水組合物沈積於基板上以在該基板上形成互連導電奈米 結構薄膜,其中該墨水組合物包含複數個導電奈米結構、 可交聯聚合物、光起始劑及極性溶劑;及去除該極性溶 劑,在該薄膜上方放置遮罩,其中該遮罩包括開口並將下 伏薄膜界疋為遮蓋區域及未遮蓋區域,該未遮蓋區域對應 於該開口;經由該遮罩之該開口使該薄膜暴露於uv光源 以使該未遮蓋區域中之該可交聯聚合物交聯;及使該薄膜 之該遮蓋區域溶解以在圖案中提供對應於該遮罩開口之導 電區域。 在各實施例中’奈米結構係銀奈米線,且可交聯聚合物 係 PVP 或 HPMC。 UV暴露通常為約3_5秒(例如,熔合uv系統)。在uv暴露 後,可藉由用極性溶劑洗滌使薄膜顯影,該極性溶劑通常 與墨水組合物中之極性溶劑相同(例如,水)。視情況,可 153948.doc -21· 201137062 將極性溶劑加熱以加快遮蓋區域中之薄膜溶解。 未遮蓋區域(即,導電區域)包含互連銀奈米線及交聯聚 合物(例如,交聯PVP) ^可根據業内已知方法評估光學及 電學性質》 因此,在再一實施例中’提供圖案化導電膜。一個實施 例提供圖案化導電膜,其包含第一區域及第二區域,其中 該第一區域中之可交聯聚合物交聯,且該第二區域中之可 父聯聚合物被去除。在又一實施例中,該第一區域比該第 二區域更具導電性。 2.熱顯影 在其他實施例中’可藉由依次暴露於光輕照及熱直接對 本文所述感光性薄膜實施光圖案化《通常,該薄膜包含可 光降解且可熱活化之感光性化合物。 更特定而言’如圖2中所示’透明導體1〇〇係藉由以下方 式形成:首先在基板110上旋塗薄膜120,其包括互連金屬 奈米結構、黏合劑材料及可熱活化感光性化合物。將遮罩 130放置於透明導體1〇〇上並在第一溫度下暴露於光輻照。 形成潛像並界定為未遮蓋區域140及遮蓋區域15〇 ^在未遮 蓋區域140中,感光性化合物被破壞而不會影響互連金属 奈米結構或黏合劑材料之結構完整性。在遮蓋區域15〇 中’留下感光性化合物。此後’藉由在黑暗中在第二溫度 下對該感光性化合物實施熱活化使光輻照之潛像熱顯影, 藉此感光性化合物熱降解且一或多種降解產物損壞遮蓋區 域150中之奈米結構,產生低導電區域16〇(與未遮蓋區域 153948.doc •22- 201137062 140相比)。 由熱降解感光性化合物所導致的奈米結構之損壞程度可 月b與多種因素有關,其包括第二溫度、在第二溫度下熱活 化之持續時間、感光性化合物之類型β通常,第二溫度高 於第一溫度。 有利的是’由於奈米結構未被去除但僅導致導電性降 低,故導電區域140及低導電區域160之光透射率及濁度值 實質上相同。在許多應用(包括觸摸屏及平板顯示器)中期 望此一不可見或低可見度圖案。 因此,一個實施例提供一種方法,其包含:藉由將墨水 組合物沈積於基板上以在該基板上形成互連導電奈米結構 薄膜,其中該墨水組合物包含複數個導電奈米結構、黏合 劑材料、可熱活化感光性化合物及極性溶劑;及去除該極 性溶劑;在該薄膜上放置遮罩,#中該遮罩包括開口並將 忒薄膜界定為遮蓋區域及未遮蓋區域,該未遮蓋區域對應 於該開口;在第一溫度下經由該遮罩之該開口使該薄臈暴 露於UV光源以使該未遮蓋區❹之該感光性4合物發生 光降解;及在黑暗中在第二溫度下將該薄膜暴露於熱源以 使該遮蓋區域中之該感光性化合物發生熱降解。 在其他實施例中,在UV輻照後,未遮蓋區域中奈米結 構之導電性未降低,此表明感光性化合物被破壞而未損= 奈米結構。在其他實施例巾,在熱活化後,遮蓋區域中之 奈米結構被感光性化合物之熱降解產物損壞,因此遮蓋區 域中之薄膜比未遮蓋區域之導電性低β 00 153948.doc -23· 201137062 在又一實施例中,遮蓋區域及未遮蓋區域實質上具有相 同的光學外觀,使得圖案係可見的或具有低可見度。在各 實施例中,各個區域中光透射率的差不超過丨0〇/〇、或8〇/〇、 或5%、或3%。同樣,各個區域中濁度值的差不超過 10%、或 8%、或 5%、或 3%。 因此,在再一實施例中,提供圖案化導電膜。一個實施 例提供圖案化導電膜,其包含第一區域及第二區域,其中 該第一區域中之可熱活化感光性化合物經光降解,且該第 二區域中之可熱活化感光性化合物經熱降解。在又一實施 例中,第一區域比第二區域更具導電性。 進一步藉由以下非限制性實例闡釋本文所述之各實施 例0 實例 實例1 銀奈米線之標準合成 藉由在聚(乙烯基吡咯啶酮)(PVP)存在下還原溶於乙二 醇中之硝酸銀來合成銀奈米線。該方法闡述於(例如)γ Sun、B. Gates、Β· Mayers及 γ· Xia,「Crystalline siWer nan0Wires by soft S〇luti〇n processing」,Nan〇lett,2(2): 165-168,(2002)中。可藉由離心或其他已知方法將均勻的 銀奈米線選擇性分隔》 另一選擇為,可藉由向上文反應混合物中添加適宜之離 子添加劑(例如,四丁基氣化銨)直接合成實質上均勻的銀 奈米線。如此製造的銀奈米線可未經大小選擇分離步驟直 153948.doc •24· 201137062 接使用。該合成更詳細地闡述於申請者之共同擁有及共同 待決美國專利申請案第11/766,552號中,該申請案之全文 併入本文中。 該合成可在氮吹掃下、在環境光(標準)中、或在黑暗中 實施,以使所得銀奈米線之光致降解降至最小程度。 ' 實例2Chemicals, AUent(R) Wn, pA) and n-dodecyl p-D maltoside. The cosolvent can be another polar solvent as described herein. For example, in various embodiments, the ink composition comprises both water and PGME or methanol. Ink Composition The ink composition combines the components described herein at a predetermined ratio which may vary depending on the substrate used and the deposition method. In various embodiments, the ratio of crosslinkable polymer to nanostructure (e.g., metal nanowire) is preferably in the range of from about 5 to about 0.000625, more typically about 1; and the photoinitiator is compatible. The ratio of the copolymer is from about 〇〇1 to 〇1. The ink composition typically has a viscosity in the range of 1 (:|&gt; to 1000 cP. The preferred viscosity machine is between about 1 cP and 1 〇〇 cp (for example, for spin coating). In each of the examples, the 'ink composition contains the following components (based on the weight percent of the total weight of the ink composition): metal nanowire: 0·1 ° /. to 1% or 1% to 10%; adhesive material: 〇·1°/❶ to 1% or 1% to 10%; photosensitive compound: 0.01% to 0.1% or 0.1% to 1%; and surfactant: 0% to 0.001% or 0.01% to 〇.1〇 /0. A typical ink composition for depositing a metal nanowire comprises 0.0025% to 0.1% by weight of a surfactant (for example, a preferred range is from 250/〇 to 0.05% (for ZONYL® FSO- 100) or 0.005% to 0.025% (for TRITONTM Χ-100)), 0.02% to 4% for 153948.doc • 16 - 201137062 Copolymer (for example, the preferred range is 0.02°/ (&gt; to 5% (for HPMC)), 0.01% to 1.5% metal nanowire, 0.005% to 0.5% photoinitiator, and 94.5% to 99.0% polar solvent. In the embodiment In some embodiments, certain embodiments of a nanostructured metal nanowire (eg, a silver nanowire) are provided. One embodiment provides a crosslinkable polymer comprising a plurality of nanostructures comprising HPMC, a light initiation Ingredients, water, and optionally PGME ink compositions. More specifically, the nanostructures are silver nanowires. In one embodiment, the ink composition comprises 12 mg of IRGACURE® 754, 5 g of PGME, and 5 g of formulation. 'The formulation comprises 0.38%-0.4% silver nanowire, 0.4% HPMC, 0.0025% TRITONTM X-100 and water. Yet another embodiment provides a crosslinkable polymer comprising a plurality of nanostructures comprising PVP, Photoinitiator, water, and optionally PGME ink composition. More specifically, 'nano structure silver nanowire. In one embodiment, the ink composition comprises 〇. 1 % IRGACURE® 754 by weight percent 1% PVP (MW = 1,300,000), 0.5% silver nanowire, 85% PGME, and 14% water. In another embodiment, the ink composition comprises 0.4% diphenyl succinic acid by weight percent Salt, 〇.4% HPMC, 0.2% silver nanowire, 1〇〇ppm TRITONTM X-100 and water.° film shape According to (e.g.) co U.S. Patent Application No. 11 / 504,822 said method pending the ink composition deposited on the substrate. Accordingly, the present invention is directed to a method comprising: depositing an ink composition on a substrate 153948.doc • 17·201137062, wherein the ink composition comprises a plurality of nanostructures, crosslinkable polymers, photoinitiators, and polarities a solvent; and drying the solvent. Spin coating is a typical technique used to deposit a uniform film on a substrate. Films of different thicknesses can be formed by controlling the amount of loading, the speed of spin coating, and the time. It should be understood that the viscosity and shear behavior of the suspended fluid and the interaction between the nanowires can affect the distribution and interconnectivity of the deposited nanowires. For example, the ink composition described herein can be spin coated onto a glass substrate at a speed of 400-2000 rpm for 60 seconds with an acceleration of 1 rpm/s. The film may be further subjected to some post treatment (including baking at 5 Torr for 90 seconds and baking at 140 ° C for 90 seconds. p may further use a press treatment to adjust the final film with or without heating. Specifications. As is known to those skilled in the art, other deposition techniques can be used, such as 'settling flow metered by narrow channels, flowing in the mold (die fl〇w), flowing on the slope, slit coating, gravure Coating, micro gravure coating, bead coating, dip coating, slot die coating, and the like. The ink composition can also be printed directly on a substrate with or without a pattern using printing techniques. For example, Inkjet, flexographic, and screen printing are used. The substrate may be any material on which a nanowire is deposited. The substrate may be rigid or flexible. Preferably, the substrate is also transparent, ie, The light transmittance of the material in the visible region (400 nm - 700 nm) is at least 8 %. Examples of rigid substrates include glass, polycarbonate, acrylics, and the like. Specifically, 'special glass can be used, Such as no glass (eg 'shed&lt;5's acid salt), low glass and zero expansion glass - Tao Jing. Special glass is especially suitable for thin flat panel display systems (including liquid crystal display 153948.doc • 18 · 201137062 (LCD)). Examples of substrates include, but are not limited to, polyesters (eg, polyethylene terephthalate (PET), polyphthalate and polycarbonate), polyolefins (eg, linear, linear, and Cyclic polyolefin), vinyl polymers (eg, polyethylene, polyvinylidene, polyvinyl acetal, polystyrene, polyacrylate, and the like), cellulose ester ester substrates (eg, triacetic acid) Cellulose, cellulose acetate), polysulfone (such as polyethersulfone), polyimine, polyoxane, and other conventional polymer films. Can be dried by air, dried under nitrogen purge, or baked in an oven. Drying is carried out. The polar solvent described herein has a relatively low boiling point (e.g., no more than 250 ° C) so that it can be easily removed. Typically, it is dried at 14 Torr &lt; t or lower (e.g., baked) ) is sufficient to promote solvent removal and film formation. The film thus formed is electrically conductive, wherein one or more conductive paths are established by continuous physical contact in the nanostructure. The conductivity of the conductive film is usually by "film resistance", "resistivity" or "sheet resistance". (It is measured by ohm/sq (or "Ω/port"). The membrane resistance is at least related to the surface loading density, the size/shape of the nanostructure, and the inherent electrical properties of the nanostructure. For use, if the film resistance is not 10 Ω / □, it is considered to be electrically conductive. Preferably, the sheet resistance is not higher than ΙΟ 4 Ω / port, 3,000 Ω / port, 1, 〇〇〇 Ω / port or 3 50 Ω / □, or 1 〇〇 Ω / port. Usually 'the sheet resistance of the conductive network formed by the metal nanostructure is in the following range: 10 Ω / □ to 1 〇〇〇 Ω / port, 100 Ω / □ to 750 Ω/port, 50 Ω/□ to 200 Ω/□, 100 Ω/□ to 500 Ω/□, or 100 Ω/□ to 250 Ω/□, or 10 Ω/□ to 200 Ω/□, 10 Ω/□ to 50 Ω/□, or 1 Ω/□ to 10 Ω/□. 153948.doc -19- 201137062 Depending on the situation, transparent conductors based on nanostructures have high light transmission in the visible region (thick, nm). Generally, when the light transmittance exceeds 85% in the visible region, the transparent conductive system is considered to be optically transparent. More typically, the light transmission rate exceeds 90%, or exceeds 93%, or exceeds 95%. Turbidity is another indicator of optical transparency. It is generally believed that turbidity is caused by light scattering and reflection/refraction due to both subject and surface roughness. In each of the examples, the haze of the transparent conductor does not exceed 1%, does not exceed 8%, and does not exceed 5°/. Or no more than ι〇/0. Accordingly, one embodiment provides a conductive film comprising a plurality of interconnected nanostructures, a binder material (e.g., a crosslinkable polymer), and a photosensitive compound. In other embodiments, the conductive film has a light transmittance of more than 85% and a sheet resistance of not more than 1000 Ω/□. Other embodiments are related to a conductive film having a sheet resistance of not more than 750 Ω/□, not exceeding 500 Ω/□, not exceeding 400 Ω/□, not exceeding 200 Ω/□ or not exceeding 1 〇〇 Q/□. Light rounding 1. Solvent development In some embodiments, the photosensitive film described herein can be directly photopatterned. Typically, the film comprises a photoinitiator capable of initiating cross-linking of a binder material (e.g., a crosslinkable polymer) upon exposure to light. More specifically, as shown in Figure 1A, after the film 1 is formed, a mask 20 is used to define a pattern on the film that conforms to one or more openings or holes 30 in the mask. The film 10 is thus defined as a covered area and an uncovered area whereby the uncovered area corresponds to one or more openings 30 in the mask. Thereafter, as shown in Fig. 1B, the film is exposed to a UV light source to bond only the crosslinkable polymer in the uncovered region 40 to 153948.doc • 20· 201137062. The masking region 50 in which the polymer fails to crosslink can be dissolved (e.g., film developed) and the nanowires removed. The film development thereby exposes a pattern corresponding to the conductive regions 40 of the openings 30 in the mask. Accordingly, an embodiment provides a method comprising: forming an interconnected conductive nanostructure film on a substrate by depositing an ink composition on a substrate, wherein the ink composition comprises a plurality of conductive nanostructures, Crosslinking the polymer, the photoinitiator, and the polar solvent; and removing the polar solvent; and exposing a portion of the film to a UV source to crosslink the crosslinkable polymer in the exposed portion of the film. In a consistent embodiment, a method is described herein comprising: forming an interconnected conductive nanostructure film on the substrate by depositing an ink composition on the substrate, wherein the ink composition comprises a plurality of conductive nanostructures a rice structure, a crosslinkable polymer, a photoinitiator, and a polar solvent; and removing the polar solvent, placing a mask over the film, wherein the mask includes an opening and the underlying film boundary is covered and uncovered a region, the uncovered region corresponding to the opening; the opening through the mask exposing the film to a uv source to crosslink the crosslinkable polymer in the uncovered region; and the masking region of the film Dissolving to provide a conductive region in the pattern corresponding to the opening of the mask. In each of the examples, the 'nano structure is a silver nanowire, and the crosslinkable polymer is PVP or HPMC. The UV exposure is typically about 3_5 seconds (eg, a fused uv system). After the uv exposure, the film can be developed by washing with a polar solvent which is usually the same as the polar solvent in the ink composition (e.g., water). Depending on the situation, 153948.doc -21· 201137062 Heat the polar solvent to accelerate the dissolution of the film in the covered area. The uncovered regions (i.e., conductive regions) comprise interconnected silver nanowires and crosslinked polymers (e.g., crosslinked PVP). ^ Optical and electrical properties can be evaluated according to methods known in the art. Thus, in yet another embodiment A patterned conductive film is provided. One embodiment provides a patterned conductive film comprising a first region and a second region, wherein the crosslinkable polymer in the first region is crosslinked and the abradable polymer in the second region is removed. In yet another embodiment, the first region is more conductive than the second region. 2. Thermal Development In other embodiments, the photosensitive film described herein can be directly photopatterned by sequential exposure to light and heat. "Usually, the film contains a photodegradable and heat-activatable photosensitive compound. . More specifically, 'the transparent conductor 1' is formed as shown in FIG. 2 by first spin coating a film 120 on a substrate 110, which includes interconnecting a metal nanostructure, a binder material, and heat activatable. Photosensitive compound. The mask 130 is placed on the transparent conductor 1 and exposed to light irradiation at a first temperature. The latent image is formed and defined as an uncovered area 140 and a covered area 15〇 In the uncovered area 140, the photosensitive compound is destroyed without affecting the structural integrity of the interconnected metal nanostructure or adhesive material. A photosensitive compound is left in the masking region 15'. Thereafter, the latent image of the light irradiation is thermally developed by thermally activating the photosensitive compound at a second temperature in the dark, whereby the photosensitive compound is thermally degraded and one or more degradation products damage the nanosphere in the masking region 150. The meter structure produces a low conductivity area 16〇 (compared to the uncovered area 153948.doc •22-201137062 140). The degree of damage of the nanostructure caused by the thermally degradable photosensitive compound may be related to various factors including the second temperature, the duration of thermal activation at the second temperature, the type of the photosensitive compound β, and the second The temperature is higher than the first temperature. Advantageously, the light transmittance and haze values of the conductive region 140 and the low conductive region 160 are substantially the same because the nanostructure is not removed but only causes a decrease in conductivity. This invisible or low visibility pattern is seen in the midst of many applications, including touch screens and flat panel displays. Accordingly, an embodiment provides a method comprising: forming an interconnected conductive nanostructure film on a substrate by depositing an ink composition on a substrate, wherein the ink composition comprises a plurality of conductive nanostructures, bonded a material, a heat-activatable photosensitive compound, and a polar solvent; and removing the polar solvent; placing a mask on the film, the mask includes an opening and defining the enamel film as a covered area and an uncovered area, the uncovered a region corresponding to the opening; the opening is exposed to the UV light source via the opening of the mask at a first temperature to photodegrade the photosensitive composition of the uncovered region; and in the dark The film is exposed to a heat source at two temperatures to thermally degrade the photosensitive compound in the masked region. In other embodiments, the conductivity of the nanostructure in the unmasked region was not reduced after UV irradiation, indicating that the photosensitive compound was destroyed without damage = nanostructure. In other embodiments, after thermal activation, the nanostructure in the masking region is damaged by the thermal degradation products of the photosensitive compound, so that the film in the masking region is less conductive than the unmasked region. β 00 153948.doc -23· 201137062 In yet another embodiment, the covered area and the uncovered area have substantially the same optical appearance such that the pattern is visible or has low visibility. In each of the embodiments, the difference in light transmittance in each of the regions does not exceed 丨0〇/〇, or 8〇/〇, or 5%, or 3%. Similarly, the difference in turbidity values in each zone does not exceed 10%, or 8%, or 5%, or 3%. Thus, in yet another embodiment, a patterned conductive film is provided. One embodiment provides a patterned conductive film comprising a first region and a second region, wherein the heat-activatable photosensitive compound in the first region is photodegraded, and the heat-activatable photosensitive compound in the second region is Thermal degradation. In yet another embodiment, the first region is more conductive than the second region. Further exemplified by the following non-limiting examples, Example 0 of the Examples described herein Example 1 The standard synthesis of silver nanowires is reduced in ethylene glycol by reduction in the presence of poly(vinylpyrrolidone) (PVP). The silver nitrate is used to synthesize the silver nanowire. The method is described, for example, in γ Sun, B. Gates, Β· Mayers, and γ· Xia, “Crystalline siWer nan0Wires by soft S〇luti〇n processing”, Nan〇lett, 2(2): 165-168, ( 2002). The uniform silver nanowires can be selectively separated by centrifugation or other known methods. Alternatively, the synthesis can be directly synthesized by adding a suitable ionic additive (for example, tetrabutylammonium hydride) to the reaction mixture. A substantially uniform silver nanowire. The silver nanowires thus manufactured can be separated without the size selection step 153948.doc •24· 201137062. This synthesis is described in more detail in the applicant's co-owned and co-pending U.S. Patent Application Serial No. 11/766,552, the entire disclosure of which is incorporated herein. The synthesis can be carried out under nitrogen purge, in ambient light (standard), or in the dark to minimize photodegradation of the resulting silver nanowires. 'Example 2

薄膜之製備-PVP 藉由將以重量百分比計0.1% IRGACURE® 754、1% PVP (MW=1,300,000)、0.5%銀奈米線、85% PGME及 14%水組 合來製備感光性墨水組合物。將墨水組合物旋塗於2 X 2英 0寸載玻片上。使溶劑空氣乾燥。 實例3Film Preparation - PVP Preparation of photosensitive ink combinations by combining 0.1% IRGACURE® 754, 1% PVP (MW = 1,300,000), 0.5% silver nanowires, 85% PGME, and 14% water by weight percent Things. The ink composition was spin coated onto a 2 X 2 inch glass slide. The solvent is allowed to air dry. Example 3

薄膜之製備-HPMC 藉由將 12 mg IRGACURE® 754、5 g PGME及 5 g 包含 0.38-0.4%銀奈米線、0.4% HPMC、0.0025% TRITON™ X-100及水之調配物組合來製備感光性墨水組合物。 將墨水組合物(5 ml)以500 rpm經60秒旋塗於6x6英吋載 玻片上。使溶劑在38°C下空氣乾燥60秒。 ' 實例4 直接光圖案化-溶劑顯影 在玻璃基板上形成實例3之薄膜。在該薄膜上放置遮 罩。該遮罩將下伏薄膜界定為遮蓋區域及未遮蓋區域(其 對應於該遮罩之開口)。然後將該薄膜暴露於UV光源(熔合 UV系統)約3-5秒以使該薄膜暴露區域中之可交聯聚合物交 153948.doc -25- 201137062 聯。在該薄膜之該遮蓋區域中未發生交聯。在暴露後,藉 由用水洗滌使該薄膜顯影,藉此使該薄膜之該遮蓋區域溶 解並去除奈米線《然後在氮氣氛中對薄膜進行乾燥並在 180°C下烘烤90秒。 在圖案化薄膜中,該未遮蓋(導電)區域中之奈米線完好 無損,利用4點探針記錄片電阻為約15〇卩/口。由於該薄膜 之該遮蓋區域中實質上所有H線肖已在肖膜顯影期間被 洗掉,故該遮蓋區域不導電。 實例5 感光性化合物之熱降解及光降解 1.不含感光性化合物之標準墨水調配物 製備0.4% HPMC於含有0.2%銀奈米線及1〇〇 triton™ x-100之水中之標準墨水調配物。藉由將該墨 水調配物以3000 rpm/60 sec旋塗於2x2玻璃基板上來製備 銀奈米線於HPMC黏合劑中之透明導電薄膜。然後在14〇£)(: 下將該膜烘烤60秒。圖3A顯示薄膜中互連銀奈米線之TEM 圖像。使用該未敏化薄膜作為對照膜(1) β 2 ·具有可熱活化感光性化合物之薄膜之熱降解 藉由將40 mg二苯基錤硝酸鹽(DPIN)溶於〇5 g水及〇5 g 丙酮中製得溶液。此後,將0.5 g該DPIN溶液添加至5 g上 文所述之標準墨水調配物中。在黑暗中將所得含有銀奈米 線、HPMC及DPIN之墨水以3000 rpm旋轉6〇秒以形成感光 性薄膜(2)。然後在熱板上在黑暗中將該膜在14〇。匚下烘烤 90秒〇 153948.doc •26· 201137062 圖3B(放大率驗,暗視野)顯示所在位置的銀奈求線似 乎斷裂。可推斷DPIN之黑暗熱降解係造成銀奈米線結構 扣壞的原SI ’其導致導電性減小且濁度務微增加(參見例 如,表1)。 3 ·可熱活化感光性化合物之光降解 藉由將40 mg二苯基錤硝酸鹽(DpiN)溶於〇 5呂水及〇 5 g 丙酮中製侍溶液。此後,將〇 5 §該〇1&gt;1]^溶液添加至5 g上 文所述之標準墨水調配物中。在黑暗中將所得含有銀奈米 線、HPMC及DPIN之墨水以3〇〇〇 rpm旋轉6〇秒以形成感光 性薄膜(3)、然後在以1() ft/min運行之溶合固化系統上將該 膜暴露於UV輻照,隨後在熱板上在14(rc下洪烤9〇秒。所 得膜顯示銀奈米線似乎完好無損(圖3c)e因此,可推斷 圆已被uv輻照完全破壞而未對銀奈米線造成任何結構 損壞’使得在14(rc下進—步烘烤未產生任何會損壞銀奈 米線之熱降解產物。 表1匯總薄膜(1)、⑺及(3)之光學及電學性質,其分別對 應於圖3A、3B及3Ce如所顯示,由於—或多種熱降解產 物導致奈米線結構損壞,故經歷熱處理之感光性膜(圖3b) 與圖3A之對照膜相比具有顯著增加之電阻。城,在熱處 理前經歷光輻照之感光性膜(圖3C)與對照膜相比電阻增加 極小。已財該等膜之光學及電學性質與結構特性一致。 153948.doc -27- 201137062 表1 .對照膜(1) 薄膜(2) 薄膜(3) T% 92.5 92.0 92.3 H% 0.62 0.75 0.61 R(Ohm/Sq) 78 &gt;19,999 114 實例6 藉由將40 mg二苯基錤硝酸鹽(DPIN)溶於0.5 g水及0.5 g 丙酮中製得溶液。此後,將0.5 g該DPIN溶液添加至5 g實 例5中所述之標準墨水調配物中。在黑暗中將所得含有銀 奈米線、HPMC及DPIN之墨水以3000 rpm旋轉60秒以形成 感光性薄膜(4)。然後在熱板上在黑暗中將該薄膜在100°C 下烘烤90秒。 表2顯示薄膜(4)之光學及電學性質以及對照膜(1)及薄膜 (2)之光學及電學性質。 表2 對照膜(1) 薄膜(2) 140°C/90 秒 薄膜(4) 100〇C/90 秒 T% 92.5 92.0 91.7 H% 0.62 0.75 0.78 R(Ohm/Sq) 78 &gt;19,999 280 如所顯示,倘若感光性化合物及熱處理持續時間均相 同,則熱處理之溫度與銀奈米線結構損壞之程度相關。溫 度越高,對奈米線造成的損壞越大。因此,對於發生達顯 著程度的DPIN熱降解及銀奈米線損壞,可需要某一臨限 溫度。 153948.doc -28- 201137062 實例7 藉由將40 mg二苯基錤三氟曱磺酸鹽(DPITf)溶於0.5 g水 及0.5 g丙酮中製得溶液。此後,將0.5 g該DPITf溶液添加 至5 g實例5中所述之標準墨水調配物中。在黑暗中將所得 含有銀奈米線、HPMC及DPITf之墨水以3000 rpm旋轉60秒 以形成感光性薄膜(5)。 另外,亦製得感光性薄膜(6),然後在以10 ft/min運行之 熔合固化系統上將其暴露於UV輻照3次,隨後在熱板上在 160°C下烘烤90秒。 表3顯示薄膜(5)及(6)之光學及電學性質以及對照膜(1)及 薄膜(2)之光學及電學性質。 表3 對照膜(1) 薄膜(2) DPIN 140〇C/90 s 薄膜(5) DPITf 160〇C/90s 薄膜⑹ DPITf 光/160〇C/90s T% 92.5 92.0 91.8 91.8 H% 0.62 0.75 0.80 0.64 R(Ohm/Sq) 78 &gt;19,999 1,600 160 包含DPITf之薄膜展示與包含DPIN之薄膜類似之熱降解 及光降解行為,即,DPITf在黑暗中發生熱降解並導致奈 米線損壞,如薄膜(5 )中電阻之增加所反映。然而,應瞭 解,即使在稍微更高溫度下熱暴露後,DPITf在產生絕緣 膜方面仍比DPIN遜色。 此外,同DPIN—樣,DPITf經歷光降解且可能完全被破 壞,使得後續熱處理不能產生足以損壞奈米線的熱降解產 153948.doc -29- 201137062 物。 .實例8 藉助熱顯影之低可見度圖案化 藉由將40 mg二苯基錤硝酸鹽dpin溶於0.5 g水及0.5 g丙 酮中製得溶液。此後,將0.5 g該DPIN溶液添加至5 g包含 0.3%銀奈米線、0.3。/〇抑]\/1(2及1〇0卩卩111丁1111'01^1^又-100之 墨水調配物中。在黑暗中將所得混合物以1〇〇〇 rpm旋轉6〇 秒’並在黑暗中在40°C下簡單乾燥30秒以產生感光性薄膜 (7) »在薄膜(7)上施加光遮罩並在以3 ft/min運行之溶合系 統上將該組件暴露於UV輻照。去除光遮罩且然後在熱板 上在黑暗中將膜在140°C下烘烤90秒。所得膜展示暴露區 域與未暴露區域的濁度差不明顯(例如,相差小於1〇%)。 暴露區域之導電性為約40 〇hm/sq,而未暴露區域絕緣, 因此證明僅使用加熱作為顯影步驟會產生低可見度圖案。 實例9 透明導體光學及電學性質之評價 對根據本文所述方法製得之透明導電膜進行評價以建立 其光學及電學性質。 光透射率數據係根據ASTM D1003中之方法獲得。濁度 係使用BYK Gardner Haze-gard Plus來量測。片電阻係使用 Fluke 175 True RMS萬用表或非接觸式電阻計、Deic〇m 71 7B型電導監測器來量測。更典型裝置係用於量測電阻之 4點才木針系統(例如’鱗自Keithley Instruments) 〇 該等量測通常包括裸基板之濁度及透射率(例如,對於 153948.doc •30· 201137062 玻璃而言濁度為().04%且透射率為93 4%)。 亦可在S學或掃描電子顯微鏡下賴奈米線之互連性及 基板之覆蓋區。 本說明書中所提及及/或本中請案資料清單中所列示之 所有上述美國專利、美國專利_請公開案、美國專利申請 案、外國專利、外國專利申請案及非專利出版物之全部内 谷皆以引用方式併入本文中。 自上文應瞭解’儘管本文出於閣釋之目的已對本發明之 特定實施料間述,但可在不背離本發明之精神及範缚 之情況下對其做出各種修改^因&amp; ’本發明僅受隨附申請 專利範圍限制。 【圖式簡單說明】 圖1A顯示放置於根據一個實施例製得之導電膜上方之遮 罩; 圖1B顯示直接光圖案化後的圖案化導電膜; 圖2顯不其中在具有可熱活化感光性化合物之透明導體 中形成可見或低可見度圖案的本發明揭示内容之實施例; 圖3 A顯不不含任何感光性化合物之標準透明導體; 圖3B顯示在黑暗中在熱處理後在包括可熱活化感光性化 合物之透明導體中破壞或損壞的奈米線;及 圖3 C顯示在光輻照後在包括感光性化合物之透明導體中 完好無損的奈米線。 【主要元件符號說明】 10 薄膜 •31· 153948.doc 201137062 20 遮罩 30 開口 40 未遮蓋區域 50 遮蓋區域 100 透明導體 110 基板 120 薄膜 130 遮罩 140 未遮蓋區域 150 遮蓋區域 160 低導電區域 153948.doc -32Preparation of the film - HPMC was prepared by combining 12 mg IRGACURE® 754, 5 g PGME and 5 g of a formulation containing 0.38-0.4% silver nanowires, 0.4% HPMC, 0.0025% TRITONTM X-100 and water. Ink composition. The ink composition (5 ml) was spin coated onto a 6 x 6 inch glass slide at 500 rpm for 60 seconds. The solvent was air dried at 38 ° C for 60 seconds. Example 4 Direct photo patterning - solvent development A film of Example 3 was formed on a glass substrate. A mask is placed on the film. The mask defines the underlying film as a covered area and an uncovered area (which corresponds to the opening of the mask). The film is then exposed to a UV light source (fused UV system) for about 3-5 seconds to bring the crosslinkable polymer in the exposed area of the film to 153948.doc -25 - 201137062. No crosslinking occurred in the covered area of the film. After the exposure, the film was developed by washing with water, whereby the masking area of the film was dissolved and the nanowire was removed. Then the film was dried in a nitrogen atmosphere and baked at 180 ° C for 90 seconds. In the patterned film, the nanowires in the uncovered (conductive) region were intact, and the sheet resistance of the 4-point probe was about 15 Å/□. Since substantially all of the H-line shaws in the mask region of the film have been washed away during development of the film, the mask region is not electrically conductive. Example 5 Thermal Degradation and Photodegradation of Photosensitive Compounds 1. Standard Ink Formulation Without Photosensitive Compounds Standard Ink Formulation of 0.4% HPMC in Water Containing 0.2% Silver Nanowires and 1 TritonTM x-100 Things. A transparent conductive film of silver nanowires in HPMC adhesive was prepared by spin coating the ink formulation on a 2x2 glass substrate at 3000 rpm/60 sec. The film was then baked at 14 Å for 60 seconds. Figure 3A shows the TEM image of the interconnected silver nanowires in the film. Using the unsensitized film as the control film (1) β 2 · has heat Thermal degradation of a film that activates a photosensitive compound is prepared by dissolving 40 mg of diphenylphosphonium nitrate (DPIN) in 5 g of water and 5 g of acetone. Thereafter, 0.5 g of the DPIN solution is added to 5 g In the standard ink formulation described above, the resulting ink containing silver nanowires, HPMC and DPIN was rotated in the dark at 3000 rpm for 6 sec to form a photosensitive film (2). Then on a hot plate In the dark, the film is baked at 14 〇. Under the armpit for 90 seconds 〇 153948.doc •26· 201137062 Figure 3B (magnification, dark field) shows that the position of the Yinnai line seems to break. It can be inferred that the dark heat of DPIN Degradation causes the original SI' of the silver nanowire structure to be destructed, which leads to a decrease in conductivity and a slight increase in turbidity (see, for example, Table 1). 3. Photodegradation of heat-activatable photosensitive compounds by 40 mg Diphenylhydrazine nitrate (DpiN) is dissolved in 〇5 lysine and 〇5 g of acetone to prepare a solution. Thereafter, 〇 5 § The 〇1&gt;1] solution was added to 5 g of the standard ink formulation described above. The resulting ink containing silver nanowires, HPMC and DPIN was rotated 6 rpm at 3 rpm in the dark. Seconds to form a photosensitive film (3), then exposed to UV radiation on a fused curing system running at 1 () ft / min, followed by boiling on a hot plate at 14 (rc for 9 sec seconds) The resulting film showed that the silver nanowire appeared to be intact (Fig. 3c). Therefore, it can be inferred that the circle has been completely destroyed by uv irradiation without causing any structural damage to the silver nanowire. Baking does not produce any thermal degradation products that can damage the silver nanowires. Table 1 summarizes the optical and electrical properties of the films (1), (7), and (3), which correspond to Figures 3A, 3B, and 3Ce, respectively, as shown by Or a plurality of thermal degradation products cause damage to the nanowire structure, so the photosensitive film subjected to heat treatment (Fig. 3b) has a significantly increased electrical resistance compared to the control film of Fig. 3A. City, photosensitive film subjected to light irradiation before heat treatment (Fig. 3C) The resistance increase is extremely small compared to the control film. The optical and electrical properties and structure of the film have been The characteristics are the same. 153948.doc -27- 201137062 Table 1. Control film (1) Film (2) Film (3) T% 92.5 92.0 92.3 H% 0.62 0.75 0.61 R (Ohm/Sq) 78 &gt;19,999 114 Example 6 Borrow A solution was prepared by dissolving 40 mg of diphenylphosphonium nitrate (DPIN) in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of this DPIN solution was added to 5 g of the standard ink formulation described in Example 5. . The resulting ink containing silver nanowires, HPMC and DPIN was rotated at 3000 rpm for 60 seconds in the dark to form a photosensitive film (4). The film was then baked at 100 ° C for 90 seconds in the dark on a hot plate. Table 2 shows the optical and electrical properties of the film (4) and the optical and electrical properties of the control film (1) and film (2). Table 2 Control film (1) Film (2) 140 ° C / 90 sec film (4) 100 〇 C / 90 sec T% 92.5 92.0 91.7 H% 0.62 0.75 0.78 R (Ohm / Sq) 78 &gt; 19, 999 280 It is shown that if the photosensitive compound and the heat treatment duration are the same, the temperature of the heat treatment is related to the degree of damage of the structure of the silver nanowire. The higher the temperature, the greater the damage to the nanowire. Therefore, a certain threshold temperature may be required for the occurrence of a significant degree of DPIN thermal degradation and silver nanowire damage. 153948.doc -28- 201137062 Example 7 A solution was prepared by dissolving 40 mg of diphenylsulfonium trifluorosulfonate (DPITf) in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of this DPITf solution was added to 5 g of the standard ink formulation described in Example 5. The resulting ink containing silver nanowires, HPMC and DPITf was rotated at 3000 rpm for 60 seconds in the dark to form a photosensitive film (5). Further, a photosensitive film (6) was also obtained, which was then exposed to UV irradiation 3 times on a fusion curing system operated at 10 ft/min, followed by baking at 160 ° C for 90 seconds on a hot plate. Table 3 shows the optical and electrical properties of the films (5) and (6) and the optical and electrical properties of the control films (1) and (2). Table 3 Control film (1) Film (2) DPIN 140〇C/90 s film (5) DPITf 160〇C/90s film (6) DPITf light/160〇C/90s T% 92.5 92.0 91.8 91.8 H% 0.62 0.75 0.80 0.64 R(Ohm/Sq) 78 &gt;19,999 1,600 160 The film comprising DPITf exhibits thermal degradation and photodegradation behavior similar to that of a film containing DPIN, ie, DPITf undergoes thermal degradation in the dark and causes damage to the nanowire, such as a film ( 5) The increase in medium resistance is reflected. However, it should be understood that DPITf is inferior to DPIN in producing an insulating film even after heat exposure at a slightly higher temperature. In addition, as with DPIN, DPITf undergoes photodegradation and may be completely destroyed, so that subsequent heat treatment does not produce thermal degradation products sufficient to damage the nanowires 153948.doc -29- 201137062. Example 8 Low Visibility Patterning by Thermal Development A solution was prepared by dissolving 40 mg of diphenylphosphonium nitrate dpin in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of this DPIN solution was added to 5 g containing 0.3% silver nanowire, 0.3. / depreciation] \ / 1 (2 and 1 〇 0 卩卩 111 11 1111 '01 ^ 1 ^ -100 ink formulation. The mixture was rotated at 1 rpm for 6 sec seconds in the dark' Simple drying in the dark at 40 ° C for 30 seconds to produce a photosensitive film (7) » Apply a light mask to the film (7) and expose the module to UV on a fused system operating at 3 ft/min Irradiation. The light mask was removed and the film was then baked in the dark on a hot plate at 140 ° C for 90 seconds. The resulting film showed no significant difference in turbidity between the exposed and unexposed areas (eg, less than 1 相) %) The conductivity of the exposed area is about 40 〇hm/sq, while the unexposed area is insulated, thus demonstrating that only the use of heat as a development step produces a low visibility pattern. Example 9 Evaluation of Optical and Electrical Properties of Transparent Conductors The transparent conductive film prepared by the method was evaluated to establish its optical and electrical properties. The light transmittance data was obtained according to the method in ASTM D1003. The turbidity was measured using BYK Gardner Haze-gard Plus. The sheet resistance was Fluke. 175 True RMS Multimeter or Non-Contact Resistor, Deic〇m 71 7B A conductivity monitor is used to measure. A more typical device is a 4-point measuring system for measuring resistance (eg, 'scaled from Keithley Instruments'). These measurements typically include turbidity and transmittance of the bare substrate (eg, For 153948.doc •30· 201137062 glass, the turbidity is ().04% and the transmittance is 93 4%). The interconnectivity of the Reiner wire and the coverage of the substrate can also be obtained under S or scanning electron microscope. All the above-mentioned US patents, US patents, disclosures, US patent applications, foreign patents, foreign patent applications, and non-patent publications mentioned in this manual and/or the list of information in this request. The entire contents of the present invention are hereby incorporated by reference. It is to be understood that it is understood that the specific embodiments of the present invention are described herein, but without departing from the spirit and scope of the invention Various modifications are made thereto. The invention is limited only by the scope of the accompanying claims. [FIG. 1A shows a mask placed over a conductive film made according to one embodiment; Figure 1B shows straight Photopatterned conductive film after light patterning; Figure 2 shows an embodiment of the present disclosure in which a visible or low visibility pattern is formed in a transparent conductor having a heat-activatable photosensitive compound; Figure 3 A does not contain any a standard transparent conductor of a photosensitive compound; FIG. 3B shows a nanowire broken or damaged in a transparent conductor including a heat-activatable photosensitive compound after heat treatment in the dark; and FIG. 3C shows sensitization after light irradiation A neat nanowire in a transparent conductor of a compound. [Major component symbol description] 10 Film • 31· 153948.doc 201137062 20 Mask 30 Opening 40 Uncovered area 50 Covering area 100 Transparent conductor 110 Substrate 120 Film 130 Mask 140 Uncovered area 150 Covering area 160 Low conductive area 153948. Doc -32

Claims (1)

201137062 七、申請專利範圍: 1. 一種墨水組合物,其包含: 複數個導電奈米結構; 黏合材料; 感光性化合物;及 極性溶劑。 2·如請求項1之墨水組合物,其中該黏合材料係選自由下 列組成之群之可交聯聚合物:聚乙烯吡咯啶酮、聚乙烯 醇、聚丙烯醯胺、聚丙烯酸酯、聚環氧乙烷、聚乙烯亞 胺、陰離子型及陽離子型聚電解質、聚(2•乙基_2_噁唑 啉)、羥基丙基甲基纖維素、羥基丙基曱基纖維素鄰苯二 曱酸酯、羥基丙基纖維素、羥基丁基甲基纖維素 '乙基 羥基乙基纖維素、羧曱基·羥基乙基纖維素鈉及羧曱基乙 基纖維素。 3. 如請求項2之墨水組合物’其中該可交聯聚合物係聚乙 稀0比洛咬嗣。 4. 如請求項2之墨水組合物’其中該可交聯聚合物係羥基 丙基甲基纖維素。 5 ·如睛求項1至4中任一項之墨水組合物,其中該感光性化 合物係 IRGACURE® 754。 6 ·如請求項1至4中任一項之墨水組合物,其中該感光性化 合物係鏽鹽。 7 ·如請求項1至6中任一項之墨水組合物,其中該極性溶劑 係極性指數至少為4之質子溶劑。 153948.doc 201137062 8·如請求項7之墨水組合物’其中該極性溶劑係水、單經 基醇或多經基醇。 9. 如請求項8之墨水組合物,其中該極性溶劑係聚丙二醇 單甲基謎。 10. 如請求項1至9中任一項之墨水組合物,其中該等導電奈 米結構係金屬奈米線。 11. 如請求項10之墨水組合物,其中該等金屬奈米線係銀奈 米線。 12. 如請求項11之墨水組合物,其中該等金屬奈米線之長度 超過10 μιη且直徑小於1〇〇 nm。 13_如請求項1至12中任一項之墨水組合物,其進一步包含 表面活性劑。 14. 如請求項1至13中任一項之墨水組合物,其進一步包含 共溶劑。 15. 如請求項14之墨水組合物,其中該共溶劑係極性溶劑。 16. 如。青求項1至1 5中任一項之墨水組合物,其中該黏合材 料與该等奈米結構之重量比為約〇丨:丨至約丨〇 。 17. 如請求項1至15中任一項之墨水組合物,其具有介於約1 cP與1000 cp間之黏度。 18. —種方法,其包含: 藉由將墨水組合物沈積於基板上以在該基板上形成互 連導電奈米結構之薄膜,其中該墨水組合物包含複數個 導電奈米結構、黏合材料、感光性化合物及極性溶劑; 及去除該極性溶劑;及 153948.doc 201137062 將該薄膜之一部分暴露於ϋν光源,以使該薄膜經暴露 部分中之可.交聯聚合物交聯。 19. 20. 21. 22. 23. 24. 25. 26. 如凊求項18之方法,其進—步包含在該薄膜上方放置遮 罩’其中該遮罩包括開口 ’該開口對應於該薄膜暴露於 該UV光源之該部分。 如β求項18之方法,其進一步包含溶解該薄膜未暴露於 該UV光源之一部分。 如請求項18之方法,其中該黏合材料係選自由下列組成 之群之可交聯聚合物:聚乙烯吡咯啶酮、聚乙烯醇、聚 丙烯醯胺、聚丙烯酸酯、聚環氧乙烷、聚乙烯亞胺、陰 離子型及陽離子型聚電解質、及聚(2_乙基_2H琳 如睛求項21之方法’其中該可交聯聚合物係聚乙稀。比洛 咬網。 »月求項18之方法,其中該黏合材料係選自由下列組成 之群之可交聯聚合物:羥基丙基甲基纖維素、羥基丙基 甲基纖維素鄰苯二甲_、减丙基纖料、經基丁基 曱基纖維素、乙基羥基乙基纖維素、羧甲基-羥基乙基纖 維素鈉及羧甲基乙基纖維素。 如π求項22之方法’其中該可交聯聚合物係經基丙基甲 基纖維素。 如吻求項1 8之方法’其中該感光性化合物係irgacURE® 754 〇 如《月求項18之方法,其中該極性溶劑係極性指數至少為 4之質子溶劑。 153948.doc 201137062 27·如請求項26之方法 多經基醇。 其中該極性溶劑係水、單羥基醇或 28.如請求項26之方法 猶。 其中該極性溶劑係201137062 VII. Patent application scope: 1. An ink composition comprising: a plurality of conductive nanostructures; a bonding material; a photosensitive compound; and a polar solvent. 2. The ink composition of claim 1, wherein the adhesive material is selected from the group consisting of crosslinkable polymers consisting of polyvinylpyrrolidone, polyvinyl alcohol, polyacrylamide, polyacrylate, polycyclic ring Oxyethane, polyethyleneimine, anionic and cationic polyelectrolytes, poly(2 ethyl-2-oxazoline), hydroxypropylmethylcellulose, hydroxypropyl fluorenyl cellulose phthalic acid Acid ester, hydroxypropyl cellulose, hydroxybutyl methyl cellulose 'ethyl hydroxyethyl cellulose, sodium carboxymethyl hydroxyethyl cellulose, and carboxymethyl ethyl cellulose. 3. The ink composition of claim 2, wherein the crosslinkable polymer is polyacetonitrile. 4. The ink composition of claim 2, wherein the crosslinkable polymer is hydroxypropylmethylcellulose. The ink composition according to any one of items 1 to 4, wherein the photosensitive compound is IRGACURE® 754. The ink composition according to any one of claims 1 to 4, wherein the photosensitive compound is a rust salt. The ink composition according to any one of claims 1 to 6, wherein the polar solvent is a protic solvent having a polarity index of at least 4. 153948.doc 201137062 8. The ink composition of claim 7, wherein the polar solvent is water, mono- or alcohol-based alcohol. 9. The ink composition of claim 8, wherein the polar solvent is a polypropylene glycol monomethyl mystery. 10. The ink composition of any one of claims 1 to 9, wherein the electrically conductive nanostructures are metal nanowires. 11. The ink composition of claim 10, wherein the metal nanowires are silver nanowires. 12. The ink composition of claim 11, wherein the metal nanowires have a length of more than 10 μηη and a diameter of less than 1 〇〇 nm. The ink composition according to any one of claims 1 to 12, which further comprises a surfactant. 14. The ink composition of any one of claims 1 to 13, further comprising a cosolvent. 15. The ink composition of claim 14, wherein the cosolvent is a polar solvent. 16. For example. The ink composition according to any one of claims 1 to 5, wherein the weight ratio of the adhesive material to the nanostructures is from about 丨:丨 to about 丨〇. The ink composition according to any one of claims 1 to 15, which has a viscosity of between about 1 cP and 1000 cp. 18. A method comprising: forming a film of interconnected conductive nanostructures on a substrate by depositing an ink composition on a substrate, wherein the ink composition comprises a plurality of conductive nanostructures, bonding materials, a photosensitive compound and a polar solvent; and removing the polar solvent; and 153948.doc 201137062 A portion of the film is exposed to a ϋν source to crosslink the film through the crosslinkable polymer in the exposed portion. 19. 20. 22. 22. 24. 24. 25. 26. The method of claim 18, further comprising placing a mask over the film, wherein the mask comprises an opening, the opening corresponding to the film Exposure to this portion of the UV source. A method of β, wherein the method further comprises dissolving a portion of the film that is not exposed to the UV light source. The method of claim 18, wherein the binder is selected from the group consisting of crosslinkable polymers consisting of polyvinylpyrrolidone, polyvinyl alcohol, polyacrylamide, polyacrylate, polyethylene oxide, Polyethyleneimine, anionic and cationic polyelectrolytes, and poly(2_ethyl 2H Lin as a method of claim 21) wherein the crosslinkable polymer is polyethylene. Bilo bite. The method of claim 18, wherein the binder is selected from the group consisting of crosslinkable polymers of the group consisting of hydroxypropylmethylcellulose, hydroxypropylmethylcellulose phthalate, and propylcellulose. , butyl butyl fluorenyl cellulose, ethyl hydroxyethyl cellulose, sodium carboxymethyl-hydroxyethyl cellulose, and carboxymethyl ethyl cellulose. The method of π seeking item 22, wherein the crosslinkable The polymer is propylmethylcellulose. The method of the method of claim 18 wherein the photosensitive compound is irgacURE® 754, such as the method of the monthly claim 18, wherein the polar solvent has a polarity index of at least 4 Proton solvent. 153948.doc 201137062 27·If request 26 Method Diversified alcohol. Wherein the polar solvent is water-based, or a monohydric alcohol 28. The method of item 26 still request wherein the polar solvent system 二醇單曱基 29. 如請求項18至28中任一瑁夕古、土 . ^ 項之方法,其中該等導電奈米結 構係金屬奈米線。 30. 如請求項29之方法,其中呤笪 共干該專金屬奈米線之長度超過1〇 μηι且直徑小於1〇〇 nm。 31. —種導電膜’其包含: 複數個互連導電奈米結構; 黏合材料’其中該等互連導電奈米結構敌入該黏合材 料中;及 感光性化合物》 32. 如請求項31之導電膜,其中該黏合材料係選自由下列組 成之群之可父聯聚合物:聚乙稀„比略咬酮聚乙稀醇、 聚丙烯醯胺、聚丙烯酸酯、聚環氧乙烷、聚乙烯亞胺、 陰離子型及陽離子型聚電解質 '及聚(2_乙基_2_噁唑 啉)。 33. 如請求項32之導電膜,其中該可交聯聚合物係聚乙烯吡 咯啶酮。 34. 如請求項3丨之導電膜,其中該黏合材料係選自由下列組 成之群之可交聯聚合物:經基丙基甲基纖維素、經基丙 基甲基纖維素鄰苯二甲酸酯、羥基丙基纖維素、羥基丁 基甲基纖維素、乙基羥基乙基纖維素、羧曱基-羥基乙基 153948.doc 201137062 纖維素鈉及羧甲基乙基纖維素。 35.如請求項34之導電膜’其中該可交聯聚合物係經基丙基 甲基纖維素。 36·如請求項35之導電膜’纟中該感光性化合物係光起始 劑。 37.如請求項36之導電膜’其中該光起始劑係irgacure@ 754 ° 38·如請求項31至37中任-項之導電膜,其中該等導電奈米 結構係金屬奈米線。 39. 如請求項38之導電膜,其中該等金屬奈米線之長度超過 10 μιη且直徑小於1 〇 〇 nm。 40. 如請求項31至39中任-項之導電膜,其包含第一區域及 第一區域,其中該第-區域中之該可交聯聚合物經交 聯,且該第二區域中之該可交聯聚合物經去除。 .如請求項40之導電膜,其中該第一區域比該帛二區域更 具導電性。 42. 如請求項31至39中任-項之導電膜,其中該感光性化合 物可熱活化。 43. 如請求項42之導電膜,其中該感光性化合物係鏽鹽。 44. 如請求項42至43中任一項之導電膜,其包含第一區域及 第-區域’其中該第—區域中之該感光性化合物經光降 解且該第一區域令之該感光性化合物經熱降解。 45. 如請求項44之導電膜,其中該第一區域比該第二區域更 具導電性。 153948.doc 201137062 46. 如請求項44之導電膜,其中該第一區域具有第一濁度且 該第二區域具有第二濁度,且其中該第一濁度與該第二 濁度彼此相差不超過1 〇〇/0。 47. —種方法,其包含: 藉由將墨水組合物沈積於基板上而在該基板上形成互 連導電奈米結構薄膜’其中該墨水組合物包含複數個導 電奈米結構、黏合劑材料、可熱活化感光性化合物及極 性溶劑;及去除該極性溶劑,· 在該薄膜上方放置遮罩, 薄膜界定為遮蓋區域及未遮 於該開口; 其中該遮罩包括開口且將該 蓋區域’該未遮蓋區域對應 在第/里度下經由e亥遮罩之該開σ使該薄膜暴露於Μ 光源,以使該未遮蓋區域中之該感光性化合物發生光降 解;及 黑暗中在第二溫度下將該薄膜暴露於熱源,以使該 遮羞區域中之該感光性化合物發生熱降解。 48.:請求項47之方法,其中該感光性化合物之該光降解不 49 ΓΓί未遮蓋區域中之該等奈米結構造成結構損壞。 ^求項47至48中任一項之方法,其中該感光性化合物 降解對該遮蓋區域中之該等奈米結構造成結構損 環0 在暴露後,該 在暴露後,该 50. 如請求項47至49中任一項之方法其中 未遮蓋區域比該遮蓋區域更具導電性。 51. 如請求項47至5〇中任一項之方法其中 153948.doc 201137062 未遮蓋區域之濁度值與該遮蓋區域之濁度值相差不超過 10%。 52. 如請求項47至^ 51中任一項之方法,其中該感光性化合物 係光酸產生齊J ^ 53. 如清求項52之方法,其中該光酸產生劑係二芳基錤鹽或 三芳基疏鹽。 54. 如請求項53之方法’其中該光酸產生劑係二苯基鍈鹽, 其中s玄一苯基鎖鹽之抗衡離子係氣離子、硝酸根、四敗 硼酸根、六氟磷酸根、六氟砷酸根或六氟銻酸根。 153948.docA diol monomethyl group. The method of any one of claims 18 to 28, wherein the conductive nanostructures are metal nanowires. 30. The method of claim 29, wherein the 金属 co-drying the specialized metal nanowire has a length greater than 1 〇 μηι and a diameter less than 1 〇〇 nm. 31. A conductive film comprising: a plurality of interconnected conductive nanostructures; a bonding material 'where the interconnected conductive nanostructures are entrapped in the bonding material; and a photosensitive compound>> 32. a conductive film, wherein the adhesive material is selected from the group consisting of a copolymerizable polymer: polyethylene phthalate, polyacrylamide, polyacrylamide, polyethylene oxide, poly Ethyleneimine, anionic and cationic polyelectrolyte' and poly(2-ethyl-2-oxazoline). The conductive film of claim 32, wherein the crosslinkable polymer is polyvinylpyrrolidone 34. The conductive film of claim 3, wherein the bonding material is selected from the group consisting of crosslinkable polymers consisting of propylmethylcellulose, propylmethylcellulose phthalate Formate, hydroxypropylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, carboxymethyl-hydroxyethyl 153948.doc 201137062 Cellulose sodium and carboxymethylethylcellulose. The conductive film of claim 34, wherein the crosslinkable polymer The propyl group-containing methyl cellulose. 36. The photosensitive film according to claim 35, wherein the photosensitive compound is a photoinitiator. 37. The conductive film of claim 36, wherein the photoinitiator is irgacure@ The conductive film of any one of claims 31 to 37, wherein the conductive nanostructures are metal nanowires. 39. The conductive film of claim 38, wherein the length of the metal nanowires More than 10 μm and a diameter of less than 1 〇〇nm. The conductive film according to any one of claims 31 to 39, comprising a first region and a first region, wherein the crosslinkable polymer in the first region Crosslinked, and the crosslinkable polymer in the second region is removed. The conductive film of claim 40, wherein the first region is more conductive than the second region. The conductive film of any one of the above-mentioned items, wherein the photosensitive compound is thermally activated. The conductive film of claim 42, wherein the photosensitive compound is a rust salt. 44. Any one of claims 42 to 43 a conductive film comprising a first region and a first region, wherein the photosensitive property in the first region The composition is photodegraded and the first region causes the photosensitive compound to be thermally degraded. 45. The conductive film of claim 44, wherein the first region is more conductive than the second region. 153948.doc 201137062 46 The conductive film of claim 44, wherein the first region has a first turbidity and the second region has a second turbidity, and wherein the first turbidity and the second turbidity differ from each other by no more than 1 〇〇 47. A method comprising: forming an interconnected conductive nanostructure film on the substrate by depositing an ink composition on a substrate, wherein the ink composition comprises a plurality of conductive nanostructures, bonded a material, a heat-activatable photosensitive compound, and a polar solvent; and removing the polar solvent, placing a mask over the film, the film being defined as a masking area and not covering the opening; wherein the mask includes an opening and the cover The area 'the uncovered area corresponds to exposing the film to the xenon light source via the opening σ of the e-hai mask at the first/near level to photodegrade the photosensitive compound in the uncovered area; The film is exposed to a heat source at a second temperature in the dark to thermally degrade the photosensitive compound in the shading area. 48. The method of claim 47, wherein the photodegradation of the photosensitive compound does not cause structural damage to the nanostructures in the unmasked region. The method of any one of items 47 to 48, wherein the photosensitive compound degrades to cause damage to the nanostructures in the masking region. After the exposure, the exposure is 50. The method of any one of 47 to 49 wherein the uncovered area is more conductive than the covered area. 51. The method of any one of claims 47 to 5, wherein the turbidity value of the uncovered area differs from the turbidity value of the covered area by no more than 10%. The method of any one of claims 47 to 51, wherein the photosensitive compound is a photoacid, and the photoacid generator is a diarylsulfonium salt. Or triaryl salt. 54. The method according to claim 53, wherein the photoacid generator is a diphenylphosphonium salt, wherein the counter ion of the sino-phenyl-salt salt is a gas ion, a nitrate, a tetrahydroborate, a hexafluorophosphate, Hexafluoroarsenate or hexafluoroantimonate. 153948.doc
TW100104169A 2010-02-05 2011-02-08 Photosensitive ink compositions and transparent conductors and method of using the same TWI563042B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30201310P 2010-02-05 2010-02-05
PCT/US2011/023732 WO2011097470A2 (en) 2010-02-05 2011-02-04 Photosensitive ink compositions and transparent conductors and method of using the same
US13/021,274 US9534124B2 (en) 2010-02-05 2011-02-04 Photosensitive ink compositions and transparent conductors and method of using the same

Publications (2)

Publication Number Publication Date
TW201137062A true TW201137062A (en) 2011-11-01
TWI563042B TWI563042B (en) 2016-12-21

Family

ID=46759360

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104169A TWI563042B (en) 2010-02-05 2011-02-08 Photosensitive ink compositions and transparent conductors and method of using the same

Country Status (1)

Country Link
TW (1) TWI563042B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611231A1 (en) * 2012-06-22 2020-02-19 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10870772B2 (en) 2014-07-31 2020-12-22 C3Nano Inc. Transparent conductive films with fused networks
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
CN115216177A (en) * 2022-05-25 2022-10-21 湖南大学 Large-area metal patterning material assisted by modified photosensitive ink and preparation method thereof
WO2022227660A1 (en) * 2021-04-25 2022-11-03 Tcl科技集团股份有限公司 Ink, preparation method for quantum dot film, and preparation method for light-emitting diode
TWI830894B (en) 2019-04-03 2024-02-01 英屬維爾京群島商天材創新材料科技股份有限公司 Metal nanostructure purification

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214466B1 (en) * 2005-12-14 2007-05-08 E. I. Du Pont De Nemours And Company Cationically polymerizable photoimageable thick film compositions, electrodes, and methods of forming thereof
TWI426531B (en) * 2006-10-12 2014-02-11 Cambrios Technologies Corp Nanowire-based transparent conductors and applications thereof
US20090035704A1 (en) * 2007-08-03 2009-02-05 Hong Zhuang Underlayer Coating Composition Based on a Crosslinkable Polymer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611231A1 (en) * 2012-06-22 2020-02-19 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10781324B2 (en) 2012-06-22 2020-09-22 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US10870772B2 (en) 2014-07-31 2020-12-22 C3Nano Inc. Transparent conductive films with fused networks
US11512215B2 (en) 2014-07-31 2022-11-29 C3 Nano, Inc. Metal nanowire ink and method for forming conductive film
US11814531B2 (en) 2014-07-31 2023-11-14 C3Nano Inc. Metal nanowire ink for the formation of transparent conductive films with fused networks
US11968787B2 (en) 2018-06-26 2024-04-23 C3 Nano, Inc. Metal nanowire networks and transparent conductive material
TWI830894B (en) 2019-04-03 2024-02-01 英屬維爾京群島商天材創新材料科技股份有限公司 Metal nanostructure purification
WO2022227660A1 (en) * 2021-04-25 2022-11-03 Tcl科技集团股份有限公司 Ink, preparation method for quantum dot film, and preparation method for light-emitting diode
CN115216177A (en) * 2022-05-25 2022-10-21 湖南大学 Large-area metal patterning material assisted by modified photosensitive ink and preparation method thereof

Also Published As

Publication number Publication date
TWI563042B (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6738574B2 (en) Method for forming thin films of interconnecting conductive nanostructures on a substrate
JP7426126B2 (en) Transparent conductive coatings based on metal nanowires and polymeric binders, their solution processing, and patterning methods
JP6577018B2 (en) Metal nanowire inks for the formation of transparent conductive films with fused networks
CN103429427B (en) Conductive laminated body and touch panel
RU2641739C2 (en) Mixtures, methods and compositions related to conducting materials
JP6392213B2 (en) Metal nanostructured network structure and transparent conductive material
JP2017063046A (en) Reliable and durable conductive films comprising metal nanostructures
TW201137062A (en) Photosensitive ink compositions and transparent conductors and method of using the same
CN109564803B (en) Transparent conductive film and method for producing transparent conductive pattern
TW201209856A (en) Conductive layer transferring material and touch panel
JP2013016455A (en) Composition for coating formation used for formation of transparent conductive film
JP2012051060A (en) Substrate provided with metal nanostructure on surface thereof and method for producing the same
WO2019195117A1 (en) 3-d printed devices formed with conductive inks and method of making
WO2015084588A1 (en) Preparation of articles with conductive micro-wire pattern
JP2013531808A (en) Stencil for high-throughput, micron-scale etching of substrates and methods for making and using the same
CN108603064A (en) Metal nanometer line ink, transparent conductive substrate and transparent anti static substrate
TW202132111A (en) Coatings and processing of transparent conductive films for stabilization of sparse metal conductive layers
JP2022527808A (en) Method of forming a conductive film and a conductive film
KR20160050172A (en) Conductive coating substrate having metal nano material