TW201128217A - Anti-reflective coating material and anti-reflective film employing the same - Google Patents

Anti-reflective coating material and anti-reflective film employing the same Download PDF

Info

Publication number
TW201128217A
TW201128217A TW99104645A TW99104645A TW201128217A TW 201128217 A TW201128217 A TW 201128217A TW 99104645 A TW99104645 A TW 99104645A TW 99104645 A TW99104645 A TW 99104645A TW 201128217 A TW201128217 A TW 201128217A
Authority
TW
Taiwan
Prior art keywords
coating film
compound
coating material
reflective coating
group
Prior art date
Application number
TW99104645A
Other languages
Chinese (zh)
Other versions
TWI536038B (en
Inventor
Wen-Pin Chuang
Su-Mei Chenwei
Yuung-Ching Sheen
Yih-Her Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099104645A priority Critical patent/TWI536038B/en
Publication of TW201128217A publication Critical patent/TW201128217A/en
Application granted granted Critical
Publication of TWI536038B publication Critical patent/TWI536038B/en

Links

Landscapes

  • Paints Or Removers (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The invention provides an anti-reflective coating material and an anti-reflective film employing the same. The anti-reflective coating material comprises the product prepared by the following steps: providing a polysilsesquioxan; reacting the polysilsesquioxan with a tetra-alkoxysilane, obtaining an intermediate; reacting the intermediate with a compound with low refractive index, obtaining the anti-reflective coating material of the invention.

Description

201128217 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種抗反射塗佈材料及包含其之抗反 射塗膜’更特別關於-種可應用於軟性基材之抗^射^佈 材料及包含其之抗反射塗膜。 【先前技術】 在顯示裝置的製程中(例如:光學鏡片、陰極射線顯示 裔、電聚顯示器、液晶顯示器、或是發光二極體顯示写), 為避免影像受眩光或反射光的干擾,會在該顯示裝置的最 外層(例如液晶顯示器的透明基板)配置—抗反射層。 分析抗反射層相關技術,不外乎利用多層膜 均質層法兩種方式。 多層膜干涉是利用入射波通過塗層表面時,若控制塗 層的光學厚度(塗騎㈣與㈣厚度之乘績)為人射波波 長=/4的奇數倍,讓反射波形成破壞性干涉,即可達到抗反 =效果’如乾式製程、濕式製程與溶膠·凝膠法都是運用此 -原理。乾式製程(例如··真m钱鑛)雖然可達到可 下的好?質’但由於設備昂貴加上製程 贼: σσ彳貝格非常咼;濕式製程則多以添加含氟單 來降低折射率進而降低反射率,但常伴隨與基材附著差 2料穩定性差等缺點;溶膠凝膠法則需製備高低不同折 2率之材料並且經過多層塗佈製程,粉體折射率及安定性 車乂不易控制且製程繁複。 另-種做法為非均質層法,即透過奈米孔隙薄膜及表 201128217201128217 VI. Description of the Invention: [Technical Field] The present invention relates to an anti-reflective coating material and an anti-reflective coating film comprising the same, and more particularly to an anti-reflective coating material which can be applied to a soft substrate And an anti-reflective coating film comprising the same. [Prior Art] In the process of the display device (for example, optical lens, cathode ray display, electro-concentration display, liquid crystal display, or LED display), in order to prevent the image from being disturbed by glare or reflected light, An anti-reflection layer is disposed on the outermost layer of the display device (for example, a transparent substrate of a liquid crystal display). The analysis of the anti-reflection layer related technology is nothing more than the use of the multilayer film homogenization method. Multilayer membrane interference is the use of incident waves through the surface of the coating, if the optical thickness of the coating (the performance of coating (4) and (4) thickness) is an odd multiple of the human wave wavelength = / 4, the reflected wave is destructive Interference can achieve anti-anti-effects such as dry process, wet process and sol-gel method. Dry process (such as ···································· Quality 'but because of the expensive equipment plus process thief: σσ彳 berg is very sturdy; wet process is more to add fluorine-containing single to reduce the refractive index and thus reduce the reflectivity, but often accompanied by poor adhesion to the substrate 2 material stability, etc. Disadvantages; the sol-gel method requires the preparation of materials with different rates of high and low, and through the multi-layer coating process, the refractive index and stability of the powder are difficult to control and the process is complicated. Another method is the heterogeneous layer method, that is, through the nanoporous film and table 201128217

含具有大量氟烷基之化人 Ο Ο ° F3C(F2C)7-H4C2-OC-C=C-C〇-C2H4-(CF2)7CF 0 II 面奈米結構製作來降低折射率,如奈米孔隙薄膜法及表面 奈米結構法即屬㈣。但為了製作奈米孔隙或結構需要使 組成物先產生相分離’之後將其中_個組成利用溶劑或、 度等方法錢,不但製程複雜且孔㈣微結構常造成機ς 物性不好㈣題,緣作為平面In之抗反料學塗腺。 日本專利mM74971揭露—種抗反射薄膜,其係包 I 古 4* 旦名 。 如 物(例Containing a large amount of fluoroalkyl group Ο ° F3C (F2C) 7-H4C2-OC-C=CC〇-C2H4-(CF2)7CF 0 II surface nanostructures to reduce the refractive index, such as nanoporous film The method and surface nanostructure method are (4). However, in order to make nanopores or structures, it is necessary to make the components first phase-separated. Then, the composition of the _ components is made by using solvent or degree, and the process is complicated, and the pores (4) microstructure often cause poor physical properties (4). The edge acts as an anti-reverse coating gland of the plane In. Japanese patent mM74971 discloses an anti-reflective film, which is a package of I 4*. Such as

H5C2-C〇.C2H4.(CF2)7CF3 )。然而,由於該抗反射薄膜所 使用之原料包含大量的氟原子,除了原料價格貴外,亦合 使得化合物本身較不具接著力(adhesion),導致所形成之2H5C2-C〇.C2H4.(CF2)7CF3). However, since the raw material used for the antireflection film contains a large amount of fluorine atoms, in addition to the high price of the raw material, the compound itself is less adhesive, resulting in the formation of 2

反射薄膜與基板之附著性差,因此所使用之基板還需經特 別的處理。 美國專利US2004/0157065揭露一種抗反射薄膜,其係 由一包含(A)四烧氧基水解縮合物、及(b)四烧氧基石夕燒/具 有氟烷基之矽氧烷共縮合物的組合物所製備而成。然而, 該抗反射薄膜結構為氟改質之二氧化石夕粉體,成膜性差, 因此所使用之基板亦需要經特別處理。 WO/2006/065320揭露一種用於半導體製程之底部抗 反射塗層(bottom anti-reflective coating),其係將一石夕倍半 氧烷樹脂(silsesquioxane resin)成膜後,以高溫烘烤固化, 201128217 形成具有孔洞的膜層。然而,由於其需要在超過2〇〇。(:的 高溫烘烤(相關文獻指出需經過高溫400〇c烘烤),所得之膜 層才有抗反射效果(折射率由1.5降至1.4以下),因此目前 僅能用於玻璃或矽晶圓等耐熱基板,無法應用於不耐熱的 塑膠基材(如PET或TAC等皆不適用)。 因此,發展出可應用於軟性基材且製程簡易之抗反射 塗料及膜層,是目前亟需研究之重點。 【發明内容】 基於上述,本發明係提供一種抗反射塗佈材料,係以 聚石夕倍半氧院作為主體’透過分子結構設計,將聚石夕倍半 氧烧接枝石夕氧烧基團及含氟基團,以降低折射率並提高對 基材附著性,因此不需高溫烘烤(可在1 〇〇°C下固化)即可 將折射率降至丨.43以下。由於製程溫度低,因此非常適用 於 如 PET(Poly Ethylene Terephthalate) 、 PC(Polycarbonate)、及 TAC(cellulose triacetate)等不对熱之 軟性基材。 根據本發明一實施例,該抗反射塗佈材料包括以下 步驟所得之產物:提供一聚矽倍半氧烷;將該聚矽倍半 氧炫與一石夕氧烧化合物反應得到一中間產物;將該中間 產物與一低折射率化合物反應,得到該抗反射塗佈材 料。其中,該聚矽倍半氧烷包含具有如公式(I)所示結構 之化合物: 201128217 公式(I), (R1SiO(3.x)/2(〇H)x)n 其中’ X係各自獨立且係為1或2 ; n係為大於或等 於1之整數;R1係各自獨立且係為氫、烷基、或芳香基; 該矽氧烷化合物包含具有如公式(Π)所示結構之化合物: Si(〇R2) 4 公式(II),Since the reflective film has poor adhesion to the substrate, the substrate to be used is also subjected to special treatment. U.S. Patent No. 2004/0157065 discloses an antireflection film comprising a (A) tetra-alkoxy hydrolyzed condensate, and (b) a tetra-oxo-oxo-oxygen/co-alkyl co-condensate having a fluoroalkyl group. The composition is prepared. However, the anti-reflective film structure is a fluorine-modified dichroic oxide powder, and the film forming property is poor, so that the substrate to be used also needs special treatment. WO/2006/065320 discloses a bottom anti-reflective coating for a semiconductor process, which is formed by filming a silsesquioxane resin and curing at a high temperature, 201128217 A film layer having pores is formed. However, since it needs more than 2 inches. (: high temperature baking (the relevant literature indicates that it needs to be baked at a high temperature of 400 〇c), and the obtained film layer has an anti-reflection effect (refractive index is reduced from 1.5 to 1.4), so it can only be used for glass or twin crystal. A heat-resistant substrate such as a circle cannot be applied to a heat-resistant plastic substrate (such as PET or TAC). Therefore, it is urgent to develop an anti-reflective coating and film that can be applied to a soft substrate and has a simple process. SUMMARY OF THE INVENTION [Invention] Based on the above, the present invention provides an anti-reflective coating material which is designed by using a polycrystalline stone as a main body to transmit a polycrystalline stone An oxygen-burning group and a fluorine-containing group to lower the refractive index and improve the adhesion to the substrate, so that the high-temperature baking (curing at 1 ° C) can be used to reduce the refractive index to 丨.43 Hereinafter, since the process temperature is low, it is very suitable for a soft substrate such as PET (Poly Ethylene Terephthalate), PC (Polycarbonate), and TAC (cellulose triacetate). According to an embodiment of the present invention, the anti-reflective coating material a product obtained by the steps of: providing a polyphosphonium sesquioxane; reacting the polyfluorene sesquioxane with a sulphur-oxygen compound to obtain an intermediate product; reacting the intermediate product with a low refractive index compound to obtain the An antireflective coating material, wherein the polydecylsiloxane comprises a compound having a structure as shown in the formula (I): 201128217 Formula (I), (R1SiO(3.x)/2(〇H)x)n Wherein 'X is each independently and is 1 or 2; n is an integer greater than or equal to 1; R1 is each independently and is hydrogen, alkyl, or aryl; the oxirane compound contains as formula (Π Compound of the structure shown: Si(〇R2) 4 Formula (II),

其中,R係各自獨立且係為烧基;以及,該低折射 率化合物係為含氟之化合物,例如氟矽氧烷、或具有反 應官能基之敦烧化合物。 根據本發明另一實施例,該抗反射塗佈材料,係具 有公式(III)所示結構:Wherein R is each independently and is a calcining group; and the low refractive index compound is a fluorine-containing compound such as fluorononane or a terpene compound having a reactive functional group. According to another embodiment of the present invention, the antireflective coating material has the structure shown by the formula (III):

D- O-Si-(OH)D- O-Si-(OH)

z y -m 公式(III), 其中,D係聚矽倍半氧烷除去m個羥基之氫的殘 基;E係各自獨立且係為十osi&lt;OHMOR3&gt;j,其中r3 係氣院基,1係為G、1或2,j係為卜2或3,且i+j係 々 或3’z係為〇、1、或2,且y+z係 等於3’以及’值係為大於或等於1之整數。 此外本發明亦提供一種抗反射塗膜 ,包括以下步 驟所得之產物:將卜 竹上迷之抗反射塗佈材料塗佈於一基材 201128217 上,得到一塗佈層;以及, 反射塗膜。 將該塗佈層固化以形成一抗 為讓本發明之上述和其他目的、特徵、和優點 顯易懂,下文特舉出較佳實施例,並配 式 細說明如下: Μ八竹汗 【實施方式】 本發明係提供—種抗反射塗佈材料,其係具有公式 (III)所示結構: 〇—甲i——(E) I (〇H)zZy -m Formula (III), wherein D is a residue of a polyhydrazine sesquioxane to remove hydrogen of m hydroxy groups; E is each independently and is ten osi &lt; OHMOR3 &gt; j, wherein r3 is a gas hospital base, 1 Is G, 1 or 2, j is Bu 2 or 3, and i+j is 〇 or 3'z is 〇, 1, or 2, and y+z is equal to 3' and 'value is greater than or An integer equal to 1. Further, the present invention provides an antireflection coating film comprising the product obtained by coating an antireflective coating material on a substrate 201182217 to obtain a coating layer; and, a reflective coating film. The above and other objects, features, and advantages of the present invention will be apparent from the point of the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Means] The present invention provides an anti-reflective coating material having the structure shown in the formula (III): 〇-甲i——(E) I (〇H)z

D 1 公式(III), '、 係聚硬倍半氧烧除去m個羥基之氫的殘 基;E係各自獨立且係為fOSiiOHyOi^,1 3D 1 Formula (III), ', is a residue of a hydrogen hardened half-oxygen gas to remove m hydroxyl groups; E is independent and is fOSiiOHyOi^, 1 3

係氟烷基,i係為0、j $ /、中R 1或2,」係為1、2或3,且Η係 等於3 ; y係為1、2式q .. . Λ ’、 ^ 二’ Ζ係為0、J、或2,且y+z係 ,於3 ’以及’ m係為大於或等於1之整數。該聚石夕倍 基(D),可為籠狀㈣e)、 梯狀(ladder)、或網狀(netw〇rk)結構。 μ本毛明透過聚矽倍半氧烷分子結構設計,將矽氧烷 單體接枝在聚梦倍半氧^^ &gt; 乳坑以獒尚對基材的附著性,另外 201128217 再接枝低折射率之 低溫製程且對塑膠基材有 M降低折射率,開發出可 反射塗佈材料。本發明所、,好接著性之聚矽倍半氧烷抗 式,可包含以下步驟:$之抗反射塗佈材料之製備方 首先’將三燒氧基錢行 合反應τ謂縣反應(水解縮 具有公式σν)所述結構+氣t其中’該三炫氧基錢 R^Kor2) 3公式(IV), /其中’R1係為氫、燒基、或芳香基;R2係各自獨立 且係為炫基。所得之聚石夕倍半氧烧可為綠⑽⑽、梯狀 (ladder)、或網狀(netw〇rk)結構,可以以公式⑴表示: (_㈣/2(〇HUn公式⑴ 其中,其中,X係各自獨立且係為!或2;11係為大 於或等於1之整數;R1係各自獨立且係為氫、烷基、或 芳香基。請參照反應式(I) ’係以HSi(OEt)3為例,用以 說明上述之反應。反應式(I)僅為舉例,非為限制本發明 之依據。 9 201128217 | 溶膠凝膠化 H-SlnQg,-A fluoroalkyl group, i is 0, j $ /, medium R 1 or 2," is 1, 2 or 3, and the lanthanide is equal to 3; y is 1, 2, q .. . Λ ', ^ The two 'lanthanes are 0, J, or 2, and the y+z system is an integer greater than or equal to 1 at 3' and 'm. The polyglycol (D) may be a cage (iv) e), a ladder, or a netw〇rk structure.本 毛 明 透过 透过 透过 透过 透过 μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ Low-refractive-index low-temperature processes and M-reduced refractive index on plastic substrates have led to the development of reflective coating materials. In the present invention, the good adhesion polysulfonylmethane resistance formula may comprise the following steps: The preparation of the anti-reflective coating material of the first method is to first react the three-burning oxygen-doping reaction The formula has the formula σν) the structure + gas t where 'the trioxyloxy money R^Kor2) 3 formula (IV), / wherein 'R1 is hydrogen, alkyl, or aryl; R2 is independent and For the base. The obtained polytetracycline may be a green (10) (10), ladder, or netw〇rk structure, and may be represented by the formula (1): (_(tetra)/2 (〇HUn formula (1) wherein, X Each is independent and is ! or 2; 11 is an integer greater than or equal to 1; R1 is independently and is hydrogen, alkyl, or aryl. Please refer to reaction formula (I) 'HSi(OEt) 3 is taken as an example to illustrate the above reaction. The reaction formula (I) is merely an example and is not intended to limit the basis of the present invention. 9 201128217 | Sol-gelation H-SlnQg,-

籠狀結構Cage structure

反應式(I)。 接著,將所得之聚矽倍半氧烷與一矽氧烷化合物反 應得到一中間產物;最後,將上述反應所得之中間產物 進一步與一低折射率化合物反應,即得到本發明所述之 抗反射塗佈材料。值得注意的是,該聚矽倍半氧烷與矽 氧烷化合物、及低折射率化合物所進行之水解縮合反 應,較佳係在pH值介於1-7的環境下進行。請參照反應 式(II),係顯示本發明所述抗反射塗佈材料之合成步驟: 溶膠凝膠化 三烷氧基矽烷-►聚矽倍半氧烷 水解縮合反應水解縮合反應 本發明所述之抗反射塗佈材料Reaction formula (I). Next, the obtained polydecylsilses are reacted with a monooxane compound to obtain an intermediate product; finally, the intermediate product obtained by the above reaction is further reacted with a low refractive index compound to obtain the antireflection of the present invention. Coating material. It is to be noted that the hydrolysis and condensation reaction of the polysulfonium sesquioxane with the siloxane compound and the low refractive index compound is preferably carried out in an environment having a pH of from 1 to 7. Referring to the reaction formula (II), the synthesis step of the anti-reflective coating material of the present invention is shown: sol-gelated trialkoxy decane-CR polyisocyanurane hydrolysis condensation reaction hydrolysis condensation reaction Anti-reflective coating material

矽氧烷化合物低折射率化合物 反應式(II), 其中,矽氧烷化合物具有公式(II)所述結構: Si(〇R2)J 4 公式(Π) 其中,R2係各自獨立且係為烷基;而該低折射率化 合物係為含氟之化合物,例如氟矽氧烷、或具有反應官 201128217 能基之氟烷化合物。上述之氟矽氧烷可具有公式(v)所述 結構: 公式(V), (R3)kSi(〇R1)1 其中,R1係為氫、烷基、或芳香基;而R3係氟烷 基’ k係為1、2或3 ’ 1係為卜2或3,且k+1係等於4 ;The low-refractive-index compound of the oxirane compound is reacted with the formula (II), wherein the oxoxane compound has the structure of the formula (II): Si(〇R2)J 4 Formula (Π) wherein the R 2 groups are each independently and are an alkane And the low refractive index compound is a fluorine-containing compound such as fluorononane or a fluorocarbon compound having a reaction group 201128217 energy group. The above fluorohaloxane may have the structure of the formula (v): Formula (V), (R3) kSi(〇R1)1 wherein R1 is hydrogen, alkyl or aryl; and R3 is fluoroalkyl 'k is 1, 2 or 3' 1 is 2 or 3, and k+1 is equal to 4;

上述之反應官能基係指能與羥基反應之官能基,例如羧 基、環氧基、或異氰酸鹽基。 值得注意的是,本發明係所述之抗反射塗佈材料之 製備方式,所使用之矽氧烷化合物之重量百分比不大於 50wt%,例如可介於5_3〇wt%(以該聚矽倍半氧烷的重量 為基準);此外,所使用之該低折射率化合物可具有一重 量百分比不大於50wt%’例如可介於5-30wt% (以該聚矽 倍半氧烧的重量為基準)。 • 此外,本發明所述之氟烷基可例如為具有1-20個碳 的氟烷基,像是全氟甲基、全氟乙基、全氟丙基等;烷 基可例如為具有1 -20個碳的烷基,像是甲基、乙基、丙 基、異丙基等;而芳香基可例如為苯基(phenyl)、萘基 (naphthyl)、聯笨基(diphenyl)、或蒽基。 根據本發明一實施例,本發明亦提供一種抗反射塗 膜。該抗反射塗膜之製備方式包含以下步驟。首先,將 本發明所述之抗反射塗佈材料(可進一步溶於一溶劑)塗 201128217 佈於一基材上,得到一塗佈層。其中該塗佈方式並無限 定,可包括旋轉塗佈、浸泡塗佈、刷塗、喷塗或滾塗。 接著’將S亥塗佈層固化以形成一抗反射塗膜。值得注专、 的是,符合本發明所述之該抗反射塗膜,其對波長 400-700nm的光之反射率最低點係小於2,較佳係小於 1.5 ’且在550nm折射率皆可降至1.45以下。其中,兮 固化該塗佈層之方式可為烘烤或乾燥,而固化該塗佈層 之溫度可小於l〇(TC,例如在8〇〇c下烘烤3〇分鐘。本發 明所使用之基材的材質並無限定,彳包括玻璃、陶竟' 石材金屬、或聚合物材料。由於,本發明所述之反射 塗佈材料可在低溫下(小於1〇〇。〇固化’非常適用於不耐 熱之聚合物(塑膠)基材(軟性基板),且亦可導入捲軸式 (roll-to-r〇ll)製程來進行大量生產,可有效降低成本。此 外,所得之抗反射塗膜折射率可降低至143以下(使用 旋轉塗佈於PET基板上甚至可將可見光平均反射率降低 至 1.4)。 、與f知技術相比,將未經改質之㈣倍半氧烧於低 皿下(小於1 〇〇 c)成膜’所得之單純聚石夕倍半氧烧塗層折 射率高且無抗反射效果(反射率大於3)。該單純聚石夕倍半 氧炫塗層還需要經高溫供烤(如WO/2_/〇6532〇所述於 200。〇以上的溫度烘烤、或是相關文獻指出需經過高溫 400 C烘烤),才會形成具有孔洞之梦氧化物膜層,反射 201128217 率二會降低’如反應式(III)所示。如先前所述,此作法 目前僅能用於麵或⑦晶圓料熱基板,無法應用於不 耐熱的塑膠基材。 聚矽倍半氧烷 1’皿&amp;’一聚矽倍半氧烷塗層 _ (反射率大於3) 焉溫洪烤 ----►孔洞之矽氧化物臈層The above reactive functional group means a functional group capable of reacting with a hydroxyl group, such as a carboxyl group, an epoxy group, or an isocyanate group. It should be noted that the present invention is a method for preparing the anti-reflective coating material, wherein the weight percentage of the siloxane compound used is not more than 50% by weight, for example, may be between 5% and 3% by weight. Further, the low refractive index compound used may have a weight percentage of not more than 50% by weight, for example, may be between 5 and 30% by weight based on the weight of the polyfluorene sesquioxide. . Further, the fluoroalkyl group of the present invention may, for example, be a fluoroalkyl group having 1 to 20 carbons such as a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group or the like; and the alkyl group may have, for example, 1 a -20 carbon alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group or the like; and the aromatic group may be, for example, a phenyl group, a naphthyl group, a diphenyl group, or蒽基. According to an embodiment of the present invention, the present invention also provides an antireflection coating film. The preparation method of the antireflection coating film comprises the following steps. First, the antireflective coating material (which may be further dissolved in a solvent) of the present invention is coated on a substrate to obtain a coating layer. Wherein the coating method is indefinite, and may include spin coating, dip coating, brush coating, spray coating or roll coating. Next, the S coating layer is cured to form an anti-reflective coating film. It is worth noting that the anti-reflective coating film according to the present invention has a minimum reflectance of light having a wavelength of 400-700 nm of less than 2, preferably less than 1.5 Å and a refractive index at 550 nm. To 1.45 or less. Wherein, the coating layer may be cured by baking or drying, and the temperature of curing the coating layer may be less than 1 〇 (TC, for example, baking at 8 ° C for 3 minutes. The invention uses The material of the substrate is not limited, and includes glass, ceramic stone material, or polymer material. Since the reflective coating material of the present invention can be used at low temperatures (less than 1 〇〇. 〇 curing) is very suitable for A heat-resistant polymer (plastic) substrate (soft substrate), and can also be introduced into a roll-to-r〇ll process for mass production, which can effectively reduce the cost. In addition, the obtained anti-reflective coating film is refracted. The rate can be reduced to below 143 (using a spin coating on a PET substrate to reduce the average visible reflectance to 1.4). Compared with the known technique, the unmodified (tetra) sesquioxide is burned to a lower dish. (less than 1 〇〇c) film-forming film obtained from the simple polysulfide sesquioxide semi-oxygen fired coating with high refractive index and no anti-reflection effect (reflectance greater than 3). The simple poly sesame sesquioxide coating also needs Baked at high temperature (as described in WO/2_/〇6532〇 at temperatures above 200.) Baking, or related literature points out that it needs to be baked at a high temperature of 400 C) to form a dream oxide film layer with holes, and the reflection 201128217 rate will decrease as shown in reaction formula (III). As mentioned earlier, This method can only be used on surface or 7-wafer heat substrate, and can not be applied to heat-resistant plastic substrates. Polyxetane sesquioxane 1' dish &amp; 'poly sesquioxane coating _ (reflection The rate is greater than 3) 焉 温洪烤----► hole 矽 矽 oxide layer

反應式(III)。 以下藉由下列實施例及比較實施例,來說明本發明 所述之抗反射塗膜,用以進一步闡明本發明之技術特 徵。 實施例1 將 MTMS(methyl trimethoxy silane) 8g、MEK (methyl ethyl ketone)68g、水 2g、及 IN HC1 0.15g 相混 合。於60°C下反應2-4小時後,加入2g TEOS(tetraethoxy silane) 及 lg F-8261(1 H,lH,2H,2H-Perfluorodecyltriethoxysilane)(由 Degussa製造販售),控制pH值在1〜7之間,並在7〇 。(:下反應2-5小時’將所得之產物進行29Si-NMR分析’ 所得之核磁共振光譜如第1圖所示,光譜上所標之訊號 T3係指出所得之化合物具有聚矽倍半氧烷結構,訊號 13 201128217 Q3及Q4係指出TEOS成功接枝於聚矽倍半氧烷結構 上。此外,將所得之產物進行能量色散型X射線螢光分 析(EDX),所得之光譜如第2圖所示。由該EDX光譜可 得知含氟的矽基團同樣成功的接枝上聚矽倍半氧烷結 構。將所得之產物製備成抗反射塗佈材料(A),其組成如 表1所示。 接著,將所得抗反射塗佈材料(A)以旋轉塗佈方式塗 佈於 PET(Poly Ethylene Terephthalate)或石夕晶圓(silicon wafer)上,以80°C烘烤30分鐘後,得到抗反射塗膜(A)。 接著,對所得之抗反射塗膜(A)進行折射率及反射率的量 測,結果分別如第3圖及第4圖所示。此外,對所得之 抗反射塗膜(A)進行旋轉塗佈成膜性的觀察,並記錄其在 5 50nm波長的折射率、400-700nm波長的平均反射率、 400-700nm波長的最低反射率,結果如表2所示。 實施例2 將 MTES(methyl triethoxy silane) 8g、MEK (methyl ethyl ketone)68g、水 2g、及 IN HC1 0.16g 相混合。於 60°C 下反應 2-4 小時後,加入 2g TEOS(tetraethoxy silane) 及 lg F-8261(l H,lH,2H,2H-Perfluorodecyltriethoxysilane)(由 Degussa製造販售),控制pH值在1〜7之間,並在70 201128217 °C下反應2-5小時,得到抗反射塗佈材料(B),其組成如 表1所示。 接著,將所得抗反射塗佈材料(B)以旋轉塗佈方式塗 佈於 PET(Poly Ethylene Terephthalate)或石夕晶圓(silicon wafer)上,以80°C烘烤30分鐘後,得到抗反射塗膜(B)。 接著,對所得之抗反射塗膜(B)進行折射率及反射率的量 測,結果分別如第3圖及第4圖所示。此外,對所得之 • 抗反射塗膜(B)進行旋轉塗佈成膜性的觀察,並記錄其在 550nm波長的折射率、400-700nm波長的平均反射率、 400-700nm波長的最低反射率,結果如表2所示。 比較實施例1 將 MTMS(methyl trimethoxy silane) 10g、MEK (methyl ethyl ketone)58g、水 2g、及 IN HC1 0.16g 相混 • 合。於 60 °C下反應 2-4小時後,加入 lg F-8261(lH,lH,2H,2H-Perfluorodecyltriethoxysilane)(由 Degussa 製造販售)(不加入 TEOS(tetraethoxy silane)), 控制pH值在1〜7之間,並在70°C下反應2-5小時,得 到抗反射塗佈材料(C),其組成如表1所示。 接著,將所得抗反射塗佈材料(C)以旋轉塗佈方式塗 佈於 PET(Poly Ethylene Terephthalate)或石夕晶圓(silicon wafer)上,由於成膜性差,所以無法成膜。 15 201128217 比較實施例2 將 MTMS(methyl trimethoxy silane) llg、MEK (methyl ethyl ketone)30g、水 2g、及 IN HC1 0.14g 相混 合。於60°C下反應2-4小時後,得到抗反射塗佈材料 (D),其組成如表1所示。 接著,將所得抗反射塗佈材料(D)以旋轉塗佈方式塗 佈於 PET(Poly Ethylene Terephthalate)或石夕晶圓(silicon φ wafer)上,以80°C烘烤30分鐘後,得到抗反射塗膜(D)。 接著,對所得之抗反射塗膜(D)進行折射率及反射率的量 測,結果分別如第3圖及第4圖所示。此外,對所得之 抗反射塗膜(D)進行旋轉塗佈成膜性的觀察,並記錄其在 550nm波長的折射率、400-700nm波長的平均反射率、 400-700nm波長的最低反射率,結果如表2所示。 比較實施例3 將抗反射塗佈材料(D),以旋轉塗佈方式塗佈於 PET(Poly Ethylene Terephthalate)或石夕晶圓(silicon wafer) 上,以80°C烘烤30分鐘後,再以150°C烘烤1小時,得 到抗反射塗膜(E)。接著,對所得之抗反射塗膜(E)進行折 射率的量測,結果如第3圖所示。此外,對所得之抗反 射塗膜(E)進行旋轉塗佈成膜性的觀察,並記錄其在 16 201128217 5 5Onm波長的折射率,結果如表2所示。 MTMS MTES MEK 水 HC1(1N) TEOS F-8261 實施例 1 8g 68g 2g 〇.15g 2g lg 實施例 2 8g 68g 2g 〇.16g 2g ig 比較例 1 l〇g 58g 2g 〇.16g lg 比較例 2 Hg 3〇g 2g 〇.14g 比較例 3 Hg 3〇g 2g 〇.14g 表1 旋轉塗佈 5 5 Onm折射 400-700nm 400-700nm 成膜性 率 平均反射率 最低反射率 實施例1 佳 1.429 1.401 0.931 實施例2 佳 1.444 1.440 1.058 比較例1 差, 無法成膜 - - 17 201128217 比較例2 佳 1.491 3.42 ——-_ 比較例3 佳 1.420 - 1.99 表2 3月參照第3圖、第4圖、及表2,實施例1與實施 例2指出本發明所合成之抗反射塗佈材料(含氟聚矽倍 半氧烷)與PET或矽晶片有良好的成膜性及附著性,且 在550nm折射率皆可降至145以下,實施例i更可降 到1.429 ;對400-70〇nm波長之可見光平均反射率也可 低於M5 ’實施例1更可低至1屬,最低點可降至10 :下性質優異,比較例i由於並未加入侧共聚合僅 靠含氟單體降低折射率,導致塗膜與PET切晶片附著 差無法成膜因此無法進行折射率與反射率測定;比較例 2跟3㈣都是合成聚縣半氧炫,由於比較例2僅以 8〇 CJ:共烤3G分鐘,折射率無法有效降低導致反射率也 法H下降’比較例3雖經過啊供烤扣分鐘再以 、烤1小時後可將折射率降至1.42,作PET無法 承受如此高溫且長時間烘烤因此無法進行反射率測定^ “合上述,本發明所述之抗反 聚街氧炫抗反射塗佈材料),:(= 8〇〇C低溫成膜適用 、備簡易且可於 用於不耐熱塑勝基材,並可導入捲軸式 201128217 (w)製程來進行大量生i,有效降低成本,非常 適合應用於液晶顯示器及觸控面板等顯示產品,亦可進 ―步應用㈣源或料儀器等,如太陽能電池玻璃或光 學鏡頭及鏡片。透較射率降低,可以增加透光度,使 太陽能電池發光效率或儀轉析度得以提升。 雖然本發明已以較伟普 佳實施例揭露如上,然其並非用 乂限疋本發明’任何孰習 ^ ^ ^…、S此技藝者,在不脫離本發明之 精神和範圍内’當可作此哞 ^ ^ 二°午之更動與潤飾,因此本發明 之保護範圍當視後附之申社I月 〈甲印專利範圍所界定者為準。Reaction formula (III). The antireflection coating film of the present invention will be described below by way of the following examples and comparative examples to further clarify the technical features of the present invention. Example 1 8 g of MTMS (methyl trimethoxy silane), 68 g of MEK (methyl ethyl ketone), 2 g of water, and 0.15 g of IN HC1 were mixed. After reacting at 60 ° C for 2-4 hours, 2 g of TEOS (tetraethoxy silane) and lg F-8261 (1 H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane) (sold by Degussa) were added to control the pH at 1~ Between 7 and 7 〇. (The next reaction is carried out for 2-5 hours 'The product obtained is subjected to 29Si-NMR analysis'. The obtained nuclear magnetic resonance spectrum is shown in Fig. 1, and the signal T3 indicated on the spectrum indicates that the obtained compound has polysulfonated silsesquioxane. Structure, signal 13 201128217 Q3 and Q4 indicate that TEOS is successfully grafted onto the polydecalsilcosane structure. In addition, the obtained product is subjected to energy dispersive X-ray fluorescence analysis (EDX), and the resulting spectrum is shown in Fig. 2. It can be seen from the EDX spectrum that the fluorine-containing sulfonium group is also successfully grafted onto the polyfluorenyl sesquioxane structure. The obtained product is prepared into an anti-reflective coating material (A), and its composition is shown in Table 1. Next, the obtained anti-reflective coating material (A) was applied by spin coating to PET (Poly Ethylene Terephthalate) or silicon wafer, and baked at 80 ° C for 30 minutes. The antireflection coating film (A) was obtained. Next, the obtained antireflection coating film (A) was measured for refractive index and reflectance, and the results are shown in Fig. 3 and Fig. 4, respectively. The reflective coating film (A) was observed by spin coating film formation, and recorded at 5 The refractive index at a wavelength of 50 nm, the average reflectance at a wavelength of 400-700 nm, and the lowest reflectance at a wavelength of 400-700 nm, the results are shown in Table 2. Example 2 MTES (methyl triethoxy silane) 8 g, MEK (methyl ethyl ketone) 68 g 2g of water and 0.16g of IN HC1. After reacting at 60 ° C for 2-4 hours, add 2g TEOS (tetraethoxy silane) and lg F-8261 (l H, lH, 2H, 2H-Perfluorodecyltriethoxysilane) Degussa is manufactured and sold, and the pH is controlled between 1 and 7, and reacted at 70, 2011,282,17 ° C for 2 to 5 hours to obtain an antireflection coating material (B), the composition of which is shown in Table 1. Next, The obtained anti-reflective coating material (B) was applied by spin coating to PET (Poly Ethylene Terephthalate) or silicon wafer, and baked at 80 ° C for 30 minutes to obtain an anti-reflective coating film ( B) Next, the obtained antireflection coating film (B) was measured for refractive index and reflectance, and the results are shown in Fig. 3 and Fig. 4, respectively. Further, the obtained antireflection coating film (B) ) observation of spin coating film formation, and recording its refractive index at a wavelength of 550 nm, wavelength of 400-700 nm The average reflectance and the lowest reflectance at a wavelength of 400-700 nm, the results are shown in Table 2. Comparative Example 1 MTMS (methyl trimethoxy silane) 10 g, MEK (methyl ethyl ketone) 58 g, water 2 g, and IN HC1 0.16 g Mixed. After reacting at 60 ° C for 2-4 hours, add lg F-8261 (1H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane) (sold by Degussa) (without adding TEOS (tetraethoxy silane)), control the pH at 1 Between ~7 and at 70 ° C for 2-5 hours, an antireflective coating material (C) was obtained, the composition of which is shown in Table 1. Next, the obtained antireflection coating material (C) was applied by spin coating to PET (Poly Ethylene Terephthalate) or silicon wafer, and film formation was poor, so that film formation was impossible. 15 201128217 Comparative Example 2 MTMS (methyl trimethoxy silane) llg, MEK (methyl ethyl ketone) 30 g, water 2 g, and IN HC1 0.14 g were mixed. After reacting at 60 ° C for 2-4 hours, an antireflection coating material (D) was obtained, the composition of which is shown in Table 1. Next, the obtained anti-reflective coating material (D) was applied by spin coating to PET (Poly Ethylene Terephthalate) or silicon φ wafer, and baked at 80 ° C for 30 minutes to obtain an anti-reflection coating. Reflective coating film (D). Next, the obtained antireflection coating film (D) was measured for refractive index and reflectance, and the results are shown in Fig. 3 and Fig. 4, respectively. Further, the obtained antireflection coating film (D) was subjected to spin coating film formation, and its refractive index at a wavelength of 550 nm, an average reflectance at a wavelength of 400 to 700 nm, and a minimum reflectance at a wavelength of 400 to 700 nm were recorded. The results are shown in Table 2. Comparative Example 3 The antireflective coating material (D) was applied by spin coating to PET (Poly Ethylene Terephthalate) or silicon wafer, and baked at 80 ° C for 30 minutes, and then The film was baked at 150 ° C for 1 hour to obtain an antireflection coating film (E). Next, the obtained antireflection coating film (E) was measured for the refractive index, and the results are shown in Fig. 3. Further, the obtained antireflection coating film (E) was subjected to spin coating film formation, and its refractive index at a wavelength of 16 201128217 5 5 Onm was recorded, and the results are shown in Table 2. MTMS MTES MEK Water HC1 (1N) TEOS F-8261 Example 1 8g 68g 2g 〇.15g 2g lg Example 2 8g 68g 2g 〇.16g 2g ig Comparative Example 1 l〇g 58g 2g 〇.16g lg Comparative Example 2 Hg 3〇g 2g 〇.14g Comparative Example 3 Hg 3〇g 2g 〇.14g Table 1 Spin coating 5 5 Onm refraction 400-700nm 400-700nm Film formation rate Average reflectance Minimum reflectance Example 1 Good 1.429 1.401 0.931 Example 2 Good 1.444 1.440 1.058 Comparative Example 1 Poor, film formation impossible - - 17 201128217 Comparative Example 2 Good 1.941 3.42 ——-_ Comparative Example 3 Good 1.420 - 1.99 Table 2 Refer to Figure 3, Figure 4, and Table 2, Example 1 and Example 2 indicate that the antireflective coating material (fluorinated polyfluorinated sesquioxane) synthesized by the present invention has good film forming property and adhesion to PET or ruthenium wafer, and is refracted at 550 nm. The rate can be reduced to below 145, the example i can be reduced to 1.429; the average visible reflectance of the visible light at 400-70 〇nm wavelength can also be lower than M5 'Example 1 can be as low as 1 genus, the lowest point can be reduced 10: excellent under the property, the comparative example i is reduced by the fluorine-containing monomer because the side copolymerization is not added, resulting in a refractive index The adhesion between the coating film and the PET-cut wafer was not able to form a film, so the refractive index and reflectance could not be measured. In Comparative Example 2 and 3 (4), it was synthesized in Juxian County, and in Comparative Example 2, only 8〇CJ: 3G minutes were baked. The refractive index can not be effectively reduced, resulting in a decrease in reflectance and a decrease in H. 'Comparative Example 3 can be used for baking for 15 minutes, and after 1 hour of baking, the refractive index can be lowered to 1.42. PET cannot withstand such high temperatures and is baked for a long time. It is impossible to carry out the reflectance measurement ^ "In combination with the above, the anti-poly-collector anti-reflective coating material of the present invention",: (= 8 〇〇 C low-temperature film formation is suitable, simple and can be used for non-heat-resistant plastic Win the substrate, and can be introduced into the reel type 201128217 (w) process to carry out a large number of raw i, effectively reducing the cost, very suitable for display products such as liquid crystal displays and touch panels, can also be further applied (four) source or material instruments, etc. Such as solar cell glass or optical lens and lens. The transmittance is reduced, the transmittance can be increased, and the luminous efficiency or instrumental resolution of the solar cell can be improved. Although the invention has been disclosed above in the preferred embodiment, Of course It is not intended to limit the invention to any of the skilled artisans, and it is intended to be used in the spirit and scope of the present invention. The scope of protection of the invention shall be subject to the definition of the scope of the patent issued by Shenshe I.

t 19 201128217 【圖式簡單說明】 第1圖係本發明所述之實施例丨所得之化合物1 29Si-NMR 光譜圖。 σ 〃 第2圖係本發明所述之實施例】所得之化合物其 EDX光譜圖。 〃 第3圖係本發明所述之實施例Μ、及比較實施例 2-3所得之抗反射塗膜其折射率測試結果。 第4圖係本發明戶斤述之實施例Μ、及比較實施例2 所得之抗反射塗膜其反射率測試結果。 # 【主要元件符號說明】 無。t 19 201128217 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing the compound 1 29Si-NMR spectrum obtained in the example of the present invention. σ 〃 Fig. 2 is an EDX spectrum of the compound obtained in the examples of the present invention. Fig. 3 is a refractive index test result of the antireflection coating film obtained in the examples of the present invention and the comparative examples 2-3. Fig. 4 is a graph showing the reflectance test results of the examples of the invention and the antireflection coating film obtained in Comparative Example 2. # [Main component symbol description] None.

2020

Claims (1)

201128217 七、申請專利範圍·· 1. 一種抗反射塗佈材料 提供一聚矽倍半氧烷; 將該聚石夕倍半氧院與一 間產物; ’包括以下步驟所得之產物: 矽氧烷化合物反應得到一中 得到該抗 將该中間產物與一低折射率化合物反應 反射塗佈材料。 • 2.如申請專利範圍第1項所述之抗反射塗佈材料, 其中該聚石夕倍半氧燒包含具有如公式⑴所示結構之化合 物: 公式(I), (RlSi0(3-x)/2(〇H)x)n 其中’ X係各自獨立且係為i或2 ; n係為大於或等 於1之整數,R係各自獨立且係為氫、烷基、或芳香基。201128217 VII. Scope of application for patents·· 1. An anti-reflective coating material provides a poly-sesquioxane; the poly-stone sesquioxide and a product; 'The product obtained by the following steps: 矽 矽The compound is reacted to obtain a reaction which is obtained by reacting the intermediate product with a low refractive index compound. 2. The anti-reflective coating material according to claim 1, wherein the polysulfide-containing semi-oxygen fire comprises a compound having a structure as shown in the formula (1): Formula (I), (RlSi0(3-x) /2(〇H)x)n wherein 'X is each independently and is i or 2; n is an integer greater than or equal to 1, and R is each independently and is hydrogen, alkyl, or aryl. 3.如申請專利範圍第丨項所述之抗反射塗佈材料, 其中該矽氧烷化合物包含具有如公式(π)所示結構之化 合物: SiiOR2)^ 4 公式(II), 其中,R2係各自獨立且係為烷基。 4.如申請專利範圍第1項所述之抗反射塗佈材料, 其中該低折射率化合物係為氟矽氧烷、或具有反應官能 基之氟烧化合物。 21 201128217 5. 如申請專利範圍第4項所述之抗反射塗佈材料, 〃中。亥具有反應官能基之氟烷化合物之該反應官能基係 為羧基、環氧基、或異氰酸鹽基。 6. 如申請專利範圍第丨項所述之抗反射塗佈材料, 其中垓矽氧烷化合物具有一重量百分比不大於5 , 以該聚矽倍半氧烷的重量為基準。 7·如申請專利範圍第1項所述之抗反射塗佈材料, 其中該低折射率化合物具有一重量百分比不大於 50wt%,以該聚矽倍半氧烷的重量為基準。 8. 一種抗反射塗膜,係由下列步驟所形成,包括以 下步驟所得之產物: 將申請專利範圍第1項所述之抗反射塗佈材料塗佈 於一基材上’得到一塗佈層;以及 將該塗佈層固化以形成一抗反射塗膜。 9. 如申請專利範圍第8項所述之抗反射塗膜,其中 固化該塗佈層之溫度係小於1 OOt:。 10. 如申請專利範圍第8項所述之抗反射塗膜,其中 該抗反射塗膜對波長4〇〇_7〇〇nm的光之反射率最低點係 小於2。 “ 11. 如申請專利範圍第8項所述之抗反射塗膜’其中 該抗反射塗骐對波長4〇〇-700nm的光之反射率最低點 小於1·5 〇 '、 22 201128217 ^ 12’如申料利_第8項所述之抗反射塗膜,其中 X抗反射塗膜對波長55Q⑽的光之之折射率係低於1.45 以下。 種抗反射塗佈材料,符合下列公式(Η〗)所示結 D O-Si—(E) y3. The antireflective coating material according to claim 2, wherein the siloxane compound comprises a compound having a structure represented by the formula (π): SiiOR2)^4 Formula (II), wherein the R2 system Each is independent and is an alkyl group. 4. The antireflective coating material according to claim 1, wherein the low refractive index compound is a fluorononane or a fluorofiring compound having a reactive functional group. 21 201128217 5. Anti-reflective coating material as described in item 4 of the patent application, 〃中. The reactive functional group of the fluorocarbon compound having a reactive functional group is a carboxyl group, an epoxy group, or an isocyanate group. 6. The antireflective coating material according to claim 2, wherein the oxoxane compound has a weight percentage of not more than 5, based on the weight of the polyfluorinated sesquioxane. 7. The antireflective coating material according to claim 1, wherein the low refractive index compound has a weight percentage of not more than 50% by weight based on the weight of the polysulfosylsesquioxane. 8. An antireflection coating film formed by the following steps, comprising the product obtained by: coating an antireflective coating material according to claim 1 on a substrate to obtain a coating layer And curing the coating layer to form an anti-reflective coating film. 9. The antireflective coating film of claim 8, wherein the temperature of the coating layer is less than 100 ton:. 10. The antireflection coating film according to claim 8, wherein the antireflection coating film has a minimum reflectance of light having a wavelength of 4 〇〇 7 〇〇 nm of less than 2. " 11. The anti-reflective coating film described in claim 8 wherein the anti-reflective coating has a minimum reflectance of light of wavelengths from 4 〇〇 to 700 nm of less than 1·5 〇', 22 201128217 ^ 12' The anti-reflective coating film according to claim 8, wherein the X anti-reflective coating film has a refractive index lower than 1.45 for light having a wavelength of 55Q (10). The anti-reflective coating material conforms to the following formula (Η ) shows the knot D O-Si—(E) y (OH) m 公式(III), 八中,D係聚矽倍半氧烷除去m個羥基之氫的殘 基;E係各自獨立且料fc^KOHyOR',其中r3 係氣燒基,1係為0、1或2,j係為卜2或3,且i+j係 等於3 ; y係為卜2或3,z係為〇、卜或2,且y+z係 等於3 ;以及,m係為大於或等於丨之整數。 14. 如申請專利範圍第13項所述之抗反射塗佈材 呌其中D之每一 Si原子係與一基團鍵結,而該官能基 係為氫、烷基、或芳香基。 15. —種抗反射塗膜,係由下列步驟所形成,包括以 下步驟所得之產物: 將申請專利範圍第13項所述之抗反射塗佈材料塗 佈於一基材上,得到一塗佈層;以及 將該塗佈層固化以形成一抗反射塗膜。 23 201128217 16·如申請專利範圍第〗5項所述之抗反射塗膜,其 中固化該塗佈層之溫度係小於i 00〇C。 17·如申請專利範圍第15項所述之抗反射塗膜,其 中該抗反射塗膜對波長4〇〇-700nm的光之反射率最低點 係小於2。 18. 如申請專利範圍第15項所述之抗反射塗膜,其 中s亥抗反射塗膜對波長4〇〇-700nm的光之反射率最低點 係小於1.5。 19. 如申請專利範圍第15項所述之抗反射塗膜,其 中s玄抗反射塗膜對波長55〇nm的光之之折射率係低於 1.45以下。(OH) m Formula (III), VIII, D is a residue of hydrogen removed from m hydroxy groups by a polysulfonium sesquioxane; E is independent and fc ^ KOHyOR', where r3 is a gas-burning group, 1 series 0, 1 or 2, j is 2 or 3, and i+j is equal to 3; y is 2 or 3, z is 〇, 卜 or 2, and y+z is equal to 3; m is an integer greater than or equal to 丨. 14. The antireflective coating material according to claim 13, wherein each of the Si atomic groups is bonded to a group, and the functional group is hydrogen, an alkyl group, or an aromatic group. 15. An antireflective coating film formed by the following steps, comprising the product obtained by the following steps: coating the antireflective coating material according to claim 13 on a substrate to obtain a coating a layer; and curing the coating layer to form an anti-reflective coating film. The anti-reflective coating film described in claim 5, wherein the temperature of the coating layer is less than i 00 〇 C. The antireflection coating film according to claim 15, wherein the antireflection coating film has a minimum reflectance of light having a wavelength of 4 〇〇 to 700 nm of less than 2. 18. The antireflection coating film according to claim 15, wherein the anti-reflective coating film has a minimum reflectance of light of a wavelength of 4 〇〇 to 700 nm of less than 1.5. 19. The antireflection coating film according to claim 15, wherein the smectite antireflection coating film has a refractive index of less than 1.45 or less for light having a wavelength of 55 Å. 24twenty four
TW099104645A 2010-02-12 2010-02-12 Anti-reflective coating material,method for preparing the same ,and anti-reflective film employing the same TWI536038B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099104645A TWI536038B (en) 2010-02-12 2010-02-12 Anti-reflective coating material,method for preparing the same ,and anti-reflective film employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099104645A TWI536038B (en) 2010-02-12 2010-02-12 Anti-reflective coating material,method for preparing the same ,and anti-reflective film employing the same

Publications (2)

Publication Number Publication Date
TW201128217A true TW201128217A (en) 2011-08-16
TWI536038B TWI536038B (en) 2016-06-01

Family

ID=45025112

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099104645A TWI536038B (en) 2010-02-12 2010-02-12 Anti-reflective coating material,method for preparing the same ,and anti-reflective film employing the same

Country Status (1)

Country Link
TW (1) TWI536038B (en)

Also Published As

Publication number Publication date
TWI536038B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
Lee et al. High-refractive-index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate)− titania materials
KR950002949B1 (en) Highly light-transmitting dust protective film process for preparation thereof and dust protective member
US7803458B2 (en) Hybrid organic-inorganic polymer coatings with high refractive indices
CN102190956B (en) Antireflection coating material and antireflection film containing same
JP6000839B2 (en) Composite of silicon oxide nanoparticles and silsesquioxane polymer, method for producing the same, and composite material produced using the composite
JP5442557B2 (en) Ladder-structured polysilsesquioxane having a photoactive group as a side chain and method for producing the same
TW201700659A (en) Composition of hybrid organic-inorganic material and methods of producing the same and the use thereof
TW201840762A (en) Poly fluorine-containing siloxane coatings
JP4549832B2 (en) Multi-reactive linear siloxane compound, siloxane-based polymer produced from the compound, and method for producing insulating film using the polymer
TW201124762A (en) Methods for fabricating flexible waveguides using alkyl-functional silsesquioxane resins
JP2014512423A (en) Polysilane siloxane resin for anti-reflective coating
JPH021778A (en) Coating liquid for forming oxide coating film and production of oxide coating film
JP2009540084A (en) Inorganic-organic hybrid polymer composition for antireflection coating
TW201739797A (en) Polymetalloxane, method for producing same, composition thereof, cured film and method for producing same, and members and electronic components provided with same
JPWO2008001675A1 (en) Optical multilayer thin film, optical element, and method of manufacturing optical multilayer thin film
JP5158594B2 (en) Silicone polymer having naphthalene ring and composition thereof
CN103757706B (en) A kind of preparation method of nonlinear optical crystal surface antireflection protective film
JP2012008345A (en) Optical film, method for manufacturing the same, and optical element
Zou et al. Designing multifunctional silica coatings for enhanced broadband antireflection and microfiber contamination sensing
JP2013087162A (en) Fluorine-containing polymer, curable resin composition, and cured product
JP6433110B2 (en) Optical member and manufacturing method thereof
JP5288018B2 (en) Curable resin composition and cured product
TW201128217A (en) Anti-reflective coating material and anti-reflective film employing the same
KR101441563B1 (en) Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof
JP5920683B2 (en) Manufacturing method of face plate for display device