TW201123499A - Optical total internal reflection wavelength conversion solar cell module. - Google Patents

Optical total internal reflection wavelength conversion solar cell module. Download PDF

Info

Publication number
TW201123499A
TW201123499A TW098144733A TW98144733A TW201123499A TW 201123499 A TW201123499 A TW 201123499A TW 098144733 A TW098144733 A TW 098144733A TW 98144733 A TW98144733 A TW 98144733A TW 201123499 A TW201123499 A TW 201123499A
Authority
TW
Taiwan
Prior art keywords
wavelength conversion
solar cell
total reflection
cell module
internal total
Prior art date
Application number
TW098144733A
Other languages
Chinese (zh)
Other versions
TWI450406B (en
Inventor
pei-zhi Yao
Original Assignee
Xin Gao Innovation Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xin Gao Innovation Technology Co Ltd filed Critical Xin Gao Innovation Technology Co Ltd
Priority to TW098144733A priority Critical patent/TW201123499A/en
Publication of TW201123499A publication Critical patent/TW201123499A/en
Application granted granted Critical
Publication of TWI450406B publication Critical patent/TWI450406B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention provides an opticaltotal internal reflection wavelength conversion solar cell module, which includes: a solar cell; a wavelength conversion layer laterally connected to the solar cell for providing a wavelength conversion effect; and a cover panel for encapsulating the solar cell and the wavelength conversion layer. As a result, the optical wavelength, that originally has low photoelectric conversion efficiency or is inapplicable to the solar cell, can be fully converted into useful optical wavelength, and can greatly increase the likelihood of the solar cell receive full sun. This increases light utilization efficiency, thereby achieving high efficiency wavelength conversion.

Description

201123499 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種太陽能電池模組,尤指一種使太陽光中原本對太陽 能電池光電轉換效率偏低或無法應用的光源波長充分轉換為有用的光源波 長,並大幅增加太陽能電池接收太陽光之機率’以達到具有極佳轉換效率 之太陽能電池模組者。 【先前技術】 按,由於能源逐漸短缺,屬於綠色能源之光能科技是當前能源研發、 應用重要的項目,以太陽能利用為例,太陽能電池對光源波長的響應效率 鲁 因不同光電材料而有所不同,如第la圖所示,其為各種不同光電材料對於 太陽之光源波長響應效率特性分佈圖,其橫軸為太陽之光源波長,而其縱 軸則為不同光電材料對於不同光源波長之光電響應效率,由該特性分佈圖 得知「愈靠近峰值P1〜P6 (peak value)區域’其響應效率愈高」;但如果 能使太陽能電池對將原本太陽光中沒有響應或響應效率偏低之的光源波長 轉換成響應最大的光源波長,則將大為提昇其光電轉換之利用效率,再請 一併參照第lb圖所示之太陽光的光照度(Spectral irradiance) (W/m/nm)-波長座標圖,其太陽光光譜90依其波長由小至大約可分成三個 φ 光源區段,包括紫外線區段92、可見光區段91及紅外線區段93,其中, 該可見光區段91及與紅外線區段93相鄰之區域為太陽能電池響應效率最 佳的光源波長區段,故,如何使太陽光在進入太陽能電池模組内部時,將 該太陽光光譜90中對太陽能電池產生最佳響應’用以提昇太陽能電池對太 陽光源的利用率與照射機率而達到最佳的光能轉換效率,誠是業界應積極 研發與突破之重點方向。 緣此’本發明人有鏗於習知太陽能電池模組其光能轉換效率不佳之缺 點及其模組結構設計上未臻理想之事實,本案發明人即著手研發其解決方 案,希望能開發出一種更具效率性及經濟性之光學内部全反射波長轉換太 陽能電池模組’以服務社會大眾及促進此業之發展,遂經多時之構思而有 201123499 本發明之產生。 【發明内容】 本發明之目的在提供一種光學内部全反射波長轉換太陽能電池模組, 其能使太陽光中原本對太陽能電池光電轉換效率偏低或無法應用的光源波 長’轉換為對太陽能電池有用或光電轉換效率高的光源波長,並大幅增加 太陽能電池接收太陽光之機率,用以提昇其光源利用效率。 本發明為達到上述目的所採用之技術手段包括:一太陽能電池;一波 長轉換層,其具有波長轉換作用,該波長轉換層侧接該太陽能電池;一覆 板,該覆板封裝該太陽能電池及該波長轉換層。 本發明之技術手段進一步包括有:一太陽能電池;一覆板,該覆板封 裝該太陽能電池;一波長轉換層’該波長轉換層具有波長轉換作用,該波 長轉換層設於該覆板外側。 茲為使貴審查委员對本發明之技術、特徵及所達成之功效更有進一步 之瞭解與認識,謹佐以較佳之實施例國及配合詳細之說明,說明如後: 【實施方式】 請參閱第2圆,為本發明光學内部全反射波長轉換太陽能電池模組第 一實施例,該太陽能電池模組1包括有一太陽能電池1〇,該太陽能電池1〇 可為單面式、雙面式太陽能電池或由複數片太陽能電池(該複數片太陽能 電池係排列在同一平面上)之組合,該太陽能電池1〇側邊約平行地設置有 一波長轉換層12 ’該波長轉換層12係以高分子材料或玻璃為基底材料,並 包含有波長調變材料(如有機波長調變材料、量子點螢光演色調變材料及 奈米顆粒螢光增光粉組成之複合材料)或由上述波長調變材料所建構之光 柵或穿透式透鏡’而使該波長轉換層具有波長轉換、光學折射、繞射或聚 焦之光學功能。在本實施例中,該太陽能電池10於其側邊併接該波長轉換 層12,即該波長轉換層12呈側邊連接或側邊圍接該太陽能電池10,然後 再整體封裝有一覆板20,該覆板20包括有一上覆板22及下覆板24,該上 覆板22、下覆板24為透明材料,如玻璃、壓克力(PMMA)、樹脂(epoxy)、 201123499 矽膠(silicone)、高分子材料(EVA等)或為上述材料之複合層之組合;另, 該上覆板22及下覆板24間設有電極14,如電極網,該電極14並連接該太 陽能電池10 ;又,該上覆板22及下覆板24可進一步設有複數封裝透氣孔 221、241 ’該封裝透氣孔221、241於封裝階段具有透氣及以封裝平整之功 能外,亦可兼具電極14接線之通道。 請參閱第3圖’當太陽光由太陽能電池模組1上方兩側(如上午或下午) 進入太陽能電池模組1時,光線A將通過該上覆板22投射於該波長轉換層 12’並接續使該光線A(大部份或局部)於該上覆板22及波長轉換層12間進 行光線路徑A1之内部全反射前進,並最終投射於該太陽能電池1〇 ;由於該 • 波長轉換層12具有使太陽光轉換波長之功能,因此投射於該波長轉換層12 之光線A的無法應用光源波長,將逐漸被轉換成可為太陽能電池10吸收利 用之光源波長;換言之,通過該波長轉換層12於該太陽能電池模組1内部 的光源全反射轉換運作,可使太陽光源波長調變為太陽能電池1〇響應效率 最高的頻譜,而大大提昇太陽能電池模組1的光能轉換效率。同理,當太 陽光由太陽能電池模組1下方兩側或上方之光線A穿透該波長轉換層12再 進入時’光線A或B將通過該下覆板24投射於該波長轉換層12,並接續使 該光線B(大部份或局部)於該下覆板24及波長轉換層12間進行光線路徑 φ B1之全反射前進,並最終投射於該太陽能電池10。 請參閱第4圖,為本發明光學内部全反射波長轉換太陽能電池模組第 二實施例,該太陽能電池模組1於該上覆板22上方(外側)再設置該波長轉 換層12A’藉該波長轉換層12a對所進入之太陽光進行第一階段太陽光源波 長之調變。又如第5圖所示,該波長轉換層12B亦可設置於該下覆板24下 方(外側)’同樣可藉該波長轉換層12B對所進入之太陽光進行第一階段太 陽光源波長之調變與内部全反射。 請參閱第6圖,係本發明光學内部全反射波長轉換太陽能電池模組第 三實施例,該太陽能電池模組1單獨封裝後,於該覆板20下方(外側)設置 該波長轉換層12B ’且於該覆板2〇上方(外側)設置有一抗反射層 201123499 (anti-reflection coating)30,該抗反射層30可為一薄膜狀,如此,當 太陽光100照射該太陽能電池模組1時,太陽光1〇〇將由該抗反射層30進 入太陽能電池模組1内部,通過該抗反射層30之設置可減少或避免太陽光 100照射太陽能電池模組1時之表面反射作用,可使太陽光1〇〇全部或大部 分進入該太陽能電池模組1内,以提昇太陽能電池10接收太陽光之機率。 又如第7圖所示該太陽能電池模組}於其下方之波長轉換層12B的下方進 一步設有一反射層40,該反射層40可為一薄膜狀,如此,當太陽光1〇〇照 射該太陽能電池模組1時’所進入該太陽能電池模組1内部之光線可通過 該反射層40之設罝而持續被該波長轉換層12B進行波長調變,可減少或避 免太陽光100照射太陽能電池模組後之外洩現象,可使太陽光1〇〇全部或 大部分充分與該波長轉換層12B進行波長調變之響應,以增加其光能轉換 效率。 本發明光學内部全反射波長轉換太陽能電池模組藉由前述構成,能使 太陽光在太陽能電池模組1内時,大為提昇其照射太陽能電池的機率,且 同時具有充分的轉換響應以將無法應用的光源波長轉換為有用的光源波 長,用以提昇其光源利用效率。 綜上所述,本發明確已符合發明專利之要件,爰依法提出專利申請。 惟以上所述者,僅為本發明較佳實施例而已,並非用來限定本發明實施之 範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為 之均等變化與修飾,均應包括於本發明之申請專利範圍内。 【圖式簡單說明】 第la圖係習知太陽光的光源-波長座標示意圖。 第lb圖係習知太陽光的光源波長響應效率_波長座標示意圖。 第2圖係本發明第一實施例結構示意圖。 第3圖係本發明第一實施例波長調變運作示意圖。 第4圖係本發明第二實施例示意圆一。 第5圖係本發明第二實施例示意圆二。 201123499 第6圖係本發明第三實施例示意圖一。 第7圖係本發明第三實施例示意圖二。 【主要元件符號說明】 太陽能電池模組 1 太陽能電池 10 波長轉換層 12、12A、12B 電極 14 上覆板 22 下覆板 24 封裝透氣孔 221 ' 241 覆板 20 抗反射層 30 反射層 40 太陽光 100201123499 VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell module, and more particularly to a method for fully converting the wavelength of a light source that is originally low in solar photovoltaics or incapable of being applied to solar cells. The wavelength of the light source, and greatly increase the probability of solar cells receiving sunlight' to achieve solar cell modules with excellent conversion efficiency. [Prior Art] According to the gradual shortage of energy, light energy technology, which belongs to green energy, is an important project for energy development and application. Taking solar energy utilization as an example, the response efficiency of solar cells to the wavelength of light sources is different due to different photoelectric materials. Different, as shown in Fig. la, which is a distribution map of wavelength response efficiency characteristics of various photoelectric materials for the sun source, the horizontal axis of which is the wavelength of the light source of the sun, and the vertical axis of which is the photoelectric of different photoelectric materials for different wavelengths of the light source. According to the characteristic map, it is known that the closer to the peak P1~P6 (peak value) region, the higher the response efficiency is. However, if the solar cell is not responding to the original sunlight, the response efficiency is low. The wavelength of the light source converted to the wavelength of the light source that responds the most will greatly improve the utilization efficiency of photoelectric conversion. Please refer to the illuminance (W/m/nm) of the sunlight shown in Figure lb. The wavelength coordinate map, whose solar spectrum 90 is divided into three φ light source sections according to its wavelength, including the ultraviolet section 92, visible The segment 91 and the infrared segment 93, wherein the visible light segment 91 and the region adjacent to the infrared segment 93 are light source wavelength segments having the best response efficiency of the solar cell, so how to make the sunlight enter the solar cell mode When the group is inside, the solar cell spectrum 90 has the best response to the solar cell' to improve the solar cell's utilization rate and illumination probability of the solar cell to achieve the best light energy conversion efficiency. The key direction of breakthrough. Therefore, the inventor of the present invention is concerned with the shortcomings of the conventional solar cell module whose light energy conversion efficiency is not good and the design of the module structure is not ideal. The inventor of the present invention started to develop its solution and hoped to develop it. A more efficient and economical optical internal total reflection wavelength conversion solar cell module' to serve the public and promote the development of this industry, and the concept of the present invention is 201123499. SUMMARY OF THE INVENTION An object of the present invention is to provide an optical internal total reflection wavelength conversion solar cell module, which can convert a wavelength of a light source that is originally low in solar photovoltaic efficiency or cannot be applied to a solar cell. Or the wavelength of the light source with high photoelectric conversion efficiency, and greatly increase the probability of the solar cell receiving sunlight, in order to improve the utilization efficiency of the light source. The technical means for achieving the above object includes: a solar cell; a wavelength conversion layer having a wavelength conversion effect, the wavelength conversion layer being flanked by the solar cell; and a cladding plate encapsulating the solar cell and The wavelength conversion layer. The technical means of the present invention further includes: a solar cell; a sheathing plate encapsulating the solar cell; and a wavelength converting layer. The wavelength converting layer has a wavelength converting effect, and the wavelength converting layer is disposed outside the covering plate. In order to give your reviewers a better understanding and understanding of the technology, features and efficacies of the present invention, please refer to the preferred example countries and the detailed descriptions to explain the following: [Embodiment] Please refer to The second embodiment is the first embodiment of the optical internal total reflection wavelength conversion solar cell module of the present invention. The solar cell module 1 includes a solar cell 1 〇, and the solar cell 1 〇 can be a single-sided, double-sided solar cell. Or a combination of a plurality of solar cells (the plurality of solar cells are arranged on the same plane), wherein the solar cell has a wavelength conversion layer 12 disposed approximately parallel to the sides thereof. The wavelength conversion layer 12 is made of a polymer material or The glass is a base material and comprises a wavelength modulation material (such as an organic wavelength modulation material, a quantum dot fluorescent tone change material, and a composite material composed of nano particle fluorescent powder) or constructed by the above wavelength modulation material. The grating or transmissive lens makes the wavelength conversion layer optically capable of wavelength conversion, optical refraction, diffraction or focusing. In this embodiment, the solar cell 10 is connected to the wavelength conversion layer 12 on the side thereof, that is, the wavelength conversion layer 12 is connected to the solar cell 10 by side connection or side, and then integrally packaged with a cover plate 20 . The cover panel 20 includes an upper cladding panel 22 and a lower cladding panel 24, and the upper cladding panel 22 and the lower cladding panel 24 are transparent materials such as glass, acrylic (PMMA), epoxy (epoxy), and 201123499 silicone. a polymer material (EVA or the like) or a combination of the composite layers of the above materials; and an electrode 14 such as an electrode mesh, which is connected to the solar cell 10, is disposed between the overlying plate 22 and the lower cladding plate 24 Moreover, the upper cladding panel 22 and the lower cladding panel 24 may further be provided with a plurality of package venting holes 221, 241'. The package venting holes 221, 241 have the functions of venting and flattening at the packaging stage, and may also have electrodes. 14 wiring channel. Referring to FIG. 3, when the sunlight enters the solar cell module 1 from above the solar cell module 1 (such as morning or afternoon), the light A will be projected through the overlying panel 22 onto the wavelength conversion layer 12'. Continuing to cause the light A (most or partially) to undergo total internal reflection of the light path A1 between the top cladding 22 and the wavelength conversion layer 12, and finally project to the solar cell 1; due to the wavelength conversion layer 12 has a function of converting sunlight into a wavelength, so that the wavelength of the unapplied light source of the light A projected on the wavelength conversion layer 12 is gradually converted into a wavelength of a light source which can be absorbed and utilized by the solar cell 10; in other words, through the wavelength conversion layer 12 The light source total reflection conversion operation inside the solar cell module 1 can change the wavelength of the solar light source into the spectrum with the highest response efficiency of the solar cell 1 , and greatly improve the light energy conversion efficiency of the solar cell module 1 . Similarly, when the sunlight is transmitted through the wavelength conversion layer 12 from the light rays A on the upper or upper sides of the solar cell module 1, the light rays A or B will be projected onto the wavelength conversion layer 12 through the lower cladding plate 24, Then, the light B (most or part) is advanced (to most or partially) between the lower cladding plate 24 and the wavelength conversion layer 12 for total reflection of the light path φ B1 , and finally projected onto the solar cell 10 . Referring to FIG. 4, a second embodiment of an optical internal total reflection wavelength conversion solar cell module according to the present invention is further disposed above (on the outer side) of the upper cladding panel 22 by using the wavelength conversion layer 12A'. The wavelength conversion layer 12a modulates the incoming sunlight to the wavelength of the first stage solar source. As shown in FIG. 5, the wavelength conversion layer 12B may also be disposed under the outer cover plate 24 (outside). The wavelength conversion layer 12B may also be used to adjust the wavelength of the first-stage solar light source. Change with internal total reflection. Please refer to FIG. 6 , which is a third embodiment of the optical internal total reflection wavelength conversion solar cell module of the present invention. After the solar cell module 1 is separately packaged, the wavelength conversion layer 12B is disposed below (outside) the overcoat 20 . An anti-reflection coating 3032 is provided above (on the outer side) of the cover plate 2, and the anti-reflection layer 30 may be in the form of a film. Thus, when the solar light 100 illuminates the solar cell module 1 The sunlight will enter the interior of the solar cell module 1 by the anti-reflection layer 30. The anti-reflection layer 30 can reduce or prevent the surface reflection of the solar cell 100 when the solar cell module 1 is irradiated. All or most of the light enters the solar cell module 1 to increase the probability of the solar cell 10 receiving sunlight. Further, as shown in FIG. 7, the solar cell module is further provided with a reflective layer 40 under the wavelength conversion layer 12B below, and the reflective layer 40 may be in the form of a film, so that when the sunlight is illuminated When the solar cell module 1 is light, the light entering the interior of the solar cell module 1 can be continuously modulated by the wavelength conversion layer 12B through the setting of the reflective layer 40, and the solar cell 100 can be reduced or prevented from being irradiated by the solar cell 100. After the module is leaked out, all or most of the sunlight can be fully responsive to the wavelength conversion layer 12B to increase its light energy conversion efficiency. According to the optical internal total reflection wavelength conversion solar cell module of the present invention, when sunlight is used in the solar cell module 1, the probability of illuminating the solar cell is greatly improved, and at the same time, sufficient conversion response is obtained The applied source wavelength is converted to a useful source wavelength to enhance its light source utilization efficiency. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, the shapes, structures, features, and spirits described in the scope of the present invention are equally varied and modified. All should be included in the scope of the patent application of the present invention. [Simple description of the diagram] The first diagram is a schematic diagram of the source-wavelength coordinates of conventional sunlight. Figure lb is a schematic diagram of the wavelength response efficiency of the source of the conventional solar light_wavelength coordinate. Figure 2 is a schematic view showing the structure of the first embodiment of the present invention. Figure 3 is a schematic diagram showing the operation of wavelength modulation in the first embodiment of the present invention. Figure 4 is a schematic view of a second embodiment of the present invention. Fig. 5 is a schematic view of a second embodiment of the present invention. 201123499 Figure 6 is a schematic view of a third embodiment of the present invention. Figure 7 is a second schematic view of a third embodiment of the present invention. [Main component symbol description] Solar cell module 1 Solar cell 10 Wavelength conversion layer 12, 12A, 12B Electrode 14 Upper cladding plate 22 Lower cladding plate 24 Package vent hole 221 ' 241 Covering plate 20 Anti-reflection layer 30 Reflecting layer 40 Sunlight 100

Claims (1)

201123499 七、申請專利範圍: 1. 一種光學内部全反射波長轉換太陽能電池模組,其包括: 一太陽能電池; 一波長轉換層’其具有波長轉換作用’該波長轉換層側接該太陽能電池; 一覆板’該覆板封裝該太陽能電池及該波長轉換層。 2. 如申請專利範園第1項所述之光學内部全反射波長轉換太陽能電池模 組’其中該太陽能電池為單面式或雙面式太陽能電池或複數片太陽能電 池之組合。 3. 如申請專利範圍第1項所述之光學内部全反射波長轉換太陽能電池模 組,其中該波長轉換層以高分子或玻璃為基底材料,塗佈或混合並包含 有機波長調變材料、量子點螢光演色調變材料及奈米顆粒螢光增光粉組 成之複合材料或由上述波長調變材料所建構之光柵或穿透式透鏡,使該 波長轉換層具有波長轉換、光學折射、繞射或聚焦之光學功能。 4. 如申請專利範圍第1項所述之光學内部全反射波長轉換太陽能電池棋 組’其中該波長轉換層内部或與覆板介面間設有電極,該電極連接該太 陽能電池。 5. 如申請專利範圍第1項所述之光學内部全反射波長轉換太陽能電池棋 組’其中該覆板包括有一上覆板及下覆板。 6. 如申請專利範圍第1項所述之光學内部全反射波長轉換太陽能電池棋 組,其中該覆板為玻璃、壓克力、樹脂、矽膠或高分子材料或其複合材 料等透明材料。 7. 如申請專利範圍第5項所述之光學内部全反射波長轉換太陽能電池模 組,其中該上覆板及該下覆板進一步分別設有複數封裝透氣孔。 8. 一種光學内部全反射波長轉換太陽能電池模組,其包括: 一太陽能電池; 一覆板,該覆板封裝該太陽能電池; 一波長轉換層,該波長轉換層具有波長轉換作用,該波長轉換層設於該 201123499 覆板外側。 9. 如申請專利範圍第8項所述之光學内部全反射波長轉換太陽能電池模 組,其中該覆板包括有上覆板及下覆板。 10. 如申請專利範圍第9項所述之光學内部全反射波長轉換太陽能電池模 組,其中該波長轉換層設於該上覆板之上方或外側。 11. 如申請專利範圍第9項所述之光學内部全反射波長轉換太陽能電池模 組,其中該波長轉換層設於該下覆板之下方或外側。 12. 如申請專利範圍第11項所述之光學内部全反射波長轉換太陽能電池模 組,其中該覆板上方設有一抗反射層。 • 13.如申請專利範圍第11項所述之光學内部全反射波長轉換太陽能電池模 組,其中該波長轉換層的下方或外側設有一反射層。201123499 VII. Patent application scope: 1. An optical internal total reflection wavelength conversion solar cell module, comprising: a solar cell; a wavelength conversion layer 'having a wavelength conversion effect', the wavelength conversion layer is flanked by the solar cell; The cover plate encapsulates the solar cell and the wavelength conversion layer. 2. The optical internal total reflection wavelength conversion solar cell module as described in claim 1 wherein the solar cell is a combination of a single-sided or double-sided solar cell or a plurality of solar cells. 3. The optical internal total reflection wavelength conversion solar cell module according to claim 1, wherein the wavelength conversion layer is coated or mixed with a polymer or glass as a base material, and comprises an organic wavelength modulation material and a quantum. a composite material composed of a phosphorescent tone-changing material and a nanoparticle fluorescent powder or a grating or a transmissive lens constructed by the above-mentioned wavelength modulation material, such that the wavelength conversion layer has wavelength conversion, optical refraction, and diffraction Or the optical function of focusing. 4. The optical internal total reflection wavelength conversion solar cell player set according to claim 1, wherein an electrode is disposed inside the wavelength conversion layer or between the cladding interface, and the electrode is connected to the solar cell. 5. The optical internal total reflection wavelength conversion solar cell chess set according to claim 1, wherein the superposed plate comprises an upper cladding plate and a lower cladding plate. 6. The optical internal total reflection wavelength conversion solar cell chess set according to claim 1, wherein the superstrate is a transparent material such as glass, acrylic, resin, silicone or polymer material or composite material thereof. 7. The optical internal total reflection wavelength conversion solar cell module according to claim 5, wherein the upper cladding plate and the lower cladding plate are further provided with a plurality of package vent holes. 8. An optical internal total reflection wavelength conversion solar cell module, comprising: a solar cell; a cladding plate encapsulating the solar cell; a wavelength conversion layer, the wavelength conversion layer having a wavelength conversion effect, the wavelength conversion The layer is located outside the 201123499 overlay. 9. The optical internal total reflection wavelength conversion solar cell module of claim 8, wherein the overlying panel comprises an overlying panel and a lower cladding panel. 10. The optical internal total reflection wavelength conversion solar cell module according to claim 9, wherein the wavelength conversion layer is disposed above or outside the overlying panel. 11. The optical internal total reflection wavelength conversion solar cell module according to claim 9, wherein the wavelength conversion layer is disposed below or outside the lower cladding plate. 12. The optical internal total reflection wavelength conversion solar cell module according to claim 11, wherein an anti-reflection layer is disposed above the superposed plate. The optical internal total reflection wavelength conversion solar cell module according to claim 11, wherein a reflection layer is provided below or outside the wavelength conversion layer.
TW098144733A 2009-12-24 2009-12-24 Optical total internal reflection wavelength conversion solar cell module. TW201123499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098144733A TW201123499A (en) 2009-12-24 2009-12-24 Optical total internal reflection wavelength conversion solar cell module.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098144733A TW201123499A (en) 2009-12-24 2009-12-24 Optical total internal reflection wavelength conversion solar cell module.

Publications (2)

Publication Number Publication Date
TW201123499A true TW201123499A (en) 2011-07-01
TWI450406B TWI450406B (en) 2014-08-21

Family

ID=45046702

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098144733A TW201123499A (en) 2009-12-24 2009-12-24 Optical total internal reflection wavelength conversion solar cell module.

Country Status (1)

Country Link
TW (1) TW201123499A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953745B2 (en) * 2006-09-26 2012-06-13 シャープ株式会社 Concentrating solar power generation unit and concentrating solar power generation device
TWI339904B (en) * 2007-07-18 2011-04-01 Univ Nat Yunlin Sci & Tech Organic solar cell
EP2203943A4 (en) * 2007-10-12 2015-10-14 Omnipv Inc Solar modules with enhanced efficiencies via use of spectral concentrators

Also Published As

Publication number Publication date
TWI450406B (en) 2014-08-21

Similar Documents

Publication Publication Date Title
TWM380577U (en) Solar cell module optical internal total reflection wavelength conversion for
US9905709B2 (en) Photovoltaic cell device with switchable lighting/reflection
CN101566303B (en) Illuminating device
US10403774B2 (en) Wavelength-selective photovoltaic for a display or for a device with a display
CN201936904U (en) Solar battery pack structure capable of improving efficiency of battery
JP2008311604A (en) Solar cell module, and wavelength conversion condensing film for solar cell module
US8776783B2 (en) Solar energy collector and solar energy module having same
JP2011129925A (en) Solar cell module using semiconductor nanocrystal
KR20170095818A (en) Polarising photovoltaic module built into the screen of an electronic display device
CN102487094B (en) Solar photoelectric module packaging structure and manufacturing method thereof
EP2372786A1 (en) Wavelength spectrum conversion solar cell module
Lee et al. RGB-colored Cu (In, Ga)(S, Se) 2 thin-film solar cells with minimal efficiency loss using narrow-bandwidth stopband nano-multilayered filters
JP2017515168A (en) Display device having an integrated photovoltaic cell with improved brightness and reflectivity
JP5929578B2 (en) Solar cell module and solar cell module assembly
TW200847454A (en) Concentration photovoltaic module
CN102122678B (en) Optics inner full-reflection wavelength convert solar module
CN104600140B (en) A kind of compound high power solar components of lightweight
CN102709376A (en) Back plate integrated with fluorescent planar optical waveguide structure for solar battery module and application
CN201673919U (en) Optical total internal reflection wavelength conversion solar cell module
CN205881925U (en) Photovoltaic module of optics high -usage
CN202487586U (en) Colored solar module
TW201123499A (en) Optical total internal reflection wavelength conversion solar cell module.
CN210897309U (en) Photovoltaic module
CN112164727A (en) BIPV glass assembly capable of continuously generating electricity
CN220439638U (en) Novel color photovoltaic module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees