TW201123493A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
TW201123493A
TW201123493A TW99133364A TW99133364A TW201123493A TW 201123493 A TW201123493 A TW 201123493A TW 99133364 A TW99133364 A TW 99133364A TW 99133364 A TW99133364 A TW 99133364A TW 201123493 A TW201123493 A TW 201123493A
Authority
TW
Taiwan
Prior art keywords
solar cell
module
lead
metal substrate
layer
Prior art date
Application number
TW99133364A
Other languages
Chinese (zh)
Inventor
Akio Higashi
Hiroshi Kubo
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201123493A publication Critical patent/TW201123493A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell module includes a solar cell submodule having photoelectric conversion elements on an insulation layer formed on at least one side of a metal substrate and bonding/potting layers and protection layers laminated on top and bottom sides of the solar cell submodule. The solar cell module further includes a first lead wire connected to one electrode of a positive and a negative electrodes of the solar cell submodule, for pulling out the output of the one electrode, an electrical contact member for connecting the other electrode to the metal substrate, and a second lead wire connected to the metal substrate, for pulling out the output of the other electrode through the metal substrate and the contact member to the outside of the protection layers. The second lead wire is connected to the metal substrate at one or more positions thereof.

Description

201123493 六、發明說明: 【發明所屬之技術領域】 本發明是㈣於-種太陽電轉組,其包括—個積層 板Uammate),此積層板是在太陽電池子模組(subm〇duie) 面和:表面上形成接合及封裝(填充)層和保護層 中太陽電池子模組在絕緣層上形成有多個相 =的光電轉換讀。本發明特別是有關於—種太陽電池 模,、且,此太陽電池模組的引線與接線盒(_ecti〇nb〇x) =的佈線關化,其Μ線是料從外界㈣太陽電池 子模組的正電極和負電極的輸出,接線盒附著在太陽電池 模組上以便與外界建立連接。 【先前技術】 β現今,關於太陽電池的深入研究正在進行中。構成太 陽電池組的每個太陽電池模組包括太陽電池子模組,其位 於基板上,且包括多個串聯的層狀結構光電轉換元件,這 些光電轉換元件主要用靠吸收光來產生電的光電轉換層來 組成’每個光電轉換層都介於背電極(backdectr〇de)(下 電極)與透明電極(上電極)之間。 習知的太陽電池模組的形成更包括:在這種太陽電池 子模組的兩侧、頂部及底部提供接合及密封材料和保護材 料’將接線盒整體附著在底部以便與外界建立連接,隨後 在正電極與負電極之間提供内部引線’用以收集所產生的 電’其中正電極與負電極分閧形成在太陽電池子模組的各 4 201123493 別側面以及接線盒的連接導體上。 要想收集正電極與負電極的輸出,就要在太陽電池模 組上配置金屬帶狀物或翻貞似物,透過雜或以其他方式 將其附著在太陽電池預㈣端的端子部分上,且經繞行 (routed)以連接至接線盒,且它們之間有一層絕緣層(表 見專利文獻1和2)。 〆 專利文獻1 Mit了-種賴型太陽電池模組,其包 括.形成在透明輯板上的薄卿太陽電池,此薄膜型太 陽電池電性連接著光電元件,光電元件分成多個區域(每 個區域依次包括透明電極層、薄膜型光電半導體層以及背 電極層)以及在相連接的光電元件的末端用來收集電力的 匯流排區域·,㈣裝置,包括填充材料和底部保護蓋,底 部保護蓋絲賴具㈣膜型太陽電池的表面;以及連接 ,置’絲將薄膜型太陽電池職㈣電力提供給外界, 、中從匯祕區域錢接裝置的佈賴在填紐料中,且 其中在佈線與背電極之間的另一填充材料中内欲了 ΐ6〇ΐ: 耐熱的非織造玻璃纖維織物板或非織造人造纖維織物板。 專利文獻1 +所述的薄卿太陽電池模組將填充材 :、佈線、16GC耐熱的非織造玻璃纖維織物板或非織造人 &纖維織物板、底部偏ΪΙ«起來之後,透過真空層積 技術(vacuum laminating technique )來進行固定。曰、 ,照專敎獻卜匯流顺域位__太陽電池的 產生H域㈣條長邊±。在每健流顧域中形成有 鍍焊錫銅箱㈤der-platedc〇pperf〇il),進而使鑛焊錫銅 201123493 34122plt 落連接至區流排區域和其他鑛焊錫銅落以將電力輸出至外 界(見圖D。這些其他錢焊錫銅箱彎成實質上L形,以 在接近其短邊中央的位置處從薄膜型太陽電池的電力產生 &些其他料錫㈣連接至接線盒(見[0033] [UU34J) 〇 太陽文ϋ闡述了一種太陽電池模組,其包括:薄膜 太陽電池包括形成在薄膜基板上的光電 接線盒,用來與外界建 整體附者在底„(3,以及内部引線 電池的電極‘一,且ft每條内部引線的一端連接至太陽 陽電池,其中内部引線電池的周邊而鋪設以繞過太 在-起以加固材料而與太陽電池爽 依,昭專利文獻2 ^專㈣1項及圖D。 至太陽電池的電極之二:-端的連接部分被详接 電池的電極之-。每停電膠帶而電性連接至太陽 成L形,然後穿過接;底部弯曲並直立 (咖),從太陽電池模組的保護材料的狭縫 接至接線盒的接線端子,各 ,且藉由焊接而連 對應於引線從底部伸出的位^ ^電池模組上的位置 [0017])。 (見圖2、圖4及段落 6 201123493201123493 VI. Description of the Invention: [Technical Field of the Invention] The present invention is (d) a solar electric group consisting of a laminated board Uammate, which is on a solar cell sub-module (subm〇duie) and The solar cell sub-module in the bonding and encapsulating (filling) layer and the protective layer on the surface is formed with a plurality of phase-converted photoelectric conversion readings on the insulating layer. In particular, the present invention relates to a solar cell module, and the wiring of the solar cell module and the junction box (_ecti〇nb〇x) = wiring is closed, and the twist line is from the outside (four) solar battery submodule The output of the positive and negative electrodes of the group, the junction box is attached to the solar cell module to establish a connection with the outside world. [Prior Art] β Today, in-depth research on solar cells is underway. Each of the solar battery modules constituting the solar battery module includes a solar battery sub-module disposed on the substrate and including a plurality of layered structure photoelectric conversion elements connected in series, the photoelectric conversion elements mainly generating light by means of absorbing light The conversion layer is composed of 'each photoelectric conversion layer is between the back electrode (lower electrode) and the transparent electrode (upper electrode). The formation of the conventional solar cell module further includes: providing bonding and sealing materials and protective materials on both sides, the top and the bottom of the solar cell sub-module, and attaching the junction box to the bottom to establish a connection with the outside, and then An inner lead ' is provided between the positive electrode and the negative electrode for collecting the generated electricity', wherein the positive electrode and the negative electrode are formed on the respective sides of the solar cell sub-module and the connecting conductor of the junction box. In order to collect the output of the positive electrode and the negative electrode, a metal strip or a flip-flop is disposed on the solar cell module, and is attached to the terminal portion of the pre- (four) end of the solar cell through impurities or other means, and It is routed to connect to the junction box with an insulating layer between them (see Patent Documents 1 and 2). 〆 Patent Document 1 Mit-type solar cell module, comprising: a thin solar cell formed on a transparent plate, the thin film solar cell is electrically connected to the photoelectric element, and the photoelectric element is divided into a plurality of regions (each The area includes a transparent electrode layer, a thin film type photoelectric semiconductor layer and a back electrode layer in this order, and a bus bar area for collecting electric power at the end of the connected photovoltaic element. (4) The device includes a filling material and a bottom protective cover, and the bottom protection The surface of the solar cell of the film type solar cell; and the connection, the wire is used to supply the power of the thin film type solar cell (4) to the outside world, and the breeze of the money connection device in the secret area is in the filling material, and wherein In another filling material between the wiring and the back electrode, a heat-resistant nonwoven glass fiber fabric board or a nonwoven rayon fabric board is desired. The thin-grain solar cell module described in Patent Document 1 + will be filled with vacuum, laminated, 16GC heat-resistant non-woven fiberglass fabric board or non-woven fabric & fabric sheet, bottom biased The technique (vacuum laminating technique) is used for fixation.曰, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A soldered copper box (5) der-platedc〇pperf〇il is formed in each of the health flow fields, and the tin solder copper 201123493 34122plt is connected to the regional flow area and other ore solder copper to discharge power to the outside (see Figure D. These other money solder copper boxes are bent into a substantially L-shape to produce electricity from thin-film solar cells near the center of their short sides & other tins (4) are connected to the junction box (see [0033] [UU34J] 〇 ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳The electrodes 'one, and one end of each inner lead of the ft is connected to the solar cell, wherein the inner lead cell is surrounded by the periphery to be laid around to reinforce the material and the solar cell, according to the patent document 2 (4) 1 item and Figure D. To the electrode of the solar cell 2: the connection part of the - end is connected to the electrode of the battery - every time the power-off tape is electrically connected to the sun into an L shape, then pass through; the bottom is bent and erect ( ), from the slit of the protective material of the solar cell module to the terminal of the junction box, and by soldering, corresponding to the position of the lead protruding from the bottom of the battery module [0017] (See Figure 2, Figure 4 and paragraph 6 201123493

【引用文件列表】 【專利文獻】[List of cited documents] [Patent Literature]

[專利文獻 1]JP 3121810 B [專利文獻 2] JP 2004-31646 A 【發明内容】 專利文獻1中的一個問題在於,如上所述,其他鍍焊 錫銅箔(即内部佈線)需要從匯流排區域的鍍焊錫銅箔繞 行至電力產生區域的短邊的中心附近,這增加了佈線材料 的成本。 另外,在專利文獻 , 一 ·&lt; ’. «八《/V 1 ”丨·八电&gt;也棋殂肀,由於填 充材料、佈線、160 C耐兩溫的非織造玻璃纖維織物板或非 織造人造纖維織物板以及底部保護蓋經配置、組裝後,透 過真空層積技術進行了固定,所以太陽電池模組的表面容 ^發生局部f曲和變形’因而容易造成沿著其他鑛谭錫銅 '冶所經過的佈線路徑而發生膨脹(swell)。 〜因此’專散獻1所述的太陽電池模組的缺點是,π 了其他鍍烊锡鋼⑽而產生的膨脹會造成損傷或局部雇力 Utress)集中,導致太陽電池的可靠性降低。 佈線 引給μ 1、、、要求從太〶電池的電極到接線盒之間絕緣的 、、、較長,因此增加了佈線材料的成本。 組需,糊文獻1與專利讀2巾社陽電池模 需要較長的輕,因此佈線設計複雜,這使得太陽電池 201123493 34122pif 模組女裝程序中的佈線過程的工作效率降低。另外,安裝 程序中佈線過程的工作效率差會造成太陽電池受損,從而 引發產品質量問題。如上所述’專利文獻i與專利文獻2 都有引發產品質量及可靠性問題的缺點。 本發明的目的是克服先前技術的上述問題,提供一種 佈線結構簡單的太陽電池模組。 為了達成上述目的,本發明提供一種太陽電池模組, 其包括:太陽電池子触’其具有金聽板、在此金屬基 板的至J/ -侧形成的絕緣層以及形成在此絕緣層上且相互 ,接的光電轉換it件;兩個接合及填充層,分別層積在太 陽電,子模_頂部和底部;兩個保護層,每娜護層層 積在每個接合及填充層的外側;第—⑽,連接至太陽電 池子模組的正電極與貞電_其巾—㈣極,时將正電 極與負電極的其中-個電極的輸㈣到兩個保護層之外; 電接觸構件,用來將太陽電池子模_正電極與負電極的 另-電極連接至金屬基板;以及第二引線,連接至金屬基 f ’用以將另—電極的輸出透過充當導體的金屬基板和i 接觸構件而引到兩個保護層之外,其中第二引線連接至= 屬基板的一處或多處位置,且電性連接至 而與金屬基板機接的另_電極。. 電接觸構件 ㈣太陽f池子馳更包括第-連接構件,其 配,在其中-個電極上,且第—引線藉由此第—連件 而連接至太陽f池子模_其中—個電極。 午 第二引線較佳地連接至金屬基板上的接近第一連接 201123493 構件之處。 ,其 而連 較佳的疋,太陽電池子模組更包括第二連接構件 配置在金屬基板上,a第二引線藉由此第二連接構 接至金屬基板。 、較佳的是,第—引線與第二引線的各別尖端 連接至一接線盒,此接線盒配置在太陽電池子模纽 形成的保護層的外面。 丨所 較佳的是,第-引線與第二引線的各別尖端實質 直於太陽電池子模組底部的保護層而伸出,且連接至接線 較佳的疋,第二連接構件是一種條形導電構件,其配 置在金屬板上或用以夾持金屬基板的外部接線夾具(jig) 上0 較佳的是,第二引線與外部接線夾具是用螺釘、壓接 接頭(crimp contact)或焊料來進行電性連接。 較佳的是,外部接線夾具配置在金屬基板上的至少一 處位置。 較佳的是’金屬基板是由紹板、不銹鋼板或鋼板來形 成,且絕緣層是用鋁、矽、鈦鈕(titan)和鐵之一來製成 的氧化物薄膜、氮化物薄膜或氮氧化物薄膜。 光電轉換元件較佳地包括背電極、光電轉換層和透明 電極。 光電轉換層較佳地是用具有至少一種黃銅礦 (chalcopyrite)結構的化合物半導體來形成。 201123493 34122pif f電轉換層触地是以少—種 族元素及VIb族元素的化合物半導體來^成1瓜 較佳的是,光電轉換層是用至 化合物半導體來形成:選自銅(Cu)和;== 群組的至少一種化族元素;選自紹' g)n si) mb =素和碲(Te)所組成之群組的至少一種vIb 導體:導、ί發:j屬基板自身就能充當 極與負電極之一伸出的引線不 線結構。因此,太陽電池模組中的整個佈線長产可缩短 從而可減少佈線材料成本。另外,太陽 安裝成本等等也會減少。 电池模、、且k成本、 了太= 卜池m太陽電池模㈣佈線結構簡化而提高 了^電池模組的產品質量和可靠性。再者,由於太陽電 池、組的接線盒可配置在太陽電池模、 …本發月之太%電池模組,可提 具以便於太陽電池模組之間進行佈線二 = 串聯或並聯接線。 、'要時此夠實現 為讓本發明之上述特徵和優點能更拉 舉實施例,並配合所關式作詳細酬如下。 ’ 201123493 JHIZZpu 【實施方式】 下面將配合所附圖式以較佳實施例來闡述本發明之 太陽電池模組。 圖1是依照本發明之第一實施例的太陽電池模組的立 體透視示意圖。圖2是依照本發明之第一實施例的太陽電 池模組中所用的太陽電池子模組的俯視平面示意圖。圖3 是圖2所示之太陽電池模組的橫剖面示意圖。 如圖1所示’依照本發明之第一實施例的一種太陽電 池模組10包括:太陽電池子模組12、配置在太陽電池子 模組12頂部的接合及填充(封裝)層14、水氣阻障層(其 對應於本發明之保護層)16及上表面保護層(其對應於本 發明之保護層)18 ;配置在太陽電池子模組12底部的接合 /填充層20及後罩板(back sheet)(其對應於本發明之保 遵層)22 ;以及接線盒24,如下文所述,接線盒24連接 至從後罩板22伸出的第一引線56和第二引線6〇。 根據真空層積技術藉由真空層積處理來將太陽電池 子模組12、配置在太陽電池子模組12頂部的接合/填充層 14、水氣阻障層16和上表面保護層18以及配置在太陽電 池子模組12底部的接合/填充層2〇和後罩板22整合在一 起。 太陽電池子模組12的頂部是指用來獲取電力的受光 面’底部是指頂部的對面。 接線盒24是用來在外面收集太陽電池模組ι〇所獲得 的電力,且接線盒24連接至電力供應電鮮。用(例如) 11 201123493 石夕氧樹脂(silicone resin)將接線盒24接合並焊接在後罩 板22的表面22a的一角附近,以此來固定接線盒24。 接合/填充層14是用來密封和保護太陽電池子模組 12,並與水氣阻障層16黏結在一起。 例如’接合/填充層14是用乙烯醋酸乙稀醋(ethylene vinyl acetate ’ EVA )或聚乙稀丁搭(p〇iyVjnyibutyrai,pvb ) 來形成。 水氣阻障層16是用來保護太陽電池子模組12以免其 受潮。水氣阻障層16是在一層用(例如)聚對苯二甲酸乙 二醇酯(PET)或聚萘二甲酸乙二醇酯(pEN)製成的透 明薄膜上形成一層(例如)二氧化矽(Si02)或氮化矽(SiN) 無機層而形成。或者,水氣阻障層16是在一層用(例如) 二氧化梦(SiCb)或氮化碎(SiN)製成的無機層兩侧形成 用(例如)聚對苯二甲酸乙二醇酯(pET)或聚萘二甲酸 乙二醇酯(PEN)製成的透明薄膜而形成。 水氣阻障層16的成分不受具體限定,只要水氨阻障 詹16滿足規定的性能要求即可,諸如濕氣滲透率、氧氣承 透率等等。 ^ 曰上表面保護層18是用來保護太陽電池子模組12以免 太電池子模組12沾上斑點或污跡,使進入太陽電池子損 組12的光線因污跡或斑點而減少的程度降到最低。上表面 保護層18是用(例如)氟化樹脂薄膜來形成。所用 樹脂為(例如)乙烯/四氟乙烯共聚物 (ethylene/tetraflu〇roethylenec〇p〇lymer,EFTE)。上表运 12 201123493 3^U2pit 保護層18的厚度約為20微米至200微米。 配置在太陽電池子模組12底部的接合/填充層2〇與配 置在頂部的接合/填充層14具有相同的成分,所以將不再 贅述。 後罩板22疋用來從太陽電池模組1 〇的底部下面對太 陽電池模組10進行保護,且加固太陽電池模組1〇的絕緣。 後罩板22具有這樣的結構:鋁箔介於聚對苯二甲酸乙二醇 醋(PET)、聚萘二甲酸乙二醇g旨(pEN)等樹脂薄膜之 間。後罩板22的成分不受具體限定。 如圖2、圖3所示,依照本實施例之太陽電池子模组 12包括(例如):實質上呈矩形的金屬基板3〇 ;絕緣層 32 ’形成在金屬基板30的上表面3〇a上;以及絕緣層%, 形成在金屬基板30的整個下表面3〇1?上。在絕緣層32的 表面32a上形成太陽電池單元36。 圖2所示之太陽電池子模組12是整合式太陽電池子 模组,其包括背電極38、光電轉換層4〇、緩衝層42以及 透明電極44,上述元件依次疊加在絕緣層32的表面 上。背電極38、光電轉換層4〇、緩衝層42以及透明電極 44構成光電轉換元件50。 背電極38形成在絕緣層32的表面32&amp;上,與相鄰的 月電極38共用一個隔離槽(哪虹也⑽gr〇〇ve) (Η ) %。 光電轉換層40形成在背電極38上,以填充隔離槽(ρι) 39。緩衝層42形成在光電轉換層4〇的表面上。延伸到背 電極38的凹槽(P2) 43將光電轉換層4〇和緩衝層42與 13 201123493 42分隔開。這些凹 槽(P1) 39形成在 相鄰的光電轉換層40和相鄰的緩衝層 槽(P2) 43與隔開背電極38用的隔離 不同的位置。 以填充凹槽 透明電極44形成在緩衝層42的表面上, (P2) 43 〇 形成開口凹槽⑺)45,以穿過透明電極料、緩衝声 42和光電轉換層40 ’ 一直延伸到背電極% ‘ 件50藉由背電極38和透明電極44來相互串聯韓 元件50構成太陽電池單元36。 $轉換 本實補Mf轉換元件5G具祕合式_蘇石西 (CIGS)組態,因此,例如,背電極38為鉬電極 轉換層40是用銅銦鎵硒(CIGS)來形成,緩衝層42 a 硫化锡(CdS)來形成’且透明電極44是用氧化:辛(^) 來形成。 光從指向透明電極44的一面進入光電轉換元件5〇, 穿過透明電極44和緩衝層42,致使光電轉換層4〇產生電 動勢從而產生(例如)從透明電極44流向背電極38的 電机因此,在圖3中,最左邊的背電極38a具有陽極性 (正極性),最右邊的背電極38b具有陰極性(負極性)。 本實施例之太陽電池單元36可採用任何習知的製造 銅銦鎵硒(CIGS)太陽電池的方法來製造。背電極38的 隔離槽(pl) 39、延伸至背電極38的凹槽(P2) 43以及 延伸至背電極38的開口凹槽(P3 )45是藉由雷射雕繪(laser scribing)或機械雕繪(mechanical scribing)來形成。 201123493 在太陽電池子模組12中’如圖3所示,第一連接構 件46配置在緣f池單元36最左邊具有正極性的背電極 38a上。第-連接構件46是用(例如)長條形導電構件來 形成。此導電構件的材料包括(例如)導電帶和鍍锡銅帶。 當導電構件是由賴鋼帶_成時,此導電構件可利用無 錯焊料(諸如Cerasolzer)藉由超音波焊接(偷咖心 soldering)來騎固定。在此_下,此導電構件 連續塗敷焊㈣藉岭域理频塊(bumps)來進^固 定。否則,可利用導電黏合材料、導電帶 連接至最左邊的背電極38。 _ ~ 當正極性背電極38a上已形成了光電轉換元件5〇而 ,正極性背電極38a上又將要配置第—連接構件46時 藉由雷射騎或機械_來移除光電轉換元件%, 電極38a上要形成第一連捿構件奶之處暴露出來。 金屬基板30的上表面30a右端(例如,未形成絕緣 =2之處)有一片暴露的區域52。在形成絕緣層μ時, e f由遮“masking)暴露區域52來將暴露區域52 另外,也可藉由(例如)雷射雕繪絕緣層32來保留 住暴路區域52。 ^供了-個電接觸構件48,用來在具有負極性的最右 極38b與金屬基板30之上表面施對應於暴露區域 、部分之間建立導電連接。電接觸構件48是一種導 ^ ’其藉由焊接來進行m定,以橋接(bridge)和連接 最右邊的負極性背電極38b與金屬基板3〇之上表面3〇a 15 201123493 34122pif 對應於暴露區域52的部分。此導電構件可類似 第一連接構件46的導電構件。電接觸構件48可 一 焊料,用以橋接和電性連接最右邊的背電極 板30之上表面30a對應於暴露區域幻的部分。、、屬基 當負極性背電極38b上已形成了綠1 3極性背電極勘上又細嗎觸構㈣時件= 找魏树5G,錢背紐 上要楗供電接觸構件48之處暴露出來。 36之在金屬基板%之周邊與太陽電池單元 之絕緣=暴露的區域^而未形成金屬基板30 域^方式來 =域仏可以類似於上述之暴露區 件的/域&amp;具有第二連接構件58。此第二連接構 將不二與第一連接構件%具有相同的組態。因此,此處 再咩細描述第二連接構件58。 第一,照本實施例,第—連接構件46連接至圖1所示之 線 56。用絕緣套管(insuiah〇n sieeve) 一 線56絕緣,其連接部分除外。 使第引 第二連接構件58連接至第二引線60。用絕緣套管61 一引線60絕緣,其連接部分除外。 ^照本實施例,第—引線56具有正極性,第二引線 第—引線56連接至正電極38a,以便在後罩板22 收集正電極38a的輸出(電位)。 16[Patent Document 1] JP 3121810 B [Patent Document 2] JP 2004-31646 A [Disclosure] A problem in Patent Document 1 is that, as described above, other solder-plated copper foil (i.e., internal wiring) needs to be from the bus bar area. The plated solder copper foil is wound around the center of the short side of the power generation region, which increases the cost of the wiring material. In addition, in the patent literature, one·&lt; '. «eight "/V 1 "丨·八电&gt; also chessboard, due to filler material, wiring, 160 C resistant two-temperature non-woven fiberglass fabric board or non The woven man-made fiber fabric board and the bottom protective cover are configured and assembled, and then fixed by vacuum lamination technology, so that the surface of the solar cell module is locally deformed and deformed, which is easy to cause along the other ore. 'The swell is swelled by the wiring path that the smelt passes through. _ Therefore, the shortcoming of the solar cell module described in the special scatter 1 is that the expansion caused by the other ruthenium-plated steel (10) may cause damage or partial employment. The concentration of the Utress) leads to a decrease in the reliability of the solar cell. The wiring leads to the μ1, and requires insulation from the electrode of the solar cell to the junction box, and is longer, thus increasing the cost of the wiring material. Need, paste literature 1 and patent reading 2 towel social cell model requires a long light, so the wiring design is complex, which makes the work efficiency of the wiring process in the solar cell 201123493 34122pif module women's program is reduced. The poor working efficiency of the wiring process in the installation process may cause damage to the solar cell, thereby causing product quality problems. As described above, both the patent document i and the patent document 2 have disadvantages that cause product quality and reliability problems. To overcome the above problems of the prior art, a solar cell module having a simple wiring structure is provided. To achieve the above object, the present invention provides a solar cell module comprising: a solar cell sub-touch having a gold listening plate, and a metal therein An insulating layer formed on the J/- side of the substrate and a photoelectric conversion member formed on the insulating layer and connected to each other; two bonding and filling layers respectively stacked on the solar power, the sub-mode_top and the bottom; a protective layer, each protective layer is laminated on the outer side of each joint and filling layer; - (10), connected to the positive electrode of the solar cell sub-module and the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ One of the electrodes of the electrode (four) to the outside of the two protective layers; an electrical contact member for connecting the solar cell sub-mode positive electrode and the other electrode of the negative electrode to the metal substrate; And a second lead connected to the metal base f' for guiding the output of the other electrode to the outside of the two protective layers through the metal substrate serving as the conductor and the i contact member, wherein the second lead is connected to one of the substrate At or at multiple locations, and electrically connected to another electrode that is in contact with the metal substrate. The electrical contact member (4) solar f pool sub-chirping further includes a first-connecting member, which is disposed on one of the electrodes, and - the lead is connected to the solar cell by means of the first connector - the second electrode is preferably connected to the metal substrate on the component close to the first connection 201123493. The solar cell sub-module further includes a second connecting member disposed on the metal substrate, and the second lead is coupled to the metal substrate by the second connection. Preferably, the respective tips of the first lead and the second lead are connected to a junction box which is disposed outside the protective layer formed by the solar cell module. Preferably, the respective tips of the first lead and the second lead extend substantially perpendicular to the protective layer at the bottom of the solar cell sub-module, and are connected to the better 疋 of the wiring, and the second connecting member is a strip a conductive member disposed on a metal plate or an external wiring jig for holding the metal substrate. Preferably, the second lead and the external wiring jig are screwed or crimped or Solder for electrical connection. Preferably, the external wiring fixture is disposed at at least one location on the metal substrate. Preferably, the metal substrate is formed of a plate, a stainless steel plate or a steel plate, and the insulating layer is an oxide film, a nitride film or a nitrogen film made of one of aluminum, tantalum, titanium (titan) and iron. Oxide film. The photoelectric conversion element preferably includes a back electrode, a photoelectric conversion layer, and a transparent electrode. The photoelectric conversion layer is preferably formed using a compound semiconductor having at least one chalcopyrite structure. 201123493 34122pif f electric conversion layer touchdown is a compound semiconductor of a rare-racial element and a group VIb element. Preferably, the photoelectric conversion layer is formed by using a compound semiconductor: selected from copper (Cu) and; == at least one group element of the group; at least one vIb conductor selected from the group consisting of: ' g g si si Te Te Te Te : : : : : : : : : : Te Te Te A wire-non-linear structure that acts as one of the pole and the negative electrode. Therefore, the entire wiring length in the solar cell module can be shortened, thereby reducing the wiring material cost. In addition, solar installation costs and the like will also decrease. The battery module, and the cost of the battery, and the battery structure of the solar cell module (4) are simplified, and the product quality and reliability of the battery module are improved. Furthermore, since the solar cell and the junction box of the group can be arranged in the solar cell module, ... the solar module of the month of the month, it can be equipped to facilitate wiring between the solar cell modules 2 = series or parallel connection. It is to be understood that the above-described features and advantages of the present invention can be further exemplified in the accompanying drawings. </ RTI> 201123493 JHIZZpu [Embodiment] Hereinafter, a solar cell module of the present invention will be described with reference to the accompanying drawings in the preferred embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view showing a perspective view of a solar cell module in accordance with a first embodiment of the present invention. Figure 2 is a top plan view showing a solar cell sub-module used in a solar cell module in accordance with a first embodiment of the present invention. 3 is a schematic cross-sectional view of the solar cell module shown in FIG. 2. As shown in FIG. 1 , a solar cell module 10 according to a first embodiment of the present invention includes a solar cell sub-module 12 , a bonding and filling (packaging) layer 14 disposed on the top of the solar cell sub-module 12 , and water. a gas barrier layer (which corresponds to the protective layer of the present invention) 16 and an upper surface protective layer (which corresponds to the protective layer of the present invention) 18; a bonding/filling layer 20 and a back cover disposed at the bottom of the solar cell sub-module 12 A back sheet (which corresponds to the security layer of the present invention) 22; and a junction box 24, as described below, the junction box 24 is connected to the first lead 56 and the second lead 6 extending from the back cover panel 22. Hey. The solar cell sub-module 12, the bonding/filling layer 14 disposed on the top of the solar cell sub-module 12, the moisture barrier layer 16 and the upper surface protective layer 18, and the configuration are disposed by vacuum lamination process according to vacuum lamination process. The bonding/filling layer 2〇 and the back cover panel 22 at the bottom of the solar cell sub-module 12 are integrated. The top of the solar cell sub-module 12 refers to the light-receiving surface used to obtain power. The bottom refers to the opposite side of the top. The junction box 24 is for collecting the power obtained by the solar battery module ι, and the junction box 24 is connected to the power supply. The junction box 24 is fixed by joining and soldering the junction box 24 to a corner of the surface 22a of the rear cover 22 with, for example, 11 201123493 silicone resin. The bonding/filling layer 14 is used to seal and protect the solar cell sub-module 12 and is bonded to the moisture barrier layer 16. For example, the bonding/filling layer 14 is formed of ethylene vinyl acetate (EVA) or polyethylene terephthalate (pvb). The water vapor barrier layer 16 is used to protect the solar cell sub-module 12 from moisture. The water vapor barrier layer 16 is formed on a transparent film made of, for example, polyethylene terephthalate (PET) or polyethylene naphthalate (pEN), for example, to form a dioxide. It is formed by a bismuth (SiO 2 ) or a tantalum nitride (SiN) inorganic layer. Alternatively, the moisture barrier layer 16 is formed on both sides of an inorganic layer made of, for example, oxidized dream (SiCb) or nitrided (SiN), for example, polyethylene terephthalate (for example) It is formed by a transparent film made of pET) or polyethylene naphthalate (PEN). The composition of the water vapor barrier layer 16 is not particularly limited as long as the water ammonia barrier J16 meets the specified performance requirements, such as moisture permeability, oxygen permeability, and the like. ^ The upper surface protective layer 18 is used to protect the solar cell sub-module 12 from the spots or stains of the battery sub-module 12, so that the light entering the solar cell sub-group 12 is reduced by stains or spots. drop to lowest. The upper surface protective layer 18 is formed of, for example, a fluorinated resin film. The resin used is, for example, ethylene/tetraflu〇roethylenec〇p〇lymer (EFTE). The above table transport 12 201123493 3 ^ U2pit protective layer 18 has a thickness of about 20 microns to 200 microns. The bonding/filling layer 2'' disposed at the bottom of the solar cell sub-module 12 has the same composition as the bonding/filling layer 14 disposed at the top, and therefore will not be described again. The rear cover 22 is used to protect the solar battery module 10 from the bottom of the solar battery module 1 and to reinforce the insulation of the solar battery module. The back cover 22 has a structure in which an aluminum foil is interposed between a resin film such as polyethylene terephthalate (PET) or polyethylene naphthalate (pEN). The composition of the back cover 22 is not specifically limited. As shown in FIG. 2 and FIG. 3, the solar cell sub-module 12 according to the present embodiment includes, for example, a substantially rectangular metal substrate 3''; an insulating layer 32' is formed on the upper surface 3a of the metal substrate 30. And the insulating layer % is formed on the entire lower surface 3?1 of the metal substrate 30. A solar cell unit 36 is formed on the surface 32a of the insulating layer 32. The solar cell sub-module 12 shown in FIG. 2 is an integrated solar cell sub-module including a back electrode 38, a photoelectric conversion layer 4, a buffer layer 42, and a transparent electrode 44, which are sequentially superposed on the surface of the insulating layer 32. on. The back electrode 38, the photoelectric conversion layer 4A, the buffer layer 42, and the transparent electrode 44 constitute the photoelectric conversion element 50. The back electrode 38 is formed on the surface 32&amp; of the insulating layer 32, and shares an isolation trench (which is also a rainbow) with the adjacent moon electrode 38. A photoelectric conversion layer 40 is formed on the back electrode 38 to fill the isolation trenches (ρι) 39. A buffer layer 42 is formed on the surface of the photoelectric conversion layer 4A. A groove (P2) 43 extending to the back electrode 38 separates the photoelectric conversion layer 4A and the buffer layer 42 from 1320112349342. These recesses (P1) 39 are formed at positions different from the isolation of the adjacent photoelectric conversion layer 40 and the adjacent buffer layer grooves (P2) 43 from the space for separating the back electrodes 38. The grooved transparent electrode 44 is formed on the surface of the buffer layer 42, and (P2) 43 〇 forms an opening groove (7)) 45 to extend through the transparent electrode material, the buffering sound 42 and the photoelectric conversion layer 40' to the back electrode. The %' member 50 is connected to the Korean element 50 in series with the back electrode 38 and the transparent electrode 44 to constitute the solar cell unit 36. The conversion of the real complement Mf conversion element 5G has a secret type _ Su Shixi (CIGS) configuration, and therefore, for example, the back electrode 38 is a molybdenum electrode conversion layer 40 formed of copper indium gallium selenide (CIGS), the buffer layer 42 a tin sulfide (CdS) is formed to form 'and the transparent electrode 44 is formed by oxidation: symplectic (^). Light enters the photoelectric conversion element 5 from the side directed to the transparent electrode 44, passes through the transparent electrode 44 and the buffer layer 42, causing the photoelectric conversion layer 4 to generate an electromotive force to generate, for example, a motor flowing from the transparent electrode 44 to the back electrode 38. In FIG. 3, the leftmost back electrode 38a has an anode property (positive polarity), and the rightmost back electrode 38b has a cathode property (negative polarity). The solar cell unit 36 of the present embodiment can be fabricated by any conventional method of manufacturing a copper indium gallium selenide (CIGS) solar cell. The isolation trench (pl) 39 of the back electrode 38, the recess (P2) 43 extending to the back electrode 38, and the open recess (P3) 45 extending to the back electrode 38 are by laser scribing or mechanical Formed by mechanical scribing. 201123493 In the solar cell sub-module 12, as shown in Fig. 3, the first connecting member 46 is disposed on the back electrode 38a having the positive polarity on the leftmost side of the edge f cell unit 36. The first connecting member 46 is formed of, for example, an elongated conductive member. The material of this conductive member includes, for example, a conductive tape and a tinned copper tape. When the conductive member is formed of a Lai steel strip, the conductive member can be fixed by ultrasonic welding (such as Cerasolzer) by ultrasonic welding. Under this _, the conductive members are continuously coated and welded (4) by the ridges of the bumps. Otherwise, a conductive adhesive, a conductive strip, may be used to connect to the leftmost back electrode 38. _ ~ When the photoelectric conversion element 5 is formed on the positive polarity back electrode 38a, the photoelectric conversion element % is removed by laser riding or mechanical_ when the first connecting member 46 is to be disposed on the positive polarity back electrode 38a, The portion of the electrode 38a on which the first flail member is to be formed is exposed. The right end of the upper surface 30a of the metal substrate 30 (e.g., where no insulation = 2 is formed) has an exposed region 52. When the insulating layer μ is formed, the ef exposes the region 52 by masking the exposed region 52. Alternatively, the storm region 52 may be retained by, for example, laser-engraving the insulating layer 32. The electrical contact member 48 is configured to establish an electrically conductive connection between the rightmost pole 38b having a negative polarity and the upper surface of the metal substrate 30 corresponding to the exposed region, and the portion is electrically connected. The electrical contact member 48 is a solder which is soldered. The m-setting is performed to bridge and connect the rightmost negative back electrode 38b with the upper surface of the metal substrate 3〇3〇a 15 201123493 34122pif corresponding to the portion of the exposed region 52. This conductive member may be similar to the first connecting member The conductive member of the electrical contact member 48 may be a solder for bridging and electrically connecting the upper surface of the right-side back electrode plate 30 to a portion corresponding to the exposed region of the exposed region. The base member is a negative-electrode back electrode 38b. Has formed a green 1 3 polar back electrode survey and fine touch structure (four) time piece = find Wei tree 5G, money back on the 楗 楗 power supply contact member 48 is exposed. 36% of the metal substrate around the sun Insulation of battery unit = The exposed area does not form the metal substrate 30. The field can be similar to the above-mentioned exposed area/domain&amp; has the second connecting member 58. This second connecting structure will be the same as the first connecting member. % has the same configuration. Therefore, the second connecting member 58 will be further described herein. First, according to the present embodiment, the first connecting member 46 is connected to the wire 56 shown in Fig. 1. With an insulating sleeve (insuiah) 〇n sieeve) A wire 56 insulation, except for the connection portion thereof. The first connection member 58 is connected to the second lead 60. The insulation is sleeve 61 insulated with a lead 60, except for the connection portion. The lead 56 has a positive polarity, and the second lead-lead 56 is connected to the positive electrode 38a to collect the output (potential) of the positive electrode 38a at the back cover 22.

201123493 JHIZZpiI 第^引線60經由第二連接構件58而連接至金屬基板 3〇,且藉由充當導體的金屬基板3〇和接觸構件48而電性 連接至負電極38b。第二引線6Q可以在後罩板22外面收 集負電極38b的輸出(電位)。 圖4中省略了絕緣套管57和61,第一引線%彎成實 質上方括號形,且經繞行以沿著基板3〇的侧面3〇c、後罩 板22的表面22a而延伸至金屬基板3〇的對面。尖端56a 彎成實質上垂直於後罩板22的表面22a,使它直立成實質 上L形。 ' 與第一引線56相似的是,第二引線彎成實質上方 括號形,且安裝後沿著基板的侧面3〇c和後罩板22的 表面22a而延伸到金屬基板30的對面,其中尖端56a彎成 垂直於後罩板22的表面22a,且直立成實質上l形。 如圖1所示,第一引線56與第二引線6〇從後罩板22 伸出以連接至接線盒24中的各別端子(未繪示)。 要想從依照本實施例之太陽電池子模組12(其中金屬 基板30用作導體)中收集電力,就要移除一部分絕緣層 32來保留暴露區域52a ’且提供第二連接構件58,這樣具 有負極性的第二引線60就無需從太陽電池單元36周圍繞 行,這至少縮短了第二引線60要繞行的長度,且簡化了佈 線結構。 如此一來,可縮短太陽電池模組10内的整體線路長 度,因而降低佈線成本。此外,太陽電池模組製造成本、 安裝成本等都會減少。 17 201123493 34122pif 對於120 cm長、60 cm寬的太陽電池模組,充當導電 路徑的金屬基板30所用的金屬材料不同,其串聯電阻也不 同’如下列表1所示。如表1所示,即使是具有較高電阻 率(specific resistance)的SUS430基板,串聯電阻也不成 問題。短邊之間的串聯電阻是指沿著太陽電池模組的縱向 來測定的串聯電阻。 [表1] 電阻率 (micro-ohm cm) 短邊之間的串聯電阻 (mohm) Cu 1.67 0.4 A1 2.9 0.6 Ti 55 11.0 SUS430 60 12.0 此外’本實施例因太陽電池模組1〇佈線結構簡化而 在產品質量和可靠性上實現了改善。再者,由於太陽電池 模組10的接線盒24可配置在太陽電池模組1〇的一角而不 是在其中央’所以也可改善外觀,且太陽電池模組1〇的產 品價值可提升。 第二連接構件58較佳的是具有最小可能長度,只要 能與最右邊背電極38b建立導電連接即可。如此一來,絕 緣層32要被移除的範圍可減少,以便促進製造過程,也可 18 201123493 縮紐第二連接構件58來降低材料成本。 此外,由於具有正極性的第一引線56與具有負極性 ,第二引線60相互很接近,又能連接錄於金屬基板3〇 且接近金屬基板30 —端的接線盒24,所以金屬基板 3〇之了表面30b的第一引線56和第二引線6〇的長度可減 小=使得太陽電池模組1〇有可能既具有高產品質量、高 可Λ性,又結構簡單無***(p_be職,否則第一 引線56和第二引線60可能會形成***。 依照本實施例之太陽電池模組1〇可(例如)按下列 步驟來製造。 首先’在太陽電池子模組12的頂部提供接合/填充層 14、水氣阻障層16以及上表面保護層18。 在太陽電池子模組12中,第一引線56和第二引線6〇 被折彎,鋪相互平行,繞行到金屬基板%的下表面施, 且穿過配置在太陽f池子模底料接合/填充層加和 後罩板22之指定位置處所形成的通孔(th h , 使得第一引線56和第二引後6〇的 22+伸出。 _的—6〇a從後罩板 然後,在150 C下執行層積製程15分鐘以藉由 層積技術來得到整合結構。接著,第—引線56和第二= 60被折彎以直立成實質上l形。 Ί 隨後,將接線盒24的端子連接至第一 56a和第二引線60的尖端6〇a。然後,用例端 脂將接線盒24黏結並密封在後罩板22的表❹ 201123493 34122ρΐί 附近。 依照本實施例,在金屬基板30的上表面3〇a和下表 面30b上提供絕緣層32、34。絕緣層32、34通常是具有 細小孔隙(p_)的氧化物絕緣薄膜,這些孔隙是藉^對 金屬基板進行陽極化處理(anGdizing)而在氧化物絕緣薄 膜中形成的。這絲化物絕緣薄膜具有增強親緣性能。 金屬基板30可用這樣一種材料來形成,這種材料使 得形成在金屬基板30之頂部和底部的金屬氧化物薄膜是 一個絕緣體。 具體地說,金屬基板30可用鋁、錯、鈦、鎂、銅、 鈮或钽或者上述金屬的合金來形成。考慮到太陽電池的成 本和性此要求,金屬基板3〇較佳地是用铭來形成。 在鋼板(諸如軟鋼板或不銹鋼板)的表面彼覆 (cladding)上述可用來形成金屬基板3〇的軋製(r〇Ued) 金屬板或溶融金屬就可形成金屬基板3〇。 依照本實施例’金屬基板3 0較佳的是可換性的 (flexible)。如此一來,用這種金屬基板3〇來形成的太 陽電池模組、太陽電池等也都是可撓性的。 如果基板30是用鋁板來形成的,則可藉由陽極化處 理然後進行特定封孔(pore sealing)處理來形成絕緣層 32、34。除了基本步驟之外,製造絕緣層32、34的過程還 可包括許多步驟。 如果基板30是用鋁板來形成的,那麼,依照本發明, 可(例如)藉由下列過程來形成絕緣層32、34,進而形成 20 201123493 όπιζζρη 太陽電池的基板。其中此過程包括:除油(degreasing)步 驟’ β除附著的軋製油;去污(desmuttjng )步驟,溶解在呂 板表面上的污跡;表面粗化(surface步驟, 對鋁板的表面進行粗化處理;陽極化步驟,在鋁板的表面 上形成陽極化薄膜;以及封孔步驟,封閉陽極化薄膜中的 微孔(micropores)。 如果基板30是用鋁板來形成的,則可用的鋁材料包 括曰本工業標準(Japan Industrial Standard,JIS )所定義的 #級1000純紹的合金、紹猛(Ai_Mn)合金、銘鎂(Al-Mg) 合金、鋁猛鎮(Al-Mn-Mg)合金、鋁結(Al-Zr)合金、 鋁矽(Al-Si)合金或鋁鎂矽(A1_Mg_Si)合金以及其他金 屬元素(參見“關於鋁的手冊,,第4版)(曰本輕金屬協會 (Japan Light Metal Association)於 1990 年出版)。銘板 可含有微量金屬元素,諸如鐵(Fe)、矽(Si) '錳(Μη)、 銅(Cu )、鎮(Mg )、鉻(Cr )、鋅(Ζη )、叙(Bi)、 鎳(Ni)及鈦(Ti)。 紹板的厚度通常為0.1 mm至10 mm。若使用鋁板的 話,鋁板的厚度會減小,因為鋁板要先洗滌,然後進行陽 極化處理,再進行研磨(polishing)。因此,鋁板的厚度 必須將厚度的減小考慮在内。 將鋁板當作正電極連同負電極一同浸入電解溶液,並 在正負電極之間施加電壓,以此來完成陽極化處理。必要 時,陽極化處理可包括對鋁板執行清洗和研磨/平滑 (smoothing)製程等步驟。負電極通常是用碳、銘等來形 21 201123493 成。電解液不受具體限定,較佳的是利用選自硫酸(sulfuric acid)、鱗酸(phosphoric acid)、鉻酸(chromic acid)、 草酸(oxalic acid )、胺續酸(sulfamic acid )、苯續酸 (benzenesulfonic acid )及氨基續酸(amidosulfonic acid ) 的一種或多種酸來製備酸性電解溶液。陽極化處理條件因 所用電解溶液種類的不同而不同,且不受具體限定。舉例 來說,適當的陽極化處理條件是,電解液濃度為1%至 80%,溶液溫度為5°C至70°C,電流密度為0.005 A/cm2至 0.60 A/cm2 ’電壓為1 V至200 V,以及電解時間為3分鐘 至500分鐘。較佳的是,電解溶液含有硫酸、磷酸或草酸 或其混合物。較佳的是,上述電解溶液的電解液濃度為4〇/〇 (質量百分比’ mass%)至30% (質量百分比,mass%), 電流密度為0.05 A/cm2至0.30 A/cm2,以及電壓為30 V至 150 V。 在鋁板的陽極化過程中,表面會發生氧化反應,且, 質上垂直地產生陽極化薄膜。當使用上述任何電解溶郊 時,所形成的陽極化薄膜上將會有許多緊密排列的小圓未 體’ k平Φ角度看’這些小圓:^體實質上呈六邊形。每他 小圓柱體的核心處有H,底部略呈圓形。在小圓柱宽 =底部=成—阻障層,其厚度為㈣微米至G1微米。^ ’電解溶液(諸如含有硼酸解溶液)可代替酸性臂 t液來崎電解處理’时性電解溶液可顧含有更&gt; 在度的成分的陽極化薄臈,而不會形成排列著許多多衣 porous)小圓柱體的陽極化薄膜。用酸性電解溶液形力 22 201123493 34122pit' 了多孔陽極化薄膜之後,可利用填孔技術來進行額外的電 解處理,以增大阻障層的厚度。 用氧化鋁薄膜來形成的絕緣層32、34的厚度不受具 體限定,只要絕緣層32、34具有絕緣性質且表面硬度足^ =止操作過程中的機械碰撞可能造成的損傷即可。然而, 厚度過大可能會引發可撓性問題。因此,用陽極化處理過 矛王中所產生的氧化紹薄膜來形成的絕緣層32、34較佳的是 厚度為0.5微米至50微米。此厚度可依靠電解時間以及電 &quot;il恒疋電解法(gaivanostatic eiectr〇iySis)和電位恒定電解 法(potentiostatic electrolysis)來進行控制。 絕緣層32、34並不限於陽極化處理過程所產生的氧 化紹層。絕緣層32、34的實例有氧化鋁薄膜、二氧化石夕薄 膜以及氧化鈥薄膜。絕緣層32、34的實例更包括氮化鋁薄 獏、氮化矽薄膜、氮化鈦薄膜以及氮化鐵薄膜。絕緣層32、 34的實例更包括氮氧化鋁薄膜、氮氧化矽薄膜、氮氧化鈇 薄膜以及氮氧化鐵薄膜。 絕緣層32、34可(例如)藉由陽極化處理、化學氣 相沈積法(Chemical Vapor Deposition,CVD )、物理氣相 沈積法(Physical Vapor Deposition, PVD)或溶膠·凝膠法 (sol-gel method)來形成。絕緣層32、34的厚度為i微 米至100微米,較佳的是10微米至50微米。 光電轉換元件50的背電極38和透明電極44這兩者 是用來收集光電轉換層40所產生的電流。背電極38和透 明電極44都是用導電材料製成的。位於受光面的透明電極 23 201123493 44必須透光。 背電極38是用(例如)鉬(M〇)、 是0.2微米至〇.8微米。 上,較佳的 成,诸如電子錢積和濺鍍法(sputtering)。積法耒形 硼(B透二St用(例如)氧化鋅(Zn〇M^^ a)、銻(Sb)等)、氧化銦錫(ITO)、 二氧化錫(Sn〇2)或者上述兩種或兩種以上的材斗ϋ 的材料來職。翻電極4 所組成 (諸如雔廢处搂彳^ 了具有早層、、,《構或層積結構 ^ X層、D °透明電極44的厚度不受具體限定十 較佳的是0.3微米至【微米。 「疋1一 # 3的作用是’當形成透明電極44時用來保護 轉換θ ,且使得入射到透明電極44的光能夠進入 光電轉換層40。 緩衝層42是用(例如)硫化編(CdS)、硫化鋅(ZnS)、 氧化辞(Zn〇)、氧化鎂鋅(ZnMgO)或ZnS (0, OH) 或上述兩種或兩細上的材料所組成的材料來形成。 〜較佳的是’緩衝層42的厚度為〇 〇3微米至〇1微米。 緩衝層42疋藉由(例如)化學浴沈積法(ehemieai bath deposition,CBD)來形成。 穿過透明電極44和緩衝層42而進入光電轉換層40 24 201123493 j^izzpn 的光被光電轉換層4G吸收以產生電流。依照本實施例,光 電轉換層4G在成分上不受具體限定,可用(例如)具有至 少-種黃_結構的化合物半導體來形成。光電轉換層4〇 可用至)-種含有ib族元素、mb族元素及VIb族元素的 化合物半導體來形成。 為了得到較向的光吸收率和較高的光電轉換效率,光 電轉換層4G較佳地由至少—種包括下列元素的化合物半 導體來形成:選自銅(Cu)和銀(Ag)所組成之群組的至 少一種lb族元素;選自鋁(A1)、鎵(Ga)和銦(迅)所 組成之群組的至少一種Illb族元素;以及選自硫(s)、 硒(Se)和碲(Te)所組成之群組的至少一種VIb族元素。 此化合物半導體的實例有二硫化鋁銅(CuA1S2)、二硫化 鎵銅(CuGaS2)、二硫化銦銅(CuInS2)、二砸化紹銅 (CuAlSe2 )、二硒化鎵銅(CuGaSe2 )、二硒化銦銅(CuInSe2, CIS)、二硫化鋁銀(AgAlS2)、二硫化鎵銀(AgGaS2)、 二硫化銦銀(AgInS2)、二硒化鋁銀(AgAlSe2)、二硒 化鎵銀(AgGaSe2)、二硒化銦銀(AgInSe2)、二碲化鋁 銀(AgAlTe2)、二碲化鎵銀(AgGaTe2)、二碲化銦銀 (人莒111丁62)、二硒化銅銦鎵((:11(1111-又0&amp;叉)862,(:108)、 二石西化銅姻 |呂(Cu(Inl-xAlx)Se2 ) 、( Cu(Inl-xGax)(S, Se)2 )、二牺化銀銦鎵(Ag(Inl-xGax)Se2 )以及 (Ag(Inl-xGax)(S,Se)2)。 較佳的是,光電轉換層40含有二砸化銦銅(CuInSe2, CIS)及/或銅銦鎵石西(Cu(In,Ga)Se2, CIGS),它可事先藉 25 201123493 由溶解鎵(Ga)來獲得。二硒化銦銅(CIS)和銅銦鎵硒 (CIGS)疋種具有頁銅礦晶體結構的半導體,據說它們 具有較高的光吸收率和較高的光電轉換效率。另外,二硒 化銦銅(CIS)和銅銦鎵硒(CIGS)的耐用性極好,所以 暴露的光線下或其他原因都不易造成其效率降低。 光電轉換層40含有雜質,以得到想要的半導體導電 類型。雜質可透過從相鄰層擴散及/或透過直接摻雜 (doping)來添加到光電轉換層中。光電轉換層4〇中允許 含有;Γ_ΙΠ·νΐ料導㈣减元纽/或按密度分佈的雜 質。光電轉換成層26可包含多個層區,這些層區由具有不 同半導體性質(諸如η型、ρ型和⑶)的材料來形成。 例如,若光電轉換層4〇中的鎵(Ga)含量的厚度分 ,(細kness-wise distributi〇n)是給定的,則銅銦鎵砸 f GS)半導體允許對帶隙寬度(bandgapwidth)、載子 =率Uarrierm()bility)等進行控制,因而光電轉換效率201123493 JHIZZpiI The second lead 60 is connected to the metal substrate 3 via the second connecting member 58, and is electrically connected to the negative electrode 38b by the metal substrate 3A serving as a conductor and the contact member 48. The second lead 6Q can collect the output (potential) of the negative electrode 38b outside the back cover 22. The insulating sleeves 57 and 61 are omitted in FIG. 4, and the first lead % is bent into a substantially square bracket shape and is wound to extend to the metal along the side surface 3〇c of the substrate 3〇 and the surface 22a of the back cover 22 Opposite the substrate 3〇. The tip 56a is bent substantially perpendicular to the surface 22a of the back cover 22 such that it stands upright in a substantially L-shape. Similar to the first lead 56, the second lead is bent into a substantially square bracket shape and extends to the opposite side of the metal substrate 30 along the side surface 3〇c of the substrate and the surface 22a of the back cover 22 after mounting, wherein the tip The 56a is bent perpendicular to the surface 22a of the back cover panel 22 and is erected to be substantially l-shaped. As shown in FIG. 1, the first lead 56 and the second lead 6b project from the rear cover 22 to be connected to respective terminals (not shown) in the junction box 24. In order to collect power from the solar cell sub-module 12 according to the present embodiment in which the metal substrate 30 is used as a conductor, a portion of the insulating layer 32 is removed to retain the exposed region 52a' and the second connecting member 58 is provided. The second lead 60 having the negative polarity does not need to be wound around the solar cell unit 36, which at least shortens the length of the second lead 60 to be wound, and simplifies the wiring structure. As a result, the overall line length in the solar cell module 10 can be shortened, thereby reducing the wiring cost. In addition, solar cell module manufacturing costs, installation costs, etc. will be reduced. 17 201123493 34122pif For a 120 cm long, 60 cm wide solar cell module, the metal substrate used as the conductive path has different metal materials and the series resistance is different as shown in Table 1 below. As shown in Table 1, even in the case of a SUS430 substrate having a high specific resistance, the series resistance is not a problem. The series resistance between the short sides refers to the series resistance measured along the longitudinal direction of the solar cell module. [Table 1] Resistivity (micro-ohm cm) Series resistance between short sides (mohm) Cu 1.67 0.4 A1 2.9 0.6 Ti 55 11.0 SUS430 60 12.0 In addition, this embodiment is simplified due to the wiring structure of the solar cell module Improvements have been made in product quality and reliability. Further, since the junction box 24 of the solar battery module 10 can be disposed at a corner of the solar battery module 1 instead of at the center thereof, the appearance can be improved, and the product value of the solar battery module 1 can be improved. The second connecting member 58 preferably has a minimum possible length as long as it can establish an electrically conductive connection with the rightmost back electrode 38b. As a result, the extent to which the insulating layer 32 is to be removed can be reduced to facilitate the manufacturing process, and the second connecting member 58 can be reduced to reduce material costs. In addition, since the first lead 56 having the positive polarity has a negative polarity and the second lead 60 is close to each other, and can be connected to the junction box 24 recorded on the metal substrate 3A and close to the end of the metal substrate 30, the metal substrate 3 is The length of the first lead 56 and the second lead 6〇 of the surface 30b can be reduced = so that the solar cell module 1 may have both high product quality, high flexibility, and simple structure without bulging (p_be job, otherwise The first lead 56 and the second lead 60 may form a ridge. The solar cell module 1 according to the present embodiment can be manufactured, for example, in the following steps. First, 'joining/filling is provided on the top of the solar cell sub-module 12. The layer 14, the water vapor barrier layer 16 and the upper surface protective layer 18. In the solar cell sub-module 12, the first lead 56 and the second lead 6 are bent, paved parallel to each other, and bypassed to the metal substrate The lower surface is applied, and passes through a through hole (th h ) formed at a specified position of the sun sump sub-die bond/fill layer and the rear cover 22, so that the first lead 56 and the second lead 6 〇 22+ stretched out. _'s -6〇a from the back cover The plate was then subjected to a lamination process at 150 C for 15 minutes to obtain an integrated structure by a lamination technique. Then, the first lead 56 and the second = 60 were bent to stand upright to be substantially l-shaped. Ί Subsequently, The terminals of the junction box 24 are connected to the tips 6A of the first 56a and the second leads 60. Then, the terminal block 24 is bonded and sealed by the example terminal grease to the vicinity of the surface of the back cover 22, 201123493 34122ρΐί. According to the present embodiment, The insulating layers 32, 34 are provided on the upper surface 3a and the lower surface 30b of the metal substrate 30. The insulating layers 32, 34 are generally oxide insulating films having fine pores (p_) which are formed by the metal substrate Anodization is formed in an oxide insulating film. The filamentized insulating film has enhanced affinity properties. The metal substrate 30 may be formed of a material which is formed on the top and bottom of the metal substrate 30. The metal oxide film is an insulator. Specifically, the metal substrate 30 may be formed of aluminum, aluminum, magnesium, copper, copper, tantalum or niobium or an alloy of the above metals. In terms of cost and performance, the metal substrate 3 is preferably formed by using a stamp. The surface of the steel sheet (such as a soft steel sheet or a stainless steel sheet) is laminated to the above-mentioned rolling which can be used to form the metal substrate 3 (r〇 Ued) A metal plate or a molten metal can form a metal substrate. According to the present embodiment, the metal substrate 30 is preferably flexible. Thus, the metal substrate 3 is formed. The solar cell module, the solar cell, and the like are also flexible. If the substrate 30 is formed of an aluminum plate, the insulating layers 32, 34 can be formed by anodizing and then performing a specific pore sealing process. . In addition to the basic steps, the process of making the insulating layers 32, 34 can include a number of steps. If the substrate 30 is formed of an aluminum plate, then in accordance with the present invention, the insulating layers 32, 34 can be formed, for example, by the following process to form a substrate of the 20 201123493 όπιζζρη solar cell. The process includes: a degreasing step 'β removing the attached rolling oil; a decontamination step (desmuttjng), dissolving the stain on the surface of the slab; surface roughening (surface step, roughening the surface of the aluminum plate) Processing; anodizing step of forming an anodized film on the surface of the aluminum plate; and sealing step to close micropores in the anodized film. If the substrate 30 is formed of an aluminum plate, the usable aluminum material includes ruthenium #级1000纯绍合金, 绍猛(Ai_Mn) alloy, Ming-magnesium (Al-Mg) alloy, Al-Mn-Mg alloy, aluminum as defined by the Japan Industrial Standard (JIS) Junction (Al-Zr) alloy, Al-Si alloy or Al-Si-Al alloy (A1_Mg_Si) alloy and other metal elements (see "Handbook on Aluminum, 4th Edition") (Japan Light Metal) Association) published in 1990). The nameplate can contain trace metals such as iron (Fe), bismuth (Si) 'manganese (Μη), copper (Cu), town (Mg), chromium (Cr), zinc (Ζη) , (Bi), nickel (Ni) and titanium (Ti). The thickness of the plate is usually 0.1 mm to 10 mm. If an aluminum plate is used, the thickness of the aluminum plate is reduced because the aluminum plate is first washed, then anodized, and then polished. Therefore, the thickness of the aluminum plate must be thick. The reduction is taken into account. The anodization is performed by immersing the aluminum plate as a positive electrode together with the negative electrode into the electrolytic solution and applying a voltage between the positive and negative electrodes. If necessary, the anodizing treatment may include performing cleaning on the aluminum plate. And the steps of the grinding/smoothing process, etc. The negative electrode is usually formed by carbon, imitation, etc. 21 201123493. The electrolyte is not particularly limited, and preferably is selected from sulfuric acid, phosphonic acid. An acidic electrolytic solution is prepared from one or more acids of acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid. The anodizing treatment conditions vary depending on the kind of electrolytic solution used, and are not particularly limited. For example, appropriate anodizing conditions , the electrolyte concentration is 1% to 80%, the solution temperature is 5 ° C to 70 ° C, the current density is 0.005 A / cm 2 to 0.60 A / cm 2 'voltage is 1 V to 200 V, and the electrolysis time is 3 minutes to 500 minutes. Preferably, the electrolytic solution contains sulfuric acid, phosphoric acid or oxalic acid or a mixture thereof. Preferably, the electrolytic solution has an electrolyte concentration of 4 〇/〇 (mass% 'mass%) to 30% (mass%), a current density of 0.05 A/cm 2 to 0.30 A/cm 2 , and a voltage It is 30 V to 150 V. During the anodization of the aluminum plate, an oxidation reaction occurs on the surface, and an anodized film is produced vertically in a qualitative manner. When any of the above electrolyzed suburbs is used, there will be a plurality of closely arranged small circular bodies on the anodized film formed, which are substantially hexagonal. Every small cylinder has a H at the core and a slightly rounded bottom. In the small cylinder width = bottom = into - barrier layer, the thickness is (four) micron to G1 micron. ^ 'Electrolysis solution (such as containing boric acid solution) can replace the acid arm t liquid to the electrolytic treatment of 'the time electrolysis solution can take care of the anodized thinner of the composition of the degree, without forming a lot of arrangement An anodized film of a small cylinder. After the porous anodized film is formed by the acidic electrolytic solution force 22 201123493 34122pit', additional electrolysis treatment can be performed by the hole filling technique to increase the thickness of the barrier layer. The thickness of the insulating layers 32, 34 formed by the aluminum oxide film is not particularly limited as long as the insulating layers 32, 34 have insulating properties and the surface hardness is sufficient to cause damage due to mechanical collision during operation. However, excessive thickness may cause flexibility problems. Therefore, the insulating layers 32, 34 formed by anodizing the oxide film produced in the spears are preferably 0.5 to 50 μm thick. This thickness can be controlled by electrolysis time and electric galvanostatic eiectr〇iySis and potentiostatic electrolysis. The insulating layers 32, 34 are not limited to the oxidized layer produced by the anodizing process. Examples of the insulating layers 32, 34 are an aluminum oxide film, a silica thin film, and a hafnium oxide film. Examples of the insulating layers 32, 34 further include aluminum nitride thin films, tantalum nitride films, titanium nitride films, and iron nitride films. Examples of the insulating layers 32, 34 further include an aluminum oxynitride film, a hafnium oxynitride film, a hafnium oxynitride film, and an iron oxynitride film. The insulating layers 32, 34 can be, for example, by anodization, Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), or Sol-gel (sol-gel). Method) to form. The insulating layers 32, 34 have a thickness of from i micrometers to 100 micrometers, preferably from 10 micrometers to 50 micrometers. Both the back electrode 38 and the transparent electrode 44 of the photoelectric conversion element 50 are used to collect the current generated by the photoelectric conversion layer 40. Both the back electrode 38 and the transparent electrode 44 are made of a conductive material. The transparent electrode located on the light receiving surface 23 201123493 44 must be transparent. The back electrode 38 is made of, for example, molybdenum (M〇), which is 0.2 μm to 〇.8 μm. Preferably, such as electronic money accumulation and sputtering. Boron-shaped boron (for B-transparent St, for example, zinc oxide (Zn〇M^^ a), antimony (Sb), etc.), indium tin oxide (ITO), tin dioxide (Sn〇2) or both The material of the species or two or more materials is used. The composition of the flip electrode 4 (such as the waste layer) has an early layer, and the thickness of the structure or the layered structure X layer and the D ° transparent electrode 44 is not particularly limited to 0.3 micrometers to [ Micron. "The effect of 疋1_#3 is to protect the conversion θ when the transparent electrode 44 is formed, and to enable light incident on the transparent electrode 44 to enter the photoelectric conversion layer 40. The buffer layer 42 is woven with, for example, vulcanization. (CdS), zinc sulfide (ZnS), oxidized (Zn), magnesium zinc oxide (ZnMgO) or ZnS (0, OH) or a material composed of two or more of the above materials. The thickness of the buffer layer 42 is 〇〇3 μm to 〇1 μm. The buffer layer 42 is formed by, for example, ehemieai bath deposition (CBD). Passing through the transparent electrode 44 and the buffer layer 42 The light entering the photoelectric conversion layer 40 24 201123493 j^izzpn is absorbed by the photoelectric conversion layer 4G to generate a current. According to the present embodiment, the photoelectric conversion layer 4G is not specifically limited in composition, and may be, for example, at least - yellow Structure of compound semiconductor to form. Photoelectric conversion layer 4〇 It can be formed by a compound semiconductor containing a group ib element, a group mb element, and a group VIb element. In order to obtain a relatively high light absorptivity and a high photoelectric conversion efficiency, the photoelectric conversion layer 4G is preferably at least a compound semiconductor comprising the following elements: at least one lb group element selected from the group consisting of copper (Cu) and silver (Ag); selected from the group consisting of aluminum (A1), gallium (Ga), and indium (X) a group of at least one group of Ilbb; and at least one group VIb element selected from the group consisting of sulfur (s), selenium (Se), and tellurium (Te). An example of the compound semiconductor is aluminum copper disulfide ( CuA1S2), CuGaS2, CuInS2, CuAlSe2, CuGaSe2, CuInSe2, CIS, Disulfide Aluminum silver (AgAlS2), AgGaS2, AgInS2, AgAlSe2, AgGaSe2, AgInSe2, AgAlTe2, AgGaTe2, Indium Bismuth (Indole 111:62), II Copper indium gallium selenide ((:11(1111-又0&amp; fork)862, (:108), bismuth bismuth | Cu (Inl-xAlx) Se2), (Cu(Inl-xGax)(S , Se) 2), two sacrificial silver indium gallium (Ag (Inl-xGax) Se2) and (Ag (Inl-xGax) (S, Se) 2). Preferably, the photoelectric conversion layer 40 contains indium germanium copper (CuInSe2, CIS) and/or copper indium gallium (Cu(In,Ga)Se2, CIGS), which can be dissolved by gallium in advance by 25 201123493 ( Ga) to get. Indium copper diselenide (CIS) and copper indium gallium selenide (CIGS) are semiconductors having a phylum copper crystal structure, which are said to have high light absorption and high photoelectric conversion efficiency. In addition, indium copper diselenide (CIS) and copper indium gallium selenide (CIGS) are extremely durable, so exposure to light or other causes is less likely to cause a decrease in efficiency. The photoelectric conversion layer 40 contains impurities to obtain a desired semiconductor conductivity type. Impurities can be added to the photoelectric conversion layer by diffusion from adjacent layers and/or by direct doping. The photoelectric conversion layer 4 允许 is allowed to contain; Γ ΙΠ ΐ ΐ ΐ ( 四 四 四 四 四 四 四 四 / / / / / / / / / / 。 。 。 。 。 The photoelectric conversion layer 26 may comprise a plurality of layer regions formed of materials having different semiconductor properties such as n-type, p-type, and (3). For example, if the thickness of the gallium (Ga) content in the photoelectric conversion layer 4 分 is (fine kness-wise distributi〇n) is given, the copper indium gallium 砸f GS) semiconductor allows the bandgap width (bandgapwidth) , carrier = rate Uarrierm () bility), etc. to control, thus photoelectric conversion efficiency

士電轉換層40可含有除wh-vi族半導體之外的一種 ,或兩種以上时·。_除I_m_vi料導體之 ί導體包括:用lvb族元素(諸如邦⑴來形成的 26 201123493 其他成分’只要此成分不會對光電轉換層4〇的性質產生不 良影響即可。 光電轉換層40可含有任何適當含量的ι_πΐ_VI族半導 體。光電轉換層40中所含的Ι-ΐΠ-νΐ族半導體的比率較佳 為75°/。(質量百分比)或更多,更較佳為95〇/〇 (質量百分 比)或更多’最佳為99% (質量百分比)或更多。 當本實施例之光電轉換層40為銅銦鎵硒(CIGS)層 時’此銅銦鎵砸(CIGS )層可藉由下列習知的沈積方法來 形成.1)共蒸鍍法(co-evaporation ) ; 2)砸化法 (selemzation) ; 3)濺鑛法;4)混合濺鍵法(hybrid sputtering);以及5)機械化學處理法。 1)習知的多源共蒸鍍法包括:三步共蒸法(three-stage method) (J.R. Tuttel 等人,Mat. Res. Soc. Symp. Proc., 第426卷( 1966)第143頁,等等)和EC小組發明的一 步共蒸法(L. Stolt 等人,Proc. 13th ECPVSEC (1995,The electric-electric conversion layer 40 may contain one type other than the wh-vi group semiconductor, or two or more types. _In addition to the conductor of the I_m_vi conductor, the conductor includes: 26 201123493 other components formed by the lvb group element (such as the state (1) as long as the component does not adversely affect the properties of the photoelectric conversion layer 4 。. The photoelectric conversion layer 40 can The ratio of the ι-ΐΠ-ν ΐ semiconductor contained in the photoelectric conversion layer 40 is preferably 75 ° / (% by mass) or more, more preferably 95 〇 / 〇 ( The mass percentage) or more is preferably 99% (mass percent) or more. When the photoelectric conversion layer 40 of the present embodiment is a copper indium gallium selenide (CIGS) layer, the copper indium gallium germanium (CIGS) layer can be The formation of .1) co-evaporation; 2) selemzation; 3) sputtering method; 4) hybrid sputtering; 5) Mechanochemical treatment. 1) Conventional multi-source co-evaporation methods include: a three-stage method (JR Tuttel et al., Mat. Res. Soc. Symp. Proc., Vol. 426 (1966), p. 143 , etc.) and the one-step co-evaporation method invented by the EC group (L. Stolt et al., Proc. 13th ECPVSEC (1995,

Nice) 1451,等等)。 首先,依照先提到的三步共蒸法,在高度真空下在溫 度為300C的基板上同時蒸鑛上銦(in)、鎵(Ga)和碼 (Se),然後將基板溫度上升到56〇。〇,在同時蒸 鍍了銦(hi)、鎵(Ga)、硒(Se)之處同時氣相沈積 (vapor-deposit)銅(Cu)和硒(Se)。依照後—種方法 或EC小組發明的一步蒸鍍法,在氣相沈積前期氣相沈積 銅過量之銅銦鎵硒(CIGS),且在氣相沈積後期氣相沈積 銦過量之銅銦鎵硒(CIGS)。 27 201123493 3412^pn 下列方法對上述方法進行了改良,以改善銅銦鎵硒 (CIGS )薄膜的結晶度(cryStaiHnity )。 a) 使用游離鎵(Ga)的方法(H. Miyazaki等人,phys. stat. sol. (a),第 203 卷(2006)第 2603 頁,等等) b) 使用自由基化石西(ra(jicaiized Se)的方法(日本應 用物理學會(Japan Society of Applied Physics )在第 68 期 學術講座上發表的演講的預印收藏本)(2007年秋季, Hokkaido Kogy〇 大學),7p_L_6,等等) c) 使用自由基化硒的方法(日本應用物理學會在第 54期學術講座上發表的演講的預印收藏本)(2〇〇7年春 季 ’ Aoyama Gakuin 大學),29P-ZW-14,等等),以及 d) 使用光激發製程(Hghtexcitati〇npr〇cess)的方法 (曰本應用物理學會在第54期學術講座上發表的演講的 預印收藏本)(2007年春季,Aoyama Gakuin大學), 29P-ZW-14,等等)。 2)硒化法又稱為兩步蒸鍍法。首先藉由濺鍍沈積法、 氣相沈積法或電沈積法利用諸如銅層/銦層、銅鎵層 (Cu-Ga ) /錮層等層積薄膜來形成金屬前驅物 (precursor),然後將這樣形成的薄膜放在硒蒸氣或硒化 氫中加熱到45(TC至55(rc,以藉由熱擴散反應來產生諸如 j硒化銅銦鎵(CU(Ini_xGax)Se2)的硒化物。此方法稱為 氣相硒化法。可取得相同結果的另一種方法是固相 (solid-phase)硒化法,此方法是以固相硒為硒源藉由固 相擴散反應來將固相硒鍍在金屬前驅物薄膜上以達到硒化 28 201123493 的目的。 硒化法可以多種方式來實施:事先將硒按規定的比例 混入金屬前驅物薄膜中,以避免硒化製程中可能發生的體 積突然膨脹(T. Nakada 等人,Solar Energy Materials and SolarCells 35 (1994) 204-214,等等);或者,將硒夾在金 屬薄膜(例如,銅層/銦層/磁層......銅層/銦層/砸層)之間 以形成多層前驅物薄膜(T. Nakada等人,Proc. of 10th European Photovoltaic Solar Energy Conferenc (1991) 887-890,等等)。 形成分級帶隙銅銦鎵硒(CIGS)薄膜的方法是:首先 配置一層銅鎵合金薄膜,並在此薄膜上配置銦薄膜,然後 利用自然熱擴散使鎵密度呈傾斜分佈來完成硒化Nice) 1451, etc.). First, according to the three-step co-evaporation method mentioned above, indium (in), gallium (Ga) and code (Se) are simultaneously vaporized on a substrate having a temperature of 300 C under high vacuum, and then the substrate temperature is raised to 56. Hey. Thereafter, at the same time, indium (hi), gallium (Ga), and selenium (Se) are simultaneously vapor-deposited (Cu) and selenium (Se). According to the latter method or the one-step evaporation method invented by the EC group, copper indium gallium selenide (CIGS) is vapor-deposited in the early stage of vapor deposition, and copper indium gallium selenide is excessively vapor-deposited in the late stage of vapor deposition. (CIGS). 27 201123493 3412^pn The above method was modified to improve the crystallinity (cryStaiHnity) of copper indium gallium selenide (CIGS) film. a) Method using free gallium (Ga) (H. Miyazaki et al., phys. stat. sol. (a), vol. 203 (2006) p. 2603, etc.) b) use of free radical fossil (ra( Jicaiized Se) method (preprinted collection of speeches presented by the Japan Society of Applied Physics at the 68th lecture) (Autumn 2007, Hokkaido Kogy〇 University), 7p_L_6, etc.) c The method of using free radical selenium (preprinted collection of speeches presented by the Society of Applied Physics of Japan in the 54th academic lecture) (Aoyama Gakuin University in the spring of 2〇〇7), 29P-ZW-14, etc. ), and d) the method of using the light-exciting process (Hghtexcitati〇npr〇cess) (a pre-printed collection of speeches presented by the Society of Applied Physics at the 54th Academic Lecture) (Spring 2007, Aoyama Gakuin University), 29P-ZW-14, etc.). 2) Selenization method is also called two-step evaporation method. First, a metal film precursor is formed by a sputtering deposition method, a vapor deposition method, or an electrodeposition method using a laminated film such as a copper layer/indium layer or a copper gallium layer (Cu-Ga)/germanium layer, and then a metal precursor is formed. The film thus formed is heated to 45 (TC to 55 (rc) in selenium vapor or hydrogen selenide to produce selenide such as j indium selenide (CU (Ini_xGax) Se2) by thermal diffusion reaction. The method is called gas phase selenization. Another method that can achieve the same result is solid-phase selenization. This method uses solid phase selenium as a selenium source to solid phase selenium by solid phase diffusion reaction. It is plated on a metal precursor film to achieve the purpose of selenization 28 201123493. Selenization can be carried out in a variety of ways: Selenium is mixed into the metal precursor film in a predetermined ratio to avoid sudden volume that may occur in the selenization process. Expansion (T. Nakada et al., Solar Energy Materials and Solar Cells 35 (1994) 204-214, etc.); or, selenium is sandwiched between metal films (eg, copper layer/indium layer/magnetic layer... Between the copper layer/indium layer/砸 layer) to form a multilayer precursor film (T. Nakada et al. Proc. of 10th European Photovoltaic Solar Energy Conferenc (1991) 887-890, etc.) The method of forming a graded band gap copper indium gallium selenide (CIGS) film is to first configure a layer of copper gallium alloy film and configure it on the film. Indium thin film, then using natural thermal diffusion to make the density of the gallium obliquely distributed to complete the selenization

Kushiya 等人,Tech Digest 9th Photovoltaic Scienece andKushiya et al., Tech Digest 9th Photovoltaic Scienece and

Engineering Conf. Miyazaki, 1996 (Intn. PVSEC-9, Tokyo, 1996)第149頁,等等)。 ’ 3)習知的濺錢沈積技術包括: 一種使用二硒化銦銅(CulnSe2)多晶體(p〇lyCrystai) 作為濺鍍靶(target)的方法;一種使用硒化氫(H2Se) / 氬氣(Ar)混合氣體作為濺鍍氣體的雙源濺鍍沈積方法 H.Enner 等人,Pr0c. 18thffiEEph〇t〇v〇ltaicSpecialistsC〇nf (1985) 16=658 ’等等);以及—種三源賴沈積法此 方法是在氬氣巾軸#、峰以及砸滅祕練進行藏 鍵(T.触池等人,JPn. J. Appl. Phys· 32 (1993) L1169-L1172,等等)。 29 201123493 4) 習知的混合濺鍍沈積法包括一種對金屬銅和銦採 用直流賤鍍而僅對硒採用氣相沈積的方法(T Nakada等 人 ’ Jpn. Appl. Phys· 34 (1995) 4715-4721,等等)。 5) 機械化學處理法是這樣一種方法:根據銅銦鎵石西 (CIGS )成分來選定材料,將材料投入到球磨機(baU ) 球狀谷器中並用機械能將其混合以得到粉狀銅銦鎵石西 (CIGS) ’然後藉由絲網印刷(screen printing)將粉狀銅 銦鎵硒(CIGS)塗敷在基板上,再進行退火(annealed) 以形成銅銦鎵硒(CIGS)薄膜(T. Wada等人,Phys. stat. s〇l. (a),第 203 卷(2006)第 2593 頁,等等)。 其他形成銅銦鎵硒(CIGS)薄膜的方法包括絲網印刷 法、近距離昇華法(close-spaced sublimation method)、金 屬有機物化學氣相沈積法(metal_organic chemical vap〇r deposition,MOCVD)以及喷霧法(Spraymeth〇d)。例如, 絲網印刷法或喷霧法可用來在基板上形成含有lb族元 素、Illb族元素和VI族元素的微粒薄膜,且藉由(例如) 熱解處理(pyrolysis treatment)(此熱解處理可在含有Vlb 族元素的大氣中進行)來形成具有想要的成分的晶體(Jp 9-74065 A,JP 9-74213 A,等等)。 接下來將描述本發明的第二實施例。 圖5是依照本發明之第二實施例的太陽電池模組的立 體透視示意圖。圖6是依照本發明之第二實施例的太陽電 池模組中所用的太陽電池子模組的俯視平面示意圖。圖7 疋依照本發明之第一實施例的太陽電池模組中所用的太陽 201123493Engineering Conf. Miyazaki, 1996 (Intn. PVSEC-9, Tokyo, 1996) p. 149, etc.). '3) Conventional splash deposition techniques include: a method using copper indium copper diselide (CulnSe2) as a sputtering target; one using hydrogen selenide (H2Se) / argon (Ar) Dual-source sputtering deposition method of mixed gas as sputtering gas H. Enner et al., Pr0c. 18thffiEEph〇t〇v〇ltaicSpecialistsC〇nf (1985) 16=658 'etc.); This method of deposition is carried out in the argon air shaft #, peak and quenching secrets (T. Touch Pool et al, JPn. J. Appl. Phys 32 (1993) L1169-L1172, etc.). 29 201123493 4) Conventional mixed sputter deposition methods include a method of vapor deposition of metallic copper and indium using direct current rhodium plating and only vapor deposition of selenium (T Nakada et al. 'Jpn. Appl. Phys 34 (1995) 4715 -4721, etc.). 5) Mechanochemical treatment is a method in which materials are selected according to the composition of copper indium gallium (CIGS), and the materials are put into a ball mill (baU) spherical trough and mixed with mechanical energy to obtain powdered copper indium. Gallium West (CIGS) 'The powdered copper indium gallium selenide (CIGS) is then coated on the substrate by screen printing and then annealed to form a copper indium gallium selenide (CIGS) film ( T. Wada et al., Phys. stat. s〇l. (a), vol. 203 (2006) p. 2593, etc.). Other methods of forming copper indium gallium selenide (CIGS) films include screen printing, close-spaced sublimation, metal_organic chemical vap〇r deposition (MOCVD), and sprays. Method (Spraymeth〇d). For example, a screen printing method or a spray method may be used to form a fine particle film containing a group lb element, a group Ilb element, and a group VI element on a substrate, and by, for example, pyrolysis treatment (this pyrolysis treatment) It can be carried out in an atmosphere containing a group of Vlb elements to form a crystal having a desired composition (Jp 9-74065 A, JP 9-74213 A, etc.). Next, a second embodiment of the present invention will be described. Figure 5 is a perspective view showing a perspective view of a solar cell module in accordance with a second embodiment of the present invention. Figure 6 is a top plan view showing a solar cell sub-module used in a solar cell module in accordance with a second embodiment of the present invention. Figure 7 is a sun used in a solar cell module according to a first embodiment of the present invention 201123493

J41Z/piI 電池子模_-部分佈線結構的橫剖面示意圖。 本實施例中與圖1至圖4所示之依照第一實施例之太 陽電池模組10相同的那些元件將以相同的元件符號來表 示,且此處將不再贅述。 與依照第一實施例之太陽電池模組10 (參見圖1)相 同的疋如圖5所示,依照本實施例之太陽電池模組1〇a 具有太陽電池子模組12a、位於太陽電池子模組12a頂部 的接合/填充層14、水氣阻障層16、上表面保護層18以及 位於太陽電池子模組12a底部的接合/填充層2〇和後罩板 22,根據真空層積技術藉由真空層積處理來將上述元件整 合在一起。第一引線56的尖端56a和第二引線60的尖端 6〇a從後罩板22的表面22a上伸出,連接至接線盒24(;未 繪不)中的各別端子,其中接線盒24用(例如)矽氧樹脂 來接合並密封在後罩板22的表面22a上。 與依照第一實施例之太陽電池子模組丨2 (參見圖2) 不同的是,如圖6所示,太陽電池模組10a中所用的太陽 電池子模組12a中的第二連接構件58配置在暴露區域52b 中,此暴露區域52b位於依照第一實施例而提供的暴露區 域52所在面的對面,而不在金屬基板3〇的表面3〇a的暴 露區域52a中(參見圖2)。也就是說,下表面3〇b上依 照第一實施例之暴露區域52a所在面之對面位置的絕緣層 34要被移除,以獲得第二連接構件58所在的暴露區^ 52b’金屬基板30介於暴露區域52a與暴露區域52b之間。 另一個區別在於,本實施例之第二連接構件58較短。除了 31 201123493 上述區別外’依照本實施例之太陽電池子模組12a與依照 第一實施例之太陽電池子模組12 (參見圖2)結構相似, 因此不必再贅述。 在本實施例中,第二連接構件58連接至靠絕緣套管 61來進行絕緣的第二引線60。 與依照第一實施例之太陽電池模組12相似的是,如 圖7所示’依照本實施例之太陽電池子模組的第一引 線56被折彎,且經繞行以沿著基板3〇之侧面3〇c、後罩 板22之表面22a而延伸到位於金屬基板3〇對面的太陽電 池子模組底部’在此處第一引線56的尖端56a彎曲成實質 上垂直於絕緣層34之表面34a。 如圖7所示配置在靠近金屬基板3〇之下表面3%這 —側的第二引線60穿過接合/填充層2〇和後罩板22,且 彎曲成實質上垂直於後罩板22之表面22a。 本貫施例中第二引線60彎曲的方式以及位於底部的 接合/填充層20和後罩板22中形成通孔的位置不同於第一 實施例之太陽電池模組1〇,但本實施例也可按第一實施例 之太陽電池模組10的方式來製造。 依照本貫施例,金屬基板30、絕緣層32和34以及光 電轉換元件50可與第一實施例所述之對應元件相同。 此外,除了第二連接構件58彎曲的位置和第二引線 60彎曲的方式不同於第一實施例外,本實施例可產生與第 一實施例相同的效果。 依照本實施例,由於第二連接構件58配置在金屬基 32 201123493 34122ριί 板30的下表面3〇b上’所以本實施例之第二引線6〇可比 第一實施例之第二引線6〇短。如此一來,可進一步減少材 ^費。另外,由於第二引線60只需彎成直立狀,而不必沿 著金屬基板30的側面3〇c而繞行,所以可進一步提高製造 過程的工作效率。 接下來將描述本發明之第三實施例。 圖8是依照本發明之第三實施例的太陽電池模組中所 用的一種太陽電池子模組的俯視平面示意圖。 圖9A是依照本發明之第三實施例的太陽電池模組中 所用的太陽電池子模組所適用的外部接線夹具的第一實例 的立體透視示意圖;圖9B是依照本發明之第三實施例的 太陽電池子模組所適用的外部接線夾具的第二實例的立體 透視不意圖;圖9C是依照本發明之第三實施例的太陽電 =子模組所適用的外部接線夾具的第三實例的立體透視示 思圖,以及圖9D是圖9C所示之外部接線夾具經連接之後 的第二實例的橫.剖面示意圖。 圖10A是當外部接線夹具之第一實例被連接至依照 本發明之第三實施例的太陽電池模組中所用的太陽電池 模組時外部接線夾具的俯視平面圖;圖1〇B是當外部接線 夹具之第二實例被連接至依照本發明之第三實施例的太陽 電池子模組時外部接線夾具的俯視平面圖;以及圖l〇c是 當外部接線夾具之第三實例被連接至依照本發明之第三實 施例的太陽電池子模組時外部接線夾具的俯視平面圖。 在本實施例中,與圖1至圖4所示的依照第一實施例 33 201123493 ^Ηΐζζρπ 之太陽電池模組10相同的元件是用相同的元件符號來表 示,此處將不再贅述。 如圖8所示,依照本實施例之太陽電池模組中所用的 太陽電池子模組12b與依照第一實施例之太陽電池子模組 12 (參見圖2)之間的區別在於,太陽電池子模組12b不 具有無絕緣層的暴露區域52和第二連接構件58,且在金 屬基板30上接近第一引線56與第一連接構件46之間的接 頭處提供—外部連接夹具7〇來代替f二連接構件58。至 於其他方面,太陽電池子模組12b可與依照第一實施例之 太陽電池子模組12 (參見圖2)使用同—種結構,因此, 此處將不再對共用結構進行贅述。 圖9A所示之外部連接爽具%可導電,其形狀呈(例 如)矩形固體,在一側切割出一個凹槽(recess)乃,使 其橫剖面呈實質上方括號形。 在外部連接纽70的減近太陽電池子模 :的上表面71上,外料接夾具7Q將透魏緣套管^ 來進行絕緣的第二引線60的尖端用(例如)螺 住。 心 外部連接夾具70的凹槽72内的相對兩面%均形成 有(例如)連續的三角形突起物(pr〇jecti〇ns)。 將金屬基板30的一端***凹槽72,外部連接夹且 就會被固定在金屬基板3G上。在此過財,形 74上的三角形突起物會破壞絕緣層%、%,從而在二 線60與金屬基板30之間建立導電連接。 一 34 201123493 ^ιζζριι 口要並不限於上述結構’也可具有粗糖表面, /、要匕們月匕破裱絕緣層32、34即可。 圖qr夕L部連接夹具70不限於圖9A所示之結構。例如,如 不’第二引線6〇可連接至塵接接頭(CrimPC_Ct) ’錢接S員78可用鉚釘8〇來固定在接近太陽電池子 模、、且12b頂部的上表面71 ±,而不必使用螺釘%。 另-種選擇是使用圖9C所示之外部連接夹具働, 此外部連接夹具7〇b的凹槽72具有平坦的相對面%,這 =同於圖9A所示之外部連接夾具7〇的對應結構。如圖9d 不外部連接夾具观是經由焊料Μ來連接至金屬基板 JU 0 在此情形下,要事先將金屬基板30之一部分的絕緣 :U、33移除,以便用外部連接夾具7〇b的凹槽72來夾 卜。如此一來,外部連接夾具70b可固定在金屬基板30 立焊料82附著在金屬基板3〇與凹槽72之底面72a以及 ^部連接夾具70b之表面73之間的邊界處,其中表面73 所在的表面經切割而形成凹槽以將外部連接夾具7〇b固定 在金屬基板30上。 立在外部連接夾具7〇b的較接近太陽電池子模組i2b頂 邻的上表面71上,外部連接夾具70b將透過絕緣套管61 來進行絕緣的苐二引線6〇的尖端用焊料84固定住。如此 來,第二引線60與金屬基板30之間就建立起了導電連 接。 利用圖9A至圖9C所示之任意外部連接夾具7〇、70a 35 201123493 34122pit 及70b,第二引線60都能連接至太陽電池子模組12b的頂 部,但結構並不限於此。類似於第二實施例的是,第二引 線60也可連接至太陽電池子模址i2b的底部。 外部連接夾具70配置在第一引線56與第一連接構件 46之間的接頭的附近,但結構並不限此。 例如,如圖10A所示,外部連接夾具7〇可配置在接 觸構件48 —端的附近。或者如圖1〇B所示,外部連接夾 具70可配置在金屬基板30周邊的一侧中央。 可選擇的是,如圖10C所示可配置兩個或兩個以上的 外部連接夾具70。例如,圖l〇c有三處位置配置了外部連 接夾具70:第一連接構件46附近;金屬基板3〇周邊的一 側中央;以及接觸構件48 —端的附近。在此情形下,這三 處位置的每個外部連接夾具70都配備有第二引線6〇。可 選擇的疋,二處位置當中有兩處位置配置有外部連接夾具 70。在此情形下,這兩處位置的每個外部連接夾具可配 備有第二引線60。因此,提供多個外部連接夹具有利於太 陽電池模組之間的佈線,且想要時可以實現外部連接夾具 的串聯或並聯。 與第一實施例相似的是,依照本實施例之太陽電池子 模組12b的第一引線56和第二引線60都是繞行到金屬基 板30的對面,且第一引線的尖端5以和第二引線的尖端 60a彎成實質上垂直於絕緣層34的表面34&amp;。 與第一實施例相似的是,太陽電池子模組12b、配置 在太陽電池子模組12b頂部的接合/填充層14、水氣阻障 36 201123493 層16和上表面保護層18以及配置在太陽電池子模組12b 底部的接合/填充層20和後罩板22是按照真空層積技術藉 由層積法來整合在一起,從而形成太陽電池模組。 本實施例也可使用與第一實施例所述相同的金屬基 板30、絕緣層32和34以及光電轉換元件50。 如上所述,本實施例可產生與第一實施例相同的效 果。此外,本實施例也可產生與第二實施例相同的效果, 因為第二引線60可連接至太陽電池子模組12b的底部。 此外’依照本實施例’第二引線60可利用外部連接 夾具70、70a來建立導電連接,而無需移除絕緣層32、34。 因此,工作效率可比第一實施例進一步提高。 此外,由於不必使用第二連接構件58,所以可省略安 裝第二連接構件58的步驟。 依照上述任何實施例,連接至第一連接構件46的第 一引線56都具有正極性,第二引線6〇都具有負極性,但 是極性分配並不限於此方式。第一引線5 6的極性和第二引 線60的極性可以反過來’在此情形下也可產生與上述實施 例相同的效果。 此外,雖然上述所有實施例都配置有接線盒24,但是 關於接線盒24的組態卻不限於此。該組態也可以如此:太 陽電池模組不配置有接線盒,且第一引線56和第二引線 60連接至除太陽電池模組外的其他位置所提供的接線盒。 本發明已基本揭露如上。雖然本發明之太陽電池模組 已以實施例詳細揭露如上,然其並非用以限定本發明,任 37 201123493 ^i/zpu 何所屬技術領域中具有通常知識者,在不脫離本發明 id: ’备:作些許之改良與潤飾,故本發明之保護 祀圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1疋依照本發明之第—實施例的太陽電池模立 體透視示意圖。 圖2是依照本發明之第一實施例的太陽電池模組中所 用的一種太陽電池子模組的俯視平面示意圖。 圖3是圖2所示之太陽電池模組的橫剖面示意圖。 圖4是依照本發明之第一實施例的太陽電池模組中所 用的太陽電池子模組的一部分佈線結構的立體透視示意 圖。 圖5是依照本發明之第二實施例的太陽電池模組的立 體透視示意圖。 圖6是依照本發明之第二實施例的太陽電池模組中所 用的一種太陽電池子模組的俯視平面示意圖。 圖7是依照本發明之第二實施例的太陽電池模組中所 用的太陽電池子模組的一部分佈線結構的橫剖面示意圖。 圖8是依照本發明之第三實施例的太陽電池模組中所 用的一種太陽電池子模組的俯視平面示意圖。 圖9A是依照本發明之第三實施例的太陽電池模組中 所用的太陽電池子模組所適用的外部接線夾具的第一實例 的立體透視示意圖。 38 201123493 圖9B是依照本發明之第三實施例的太陽電池子模組 適用的外部接線夾具的第二實例的立體透視示意圖。 圖9C是依照本發明之第三實施例的太陽電池子模組 、用的外部接線夾具的第三實例的立體透視示意圖。 圖91)是圖9C所示之外部接線夾具被固定後的第三實 例的橫剖面示意圖。 圖10A是當外部接線夾具之第一實例被連接至依照 λ明之第三實施例的太陽電池模組中所用的太陽電池子 、、且時此外部接線夾具的俯視平面圖。 圖1GB是當外部接線夾具之第二實例被連接至依照 X明之第三實施例的太陽電池子模組時此外部接線夾具 的俯視平面圖。 圖10C是當外部接線夾具之第三實例被連接至依照 X明之第二實施例的太陽電池子模㈣此外部接線夾具 的俯視平面圖。 【主要元件符號說明】 1〇、10a :太陽電池模組 12、12a、12b :太陽電池子模組 14、20 :接合/填充層 16 :水氣阻障層 18 :上表面保護層 22 :後罩板 22a、30a、30b、30c、32a、71、73 :表面 39J41Z/piI battery submode _- cross-sectional view of part of the wiring structure. The same components as those of the solar battery module 10 according to the first embodiment shown in Figs. 1 to 4 will be denoted by the same reference numerals and will not be described again. The same as the solar cell module 10 (see FIG. 1) according to the first embodiment, as shown in FIG. 5, the solar cell module 1A according to the present embodiment has a solar cell sub-module 12a and is located in the solar cell. The bonding/filling layer 14 on the top of the module 12a, the moisture barrier layer 16, the upper surface protective layer 18, and the bonding/filling layer 2〇 and the back cover 22 at the bottom of the solar cell sub-module 12a, according to vacuum lamination technology The above components are integrated by vacuum lamination processing. The tip end 56a of the first lead 56 and the tip end 6a of the second lead 60 project from the surface 22a of the back cover panel 22, and are connected to respective terminals in the junction box 24 (not shown), wherein the junction box 24 The surface 22a of the back cover panel 22 is joined and sealed with, for example, a silicone resin. Unlike the solar cell sub-module 丨 2 (see FIG. 2) according to the first embodiment, as shown in FIG. 6, the second connecting member 58 in the solar cell sub-module 12a used in the solar cell module 10a is shown in FIG. It is disposed in the exposed region 52b which is located opposite the face of the exposed region 52 provided in accordance with the first embodiment, and is not in the exposed region 52a of the surface 3〇a of the metal substrate 3〇 (see FIG. 2). That is, the insulating layer 34 on the lower surface 3〇b in accordance with the opposite position of the surface on which the exposed region 52a of the first embodiment is to be removed is removed to obtain the exposed region 52b' of the metal substrate 30 where the second connecting member 58 is located. Between the exposed area 52a and the exposed area 52b. Another difference is that the second connecting member 58 of the present embodiment is shorter. The solar cell sub-module 12a according to the present embodiment is similar in structure to the solar cell sub-module 12 (see Fig. 2) according to the first embodiment except for the above-mentioned difference of 31 201123493, and therefore need not be described again. In the present embodiment, the second connecting member 58 is connected to the second lead 60 which is insulated by the insulating sleeve 61. Similar to the solar cell module 12 according to the first embodiment, as shown in FIG. 7, the first lead 56 of the solar cell sub-module according to the present embodiment is bent and bypassed along the substrate 3. The side surface 3a of the crucible, the surface 22a of the rear cover panel 22 extends to the bottom of the solar cell sub-module opposite the metal substrate 3', where the tip end 56a of the first lead 56 is bent substantially perpendicular to the insulating layer 34. Surface 34a. The second lead 60 disposed on the side close to the lower surface of the metal substrate 3 as shown in FIG. 7 passes through the bonding/filling layer 2 and the back cover 22, and is bent substantially perpendicular to the back cover 22 Surface 22a. The manner in which the second lead 60 is bent in the present embodiment and the position in which the through hole is formed in the bonding/filling layer 20 and the back cover 22 at the bottom are different from those of the solar cell module 1 of the first embodiment, but this embodiment It can also be manufactured in the same manner as the solar cell module 10 of the first embodiment. According to the present embodiment, the metal substrate 30, the insulating layers 32 and 34, and the photoelectric conversion element 50 may be the same as the corresponding elements described in the first embodiment. Further, the present embodiment can produce the same effects as the first embodiment except that the position where the second connecting member 58 is bent and the manner in which the second lead 60 is bent are different from the first embodiment. According to the present embodiment, since the second connecting member 58 is disposed on the lower surface 3〇b of the metal substrate 32 201123493 34122ριί plate 30, the second lead 6〇 of the present embodiment can be shorter than the second lead 6 of the first embodiment. . In this way, the material cost can be further reduced. Further, since the second lead 60 only needs to be bent in an upright shape and does not have to be wound along the side surface 3〇c of the metal substrate 30, the work efficiency of the manufacturing process can be further improved. Next, a third embodiment of the present invention will be described. Figure 8 is a top plan view showing a solar cell sub-module used in a solar cell module in accordance with a third embodiment of the present invention. 9A is a perspective perspective view showing a first example of an external wiring jig to which a solar cell sub-module used in a solar cell module according to a third embodiment of the present invention is applied; and FIG. 9B is a third embodiment according to the present invention. The perspective view of the second example of the external wiring fixture to which the solar cell sub-module is applied is not intended; FIG. 9C is a third example of the external wiring fixture to which the solar power sub-module is applied in accordance with the third embodiment of the present invention. A perspective view of the perspective view, and FIG. 9D is a transverse cross-sectional view of the second example after the external wiring fixture shown in FIG. 9C is connected. 10A is a top plan view of the external wiring jig when the first example of the external wiring jig is connected to the solar cell module used in the solar cell module according to the third embodiment of the present invention; FIG. 1B is an external wiring A top plan view of the external wiring fixture when the second example of the fixture is connected to the solar cell sub-module according to the third embodiment of the present invention; and FIG. 3C is a third example when the external wiring fixture is connected to the present invention A top plan view of the external wiring fixture of the solar cell sub-module of the third embodiment. In the present embodiment, the same components as those of the solar cell module 10 according to the first embodiment 33 201123493 ^ Ηΐζζ π shown in Figs. 1 to 4 are denoted by the same reference numerals, and will not be described again. As shown in FIG. 8, the difference between the solar cell sub-module 12b used in the solar cell module according to the present embodiment and the solar cell sub-module 12 (see FIG. 2) according to the first embodiment is that the solar cell The sub-module 12b does not have the exposed region 52 and the second connecting member 58 without the insulating layer, and is provided on the metal substrate 30 near the joint between the first lead 56 and the first connecting member 46 - the external connecting jig 7 Instead of the f two connecting members 58. In other respects, the solar cell sub-module 12b can use the same structure as the solar cell sub-module 12 (see FIG. 2) according to the first embodiment, and therefore, the common structure will not be described herein. The external connection squeegee shown in Fig. 9A is electrically conductive and has a shape such as a rectangular solid, and a recess is cut on one side so that its cross section is substantially square bracket-shaped. On the upper surface 71 of the external connection 70 which is close to the solar cell sub-module, the outer material connection jig 7Q is screwed, for example, to the tip end of the second lead 60 which is insulated by the rim sleeve. The opposite sides of the recess 72 in the outer connecting jig 70 are formed with, for example, continuous triangular projections. One end of the metal substrate 30 is inserted into the recess 72, and the external connection clip is fixed to the metal substrate 3G. In this case, the triangular protrusions on the shape 74 destroy the % and % of the insulating layer, thereby establishing an electrically conductive connection between the second line 60 and the metal substrate 30. A 34 201123493 ^ιζζριι mouth is not limited to the above structure 'may also have a rough sugar surface, /, we want to break through the insulating layers 32, 34. The figure qr L-section connection jig 70 is not limited to the structure shown in FIG. 9A. For example, if the 'second lead 6 〇 can be connected to the dust joint (CrimPC_Ct) 'money pick S 78 can be fixed with rivets 8 在 near the solar cell sub-mode, and the upper surface of the top of the 12b 71 ± without Use screw %. Alternatively, the external connection jig 图 shown in Fig. 9C is used, and the groove 72 of the external connection jig 7〇b has a flat opposite face %, which corresponds to the external connection jig 7〇 shown in Fig. 9A. structure. As shown in Fig. 9d, the external connection jig is connected to the metal substrate JU 0 via the solder crucible. In this case, the insulation of a portion of the metal substrate 30: U, 33 is removed in advance so as to be externally connected to the jig 7b The groove 72 is clipped. In this way, the external connection jig 70b can be fixed on the metal substrate 30. The vertical solder 82 is attached to the boundary between the metal substrate 3 and the bottom surface 72a of the recess 72 and the surface 73 of the connecting jig 70b, wherein the surface 73 is located. The surface is cut to form a groove to fix the external connection jig 7b to the metal substrate 30. Standing on the upper surface 71 of the external connection jig 7〇b which is adjacent to the solar cell sub-module i2b, the external connection jig 70b is fixed with the solder 84 by the tip of the second lead 6〇 which is insulated through the insulating sleeve 61. live. Thus, an electrically conductive connection is established between the second lead 60 and the metal substrate 30. The second lead 60 can be connected to the top of the solar cell sub-module 12b by any of the external connection jigs 7A, 70a 35 201123493 34122pit and 70b shown in Figs. 9A to 9C, but the configuration is not limited thereto. Similar to the second embodiment, the second lead 60 can also be connected to the bottom of the solar cell sub-module i2b. The external connection jig 70 is disposed in the vicinity of the joint between the first lead 56 and the first connecting member 46, but the configuration is not limited thereto. For example, as shown in Fig. 10A, the external connection jig 7 can be disposed in the vicinity of the end of the contact member 48. Alternatively, as shown in Fig. 1B, the external connection clip 70 may be disposed at the center of one side of the periphery of the metal substrate 30. Alternatively, two or more external connection jigs 70 may be disposed as shown in Fig. 10C. For example, Fig. 10c has three positions in which the external connection jig 70 is disposed: the vicinity of the first connecting member 46; the center of one side of the periphery of the metal substrate 3; and the vicinity of the end of the contact member 48. In this case, each of the external connection jigs 70 at these three positions is equipped with a second lead 6?. Optional 疋, two of the two locations are equipped with an external connection fixture 70. In this case, each of the external connection jigs at the two locations may be equipped with a second lead 60. Therefore, the provision of a plurality of external connection jigs facilitates the wiring between the solar cell modules, and the series or parallel connection of the external connection jigs can be realized as desired. Similar to the first embodiment, the first lead 56 and the second lead 60 of the solar cell sub-module 12b according to the present embodiment are both opposite to the metal substrate 30, and the tip 5 of the first lead is The tip end 60a of the second lead is bent substantially perpendicular to the surface 34&amp; of the insulating layer 34. Similar to the first embodiment, the solar cell sub-module 12b, the bonding/filling layer 14 disposed on the top of the solar cell sub-module 12b, the water vapor barrier 36 201123493 layer 16 and the upper surface protective layer 18, and disposed in the sun The bonding/filling layer 20 and the back cover 22 at the bottom of the battery sub-module 12b are integrated by a lamination method according to a vacuum lamination technique to form a solar cell module. The present embodiment can also use the same metal substrate 30, insulating layers 32 and 34, and photoelectric conversion element 50 as described in the first embodiment. As described above, the present embodiment can produce the same effects as the first embodiment. Further, the present embodiment can also produce the same effect as the second embodiment because the second lead 60 can be connected to the bottom of the solar cell sub-module 12b. Further, the second lead 60 according to the present embodiment can utilize the external connection jigs 70, 70a to establish an electrically conductive connection without removing the insulating layers 32, 34. Therefore, the work efficiency can be further improved than the first embodiment. Further, since the second connecting member 58 does not have to be used, the step of mounting the second connecting member 58 can be omitted. According to any of the above embodiments, the first lead 56 connected to the first connecting member 46 has a positive polarity, and the second lead 6 〇 has a negative polarity, but the polarity distribution is not limited to this. The polarity of the first lead 56 and the polarity of the second lead 60 may be reversed. In this case as well, the same effect as the above embodiment can be produced. Further, although all of the above embodiments are provided with the junction box 24, the configuration regarding the junction box 24 is not limited thereto. This configuration can also be such that the solar cell module is not provided with a junction box and the first lead 56 and the second lead 60 are connected to a junction box provided at a location other than the solar cell module. The present invention has been substantially disclosed above. Although the solar cell module of the present invention has been disclosed in detail in the above embodiments, it is not intended to limit the present invention, and any one of the technical fields in the technical field of the present invention does not deviate from the present invention: Preparation: For some improvements and refinements, the protection scope of the present invention shall be determined by the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a perspective view of a solar battery module according to a first embodiment of the present invention. Fig. 2 is a top plan view showing a solar cell sub-module used in a solar cell module according to a first embodiment of the present invention. 3 is a schematic cross-sectional view of the solar cell module shown in FIG. 2. Fig. 4 is a perspective perspective view showing a part of the wiring structure of the solar battery sub-module used in the solar battery module according to the first embodiment of the present invention. Figure 5 is a perspective view showing a perspective view of a solar cell module in accordance with a second embodiment of the present invention. Figure 6 is a top plan view showing a solar cell sub-module used in a solar cell module in accordance with a second embodiment of the present invention. Figure 7 is a cross-sectional view showing a portion of a wiring structure of a solar cell sub-module used in a solar cell module according to a second embodiment of the present invention. Figure 8 is a top plan view showing a solar cell sub-module used in a solar cell module in accordance with a third embodiment of the present invention. Fig. 9A is a perspective perspective view showing a first example of an external wiring jig to which a solar battery sub-module used in a solar battery module according to a third embodiment of the present invention is applied. 38 201123493 Fig. 9B is a perspective perspective view showing a second example of an external wiring jig suitable for a solar cell sub-module according to a third embodiment of the present invention. Fig. 9C is a perspective perspective view showing a third example of the external wiring jig for the solar cell sub-module according to the third embodiment of the present invention. Fig. 91) is a schematic cross-sectional view showing a third example of the external wiring jig shown in Fig. 9C being fixed. Fig. 10A is a top plan view of the external wiring jig when the first example of the external wiring jig is connected to the solar cell used in the solar cell module according to the third embodiment of λ. Fig. 1GB is a top plan view of the external wiring jig when the second example of the external wiring jig is connected to the solar cell sub-module according to the third embodiment of the invention. Fig. 10C is a top plan view of the external wiring jig when the third example of the external wiring jig is connected to the solar cell sub-module (4) according to the second embodiment of the invention. [Main component symbol description] 1〇, 10a: solar battery module 12, 12a, 12b: solar battery sub-module 14, 20: bonding/filling layer 16: water gas barrier layer 18: upper surface protective layer 22: rear Cover plates 22a, 30a, 30b, 30c, 32a, 71, 73: surface 39

201123493 ^HXZZpiI 24 :接線盒 30 :金屬基板 32、34 :絕緣層 36 :太陽電池單元 38、 38a、38b :背電極 39、 43、45 :凹槽 40 :光電轉換層 42 :緩衝層 44 :透明電極 46、58 :連接構件 48 :電接觸構件 50 :光電轉換元件 52、52a、52b :區域 54、82、84 :焊料 56、 60 :引線 56a、60a :尖端 57、 61 :絕緣套管 70、70a、70b ··外部連接夾具 72 :凹槽 72a :底面 74、74a :相對面 76 :螺釘 78 :壓接接頭 80 :鉚釘201123493 ^HXZZpiI 24 : Junction box 30 : Metal substrate 32 , 34 : Insulation layer 36 : Solar cell unit 38 , 38a , 38b : Back electrode 39 , 43 , 45 : Groove 40 : Photoelectric conversion layer 42 : Buffer layer 44 : Transparent Electrodes 46, 58: connection member 48: electrical contact member 50: photoelectric conversion elements 52, 52a, 52b: regions 54, 82, 84: solder 56, 60: leads 56a, 60a: tips 57, 61: insulating sleeve 70, 70a, 70b · External connection jig 72: Groove 72a: Bottom surface 74, 74a: Opposite surface 76: Screw 78: Crimp joint 80: Rivet

Claims (1)

201123493 七、申請專利範圍: ι 一種太陽電池模組,包括: 太陽電池子模組,具有金屬基板、絕緣層以及光電轉 換元件、’、其中所述絕緣層形成在所述金屬基板的至少一 側,所述光電轉換元件形成在所述絕緣層上且彼此連接; 的頂及填減,分顧積在所述太陽電池子模組 填充層:=層’每個所述保護層層積在每個所述接合及 雷極線,連接至所述太陽電池子模_正電極與負 中—㈣極,用來將所述正電極與所述負電極的 所述其中—個電極的輸出引到兩個所述保護層之外. 所述^電_模_ “正電極與 笛11 電極連接至所述金屬基板;以及 述金屬’連接至所述金屬基板,透過充當導體的所 到兩個所述保護層之外, 叛出引 产位ί中第二引線連接至所述金屬基板的一處或多 :板連接的所:由所述電接觸構件而與所述金屬 i::請專利範圍第1項所述之太陽電池模組, 在所述其中子模組更包括第一連接構件,配置 其中所述第-引線藉由所述第一連接構件而連接至 201123493 所述=電池子模组的所述其中一個電極,以及 述第一連料脑㈣金餘^接近所 組,.如申。月專利範圍第i項或第2項所述之太陽電池模 在所^^太_池子模組更包括第二連接構件,配置 在所边金屬基板上,以及 所、第二引線藉由所述第二連接構件而連接至 所述金屬基板。 陽電項至第3項中任—項所述之太 接至接二述第—引線與第二引線的各別尖端連 接線i ’所述接線盒配置在形成於所述太陽電池子模 、、且底部的所述保護層之外。 、 糾^如申請專利範圍第4項所述之太陽電池模組,其中 一引線與所述第二引線的各別尖端相對於所述太陽 電池子模組底部的所述保護層呈實質上垂直地伸 接至所述接線盒。 遷 6.如申請專利範圍第!項至第5項中任—項所述之太 =電池模組’其中所述第二連接構件是—種條形導電構 件’其配置在所述金屬板上或用以夾持所述金屬基 部連接夾具上。 、7.如申請專利範圍第6項所述之太陽電池模組,其中 所述第二5丨線與所述外部連接夹具是用螺釘、屡 ^ 焊料來進行電性連接。 2 42 201123493 m/-r 8 或第7項所述之太陽電池模 組,其中所献孩驗私置麵述金屬基板的至少一 處位置。 9·如申請專利範圍第1項至第&quot;中任—項所述之太 陽電池模組’ 、其中所述金屬基板疋用㉟板、不銹鋼板或鋼板來形 成’以及 其::述絕緣f是用叙、石夕、鈦奴鐵之-來製成的 氧化物賴、氮化㈣膜錢氧化物薄膜。 1〇:如申請專利範圍第1項至第9項中任-項所述之 太陽電池模組’其巾所述光電轉換元件包括背電極、光電 轉換層以及透明電極。 11.,如中#專利範圍帛1G項所述之太陽電池模組,其 中所述光電轉換層是用具有至少—種黃銅礦結構的化合物 半導體來形成。 12. 如申請專利範圍第1()項所述之太陽電池模組,其 中所述光電轉換層是用至少—種含有Ib族元素 、Illb族元 素以及VIb族元素的化合物半導體來形成。 13. 如申請專利範圍第12項所述之太陽電池模組,其 中所述光電轉換層是用至少一種包括下列元素的化合物半 導體來形成:選自銅和銀所組成之群_至少—種Ib族元 素;選自叙、鎵和銦所組成之群組的至少一種Illb族元素; 以及選自硫、碼和碲所組成之群組的至少一種VIb族元素。 43201123493 VII. Patent application scope: ι A solar cell module comprising: a solar cell sub-module having a metal substrate, an insulating layer and a photoelectric conversion element, ' wherein the insulating layer is formed on at least one side of the metal substrate The photoelectric conversion elements are formed on the insulating layer and connected to each other; the top and the filling are divided into the filling layers of the solar cell sub-module: = layer 'each of the protective layers is laminated The bonding and lightning lines are connected to the solar cell submode_positive electrode and the negative middle-(four) pole for directing the output of the positive electrode and the negative electrode of the one of the electrodes Outside of the two protective layers. The positive electrode and the flute 11 electrode are connected to the metal substrate; and the metal is connected to the metal substrate through the two places serving as conductors In addition to the protective layer, the second lead is connected to one or more of the metal substrates in the defect lead-in position: the board is connected: by the electrical contact member and the metal i:: Solar cell module according to item 1 The sub-module further includes a first connecting member, wherein the first lead is connected to the one of the electrodes of the battery sub-module of 201123493 by the first connecting member, and The first continuum brain (4) Jin Yu ^ is close to the group, such as Shen. The solar cell module described in item i or item 2 of the patent scope includes a second connecting member, and the second module is configured. And the second lead is connected to the metal substrate on the side of the metal substrate, and the second lead is connected to the metal substrate by the second connecting member. The junction box of the lead wire and the second lead wire i' is disposed outside the protective layer formed on the bottom of the solar cell sub-module, and is corrected as in the fourth application of the patent scope. In the solar cell module, a respective lead of the lead and the second lead extend substantially perpendicularly to the junction box with respect to the protective layer at the bottom of the solar cell sub-module. If you apply for the patent scope from item! to item 5 - the battery as described in the item = wherein the second connecting member is a strip-shaped conductive member disposed on the metal plate or used to clamp the metal base connecting jig. The solar cell module according to claim 6, wherein the second 5 turns and the external connection jig are electrically connected by screws and solders. 2 42 201123493 m/-r 8 Or the solar cell module according to item 7, wherein the child is inspected at least one position of the metal substrate. 9. The sun as claimed in claim 1 to item &quot; a battery module 'in which the metal substrate is formed by using 35 plates, stainless steel plates or steel plates' and its:: the insulation f is an oxide, nitrogen, and nitrogen produced by using Syrian, Shixi, and Titanium (4) Membrane oxide film. The solar cell module according to any one of the items of the present invention, wherein the photoelectric conversion element comprises a back electrode, a photoelectric conversion layer, and a transparent electrode. 11. The solar cell module of claim 1, wherein the photoelectric conversion layer is formed of a compound semiconductor having at least one chalcopyrite structure. 12. The solar cell module according to claim 1, wherein the photoelectric conversion layer is formed of at least one compound semiconductor containing a group Ib element, a group Ilb element, and a group VIb element. 13. The solar cell module of claim 12, wherein the photoelectric conversion layer is formed using at least one compound semiconductor comprising the following elements: a group selected from the group consisting of copper and silver _ at least - species Ib a group element; at least one group of Ilb elements selected from the group consisting of argon, gallium, and indium; and at least one group VIb element selected from the group consisting of sulfur, a code, and yttrium. 43
TW99133364A 2009-09-30 2010-09-30 Solar cell module TW201123493A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226431A JP2011077252A (en) 2009-09-30 2009-09-30 Solar cell module

Publications (1)

Publication Number Publication Date
TW201123493A true TW201123493A (en) 2011-07-01

Family

ID=43825839

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99133364A TW201123493A (en) 2009-09-30 2010-09-30 Solar cell module

Country Status (3)

Country Link
JP (1) JP2011077252A (en)
TW (1) TW201123493A (en)
WO (1) WO2011039991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903770A (en) * 2011-07-29 2013-01-30 神锯有限公司 Thin Film Solar Cell Module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449191B1 (en) 2012-12-21 2014-10-16 주식회사 포스코 Method for manufacturing thin film sollar cell substrate
JP2022074165A (en) * 2019-01-30 2022-05-18 出光興産株式会社 Solar battery module
CN110611237B (en) * 2019-09-30 2021-11-19 英利能源(中国)有限公司 Connecting method and connecting structure of junction box wiring terminal and bus bar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134081A (en) * 1984-12-05 1986-06-21 Matsushita Electric Ind Co Ltd Photovoltaic device
JPH0693517B2 (en) * 1988-07-13 1994-11-16 太陽誘電株式会社 Amorphous semiconductor solar cell
JPH03100366U (en) * 1990-01-29 1991-10-21
JPH1093119A (en) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd Method of manufacturing substrate for photovoltaic device and photovoltaic device
JP4974986B2 (en) * 2007-09-28 2012-07-11 富士フイルム株式会社 Solar cell substrate and solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903770A (en) * 2011-07-29 2013-01-30 神锯有限公司 Thin Film Solar Cell Module
TWI488318B (en) * 2011-07-29 2015-06-11 Thin film solar cell module

Also Published As

Publication number Publication date
JP2011077252A (en) 2011-04-14
WO2011039991A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5480782B2 (en) Solar cell and method for manufacturing solar cell
JP5159725B2 (en) Solar cell string and solar cell module using the same
JP4700130B1 (en) Insulating metal substrate and semiconductor device
JP4629153B1 (en) Solar cell and method for manufacturing solar cell
JP2010041012A (en) Solar cell module
JP5739076B2 (en) Solar cell module and manufacturing method thereof
TW200952199A (en) Solar module and system composed of a solar cell with a novel rear surface structure
JP2014531775A (en) Photovoltaic cell interconnection
CN111656538A (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
WO2011039951A1 (en) Solar cell module
TW201123493A (en) Solar cell module
CN103681894A (en) Solar cell module and manufacturing method thereof
JP2014225666A (en) Solar cell
WO2011039933A1 (en) Photoelectric converter
WO2011129083A1 (en) Solar cell module and method for manufacturing same
JP5498221B2 (en) Semiconductor device and solar cell using the same
JP2013532907A (en) Photovoltaic power generation apparatus and manufacturing method thereof
CN208655663U (en) Solar cell module
WO2011135856A1 (en) Solar cell module
JP2015503241A (en) Method for forming a photovoltaic cell
JP2015046470A (en) Photoelectric conversion module
JP2011077246A (en) Clad substrate, photoelectric conversion device, thin-film solar cell module, method of manufacturing the clad substrate, and method of manufacturing the thin-film solar cell module
JP2013098190A (en) Photoelectric conversion device
JP2012234936A (en) Photoelectric conversion module and method for manufacturing the same
JP2013077692A (en) Photoelectric conversion apparatus