TW201124478A - Dielectric material formula and circuit board utilizing the same - Google Patents

Dielectric material formula and circuit board utilizing the same Download PDF

Info

Publication number
TW201124478A
TW201124478A TW98141673A TW98141673A TW201124478A TW 201124478 A TW201124478 A TW 201124478A TW 98141673 A TW98141673 A TW 98141673A TW 98141673 A TW98141673 A TW 98141673A TW 201124478 A TW201124478 A TW 201124478A
Authority
TW
Taiwan
Prior art keywords
weight
dielectric material
parts
epoxy resin
resin
Prior art date
Application number
TW98141673A
Other languages
Chinese (zh)
Other versions
TWI412564B (en
Inventor
Shur-Fen Liu
Meng-Huei Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98141673A priority Critical patent/TWI412564B/en
Publication of TW201124478A publication Critical patent/TW201124478A/en
Application granted granted Critical
Publication of TWI412564B publication Critical patent/TWI412564B/en

Links

Abstract

Disclosed is a dielectric material formula, including (i) 1 to 90 parts by weight of poly(butadiene), having maleic anhydride in branch, having carboxylic acid, hydroxyl, or epoxy in terminal; and having a Mw of 1200 to 15000; (ii) 5 to 90 parts by weight of chain-broken and rearranged poly(phenylene ether) having a Mw of 2000 to 8000; (iii) 1 to 30 parts by weight of bismaleimide; and (iv) 1 to 30 parts by weight of epoxy resin. The poly(butadiene) with excellent electrical properties may modify the poly(phenylene ether), and the bismaleimide may enhance the crosslink density between the polyphenylene ether and the polybutadiene. Poly(butadiene)/poly(phenylene ether)/bismaleimide are combined in different weight ratios to form semi-interpenetrating polymer network structures. Consequently, Tg and resistances to heat and solvent of the dielectric material are enhanced.

Description

201124478 六、發明說明: 【發明所屬之技術領域】 本發明係關於介電材料,更特別關於樹脂組成物。 【先前技術】 這幾年高頻基板材料技術大量被討論,具有低介電常 數(low-k)與低係數的介電消失因子(dielectric dissipation factor )性質的材料已逐步進入產品實際應用階段。早期高 頻基板材料都以聚次氧化苯樹脂(PPE)及環氧樹脂改質為 主,例如美國專利5043367 ’或是像美國專利5218030直 接改質PPE上的官能基使其成為熱固型的APPE樹脂。但 以上改質後的樹脂其介電常數與介電消失因子仍太高,皆 無法使用於RF通訊設備上。所以高頻基板的主流仍以 PTFE材料為主。但PTFE加工性極差且單價高,所以這幾 年也有些礙商利用聚丁二稀(Polybutadiene,PB )優異的電 器性質開發出介電常數較低的產品。美國專利52235685揭 露一種電路載板熱固性組成,利用交聯聚合成的丁二婦或 異戊二烯固體聚合物(重均分子量少於5000)做為基板材 料。該材料需要高溫硬化(熱壓溫度>250°C)。由於傳統電 路基板壓合設備的溫度一般小於230°C,上述組成因高溫硬 化之限制而無法有效量產,且250°C高溫製程易裂解小分子 添加劑’造成基板熱安定性變差。 美國專利6048807中揭露10〜75vol%重均分子量小於 5 〇〇〇的聚丁二烯或聚異戊二烯樹脂,及含丁二烯單體的 不飽和雙團塊(di-block)共聚物;並添加少於14vol%的乙烯 201124478 基丙稀(ethylene pr0pyiene)的液態橡膠使樹脂交聯。但其 合溫度(3GGt:)還是很高,也可能裂解樹脂添加劑如耐燃劑 等。 、 美國專利6071836添加較高填充量的無機粉體,所 相對做成的銅箔積層板(CCL)接著也較差。此外,大旦汚 無機粉體使後半段印刷電路板(PCB)的鑽孔加 難。聚丁二烯樹脂含浸玻纖做成的預浸材為半硬化狀雜 (B-Stage) ’其黏度非常高。雖然可以靠溶劑來降黏度,: # ,的固含量也跟著下降,會直接影響到膠片的樹脂含浸 置,間接使銅羯接著性較差。文獻雖提出解決這些問題的 方針,其組成中使用大量的高分子量聚丁二稀以消除 B_Stage的黏度外,還使用少量之低分子量改質聚丁二烯。 上述組成可幫助銅箱在接合及壓合期間維持流動性。 US47^4917 =也有以聚丁二烯為主樹脂的基板材料,其中 加亡冋刀子里的含漠聚對經基笨乙稀之預聚物,以降低聚 丁一烯膠片黏度。由先前技術可知利用聚丁二稀樹脂改質 •其他樹脂,或是以其他樹脂改質聚丁二烯都將面臨電氣特 性、耐化性、耐熱性、及機械特性等問題。 【發明内容】 本發月提供-種介電材料配方,包括⑻丨至叩重量份 之=丁一烯其支鏈具有順丁婦二酸軒,其末端具有魏基、 經基、或環氧基,且其重均分子量介於膽至15〇〇〇之間; ⑻5 i 90 i里伤之斷鍵重排的聚苯驗,其重均分子量介 201124478 於2000至8000之間;(c) !至%重量 以及⑷1至扣重量份之環氧樹脂。4采酿亞胺; 本發明提供一種電路基板,包括基板;以及入齋 位於基板上,其中介電層包含上述之介電材料配^電層’ 【實施方式】 本發明鑑於先前技術的缺失,提出 Π料特性’如電氣特性、耐化性'賴性、及=善: 數、介電匕電材料配方具有較佳的介電常 脂黏度、及樹脂加工性:接著強度、樹 樹脂的基板材料組成及;丁-稀樹脂改質聚苯喊 配一9。重量份之聚丁二 或環氧基,且其重料,其末端具有綠、經基、 至9〇重量份之斷鏈重^^ 12=至15咖之間;⑻5 至8000之間.(c)丨 、I本醚、、重均^刀子量介於2000 1至重量份之環氧= 旨重量份之雙馬來醒亞胺;以及⑷ 氧樹脂辻A系環氧樹脂、環狀脂肪族環 等常見的環氧Γ、聯苯環氧樹脂、及祕環氧樹脂 強度。 曰,/、作用在於提高樹脂交聯密度及接著 主要上Λ斷鍵重排的聚苯㈣製法可參考US 6,780,943, 3酚基之化合物如酚醛樹脂或二環戊二烯 201124478 (dicyclopentadiene)系盼樹脂作為高分子量的聚苯醚之斷鏈 劑,使高分子量的聚苯醚斷鏈後,重排形成分子量較低但 較高立體分子結構的聚苯醚。斷鏈重排之聚苯醚具有羥基 或環氧基以與配方中的環氧樹脂及聚丁二烯進行反應。斷 鏈重排之聚苯醚其重均分子量介於2000至8000之間,若 其重均分子量高於上述範圍,則耐熱性較差;若重均分子 量低於上述範圍,則介電常數會較高。以1至30重量份之 環氧樹脂為基準,斷鏈重排之聚苯醚的用量介於5至90重 φ 量份,若斷鏈重排之聚苯醚用量超出此範圍,則熱安定性 會較差。若斷鏈重排之聚苯醚用量低於此範圍,則樹脂交 聯密度會下降。本發明採用側鏈及末端含有可與聚苯醚反 應之官能基的聚丁二烯,並以上述具特定官能基之聚丁二 烯改質斷裂重排的聚苯醚樹脂。以1至30重量份之環氧樹 脂為基準,聚丁二烯的用量介於1至90重量份,若聚丁二 烯用量超出此範圍,則樹脂交聯密度降低。若聚丁二烯用 量低於此範圍,則樹脂熱安定性不佳。 • 此外,本發明更以雙馬來醯胺(BMI)提高聚丁二烯與聚 苯醚的交聯密度,生成具有優異電氣性質及耐熱性極佳的 基板材料組成。上述BMI之結構如式1或式2所示,其中 R!係芳香基、脂肪基、環狀脂肪基、或含矽烷之脂肪基。201124478 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to dielectric materials, and more particularly to resin compositions. [Prior Art] In recent years, high-frequency substrate material technology has been discussed in a large amount, and materials having a low dielectric constant (low-k) and a low coefficient of dielectric dissipation factor have gradually entered the practical application stage of the product. Early high-frequency substrate materials were mainly modified with polyphenylene oxide resin (PPE) and epoxy resin. For example, US Pat. No. 5,043,367 ' or the functional group on PPE directly modified like US Patent 5,218,030 makes it a thermosetting type. APPE resin. However, the above modified resin has a dielectric constant and dielectric disappearance factor that are too high to be used in RF communication equipment. Therefore, the mainstream of high-frequency substrates is still dominated by PTFE materials. However, PTFE has extremely poor processability and high unit price. Therefore, in recent years, there have been some inconveniences in the use of the excellent electrical properties of polybutadiene (PB) to develop products with a low dielectric constant. U.S. Patent No. 5,223,685 discloses a thermosetting composition of a circuit board using a cross-linked polymerized dibutyl or isoprene solid polymer (weight average molecular weight of less than 5,000) as a base material. This material requires high temperature hardening (hot pressing temperature > 250 ° C). Since the temperature of the conventional circuit substrate pressing apparatus is generally less than 230 ° C, the above composition cannot be effectively mass-produced due to the limitation of high-temperature hardening, and the high-temperature process of 250 ° C is easy to crack small molecule additives, resulting in deterioration of substrate thermal stability. U.S. Patent No. 6,048,807 discloses 10 to 75 vol% polybutadiene or polyisoprene resins having a weight average molecular weight of less than 5 Å, and unsaturated di-block copolymers containing butadiene monomers. And adding less than 14 vol% of ethylene 201124478 propylene (ethylene pr0pyiene) liquid rubber to crosslink the resin. However, its combined temperature (3GGt:) is still high, and it may also crack resin additives such as flame retardants. U.S. Patent 6,071,836, which adds a relatively high loading of inorganic powder, is also relatively poor in copper foil laminates (CCL). In addition, the large-sized inorganic powder makes the drilling of the second half of the printed circuit board (PCB) difficult. The prepreg made of polybutadiene resin impregnated with glass fiber is semi-hardened (B-Stage), which has a very high viscosity. Although the viscosity can be reduced by the solvent, the solid content of #, will also decrease, which will directly affect the resin impregnation of the film, and indirectly make the copper bond poor. Although the literature proposes a solution to these problems, a large amount of high molecular weight polybutadiene is used in the composition to eliminate the viscosity of B_Stage, and a small amount of low molecular weight modified polybutadiene is also used. The above composition can help the copper box maintain fluidity during joining and pressing. US47^4917=There is also a substrate material based on polybutadiene as the main resin, in which the pre-polymer of the polystyrene is added to the base of the ruthenium knife to reduce the viscosity of the polystyrene film. It is known from the prior art that upgrading with polybutadiene resin • Other resins, or polybutadiene modified with other resins, will face problems such as electrical characteristics, chemical resistance, heat resistance, and mechanical properties. SUMMARY OF THE INVENTION This month provides a dielectric material formulation, including (8) 丨 to 叩 by weight = butylene, the branch thereof has cis-butanol acid, and its terminal has a Wei group, a thiol group, or an epoxy group. Base, and its weight average molecular weight is between biliary and 15 ;; (8) 5 i 90 i in the broken bond rearrangement of polyphenylene, the weight average molecular weight of the 201124478 between 2000 and 8000; (c) ! to % weight and (4) 1 to buckle parts by weight of epoxy resin. The present invention provides a circuit substrate comprising a substrate; and the substrate is placed on the substrate, wherein the dielectric layer comprises the dielectric material layer described above. [Embodiment] The present invention is in view of the absence of the prior art. It is proposed that the characteristics of the materials such as electrical characteristics, chemical resistance, and = good: the number, dielectric materials, dielectric materials have better dielectric fat viscosity, and resin processability: substrate with strength, resin Material composition and; D-thin resin modified polystyrene shouted with a 9. The weight of the polybutylene or epoxy group, and its heavy material, the end has a green, warp group, to 9 parts by weight of the chain weight ^ ^ 12 = to 15 between coffee; (8) between 5 and 8000. c) hydrazine, I-ether, and weight-averaged knives in an amount of from 2,000 to 1 part by weight of epoxy = weight of the bis-maleide; and (4) oxy-resin 辻A-based epoxy resin, cyclic fat Common epoxy oxime, biphenyl epoxy resin, and epoxy resin strength.曰, /, the role of increasing the cross-linking density of the resin and then the main Λ 键 重 的 的 ( 可 可 可 可 可 可 可 可 US US US US US US US US US US US US US US US US US US US US US US US US US US US US US 6, 6, 6, 6, 6, 6, 6, 6, 6, As a chain breaker of high molecular weight polyphenylene ether, the resin breaks the high molecular weight polyphenylene ether and rearranges it to form a polyphenylene ether having a lower molecular weight but a higher stereo molecular structure. The chain-repeated polyphenylene ether has a hydroxyl group or an epoxy group to react with the epoxy resin and polybutadiene in the formulation. The polyphenylene ether having a chain-strip rearrangement has a weight average molecular weight of between 2,000 and 8,000. If the weight average molecular weight is higher than the above range, the heat resistance is poor; if the weight average molecular weight is lower than the above range, the dielectric constant is higher. high. Based on 1 to 30 parts by weight of the epoxy resin, the amount of the polyphenylene ether which is rearranged by the chain is between 5 and 90 parts by weight, and if the amount of the polyphenylene ether which is rearranged by the chain is out of the range, the heat is stabilized. Sex will be worse. If the amount of the polyphenylene ether which is rearranged by the chain is less than this range, the resin crosslinking density is lowered. The present invention employs a polyphenylene ether resin having a side chain and a polybutadiene having a functional group reactive with a polyphenylene ether at the end and modified by a polybutadiene having a specific functional group as described above. The polybutadiene is used in an amount of from 1 to 90 parts by weight based on 1 to 30 parts by weight of the epoxy resin, and if the amount of the polybutadiene exceeds this range, the resin crosslinking density is lowered. If the amount of polybutadiene used is less than this range, the thermal stability of the resin is not good. • In addition, the present invention further increases the crosslink density of polybutadiene and polyphenylene ether with bismalelidene (BMI) to form a substrate material composition having excellent electrical properties and excellent heat resistance. The structure of the above BMI is as shown in Formula 1 or Formula 2, wherein R! is an aromatic group, a fatty group, a cyclic aliphatic group, or a decane-containing aliphatic group.

