TW201133302A - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
TW201133302A
TW201133302A TW99109471A TW99109471A TW201133302A TW 201133302 A TW201133302 A TW 201133302A TW 99109471 A TW99109471 A TW 99109471A TW 99109471 A TW99109471 A TW 99109471A TW 201133302 A TW201133302 A TW 201133302A
Authority
TW
Taiwan
Prior art keywords
electrode
conductive layer
touch panel
voltage
voltage dividing
Prior art date
Application number
TW99109471A
Other languages
Chinese (zh)
Other versions
TWI403935B (en
Inventor
Wei-Jen Tai
Shao-Peng Pai
Jerry Yeh
Original Assignee
Apex Material Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apex Material Technology Corp filed Critical Apex Material Technology Corp
Priority to TW99109471A priority Critical patent/TWI403935B/en
Publication of TW201133302A publication Critical patent/TW201133302A/en
Application granted granted Critical
Publication of TWI403935B publication Critical patent/TWI403935B/en

Links

Abstract

The present invention relates to a touch panel comprising a first conductive layer; a second conductive layer opposite to the first conductive layer; and an electrode having a plurality of wired units being conductive materials which are continuously connected to each other in series and disposed on a surface opposite to the second conductive layer of the first conductive layer.

Description

201133302 六、發明說明: 【發明所屬之技術領域】 本發明係指-種觸控©板,尤指—種具有分壓電極之觸控面板。 【先前技術】 隨著數位科技的進步,各種資訊處理設備以驚人的速度蓬勃發展, 在此數位資訊的浪潮下,由於具有高度的便利性,觸控面板早已廣泛的 被用作為數位電子裝置的輸入設備,從pDA、行動電話至筆記型電腦, 9 甚至工業用電腦,隨處都可看見觸控面板的應用,其中又以三明治 (sandwiched)式的電阻觸控面板最廣為受到使用。 請參閱第一圖(A),其係為習知電阻觸控面板之示意圖。第一圖(A) 中所揭示的觸控面板10主要由下導電層U、上導電層12、雙面膠13 以及間隔物(spacer)14等元件所構成,其中通常上導電層u以及下導電 層11是在表面塗佈有銦錫氧化物(ITO)、氟錫氧化物史lu〇fine Τώ oyde, FTO)、銻錫氧化物(Antim〇ny Τώ 〇城AT〇)或奈米碳管(η_ tobe)等透光導電物質之薄膜11a、l2a的玻璃基板nb以及pet基板 φ 12b,上導電層12與下導電層11之間透過雙面膠13而接合,上導電層 12與下導電層η之間會設置間隔物μ以分隔兩者,以避免下導電層 11與上導電層I2自行導通;上導電層I2的表面為按壓表面s,使用者 透過按壓按壓表面S使下導電層11與上導電層u相接觸而導通,觸控 面板10即可偵測到按堡之位置而產生控制訊號;一輸出電路15連接於 上導電層12與下導電層η的側面,用以輪出控制訊號;在pET基板 12b之上還可加設一層保護層(未示於圖中),這層保護層可為具有抗反 射、抗眩、抗污、抗霧、抗菌、抗指紋或者抗紫外線等等功能之層。 請繼續參照第一圖(B),其係為習知電阻觸控面板的工作原理示意 201133302 圖。觸控面板10其下導電層11的四周圍分別設置了多條電極13X、 13Y,位於相對邊的電極13X與電極13χ,或電極13γ與電極13γ是彼 此平行,而位於相鄰邊的電極13Χ與電極13Υ則是彼此垂直,一組相 互平行之對邊的電極13Χ與電極ι3χ共同形成電路χ,而另一組相互 平行之對邊的分壓電極13Υ與電極ΐ3γ則共同形成電路γ。 觸控面板10工作時,先從Ε1與Ε3點輸入5 v〇ltage電壓,而在電 路Y之間形成一個5V電壓降’而利用電路l來感應觸碰點在χ方向的 電壓降之類比訊號’再轉換為數位訊號而獲得觸碰點在χ方向之座標, 然後再自Ε1與Ε2點輸入5 Voltage電壓,而在電路χ之間形成一個5V 電壓降,而利用電路L來感應觸碰點在γ方向的電壓降之類比訊號, 再轉換為數位訊號而獲得觸碰點在γ方向的座標,如此反覆交替,在 約每秒150Hz的工作頻率下,當觸控面板1〇之觸控表面s上的任意點 受到觸碰時’藉由下導電層11與上導電層的導通而產生電壓訊號而 檢知觸碰,並經由訊號輸出線L而輸出,經由計算觸碰點在又與¥方 向的電壓值’即可換算出觸碰點的座標。 分佈在X與Y方向的5V電壓降,通常是以線性的方式分佈, 如此控制器即可準確的測出觸碰點的座標,為了產生線性電壓降,電極 13Χ與13Υ的δ又§十就成為重要的課題,經由適當設計後的電極ex與 13Υ,能夠適當補償電壓與阻抗之間的關係,就可以在又與¥方向上產 生均勻的線性電壓降,如此觸控面板才能精確地工作。 請參閱第二圖(Α),其係為習知技術之第一種線性分壓電極之示意 圖。第一圖(Α)中揭示了下導電層η的俯視,γ向線性分壓電極13γ以 及X向線性分壓電極13Χ,其形成在下導電層^的ΙΤ〇薄膜12a上, 且其材質為銀毁,電壓通過饋入點23而分別導入γ向線性分壓電極13γ 以及X向線性分壓電極13χ,由於γ向線性分壓電極13γ以及χ向線 -4- 201133302 性分壓電極13X本身會具有相當的阻抗,為了在沿著χ方向分佈的斷 面ΥΎ’與沿著Y方向分佈的斷面X,X,上,都能夠呈現出均勻的等電位 線,會需要將Υ向線性分壓電極13Υ以及X向線性分壓電極13χ中所 框圍住的ιτο薄膜,利用蝕刻的方式除去,而形成電壓補償區μ,以 分別調適Υ向線性分壓電極13Υ以及χ向線性分壓電極13χ的局部阻 抗,即可分別在斷面Χ,Χ,與γ,γ,方向上,形成均勻的水平等電位線。 通常越靠近饋入點23處的電壓補償區Μ,其挖除面積會越多,以 產生較大的阻抗,而越靠近下導電層乜的中心處,電壓補償區Μ的面 ♦ 積會漸次擴增,也就是產生較小的阻抗,因此電壓補償區21可以平衡 電壓從饋入點23傳輸到下導電層U的中心處的過程,由於γ向線性分 壓電極13Υ以及χ向線性分壓電極13Χ本身阻抗所引起的電壓衰減。(待 討論,是否需改圖) 但值得注意的是,雖然經過電壓補償區21的調整後,整體來看, 在水平於斷面χ,χ,與γ,γ,方向上的水平等電位線已經是均勻的,但由於 習知的第一種與第二種的γ向線性分壓電極13Υ以及χ向線性分壓電 極13Χ,都是由許多段的分壓電極所構成,因此在段與段之間,如分壓 • 電極段13Υ1與分壓電極段饥2之間,由於其不連續的特性,會導致 垂直於斷面Χ,Χ,與ΥΎ,上所形成的垂直等電位線產生偏差。 請參閱第二圖(Β),其係為習知技術之第二種線性分壓電極之示意 圖。為了補償由於分段式分壓電極所造成的垂直等電位線偏差,因此第 一種線性分壓電極,疋將電壓補償區21形成在γ向線性分壓電極13Υ 以及X向線性分壓電極13Χ的前方,並且是形成在每段分壓電極之間 的位置,藉以在產生均勻的水平等電位線之外,還可同時調整垂直等電 位線。 以上所述的Υ向線性分壓電極13Υ以及χ向線性分壓電極13χ, 201133302 其材質通常皆為銀漿,透過烘烤的方式,而結合到IT〇軸上,但透 過供烤所形成的線性分壓電極,在實際操_,#暴露在較高溫_ 6〇度以上’或者較高濕度約冑85%以上的環境時,由於銀漿與订◦玻 璃間的膨脹係數之差異遽增,會導致銀漿與ΙΤ〇之間的附著度因此減 知’導致線性分壓電極在不經意巾就會從ΙΤ〇上翹起或者娜,由於 均勻等電位線是經由雜電極與電壓補觀的翻運作才會產生,如果 線性分壓電極從ΙΤΟ上缺或者剝落,就無法產生出均料電位線, 會直接影響到觸控面板本身的操控性能。 睛參閱第二U(Q,其係為習知技術之第三種線性分壓電極之示意 圖。為了改善每段分壓電極之間的電壓不連續狀況,以及線性分壓電極 的麵起或者剝落所導致的故障(m曲_Ω),因此第三種線性分屋電 就直接以不刀&的銀漿來作為觸控面板的γ向線性分壓電極ΐ3γ 以及X向線性分_極13X,同時由於贿本身的低阻抗,因此γ向 線性分壓電極13Υ以及X向線性分壓電極13χ本身阻抗所引起的電壓 衷減幾乎可以省略科’故:^需要設置任何的電壓補舰,也可以產生 出均勻的等電位線,且因為線性分壓電極與ΙΤΟ之間有接觸的附著面 積變大,耻線性分壓電極並不容級ΙΤΟ讀域者剝落。 但值得注意的是,習知的第三種線性分壓電極,由於其阻抗低,因 此必然需要耗費更大功率,非常不適合制在講究微型化、低消耗功 率、超長待機時間等的電子裝置上。 職是之故,申請人鑑於習知技術中,在線性分壓電極方面所產生之 2缺失’經過悉心試驗與研究,並一本鐵而不捨之精神,終構思出本 累觸控面板」以克服上述缺點,以下為本案之簡要說明。 【發明内容】 201133302 藜於習知技術巾’對於觸控面板上的分壓電極設計,減存在許多 缺陷’因此本發明提^簡錄線並觀補舰或繞_方式,來製 作觸控面板的分壓電極,因此即使分魏極^純銀漿所製成,但因為 採用繞線的緣故’會賦予分壓電極本身相當的阻抗,而不會導致功率的 大量消耗,同時在佈_ ’每—_線_大小,以及雜組彼此之間 的距離可以儘里縮小,藉由提高料組的總數量與縮小舰組彼此之間201133302 VI. Description of the Invention: [Technical Field] The present invention relates to a touch panel, and more particularly to a touch panel having a voltage dividing electrode. [Prior Art] With the advancement of digital technology, various information processing devices are booming at an alarming rate. Under the wave of digital information, touch panels have been widely used as digital electronic devices because of their high convenience. Input devices, from pDA, mobile phones to notebooks, 9 and even industrial PCs, can be seen everywhere, and sandwich-type resistive touch panels are most widely used. Please refer to the first figure (A), which is a schematic diagram of a conventional resistive touch panel. The touch panel 10 disclosed in the first figure (A) is mainly composed of elements such as a lower conductive layer U, an upper conductive layer 12, a double-sided tape 13, and a spacer 14, wherein the upper conductive layer u and the lower layer are generally The conductive layer 11 is coated with indium tin oxide (ITO), fluorotin oxide 史 oyde (FTO), antimony tin oxide (Antim〇ny 〇 〇 〇 AT) or carbon nanotubes on the surface. (η_tobe) such as the light-transmissive conductive material thin film 11a, l2a of the glass substrate nb and the pet substrate φ 12b, the upper conductive layer 12 and the lower conductive layer 11 are bonded through the double-sided tape 13, the upper conductive layer 12 and the lower conductive A spacer μ is disposed between the layers η to separate the two to prevent the lower conductive layer 11 and the upper conductive layer I2 from conducting themselves; the surface of the upper conductive layer I2 is a pressing surface s, and the user presses the pressing surface S to make the lower conductive layer 11 is in contact with the upper conductive layer u, and the touch panel 10 can detect the position of the gate to generate a control signal; an output circuit 15 is connected to the side of the upper conductive layer 12 and the lower conductive layer η for the wheel a control signal is output; a protective layer (not shown) may be added on the pET substrate 12b. The protective layer may be an anti-reflective, anti-glare, antifouling, antifogging, anti-bacterial, anti-UV fingerprint or the like of the functional layer. Please continue to refer to the first figure (B), which is a schematic diagram of the working principle of the conventional resistive touch panel 201133302. The touch panel 10 is provided with a plurality of electrodes 13X, 13Y around the lower conductive layer 11, electrodes 13X and 13 位于 on the opposite sides, or electrodes 13 γ and 13 γ are parallel to each other, and electrodes 13 on the adjacent sides Χ The electrodes 13A and the electrodes 13A are perpendicular to each other, and a pair of mutually parallel opposite electrodes 13A and ι3χ form a circuit χ, and another group of mutually parallel opposite-side voltage-dividing electrodes 13A and ΐ3γ form a circuit γ. When the touch panel 10 is in operation, the voltage of 5 v〇ltage is input from Ε1 and Ε3, and a voltage drop of 5V is formed between the circuits Y, and the analogy is used to sense the voltage drop of the touch point in the χ direction. 'Re-convert to digital signal and get the coordinates of the touch point in the χ direction, then input 5 Voltage voltage from Ε1 and Ε2 points, and form a 5V voltage drop between the circuit ,, and use circuit L to sense the touch point. The analog signal of the voltage drop in the gamma direction is converted into a digital signal to obtain the coordinates of the touch point in the γ direction, and thus alternately alternates, at a working frequency of about 150 Hz per second, when the touch panel is touched by the touch panel When any point on s is touched, 'the voltage is generated by the conduction of the lower conductive layer 11 and the upper conductive layer to detect the touch, and the output is output via the signal output line L, and the touch point is calculated again with ¥ The voltage value in the direction can be converted to the coordinates of the touch point. The 5V voltage drop distributed in the X and Y directions is usually distributed in a linear manner, so that the controller can accurately measure the coordinates of the touch point. In order to generate a linear voltage drop, the δ and Υ10 of the electrodes 13Χ and 13Υ are As an important issue, the appropriately designed electrodes ex and 13 Υ can properly compensate the relationship between the voltage and the impedance, and a uniform linear voltage drop can be generated in the direction of the ¥, so that the touch panel can operate accurately. Please refer to the second figure (Α), which is a schematic diagram of the first linear voltage dividing electrode of the prior art. The first figure (Α) discloses a plan view of the lower conductive layer η, a γ-direction linear voltage dividing electrode 13γ and an X-direction linear voltage dividing electrode 13Χ, which are formed on the ruthenium film 12a of the lower conductive layer, and are made of silver. Destroyed, the voltage is introduced into the γ-direction linear voltage dividing electrode 13γ and the X-direction linear voltage dividing electrode 13χ through the feeding point 23, respectively, since the γ-to-linear voltage dividing electrode 13γ and the χ-directional line -4- 201133302 the partial pressure electrode 13X itself With a considerable impedance, in order to have a uniform equipotential line in the section ΥΎ' distributed along the χ direction and the section X, X, and the distribution along the Y direction, it is necessary to divide the Υ direction linearly. The electrode 13 Υ and the ιτο film enclosed by the X-direction linear voltage dividing electrode 13 , are removed by etching to form a voltage compensation region μ to respectively adjust the Υ linear constant voltage electrode 13 χ and the linear constant voltage electrode 13 χ. The local impedance can form a uniform horizontal equipotential line in the Χ, Χ, and γ, γ directions, respectively. Generally, the closer to the voltage compensation region 馈 at the feed point 23, the more the excavation area will be, to produce a larger impedance, and the closer to the center of the lower conductive layer ,, the surface area of the voltage compensation region 渐 will gradually Amplification, that is, generating a small impedance, so that the voltage compensation region 21 can balance the transfer of voltage from the feed point 23 to the center of the lower conductive layer U, due to the γ-to-linear voltage dividing electrode 13Υ and the linear partial voltage division The voltage decay caused by the impedance of the electrode 13 itself. (To be discussed, is it necessary to change the map) However, it is worth noting that, although the adjustment of the voltage compensation zone 21 is made, the horizontal equipotential lines in the direction of the χ, χ, and γ, γ directions are observed as a whole. It is already uniform, but since the first and second γ-direction linear voltage dividing electrodes 13 Υ and the 线性 linear differential voltage electrodes 13 习 are composed of a plurality of segmented voltage electrodes, Between the segments, such as the partial pressure • between the electrode segment 13Υ1 and the divided electrode segment, due to its discontinuous nature, vertical equipotential lines formed perpendicular to the Χ, Χ, and ΥΎ, deviation. Please refer to the second figure (Β), which is a schematic diagram of a second linear voltage dividing electrode of the prior art. In order to compensate for the vertical equipotential line deviation caused by the segmented voltage dividing electrode, the first linear voltage dividing electrode, 电压, forms the voltage compensation region 21 at the γ-direction linear voltage dividing electrode 13Υ and the X-direction linear voltage dividing electrode 13Χ. The front side is formed at a position between each of the divided electrodes, so that the vertical equipotential lines can be simultaneously adjusted in addition to generating a uniform horizontal equipotential line. The above-mentioned twisted linear voltage dividing electrode 13Υ and the twisted linear voltage dividing electrode 13χ, 201133302 are usually made of silver paste, which is bonded to the IT shaft by baking, but formed by baking. Linear voltage-dividing electrodes, when the actual operation _, # exposed to a higher temperature _ 6 以上 or more ' or higher humidity than 胄 85% or more, due to the difference in the expansion coefficient between the silver paste and the order glass, Will cause the adhesion between the silver paste and the crucible to be reduced, so that the linear partial pressure electrode will be lifted from the crucible or the Na in the inadvertent towel, because the uniform equipotential line is turned over via the hybrid electrode and the voltage. The operation will only occur. If the linear voltage dividing electrode is missing or peeling off from the crucible, the uniform potential line cannot be generated, which will directly affect the handling performance of the touch panel itself. Refer to the second U (Q, which is a schematic diagram of a third linear voltage dividing electrode of the prior art. In order to improve the voltage discontinuity between each divided voltage electrode, and the surface of the linear voltage dividing electrode or peeling off The resulting fault (m-curve_Ω), so the third linear-divided house directly uses the silver paste without the knife as the γ-direction linear voltage dividing electrode ΐ3γ of the touch panel and the X-direction linear _ pole 13X At the same time, due to the low impedance of the bribe itself, the voltage drop caused by the impedance of the γ-to-linear voltage dividing electrode 13Υ and the X-direction linear voltage dividing electrode 13χ can almost be omitted. Therefore, it is necessary to set any voltage to replenish the ship. A uniform equipotential line can be produced, and since the contact area of the contact between the linear voltage dividing electrode and the crucible becomes large, the shame linear voltage dividing electrode is not exfoliated by the reading domain. However, it is worth noting that the conventional The third linear voltage dividing electrode, because of its low impedance, inevitably requires more power, and is not suitable for electronic devices that are miniaturized, low power consumption, long standby time, etc. In view of the above-mentioned shortcomings in the conventional technique, the two types of missing voltages in the linear voltage-dividing electrode have been carefully tested and studied, and the spirit of perseverance has been conceived to overcome the above shortcomings. Brief Description of the Invention [Disclosed Summary] 201133302 习 习 技术 技术 技术 习 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 To make the voltage-dividing electrode of the touch panel, even if it is made of pure silver paste, but because of the winding, it will give the voltage-dividing electrode itself a considerable impedance without causing a large consumption of power, and at the same time In the cloth _ 'every__ line _ size, and the distance between the groups can be reduced as much as possible, by increasing the total number of groups and reducing the fleet between each other

的距離’可U在細之h肖關為分段所造成的電壓不連續,而可同時 對水平與垂直等電位線進行補償。 因此根據本發明的第一構想,提出一種觸控面板,其包括·一第— 電層’―第二導電層,相對於該第-導電層;以及,且有複數 佈線組是由導電材料以連續的方式彼此串接而設置於該 第一導電層相對於該第二導電層的面上。 在該贈顺m細償區,其設置 =:魄供之觸控*板,其中該材料為-低阻抗材料。 r·佳地騎提供之觸控面板,其巾該低阻抗材料為銀漿。 較佳地,本發_提供之糖 _漿 自口字型、π字型、回字型、凸字细’、中料佈線早疋之型式係選 較佳地,本發騎提供之输峡,其巾 、中之-。 而形成在第二導電層上。 以電極疋,a由印刷的方式 較佳地,本發酬提供之獅吨, 3〇〇Ω/□到2000Ω/口。 〃中'"第一導電層之阻抗為從 根據本發明的第二構想,提出— 第-導電層與_第二導電層,其包括.—:面板,其具有相對設置的_ 線的方式設胁鮮—導電層相胁辦!扣連續繞 201133302 根據本發明的第三構想,提出—種分壓電極,其是由導電材質以連 續繞線的方式設置於一導電膜上。 根據本發_第四構想,提出—種具有如所述之分壓電極的觸控面 板。 【實施方式】 本案將可由以下的實施舰明崎觀分瞭解,使得熟習本技藝之 人士可以據以完成之’穌案之實施並非可由下列實施賴而被限制盆 實施型態。 请參閱第三圖’其係為本發明之分壓電極第一實施例的示意圖。第 三圖中揭示了一個導電層30的V4面積俯視,導電層%主要是由透明 基板與導膜31所組成’導電_ 31較佳可為銦錫氧化物㈣)、 氣錫氧化物(Fluoric Tin 〇xide,打〇)、錄錫氧化物(Antim〇ny也〇恤, ΑΤΟ)或奈米碳管(nan〇carb〇ntube)等透光導電物質,其係經由任何習知 技術中的方細形成在透鳴板上,如麟或者塗鱗等。值得注意的 是’導電層⑽可為電阻式觸控面板巾的下導電層,或者是表面電容式 觸控面板中作為感應電極之表面導電層。 本發明之分壓電極32是糊任何習知技術巾的方法而直接形成在 導電薄膜31上,而分壓電極32又分為驗產生X方向電壓降的χ向 分麼電極3这與用於產生γ方向電壓降的γ向分壓電極32γ,電壓通 過輸入點33❿分別導入Υ向分壓電極32Υ以及X向分壓電極32χ,以 分別產生X向電壓降與γ向電壓降。 分壓電極32全部是由低阻抗之導電材料所製成,此材料較佳可為 銀漿,低阻抗材料是以纏繞迂迴的方式,或者其他可增加阻抗的方式, 形成型式包括但不限於口字型、门字型、回字型、凸字型、凹字型或者 201133302 其組合的多個迷宮式佈線單元32A,這些佈線單元32A連續地、整體 地,在導電薄膜31上形成迴路,從而構成包括有多個佈線單元3从的 分壓電極32’經由這樣的佈線方式,可以提高分壓電極%的整體組抗, 以避免分壓電極32消耗過多功率。 在第一實施例中,由於多個佈線單元32A彼此之間仍然存在微小 之間隔’因此多個佈線單元ΜΑ彼此之間有分段或不連續狀況存在, 會導致水平與垂直等電位線的偏差,為了分別補償水平與垂直等電位線 的偏差,較佳可選擇在γ向分壓電極32γ以及χ向分壓電極32χ前方 設置多個電壓補償區34,以補償水平與垂直等電位線的偏差。 但值付注意的疋,當縮小多個佈線單元32Α的大小,或者增加佈 線單元32Α的總數量時,此時多個佈線單元32Α之間的不連續狀況會 被縮減到可忽略不計,這時的分壓電極32,其行為與無段式分壓電極 的行為無異,可被視為無段式分壓電極,在這種狀況下,就沒有設置電 壓補償區34的必要。 請參閱第四圖,其係為本發明之分壓電極第二實施例的示意圖。第 四圖中揭示了一個導電層40的1/4面積俯視,分壓電極42是利用任何 習知技術中的方法而直接形成在導電薄膜似上,而分壓電極42也包括 X向分壓電極42Χ、Υ向分壓電極42Υ以及多個繞線組42Α,電壓通 過輸入點43而分別導入Υ向分壓電極42Υ以及X向分壓電極42Χ。 第二實施例與第一實施例的差異在於,第二實施例中的γ向分壓 電極42Υ以及X向分壓電極42Χ,是做成内凹的形式,利用内凹的形 式來補償水平與垂直等電位線的偏差,多個繞線組42Α彼此連續地串 接在一起,且多個繞線組42Α彼此之間的距離設計的非常小,小到會 使得因分段對等電位線所產生的影響可被忽略不計,因此無須額外設置 電壓補償區’只要Υ向分壓電極42Υ以及X向分壓電極42Χ,妥適地 201133302 設計為内凹的形式,就可以平衡水平與垂直等電位線的偏差;由於每一 個繞線組42A都是由銀漿所製成,其阻抗非常小,因此在本實施例中, 導電薄膜41較佳地可配合採用較高阻抗的導電膜,如:阻抗較佳為 300Ω/[□到2000Ω/□的導電膜,可以產生更好的電氣效果。 請參閱第五圖,其係為本發明之分壓電極第三實施例的示意圖。第 五圖中揭示了-個導電層50的1/4面積俯視,分壓電極52是利用任何 習知技術中的方法而直接形成在導電薄膜51上,而分壓電極52也包括 X向分壓電極52X、Y向分壓電極52γ以及多個佈線組52八,電壓通 過輸入點53而分別導入γ向分壓電極52γ以及χ向分壓電極52χ。 第三實施例與第一與第二實施例的差異在於,第三實施例中的γ 向分壓電極52Υ以及χ向分壓電極MX,沒有做任何的電壓補償設計, 但在第三實施例中’每—個佈線組似較佳地都是由組抗非常小的銀 漿而整體地製成’彼此連續地串接在―起,且多個佈線組52A彼此之 間的距離射能嶋小’小到會使得因分段解電位線所產生的影響可 被忽略不計,因此錢辦設置任何糕補償手段,就可以平衡水平與 垂直等電位、_偏差,在本實施财’導電_ M麵地可配合採用 較咼阻抗的導鶴,如:阻抗紐為從·Q/口到 2_Q/□的導電膜, 可以產生更好的電氣效果。 以上所述第一到第三實施例之中的分壓電極^、似與Μ完全是由 低阻抗材觸軸,因此對導電_ Μ與Μ細著度的要求遠低 於1知技術巾觸著度的要求,只要分㈣極32不從導電細上脫 落,就不會造齡壓電極32之阻抗改變,而鮮水平或者垂直等電位 線的線性’只要恤抗㈣本身的阻抗穩定,等躲線表現出來就是線 性,其穩定度可媸美高溫製程的產品,也因此分麼電極32、42與52可 以採用習知的高溫燒結’或者也可以用黏附的方式,甚至也可以用印刷 201133302 (Print)的方式,來形成在導電薄膜31、奶與51上,因此本發明之分壓 電極,並不會有習知技術中分壓電極與ITO導電膜在結合時所衍生出 的種種問題。 以上所述第一到第三實施例之中的多個佈線單元32A、繞線組42a 與佈線組52A完全是由低阻抗材料所形成,因此其長度、寬度與導電 膜之厚度等參數,在設計時都需要一併考量,較佳地,可選用阻抗較高 的導電膜’來作為導電薄膜31、41與51。 本發明所提出的分壓電極,其型式較習知技術的型式更簡單、製作 _ 簡便,還可因此賺低製作成本,同時其品f又不輸給高溫製程的同類 產品’且具有高環境耐受度’不太受環境溫度無度的影響,因此可較 同類產品具有更好的穩定性,甚至還可省略不設置電壓補償手段。而本 發明所提4的分壓《,可以顧在任何需要設置分壓的觸控面 板。 值得注意的是,本發明所屬領域中具有通常知識者,基於前述第一 至第五變化實施例’可輕練合衍生出更多的變化實施例,以上所述 者,僅為本發明之最佳實施例而已,當不能以之限定本發騎實施之範 • 圍。即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬於 本發明專伽蓋之範_,謹請貴審查委㈣鑑,並減准,是所至 禱。 【圖式簡單說明】 第一圖(A)係為習知電阻觸控面板之示意圖; 第一圖(B)係為習知電阻觸控面板的工作原理示意圖; 第二圖(入)係為習知技術之第—種線性分壓電極之示意圖; 第二圖(B)係為習知技術之第二種線性分壓電極之示意圖; -11 - 201133302 第t圖(Q絲f知技術之第三種線性分«極之示意圖; 第二圖絲本發明之分壓電極第_實關的示意圖; 第四圖絲本發明之分壓電極第二實施_示意圖;以及 第五圖係為本發明之分壓電極第三實關的示意圖。 【主要元件符號說明】 11 :下導電層 13 :雙面膠 11a、12a:導電薄膜 11b :玻璃基板 15 :輸出電路 13X : X向線性分壓電極 Χ’Χ’、ΥΎ’ :斷面 L:訊號輸出線 21 :電壓補償區The distance 'U can be used to compensate for the voltage discontinuity caused by the segmentation, and the horizontal and vertical equipotential lines can be compensated at the same time. Therefore, in accordance with a first aspect of the present invention, a touch panel is provided that includes a second electrical layer, a second conductive layer, opposite to the first conductive layer, and a plurality of wiring groups are made of a conductive material. The continuous manner is serially connected to each other and disposed on a surface of the first conductive layer relative to the second conductive layer. In the gift area, the setting is =: 触控 for the touch* board, wherein the material is - low impedance material. r·Jiadi rides the touch panel provided, the low-impedance material of the towel is silver paste. Preferably, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , its towel, in the middle -. And formed on the second conductive layer. With the electrode 疋, a is printed by the way, preferably, the lion is provided by the lion, 3 〇〇 Ω / □ to 2000 Ω / mouth. The impedance of the first conductive layer is derived from the second concept according to the present invention, the first conductive layer and the second conductive layer, including: a panel having a relatively set _ line Set the threatening fresh-conducting layer to do it! Snap-on continuous winding 201133302 According to a third aspect of the present invention, a partial pressure electrode is proposed which is disposed on a conductive film by a conductive material in a continuous winding manner. According to the present invention, a touch panel having a voltage dividing electrode as described is proposed. [Embodiment] This case will be understood by the following implementation of Minami Katsuyuki, so that the implementation of the 'study can be implemented by the following implementations. Please refer to the third figure, which is a schematic view of a first embodiment of a voltage dividing electrode of the present invention. The third figure shows a V4 area of a conductive layer 30. The conductive layer % is mainly composed of a transparent substrate and a conductive film 31. The conductive layer 31 is preferably indium tin oxide (IV), and the gas tin oxide (Fluoric) Tin 〇xide, snoring), tin oxide (Antim〇ny also 〇, ΑΤΟ) or carbon nanotube (nan〇carb〇ntube) and other light-transmitting conductive materials, which are through any of the prior art Finely formed on the sound-transparent board, such as Lin or squashed. It should be noted that the conductive layer (10) may be the lower conductive layer of the resistive touch panel towel or the surface conductive layer as the sensing electrode in the surface capacitive touch panel. The voltage dividing electrode 32 of the present invention is directly formed on the conductive film 31 by a method of pasting any conventional technical towel, and the voltage dividing electrode 32 is further divided into a vertical direction electrode 3 for detecting a voltage drop in the X direction. The γ-direction voltage-dividing electrode 32γ is generated in the γ-direction voltage drop, and the voltage is introduced into the 分-direction voltage dividing electrode 32 Υ and the X-direction voltage dividing electrode 32 通过 through the input point 33 ❿ to generate an X-direction voltage drop and a γ-direction voltage drop, respectively. The voltage dividing electrodes 32 are all made of a low-impedance conductive material, which may preferably be a silver paste, the low-impedance material is wound around, or other means of increasing the impedance, including but not limited to the mouth. a plurality of labyrinth wiring units 32A of a combination of a font, a gate font, a letter font, a chevron type, a concave font or a combination of 201133302, wherein the wiring unit 32A continuously and integrally forms a loop on the conductive film 31, thereby forming a loop By dividing the voltage dividing electrode 32' including the plurality of wiring units 3 from such a wiring method, the overall group resistance of the voltage dividing electrode % can be increased to prevent the voltage dividing electrode 32 from consuming excessive power. In the first embodiment, since a plurality of wiring units 32A still have a minute interval between each other 'therefore, a plurality of wiring unit turns have a segmentation or discontinuous condition with each other, which causes a deviation of horizontal and vertical equipotential lines. In order to compensate for the deviation of the horizontal and vertical equipotential lines, it is preferable to provide a plurality of voltage compensation regions 34 in front of the γ-direction voltage dividing electrode 32γ and the 分-direction voltage dividing electrode 32χ to compensate for the deviation between the horizontal and vertical equipotential lines. . However, when the value of the plurality of wiring units 32A is reduced, or the total number of the wiring units 32A is increased, the discontinuity between the plurality of wiring units 32Α is reduced to negligible at this time. The voltage dividing electrode 32 has the same behavior as the stepless voltage dividing electrode and can be regarded as a stepless voltage dividing electrode. In this case, there is no need to provide the voltage compensation region 34. Please refer to the fourth figure, which is a schematic view of a second embodiment of the voltage dividing electrode of the present invention. The fourth figure shows a 1/4 area plan view of a conductive layer 40. The voltage dividing electrode 42 is formed directly on the conductive film by any method in the prior art, and the voltage dividing electrode 42 also includes an X-direction partial pressure. The electrode 42A, the buffering electrode 42A, and the plurality of winding groups 42A are supplied to the vertical dividing electrode 42A and the X-dividing electrode 42A through the input point 43. The difference between the second embodiment and the first embodiment is that the γ-to-divide electrode 42A and the X-direction voltage-dividing electrode 42A in the second embodiment are in the form of a concave shape, and the concave form is used to compensate the level and The deviation of the vertical equipotential lines, the plurality of winding groups 42Α are continuously connected in series with each other, and the distance between the plurality of winding groups 42Α is designed to be very small, so that the segmented equipotential lines are The effect can be neglected, so there is no need to additionally set the voltage compensation zone' as long as the counter-pressure electrode 42Υ and the X-direction voltage-dividing electrode 42Χ, properly designed as a concave form, can balance the horizontal and vertical equipotential lines. The deviation of the winding group 42A is made of silver paste, and the impedance thereof is very small. Therefore, in the embodiment, the conductive film 41 is preferably matched with a relatively high-resistance conductive film, such as impedance. A conductive film of preferably 300 Ω / [□ to 2000 Ω / □ can produce a better electrical effect. Please refer to the fifth figure, which is a schematic view of a third embodiment of the voltage dividing electrode of the present invention. The fifth figure shows a quarter-area view of the conductive layer 50. The voltage dividing electrode 52 is directly formed on the conductive film 51 by any conventional technique, and the voltage dividing electrode 52 also includes the X-directional portion. The pressure electrode 52X, the Y-direction voltage dividing electrode 52γ, and the plurality of wiring groups 52 are connected to each other through the input point 53 to the γ-dividing electrode 52γ and the y-direction voltage dividing electrode 52A. The difference between the third embodiment and the first and second embodiments is that the γ-to-divide voltage electrode 52Υ and the laterally-divided electrode MX in the third embodiment are not subjected to any voltage compensation design, but in the third embodiment It is preferable that each of the wiring groups is preferably formed integrally by the group against a very small silver paste, and is continuously connected in series with each other, and the distance between the plurality of wiring groups 52A is small. 'Small to make the impact of the segmentation potential line can be ignored, so the money to set any cake compensation means, you can balance the horizontal and vertical equipotential, _ deviation, in this implementation of the 'conductivity _ M surface The ground can be used with a relatively low-resistance guide, such as: the impedance of the conductive film from Q / port to 2_Q / □, can produce better electrical effects. The voltage-dividing electrodes ^, 似 and Μ in the first to third embodiments described above are completely touched by the low-resistance material, so the requirements for the conductivity Μ and Μ fineness are much lower than those of the prior art. As long as the sub-fourth pole 32 does not fall off from the conductive thin, the impedance of the age-old pressure electrode 32 does not change, and the linearity of the fresh horizontal or vertical equipotential line is stable as long as the resistance of the (4) itself is stable, etc. The hiding line is linear, and its stability is comparable to that of high-temperature processes. Therefore, electrodes 32, 42 and 52 can be sintered at a high temperature by conventional means or they can be adhered or even printed 201133302. The method of (Print) is formed on the conductive film 31, the milk and the 51. Therefore, the voltage dividing electrode of the present invention does not have various problems arising from the combination of the voltage dividing electrode and the ITO conductive film in the prior art. . The plurality of wiring units 32A, the winding group 42a, and the wiring group 52A among the first to third embodiments described above are completely formed of a low-resistance material, and thus the parameters such as the length, the width, and the thickness of the conductive film are All of the design needs to be considered together. Preferably, a conductive film having a higher impedance can be used as the conductive films 31, 41 and 51. The voltage-dividing electrode proposed by the invention has a simpler type than the conventional technology, is simple to manufacture, and can also earn a low production cost, and at the same time, the product f is not lost to the high-temperature process of the similar product' and has a high environment. The tolerance 'is not affected by the excessive temperature of the environment, so it can have better stability than similar products, and even eliminate the need for voltage compensation. However, the partial pressure of the present invention can be applied to any touch panel that requires a partial pressure. It should be noted that those skilled in the art to which the present invention pertains can derive more and more modified embodiments based on the foregoing first to fifth modified embodiments, and the above is only the most The best example is that it is not possible to limit the implementation of this ride. That is to say, the equal changes and modifications made by the applicant in accordance with the scope of the invention patent should still belong to the scope of the invention. It is the prayer of the review committee (4) and the reduction. BRIEF DESCRIPTION OF THE DRAWINGS The first figure (A) is a schematic diagram of a conventional resistive touch panel; the first figure (B) is a schematic diagram of the working principle of a conventional resistive touch panel; the second figure (in) is The schematic diagram of the first linear voltage dividing electrode of the prior art; the second figure (B) is a schematic diagram of the second linear voltage dividing electrode of the prior art; -11 - 201133302 t-th (Q wire A schematic diagram of a third linear fraction «pole"; a second schematic diagram of the partial pressure electrode of the present invention; a fourth schematic diagram of the second embodiment of the partial pressure electrode of the present invention - a schematic diagram; and a fifth diagram Schematic diagram of the third actual closing of the divided voltage electrode of the invention. [Description of main component symbols] 11: Lower conductive layer 13: Double-sided tape 11a, 12a: Conductive film 11b: Glass substrate 15: Output circuit 13X: X-direction linear voltage dividing electrode Χ'Χ', ΥΎ': Section L: Signal output line 21: Voltage compensation area

33、43、53 :輸入點 Μ、41、51 :導電薄膜33, 43, 53: Input points Μ, 41, 51: Conductive film

10 :觸控面板 12 :上導電層 14 :間隔物 12b : PET 基板 S:按壓表面 13Y : Y向線性分壓電極10: Touch panel 12: Upper conductive layer 14: Spacer 12b: PET substrate S: Pressing surface 13Y: Y-direction linear voltage dividing electrode

El、E2、E3、E4 :電壓輸入點 X、Y:電路 23 :饋入點 13Y1 ' 13Y2 :分壓電極段 30、40、50 :導電層 32、42、52 .分壓電極 32Α :佈線單元 32Υ、42Υ、52Υ : Υ向線性分壓電極 32Χ、42Χ、52Χ : X向線性分壓電極 42Α :繞線組 52Α :佈線組 -12-El, E2, E3, E4: voltage input point X, Y: circuit 23: feed point 13Y1 '13Y2: voltage dividing electrode section 30, 40, 50: conductive layer 32, 42, 52. voltage dividing electrode 32 Α : wiring unit 32Υ, 42Υ, 52Υ : Υ linear differential pressure electrode 32Χ, 42Χ, 52Χ : X-direction linear voltage dividing electrode 42Α: winding group 52Α: wiring group-12-

Claims (1)

201133302 七 、申請專利範圍: 1. 一種觸控面板,其包括: 一第一導電層; =第二導電層’相對於該第—導電層;以及 -電極’具有複數佈線單元, 方式彼此串接而設置於該第_於、、·且是由導電材料以連續的 之如申請專利範圍第,項所述之觸導電層的面上。 一_補償區’其設置在該電極之_側。 3. 如申請專利範圍第!項所述之觸控面板,其 4. 如申請專利範圍第3項所述之觸控面板,其^^為—低阻抗材料。 5. 如申請專利範圍第!項所述之觸控面板,其料為崎。 !自,、—型、—型或:::::::: 7 心+账鴨之阻抗為 8. 一 種觸控面板,其具有相對設置的—第—導電層與—第二導電声 包括: s丹 電極,是由導電材質以連續繞線的方式設置於該第—導電層相 對於該第二導電層的面上。 9·-種分塵電極’其是轉電材質以連續、繞線的方式言史置於一導電膜上。 10.—種具有如申請專利範圍第9項所述之分壓電極的電阻式觸控面板。 11· 一種具有如申請專利範圍第9項所述之分壓電極的電容式觸控面板。 -13-201133302 VII. Patent application scope: 1. A touch panel comprising: a first conductive layer; a second conductive layer 'relative to the first conductive layer; and a - electrode' having a plurality of wiring units connected in series And being disposed on the surface of the conductive layer as described in the section of the patent application. A compensation region is disposed on the side of the electrode. 3. If you apply for a patent scope! The touch panel of claim 4, wherein the touch panel of claim 3 is a low-impedance material. 5. If you apply for a patent scope! The touch panel described in the item is made of Qi. From,, -, -, or:::::::: 7 The impedance of the heart + account duck is 8. A touch panel having oppositely disposed - the first conductive layer and the second conductive sound include The s-dano electrode is disposed on the surface of the first conductive layer relative to the second conductive layer by a conductive material in a continuous winding manner. 9. The dust-discharging electrode is a material that is placed on a conductive film in a continuous, winding manner. 10. A resistive touch panel having a voltage dividing electrode as described in claim 9 of the patent application. A capacitive touch panel having a voltage dividing electrode as described in claim 9 of the patent application. -13-
TW99109471A 2010-03-29 2010-03-29 Touch panel TWI403935B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99109471A TWI403935B (en) 2010-03-29 2010-03-29 Touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99109471A TWI403935B (en) 2010-03-29 2010-03-29 Touch panel

Publications (2)

Publication Number Publication Date
TW201133302A true TW201133302A (en) 2011-10-01
TWI403935B TWI403935B (en) 2013-08-01

Family

ID=46751157

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99109471A TWI403935B (en) 2010-03-29 2010-03-29 Touch panel

Country Status (1)

Country Link
TW (1) TWI403935B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412161A (en) * 1993-06-21 1995-05-02 At&T Global Information Solutions Company Handwriting capture system with segmented digitizer
TWI258708B (en) * 2005-01-27 2006-07-21 Apex Material Technology Corp Resistive touch panel, and it manufacturing method
TWI344100B (en) * 2007-04-30 2011-06-21 Apex Material Technology Corp The touch screen and the manufacturing method thereof

Also Published As

Publication number Publication date
TWI403935B (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US9965092B2 (en) Managing power consumption of force sensors
TWI576745B (en) Pressure-sensitive input equipment
TWI502429B (en) Touch-control display and fabrication method thereof
TW201702836A (en) Pressure-sensitive input equipment
TWI478181B (en) Transparent conductive film and touch panel using the same
US20100328258A1 (en) Touch panel and detecting method thereof
TWI703475B (en) Touch sensor
TW201351233A (en) Touch panel
US20120081329A1 (en) Digital resistive type touch panel
JP2015513751A (en) Touch panel and manufacturing method thereof
CN204883669U (en) Touch -sensitive screen and touch display module
CN204808289U (en) Touch -sensitive screen and display device
CN104937527A (en) Electrode for touch sensor, touch panel, and display device
KR20150011271A (en) Touch window and display with the same
TWM437993U (en) Structure of touch panel
CN105164620A (en) Transparent electrode pattern laminate and touch screen panel having same
JP2012141690A (en) Input device
US9678377B2 (en) Touch structure, LCD panel and display device
CN205334402U (en) Pressure sensing input device
TWM525491U (en) Pressure sensing pattern layer and pressure sensing input device including the same
KR101105692B1 (en) Manufacturing method for planer member for touch panel
US20120061017A1 (en) Method of manufacturing capacitive touch screen
US9958999B2 (en) Capacitive touch sensor with Z-shaped electrode pattern
TW201133302A (en) Touch panel
TW200928938A (en) Panel-type input device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees