TW201121877A - Carbon nanotube composite structure - Google Patents

Carbon nanotube composite structure Download PDF

Info

Publication number
TW201121877A
TW201121877A TW98143542A TW98143542A TW201121877A TW 201121877 A TW201121877 A TW 201121877A TW 98143542 A TW98143542 A TW 98143542A TW 98143542 A TW98143542 A TW 98143542A TW 201121877 A TW201121877 A TW 201121877A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
carbon nanotubes
composite structure
nanotube composite
Prior art date
Application number
TW98143542A
Other languages
Chinese (zh)
Other versions
TWI424954B (en
Inventor
Kai Liu
Rui-Feng Zhou
ying-hui Sun
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98143542A priority Critical patent/TWI424954B/en
Publication of TW201121877A publication Critical patent/TW201121877A/en
Application granted granted Critical
Publication of TWI424954B publication Critical patent/TWI424954B/en

Links

Abstract

A carbon nanotube composite structure includes a carbon nanotube structure, and a reinforcement. The carbon nanotube structure is a free-standing structure consisting of a plurality of carbon nanotubes. The reinforcement is placed on surfaces of the carbon nanotubes. The adjacent carbon nanotubes combine closely by the reinforcement. The carbon nanotube composite material made by the above method has an excellent tensile strength and Young's modulue.

Description

201121877 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種複合結構,尤其涉及一種奈米碳管複合 結構。 【先前技術】 [0002] 自九十年代初以來,以奈米碳管為代表之奈米材料以其 獨特的結構和性質引起了人們極大之關注。近幾年來, 隨著奈米碳管及奈米材料研究的不斷深入,其廣闊的應 用前景不斷顯現出來。例如,由於奈米碳管所具有獨特 的電磁學、光學、力學、化學等性能,大量有關其於場 發射電子源、感測器、新型光學材料、軟鐵磁材料等領 域之應用研究不斷被報導。 [0003] 由於單個奈米碳管為中空結構且具有較大之長徑比,具 有許多優異的特性,惟,先前之奈米碳管通常為粉末狀 ,不利於奈米碳管之廣泛應用。因此,人們一直致力於 研究如何得到有利於奈米碳管廣泛應用之奈米碳管宏觀 Q 結構。 [0004] 范守善等人在Nature, 2002,vol. 419,p801, Spinning Continuous CNT Yarns— 文中揭露了從一 超順排奈米碳管陣列中可以拉出一連續之純奈米碳管結 構,這種奈米碳管結構包括複數個於凡德瓦爾力作用下 首尾相接的奈米碳管片段,每個奈米碳管片段具有大致 相等的長度,且每個奈米碳管片段由複數個相互平行的 奈米碳管束構成。惟,該奈米碳管結構之機械強度及韌 性等都比較差,例如,拉出一根200微米寬的奈米碳管結 098143542 表單編號A0101 第3頁/共28頁 0982074595-0 201121877 構只需要0· 1毫牛頓之力,而用0. 5毫牛頓之力就可以將 200微米寬的奈米碳管結構拉斷了。 【發明内容】 [0005] 有鑒於此,確有必要提供一種具有良好的拉伸強度及楊 氏模量之奈米碳管複合結構。 [0006] —種奈米碳管複合結構,其包括:一奈米碳管結構,該 奈米碳管結構為複數個奈米碳管組成之自支撐結構,其 中,進一步包括一增強體,該增強體設置於所述複數個 奈米碳管之表面,且該奈米碳管結構相鄰的奈米碳管之 間藉由該增強體緊密結合。 [0007] 與先前技術相比較,本發明提供之奈米碳管複合結構中 由於增強體設置於所述複數個奈米碳管之表面,該增強 體具有良好的拉伸強度及楊氏模量,且相鄰的奈米碳管 之間藉由該增強體相互作用而緊密連接在一起,因此, 由所述增強體及奈米碳管組成之奈米碳管複合結構具有 良好的拉伸強度及楊氏模量。 【實施方式】 [0008] 下面將結合附圖及具體實施例,對本發明提供之奈米碳 管複合結構作進一步之詳細說明。 [0009] 請參閱圖1至圖2,本發明第一實施例提供一奈米碳管複 合結構10。該奈米碳管複合結構10為一奈米碳管複合膜 ,其包括一奈米碳管結構110,該奈米碳管結構110包括 複數個奈米碳管112,以及形成於該複數個奈米碳管112 之表面的增強體120 ;其中,所述複數個奈米碳管11 2之 098143542 表單編號A0101 第4頁/共28頁 0982074595-0 201121877 間藉由該增強體120相互緊密結合在一起。 [0010] ο ❹ 所述奈米碳管結構110包括複數個奈米碳管112,該複數 個奈米碳管11 2藉由凡德瓦爾力相互連接,相互吸引,緊 密結合,使得該奈米碳管結構110為一自支撐結構。其中 ,該複數個奈米碳管112均勻分佈於所述奈米碳管結構 110中。所謂“自支撐結構”即該奈米碳管結構110無需 藉由一支撐體支撐,也能保持自身特定之形狀。所述奈 米碳管110中相鄰的奈米碳管112之間具有一定間隙,從 而在該奈米碳管結構110中形成複數個微隙,微隙之大小 約小於1微米。所述奈米碳管結構110包括至少一個奈米 碳管膜。當所述奈米碳管結構110包括複數個奈米碳管膜 時,該複數個奈米碳管膜可以共面設置或層疊設置。所 述奈米碳管結構110也可以包括一個奈米碳管線,且該奈 米碳管線折疊或纏繞成一層狀結構。所述奈米碳管結構 110也可以包括複數個奈米碳管線,且該複數個奈米碳管 線可以平行設置、交叉設置或編織成一層狀結構,也可 以平行設置組成一束狀結構,還可以相互扭轉組成一絞 線結構。所述奈米碳管結構110還可以包括奈米碳管膜及 奈米碳管線,且可以將奈米碳管線設置於奈米碳管膜之 至少一個表面。由於該奈米碳管結構11 0中之奈米碳管具 有很好的柔韌性,使得該奈米碳管結構110也具有很好的 柔韌性,可以彎曲折疊成任意形狀而不易破裂。 所述奈米碳管膜包括均勻分佈的複數個奈米碳管,該複 數個奈米碳管之間藉由凡德瓦爾力緊密結合。該奈米碳 管膜中之奈米碳管為無序或有序排列。所謂無序係指奈 098143542 表單編號Α0101 第5頁/共28頁 0982074595-0 [0011] 201121877 米碳管之排列方向無規則。所謂有序係指奈米碳管之排 列方向有規則。具體地,當奈米碳管結構110包括無序排 列的奈米碳管時,奈米碳管相互纏繞或者各向同性排列 :當奈米碳管結構110包括有序排列的奈米碳管時,奈米 碳管沿一個方向或者複數個方向擇優取向排列。所謂“ 擇優取向”係指奈米碳管結構中的奈米碳管於一個或幾 個方向上具有較大的取向幾率;即,該奈米碳管結構中 的奈米碳管之軸向基本沿同一方向或幾個方向延伸。所 述奈米碳管膜包括奈米碳管拉膜、奈米碳管碾壓膜或奈 米碳管絮化膜。 [0012] 所述奈米碳管結構110中之奈米碳管包括單壁奈米碳管、 雙壁奈米碳管及多壁奈米破管中之一種或多種。所述單 壁奈米碳管之直徑為0. 5奈米-5 0奈米,雙壁奈米碳管之 直徑為1.0奈米~50奈米,多壁奈米碳管之直徑為1.5奈 米〜50奈米。所述奈米碳管之長度大於50微米。優選地, 該奈米碳管之長度優選為200微米〜900微米。 [0013] 請參閱圖3,所述奈米碳管拉膜包括複數個奈米碳管,該 複數個奈米碳管基本沿同一方向擇優取向排列,且基本 平行於該奈米碳管拉膜之表面。具體地,所述奈米碳管 拉膜包括複數個藉由凡德瓦爾力首尾相連且基本沿同一 方向擇優取向排列之奈米碳管;該複數個奈米碳管之軸 向基本沿同一方向延伸。所述奈米碳管拉膜可藉由從奈 米碳管陣列直接拉取獲得。可以理解,藉由將複數個奈 米碳管拉膜平行且無間隙共面鋪設或/和層疊鋪設,可以 製備不同面積與厚度之奈米碳管結構。當奈米碳管結構 098143542 表單編號A0101 第6頁/共28頁 0982074595-0 201121877 包括複數個層疊設置的奈米碳管拉料,相鄰的 管拉膜中的奈米碳管之排列方向形成―夾角a,Q。各反 。所述^碳管拉敎結構及㈣財法請;^ 簡梅16日公開的⑽Q833862财華 開 利申請公佈本。 间寻 於 [0014] Ο Ο 所述奈米碳管㈣膜包括均勻分㈣複數個奈米碳管。 所述複數個奈米碳管無序,沿同_方㈣不同方向㈣ 取向排列。所述奈来碳管礙壓膜中之奈米碳管相互部分 交疊,並藉由凡德瓦爾力相互吸引,緊密結合。所述二 米碳管礙壓膜可藉由礙奈米碳管陣列獲得。該奈: 碳管陣列形成於-基底表面,所製備之奈米碳Μ壓膜 中的奈米碳管與該奈米碳管陣列之基_表面成—失角 召,其中,召大於等於0度且小於等於15度(〇。$召 )。優選地,所述奈米碳管碾壓膜中之奈米碳管平行於 所述奈米碳管碾壓膜之表面。依據碾壓之方式不同,誃 奈米碳管碾壓膜中之奈米碳管具有不同的排列形式。由 於奈求碳管碾愿膜中的奈米碳管之間藉由凡德瓦爾力相 互吸引,緊密結合,使奈米碳管碾壓膜為一自支撐的結 構,可無需基底支撐’自支撐存在。所謂自支撐結構即 所述奈米碳管碾壓膜中的複數個奈米碳管間藉由凡德瓦 爾力相互吸引,從而使奈米碳管碾壓膜具有特定的形狀 。所述奈米碳管碾壓膜及其製備方法請參見於2〇〇9年1月 1日公開的第200900348號中華民國專利申請公佈本。 所述奈米碳管絮化膜包括相互纏繞的奈米碳管,該奈米 碳管長度可大於10釐米。所述奈米碳管之間藉由凡德瓦 098143542 表單編號Α0101 第7頁/共28頁 0982074595-0 [0015] 201121877 爾力相互吸引、纏繞,形成網絡狀結構。所述奈米碳管 絮化膜各向同性。所述奈米碳管絮化膜中之奈米碳管為 均勻分佈,無規則排列,形成大量之微孔結構。可以理 解,所述奈米碳管絮化膜之長度、寬度和厚度不限,可 根據實際需要選擇。所述奈米碳管絮化膜及其製備方法 請參見於2008年11月16日公開的第200844041號中華民 國專利申請公佈本。 [0016] 所述奈米碳管線可為一非扭轉之奈米碳管線或扭轉之奈 米碳管線。所述非扭轉之奈米碳管線可包括複數個奈米 碳管,該複數個奈米碳管之軸向沿基本平行於該非扭轉 之奈米碳管線軸的方向延伸。非扭轉之奈米碳管線可藉 由將奈米碳管拉膜經有機溶劑處理得到。具體地,該奈 米碳管拉膜包括複數個奈米碳管片段,該複數個奈米碳 管片段藉由凡德瓦爾力首尾相連,每一奈米碳管片段包 括複數個相互平行並藉由凡德瓦爾力緊密結合之奈米碳 管。該奈米碳管片段具有任意的長度、厚度、均勻性及 形狀。該非扭轉之奈米碳管線長度不限,直徑為0. 5奈米 -1毫米。具體地,可將揮發性有機溶劑浸潤所述奈米碳 管拉膜之整個表面,在揮發性有機溶劑揮發時產生的表 面張力之作用下,奈米碳管拉膜中之相互平行的複數個 奈米碳管藉由凡德瓦爾力緊密結合,從而使奈米碳管拉 膜收縮為一非扭轉之奈米碳管線。該揮發性有機溶劑為 乙醇、甲醇、丙酮、二氣乙烷或氣仿,本實施例中採用 乙醇。藉由揮發性有機溶劑處理的非扭轉奈米碳管線與 未經揮發性有機溶劑處理的奈米碳管膜相比,比表面積 098143542 表單編號A0101 第δ頁/共28頁 0982074595-0 201121877 [0017] Ο [0018] [0019] 〇 [0020] 減小,粘性降低。 狀奈米碳管線包括複數個奈μ管,該複數個 '丁…奴官之轴向繞該扭轉之奈米碳管線軸向螺旋延伸。 =米碳管線可採用—機械力將所述奈米碳管拉膜兩端 扭轉獲得。進—步地,可採用—揮發性有機 〜,亥扭轉之奈米碳管線。在揮發性有機溶劑揮發 時產生的表面張力之仙下,處理後的扭轉之奈米碳管 線中相鄰的奈切管藉由凡德瓦爾力緊密結合,使扭轉 之不米炭g線的比表面積減小,密度及強度增大。 所述不米&管線及其製備方法請參⑦2GG8年11月21曰公 。的’公告號為1303239的中華民國專利公告以及於 2009^7^219^^^, , 利公告本。 本實施例中’所述奈米碳管結構UG為2{)層層疊設置的奈 米炭g拉膜,其中,相鄰兩層奈米碳管拉臈中的擇優取 向排列的奈米礙管112之間形成的交又角度為9〇。,所述 奈米碳管112係直徑為h5奈米_5〇奈米的多壁奈米破管 〇 所述增強體120設置於每一個奈米碳管112之表面,且相 鄰的奈米碳管112藉由該增強體12〇相互結合在一起。具 體地,所述增強體12〇以顆粒狀間隔分散於每一個奈米碳 官112之表面,並且一個增強體顆粒設置於至少一個奈米 碳管112之表面。其中,所述奈米碳管結構11〇包括複數 個相互間隔的奈米碳管112,該相互間隔的奈米碳管112 098143542 表單編號A0101 第9頁/共28頁 0982074595-0 201121877 之間形成有微隙’該微隙中形成有所述增強體顆粒,且 藉由該增強體顆粒緊密連接在一起。另外,所述奈米碳 管結構110還包括複數個相互接觸的奈米碳管112,在該 相互接觸的奈米碳管112之間的接觸處也有所述增強體顆 粒升> 成’將相互接觸的奈米碳管112緊密的連接在一起。 因此,所述奈米碳管複合結構1〇具有較好的拉伸強度及 楊氏模量。所述增強體顆粒之尺寸為1奈米_5〇奈米;優 選地’增強體顆粒之尺寸為1奈米-20奈米。 [0021] [0022] 098143542 所述增強體120包括金屬、金屬氧化物中之至少一種。所 述金屬包括鋅(Zn)、鐵(Fe)、#(c〇)、^(Mn) 、銅(Cu)、鎳(Ni)、金(AU)、銀(Ag)、鉑(pt )、錢(Pt)、#了(Ru)及飽(Pd)中之一種或其任意 組合。所述金屬氧化物包括氧化鋅(ZnO)、三氧化二鐵 (Fe2〇3)、四氧化三鐵(Fe3〇4)、二氧化猛(Μ、) 、氧化鎳(Ni〇2)、氧化銅(Cu〇)、四氧化三鈷(2 C〇30〇及二氧化二鈷(c〇2〇p中之—種或其任意組合 不貫施例中,所述增強體12〇為複數個奈米級四氧化三銘 顆粒,該複數個奈米級四氧化三朗㈣隔分散在每一 個奈米碳管112之表面,並形成於所述奈米碳管結構ιι〇 中相鄰的奈米碳官112之間,且使得相鄰的奈米碳管IK 之間藉由該複數個奈米四氧化三姑顆粒相互結合,緊穷 連接在—起;另外,-個奈米級四氧化三録顆粒設置於 至少一個奈米碳管】12之表面。所述奈米級四氧化三銘顆 立之尺蝴奈米。可以_,所料細別可201121877 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a composite structure, and more particularly to a carbon nanotube composite structure. [Prior Art] [0002] Since the early 1990s, nanomaterials represented by carbon nanotubes have attracted great attention due to their unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials are constantly being studied. Report. [0003] Since a single carbon nanotube has a hollow structure and a large aspect ratio, it has many excellent characteristics, but the conventional carbon nanotubes are usually powdery, which is disadvantageous for the wide application of the carbon nanotubes. Therefore, people have been working on how to obtain a macro Q structure that is beneficial to the wide application of carbon nanotubes. [0004] Fan Shoushan et al., Nature, 2002, vol. 419, p801, Spinning Continuous CNT Yarns, which discloses that a continuous pure carbon nanotube structure can be pulled from a super-sequential carbon nanotube array. The carbon nanotube structure comprises a plurality of carbon nanotube segments which are connected end to end under the action of Van der Waals force, each of the carbon nanotube segments having substantially the same length, and each of the carbon nanotube segments is composed of a plurality of The carbon nanotube bundles are parallel to each other. However, the mechanical strength and toughness of the carbon nanotube structure are relatively poor, for example, pulling out a 200 micron wide carbon nanotube junction 098143542 Form No. A0101 Page 3 / 28 pages 0982074595-0 201121877 It takes 0. 1 millinewtons of force, and with a force of 0.5 millinewtons, the 200 micron wide carbon nanotube structure can be broken. SUMMARY OF THE INVENTION [0005] In view of the above, it is indeed necessary to provide a carbon nanotube composite structure having good tensile strength and Young's modulus. [0006] A carbon nanotube composite structure, comprising: a carbon nanotube structure, the carbon nanotube structure is a self-supporting structure composed of a plurality of carbon nanotubes, further comprising a reinforcing body, The reinforcing body is disposed on the surface of the plurality of carbon nanotubes, and the adjacent carbon nanotubes of the carbon nanotube structure are tightly coupled by the reinforcing body. [0007] Compared with the prior art, in the carbon nanotube composite structure provided by the present invention, since the reinforcement is disposed on the surface of the plurality of carbon nanotubes, the reinforcement has good tensile strength and Young's modulus. And the adjacent carbon nanotubes are tightly connected by the reinforcement interaction, and therefore, the nano carbon tube composite structure composed of the reinforcement and the carbon nanotube has good tensile strength And Young's modulus. [Embodiment] The carbon nanotube composite structure provided by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1 to FIG. 2, a first embodiment of the present invention provides a carbon nanotube composite structure 10. The carbon nanotube composite structure 10 is a carbon nanotube composite membrane comprising a carbon nanotube structure 110, the carbon nanotube structure 110 comprising a plurality of carbon nanotubes 112, and formed in the plurality of nanotubes The reinforcement 120 of the surface of the carbon nanotube 112; wherein the plurality of carbon nanotubes 11 2 098143542 Form No. A0101 Page 4 / 28 pages 0982074595-0 201121877 by the reinforcement body 120 is tightly coupled to each other together. [0010] ο ❹ The carbon nanotube structure 110 includes a plurality of carbon nanotubes 112. The plurality of carbon nanotubes 11 2 are connected to each other by van der Waals force, attracting each other, and tightly bonding, so that the nanometer The carbon tube structure 110 is a self-supporting structure. Wherein, the plurality of carbon nanotubes 112 are uniformly distributed in the carbon nanotube structure 110. The so-called "self-supporting structure" means that the carbon nanotube structure 110 can maintain its own specific shape without being supported by a support. There is a gap between adjacent carbon nanotubes 112 in the carbon nanotubes 110, thereby forming a plurality of micro-gaps in the carbon nanotube structure 110, and the size of the micro-gap is less than about 1 micrometer. The carbon nanotube structure 110 includes at least one carbon nanotube film. When the carbon nanotube structure 110 includes a plurality of carbon nanotube films, the plurality of carbon nanotube films may be disposed in a coplanar manner or stacked. The carbon nanotube structure 110 may also include a nanocarbon line, and the carbon carbon line is folded or wound into a layered structure. The carbon nanotube structure 110 may also include a plurality of nano carbon pipelines, and the plurality of nanocarbon pipelines may be arranged in parallel, crosswise or woven into a layer structure, or may be arranged in parallel to form a bundle structure. They can be twisted to each other to form a twisted wire structure. The carbon nanotube structure 110 may further include a carbon nanotube membrane and a nanocarbon pipeline, and the nanocarbon pipeline may be disposed on at least one surface of the carbon nanotube membrane. Since the carbon nanotubes in the carbon nanotube structure 110 have good flexibility, the carbon nanotube structure 110 also has good flexibility and can be bent and folded into any shape without being easily broken. The carbon nanotube film comprises a plurality of carbon nanotubes uniformly distributed, and the plurality of carbon nanotubes are tightly bonded by a van der Waals force. The carbon nanotubes in the carbon nanotube film are disordered or ordered. The so-called disorder refers to Nai 098143542 Form No. Α0101 Page 5 of 28 0982074595-0 [0011] 201121877 The arrangement of meters of carbon tubes is irregular. The so-called ordering means that there are rules for the arrangement of the carbon nanotubes. Specifically, when the carbon nanotube structure 110 includes a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or isotropically aligned: when the carbon nanotube structure 110 includes ordered carbon nanotubes The carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. The term "preferable orientation" means that the carbon nanotubes in the carbon nanotube structure have a large orientation probability in one or several directions; that is, the axial direction of the carbon nanotubes in the carbon nanotube structure is basically Extend in the same direction or in several directions. The carbon nanotube membrane comprises a carbon nanotube membrane, a carbon nanotube membrane or a carbon nanotube membrane. [0012] The carbon nanotubes in the carbon nanotube structure 110 include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled nanotube. The diameter of the single-walled carbon nanotube is 0.5 to 5 nm, the diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotube is 1.5 Meters ~ 50 nm. The length of the carbon nanotubes is greater than 50 microns. Preferably, the length of the carbon nanotubes is preferably from 200 micrometers to 900 micrometers. [0013] Referring to FIG. 3, the carbon nanotube film comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged in a preferred orientation along substantially the same direction, and are substantially parallel to the carbon nanotube film. The surface. Specifically, the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end by van der Waals force and arranged in a preferred orientation in substantially the same direction; the axial directions of the plurality of carbon nanotubes are substantially in the same direction extend. The carbon nanotube film can be obtained by directly drawing from a carbon nanotube array. It can be understood that the carbon nanotube structures of different areas and thicknesses can be prepared by laminating a plurality of carbon nanotube films in parallel and without gaps coplanar laying or/and lamination. When the carbon nanotube structure 098143542 Form No. A0101 Page 6 / 28 pages 0982074595-0 201121877 Including a plurality of stacked carbon nanotubes, the arrangement of the carbon nanotubes in the adjacent tube is formed. ―An angle of a, Q. Each counter. The carbon tube pull structure and (4) financial law please; ^ Jianmei published on the 16th (10) Q833862 Caihua Kaili application for publication. [0014] 奈 Ο The carbon nanotube (four) membrane comprises a plurality of (four) plurality of carbon nanotubes evenly divided. The plurality of carbon nanotubes are disordered and arranged along the same direction (four) in the same direction. The carbon nanotubes in the Ni-lai carbon barrier film partially overlap each other and are closely attracted to each other by the van der Waals force. The two-meter carbon nanotubes can be obtained by an array of carbon nanotubes. The carbon nanotube array is formed on the surface of the substrate, and the carbon nanotubes in the prepared nanocarbon tantalum film and the surface of the carbon nanotube array are in a ruin angle, wherein the sum is greater than or equal to 0 Degree is less than or equal to 15 degrees (〇. $call). Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube rolled film. Depending on the way of rolling, the carbon nanotubes in the 奈 nanotube carbon nanotubes have different arrangements. Because the carbon nanotubes in the carbon nanotubes are attracted to each other by van der Waals forces, the carbon nanotubes are a self-supporting structure, which can be self-supported without a substrate support. presence. The so-called self-supporting structure, that is, a plurality of carbon nanotubes in the carbon nanotube rolled film are attracted to each other by van der Waals force, so that the carbon nanotube rolled film has a specific shape. The carbon nanotube rolled film and the preparation method thereof can be referred to the publication of the Republic of China patent application No. 200900348 published on January 1, 2009. The carbon nanotube flocculation membrane comprises intertwined carbon nanotubes, the carbon nanotubes having a length greater than 10 cm. Between the carbon nanotubes and the van der Waals 098143542 Form No. 1010101 Page 7 of 28 0982074595-0 [0015] 201121877 Erli attracts and entangles each other to form a network structure. The carbon nanotube flocculation membrane is isotropic. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and randomly arranged to form a large number of microporous structures. It can be understood that the length, width and thickness of the carbon nanotube film are not limited and can be selected according to actual needs. The carbon nanotube flocculation membrane and the preparation method thereof are described in the publication of the Chinese Patent Application No. 200844041, published on Nov. 16, 2008. [0016] The nanocarbon line may be a non-twisted nano carbon line or a twisted carbon carbon line. The non-twisted nanocarbon pipeline may include a plurality of carbon nanotubes having an axial direction extending substantially parallel to the axis of the non-twisted nanocarbon pipeline. The non-twisted nano carbon line can be obtained by treating the carbon nanotube film with an organic solvent. Specifically, the carbon nanotube film comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments are connected end to end by Van der Waals force, and each of the carbon nanotube segments comprises a plurality of parallel and borrowed The carbon nanotubes are tightly combined by Van der Valli. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米 之间1毫米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nm -1 mm. Specifically, the volatile organic solvent may be impregnated into the entire surface of the carbon nanotube film, and the surface tension generated by the volatilization of the volatile organic solvent may be a plurality of parallels in the carbon nanotube film. The carbon nanotubes are tightly bonded by van der Waals force, thereby shrinking the carbon nanotube film into a non-twisted nano carbon line. The volatile organic solvent is ethanol, methanol, acetone, di-ethane or gas, and ethanol is used in this embodiment. Non-twisted nanocarbon line treated with volatile organic solvent compared to carbon nanotube film without volatile organic solvent treatment, specific surface area 098143542 Form No. A0101 Page δ / Total 28 pages 0982074595-0 201121877 [0017 ] Ο [0019] 〇 [0020] Reduced, viscosity decreased. The nanocarbon pipeline includes a plurality of nanotubes, and the plurality of axial electrodes extend axially around the twisted nanocarbon pipeline. The m-carbon pipeline can be obtained by twisting both ends of the carbon nanotube film by mechanical force. Step by step, you can use - volatile organic ~, Hai twisted nano carbon pipeline. Under the surface tension generated by the volatilization of the volatile organic solvent, the adjacent nappe tubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals force, so that the specific surface area of the twisted carbon fiber g line Decrease, increase in density and strength. The non-rice & pipeline and its preparation method can be referred to as 72GG8 November 21st. The announcement of the Republic of China on the 'Announcement No. 1303239 and the Announcement on 2009^7^219^^^, . In the embodiment, the carbon nanotube structure UG is a layer of 2{) laminated nano carbon g film, wherein the adjacent two layers of carbon nanotubes are in a preferred orientation The angle formed between 112 is 9〇. The carbon nanotubes 112 are multi-walled nanotubes having a diameter of h5 nanometers and 5 nanometers. The reinforcements 120 are disposed on the surface of each of the carbon nanotubes 112, and adjacent nanometers. The carbon tubes 112 are bonded to each other by the reinforcing bodies 12A. Specifically, the reinforcing body 12 is dispersed on the surface of each of the carbon carbon atoms 112 at a granular interval, and one reinforcing body particle is disposed on the surface of at least one of the carbon nanotubes 112. Wherein, the carbon nanotube structure 11 〇 includes a plurality of mutually spaced carbon nanotubes 112 formed between the mutually spaced carbon nanotubes 112 098143542 Form No. A0101 Page 9 / 28 pages 0982074595-0 201121877 There is a micro-gap 'the reinforcement particles are formed in the micro-gap, and the reinforcement particles are tightly joined together. In addition, the carbon nanotube structure 110 further includes a plurality of carbon nanotubes 112 in contact with each other, and the reinforcement particles are also in contact at the contact between the mutually contacting carbon nanotubes 112. The carbon nanotubes 112 in contact with each other are closely connected together. Therefore, the carbon nanotube composite structure has good tensile strength and Young's modulus. The size of the reinforcing body particles is 1 nanometer to 5 nanometers; preferably, the size of the reinforcing body particles is 1 nanometer to 20 nanometers. [0022] 009143542 The reinforcement 120 includes at least one of a metal and a metal oxide. The metal includes zinc (Zn), iron (Fe), #(c〇), ^(Mn), copper (Cu), nickel (Ni), gold (AU), silver (Ag), platinum (pt), One of or a combination of money (Pt), #Ru (Ru), and Pd (Pd). The metal oxide includes zinc oxide (ZnO), ferric oxide (Fe 2 〇 3 ), ferroferric oxide (Fe 3 〇 4 ), oxidized lanthanum, nickel oxychloride (Ni 〇 2 ), copper oxide. (Cu〇), cobalt trioxide (2 C〇30〇 and cobalt dioxide (c〇2〇p) or any combination thereof, the reinforcement 12〇 is a plurality of nano-four Oxidizing Sanming granules, the plurality of nano-sized osmium tetroxide (four) spacers are dispersed on the surface of each of the carbon nanotubes 112, and are formed in adjacent carbon nanotubes of the carbon nanotube structure ιι〇112 Between, and the adjacent carbon nanotubes IK are combined with each other by the plurality of nano-galvanic oxide particles, and are closely connected to each other; in addition, a nano-sized osmium oxide particles are disposed at At least one carbon nanotube] 12 surface. The nano-grade oxidized three Ming dynasty can be used to make a butterfly.

表單編號A0I0J 苐〗〇頁/共28頁 0982074595-0 201121877 以為兩種或兩種以上之不同材料之顆粒分散在每一個奈 米碳管112之表面。由於所述奈米碳管結構110中之複數 個奈米碳管112藉由四氧化三鈷顆粒相互作用而緊密連接 在一起;因此,由奈米碳管及四氧化三鈷組成之所述奈 米碳管複合結構10具有良好的拉伸強度及楊氏模量,且 該奈米碳管複合結構10相較於所述奈米碳管結構110也具 有較好的拉伸強度及楊氏模量,可以廣泛應用到各種領 域。 ^ [0023] 請參閱圖4及圖5,本發明第二實施例提供一奈米碳管複 Ο 合結構20。該奈米碳管複合結構20為一奈米碳管複合膜 ,該奈米碳管複合膜包括一奈米碳管結構210,該奈米碳 管結構210包括複數個奈米碳管212,以及形成於該複數 個奈米碳管212表面之增強體220。具體地,所述增強體 220設置於每一個奈米碳管212之表面;相鄰的奈米碳管 21 2之間藉由該增強體220緊密結合在一起。 [0024] 所述奈米碳管複合結構20之結構與所述奈米碳管複合結 〇 構10之結構基本相同,不同之處在於:所述增強體220為 複數個奈米增強體顆粒,該複數個奈米增強體顆粒在每 一個奈米碳管21 2之表面連成一片,形成一增強體層,且 該增強體層包覆至少一個奈米碳管212。其中,所述奈米 碳管結構210包括複數個相互間隔的奈米碳管212,該相 互間隔的奈米碳管212之間形成有微隙,該微隙中形成有 所述增強體層,且該增強體層將相互間隔的奈米碳管212 緊密連接在一起。另外,所述奈米碳管結構210還包括複 數個相互接觸的奈米碳管212,在該相互接觸的奈米碳管 098143542 表單編號A0101 第11頁/共28頁 0982074595-0 201121877 212之間之接觸處也藉由所述增強體220緊密連接在一起 。所述增強體層之厚度為丨奈米_丨微米;優選地,增強體 層之厚度為1奈米-1 〇 〇奈米。 [0025] [0026] [0027] 本實施例中,所述奈米碳管結構210包括6層層疊設置的 奈米碳管拉膜。所述增強體220為複數個奈米鉑金屬顆粒 ,該複數個奈米鉑金屬顆粒在每一個奈米碳管212之表面 連成一片,形成一鉑金屬層包覆於每一個奈米碳管212之 表面,相鄰的奈米碳管212之間藉由該鉑金屬層相互作用 而緊密連接在一起。所述鉑金屬層之厚度為丨奈米—15奈 米。可以理解,所述增強體22〇可以包括兩種或兩種以上 之顆粒在每一個奈米碳管212之表面連成一片,形成一增 強體層。所述增強體220也可以係兩層或兩層以上之不同 材料之結構》 由於始金屬及奈米碳管都具有良好的導電性,所述複數 個奈米碳管212之間藉祕金屬層相互作用,μ連接在 起,所以,所述奈米碳管複合結構20除了具有良好的 拉伸強度及揚氏模量以外’還具有良好的導電性能且 該奈米碳管複合結構2G之導電性能優於所述奈米碳管結 構210之導電性能,可以用作電極。 請參閲圖6 ’本發明第三實施例提供一奈米碳管複合結構 3〇=奈米碳管複合結構3Q為_奈米碳管複合膜;該奈 米碳管複合膜包括一奈米碳管結構31〇,該奈米碳管結構 3/0包括複數個奈米碳管312,以及形成於輯數個奈°米 碳管312表面之增強體320。 098143542 表單編號A0101 第12頁/共28頁 0982074595-0 201121877 [0028] ❹ [0029] 〇 [0030] 本實施例提供之奈米碳管複合結構30與第二實施例提供 之奈米碳管複合結構20基本相同,不同之處在於:所述 奈米碳管結構310為一層奈米碳管絮化膜,該奈米碳管絮 化膜包括複數個相互纏繞的奈米碳管312,所述增強體 320為奈米級氧化鋅顆粒,一部分奈米級氧化鋅顆粒在複 數個奈米碳管312之表面連成一片形成一氧化鋅層,構成 一增強體層,即該氧化鋅層包覆至少一個奈米碳管312 ; 一部分奈米級氧化辞顆粒間隔設置於複數個奈米碳管312 之表面;且相鄰的奈米碳管31 2,尤其係相互纏繞的奈米 碳管312藉由該增強體320相互作用而緊密連接在一起。 可以理解,所述增強體320可以為兩種或兩種以上之不同 材料之奈米級顆粒。 請參閱圖7至圖9,本發明第四實施例提供一奈米碳管複 合結構40。該奈米碳管複合結構40為一奈米碳管複合線 ,該奈米碳管複合線包括至少一個奈米碳管線410,該奈 米碳管線410包括複數個奈米碳管412,該複數個奈米碳 管412之表面設置有所述增強體420。具體地,所述增強 體420設置於每一個奈米碳管412之表面;相鄰的奈米碳 管412之間藉由該增強體420相互作用而緊密連接在一起 〇 本實施例中,所述奈米碳管線410為一個扭轉之奈米碳管 線,因此,所述奈米碳管複合結構40也為一個扭轉之奈 米碳管複合線,即該奈米碳管複合結構40為一絞線結構 。所述增強體420之材料為三氧化二鐵,在每一個奈米碳 管412之表面形成有一個奈米級之三氧化二鐵層,且相鄰 098143542 表單編號Α0101 第13頁/共28頁 0982074595-0 201121877 的不米叙管41 2之間藉由該奈米三氧化二鐵緊密、结合在一 起。因此,該奈米碳管複合結構4〇為三氧化二鐵奈米碳 管複合絞線。 [0031] [0032] 098143542 請參閱圖10,本發明第四實施例之奈米碳管複合結構40 與所述奈米碳管線相比具有較高之拉伸強度及楊氏模量 。圖ίο中的奈米碳管線係一直徑為27微米左右之奈米碳 管絞線’該奈米碳管絞線之拉伸強度大約為447兆帕( MPa),經過計算,楊氏模量大約為ι〇 5千兆帕(❿) 。圖1〇中的奈米碳管複合結構之直徑為18微米左右,其 拉伸強度大約為862 MPa,經過計算,楊氏模量大約為 123 GPa。可以理解’當奈料管複合結構之直程為27 微米時之拉伸強度及揚氏模量要轉米射複合結構4〇 之拉伸強度及楊氏模量高,因此,相同直徑之奈米碳管 複合絞線與奈米碳管線相比,奈米碳管複合絞線之拉伸 強度及楊氏模量要比奈米碳管線之拉伸強度及楊氏模量 高得多。 ’、之不、米碳管複合結構具有以下優點: 第-,所述奈米碳管複合結構包括奈米碳管結構及增強 體’所述奈米碳管結構包括複數個奈米碳管,所述增強 體設置於該複數個奈米碳管之丰 衣面’且相鄰的奈米碳管 之間藉由a亥增強體相互作用而腎金α ^ ^, 糸饴結合在一起,該增強 體具有良好的拉伸強度及楊氏握θ 人纴拢a_古自 、置,因此該奈米碳管複 D尨構具有良好的拉伸強度及楊 果里,且相較於所诚 純的奈米碳管結構也具有較好的把卜 第二,當所述增強體具有良好 ;,里。 表單編號A0101 电Is生時,由於該增強 頁 0982074595-0 201121877 [0033] Ο [0034] [0035] [0036] Ο [0037] [0038] [0039] 體將相鄰的奈米碳管緊密結合在一起,因此由奈米碳管 結構及上述增強體組成之奈米碳管複合結構具有優異之 導電性,且比純的奈米碳管結構具有更好之導電性能。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施例提供之奈米碳管複合結構之結構 示意圖。 圖2為本發明第一實施例提供之奈米碳管複合結構中之奈 米碳管之透射電鏡照片。 圖3為本發明第一實施例提供之奈米碳管複合結構中之奈 米碳管拉膜之掃描電鏡照片。 圖4為本發明第二實施例提供之奈米碳管複合結構之結構 示意圖。 圖5為本發明第二實施例提供之奈米碳管複合結構中之奈 米碳管之透射電鏡照片。 圖6為本發明第三實施例提供之奈米碳管複合結構之結構 示意圖。 圖7為本發明第四實施例提供之奈米碳管複合結構之結構 示意圖。 098143542 表單編號Α0101 第15頁/共28頁 0982074595-0 [0040] 201121877 [0041] 圖8為本發明第四實施例提供之奈米碳管複合結構之低倍 掃描電鏡照片。 [0042] 圖9為本發明第四實施例提供之奈米碳管複合結構之高倍 掃描電鏡照片。 [0043] 圖10為本發明第四實施例提供之奈米碳管複合結構與直 徑約為27微米之奈米碳管線之拉伸強度對比圖。 【主要元件符號說明】 [0044] 奈米碳管複合結構:10 ; 20 ; 30 ; 40 [0045] 奈米碳管結構:110 ; 210 ; 310 ; 410 [0046] 奈米碳管:112 ; 212 ; 312 ; 412 [0047] 增強體:120 ; 220 ; 320 ; 420 0982074595-0 098143542 表單編號A0101 第16頁/共28頁Form No. A0I0J 苐〗 Page/Total 28 pages 0982074595-0 201121877 It is thought that particles of two or more different materials are dispersed on the surface of each of the carbon nanotubes 112. Since the plurality of carbon nanotubes 112 in the carbon nanotube structure 110 are closely connected by the interaction of the tricobalt oxide particles; therefore, the carbon nanotube composite structure 10 composed of a carbon nanotube and a tricobalt tetroxide has Good tensile strength and Young's modulus, and the carbon nanotube composite structure 10 has better tensile strength and Young's modulus than the carbon nanotube structure 110, and can be widely applied to various types. field. [0023] Referring to Figures 4 and 5, a second embodiment of the present invention provides a carbon nanotube composite structure 20. The carbon nanotube composite structure 20 is a carbon nanotube composite membrane, and the carbon nanotube composite membrane includes a carbon nanotube structure 210, and the carbon nanotube structure 210 includes a plurality of carbon nanotubes 212, and A reinforcement 220 formed on the surface of the plurality of carbon nanotubes 212. Specifically, the reinforcing body 220 is disposed on the surface of each of the carbon nanotubes 212; the adjacent carbon nanotubes 21 2 are tightly bonded together by the reinforcing body 220. [0024] The structure of the carbon nanotube composite structure 20 is substantially the same as the structure of the carbon nanotube composite structure 10, except that the reinforcement 220 is a plurality of nano-reinforced particles. The plurality of nano-reinforcing particles are joined to form a sheet on the surface of each of the carbon nanotubes 21 2 to form a reinforcing layer, and the reinforcing layer covers at least one of the carbon nanotubes 212. The carbon nanotube structure 210 includes a plurality of mutually spaced carbon nanotubes 212, and a micro-gap is formed between the mutually spaced carbon nanotubes 212, and the reinforcement layer is formed in the micro-gap, and The reinforcing body layer tightly connects the mutually spaced carbon nanotubes 212 together. In addition, the carbon nanotube structure 210 further includes a plurality of mutually contacting carbon nanotubes 212 between the mutually contacting carbon nanotubes 098143542 Form No. A0101 Page 11 / 28 pages 0982074595-0 201121877 212 The contacts are also tightly joined together by the reinforcements 220. The thickness of the reinforcement layer is 丨 nanometer 丨 丨 micrometer; preferably, the thickness of the reinforcement layer is 1 nm-1 〇 〇 nanometer. [0027] In the present embodiment, the carbon nanotube structure 210 includes six layers of carbon nanotube film laminated. The reinforcing body 220 is a plurality of nano platinum metal particles, and the plurality of nano platinum metal particles are connected to each other on the surface of each of the carbon nanotubes 212 to form a platinum metal layer coated on each of the carbon nanotubes. On the surface of 212, adjacent carbon nanotubes 212 are closely connected together by the interaction of the platinum metal layers. The platinum metal layer has a thickness of from 丨 nanometer to 15 nm. It will be understood that the reinforcing body 22 may include two or more kinds of particles joined together on the surface of each of the carbon nanotubes 212 to form a reinforcing body layer. The reinforcing body 220 may also be a structure of two or more layers of different materials. Since the starting metal and the carbon nanotubes have good electrical conductivity, the plurality of carbon nanotubes 212 are separated by a metal layer. Interaction, μ is connected, so the carbon nanotube composite structure 20 has good electrical conductivity in addition to good tensile strength and Young's modulus and the conductivity of the carbon nanotube composite structure 2G The performance is superior to that of the carbon nanotube structure 210 and can be used as an electrode. Please refer to FIG. 6 'the third embodiment of the present invention provides a carbon nanotube composite structure 3 〇=nano carbon nanotube composite structure 3Q is a _ carbon nanotube composite membrane; the carbon nanotube composite membrane includes a nanometer The carbon tube structure 31 〇 includes a plurality of carbon nanotubes 312 and a reinforcement 320 formed on the surface of the plurality of carbon nanotubes 312. 098143542 Form No. A0101 Page 12 / 28 pages 0982074595-0 201121877 [0028] 〇 [0030] The carbon nanotube composite structure 30 provided in this embodiment is combined with the carbon nanotube provided by the second embodiment. The structure 20 is substantially the same, except that the carbon nanotube structure 310 is a layer of carbon nanotube flocculation membrane, and the carbon nanotube flocculation membrane comprises a plurality of intertwined carbon nanotubes 312, The reinforcing body 320 is a nano-sized zinc oxide particle, and a part of the nano-sized zinc oxide particles are connected to form a zinc oxide layer on the surface of the plurality of carbon nanotubes 312 to form a reinforcing layer, that is, the zinc oxide layer is coated at least a carbon nanotube 312; a portion of the nano-sized oxidized particles are disposed on the surface of the plurality of carbon nanotubes 312; and adjacent carbon nanotubes 31 2, especially intertwined carbon nanotubes 312 by The reinforcements 320 interact and are tightly joined together. It will be appreciated that the reinforcement 320 may be nanoscale particles of two or more different materials. Referring to Figures 7 through 9, a fourth embodiment of the present invention provides a carbon nanotube composite structure 40. The carbon nanotube composite structure 40 is a carbon nanotube composite wire, and the carbon nanotube composite wire includes at least one nano carbon line 410, and the nano carbon line 410 includes a plurality of carbon nanotubes 412, the plurality The surface of the carbon nanotubes 412 is provided with the reinforcement 420. Specifically, the reinforcing body 420 is disposed on the surface of each of the carbon nanotubes 412; the adjacent carbon nanotubes 412 are closely connected together by the interaction of the reinforcing body 420. The nano carbon line 410 is a twisted nano carbon line. Therefore, the carbon nanotube composite structure 40 is also a twisted carbon nanotube composite line, that is, the carbon nanotube composite structure 40 is a twisted pair. Line structure. The material of the reinforcing body 420 is ferric oxide, and a nano-scale iron oxide layer is formed on the surface of each of the carbon nanotubes 412, and adjacent to 098143542, the form number Α0101, page 13 of 28 0982074595-0 201121877 The non-small tubes 41 2 are tightly bonded together by the nanometer ferric oxide. Therefore, the carbon nanotube composite structure 4 is a composite of twisted iron oxide carbon nanotubes. [0032] Referring to FIG. 10, the carbon nanotube composite structure 40 of the fourth embodiment of the present invention has higher tensile strength and Young's modulus than the nanocarbon pipeline. The nanocarbon line in Fig. is a nano carbon tube strand with a diameter of about 27 microns. The tensile strength of the carbon nanotube strand is about 447 MPa (MPa). After calculation, the Young's modulus Approximately 〇 5 gigapascals (❿). The carbon nanotube composite structure in Fig. 1 has a diameter of about 18 μm and a tensile strength of about 862 MPa. After calculation, the Young's modulus is about 123 GPa. It can be understood that the tensile strength and the Young's modulus of the composite structure of the tube material are 27 microns, and the tensile strength and Young's modulus of the composite structure are high. Therefore, the same diameter is Compared with the nano carbon pipeline, the carbon nanotube composite stranded wire has a tensile strength and a Young's modulus which are much higher than the tensile strength and Young's modulus of the nanocarbon pipeline. ', the no, carbon nanotube composite structure has the following advantages: First, the carbon nanotube composite structure includes a carbon nanotube structure and a reinforcement. The carbon nanotube structure includes a plurality of carbon nanotubes, The reinforcing body is disposed on the full surface of the plurality of carbon nanotubes and the adjacent carbon nanotubes are combined by a hai reinforcement interaction and the kidney gold α ^ ^, 糸饴 is combined, The reinforcement has good tensile strength and the Young's grip θ is close to a_古自,, so the carbon nanotube complex D structure has good tensile strength and Yang Guoli, and compared with Chengcheng The pure carbon nanotube structure also has a better second, when the reinforcement has good; Form No. A0101 When Electric Is is born, due to the enhanced page 0982074595-0 201121877 [003] [0036] [0038] [0039] The body closely bonds adjacent carbon nanotubes Together, the carbon nanotube composite structure composed of the carbon nanotube structure and the above-mentioned reinforcement has excellent electrical conductivity and has better electrical conductivity than the pure carbon nanotube structure. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a carbon nanotube composite structure according to a first embodiment of the present invention. Fig. 2 is a transmission electron micrograph of a carbon nanotube in a carbon nanotube composite structure according to a first embodiment of the present invention. Fig. 3 is a scanning electron micrograph of a carbon nanotube film drawn in a carbon nanotube composite structure according to a first embodiment of the present invention. Fig. 4 is a schematic view showing the structure of a carbon nanotube composite structure according to a second embodiment of the present invention. Fig. 5 is a transmission electron micrograph of a carbon nanotube in a carbon nanotube composite structure according to a second embodiment of the present invention. Fig. 6 is a schematic view showing the structure of a carbon nanotube composite structure according to a third embodiment of the present invention. Fig. 7 is a schematic view showing the structure of a carbon nanotube composite structure according to a fourth embodiment of the present invention. 098143542 Form No. Α0101 Page 15 of 28 0982074595-0 [0040] FIG. 8 is a low-power SEM photograph of a carbon nanotube composite structure according to a fourth embodiment of the present invention. 9 is a high-power SEM photograph of a carbon nanotube composite structure according to a fourth embodiment of the present invention. 10 is a comparison view of tensile strength of a carbon nanotube composite structure and a nanocarbon pipeline having a diameter of about 27 μm according to a fourth embodiment of the present invention. [Main component symbol description] [0044] Nano carbon tube composite structure: 10; 20; 30; 40 [0045] Carbon nanotube structure: 110; 210; 310; 410 [0046] Carbon nanotube: 112; 212 ; 312 ; 412 [0047] Reinforcement: 120; 220; 320; 420 0982074595-0 098143542 Form No. A0101 Page 16 of 28

Claims (1)

201121877 七、申請專利範圍: 1 . 一種奈米碳管複合結構,其包括:一奈米碳管結構,該奈 米碳管結構為複數個奈米碳管組成之自支撐結構,其改良 在於,進一步包括一增強體,該增強體設置於所述複數個 奈米碳管之表面,且該奈米碳管結構中相鄰的奈米碳管之 間藉由該增強體緊密結合。 2 .如專利申請範圍第1項所述之奈米碳管複合結構,其中, 每個奈米碳管表面包覆一增強體層。 3 .如專利申請範圍第2項所述之奈米碳管複合結構,其中, 〇 所述增強體層之厚度為1奈米至1微米。 4 .如‘專利申請範圍第1項所述之奈米碳管複合結構,其中, 每個奈米碳管表面分佈有複數個增強體顆粒。 5.如專利申請範圍第4項所述之奈米碳管複合結構,其中, 所述增強體顆粒之尺寸為1奈米至50奈米。 6 .如專利申請範圍第1項所述之奈米碳管複合結構,其中, 所述增強體之材料為鋅、鐵、鈷、錳、銅、鎳、金、銀、 I白、姥、釕、把、氧化鋅、氧化鐵、四氧化三鐵、二氧化 ❹ 錳、氧化鎳、氧化銅、四氧化三鈷及氧化鈷中之一種或其 任意組合。 7 .如專利申請範圍第1項所述之奈米碳管複合結構,其中, 所述奈米碳管結構包括至少一個奈米碳管膜、至少一個奈 米碳管線或其組合。 8.如專利申請範圍第7項所述之奈米碳管複合結構,其中, 所述奈米碳管膜包括複數個藉由凡德瓦爾力首尾相連且沿 同一方向擇優取向排列的奈米碳管。 098143542 表單編號A0101 第17頁/共28頁 0982074595-0 201121877 9 ·如專利申請範圍第7項所述之奈米碳管複合結構,其中, 所述奈米碳管膜包括複數個藉由凡德瓦爾力相互缠繞的太 米碳管。 $ 10 .如專利申請範圍第7項所述之奈米後管複合結構,其中, 所述奈米碳管膜包括複數個均勻分佈且沿同一方向或不 同方向擇優取向排列的奈米碳管。 U .如專到申請範圍第7項所述之奈米碳管複合結構,其中, 所述奈米碳管結構包括至少兩個平行且無間隙共面設置或 層疊設置的奈米碳管膜。 12. h專利f請範圍第7項所述之奈米碳管複合結構,其中, 料奈米碳管線包括複數個奈米碳管,該複數奈Μ管的 轴向沿基本平行於該奈W管狀軸向方向越伸。 13 .如專利申請範圍第7項所述之奈米碳管複合結構,其中, 所述奈米碳管線包括複數個奈来碳管,該複數奈米碳管的 軸向繞該奈米碳管線之轴向螺旋延伸。 14 .如專利申請範圍第以所述之奈米碳管複合結構其中, 所述奈米破管結構中有微隙,所述增強體設置於該微隙中 〇 15 .如專利申請範圍第!項所述之奈来碳管複合結構,其中, 所述奈米破管結構包括複數個相互間隔的奈米碳管,該相 互間隔的奈米碳管藉由所述增強體相互連接。 16.如專利申請範圍第1項所述之奈米碳管複合結構,其中, 所述奈米碳管結構包括複數個相互接觸的奈米碳管,所述 増強體形成於該相互接觸的奈米碳管的接觸處。 098143542 表單蝙號Α0101 第18頁/共28頁 0982074595-0201121877 VII. Patent application scope: 1. A carbon nanotube composite structure, comprising: a carbon nanotube structure, the nano carbon tube structure is a self-supporting structure composed of a plurality of carbon nanotubes, and the improvement thereof is that Further included is a reinforcement disposed on a surface of the plurality of carbon nanotubes, and adjacent carbon nanotubes in the carbon nanotube structure are tightly bonded by the reinforcement. 2. The carbon nanotube composite structure according to claim 1, wherein each of the carbon nanotubes is coated with a reinforcing layer. 3. The carbon nanotube composite structure according to claim 2, wherein the reinforcing layer has a thickness of from 1 nm to 1 μm. 4. The carbon nanotube composite structure of claim 1, wherein each of the carbon nanotubes has a plurality of reinforcement particles distributed on its surface. 5. The carbon nanotube composite structure according to claim 4, wherein the reinforcement particles have a size of from 1 nm to 50 nm. 6. The carbon nanotube composite structure according to claim 1, wherein the reinforcement material is zinc, iron, cobalt, manganese, copper, nickel, gold, silver, I white, ruthenium, iridium. And one or any combination of zinc oxide, iron oxide, ferroferric oxide, manganese dioxide, nickel oxide, copper oxide, cobalt trioxide and cobalt oxide. 7. The carbon nanotube composite structure of claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube membrane, at least one nanocarbon pipeline, or a combination thereof. 8. The carbon nanotube composite structure according to claim 7, wherein the carbon nanotube film comprises a plurality of nanocarbons arranged end to end by van der Waals force and aligned in the same direction. tube. 098143542 Form No. A0101, page 17 of 28, 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Wal-Mart's intertwined carbon nanotubes. The nanotube composite structure according to the seventh aspect of the invention, wherein the carbon nanotube film comprises a plurality of carbon nanotubes uniformly distributed and arranged in a preferred orientation in the same direction or in different directions. The carbon nanotube composite structure of the seventh aspect of the invention, wherein the carbon nanotube structure comprises at least two carbon nanotube membranes arranged in a parallel or gap-free coplanar arrangement or stacked. 12. The invention relates to the carbon nanotube composite structure of the seventh aspect, wherein the nanocarbon pipeline comprises a plurality of carbon nanotubes, and the axial direction of the plurality of nanotubes is substantially parallel to the nematic W The tubular axial direction is more extended. The carbon nanotube composite structure according to claim 7, wherein the nano carbon pipeline comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes axially surround the nanocarbon pipeline The axial spiral extends. 14. The carbon nanotube composite structure as described in the patent application scope, wherein the nano-tube structure has a micro-gap, and the reinforcement is disposed in the micro-gap 15 as in the patent application scope! The carbon nanotube composite structure of the present invention, wherein the nanotube structure comprises a plurality of mutually spaced carbon nanotubes, and the mutually spaced carbon nanotubes are connected to each other by the reinforcement. The carbon nanotube composite structure according to claim 1, wherein the carbon nanotube structure comprises a plurality of carbon nanotubes in contact with each other, and the sturdy body is formed in the mutually contacting The contact point of the carbon tube. 098143542 Form bat number Α0101 Page 18 of 28 0982074595-0
TW98143542A 2009-12-18 2009-12-18 Carbon nanotube composite structure TWI424954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98143542A TWI424954B (en) 2009-12-18 2009-12-18 Carbon nanotube composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98143542A TWI424954B (en) 2009-12-18 2009-12-18 Carbon nanotube composite structure

Publications (2)

Publication Number Publication Date
TW201121877A true TW201121877A (en) 2011-07-01
TWI424954B TWI424954B (en) 2014-02-01

Family

ID=45045851

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98143542A TWI424954B (en) 2009-12-18 2009-12-18 Carbon nanotube composite structure

Country Status (1)

Country Link
TW (1) TWI424954B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377774A (en) * 2012-04-25 2013-10-30 北京富纳特创新科技有限公司 Preparation device and preparation method of conducting element
CN103813554A (en) * 2012-11-06 2014-05-21 北京富纳特创新科技有限公司 Defrosting glass and automobile using same
US8981235B2 (en) 2012-04-25 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Electronic element
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
US10388422B2 (en) 2012-04-25 2019-08-20 Beijing Funate Innovation Technology Co., Ltd. Electrically conductive element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003235592A1 (en) * 2002-01-11 2003-07-30 The Trustees Of Boston College Reinforced carbon nanotubes
TWI380949B (en) * 2008-03-07 2013-01-01 Hon Hai Prec Ind Co Ltd Carbon nanotube yarn strucutre

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377774A (en) * 2012-04-25 2013-10-30 北京富纳特创新科技有限公司 Preparation device and preparation method of conducting element
US8981235B2 (en) 2012-04-25 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Electronic element
CN103377774B (en) * 2012-04-25 2015-11-25 北京富纳特创新科技有限公司 The preparation facilities of conducting element and preparation method
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
US10377120B2 (en) 2012-04-25 2019-08-13 Beijing Funate Innovation Technology Co., Ltd. Apparatus and method for making conductive element
US10388422B2 (en) 2012-04-25 2019-08-20 Beijing Funate Innovation Technology Co., Ltd. Electrically conductive element
CN103813554A (en) * 2012-11-06 2014-05-21 北京富纳特创新科技有限公司 Defrosting glass and automobile using same
CN103813554B (en) * 2012-11-06 2016-01-13 北京富纳特创新科技有限公司 Defrosting glass and apply the automobile of this defrosting glass
US10225888B2 (en) 2012-11-06 2019-03-05 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube defrost windows

Also Published As

Publication number Publication date
TWI424954B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
CN102040212B (en) Carbon nano tube composite structure
US9129723B2 (en) Method of fabricating bulk carbon nanotube and metallic composites
Cruz-Silva et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling
CN101499328B (en) Stranded wire
KR101182380B1 (en) Hybrid polymer composite fibers comprising graphene and carbon nanotubes
CN101499338B (en) Stranded wire production method
TWI345793B (en) Cable
TW201121877A (en) Carbon nanotube composite structure
JP5528982B2 (en) Electric double layer capacitor
TWI429296B (en) Speaker
CN105097065A (en) Carbon nanotube composite lead
TW201241863A (en) Transmission electron microscope micro-grid
TWI380949B (en) Carbon nanotube yarn strucutre
TWI342027B (en) Method for making twisted yarn
TW201039670A (en) Linear heater
TWI233425B (en) Aggregation of radially-protruding sharp end multi-layer carbon nanotubes and method for producing thin same
TW201016598A (en) Carbon nanotube composite material and method for making the same
JP2020164378A (en) Nanocellulose-nanocarbon composite structure and production method of the same
TW201029251A (en) Membrane electrode assembly and fuel cell using the same
TWI427651B (en) Supercapacitor
TWI736062B (en) Supercapacitor
CN104792847A (en) Carbon nanotube metal compound gas sensor
CN105825909B (en) Carbon nano-tube fibre elastic wire and preparation method thereof
TWI501916B (en) Method for making carbon nanotube composite material
TW201222563A (en) Cable