〇 〇 (式 1) 7 201124478〇 〇 (Formula 1) 7 201124478

以1至30重量份之環氧樹脂為基準,BMI的用量介於 1至90重量份,若BMI用量超出此範圍,則樹脂交聯密度 下降。若BMI用量低於此範圍,則樹脂熱安定性會變差。 上述以聚丁二烯改質之斷鏈重排聚笨醚(其中具有BMI交 聯)將形成半互穿結構(semi-IPN),為具有更高Tg 、低介 質常數、低損失因子,且耐溶劑性與耐熱性皆優良的電路 基板用樹脂組成物。 在本發明一實施例中,可進一步添加5至9〇重量份之 苯醚养聚物,以降低樹脂之介電常數。在本發明一實施例 中’可添加二細丙基異氣酸醋(Triallylls〇Cyanurate)或過氧 化物等硬化劑以提高樹脂的反應性,降低樹脂黏度、提高 接著強度、及降低壓合溫度。本發明之介電材料配方的壓 合溫度約為180〜220。(:,符合現有PCB壓合機的工作溫 度。在本發明一實施例中,可視情況需要添加1至20重量 份之耐燃劑及/或絕緣粉體至上述介電材料配方。若耐燃劑 及/或絕緣粉體之比例過高,將會降低樹脂與銅箔接著強 度。若耐燃劑及/或絕緣粉體之比例過低,將無法無法使介 電材料配方具有耐燃特性。耐燃劑可為含溴或含磷耐燃劑 如四溴丙二酚等。絕緣粉體可為氫氧化鋁、氧化鋁、氫氧 化鎂、氧化錳、氧化矽、聚亞醯胺、或上述之組合,其中 以二氧化矽為最佳。由於絕緣粉體具有尺寸安定性,在添 201124478 加後可有效將低熱膨脹係數CTE (Coefficient of Thermal Expansion )。 本發明亦提供一種電路基板,包括基板以及位於基板 上的介電層’其中介電層包含上述之介電材料配方。其應 用方式可為玻璃纖維含浸之基板材料,也可與聚亞醯胺纖 維布或LCP纖維布做含浸,壓合製做成高頻基板材料。上 述介電材料配方也可直接塗佈於銅箔基材上,以背膠銅箔 (RCC)方式壓合於基板上。 • 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂’下文特舉數實施例配合所附圖示,作詳細說明 如下: 【實施例】 首先在在反應器中加入適量的環氣樹脂如雙酚-A雙環 氧丙基醚(188EL,購自長春樹脂)及/或四溴雙酚A雙環氧 丙基醚(BEB350,購自長春樹脂)。接著再加入雙馬來醯胺 _ (BMI ’購自ki-chemical),及支鏈具有順丁烯二酸酐且末端 具有經基的聚丁二烯(ricon 130,購自sartomer)加熱溶解於 γ-丁内醋(γ-butyrolactone; BGL)、二甲苯(Toluene)及曱苯 (Toluene)的混合溶劑中,再加入少量的過氧化物BPO。之 後加熱至100°C反應1.0小時,形成完全相容的溶液A。 另外將聚笨醚(PPE E200,購自sumitomo chemical)加 熱溶解於曱苯及二甲苯溶劑中,再加入適量的紛酸樹脂 (bisphenol A,購自景明化工請發明人提供商品型號及供應 201124478 薇商)或雙環戊二烯系齡樹脂(Terpene phenol novolak resin MP402,購自 YukaShellEpoxyCo. Japan)作為斷鏈劑以及 適量的起始劑(過氧化物BPO)及少量的Ν,Ν,Ν’,Ν’-四環氧 丙基-4,4,-二氨基二苯甲烷«f-Methylenebisii^N- diglycidylaniline)) , 加熱至 100°C 反應 2.0 小時 ,形成 完全相容的溶液B。上述步驟可使聚苯醚斷鏈後重新排 列,形成重均分子量較低(約3000〜8000),且具有較高立體 分子結構的聚笨醚樹脂,其具有羥基或環氧基。 接著將溶液A加入B溶液的反應瓶並加入適量的催化 劑二第三丁基過氧化物(Di-tert-butyl peroxide ),再加熱至 ll〇°C反應3.0小時,使聚丁二烯改質斷鏈重排之聚苯醚, 並以BMI增加上述高分子的交聯度,以形成半互穿型高分 子。接著降溫加入硬化劑三稀丙基異氰酸酯(TriaUyl Isocyanurate)及其他添加劑如对燃劑、無機填充物如二氧化 石夕。 依表一及表二所示之重量比例及上述步驟配製不同溶 液後’分別含浸玻璃纖維布,並加熱烘烤去除溶劑,使其 部分硬化’形成所謂的預浸材(prepreg),並分別將該等膠 片與銅箔高溫壓合硬化(壓合溫度約220°C,3小時)以形成 銅箔基板材料,最後分別測試其物性,結果列於表三。 表一實施例之介電材料組成 組成 實施例 1-1 實施例 1-2 實施例 1-3 實施例 1-4 實施例 1-5 雙酚-A環氧樹脂(g) 0 10 20 0 10 四溴化雙酚-A環氧樹脂(g) 20 10 0 20 30 201124478 四環氧丙基-4,-二氨基二 笨甲院(g) 5 5 5 8 5 聚丁二烯(g) 50 50 80 100 50 斷鏈重排之聚苯醚(g) 120 120 100 100 120 雙馬來醯胺(g) 20 40 30 45 20 三烯丙基異氰酸酯(g) 30 20 30 15 30 二第三丁基過氧化物(g) 1 1 1 1.3 1.0 耐燃劑 5 6 8 5 5 Si〇2(g) 25 26 27 30 27 表二比較例之介電材料組成 組成 比較例1-1 比較例1-2 比較例1-3 雙酚-A環氧樹脂(g) 0 10 0 四溴化雙酚-A環氧樹脂(g) 20 15 20 四環氧丙基-4,4'-二氨基二 苯甲烷(g) 5 5 5 聚丁二烯(g) 50 0 150 斷鏈重排之聚苯醚(g) 120 160 0 雙馬來醯胺(g) 0 20 0 三烯丙基異氰酸酯(g) 30 30 25 二第三丁基過氧化物(g) 1 1 1 Si02(g) 25 25 20The BMI is used in an amount of from 1 to 90 parts by weight based on 1 to 30 parts by weight of the epoxy resin, and if the BMI amount is outside the range, the resin crosslinking density is lowered. If the BMI amount is less than this range, the thermal stability of the resin may be deteriorated. The above-mentioned polybutadiene modified chain-chain rearranged polyether (with BMI cross-linking) will form a semi-interpenetrating structure (semi-IPN) with a higher Tg, a lower dielectric constant, a low loss factor, and A resin composition for a circuit board excellent in solvent resistance and heat resistance. In an embodiment of the present invention, 5 to 9 parts by weight of a phenyl ether polymer may be further added to lower the dielectric constant of the resin. In one embodiment of the present invention, a hardener such as Triallylls® Cyanurate or a peroxide may be added to improve the reactivity of the resin, lower the viscosity of the resin, increase the bonding strength, and lower the pressing temperature. . The dielectric material formulation of the present invention has a press temperature of about 180 to 220. (:, in accordance with the operating temperature of the existing PCB press machine. In an embodiment of the invention, it may be necessary to add 1 to 20 parts by weight of a flame retardant and/or insulating powder to the above dielectric material formulation. / or the proportion of the insulating powder is too high, which will reduce the strength of the resin and copper foil. If the ratio of the flame retardant and / or insulating powder is too low, it will not be able to make the dielectric material formula have flame resistance. The flame retardant can be a bromine-containing or phosphorus-containing flame retardant such as tetrabromopropanediol, etc. The insulating powder may be aluminum hydroxide, aluminum oxide, magnesium hydroxide, manganese oxide, cerium oxide, polyamidamine, or a combination thereof, wherein Cerium oxide is the best. Since the insulating powder has dimensional stability, it can effectively reduce the coefficient of thermal expansion (CTE) after adding 201124478. The present invention also provides a circuit substrate including a substrate and a substrate on the substrate. The electric layer 'the dielectric layer comprises the above-mentioned dielectric material formulation. The application method can be glass fiber impregnated substrate material, or can be impregnated with polythene fiber cloth or LCP fiber cloth. The high-frequency substrate material is formed. The above-mentioned dielectric material formulation can also be directly coated on a copper foil substrate and laminated on a substrate by a backing copper foil (RCC). • For the above and other purposes of the present invention, The features and advantages will be more apparent. The following detailed description of the embodiments together with the accompanying drawings will be described in detail as follows: [Examples] First, an appropriate amount of a cycloolefin resin such as bisphenol-A double ring is added to the reactor. Oxypropyl propyl ether (188EL, purchased from Changchun resin) and / or tetrabromobisphenol A bisepoxypropyl ether (BEB350, purchased from Changchun resin). Then add bismaleide _ (BMI 'purchased from ki -chemical), and polybutadiene (ricon 130, available from sartomer) having a maleic anhydride branch and a terminal group, and dissolved in γ-butyrolactone (BGL) and xylene (heat-soluble) A small amount of peroxide BPO is added to the mixed solvent of Toluene and Toluene, and then heated to 100 ° C for 1.0 hour to form a completely compatible solution A. In addition, polyphenyl ether (PPE E200, purchased) Heated in the solvent of toluene and xylene from sumitomo chemical) A quantity of bisphenol A (purchased from Jingming Chemical, the inventor provided the model number and supply 201124478 Weishang) or dicyclopentene phenol novolak resin MP402 (purchased from YukaShellEpoxyCo. Japan) as the chain scission agent And an appropriate amount of initiator (peroxide BPO) and a small amount of hydrazine, hydrazine, Ν', Ν'-tetraepoxypropyl-4,4,-diaminodiphenylmethane «f-Methylenebisii^N- diglycidylaniline) ), heated to 100 ° C for 2.0 hours to form a fully compatible solution B. The above steps allow the polyphenylene ether to be rearranged after chain scission to form a polyether ether resin having a low weight average molecular weight (about 3000 to 8000) and having a relatively high molecular structure, which has a hydroxyl group or an epoxy group. Then, the solution A is added to the reaction bottle of the B solution and an appropriate amount of the catalyst, Di-tert-butyl peroxide, is added, and then heated to ll ° C for 3.0 hours to reform the polybutadiene. The polyphenylene ether is rearranged by chain scission, and the degree of crosslinking of the above polymer is increased by BMI to form a semi-interpenetrating polymer. The temperature is then added to the hardener TriaUyl Isocyanurate and other additives such as a flammable agent, an inorganic filler such as sulphur dioxide. According to the weight ratio shown in Table 1 and Table 2 and the above steps, prepare different solutions, respectively, impregnating the glass fiber cloth separately, and heating and baking to remove the solvent to partially harden it to form a so-called prepreg, and respectively The film and the copper foil were hard pressed at a high temperature (pressing temperature of about 220 ° C for 3 hours) to form a copper foil substrate material, and finally the physical properties were tested. The results are shown in Table 3. Dielectric material composition of Table 1 Example 1-1 Example 1-2 Example 1-3 Example 1-4 Example 1-5 Bisphenol-A epoxy resin (g) 0 10 20 0 10 Tetrabrominated bisphenol-A epoxy resin (g) 20 10 0 20 30 201124478 Tetraepoxypropyl-4,-diaminodibenzoic acid (g) 5 5 5 8 5 polybutadiene (g) 50 50 80 100 50 Polystyrene ether with broken chain rearrangement (g) 120 120 100 100 120 Bimaleimide (g) 20 40 30 45 20 Triallyl isocyanate (g) 30 20 30 15 30 Second third Base peroxide (g) 1 1 1 1.3 1.0 Flame retardant 5 6 8 5 5 Si〇2(g) 25 26 27 30 27 Table 2 Comparison of dielectric composition composition of Comparative Example 1-1 Comparative Example 1-2 Comparative Example 1-3 Bisphenol-A epoxy resin (g) 0 10 0 Tetrabrominated bisphenol-A epoxy resin (g) 20 15 20 Tetraepoxypropyl-4,4'-diaminodiphenylmethane (g) 5 5 5 Polybutadiene (g) 50 0 150 Chain-cut rearranged polyphenylene ether (g) 120 160 0 Bismalelide (g) 0 20 0 Triallyl isocyanate (g) 30 30 25 di-tert-butyl peroxide (g) 1 1 1 Si02(g) 25 25 20

表三、實施例與比較例之物性測試 特性 實施例1-1 實施例1-2 實施例1-3 實施例1-4 實施例1-5 介電常數(1MHz) 3.43 3.47 3.40 3.38 3.58 損失因子(1MHz) 0.0052 0.0055 0.0051 0.0050 0.0067 Tg(°C)(DMA) 186 196 180 182 185 耐銲錫性a) PASS PASS PASS PASS PASS 剝離強(lb/in)b) 5.6 5.4 5.1 5.0 5.9 特性 比較例1-1 比較例1-2 比較例1-3 介電常數(1MHz) 3.42 3.82 3.30 損失因子(1MHz) 0.0051 0.0082 0.0047 TgfCXDMA) 156 182 136 耐銲錫性a) 爆板 PASS 爆板 剝離強(lb/in)b) 3.2 5.1 2.8 11 201124478 a) 耐銲錫性係於288t:/3min b) 剝離強度依IPC規範 由上述表三可看出比較例1-1未添加bmi,壓合熱硬 化後其交聯密度不佳,熱安定性差接著也不好。與其組成 類似的實施例1-1加入適量的BMI,其介電常數及損失因 子並未增加’卻大幅提高熱安定性(Tg提高到186。〇,亦 大幅改善耐輝錫性及剝離強度。 比較例1-2未添加聚丁二烯’單純使用斷鏈重排之聚 鲁 笨醚樹脂與環氧樹脂,雖然耐熱性還不錯,但其介電常數 為3.82太兩’不適用於rf面頻基板之應用。尤其其介電 損失值為0.0082,在高頻電性傳輸上,易造成傳輸品質變 差。 此外,適度提高BMI的用量可提高Tg,像實施例1-2 之Tg可以達到196°C,其介電常數還可以維持在3.47,且 具有不錯的接著性。 由上述可知,添加聚丁二烯確實可大幅降低樹脂的介 籲 電常數及介電損失’但若沒有合適的交聯劑去降低交聯溫 度,及提高交聯密度,其熱安定性還是很差。以比較例1_3 為例,其介電常數雖可達3.30,但沒有添加BMI及斷鏈重 排的聚苯醚樹脂的結果就是無法通過耐銲錫測試。本發明 利用具有優異電氣特性的聚丁二烯熱固性樹脂改質聚苯醚 樹脂’並利用雙馬來醯胺(bismaleimide resin,BMI)提高樹 脂交聯密度’大幅提高财熱性及T g ,此外,籍由不同比 例的BMI/PPE/PB來形成半互穿(semiqpN)結構,可得到具 12 201124478 有更高Tg 、低介質常數、低損失因子,且耐溶劑性與耐 熱性皆優良的電路基板用樹脂組成物。 雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作任意之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。Table 3, Physical property test characteristics of Examples and Comparative Examples Example 1-1 Example 1-2 Example 1-3 Example 1-4 Example 1-5 Dielectric constant (1 MHz) 3.43 3.47 3.40 3.38 3.58 Loss factor (1MHz) 0.0052 0.0055 0.0051 0.0050 0.0067 Tg(°C)(DMA) 186 196 180 182 185 Solderability a) PASS PASS PASS PASS PASS Strong (lb/in) b) 5.6 5.4 5.1 5.0 5.9 Characteristic Comparison Example 1 1 Comparative Example 1-2 Comparative Example 1-3 Dielectric constant (1MHz) 3.42 3.82 3.30 Loss factor (1MHz) 0.0051 0.0082 0.0047 TgfCXDMA) 156 182 136 Solder resistance a) Explosive plate PASS Explosive plate peeling strength (lb/in) b) 3.2 5.1 2.8 11 201124478 a) Solder resistance is at 288t: /3min b) Peel strength According to IPC specification, it can be seen from Table 3 above that Comparative Example 1-1 has no bmi added, and its crosslink density after press hardening Poor, poor thermal stability is not good. In Example 1-1, which was similar in composition, an appropriate amount of BMI was added, and the dielectric constant and the loss factor were not increased, but the thermal stability was greatly improved (Tg was increased to 186. 〇, and the tin-resistance and peel strength were also greatly improved. Comparative Example 1-2: No polybutadiene was added. The polyetherether resin and epoxy resin which were simply used in chain-scission rearrangement, although the heat resistance was good, the dielectric constant was 3.82 too two 'not applicable to the rf surface. The application of the frequency substrate, especially the dielectric loss value is 0.0082, which is likely to cause poor transmission quality in high-frequency electrical transmission. In addition, moderately increasing the amount of BMI can increase the Tg, and the Tg of Example 1-2 can be achieved. At 196 ° C, the dielectric constant can be maintained at 3.47, and has a good adhesion. From the above, it can be seen that the addition of polybutadiene can significantly reduce the dielectric constant and dielectric loss of the resin 'but if there is no suitable The cross-linking agent reduces the cross-linking temperature and increases the cross-linking density, and its thermal stability is still very poor. Taking Comparative Example 1_3 as an example, its dielectric constant can reach 3.30, but there is no BMI and chain-breaking re-growth. The result of phenyl ether resin is impossible Solder-resistance test. The present invention utilizes a polybutadiene thermosetting resin modified polyphenylene ether resin having excellent electrical properties and utilizes bismaleimide resin (BMI) to increase the crosslink density of the resin to greatly improve the heat and T g. In addition, the semi-interpenetrating (semiqpN) structure is formed by different ratios of BMI/PPE/PB, which can be obtained with 12 201124478, higher Tg, low dielectric constant, low loss factor, solvent resistance and heat resistance. The present invention has been described in terms of several preferred embodiments. The present invention has been described above in terms of several preferred embodiments, which are not intended to limit the invention, and those skilled in the art, without departing from the spirit and scope of the invention, Any changes and modifications may be made, and the scope of the present invention is defined by the scope of the appended claims.

13 201124478 【圖式簡單說明】 無0 【主要元件符號說明】13 201124478 [Simple description of the diagram] No 0 [Description of main component symbols]

Claims (1)

201124478 七、申請專利範圍: 1. 一種介電材料配方,包括: (a) l至90重量份之聚丁二烯,其支鏈具有順丁烯二酸 酐,其末端具有羧基、羥基、或環氧基,且其重均分子量 介於1200至15000之間; (b) 5至90重量份之斷鏈重排的聚苯醚,其重均分子量 介於2000至8000之間; (c) l至30重量份之雙馬來醯亞胺;以及 • (d)l至30重量份之環氧樹脂。 2. 如申請專利範圍第1項所述之介電材料配方,其中 該雙馬來醯亞胺之結構如下:201124478 VII. Scope of application: 1. A dielectric material formulation comprising: (a) 1 to 90 parts by weight of polybutadiene having a maleic anhydride branch with a carboxyl group, a hydroxyl group, or a ring at the end An oxy group having a weight average molecular weight of from 1200 to 15,000; (b) from 5 to 90 parts by weight of a chain-chain rearranged polyphenylene ether having a weight average molecular weight of from 2,000 to 8,000; (c) Up to 30 parts by weight of bismaleimide; and (d) 1 to 30 parts by weight of epoxy resin. 2. The formulation of a dielectric material as described in claim 1 wherein the structure of the bismaleimide is as follows: 係芳香基、脂肪基、環狀脂肪基、或含矽烷之脂肪基。 • 3.如申請專利範圍第1項所述之介電材料配方,其中 該環氧樹脂包括雙酚A系環氧樹脂、環狀脂肪族環氧樹 脂、含苯環氧樹脂、聯苯環氧樹脂、及酚醛環氧樹脂。 4. 如申請專利範圍第1項所述之介電材料配方,更包 括5至90重量份之苯醚寡聚物。 5. 如申請專利範圍第1項所述之介電材料配方,更包 括1至20重量份之耐燃劑及/或絕緣粉體。 6. 如申請專利範圍第5項所述之介電材料配方,其中 該耐燃劑包括含溴或含磷耐燃劑。 15 201124478 7. 如申請專利範圍第5項所述之介電材料配方,其中 該絕緣粉體包括氫氧化鋁、氧化鋁、氫氧化鎂、氧化錳、 氧化矽、聚亞醯胺、或上述之組合。 8. —種電路基板,包括: 一基板;以及 一介電層,位於該基板上, 其中該介電層包含申請專利範圍第1項所述之介電材 料配方。 9. 如申請專利範圍第8項所述之電路基板,包括印刷 φ 電路板、1C載板、或南頻基板。An aromatic group, a fat group, a cyclic aliphatic group, or a decane-containing aliphatic group. 3. The dielectric material formulation of claim 1, wherein the epoxy resin comprises a bisphenol A epoxy resin, a cyclic aliphatic epoxy resin, a benzene containing epoxy resin, a biphenyl epoxy resin. Resin, and phenolic epoxy resin. 4. The dielectric material formulation of claim 1, further comprising 5 to 90 parts by weight of a phenyl ether oligomer. 5. The dielectric material formulation of claim 1, further comprising from 1 to 20 parts by weight of a flame retardant and/or an insulating powder. 6. The dielectric material formulation of claim 5, wherein the flame retardant comprises a bromine- or phosphorus-containing flame retardant. The method of claim 4, wherein the insulating powder comprises aluminum hydroxide, aluminum oxide, magnesium hydroxide, manganese oxide, cerium oxide, polyamidamine, or the like. combination. 8. A circuit substrate comprising: a substrate; and a dielectric layer on the substrate, wherein the dielectric layer comprises the dielectric material formulation of claim 1 of the patent application. 9. The circuit substrate of claim 8, comprising a printed φ circuit board, a 1C carrier board, or a south frequency substrate. 16 201124478 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: _飯〇 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:16 201124478 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: _ rice cooker 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW98141673A 2009-12-07 2009-12-07 Dielectric material formula and circuit board utilizing the same TWI412564B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98141673A TWI412564B (en) 2009-12-07 2009-12-07 Dielectric material formula and circuit board utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98141673A TWI412564B (en) 2009-12-07 2009-12-07 Dielectric material formula and circuit board utilizing the same

Publications (2)

Publication Number Publication Date
TW201124478A true TW201124478A (en) 2011-07-16
TWI412564B TWI412564B (en) 2013-10-21

Family

ID=45047090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98141673A TWI412564B (en) 2009-12-07 2009-12-07 Dielectric material formula and circuit board utilizing the same

Country Status (1)

Country Link
TW (1) TWI412564B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140275377A1 (en) * 2013-03-18 2014-09-18 Iteq Corporation Dielectric material with low dielectric loss
TWI464213B (en) * 2013-03-07 2014-12-11 Taiwan Union Technology Corp Resin composition and uses of the same
TWI468465B (en) * 2012-03-23 2015-01-11 Taiwan Union Technology Corp Resin composition and uses of the same
TWI513761B (en) * 2013-04-30 2015-12-21 Ind Tech Res Inst Resin composition, prepreg, and substrate employing the same
US9455067B2 (en) 2013-03-18 2016-09-27 Iteq Corporation Low dielectric materials
WO2024021897A1 (en) * 2022-07-27 2024-02-01 华为技术有限公司 Prepreg, substrate, printed circuit board and related preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547849B2 (en) * 2005-06-15 2009-06-16 E.I. Du Pont De Nemours And Company Compositions useful in electronic circuitry type applications, patternable using amplified light, and methods and compositions relating thereto
JP5261943B2 (en) * 2006-02-17 2013-08-14 日立化成株式会社 Semi-IPN type thermosetting resin composition and varnish, prepreg and metal-clad laminate using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902136B2 (en) 2012-03-23 2018-02-27 Taiwan Union Technology Corporation Resin composition and uses of the same
TWI468465B (en) * 2012-03-23 2015-01-11 Taiwan Union Technology Corp Resin composition and uses of the same
US10322565B2 (en) 2012-03-23 2019-06-18 Taiwan Union Technology Corporation Resin composition and uses of the same
TWI464213B (en) * 2013-03-07 2014-12-11 Taiwan Union Technology Corp Resin composition and uses of the same
US10793716B2 (en) 2013-03-07 2020-10-06 Taiwan Union Technology Corporation Resin composition and uses of the same
US20140275335A1 (en) * 2013-03-18 2014-09-18 Iteq Corporation Circuit board
US9245667B2 (en) * 2013-03-18 2016-01-26 Iteq Corporation Circuit board
US9257212B2 (en) * 2013-03-18 2016-02-09 Iteq Corporation Dielectric material with low dielectric loss
US9455067B2 (en) 2013-03-18 2016-09-27 Iteq Corporation Low dielectric materials
US20140275377A1 (en) * 2013-03-18 2014-09-18 Iteq Corporation Dielectric material with low dielectric loss
TWI513761B (en) * 2013-04-30 2015-12-21 Ind Tech Res Inst Resin composition, prepreg, and substrate employing the same
US9642249B2 (en) 2013-04-30 2017-05-02 Industrial Technology Research Institute Resin composition, prepreg, and substrate employing the same
WO2024021897A1 (en) * 2022-07-27 2024-02-01 华为技术有限公司 Prepreg, substrate, printed circuit board and related preparation method

Also Published As

Publication number Publication date
TWI412564B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
CN102115569B (en) Dielectric material composition and circuit substrate
JP7356782B2 (en) Ultra-low dielectric loss thermosetting resin composition and high-performance laminate produced using the same
KR102323672B1 (en) Resin composition, and insulating film and semiconductor device using same
TWI814907B (en) Resin compositions, films, laminates and semiconductor devices
CN107964203B (en) Low-dielectric prepreg composition, copper-clad plate and manufacturing method thereof
TWI609921B (en) Resin composition, and adhesive film, cover lay film and interlayer adhesive formed therefrom
TW201124478A (en) Dielectric material formula and circuit board utilizing the same
WO2012006776A1 (en) Composite material and high frequency circuit substrate manufactured with the composite material and the manufacturing method thereof
CN1458963A (en) Poly ester synthetic (phenyl ether), polyester film, laminates sheet, printed wiring board, and maltilayer printed wiring board
JP6917636B2 (en) Resin composition, thermosetting film using it, resin cured product, laminated board, printed wiring board, and semiconductor device
TWI513761B (en) Resin composition, prepreg, and substrate employing the same
JP5533354B2 (en) Shield film and shield wiring board
CN105542396A (en) High-modulus epoxy resin composition, preparation method thereof, prepreg and laminated board manufactured from same and preparation method of prepreg and laminated board
JP2017179035A (en) Resin composition, prepreg, metal clad laminate, printed wiring board and metal foil with resin
JP7338479B2 (en) Modified epoxy resin, epoxy resin composition, cured product, and laminate for electric/electronic circuit
JP5405959B2 (en) Epoxy resin composition and adhesive film thereby
JP2009161605A (en) New bismaleimide having phenolic hydroxyl group, thermosetting resin composition using the same as essential component and its cured product
WO2016031228A1 (en) Resin composition, prepreg, metal foil with resin, metal-clad laminate, printed wiring board
CN115710338A (en) Benzoxazine resin for flexible non-adhesive copper-clad plate, benzoxazine monomer, preparation method and application thereof
JP6252929B2 (en) Method for producing resin composition
WO2022255078A1 (en) Resin composition, production method therefor, adhesive film, and bonding sheet for interlaminar bonding
CN114605779B (en) Thermosetting resin composition, prepreg comprising thermosetting resin composition, circuit substrate and printed circuit board
CN101445643B (en) Epoxy resin composite
CN117500151A (en) Copper-clad plate with high Tg
CN116041936A (en) Resin composition, prepreg and application thereof