TW201121111A - Lighting device and method for forming the same - Google Patents

Lighting device and method for forming the same Download PDF

Info

Publication number
TW201121111A
TW201121111A TW100102331A TW100102331A TW201121111A TW 201121111 A TW201121111 A TW 201121111A TW 100102331 A TW100102331 A TW 100102331A TW 100102331 A TW100102331 A TW 100102331A TW 201121111 A TW201121111 A TW 201121111A
Authority
TW
Taiwan
Prior art keywords
layer
metal layer
substrate
light
forming
Prior art date
Application number
TW100102331A
Other languages
Chinese (zh)
Other versions
TWI362774B (en
Inventor
Pu-Ru Lin
Original Assignee
Atek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atek Technology Corp filed Critical Atek Technology Corp
Priority to TW100102331A priority Critical patent/TWI362774B/en
Publication of TW201121111A publication Critical patent/TW201121111A/en
Priority to KR1020110091138A priority patent/KR101242218B1/en
Priority to US13/229,127 priority patent/US20120175664A1/en
Priority to EP11181518A priority patent/EP2475232A1/en
Priority to CN2011103023232A priority patent/CN102593278A/en
Priority to JP2011228179A priority patent/JP2012146952A/en
Application granted granted Critical
Publication of TWI362774B publication Critical patent/TWI362774B/en

Links

Abstract

The present invention provides a lighting device and method for forming the same. The lighting device comprises a base having a first surface, a conductive wiring layer directly formed on the first surface, and a light emitting diode module comprising a substrate and at least one light emitting diode disposed on the substrate wherein the substrate of the light emitting diode module is disposed on the conductive wiring layer by a surface mount method. In one embodiment, the base is preferably made of ceramics.

Description

201121111 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光裝置及其形成方法’特別是關於一 種散熱良好之發光裝置及其形成方法。 【先前技術】 一般使用發光二極體(LE:D)作為光源之發光裝置,因為 LED的壽命及亮度皆會隨溫度的增加而減少且LED有大部分 的電能會變成熱能,必須具有良好的散熱機制。再者,在照明 的應用上,為了達到高亮度’ LED模組通常包含複數的led 晶粒且使用南功率LED晶粒’又因為光學上的要求,各led 晶粒間通常緊密排列’以便模擬成為單一光源,如此的設計對 於散熱之需求變得更高。 因此,在發光裝置上,特別是照明裝置上,不僅是led 模組的基板需具有良好的導熱率’而且裝設led模組之基座 (燈座)《要具有散熱能力(H射率高),此外各耕間的介 面(interface)亦需要有夠低的熱阻(介面氣孔),以降低LED結 點的溫度,如此可以使LED的壽命變長及亮度提高。 然而’將LED模組裝設於燈座,構成發光裝置或照明裝 置時’燈座通常具有立體造型,燈座上用以安裝led模組的 位置’不易使用習㈣製造機台安裝LED ,通常需要利 [S] 3BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting device and a method of forming the same, and more particularly to a light-emitting device having good heat dissipation and a method of forming the same. [Prior Art] Generally, a light-emitting diode (LE: D) is used as a light-emitting device of a light source, because the life and brightness of the LED are reduced as the temperature increases, and most of the electric energy of the LED becomes heat energy, and must have a good Heat dissipation mechanism. Furthermore, in the application of lighting, in order to achieve high brightness, 'LED modules usually contain a plurality of LED dies and use South power LED dies' and because of optical requirements, the LED dies are usually closely arranged to simulate Being a single source, this design has a higher need for heat dissipation. Therefore, on the illuminating device, especially the illuminating device, not only the substrate of the LED module needs to have a good thermal conductivity' but also the pedestal (lamp holder) of the LED module is provided with the ability to dissipate heat (high H rate) In addition, the interface of each cultivating room also needs to have a low thermal resistance (interface vent) to reduce the temperature of the LED junction, which can make the life of the LED longer and the brightness increased. However, when the LED module is assembled in the lamp holder to form a light-emitting device or a lighting device, the lamp holder usually has a three-dimensional shape, and the position on the lamp holder for mounting the LED module is not easy to use. (4) Manufacturing the machine to install the LED, usually Need profit [S] 3

20U211U 用人力,使用螺絲等固定構件,固定LED模組,為了減少LED 模組與燈座間的熱阻,通常在其介面會使用導熱片及散熱膏 等’但不論是導熱片或散熱膏的導熱率都不高(〜3w/m_K),熱 仍無法有效傳至底下的基座(燈座),導熱的瓶頸仍在。綜合上 述,現行發光裝置在生產上無法自動化且成本高,再者,LED 模組與燈座間的導熱不佳。 【發明内容】 鑒於上述之發明背景,為了符合產業上之要求,本發明之 目的之一在於提供一種散熱良好之發光裝置及其形成方法。根 據本月的發光裝置之3免&十,藉由使用焊料(s〇lderpaste)固 定LED模組,改善了 LED模組與基座的介面熱阻,且基座的 熱輻射率咼,整體發光裝置的散熱效果高,如此可降低操作時 LED結點溫度(即LED的p_n juncti〇n溫度),因而可提高LE〇 壽命及發光亮度。 而且’本發明之目的之一在於提供一種發光裝置,可在基 座上形成導線電路,可使LED晶粒直接接合於基座上。 而且,本發明之目的之一在於提供一種發光裝置,藉由使 用陶兗基座,具有耐高電轉性,承受4GGGV以上電壓時可 承受4_V α上輕的衝擊,不會使整個裝置失效(相對於 金屬基座而言,更符合國際安全規範)。 另外,本發明之目的之-在於提供一種發光裝置,藉由自 動化薄膜製程’處理LED模組與立體形狀的基座之接合且同 20112ΠΪ1 時可形成導電線路座上,除可齡絲流程轉低成本, 且降低LED 絲座齡面熱_提高發光裝置的散孰效 率。由於例如賤鍍、電鍍等的薄膜製程係由原子逐漸堆積而形 成一層薄膜’與—般厚膜製程(例如印刷法等)比較,雖然薄 膜製程的製造成本較高’但是密合性較高,可達収好的減少 元件間熱阻或介面熱阻’因而可更進—步提高發絲置的散熱 效率。 然而’-般的薄膜製程係應用於平面基板,對於非平面基 板(例如具有立體形狀之基板)的處理,需要特殊方法及装置。 為了達到上述目的’根據本發明一實施例提供一種形成發 絲置之方法,包括:提供—基座,其包含—第—表面,且具 有立體形狀;形成複數金屬層於該第—表面上,以形成一導電 線路層;提供-發光二極體模組’其巾該發光二極體模組包含 -基板及設胁絲上讀光二極體ssa粒;以及使該發光二極 體模組的基板藉由表面貼裝(Surfacem〇unt)法設置於該導電 線路層上,以形成該發光裝置。 於一實施例中,該基座係由選自下列群組之一材質所構 成.表面氧化處理之鋁、表面具有氧化層之铭、氧化鋁及氮化 鋁,較理想為氧化鋁。 於一實施例中,該形成導電線路層之步驟,包含:形成一 第一金屬層,形成一第二金屬層;形成一具有圖案之薄膜於該 第二金屬層上;同時蝕刻該第一金屬層及該第二金屬層,以圖 201121111 型化該第-金>1層及該第二金屬層;除錢留_薄膜;以及 僅在該第二金屬層的圖型上,形成—第三金屬層。上述方法, 可利用濺鏟法形成該第-金屬層,其賤鍍乾材為Ti或Tiw, 可利用電鍍法形成鄕二金屬層,鄕二金屬層為—銅層,而 該形成第三金屬層之方法’可藉由化學鍍法,形成—化錄金 層,作為該第三金屬層。 於-實施例中’絲面貼裝法可藉由焊料(solderpaste), 回流焊接(reflowsoldering)該基板與該導電線路層。 於一實施例中,該導電線路層可具有一配線圖案,上述燁 料為錫膏較理想。 於一實施例中’上述發光裝置之該基板與該導電線路層的 接面之熱傳導率為50 W/mK以上。 於一實施例中,該基座為陶瓷材料所構成,且該基座與該 發光二極體模組的基板之間,承受4〇〇〇V以上電壓時不會使 該發光裝置失效。 根據本發明另一實施例提供一種發光裝置,包括:一陶瓷 基座,其包含一第一表面;一導電線路層,形成於該第一表面 上且由複數金屬層所構成;以及一發光二極體模組,其包含一 基板及設置於基板上之至少一發光二極體晶粒,其中該發光二 極體模組的基板係以表面貼裝(Surfacemount)法設置於該導 電線路層上。於一實施例,該陶瓷基座例如為由氧化鋁或氮化 鋁等陶瓷材料所構成或表面氧化處理之鋁、表面具有氧化層之 201121111 鋁所構成。 於-實施例t,該發光裝置之該絲與料電線路層的接 面之熱傳導率為5G W/mK以上。於—實施例中,該發光二極 體核組的基板與該導電線路層之間,包含,而且該導電線 路層係依序層合種子金屬層、鋼層、化錄金層所構成,具有一 配線圖案。上述導電線路層之製作方法,例如先濺鍛—第一金 屬層,其中該第-金屬層為鈦或鈦鶴材制成,然後電鑛一銅 層’形成-第二金屬層;形成—具有_之薄膜於該第二金屬 層,藉由蝕刻而將該第一金屬層及該第二金屬層圖型化;除去 殘留的賴;以及進行表面處理,形成化鎳金層(Ni/Au)。 於貫施例中,該基座為陶瓷材料所構成,且該基座與該 心光―極體模組的基板之間,可承受4〇〇〇v以上電壓的衝擊, 不會使整個裝置失效。 因此’根據本發明的發光裝置及其形成方法之設計,在生 產上可以自動化且降低成本,再者提高LED模組與燈座間的 導熱率’進而提高整體發光裝置的散熱性,降低操作時LED 界面溫度,因而可提高LED壽命及發光亮度。此外,藉由使 用陶究基座’具有耐高電壓特性,承受4000V以上電壓時整 個裝置不會失效。 【貫施方式】 有關本發明之前述及其他技術内容、特點與功效,在以下 己&參考圖式之一較佳實施例的詳細說明中,將可清楚的呈 201121111 現。以下實施例中所提到的方向用語,例如:上、下、左、右、 前或後等,僅是參考附加圖式的方向。因此,使用的方向用語 疋用來S兒明並非用來限制本發明。此外,「A層(或元件)設 置於B層(或元件)上」之用語,並不限定為a層直接貼覆 接觸B層表面的態樣’例如A層與B層t間尚間隔其他疊層 亦為該用語所涵蓋範圍。圖示巾,相同的元件係以相同的符號 表示。 圖1表示習知的發光裝置1〇,其包含LED模組2〇、基座 30及夾於該LED模組與該基座間的導熱片4〇。該led模組 20包含一基板及設置於該基板上之複數LED晶粒其中該基 板可為結基板、銅基板、金屬核心電路板(McpcB; meM printed circuit board)、氧化鋁'氮化鋁基板'其他陶究基板等。 LED晶粒可為各種LED晶粒,或者高功率LED晶粒。基座 30可由例如陶曼、氧他、氮化銘、銘金屬等材料構成,如 由金屬所構成,通常表面可塗佈釉漆等塗料,作為絕緣與輕射 熱能,此外基座30的形狀,圖!中僅為例示,可依__ 需求成形為各種形狀,亦可附有各種散熱用鰭片,或者具有作 Μ熱的功能之各種形狀。導熱片4〇例如為G 5mm厚之含石夕 高分子材料。但是,如此的構成,由於LED模組2〇與導熱片 4〇間、導熱片4〇與基座3〇間,介面存在著許多微空洞’,、即 使使用散熱膏來填補這些微空洞,導熱效果依舊不、、 致於 散熱不良’致使LED模組的溫度隨操作的時間增加而增加。 201121111 此外,如此的結合,無法形成導電線路於基座上。另一方面, 基座30使用金屬材料製成時,雖然塗佈釉漆形成絕緣層,由 於薄絕緣層無法抵抗咼塵,所以無法通過4〇〇〇ν高愿測試, 即4000V的衝擊下無法通過安全測試。 因此,有鑑於上述問題,本發明提供一種發光裝置,具有 良好的散熱機制且可通過安全測試。圖2表示根據本發明一實 施例之發光裝置100 ’其包括:一基座2〇〇,其包含一第一表 面200a ; —導電線路層300 ’由複數金屬層所構成且形成於該 第一表面200a上;以及一發光二極體模組4〇〇,其包含一基 板410及設置於基板上之至少一發光二極體45〇,其中該發光 二極體模組的基板410係以表面貼裝(Surfacem_t)法設置 於該導電線路層30G上。於-實施例,基座可由表面具有釉漆 或氧化層之屬所構成,或者基座可由表面陽極氧化處理過 之銘所構成。於-實施例’該基座較理想為由陶曼材料所構 成,例如氧化鋁,發光裝置具有耐高電壓特性,可承受4〇〇〇v 以上電壓時發光裝置100不會失效。 該導電線路層300之形成方法,包含:形成一第一金屬 層;形成-第二金屬層;形成一具有圖案之薄膜於該第二金屬 層上;同時侧該第-金屬層及該第二金屬層,以圖型化該第 金屬層及該第二金屬層;除去殘留的該薄膜;以及僅在該第 二金屬層的圖型上’形成—第三金屬層。上述方法,可利用賤 鍍法形成該第-金屬層’其麵乾材為Ti或蕭,可利用電 201121111 鍍法形成該第二金屬層’該第二金屬層為—銅層,而該形成第 三金屬層之方法’可藉由化學鍍法,形成—化錄金層,作為該 第三金屬層。於-實施例,形成—具有圖案之薄膜於該第二金 屬層之方法,可藉由印刷法形成該具有_之薄膜或乾膜,於 另-實施例,可藉由塗佈感光光阻後進行黃光、微影、姓刻等 的方式形成該具有圖案之薄膜。 例如’圖4表示根據本發明一實施例之導電線路層3〇〇之 形成方法之流糊’其巾形成具有随之薄膜的方法係使用乾 膜’形成_的方式’於圖4的右側表示發光裝置的剖面示意 圖’需注意圖4的剖面示意圖僅用於明確表示各層的开)成,其 大小、厚度比例並沒有依照實體的尺寸比例。圖4中,3〇1表 示基座,302表示種子金屬層(即第一金屬層),3〇3表示銅層 (即第二金屬層),304表示薄膜,305表示化鎳金(Ni/Au) 層。步驟S310 :先濺鍍一第一金屬層,作為種子金屬層,該 種子金屬層可為鈦或鈦鎢材料所成。然後,步驟S32〇 :電鍍 一銅層,形成一第二金屬層。步驟S33〇 :形成一具有圖案之 薄膜於該第二金屬層。步驟S340 :藉由蝕刻而將該第一金屬 層及該第二金屬層圖型化。步驟S350 :除去殘留的薄膜。最 後’步驟S360 :進行表面處理,藉由化學鍍法(electr〇less plating) ’形成化鎳金層(Ni/Au)。 前述表面貼裝(Surfacemount)法,係指利用習知的表面 貼裝技術(SMT; Surface mount technology ),可以將 LED 模組 201121111 固定於該導電線路層上。例如,先將金屬線路形成於基座上, 可藉由網版印刷法塗佈銀膏於該基座的第—表面後,進行燒 結,然後以鋼板(stainless steel stencil)塗佈錫膏,再經過回 々丨士接(reflow soldering) ’除去助焊劑,使錫與led模組的 基板結合(bonding)。藉此,無需使用螺絲等的結合構件,即 可結合基座與LED模組。此外,前述製作過程可以藉由設置 定位點或者利用治具’可以容易地自動化。 於一實施例’ s亥發光裝置之該基板與該導電線路層的接面 材料之熱傳導率為50 W/mK以上。上述導電線路層可為銀膏 所構成且具有-g己線圖案。於—實施例’該發光二極體模組的 基板與該導電線路層之間,可包含焊錫。 根據本發明另一實施例,揭露一種形成發光裝置之方法, 包括:提供-基座,其包含-第—表面’且具有立體形狀;形 成複數金屬層麟第-表面上,則彡成—導魏路層;提供一 發光二極體模組’其中該發光二極體模組包含—基板及設置於 基板上之發光二極體晶粒;以及使該發光二極體模組的基板藉 由表面貼裝(Surfacem_t)法設置於該導電線路層上,以形 成該發光裝置。於-實施例’該基座係由選自下列群組之一材 質所構成:表面氧化處理之紹、表面具有氧化層之銘、氣化紹 及氮化紹。該基座較理想為由氧化链所構成。 由於發光裝置的基座通常具有立體形狀,因為一般的黃光 微影法僅是在平板狀物體上進行曝轴影,然而本發明的基座 201121111 無法使用旋轉塗佈機,進行光阻的塗佈及顯影,此外曝光機通 常亦不適用於如此具有立體形狀之基座,所以本發明利用印刷 薄膜的方法,將圖案形成於基座表面,再藉由將基座浸潰於姓 刻液的方式,而使導電線路圖型形成於基座的上表面。 於一實施例中,該形成導電線路層於該第一表面上之步 驟,例如圖4所示的方法。 於一實施例中,上述發光裝置之基座為陶瓷材料所構成 時,該基板與該導電線路層的接面材料之熱傳導率為5〇 w/mK 以上。 於一貫施例中’該陶瓷基座與該發光二極體模組的基板之 間,承受4000V以上電壓時不會使該發光裝置失效。 圖3表不根據本發明一實施例之圖2所示的發光裝置之俯 視示意圖,其中500表示LED模組之MCpCB基板,5〇1表示 LED晶粒’ 520表示基座,521表示基座上的貫通孔。 根據本發明之發光裝置’基座可為喊㈣所構成或表面 氧化處理之鋁金屬、表面具有氧化層之鋁金屬材料所構成,其 形狀例如圖5 (b)所示,圖5 (a)表示形成於該基座上面之 導電線路層’基座底部可具有螺旋式接頭,例如E26或E27 等的標準連觸(㈣w_eap flttings),耻在基座尾端的表面 具有導賴連接ϋ,與LED触電連接,以便連接至燈座, 例如家用的燈座上。 綜上所述,根據本發明的發光裝置及其形成方法之設計, [S3 12 201121111 藉由減少各元件間的熱組’ ^在生產上可以自動化而降低成 本’提同LED模組與燈座_導熱率’進而提高整體發光裝 置的散熱性,降低操作時LED結點溫度,因而可提高LED壽 命及發光亮度。此外,藉由使用陶究基座,具有耐高電麼特性, 承受4_V以上電壓時不會使發光裝置失效。此外,藉由薄 膜衣耘,可更進一步提高密合性,可達到更好的減少元件間熱 阻或介面熱阻’因而可更進一步提高發光裝置的散熱效率。 以上雖以特定實施例說明本發明,但並不因此限定本發明 之乾圍,只要不麟本發明之要旨’熟悉本技藝者瞭解在不脫 離本發明的意圖及範圍下可進行各種變形或變更。另外本發明 的任一實施例或申請專利範圍不須達成本發明所揭露之全部 目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利 文件搜哥之用,並非用來限制本發明之權利範圍。 【圖式簡單說明】 圖1表示習知的發光裝置之示意圖。 圖2表示根據本發明一實施例之發光裝置之示意圖。 圖3表示根據本發明一實施例之圖2所示的發光裝置之俯視示 意圖。 圖4表示根據本發明一實施例之導電線路層300之形成方法之 μ私圖’其中圖4的右側表示發光裝置的剖面示意圖。 圖5 (a)表示根據本發明一實施例之導電線路層之示意圖, 以及圖5 (b)表示根據本發明一實施例之發光裝置之示意圖20U211U uses manpower, fixing components such as screws, and fixing the LED module. In order to reduce the thermal resistance between the LED module and the lamp holder, the thermal conductive sheet and the thermal grease are usually used in the interface, but the thermal conductivity of the thermal conductive sheet or the thermal grease is used. The rate is not high (~3w/m_K), the heat is still not effectively transmitted to the bottom base (lamp holder), and the bottleneck of heat conduction is still there. In summary, the current lighting device cannot be automated and costly in production, and the heat conduction between the LED module and the lamp holder is not good. SUMMARY OF THE INVENTION In view of the above-described background of the invention, in order to meet the requirements of the industry, it is an object of the present invention to provide a light-emitting device which is excellent in heat dissipation and a method of forming the same. According to this month's 3 luminaires, the use of solder (s〇lderpaste) to fix the LED module improves the thermal resistance of the interface between the LED module and the pedestal, and the radiance of the susceptor is 咼The heat-dissipating effect of the light-emitting device is high, so that the LED junction temperature during operation (ie, the p_n juncti〇n temperature of the LED) can be reduced, thereby improving the LE〇 life and the light-emitting luminance. Further, it is an object of the present invention to provide a light-emitting device which can form a wire circuit on a base to directly bond the LED die to the base. Moreover, one of the objects of the present invention is to provide a light-emitting device which is resistant to high electrical rotation by using a ceramic raft base and can withstand a light impact of 4_Vα when subjected to a voltage of 4 GGGV or more without causing the entire device to fail (relatively In terms of metal bases, it is more in line with international safety regulations). In addition, the object of the present invention is to provide a light-emitting device capable of forming a conductive circuit holder by the process of automating the thin film process of processing the LED module and the three-dimensional shaped base, and the process of turning off the age of the wire can be reduced. Cost, and reduce the heat of the LED wire age _ improve the efficiency of the radiant device. Since a thin film process such as ruthenium plating or electroplating is formed by gradually depositing atoms to form a film, compared with a general thick film process (for example, a printing method, etc.), although the manufacturing process of the film process is high, the adhesion is high. It can reduce the thermal resistance or interface thermal resistance between components to improve the heat dissipation efficiency of the hairline. However, the conventional film process is applied to a planar substrate, and special methods and devices are required for the processing of non-planar substrates (e.g., substrates having a three-dimensional shape). In order to achieve the above object, a method for forming a hairline according to an embodiment of the present invention includes: providing a susceptor including a first surface and having a three-dimensional shape; forming a plurality of metal layers on the first surface, Forming a conductive circuit layer; providing a light-emitting diode module, wherein the light-emitting diode module comprises a substrate and a read-light diode ssa grain on the wire; and the light-emitting diode module is The substrate is disposed on the conductive circuit layer by a surface mount method to form the light emitting device. In one embodiment, the pedestal is made of a material selected from the group consisting of surface oxidized aluminum, an oxide layer on the surface, alumina, and aluminum nitride, preferably alumina. In one embodiment, the step of forming a conductive circuit layer includes: forming a first metal layer to form a second metal layer; forming a patterned film on the second metal layer; and etching the first metal a layer and the second metal layer, wherein the first-gold layer 1 and the second metal layer are patterned according to FIG. 201121111; and the pattern is formed on the pattern of the second metal layer; Three metal layers. In the above method, the first metal layer may be formed by a sputtering method, and the dry plating material is Ti or Tiw, and the second metal layer may be formed by electroplating, and the second metal layer is a copper layer, and the third metal is formed. The layer method 'is formed by electroless plating to form a gold layer as the third metal layer. In the embodiment, the 'silk mounting method' can reflow soldering the substrate and the conductive wiring layer by solder paste. In one embodiment, the conductive circuit layer may have a wiring pattern, and the solder material is preferably a solder paste. In one embodiment, the thermal conductivity of the junction of the substrate and the conductive wiring layer of the light-emitting device is 50 W/mK or more. In one embodiment, the pedestal is made of a ceramic material, and the susceptor does not cause the illuminating device to fail when subjected to a voltage of 4 〇〇〇V or more between the pedestal and the substrate of the illuminating diode module. According to another embodiment of the present invention, a light emitting device includes: a ceramic pedestal including a first surface; a conductive circuit layer formed on the first surface and composed of a plurality of metal layers; and a light emitting diode The polar body module includes a substrate and at least one light emitting diode die disposed on the substrate, wherein the substrate of the light emitting diode module is disposed on the conductive circuit layer by a surface mount method . In one embodiment, the ceramic pedestal is, for example, made of a ceramic material such as alumina or aluminum nitride or aluminum oxidized on the surface, and 201121111 aluminum having an oxide layer on the surface. In the embodiment t, the thermal conductivity of the surface of the filament and the electric circuit layer of the light-emitting device is 5 G W/mK or more. In the embodiment, the substrate of the LED body set and the conductive circuit layer are included, and the conductive circuit layer is formed by sequentially laminating a seed metal layer, a steel layer, and a gold layer. A wiring pattern. The method for manufacturing the conductive circuit layer is, for example, sputter-forged first metal layer, wherein the first metal layer is made of titanium or titanium, and then the electric ore-copper layer is formed to form a second metal layer; a film of the second metal layer, the first metal layer and the second metal layer are patterned by etching; removing the residual Lay; and performing surface treatment to form a nickel-gold layer (Ni/Au) . In the embodiment, the pedestal is made of a ceramic material, and the pedestal and the substrate of the core-pole module can withstand a voltage of 4 〇〇〇 v or more, and the entire device is not Invalid. Therefore, the design of the light-emitting device and the method for forming the same according to the present invention can be automated and reduce the cost in production, and further improve the thermal conductivity between the LED module and the lamp holder, thereby improving the heat dissipation of the overall light-emitting device and reducing the LED operation. The interface temperature, thus improving the LED life and brightness. In addition, by using the ceramic base, it has high voltage resistance, and the entire device does not fail when subjected to a voltage of 4000 V or higher. [Comprehensive Modes] The foregoing and other technical contents, features, and effects of the present invention will become apparent in the following detailed description of a preferred embodiment of the present invention. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the directional terminology used is not intended to limit the invention. In addition, the term "A layer (or component) is placed on the B layer (or component)" is not limited to the aspect in which the layer a directly contacts the surface of the layer B. For example, the layer A and the layer B are spaced apart from each other. Lamination is also covered by this term. In the drawings, the same components are denoted by the same symbols. 1 shows a conventional light-emitting device 1A comprising an LED module 2A, a susceptor 30, and a thermal conductive sheet 4 夹 sandwiched between the LED module and the pedestal. The LED module 20 includes a substrate and a plurality of LED dies disposed on the substrate, wherein the substrate can be a junction substrate, a copper substrate, a metal core circuit board (McpcB; meM printed circuit board), and an aluminum oxide aluminum nitride substrate. 'Other ceramic substrates, etc. The LED die can be a variety of LED dies, or high power LED dies. The susceptor 30 may be composed of materials such as Tauman, Oxygen, Nitride, and Metal, such as metal, and the surface may be coated with a glaze paint or the like as insulation and light heat, and the shape of the susceptor 30. , map! For the sake of illustration, it can be formed into various shapes according to the requirements of __, and various heat-dissipating fins or various shapes having a function of being hot can be attached. The thermally conductive sheet 4 is, for example, a G 5 mm thick stone-containing polymer material. However, in such a configuration, there are many microvoids in the interface between the LED module 2〇 and the thermal conductive sheet 4, between the thermal conductive sheet 4〇 and the pedestal 3, and even if a thermal grease is used to fill the microvoids, heat conduction is performed. The effect is still not good, resulting in poor heat dissipation 'cause the temperature of the LED module increases with the increase of the operation time. 201121111 In addition, such a combination cannot form a conductive line on the pedestal. On the other hand, when the susceptor 30 is made of a metal material, although the glaze coating is applied to form an insulating layer, since the thin insulating layer is not resistant to dusting, it cannot be tested by the 4〇〇〇ν high-power test, that is, under the impact of 4000V. Pass the safety test. Therefore, in view of the above problems, the present invention provides a light-emitting device which has a good heat dissipation mechanism and can pass a safety test. 2 shows a light emitting device 100' including a susceptor 2A including a first surface 200a; a conductive circuit layer 300' composed of a plurality of metal layers and formed in the first And a light emitting diode module 4A, comprising a substrate 410 and at least one light emitting diode 45〇 disposed on the substrate, wherein the substrate 410 of the light emitting diode module is surfaced A surface mount (Surfacem_t) method is disposed on the conductive wiring layer 30G. In the embodiment, the pedestal may be composed of a glaze or oxide layer on the surface, or the susceptor may be formed by surface anodizing. In the embodiment, the susceptor is preferably made of a Tauman material, such as alumina, and the illuminating device has high voltage resistance and can withstand a voltage of 4 〇〇〇v or more without illuminating the illuminating device 100. The method for forming the conductive circuit layer 300 includes: forming a first metal layer; forming a second metal layer; forming a patterned film on the second metal layer; and simultaneously forming the first metal layer and the second side a metal layer for patterning the metal layer and the second metal layer; removing the remaining film; and forming a third metal layer only on the pattern of the second metal layer. In the above method, the first metal layer can be formed by a ruthenium plating method, and the surface dry material is Ti or Xiao, and the second metal layer can be formed by the electric 201121111 plating method. The second metal layer is a copper layer, and the formation is performed. The method of the third metal layer can be formed by chemical plating to form a gold layer as the third metal layer. In the embodiment, the film having the pattern is formed on the second metal layer, and the film or the dry film having the film can be formed by a printing method, and in another embodiment, after the photosensitive photoresist is coated The patterned film is formed by performing yellow light, lithography, surname, and the like. For example, FIG. 4 shows a flow paste of a method for forming a conductive wiring layer 3 according to an embodiment of the present invention, and a method for forming a film having a film along with a method of forming a film using a dry film is shown on the right side of FIG. Schematic diagram of the cross-section of the illuminating device. It should be noted that the cross-sectional view of Fig. 4 is only used to clearly indicate the opening of each layer, and the size and thickness ratio thereof are not in accordance with the size ratio of the solid. In Fig. 4, 3〇1 denotes a pedestal, 302 denotes a seed metal layer (i.e., a first metal layer), 3〇3 denotes a copper layer (i.e., a second metal layer), 304 denotes a thin film, and 305 denotes nickel gold (Ni/ Au) layer. Step S310: first sputtering a first metal layer as a seed metal layer, and the seed metal layer may be made of titanium or titanium tungsten material. Then, in step S32: a copper layer is plated to form a second metal layer. Step S33: Forming a patterned film on the second metal layer. Step S340: patterning the first metal layer and the second metal layer by etching. Step S350: removing the residual film. Finally, step S360: surface treatment is performed to form a nickel-gold layer (Ni/Au) by electroless plating (electr〇less plating). The aforementioned surface mount method means that the LED module 201121111 can be fixed on the conductive circuit layer by using a conventional surface mount technology (SMT). For example, a metal line is first formed on a susceptor, and a silver paste is applied to the first surface of the susceptor by screen printing, followed by sintering, and then a solder paste is applied to the steel sheet (stainless steel stencil). After reflow soldering 'removal of the flux, the tin is bonded to the substrate of the led module. Thereby, it is possible to combine the base and the LED module without using a coupling member such as a screw. Furthermore, the aforementioned manufacturing process can be easily automated by setting a positioning point or using a jig. In the embodiment, the junction material of the substrate and the conductive wiring layer of the light-emitting device has a thermal conductivity of 50 W/mK or more. The above conductive wiring layer may be composed of a silver paste and have a -g-height pattern. In the embodiment, the substrate of the light emitting diode module and the conductive circuit layer may include solder. In accordance with another embodiment of the present invention, a method of forming a light-emitting device is disclosed, comprising: providing a pedestal comprising a -first surface and having a three-dimensional shape; forming a plurality of metal layers on a surface-by-surface a layer of a light-emitting diode module, wherein the light-emitting diode module comprises a substrate and a light-emitting diode die disposed on the substrate; and the substrate of the light-emitting diode module is used A surface mount (Surfacem_t) method is disposed on the conductive circuit layer to form the light emitting device. In the embodiment, the susceptor is composed of a material selected from the group consisting of surface oxidation treatment, the surface having an oxide layer, gasification, and nitriding. The susceptor is preferably constructed of an oxidized chain. Since the pedestal of the illuminating device generally has a three-dimensional shape, since the general yellow lithography method only exposes the axial shadow on the flat object, the susceptor 201121111 of the present invention cannot apply the photoresist by using a spin coater. Development, in addition, the exposure machine is generally not suitable for the pedestal having such a three-dimensional shape, so the present invention uses a method of printing a film to form a pattern on the surface of the pedestal, and then by immersing the pedestal in a surname, The conductive line pattern is formed on the upper surface of the pedestal. In one embodiment, the step of forming a conductive trace layer on the first surface, such as the method illustrated in FIG. In one embodiment, when the pedestal of the illuminating device is made of a ceramic material, the thermal conductivity of the interface material between the substrate and the conductive circuit layer is 5 〇 w/mK or more. In the conventional embodiment, when the ceramic base and the substrate of the light-emitting diode module are subjected to a voltage of 4000 V or more, the light-emitting device is not disabled. 3 is a top plan view of the light-emitting device shown in FIG. 2 according to an embodiment of the present invention, wherein 500 represents an MCpCB substrate of an LED module, and 5 〇 1 indicates that the LED die 520 represents a pedestal, and 521 represents a pedestal. Through hole. The illuminating device according to the present invention can be composed of an aluminum metal composed of a surface oxidized or an aluminum metal material having an oxide layer on its surface, and its shape is as shown in FIG. 5(b), FIG. 5(a). The conductive circuit layer formed on the base may have a spiral joint at the bottom of the base, such as a standard contact of E26 or E27 ((iv) w_eap flttings), and the surface of the base end of the base has a guiding connection, and the LED Connected to the lamp holder for connection to a lamp holder, such as a lamp holder for a household. In summary, according to the design of the light-emitting device and the method for forming the same according to the present invention, [S3 12 201121111 by reducing the heat group between the components '^ can be automated in production and reducing the cost' with the LED module and the lamp holder The _thermal conductivity' further improves the heat dissipation of the overall illuminating device and lowers the temperature of the LED junction during operation, thereby improving the LED life and illuminance. In addition, by using the ceramic base, it has the characteristics of high electric resistance, and does not cause the illuminating device to fail when subjected to a voltage of 4 volts or more. In addition, the adhesion can be further improved by the thin film coating, and the heat resistance between the elements or the interface thermal resistance can be further reduced, thereby further improving the heat dissipation efficiency of the light-emitting device. The present invention has been described with respect to the specific embodiments of the present invention, and is not intended to limit the scope of the present invention. It is understood by those skilled in the art that various modifications and changes can be made without departing from the spirit and scope of the invention. . In addition, any of the embodiments or advantages of the present invention are not required to achieve the full purpose or advantages or features of the present invention. In addition, the abstract sections and headings are only used to assist in the search for patent documents and are not intended to limit the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a conventional light-emitting device. 2 shows a schematic diagram of a light emitting device in accordance with an embodiment of the present invention. Figure 3 is a top plan view of the light emitting device of Figure 2 in accordance with an embodiment of the present invention. 4 shows a μ private diagram of a method of forming a conductive wiring layer 300 according to an embodiment of the present invention. The right side of FIG. 4 shows a schematic cross-sectional view of the light-emitting device. Figure 5 (a) is a schematic view showing a conductive wiring layer according to an embodiment of the present invention, and Figure 5 (b) is a schematic view showing a light-emitting device according to an embodiment of the present invention;

U 201121111 【主要元件符號說明】 ίο:發光裝置 20 : LED模組 30 :基座 40 :導熱片 100 :發光裝置 200 :基座 200a :第一表面 300 :導電線路層 400 :發光二極體模組 410 :基板 450 :發光二極體 500 :基板 501 : LED 晶粒 520 :基座 521 :貫通孔U 201121111 [Description of main component symbols] ίο: Light-emitting device 20: LED module 30: Base 40: Thermal conductive sheet 100: Light-emitting device 200: Base 200a: First surface 300: Conductive wiring layer 400: Light-emitting diode mold Group 410: substrate 450: light emitting diode 500: substrate 501: LED die 520: pedestal 521: through hole

Claims (1)

201121111 七、申請專利範圍: 1. 一種形成發光裝置之方法,包括: 提供-基座,其包含-第—表面,且具有立體形狀; 开Μ複數金屬層於該第-麵上,以稍—導電線路層; 提供-發光二極體模組,其中該發光二極體模組包含一基 板及設置於基板上之發光二極體晶粒;以及 使該發光二極體模組的基板藉由表面貼裝(Surfacem〇unt) 法設置於該導電線路層上,以形成該發光裝置。 2. 如申請專利範圍第1項所述之方法,其中該基座係由選 自下列群組之一材質所構成:表面氧化處理之鋁、表面具有氧 化層之鋁、氧化鋁及氮化鋁。 3. 如申請專利範圍第1或2項所述之方法,其中該形成導 電線路層之步驟,包含: 形成一第一金屬層; 形成一第二金屬層; 形成一具有圖案之薄膜於該第二金屬層上; 同時蝕刻該第一金屬層及該第二金屬層,以圖型化該第一 金屬層及該第二金屬層; 除去殘留的該薄膜;以及 僅在該第二金屬層的圖型上,形成一第三金屬層。 15 201121111 4. 如申請專利範圍第3項所述之方法,其中利用濺鍍法, 形成該第一金屬層,其濺鍍靶材為Ti或TiW。 5. 如申請專利範圍第3項所述之方法,其中利用電鍍法, 形成該第二金屬層,該第二金屬層為一銅詹。 6. 如申請專利範圍第3項所述之方法,其中該形成第三金 屬層之方法,係藉由化學鐘法,形成一化錄金層,作為該第三 金屬層。 7. 如申請專利範圍第2或3項所述之方法,其中該表面貼 裝法係藉由焊料(solder paste),回流焊接(reflow soldering) 該基板與該導電線路層。 8. 如申請專利範圍第2或3項所述之方法,其中該導電線 路層具有一配線圖案。 9.如申請專利範圍第1項所述之方法,其中該發光裝置之 該基板與該導電線路層的接面材料之熱傳導率為50 W/mK以 201121111 ίο.如申請專利範圍第丨項所述之方法,其中該基座為陶 究材料所構成,且該基座與該發光二極體模組的基板之間,承 受4000V以上電壓時該發光裝置不會失效。 11. 一種發光裝置,包括: 一基座,其包含一第一表面; 一導電線路層,形成於該第一表面上且由複數金屬層所構 成;以及 一發光二極體模組,其包含一基板及設置於基板上之至少 一發光一極體晶粒,其中該發光二極體模組的基板係以表面貼 裝(Surface mount)法設置於該導電線路層上。 12. 如申請專利範圍第^項所述之發光裝置,其中該基座 係由選自下列群組之一材質所構成:表面氧化處理之鋁、表面 具有氧化層之鋁、氧化鋁及氮化鋁。 13. 如申請專利範圍第u項所述之發光裝置,其中該發光 裝置之該基板與該導電線路層的接面材料之熱傳導率為5〇 W/mK以上。 14. 如申請專利範圍第11項所述之發光裝置,其中該導電 線路層係依序層合種子金屬層、銅層、化錄金層所構成,具有 [S] 17 2〇ll2lln 一配線圖案。 15.如申請專利範圍第14項所述之發光裝置,其中該導電 線路層之製作方法,包含: 賤鍍一第一金屬層’作為種子金屬層,其中該種子金屬層 為鈦或鈦鎢材料所成; 電鍍一銅層,形成一第二金屬層; 形成一具有圖案之薄膜於第二金屬層,藉由钱刻使該第— 金屬層及該第二金屬層同時圖型化後,除去殘留的該薄膜;以 及 進行表面處理,形成化鎳金層(Ni/Au)。 16. 如申請專利範圍第u項所述之發光裝置,其中該發光 二極體模組的基板與該導電線路層之間,包含焊錫。 17. 如申請專利範圍第u項所述之發光裝置,其中該基座 為陶瓷材料所構成’且該基座與該發光二極體模組的基板之 間’承受4000V以上電壓時該發光裝置不會失效。201121111 VII. Patent application scope: 1. A method for forming a light-emitting device, comprising: providing a pedestal comprising a - surface and having a three-dimensional shape; opening a plurality of metal layers on the first surface to slightly a light-emitting diode module, wherein the light-emitting diode module comprises a substrate and a light-emitting diode die disposed on the substrate; and the substrate of the light-emitting diode module is used A surface mount method is disposed on the conductive circuit layer to form the light emitting device. 2. The method of claim 1, wherein the base is made of a material selected from the group consisting of surface oxidized aluminum, aluminum having an oxide layer on the surface, aluminum oxide, and aluminum nitride. . 3. The method of claim 1 or 2, wherein the forming the conductive circuit layer comprises: forming a first metal layer; forming a second metal layer; forming a patterned film on the first On the two metal layers; simultaneously etching the first metal layer and the second metal layer to pattern the first metal layer and the second metal layer; removing the remaining film; and only in the second metal layer On the pattern, a third metal layer is formed. The method of claim 3, wherein the first metal layer is formed by sputtering, and the sputtering target is Ti or TiW. 5. The method of claim 3, wherein the second metal layer is formed by electroplating, and the second metal layer is a copper. 6. The method of claim 3, wherein the method of forming the third metal layer forms a gold layer as the third metal layer by a chemical clock method. 7. The method of claim 2, wherein the surface mount method reflow solders the substrate and the conductive wiring layer by a solder paste. 8. The method of claim 2, wherein the conductive wiring layer has a wiring pattern. 9. The method according to claim 1, wherein the thermal conductivity of the interface material of the substrate and the conductive circuit layer of the light-emitting device is 50 W/mK to 201121111 ίο. In the method, the susceptor is made of a ceramic material, and the illuminating device does not fail when the susceptor and the substrate of the illuminating diode module are subjected to a voltage of 4000 V or higher. 11. A light emitting device, comprising: a susceptor including a first surface; a conductive circuit layer formed on the first surface and composed of a plurality of metal layers; and a light emitting diode module including a substrate and at least one light-emitting monopole die disposed on the substrate, wherein the substrate of the light-emitting diode module is disposed on the conductive circuit layer by a surface mount method. 12. The illuminating device of claim 4, wherein the pedestal is made of a material selected from the group consisting of surface oxidized aluminum, aluminum having an oxide layer on the surface, aluminum oxide, and nitriding. aluminum. 13. The illuminating device of claim 5, wherein a thermal conductivity of the interface material of the substrate and the conductive circuit layer of the illuminating device is 5 〇 W/mK or more. 14. The illuminating device of claim 11, wherein the conductive circuit layer is formed by sequentially laminating a seed metal layer, a copper layer, and a gold layer, and has a [S] 17 2 〇 ll 2 lln wiring pattern. . The illuminating device of claim 14, wherein the conductive circuit layer comprises: 贱 plating a first metal layer 'as a seed metal layer, wherein the seed metal layer is titanium or titanium tungsten material Forming a copper layer to form a second metal layer; forming a patterned film on the second metal layer, and simultaneously removing the first metal layer and the second metal layer by patterning The film remains; and a surface treatment is performed to form a nickel-gold layer (Ni/Au). 16. The illuminating device of claim 5, wherein the substrate of the illuminating diode module and the conductive circuit layer comprise solder. 17. The illuminating device of claim 5, wherein the pedestal is made of a ceramic material and the illuminating device is subjected to a voltage of 4000 V or more between the pedestal and the substrate of the illuminating diode module Will not expire.
TW100102331A 2011-01-07 2011-01-21 Lighting device and method for forming the same TWI362774B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW100102331A TWI362774B (en) 2011-01-21 2011-01-21 Lighting device and method for forming the same
KR1020110091138A KR101242218B1 (en) 2011-01-07 2011-09-08 Lighting device and method for forming the same
US13/229,127 US20120175664A1 (en) 2011-01-07 2011-09-09 Lighting device and method for forming the same
EP11181518A EP2475232A1 (en) 2011-01-07 2011-09-15 Lighting device and method for forming the same
CN2011103023232A CN102593278A (en) 2011-01-07 2011-10-09 Light emitting device and method of forming the same
JP2011228179A JP2012146952A (en) 2011-01-07 2011-10-17 Light-emitting device and formation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100102331A TWI362774B (en) 2011-01-21 2011-01-21 Lighting device and method for forming the same

Publications (2)

Publication Number Publication Date
TW201121111A true TW201121111A (en) 2011-06-16
TWI362774B TWI362774B (en) 2012-04-21

Family

ID=45045438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102331A TWI362774B (en) 2011-01-07 2011-01-21 Lighting device and method for forming the same

Country Status (1)

Country Link
TW (1) TWI362774B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369851A (en) * 2012-04-09 2013-10-23 戴培钧 Printed circuit board and manufacturing method thereof
TWI711193B (en) * 2014-12-25 2020-11-21 日商大日本印刷股份有限公司 Substrates for LED components, LED packaging modules, and LED display devices obtained by using them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369851A (en) * 2012-04-09 2013-10-23 戴培钧 Printed circuit board and manufacturing method thereof
TWI711193B (en) * 2014-12-25 2020-11-21 日商大日本印刷股份有限公司 Substrates for LED components, LED packaging modules, and LED display devices obtained by using them

Also Published As

Publication number Publication date
TWI362774B (en) 2012-04-21

Similar Documents

Publication Publication Date Title
TWI497008B (en) Lighting device for direct and indirect light
US8256113B2 (en) Method of manufacturing an electrically driven LED lamp assembly
JP2011193015A (en) Anodized metal substrate module
JP2011139008A (en) Chip-on-board metal substrate structure having heat and electricity conduction paths separated
TWI358800B (en)
JP2007317701A (en) Substrate for light source, and illuminator employing it
TW201526733A (en) Method of forming conductive traces on insulated substrate
JP2004119515A (en) Light emitting diode display module with high heat radiation and its substrate
TW201117683A (en) A LED array board
US20120175664A1 (en) Lighting device and method for forming the same
TW200900628A (en) Manufacturing method of heat-dissipating structure of high-power LED lamp seat and product thereof
WO2012134305A1 (en) An assembly of light emitting diodes
TW201121111A (en) Lighting device and method for forming the same
KR101678337B1 (en) Printed circuit board sinking heat and reflection light for led
KR20120100303A (en) Printed circuit board, light emitting module having the same, lighting unit having the light emitting unit and method of manufacturing the light emitting mudule
GB2480428A (en) PCB with metal core having extended heatsink bosses for mounting LEDs
TW201429009A (en) Light emitting diode device and a method for manufacturing heat dissipating substrate
TWI555242B (en) Mounting base for electronic device, method for manufacturing the same and lighting assembly having the same
CN105810804A (en) LED (Light Emitting Diode) light emitting device, LED light source substrate and manufacturing method thereof
TWI446601B (en) Lighting device and method for forming the same
JP2011124386A (en) Circuit board, high heat radiation connector, method for manufacturing the same, and circuit module with connector
TWM311116U (en) Improved PCB structure of LED carrier
TWI580084B (en) A light emitting assembly and manufacturing method thereof
CN103426993A (en) Electronic module, illuminating device and method for manufacturing electronic module
TWM575254U (en) Ceramic heat dissipation device and lamp apparatus therewith

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees