TW201128825A - Flexible light emitting diode package and manufacturing method thereof - Google Patents

Flexible light emitting diode package and manufacturing method thereof Download PDF

Info

Publication number
TW201128825A
TW201128825A TW99104796A TW99104796A TW201128825A TW 201128825 A TW201128825 A TW 201128825A TW 99104796 A TW99104796 A TW 99104796A TW 99104796 A TW99104796 A TW 99104796A TW 201128825 A TW201128825 A TW 201128825A
Authority
TW
Taiwan
Prior art keywords
layer
emitting diode
light
flexible
diode package
Prior art date
Application number
TW99104796A
Other languages
Chinese (zh)
Other versions
TWI412166B (en
Inventor
Huang-Chung Cheng
Wan-Lin Tsai
Chia-Tsung Chang
Yun-Shan Chien
Original Assignee
Huang-Chung Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang-Chung Cheng filed Critical Huang-Chung Cheng
Priority to TW99104796A priority Critical patent/TWI412166B/en
Publication of TW201128825A publication Critical patent/TW201128825A/en
Application granted granted Critical
Publication of TWI412166B publication Critical patent/TWI412166B/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A manufacturing method of a flexible light emitting diode package is described as follows. Firstly, a light emitting diode (LED) chip and a flexible substrate are provided. Then, a connection layer is formed on the LED chip or the flexible substrate. A carbon nano-tube layer is formed on the connection layer. A conductive layer connects the LED chip and the flexible substrate. The conductive layer is between the flexible substrate and the carbon nano-tube layer or between the LED chip and the carbon nano-tube layer.

Description

201128825 jj^u〇twf.doc/d 六、發明說明: 【發明所屬之技術領域】 法 法 2明是有關於一種發光二極體封裝及 ’別疋有關於—種軟性發紅極體封裝及其製作方 【先前技術】201128825 jj^u〇twf.doc/d VI. Description of the invention: [Technical field of invention] Law 2 is related to a kind of light-emitting diode package and 'do not have a kind of soft red body package and Its producer [prior art]

二極:由於發光二極體的亮度不斷提升,使得發光 衫=^1域已騎減日紐與自舰泡,例如需 „掃描器燈源、液晶顯示器的背光源或前光 車的儀表板照明、交通聽燈,以及—般的照 罝导。 ^ ^1繪示為習知發光二極體封裝結構的剖面示意圖。 请參照圖1 ’習知的發光二極體封裝結構100係由一發光 二極體晶片11G、—承載基板12G、兩條金屬線132、134 以及一封裝膠體140所構成。發光二極體晶片110設置於 承載基板120上,而且兩條金屬線132、134分別電性連接 於發光二極體晶片110與承載基板12〇之間。封裝膠體14〇 設置於承載基板12〇上並包覆兩條金屬線132、134。 習知製作發光二極體晶片110的方法多是先在氧化鋁 基板上磊晶形成半導體層,之後,切割氧化鋁基板與半導 體層。因此’習知的發光二極體晶片no具有半導體層n2 與氧化鋁層114’且發光二極體晶片110是經由氧化鋁層 Π4而黏著至承載基板12〇。 201128825 ^jzooiwi.u〇c/d 發光二極體晶片110於運作時會產生大量的熱,且前 述的熱若是未能即時傳導至承載基板12〇,以致於發光二 極體晶片110的溫度過高,則會導致發光二極體晶片11〇 的發光效率降低甚至是損壞發光二極體晶片110。然而, 由於氧化鋁的導熱效率差,因此,習知的發光二極體晶片 110容易因為過熱而導致發光效率降低以及使用壽命縮 短0 【發明内容】 本發明提供一種軟性發光二極體封裝的製作方法,可 有效知1升發光一極體晶月的散熱效率。 本發明提供一種軟性發光二極體封裝,可快速移除發 光二極體晶片所產生的熱。 本發明提出一種軟性發光二極體封裝的製作方法如 下所述。提供一發光二極體晶片與一軟性基板。於發光二 極體晶片或是軟性基板上形成一連接層。於連接層上形成 /奈米碳管層。發光二極體晶片經由—傳導層而^接錄 性基板其中傳導層位於軟性基板與奈米碳管層之間或是 位於發光二極體晶片與奈米碳管層之間。 在本發明之一實施例中’軟性基板為金屬片或是軟性 線路板。 在本發明之一實施例中,連接層為一單層結構或是一 多層結構。 在本發明之一實施例中,形成連接層的方法包括以單 201128825 ” zo〇L\vf.doc/d 接層、以化合物形成連接層或是以共金的方 連接層包括選自於由一阻隔 催化金屬層及前述之組合所 阻隔層包括鈦、翻、组、鉬、 在本發明之一實施例中 層、—緩衝層、一附著層、. 組成之族群。 在本發明之一實施例中 鎢、鐳、铑及前述之合金。 =發明之-實施射,緩衝層包括鈦、鉻、銀、紹、 銅或則述之合金。 姑、i本ί明之—實施例中’催化金屬層的材質包括鐵、 站鎳、金、銦、鉛或前述之合金。 多層ti發明之—實施例中’傳導層為一單層結構或是一 -开tr明之—實施例中’形成傳導層的方法包括以單 式形=導層、以化合物形成傳導層或是以共金的方 銅、ί本i明之—實施例中’傳導層的材質包括銀、金、 幻^銦、錯、錫及前述之合金或前 在本發明之一實施例中,形成奈 化學氣相沉·、雷·化法输“層的方去包括 料,實施:Γ’奈米碳管層填充有一導電材 合金或前述之共溶合金。 知金。、錫、刚逃之 本發明提出-種軟性發光二極體封裳,包括一軟性基 201128825 ο 發ΐ二極體晶片、一奈米碳管層、-連接層以及-專導a。冬光一極體晶月配置於軟性基板上。奈米硝其 軟性基板與發光二極體晶片之間。連接層配置 性基板與發光二極體“之間。傳導層配置 板 發光二極體晶片之間,其中奈米碳f層位於連接層Two poles: Due to the increasing brightness of the light-emitting diodes, the illuminating shirt = ^1 domain has been riding the minus day and the self-ship, for example, the scanner light source, the backlight of the liquid crystal display or the dashboard of the front light vehicle Illumination, traffic light, and general illumination. ^1 is a schematic cross-sectional view of a conventional LED package structure. Please refer to FIG. 1 'A conventional LED package structure 100 is a The LED substrate 11G, the carrier substrate 12G, the two metal wires 132 and 134, and an encapsulant 140 are formed. The LED chip 110 is disposed on the carrier substrate 120, and the two metal wires 132 and 134 are respectively electrically connected. The device is connected between the LED substrate 110 and the carrier substrate 12A. The encapsulant 14 is disposed on the carrier substrate 12 and covers the two metal lines 132 and 134. The method for fabricating the LED chip 110 is known. In many cases, a semiconductor layer is epitaxially formed on an alumina substrate, and then the aluminum oxide substrate and the semiconductor layer are diced. Therefore, the conventional light-emitting diode wafer no has a semiconductor layer n2 and an aluminum oxide layer 114' and a light-emitting diode. Wafer 110 is via The aluminum layer is adhered to the carrier substrate 12〇. 201128825 ^jzooiwi.u〇c/d The light-emitting diode wafer 110 generates a large amount of heat during operation, and the aforementioned heat is not immediately transmitted to the carrier substrate 12〇 Therefore, if the temperature of the light-emitting diode wafer 110 is too high, the light-emitting efficiency of the light-emitting diode wafer 11 turns is lowered or even the light-emitting diode wafer 110 is damaged. However, since the heat conduction efficiency of the aluminum oxide is poor, The conventional light-emitting diode wafer 110 is easy to reduce the luminous efficiency and shorten the service life due to overheating. [Invention] The present invention provides a method for fabricating a flexible light-emitting diode package, which can effectively know one-liter light-emitting one-pole crystal The present invention provides a flexible light-emitting diode package for rapidly removing heat generated by a light-emitting diode wafer. The present invention provides a method for fabricating a flexible light-emitting diode package as follows: providing a light-emitting The diode chip and a flexible substrate form a connecting layer on the light emitting diode chip or the flexible substrate, and form a carbon nanotube layer on the connecting layer. The photodiode wafer is connected to the substrate via a conductive layer, wherein the conductive layer is located between the flexible substrate and the carbon nanotube layer or between the light emitting diode wafer and the carbon nanotube layer. In one embodiment, the flexible substrate is a metal sheet or a flexible circuit board. In one embodiment of the invention, the connecting layer is a single layer structure or a multilayer structure. In an embodiment of the invention, the connecting layer is formed. The method comprises the steps of: 201128825 ”zo〇L\vf.doc/d bonding layer, forming a connecting layer with a compound or a gold bonding layer comprising a barrier layer selected from a barrier catalytic metal layer and a combination thereof. Including titanium, turn, group, molybdenum, in one embodiment of the invention, a layer, a buffer layer, an adhesion layer, a group of constituents. In one embodiment of the invention, tungsten, radium, rhenium and the foregoing alloys. = Invented - the implementation of the shot, the buffer layer comprises titanium, chromium, silver, Shao, copper or the alloy described. In the examples, the material of the catalytic metal layer includes iron, nickel, gold, indium, lead or the foregoing alloy. Multilayer ti invention-in the embodiment, the 'conducting layer is a single layer structure or one-opening--in the embodiment, the method of forming the conductive layer includes forming a conductive layer in a single form = a conductive layer or a compound In the embodiment, the material of the conductive layer includes silver, gold, illusion, indium, tin, and the foregoing alloy or in an embodiment of the present invention, forming a chemical gas. The phase sinking, the thunder and the chemical method are used to transfer the "layer of the layer to include the material, and the implementation: the Γ' carbon nanotube layer is filled with a conductive material alloy or the aforementioned co-solved alloy. Zhijin., tin, just escaped by the present invention - a soft light-emitting diode package, including a soft base 201128825 ο hairpin diode wafer, a carbon nanotube layer, a connection layer and a specialization a. Winter light one crystal body is arranged on a flexible substrate The nano-nitrate is between the flexible substrate and the light-emitting diode wafer. The connecting layer is disposed between the substrate and the light-emitting diode. Conductive layer configuration plate between the light-emitting diode wafers, wherein the nano-carbon f layer is located at the connection layer

ISb MJi 4 J 線路Ϊ本發明之—實關巾,軟性基板為金W或是軟性 在本發明之一實施例中,連接層為一單層結構 多層結揭:。 在本發明之一實施例中,連接層的材質包括單一元 素、化合物或是共金材料。 在本發明之—實施例中,連接層包括選自於由—阻隔 層、—緩衝層、—附著層、一催化金屬層及前述之組合所 組成之族群。 在本發明之一實施例中’阻隔層包括鈦、鉑、钽、鉬、 鎢、鐳、铑及前述之合金。 在本發明之一實施例中,緩衝層包括鈦、鉻、銀、鋁、 銅或前述之合金。 在本發明之一實施例中’催化金屬層的材質包括鐵、 鈷、鎳、金、銦、鉛或前述之合金。 在本發明之一實施例中,傳導層為一單層結構或是一 多層結構。 在本發明之一實施例中’傳導層的材質包括單一元 201128825 素、化合物或是共金材料。 在本發明之一實施例中,傳導層的材質包括銀、金、 錫及前述之合金或前述之共熔合金。 、,基於上述,由於本發明是將導電、導熱性質良好的奈 f碳管層形成在發光二極體晶片與軟性基板之間,因此, 發光二極體晶片所產生的熱可快速地經由奈米碳管層而傳 導至軟性基板,故可避免習知發光二極體晶片因運作產生 的熱無法即時移除而導致溫度過高的問題。 一為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】The ISb MJi 4 J circuit is a solid cover towel of the present invention, and the flexible substrate is gold W or soft. In one embodiment of the invention, the connection layer is a single layer structure. In one embodiment of the invention, the material of the tie layer comprises a single element, a compound or a co-gold material. In an embodiment of the invention, the tie layer comprises a population selected from the group consisting of a barrier layer, a buffer layer, an adhesion layer, a catalytic metal layer, and combinations thereof. In one embodiment of the invention, the barrier layer comprises titanium, platinum, rhodium, molybdenum, tungsten, radium, rhenium, and alloys of the foregoing. In an embodiment of the invention, the buffer layer comprises titanium, chromium, silver, aluminum, copper or an alloy of the foregoing. In one embodiment of the invention, the material of the catalytic metal layer comprises iron, cobalt, nickel, gold, indium, lead or an alloy of the foregoing. In one embodiment of the invention, the conductive layer is a single layer structure or a multilayer structure. In one embodiment of the invention, the material of the conductive layer comprises a single element 201128825 element, a compound or a co-gold material. In an embodiment of the invention, the material of the conductive layer comprises silver, gold, tin, and the foregoing alloy or the aforementioned eutectic alloy. According to the above, since the present invention is to form a carbon nanotube layer having good conductivity and thermal conductivity between the light-emitting diode wafer and the flexible substrate, the heat generated by the light-emitting diode wafer can be quickly passed through the nanometer. The carbon nanotube layer is conducted to the flexible substrate, so that the problem that the heat generated by the operation of the light-emitting diode wafer cannot be removed immediately due to the operation can be avoided. The above features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment]

沉積接ΐ接光 曰片210的—第一表面212上 慣連接層230,其甲連接層23 ’發光二極體晶片210不具有氧化鋁層。 ^單一元素形成連接層23〇、 是以共金的方式形成連接層二 =構:在本實施例中,形成連接層二二 、以化合物形成連接層230或 在本實施例中, 連接層230可為一完整的連續膜層 201128825 -----------oc/d 亦即’連接層230不具有開σ。在其他树示的實施例中, 連接層230可為-具有開口的圖案化膜層(未緣示),且 前述開口可暴露出部分第一表面212。 連接層230可包括阻隔層、緩衝層(buffer layer)、附 著層(adhesive layer)與催化金屬層(catalytic layer)之組合, 其中阻隔層包括鈦、翻、m鸫、·、舰前述之合 金,緩衝層包括鈦、路、銀、铭、銅或前述之合金,催化 金屬層的^質包括鐵、铦、鎳、金、銦、錯或前述之合金。 、,山,者層可增加發光二極體晶片21G與之後將形成的奈 米石反g層的接著力,並可降低兩者的接觸電阻。缓衝層可 避免附著層與催化金屬層仙,或是增加催化金屬層形成 奈?,構(難)時的均自度。催化金屬層可有助於成長奈 米碳管,故之後將形成的奈米碳管層是直接形成在催化金 屬層上而與催化金屬層直接接觸。緩衝層、附著層與催化 金屬層的/儿積方式包括蒸艘(evaporation)或漉錢 (sputtering) ° 在本貫施例中,催化金屬層可為一完整的連續膜層, 亦P催化金屬層不具有開口。在其他未繪示的實施例中, 催化金屬層可為—具有開口的圖案化膜層,且前述開口可 暴露出部分第一表面212。 * /然後’在連接層230上形成一奈米碳管層240,奈米 碳管層240可具有多個奈米碳管(未繪示),且這些奈米 石反官可具有方向性(例如奈米碳管的延伸方向大致上是垂 直於連接層230的表面)。奈米竣管層240的奈米碳管可 201128825 ^jz〇〇iwf.doc/d 為單壁奈米碳管或多壁奈米碳管。形成奈米碳管層24〇的 方法可為化學氣相沉積法、雷射氣化法或電弧放電法。化 學氣相沉積法包括微波電漿化學氣相沉積、電漿增強化學 氣相沉積、電子迴旋共振式化學氣相沉積、電感式耦合電 漿化學氣相沉積、低壓化學氣相沉積、常壓化學氣相沉積、 熱化學氣相沉積或金屬有機化學氣相沉積。 ' 值得注意的是,在本實施例中,奈米碳管層24〇可選 鲁 擇丨生地填充(或吸附)有一導電材料(未繪示),以增加 奈米石反管層240與連接層230 (或是發光二極體晶片21〇) 的接觸面積’進而提升奈米碳管層240的導電、導熱效率。 導電材料例如為銀、金、銅、鋁、銦、鉛、錫、前述之合 金或前述之共熔合金。 之後’在軟性基板220的一第二表面222上形成一傳 導層250。在本實施例中,傳導層250可為一完整的連續 膜層,亦即,傳導層250不具有開口。在其他未繪示的實 施例中,傳導層250可為一具有開口的圖案化膜層(未繪 • 示),且前述開口可暴露出部分第二表面222。 在本實施例中,傳導層250可為一單層結構或是一多 層結構’且形成傳導層250的方法包括以單一元素形成傳 導層250、以化合物形成傳導層250或是以共金的方式形 成傳導層250。傳導層250的材質可為銀、金、銅、鋁、 銦、錯、錫及前述之合金或前述之共炫合金。在本實施例 中’連接層230與傳導層250皆為導電與導熱性質良好的 材料。 、The first surface 212 of the deposited contact wafer 210 is provided with a bonding layer 230, and the bonding layer 23' of the LED array 210 does not have an aluminum oxide layer. The single element forms the connection layer 23〇, and the connection layer is formed in a co-gold manner. In the present embodiment, the connection layer 22 is formed, the connection layer 230 is formed by the compound, or in the present embodiment, the connection layer 230 It can be a complete continuous film layer 201128825 -----------oc/d, that is, the connection layer 230 does not have an opening σ. In other illustrated embodiments, the tie layer 230 can be a patterned film layer having an opening (not shown), and the aforementioned opening can expose a portion of the first surface 212. The connection layer 230 may include a combination of a barrier layer, a buffer layer, an adhesive layer, and a catalytic layer, wherein the barrier layer includes titanium, turn, m鸫, ·, the foregoing alloy of the ship, The buffer layer comprises titanium, road, silver, indium, copper or an alloy of the foregoing, and the catalytic metal layer comprises iron, bismuth, nickel, gold, indium, erroneous or alloys as described above. The mountain layer can increase the adhesion of the light-emitting diode wafer 21G to the nano-grain anti-g layer to be formed later, and can reduce the contact resistance of both. The buffer layer can avoid the adhesion layer and the catalytic metal layer, or increase the self-degree of the formation of the catalytic metal layer. The catalytic metal layer can contribute to the growth of the carbon nanotubes, so that the carbon nanotube layer to be formed is formed directly on the catalytic metal layer in direct contact with the catalytic metal layer. The buffer layer, the adhesion layer and the catalytic metal layer may be vaporized or sputtered. In the present embodiment, the catalytic metal layer may be a complete continuous film layer, and the P catalytic metal layer The layer does not have an opening. In other embodiments not shown, the catalytic metal layer can be a patterned film layer having an opening, and the aforementioned opening can expose a portion of the first surface 212. * / then 'forming a carbon nanotube layer 240 on the connection layer 230, the carbon nanotube layer 240 may have a plurality of carbon nanotubes (not shown), and these nano-stones may have directionality ( For example, the direction in which the carbon nanotubes extend is substantially perpendicular to the surface of the connecting layer 230. The carbon nanotubes of the nanotube layer 240 can be single-walled carbon nanotubes or multi-walled carbon nanotubes at 201128825^jz〇〇iwf.doc/d. The method of forming the carbon nanotube layer 24 可 may be a chemical vapor deposition method, a laser gasification method or an arc discharge method. Chemical vapor deposition methods include microwave plasma chemical vapor deposition, plasma enhanced chemical vapor deposition, electron cyclotron resonance chemical vapor deposition, inductively coupled plasma chemical vapor deposition, low pressure chemical vapor deposition, atmospheric pressure chemistry Vapor deposition, thermal chemical vapor deposition or metal organic chemical vapor deposition. It is worth noting that in the present embodiment, the carbon nanotube layer 24 is optionally filled (or adsorbed) with a conductive material (not shown) to increase the nano-sandwich layer 240 and the connection. The contact area of the layer 230 (or the LED chip 21) further enhances the conductivity and thermal conductivity of the carbon nanotube layer 240. The conductive material is, for example, silver, gold, copper, aluminum, indium, lead, tin, the aforementioned alloy or the aforementioned eutectic alloy. Thereafter, a conductive layer 250 is formed on a second surface 222 of the flexible substrate 220. In this embodiment, the conductive layer 250 can be a complete continuous film layer, i.e., the conductive layer 250 does not have an opening. In other embodiments not shown, the conductive layer 250 can be a patterned film layer (not shown) having an opening, and the aforementioned opening can expose a portion of the second surface 222. In this embodiment, the conductive layer 250 can be a single layer structure or a multilayer structure 'and the method of forming the conductive layer 250 includes forming the conductive layer 250 as a single element, forming the conductive layer 250 as a compound, or co-gold The conductive layer 250 is formed in a manner. The conductive layer 250 may be made of silver, gold, copper, aluminum, indium, erbium, tin, and the foregoing alloy or the aforementioned co-glazed alloy. In the present embodiment, both the connection layer 230 and the conductive layer 250 are materials having good electrical and thermal conductivity properties. ,

201128825 /H 3C/d 然後,請參照圖2B,將發光二極體晶片210配置於 軟性基板220上,以使奈米碳管層240連接至傳導層25〇。 此時,已初步形成本實施例之軟性發光二極體封襄200。 值得注意的是,由於本實施例是將導電、導熱性質良 好的奈米碳官層240形成在發光二極體晶片21〇與軟性基 板220之間,因此,發光二極體晶片2]〇所產生的埶可快 速地經由奈米碳管層240而傳導至軟性基板22〇,故可避 免習知發?二極體晶片因運作產生的熱無法即時移除而導 致溫度過㊣的問題。此外’本實施例之軟性發光二極體封 裝200是以軟性基板22G作為發光二極體晶片2ι〇的載 j因此軟性發光二極體封裝2〇〇可作為筆記型電腦等 體積較小的電子產品的螢幕背光源。 =下1詳細描述軟性發光二極體封裝200的結構。 明參&@ 2B,本實施例之軟性發光二極體封裝 Ϊ 軟」生f板220、一發光二極體晶片210、-奈米碳管 2日 10西/署二接層230以及—傳導層250。發光二極體晶片 命欠性基板220上。奈米石炭管層240配置於軟性 二 一發光二極體晶片210之間。連接層230配置於 層24〇與發光二極體晶片2ι〇之間。傳導層25〇 配置於軟性基板22G與奈米碳管層24q之間。 封裝H目3B緣不本發明—實施例之軟性發光二極體 二玉剖面圖。值得注意的是,在圖3A〜圖3β與圖 Α〜圖犯中,標號相同的元件具有相同的材質且製作方 201128825 -»-;z.voivr"f.d〇C/d 法相同’故於此不再贅述。 首先’請參照圖3A,提供一發光二極體晶片21〇與 一軟性基板220。 Μ ^ 性基板220的一第二表面222上形成一連 接層230 ’其中連接層23〇為一單層結構或是一多層結構。 連接層230可包括阻隔層、缓衝層、附著層與催化金屬層 ^組Ϊ1然後’在連接層230上形成—奈米碳管層240, 不米碳官層240可具有多個奈米碳管。 值得注意的是,在本實施例中,奈米碳管層· 擇性地填充有-導電材料(未繪示),以增加 連接層230 (或軟性基板細)的接‘ 升奈米碳管層240的導電、導熱效率。 之後,在發光二極體晶片210的一笛一 積-傳導層250。在本實施例中,傳導層第;=^ ==。然請參照_,將丄= 明片210配置於兔光二極體晶片21〇上, 連接至奈米碳管層240。此時,已初乎 > 运 性發光二極體封裝·。 巧成本貫施例之軟 :::詳細描述軟性發光二極體封裝3〇〇 。 :、圖3Β’本實施例之敕性發光二 籌 包括-軟性基板22〇、-發光二极體晶片21〇、一太^石山其 層240、一連接層23〇以及一傳導屛 不木反s 嫩置於軟性基板22。上。‘〇層== 基板220與發光二極體晶片210之間。連接層二= 11201128825 /H 3C/d Then, referring to FIG. 2B, the LED wafer 210 is disposed on the flexible substrate 220 such that the carbon nanotube layer 240 is connected to the conductive layer 25A. At this time, the flexible light-emitting diode package 200 of the present embodiment has been initially formed. It is to be noted that, in this embodiment, the carbon nanotube layer 240 having good conductivity and thermal conductivity is formed between the LED substrate 21 and the flexible substrate 220. Therefore, the LED substrate 2] The generated crucible can be quickly conducted to the flexible substrate 22 via the carbon nanotube layer 240, so that conventional transmission can be avoided. The heat generated by the diode wafer cannot be removed immediately due to the heat generated by the operation, resulting in a problem of excessive temperature. In addition, the flexible light-emitting diode package 200 of the present embodiment uses the flexible substrate 22G as the light-emitting diode chip 2 〇, so that the flexible light-emitting diode package 2 can be used as a small-sized electronic device such as a notebook computer. The screen backlight of the product. = Lower 1 details the structure of the flexible LED package 200. Mingshen &@2B, the soft light emitting diode package of the present embodiment is soft, the raw plate 220, the light emitting diode chip 210, the carbon nanotube 2, the 10th west, the second layer 230 and the Conductive layer 250. The light emitting diode wafer is on the substrate 220. The nano-carboniferous tube layer 240 is disposed between the flexible two-light emitting diode chips 210. The connection layer 230 is disposed between the layer 24A and the LED wafer 2m. The conductive layer 25A is disposed between the flexible substrate 22G and the carbon nanotube layer 24q. The package H mesh 3B is not the invention - the soft light emitting diode of the embodiment is a cross section of the two jade. It should be noted that in the figures of FIG. 3A to FIG. 3β and FIG. 3, the same elements have the same material and the manufacturer 201128825 -»-;z.voivr"fd〇C/d method is the same. No longer. First, referring to FIG. 3A, a light-emitting diode chip 21A and a flexible substrate 220 are provided. A second surface 222 of the substrate 220 is formed with a connecting layer 230' wherein the connecting layer 23 is a single layer structure or a multilayer structure. The connection layer 230 may include a barrier layer, a buffer layer, an adhesion layer and a catalytic metal layer, and then a 'carbon nanotube layer 240 formed on the connection layer 230. The carbon nanotube layer 240 may have a plurality of nanocarbons tube. It should be noted that in this embodiment, the carbon nanotube layer is selectively filled with a conductive material (not shown) to increase the connection layer 230 (or the soft substrate). The conductivity and thermal conductivity of layer 240. Thereafter, a flute-conducting layer 250 is formed on the LED wafer 210. In this embodiment, the conductive layer is; =^ ==. However, please refer to _, and 丄 = the stencil 210 is placed on the rabbit photodiode wafer 21 , and connected to the carbon nanotube layer 240. At this time, it has been initially packaged in a light-emitting diode package. The cost of the application is soft ::: A detailed description of the flexible LED package 3〇〇. Figure 3Β'''''''''''''''''''''' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' s is tenderly placed on the flexible substrate 22. on. ‘〇 layer== between substrate 220 and light emitting diode wafer 210. Connection layer two = 11

201128825 /H201128825 /H

Dc/d 奈米碳管層240與軟性基板220之間。傳導層250配置於 發光一極體晶片210與奈米碳管層240之間。 綜上所述,本發明是將導電、導熱性質良好的奈米碳 官層形成在發光二極體晶片與軟性基板之間,因此,發光 二極體晶片所產生的熱可快速地經由奈米碳管層而傳導至 軟性基板,故可避免習知發光二極體晶片因運作產生的熱 然法即時移除而導致溫度過高的問題。此外,本發明之軟 性發光二極體封裝是以軟性基板作為發光二極體晶片的載 $ ’因此’紐發光二極财裝可作絲記型電腦等體積 車父小的電子產品的螢幕背光源。 ,然本發明已以實施例揭露如上,然其並非用以限定 屬域中具有通常知識者,在不脫離 發明之保護範圍當視後附之申請專利範以:二本 【圖式簡單說明】The Dc/d carbon nanotube layer 240 is interposed between the flexible substrate 220. The conductive layer 250 is disposed between the light-emitting body wafer 210 and the carbon nanotube layer 240. In summary, the present invention is to form a nano-carbon layer with good conductivity and thermal conductivity between the light-emitting diode wafer and the flexible substrate. Therefore, the heat generated by the light-emitting diode wafer can be quickly transmitted through the nanometer. The carbon tube layer is conducted to the flexible substrate, so that the problem that the temperature of the conventional light-emitting diode wafer is excessively removed due to the thermal removal caused by the operation can be avoided. In addition, the flexible light-emitting diode package of the present invention uses a flexible substrate as a light-emitting diode chip to carry the screen backlight of a small-sized electronic product such as a silk-screen type computer. source. However, the present invention has been disclosed in the above embodiments, but it is not intended to limit the general knowledge in the domain, and the patent application is attached to the scope of the invention without departing from the scope of the invention:

I · - ~ tsj JJD f-苗小 ISJ JJD唯小本發明一實施例 之軟性發光二極體 封裴ί 封裝的製裎剖面圖。 【主要元件符號說明】 100 :發光二極體封裝結構 110 :發光二極體晶片 12 201128825 f.doc/d 112 :半導體層 114 :氧化鋁層 120 :承載基板 132、134 :金屬線 140 :封裝膠體 200、300 :軟性發光二極體封裝 210 :發光二極體晶片 212 :第一表面 220 :軟性基板 222 :第二表面 230 :連接層 240 :奈米碳管層 250 :傳導層I · - ~ tsj JJD f-苗苗 ISJ JJD is a soft light-emitting diode according to an embodiment of the invention. [Main component symbol description] 100: Light-emitting diode package structure 110: Light-emitting diode wafer 12 201128825 f.doc/d 112: Semiconductor layer 114: Alumina layer 120: Carrier substrate 132, 134: Metal wire 140: Package Colloid 200, 300: flexible light emitting diode package 210: light emitting diode chip 212: first surface 220: flexible substrate 222: second surface 230: connecting layer 240: carbon nanotube layer 250: conductive layer

1313

Claims (1)

)c/d 201128825 七 層 、申請專利範圍: 1. 一種軟性發光二極體封裝的製作方法, 提供一發光二極體晶片與—軟性基板; 於該發光二極•片或是該軟性基板上形成 包括 連接 於該連接層上形成一奈米碳管層;以及 =光二極體晶片料—傳導層而連 ί,其中該傳導層位於該軟性基板與該奈米碳管 是位於該發光二極體晶片與該奈米碳管層之^層之間或 心作圍第1項所述之軟性發光二極體封 ί 職性基板為金屬片或是軟性線路板。 .如申明專利範圍第1項所述之軟性於井-搞骑 =的製作方法,射該連接料—單層、_歧;^層結 裝的i作;^述之軟性發光二極體封 形以化合物形成該連接層或是以共金的方式 r丄第1項所述之軟性發光二極體封 連接層包括選自於由-阻隔層、- 族群: €催化金屬層及前述之組合所組成之 袭二二申請第5項所述之軟性發光二極體封 的衣作方法,其中該阻隔層包括鈦、麵、组、_、鶴、 14 f.doc/d 201128825 錯、鍵及前述之合金。 7. 如申請專利範圍第5項所述之軟性發光二極體 裝的製作方法,其中該緩衝層包括鈦、鉻、銀、鋁、二 前述之合金。 '鋼或 8. 如申請專利範圍第5項所述之軟性發光二極體 裝的製作方法,其中該催化金屬層的材質包括鐵、鈷、鎳'、 金、銦、斜或前述之合金。c/d 201128825 Seven-layer, patent application scope: 1. A method for fabricating a flexible LED package, providing a light-emitting diode chip and a flexible substrate; on the light-emitting diode or the flexible substrate Forming includes forming a carbon nanotube layer connected to the connection layer; and = photodiode wafer material - a conductive layer, wherein the conductive layer is located on the flexible substrate and the carbon nanotube is located at the light emitting diode The flexible light-emitting diode package described in item 1 between the bulk wafer and the layer of the carbon nanotube layer is a metal piece or a flexible circuit board. For example, the softness of the well-riding-making method described in the first paragraph of the patent scope, the connection material-single layer, _discrimination; the layered assembly i; the soft-emitting diode package described Forming the connecting layer by a compound or in a manner of co-golding. The soft light emitting diode sealing layer according to item 1 includes a layer selected from the group consisting of a barrier layer, a group of: a catalytic metal layer, and a combination thereof. The method for fabricating a soft light-emitting diode package according to claim 5, wherein the barrier layer comprises titanium, face, group, _, crane, 14 f.doc/d 201128825 wrong, key and The aforementioned alloy. 7. The method of fabricating a flexible light-emitting diode package according to claim 5, wherein the buffer layer comprises titanium, chromium, silver, aluminum, and the foregoing alloy. A method of fabricating a flexible light-emitting diode according to claim 5, wherein the material of the catalytic metal layer comprises iron, cobalt, nickel, gold, indium, oblique or an alloy of the foregoing. 9·如申請專利範圍第1項所述之軟性發光二極體 裝的製作方法,其中該傳導層為一單層結構或是一多層結 構0 '° 10.如申請專利範圍第丨項所述之軟性發光二極 裝的製作方法,其中形成該傳導層的方法包括以單一元素 形成該傳導層、以化合物形成該傳導層或是以丘 二 形成該傳導層。 /、 万式 u.如申請專利範圍第1項所述之軟性發光二極體封 裝的製作方法,其中該傳導層的材f包括銀、金、銅、紹、 銦、鉛、錫及前述之合金或前述之共熔合金。. 12.如申請專利範圍第i項所述之軟性發光二極體封 裝=製作方法’其中形成該奈米碳管層的方法包括化學氣 相沉積法、雷射氣化法或電弧放電法。 I3·如申請專利範圍第1項所述之軟性發光二極體封 裝的製作方法,其巾該奈米好層填充有—導電材料,該 導電材料包括銀、金、銅、銘、銦、錯、錫、前述之合金 或前述之共熔合金。 15 201128825』 I4.-種軟性發光二極體封裝,包括: 一軟性基板; 二=二極私片,配置於該軟性基板上; 晶 片之^炭管層,配置於該軟性基板與該發光二極體 之 間;以及接曰配置於該軟性基板與該發光二極體晶片 之 間,二板與該發光二極體晶片 1未反s層位於該連接層與該傳導層之間。 鮮,1 圍第14韻狀軟性發光二極體 裝八中錄性基板為金屬片或是軟性線路板。 封裝,其二發光二極體 广安㈣早層結構或是—多層結構。 封壯=^利範_14項所述之軟性發光二極體 金ί料連接層的材質包括單—元素、化合物或是共 難ϋ申請專利範圍第14項所述之軟性發光二極體 二著i j連接層包括選自於由—阻隔層、—緩衝層、 -、-催化金屬層及前述之組合所組成之族群。 封壯請專利麵第18項所述之軟性發光二極體 二之=該阻隔層包括欽—鷄、-、鍵及 封專利範圍第18項所述之軟性發光二極體 裳八中该緩衝層包括鈦、路、銀、紹、銅或前述之合 16 201128825… ^ w v> · l.QOC/ Ci 金。 21. 如申請專利範圍第18項所述之軟性發光二極體 封裝,其中該催化金屬層的材質包括鐵、钻、鎳、金、銦、 錯或前述之合金。 22. 如申請專利範圍第14項所述之軟性發光二極體 封裝,其中該傳導層為一單層結構或是一多層結構。 23. 如申請專利範圍第14項所述之軟性發光二極體 封裝,其中該傳導層的材質包括單一元素、化合物或是共 金材料。 24. 如申請專利範圍第14項所述之軟性發光二極體 封裝,其中該傳導層的材質包括銀、金、銅、铭、銦、錯、 錫及前述之合金或前述之共炫合金。9. The method of fabricating a flexible light-emitting diode package according to claim 1, wherein the conductive layer is a single layer structure or a multilayer structure 0 '° 10. A method of fabricating a flexible light-emitting diode package, wherein the method of forming the conductive layer comprises forming the conductive layer as a single element, forming the conductive layer as a compound, or forming the conductive layer as a mound. The method for fabricating a flexible light-emitting diode package according to claim 1, wherein the conductive layer material f comprises silver, gold, copper, bismuth, indium, lead, tin and the foregoing An alloy or a eutectic alloy as described above. 12. Soft light-emitting diode package as described in claim i, wherein the method of forming the carbon nanotube layer comprises a chemical gas phase deposition method, a laser gasification method or an arc discharge method. I3. The method for fabricating a flexible light-emitting diode package according to claim 1, wherein the nano layer is filled with a conductive material comprising silver, gold, copper, indium, indium, and wrong. , tin, the aforementioned alloy or the aforementioned eutectic alloy. 15 201128825 』 I4.- A kind of soft light emitting diode package, comprising: a flexible substrate; two = two poles, disposed on the flexible substrate; a carbon tube layer of the wafer, disposed on the flexible substrate and the light emitting And between the flexible substrate and the light-emitting diode wafer, the second plate and the light-emitting diode wafer 1 are not opposite to the layer between the connecting layer and the conductive layer. Fresh, 1 around the 14th rhythm soft light-emitting diode Mounted in the eighth medium-recording substrate is a metal sheet or a flexible circuit board. Package, its two light-emitting diodes Guang'an (four) early layer structure or - multi-layer structure. The material of the flexible light-emitting diode gold material described in the above-mentioned article 14 includes a single-element, a compound or a soft-emitting diode as described in claim 14 of the patent application scope. The ij tie layer includes a group selected from the group consisting of a barrier layer, a buffer layer, a -, a catalytic metal layer, and combinations of the foregoing. The flexible light-emitting diodes described in Item 18 of the patent application are included in the patent surface. The barrier layer includes the soft-emitting diodes of the Qin-chicken, -, and the soft-emitting diodes described in Item 18 of the patent scope. The layer includes titanium, road, silver, sho, copper or the combination of the above 16 201128825... ^ w v> · l.QOC/ Ci gold. 21. The flexible light emitting diode package of claim 18, wherein the material of the catalytic metal layer comprises iron, diamond, nickel, gold, indium, aluminum or the foregoing alloy. 22. The flexible light emitting diode package of claim 14, wherein the conductive layer is a single layer structure or a multilayer structure. 23. The flexible light emitting diode package of claim 14, wherein the conductive layer is made of a single element, a compound or a co-gold material. 24. The flexible light emitting diode package of claim 14, wherein the conductive layer is made of silver, gold, copper, indium, indium, tin, tin, and the foregoing alloy or the aforementioned co-glazed alloy. 1717
TW99104796A 2010-02-12 2010-02-12 Flexible light emitting diode package and manufacturing method thereof TWI412166B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99104796A TWI412166B (en) 2010-02-12 2010-02-12 Flexible light emitting diode package and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99104796A TWI412166B (en) 2010-02-12 2010-02-12 Flexible light emitting diode package and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201128825A true TW201128825A (en) 2011-08-16
TWI412166B TWI412166B (en) 2013-10-11

Family

ID=45025391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99104796A TWI412166B (en) 2010-02-12 2010-02-12 Flexible light emitting diode package and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI412166B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700786B (en) * 2018-03-28 2020-08-01 南茂科技股份有限公司 Chip-on-film package structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI376816B (en) * 2007-04-04 2012-11-11 Epistar Corp Electronic component assembly with composite material carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700786B (en) * 2018-03-28 2020-08-01 南茂科技股份有限公司 Chip-on-film package structure

Also Published As

Publication number Publication date
TWI412166B (en) 2013-10-11

Similar Documents

Publication Publication Date Title
TWI376817B (en) Light emitting device, light source apparatus and backlight module
JP6014707B2 (en) Method for manufacturing a light emitting device based on a light emitting diode
JP6132768B2 (en) Heat dissipation material and manufacturing method thereof
JP5146256B2 (en) Sheet-like structure and manufacturing method thereof, and electronic device and manufacturing method thereof
TWI306674B (en) Light emitting apparatus
TWI338387B (en) Current spreading layer with micro/nano structure, light-emitting diode apparatus and its manufacturing method
US7910941B2 (en) Light-emitting diode apparatus and manufacturing method thereof
JP6127417B2 (en) Manufacturing method of heat dissipation material
US7408204B2 (en) Flip-chip packaging structure for light emitting diode and method thereof
TW200529462A (en) Organic binding light-emitting device with a vertical structure
TWI358800B (en)
JP2011181699A (en) Light emitting device
JP2012178397A (en) Electronic component and manufacturing method thereof
JP5293561B2 (en) Thermally conductive sheet and electronic device
TWI549278B (en) Light-emitting diode device
TWI298555B (en) Light emitting device
JP2011222746A (en) Electronic device manufacturing method
WO2017076118A1 (en) Bonding structure for iii-v compound device
WO2015011849A1 (en) Electronic device and manufacturing method for same
JP2010171200A (en) Heat radiator of semiconductor package
JP5760668B2 (en) Sheet-like structure, manufacturing method thereof, electronic device, and manufacturing method thereof
TW201128825A (en) Flexible light emitting diode package and manufacturing method thereof
TW201225342A (en) Light-emitting semiconductor chip and method for manufacturing the same
JP2012238916A (en) Sheet like structure, manufacturing method of sheet like structure, electronic apparatus, and manufacturing method of electronic apparatus
JP2013199403A (en) Carbon nanotube sheet and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees