TW201119074A - Thin film solar cell and manufacturing method thereof - Google Patents

Thin film solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201119074A
TW201119074A TW098139185A TW98139185A TW201119074A TW 201119074 A TW201119074 A TW 201119074A TW 098139185 A TW098139185 A TW 098139185A TW 98139185 A TW98139185 A TW 98139185A TW 201119074 A TW201119074 A TW 201119074A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
thin film
group
film solar
Prior art date
Application number
TW098139185A
Other languages
Chinese (zh)
Inventor
Chien-Pang Yang
Chih-Hung Yeh
Original Assignee
Nexpower Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexpower Technology Corp filed Critical Nexpower Technology Corp
Priority to TW098139185A priority Critical patent/TW201119074A/en
Publication of TW201119074A publication Critical patent/TW201119074A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

This invention relates to a thin ilm solar cell and a manufacturing method thereof. The method of manufacturing the thin film solar cell comprises the steps of: providing a substrate; forming a barrier layer on the substrate; forming a back electrode layer on the barrier layer; forming at least a precursor layer on the back electrode layer, wherein the precursor layer comprises at least Cu, In and Ga; providing an alkali layer on the surface of the precursor layer, wherein the alkali layer is an alkali metal or an alkali metal compound wherein the alkali metal is selected from the group consisting of Li, Na, K, Rb, and Cs; providing selenization to diffuse between the precursor layer and the alkali layer so as to form a absorber layer where there is an atomic percentage concentration of the alkali metal in the absorber layer between 0.01% to 10%; forming at least a buffer layer on the absorber layer; and forming at least a front electrode layer on the buffer layer.

Description

201119074 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種薄膜疊層太陽能電池及其製作方法,特別是有關於 形成具有Cu(In,Ga)Se2黃銅礦結構之光吸收層’更進一步在此黃銅礦結構之 表面形成具有Cu(In,Ga)S2結構之光吸收層。 【先前技術】 太陽能電池主要是利用光伏效應(photovoltaic effect),將光能吸收^灸直 接轉換成電能的一種P/N接面(p-n junction)的半導體結構。近年來,為因靡 太電池薄型化的要求,薄膜疊層太陽能電池成為現今之發展趨勢。薄 膜疊層太陽電池最大優點就是生產成本較低,然其效率和穩定度的問題也 尚待改善。 目前薄膜疊層太陽能電池的光吸收層材料多以非晶石夕、銅銦砸 (CuInSe2,又稱CIS)、銅銦鎵iS(Cu(In,Ga)Se2,又稱CIGS)等為主,原因在 於其為直接能隙(directbandgap)的半導體材料,特別是其能隙值涵蓋大部分 之太陽光譜,具有相當高的光吸收係數,並可藉由調變本身的組成來得到 P/N接面等優點。 銅銦硒薄膜疊層太陽能電池係由複數個單一薄膜層堆疊而成,依序包 括基板'背電極層、光吸收層、緩衝層、前電極層,光吸收層本身具黃鋼 礦結構(Chalcopyrite),層於I-m_VI族化合物,具有非常優良的抗干擾、耐 輻射能力,因此使用壽命較長。而銅銦鎵硒薄臈疊層太陽能電池則是在鋼 銦硒薄膜疊層太陽能電池的基礎上發展而來,係利用鎵元素取代部分的銦 元素,且隨著銦鎵含量的不同,其光吸收範圍可從丨〇2eV至i 68eV之間, 發光效率較銅銦硒薄膜疊層太陽能電池更佳。 目前製作銅銦硒薄膜疊層太陽能電.池或是銅銦鎵硒薄膜疊層太陽能電 池的光吸收層製法主要有濺鍍、蒸鍍、印刷塗佈與電鍍等四種。有習知技 術先以銅、銦、鎵濺鍍成前驅物層,再以硒化形成光吸收層;或有採用鋼、 201119074 銦、鎵、硒共蒸鍍直接形成光吸收層。 再者’不論是銅銦硒薄膜疊層太陽能電池或是銅銦鎵硒薄膜疊層太陽 能電池其所採用之銦元素或鎵元素的貴金屬成本過高,不利大量生產,且 光及收層與緩衝層間也有能帶不連續gap discontinuity)的問題,實有必 要加以改良。 【發明内容】201119074 VI. Description of the Invention: [Technical Field] The present invention relates to a thin film laminated solar cell and a method of fabricating the same, and more particularly to forming a light absorbing layer having a Cu(In,Ga)Se2 chalcopyrite structure Further, a light absorbing layer having a Cu(In,Ga)S2 structure is formed on the surface of the chalcopyrite structure. [Prior Art] A solar cell is mainly a P/N junction semiconductor structure that utilizes a photovoltaic effect to convert light energy into moxibustion directly into electrical energy. In recent years, thin-film stacked solar cells have become the trend of development due to the demand for thin batteries. The biggest advantage of thin film laminated solar cells is the low production cost, but the problems of efficiency and stability have yet to be improved. At present, the light absorbing layer materials of thin film stacked solar cells are mainly composed of amorphous ceramsite, copper indium bismuth (CuInSe2, also known as CIS), and copper indium gallium iS (Cu(In,Ga)Se2, also known as CIGS). The reason is that it is a direct bandgap semiconductor material, especially its energy gap value covers most of the solar spectrum, has a relatively high light absorption coefficient, and can obtain P/N connection by the composition of the modulation itself. Advantages such as face. The copper indium selenide thin film solar cell is formed by stacking a plurality of single thin film layers, and sequentially includes a substrate 'back electrode layer, a light absorbing layer, a buffer layer and a front electrode layer, and the light absorbing layer itself has a yellow steel ore structure (Chalcopyrite) ), layered in the I-m_VI compound, has very good anti-interference, radiation resistance, and therefore a long service life. The copper indium gallium selenide thin tantalum solar cell is developed on the basis of the steel indium selenide thin film stacked solar cell, which uses a gallium element to replace part of the indium element, and the light is different with the indium gallium content. The absorption range can be from 丨〇2eV to i 68eV, and the luminous efficiency is better than that of the copper indium selenide thin film laminated solar cell. At present, the production method of the light absorption layer of the copper indium selenide thin film laminated solar cell or the copper indium gallium selenide thin film solar cell mainly includes sputtering, evaporation, printing coating and electroplating. Conventional techniques firstly use copper, indium, and gallium to form a precursor layer, and then selenide to form a light absorbing layer; or a steel, 201119074 indium, gallium, and selenium co-evaporation directly form a light absorbing layer. Furthermore, the cost of precious metals such as indium or gallium used in copper indium selenide thin film stacked solar cells or copper indium gallium selenide thin film stacked solar cells is too high, which is unfavorable for mass production, and light and layering and buffering. There are also problems with discontinuous gap discontinuity between layers, and it is necessary to improve them. [Summary of the Invention]

為解決先前技術之缺失,本發明提供一種薄膜疊層太陽能電池及其製 造方法。此薄膜疊層太陽能電池的製造方法,包括提供__基板;形成一擴 散阻礙層於基板上;形成一背電極層於擴散阻礙層上;形成至少一前趨物 層於背電極層上’射前趣層至少包含銅、峨料元素;提供一驗金 屬層於前趨物層社表面;提供—雜反應製程,使前趨騎與驗金屬層 共同形成具有黃轉Cu(In,Ga)Se2g構之光做層,制是此光吸收層之表 面具有CU(In,Ga)S2結構,且光吸收層的驗金屬原子百分濃度介於〇 〇1%至 10% ;形成至少-緩衝層於光吸收層上;以及形成至少_前電極層於緩衝層In order to solve the deficiencies of the prior art, the present invention provides a thin film laminated solar cell and a method of fabricating the same. The method for manufacturing the thin film laminated solar cell comprises: providing a substrate; forming a diffusion barrier layer on the substrate; forming a back electrode layer on the diffusion barrier layer; forming at least one precursor layer on the back electrode layer The pre-attribute layer contains at least copper and tantalum elements; provides a metal layer on the surface of the precursor layer; provides a heterogeneous reaction process to form a yellow-transformed Cu(In,Ga)Se2g together with the precursor and the metal layer The light is made of a layer having a CU(In,Ga)S2 structure on the surface of the light absorbing layer, and the metal atomic concentration of the light absorbing layer is between 〇〇1% and 10%; forming at least a buffer layer On the light absorbing layer; and forming at least the _ front electrode layer on the buffer layer

據此’本發明之主要目的在於提供一種薄膜疊層太陽能電池及其製造 方法’藉由-雜製程可有效控制光魏層中驗金屬的含量,幫助光吸收 層晶韓之成長’贼歓晶粒之晶體,減少晶界駐、降低缺陷。 本發明之另-目的在於提供一種薄膜#層太陽能電池及其製造方法, 藉由光吸㈣表_ Cu(In,Ga)S2結構提粉缝層祕,增加開路電壓 (〇penC_itV〇ltage) ’減緩緩衝層與光吸收層間能隙不連續的問題進 升轉換效率。 此外,本發明提供另-種薄膜疊詹太陽能電池及其製造方法。此薄膜 池的製造綠,包括提供—基板;軸—紐贿層於基板 上’形成-背電極層於擴散阻礙層上;提供—共蒸健程以形成一且有黃 201119074 銅礦結構Cu(In,Ga)Se2之光吸收層於背電極層;提供一鹼金屬硫化物以形成 於光吸收層上;提供一退火處理製程,使得光吸收層之表面形成一Accordingly, the main object of the present invention is to provide a thin film laminated solar cell and a method for fabricating the same, which can effectively control the content of metal in the photo-weaving layer by using a heterogeneous process, and help the growth of the light-absorbing layer. The crystal of the grain reduces the grain boundary and reduces defects. Another object of the present invention is to provide a thin film #层 solar cell and a method for fabricating the same, which can increase the open circuit voltage (〇penC_itV〇ltage) by using a light-absorbing (four) meter_Cu(In,Ga)S2 structure to extract a powder layer. The problem of slowing the energy gap between the buffer layer and the light absorbing layer is slowed down. Further, the present invention provides another film stacking solar cell and a method of manufacturing the same. The manufacturing of the film pool is green, including providing a substrate; the shaft-brick layer is formed on the substrate to form a back electrode layer on the diffusion barrier layer; and a co-steaming process is provided to form a yellow 201119074 copper ore structure Cu ( a light absorbing layer of In, Ga)Se2 is provided on the back electrode layer; an alkali metal sulfide is provided to be formed on the light absorbing layer; and an annealing treatment process is provided to form a surface of the light absorbing layer

Cu(In,Ga)S2結構;形成至少一緩衝層於光吸收層上;以及形成至少一前電 極層於緩衝層上。 據此,本發明之主要目的在於提供一種薄膜疊層太陽能電池及其製造 方法’藉ά提供共蒸雜程及退域理製程,可有效控制歧收种驗金 屬的3畺,幫助光吸收層晶體之成長,形成較大晶粒之晶體,減少晶界產 生、降低缺陷。 本發明之另一目的在於提供一種薄膜疊層太陽能電池及其製造方法, 藉由光吸收層表面的Cu(In,Ga)S2結構提升光吸收層能隙,增加開路電壓 (opencircuitv〇ltage),減緩緩衝層與光吸收層間能隙不連續的問題,進而提 升轉換效率。 【實施方式】 由於本發明揭露—種_疊層太陽能電池及其製作方法,其中所利用 之太陽能電絲電轉換原理,6為_技術領域具有通常知識者所能明 瞭’故以下文中之說明,不再作完整描述。同日夺,以下文中所對昭之圖式, 係表達與本發_财關之鱗示意,縣亦不需要依據 ^ 製,盍先敘明。 财 依據上述目的’本發明提供第—較佳實補,為—種触疊層太陽 電池製造方法,請分別參考第i圏與第Μ圖,關於其製造方法係如下步驟 所述: 步驟ill:提供級u,其巾在本實關之基板魏用納玻璃基板 (SLG)。 步驟心形成擴散阻礙層12於上述基板u上,其中在本 散阻礙層係採用二氧化矽(Si〇2)。 j之擴 201119074 神113:職f電極層13社絲散畴層12上,其巾魏極層i3 的材料可以是鉬(Mo)、銀(Ag)、紹㈣、絡⑼、欽(Ή)、錄㈣或金(Μ), 亦可以是二氧化錫(Sn〇2)、氧化銦錫(ITO)、氧化鋅(Zn〇)、氧化辞辦^〇)、 氧化鋅鎵(GZO)、氧化鋅硼(BZO)或氧化鋅銦(IZ〇)。 步驟114 :形成前趨物層14於上述背電極層13上,前趨物層14至少 包含銅(Οι)、銦(In)與鎵(Ga)等元素,亦可以進一步包括硒(Se)、氧(〇)、銀 (Ag)或鋁(A1)等元素。在本實施例之前趨物層係包含銅(Cu)、銦(In)與鎵(Ga)。 步驟115 :提供鹼金屬層15於上述前趨物層14的表面,鹼金屬層15 • 可以包含有鈉(Na)、鉀(κ)、鋰(Li)、铷(Rb)或鉋(Cs)等鹼金屬元素或其化合 物,或是如硫化鈉(NaA)'硫化鋰(Lij)、硫化鉀(K2S)、硫化铷或硫 化铯(CssS)等硫化物。在本實施例之鹼金屬層15係採用屬於鹼金屬之一的 鈉(Na),藉由加入適量鈉(Na)鹼金屬層,有助於爾後形成光吸收層16的晶 體成長。為了控制鈉(Na)的含量,一般先前技術乃使用含鈉擴散阻礙層之玻 璃,以在背電極層上沈積一鈉的化合物層,並於其上沈積光吸收層或其前 驅物,如此可形成具較大晶粒之光吸收層。然,本發明則是在前趨物層14 上形成鈉(Na)鹼金屬層15,適量控制鈉、鹼金屬元素或其化合物的含量, 可幫助光吸收層晶體之成長,形成較大晶粒之晶體,並減少晶界產生與缺 ® 陷降低。 步驟116 :提供一碼化反應製程,藉由提供栖前驅物在鹼金屬層15_鈉 (Na)上,使得硒前驅物可從上述前趨物層14的上表面擴散至前趨物層14 的内部以進行硒化反應。硒化反應後使得前趨物層14與鹼金屬層15轉換 成具有黃銅礦Cu(In,Ga)Se2結構161之光吸收層16 »其中硒化反應製程所 使用之砸前驅物可以是栖化氫(H2Se)、栖(Se)、硒蒸氣(Se vap〇r)或二乙基硒 (diethylselenide)。請參考第2B圖,若使用之鹼金屬層15為硫化物,如硫化 鈉NazS(亦可以是硫化鋰、硫化鉀、硫化铷或硫化铯),則袍化反應後使得 前趨物層14與鹼金屬層15轉換成具有表面為Cu(In,Ga)S2結構162之黃銅 201119074 礦Cu(In’Ga)Se2結構161之光吸收層16。此外,不論第2A圖或第2B圖, 光吸收層16具有鹼金屬-鈉(Na)原子百分濃度介於0.01%至1〇%之間。 步驟117 :形成緩衝層π於光吸收層16上,緩衝層π的材料可以是 硫化鎘(CdS)、硫化鋅(ZnS)、琉化銦(InS)、硒化鎘(CdSe)、硒化辞(znSe)、 砸化銦(InSe)、氧化鈦(Ti〇2)、氡化錫(sn〇2)、氧化辞(zn〇)或氧化鋅鎮^2〇) 等等。在本實施例緩衝層係採用硫化鎘(CdS)。 步驟118 :形成至少前電極層18於緩衝層π上,前電極層丨8的材料 可以疋一氧化錫(Sn〇2) '氧化銦錫(ITO) '氧化鋅(ZnO)、氧化辞紹(AZO)、 氧化鋅鎵(GZO)、氧化鋅硼(BZO)或氧化鋅銦(IZO)等等。在本實施例之前電 極層係採用氧化鋅鋁(AZO)。 本發明提供第二較佳實施例,為另一種薄膜疊層太陽能電池製造方 法,請分別參考第3-4圖,關於其製造方法係如下步驟所述: 步驟211 :提供基板21,其中在本實施例之基板係採用鈉玻璃基板 (SLG) 〇 步驟212 :形成擴散阻礙層22於基板21上,其中在本實施例之擴散阻 礙層係採用二氧化矽(Si02)。 步驟213 :形成背電極層23於擴散阻礙層22上,其中背電極層23的 材料可以是銦(Mo)、銀(Ag)、鋁(A1)、鉻(Cr)、鈦(Ti)、鎳(Ni)或金(Au),亦 可以是二氧化錫(Sn02)、氧化銦錫(ITO)、氧化鋅(ZnO)、氧化鋅鋁(AZO)、 氧化辞鎵(GZO)、氧化鋅硼(BZO)或氧化鋅銦(IZO)。 步驟214 :提供一共蒸鍍製程,以在背電極層23上形成一具有黃銅礦 Cu(In,Ga)Se2結構241之光吸收層24 ; 步驟215 :提供鹼金屬硫化物25沉積於光吸收層241的上表面,驗金 屬硫化物25可以是硫化鈉(N32S)、硫化鋰(Li2S)、硫化鉀(K2S)、硫化伽(Rb2S) 或硫化铯(Csj)等硫化物。值得注意的是,由於進行上一步驟之共蒸鑛製程 時,光吸收層241之溫度較高,特別是當進行步驟215之後,如果此時光 201119074 吸收層241仍然維持高溫時,則光吸收層241之表面即可自然形成具有 Cu(In,Ga)S2結構242,因此可略過下一步驟216之退火熱處理。反之,當進 行步驟215之後’但光吸收層241已降温至某一程度,則此時必須進行下 一步驟216 :退火熱處理。此外,在本實施例所用之鹼金屬硫化物乃係為 硫化鈉(Na2S)。 步驟216 :提供一退火熱處理製程,使得製程溫度再次提升,因此黃鋼 礦Cu(In,Ga)Se2結構241之光吸收層24可進一步在其表面形成具有 Cu(In,Ga)S2結構242之光吸收層26。a Cu(In,Ga)S2 structure; forming at least one buffer layer on the light absorbing layer; and forming at least one front electrode layer on the buffer layer. Accordingly, the main object of the present invention is to provide a thin film laminated solar cell and a manufacturing method thereof, which can provide a co-evaporation process and a retreat process, and can effectively control the metal entanglement of the seed collection and help the light absorbing layer. The growth of crystals forms crystals of larger crystal grains, which reduces grain boundary generation and reduces defects. Another object of the present invention is to provide a thin film laminated solar cell and a method for fabricating the same, which can increase the energy absorption layer energy gap and increase the open circuit voltage (opencircuitv〇ltage) by the Cu(In,Ga)S2 structure on the surface of the light absorbing layer. The problem of discontinuous energy gap between the buffer layer and the light absorbing layer is slowed down, thereby improving conversion efficiency. [Embodiment] The present invention discloses a solar cell and a method for fabricating the same, and the solar electric wire electrotransformation principle used therein is 6 which is known to those skilled in the art, so that the following description will be made. No longer a full description. On the same day, the following diagrams show the pattern of the show, and the expressions are marked with the scale of the hair of the present, and the county does not need to be based on the system. According to the above purpose, the present invention provides a first preferred embodiment, which is a method for manufacturing a touch-stack solar cell, and refers to the first and second drawings, respectively, and the manufacturing method thereof is as follows: Step ill: A grade u is provided, and the towel is on the substrate of the real use of the Weiner glass substrate (SLG). The step core forms a diffusion barrier layer 12 on the above substrate u, wherein ruthenium dioxide (Si 〇 2) is used in the dispersion barrier layer. j expansion 201119074 God 113: job f electrode layer 13 on the social domain layer 12, the material of the towel Wei layer i3 can be molybdenum (Mo), silver (Ag), Shao (four), network (9), Qin (Ή) , (4) or gold (Μ), may also be tin dioxide (Sn〇2), indium tin oxide (ITO), zinc oxide (Zn〇), oxidized 〇 〇 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Zinc boron (BZO) or zinc indium oxide (IZ〇). Step 114: forming a precursor layer 14 on the back electrode layer 13 . The precursor layer 14 includes at least elements such as copper (Ind), indium (In), and gallium (Ga), and may further include selenium (Se). An element such as oxygen (〇), silver (Ag) or aluminum (A1). The precursor layer before this embodiment contains copper (Cu), indium (In), and gallium (Ga). Step 115: providing an alkali metal layer 15 on the surface of the precursor layer 14, the alkali metal layer 15 may contain sodium (Na), potassium (κ), lithium (Li), ruthenium (Rb) or planer (Cs) An alkali metal element or a compound thereof, or a sulfide such as sodium sulfide (NaA)' lithium sulfide (Lij), potassium sulfide (K2S), barium sulfide or barium sulfide (CssS). In the alkali metal layer 15 of the present embodiment, sodium (Na) which is one of the alkali metals is used, and by adding an appropriate amount of the sodium (Na) alkali metal layer, it is possible to form the crystal growth of the light absorbing layer 16 later. In order to control the content of sodium (Na), the prior art generally uses a glass containing a sodium diffusion barrier layer to deposit a layer of a compound of sodium on the back electrode layer and deposit a light absorbing layer or precursor thereof thereon. A light absorbing layer having a larger crystal grain is formed. However, in the present invention, a sodium (Na) alkali metal layer 15 is formed on the precursor layer 14, and an appropriate amount of sodium, an alkali metal element or a compound thereof is controlled to help the growth of the light absorbing layer crystal to form a large crystal grain. The crystals are reduced and the grain boundary is reduced and the defect is reduced. Step 116: Providing a code formation reaction process for diffusing the selenium precursor from the upper surface of the precursor layer 14 to the precursor layer 14 by providing a precursor to the alkali metal layer 15_sodium (Na). The inside is used for the selenization reaction. After the selenization reaction, the precursor layer 14 and the alkali metal layer 15 are converted into a light absorbing layer 16 having a chalcopyrite Cu(In,Ga)Se2 structure 161. The ruthenium precursor used in the selenization reaction process may be a habitat. Hydrogen (H2Se), habitat (Se), selenium vapor (Se vap〇r) or diethyl selenide (diethylselenide). Please refer to FIG. 2B. If the alkali metal layer 15 used is a sulfide such as sodium sulfide NazS (which may also be lithium sulfide, potassium sulfide, barium sulfide or barium sulfide), the precursor layer 14 is caused by the gating reaction. The alkali metal layer 15 is converted into a light absorbing layer 16 having a brass 201119074 ore Cu(In'Ga)Se2 structure 161 having a surface of Cu(In,Ga)S2 structure 162. Further, regardless of the 2A or 2B, the light absorbing layer 16 has an alkali metal-sodium (Na) atomic percentage of between 0.01% and 1%. Step 117: forming a buffer layer π on the light absorbing layer 16. The material of the buffer layer π may be cadmium sulfide (CdS), zinc sulfide (ZnS), indium antimonide (InS), cadmium selenide (CdSe), selenium. (znSe), indium telluride (InSe), titanium oxide (Ti〇2), antimony telluride (sn〇2), oxidized (zn〇) or zinc oxide (2). In the buffer layer of this embodiment, cadmium sulfide (CdS) is used. Step 118: Form at least the front electrode layer 18 on the buffer layer π, and the material of the front electrode layer 丨8 may be bismuth tin oxide (Sn〇2) 'indium tin oxide (ITO) 'zinc oxide (ZnO), oxidized resor AZO), zinc gallium oxide (GZO), zinc oxide boron (BZO) or zinc indium oxide (IZO), and the like. Prior to this embodiment, the aluminum oxide layer (AZO) was used for the electrode layer. The present invention provides a second preferred embodiment, which is another method for manufacturing a thin film laminated solar cell. Please refer to FIG. 3-4, respectively. The manufacturing method is as follows: Step 211: Providing a substrate 21, wherein The substrate of the embodiment is a soda glass substrate (SLG). Step 212: A diffusion barrier layer 22 is formed on the substrate 21. The diffusion barrier layer of the present embodiment is made of cerium oxide (SiO 2 ). Step 213: forming a back electrode layer 23 on the diffusion barrier layer 22, wherein the material of the back electrode layer 23 may be indium (Mo), silver (Ag), aluminum (A1), chromium (Cr), titanium (Ti), nickel. (Ni) or gold (Au), which may also be tin dioxide (Sn02), indium tin oxide (ITO), zinc oxide (ZnO), zinc aluminum oxide (AZO), gallium oxide (GZO), zinc oxide boron ( BZO) or zinc indium oxide (IZO). Step 214: providing a total evaporation process to form a light absorbing layer 24 having a chalcopyrite Cu(In,Ga)Se2 structure 241 on the back electrode layer 23; Step 215: providing alkali metal sulfide 25 deposition on the light absorption On the upper surface of the layer 241, the metal sulfide 25 may be a sulfide such as sodium sulfide (N32S), lithium sulfide (Li2S), potassium sulfide (K2S), sulphide (Rb2S) or strontium sulfide (Csj). It is worth noting that, due to the co-steaming process of the previous step, the temperature of the light absorbing layer 241 is relatively high, especially after performing step 215, if the light absorbing layer 241 is still maintained at a high temperature at this time, the light absorbing layer The Cu(In,Ga)S2 structure 242 can be naturally formed on the surface of 241, so that the annealing heat treatment of the next step 216 can be skipped. On the other hand, after the step 215 is performed but the light absorbing layer 241 has been cooled to a certain extent, then the next step 216: annealing heat treatment must be performed. Further, the alkali metal sulfide used in the present embodiment is sodium sulfide (Na2S). Step 216: providing an annealing heat treatment process, so that the process temperature is raised again, so the light absorbing layer 24 of the Cu(In,Ga)Se2 structure 241 of the loess may further form a Cu(In,Ga)S2 structure 242 on the surface thereof. Light absorbing layer 26.

步驟217 :形成至少緩衝層27於光吸收層26上,緩衝層27的材料可 以是硫化鑛(CdS)、硫化辞(ZnS)、疏化銦(InS)、砸化録(CdSe)、晒化辞(ZnSe)、 硒化銦(InSe)、氧化鈦(Ti〇2)、氧化錫伽㈨、氧化辞(Zn〇)或氧化辞鎂(mz〇) 等等。在本實施例緩衝層係採用硫化鎘(Cds)。 步驟218 :形成至少前電極層28於緩衝層27上,前電極層28的材料 可以是二氧化錫(Sn〇2)、氧化銦錫(ITO)、氧化鋅(Zn〇)、氧化辞铭(az〇)、 氧化辞鎵(GZO)、氧化辞_z〇)或氧化辞銦(IZ〇)等等。在本實施例之前電 極層係採用氧化鋅鋁(AZO)。 本發明提供第三較佳實施例,為一種_太陽能電池,其中此薄膜太 陽能電池之製作方法,請參考第i與从_犯圖,係根據前述第一較佳實施 例製作而形忐去。 ^發明提供第四較佳實施例,為—種_太陽能電池,其中此薄膜太 月^池之製作方法,請參考第3_4圖,係根據前述第二較佳實施例製作而 形成者。 2所述勒本發明之較佳實關,並非用嫌定本發明之權利範 此二二ϋ描述’對於相關技術領域之專門人士應可明瞭及實施,因 爾输峨物,均應包含 201119074 【圖式簡單說明】 第1圖為一流程圖’係根據本發明提出 .^. 陽能電池哺作方法。 之第-較佳實施例’為薄膜太 第2A圖為一示意圖,係根據本 ,擔女 陽能電池的製作流p 咏出之第-較佳實施例’為郝太 第2B圖為一示意圖’係根據本發 .. 陽能電池的製慨程。 叫出之第—健實施例,為顏太 ^圖為-流程圖’魏據本發明提出之第二較佳實施例,為薄膜太 %月匕電池的製作方法。 第4圖為—示賴’係根據本發明提出之第二較 例,為薄膜太 陽能電池的製作流程。 【主要元件符號說明】 116、117 ' 118、211、212、213、214、 步驟 111、112、113、114、115 215、216、218、218 基板11、21 擴散阻礙層12、22 背電極層13、23 前趨物層14 鹼金屬層15 光吸收層16、24、26 Cu(In,Ga)Se2 結構 161、241 Cu(In,Ga)S2 結構 162、242 緩衝層17、27 前電極層18、28 鹼金屬硫化物25Step 217: forming at least a buffer layer 27 on the light absorbing layer 26. The material of the buffer layer 27 may be sulfide ore (CdS), sulphide (ZnS), indium thinning (InS), bismuth (CdSe), and drying. (ZnSe), indium selenide (InSe), titanium oxide (Ti〇2), tin oxide gamma (nine), oxidized (Zn) or oxidized magnesium (mz〇) and the like. In the buffer layer of this embodiment, cadmium sulfide (Cds) is used. Step 218: Form at least the front electrode layer 28 on the buffer layer 27. The material of the front electrode layer 28 may be tin dioxide (Sn〇2), indium tin oxide (ITO), zinc oxide (Zn〇), and oxidized words ( Az〇), oxidized gallium (GZO), oxidized _z〇) or oxidized indium (IZ〇) and the like. Prior to this embodiment, the aluminum oxide layer (AZO) was used for the electrode layer. The present invention provides a third preferred embodiment, which is a solar cell, wherein the method for fabricating the thin film solar cell, please refer to the first and second embodiments, which are fabricated according to the first preferred embodiment described above. The invention provides a fourth preferred embodiment, which is a solar cell, wherein the method for fabricating the film is described in the third embodiment, which is formed according to the second preferred embodiment described above. 2 The preferred embodiment of the present invention is not intended to describe the present invention. The description of the present invention should be clarified and implemented by a person skilled in the relevant art, and the infusion should include 201119074. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart 'according to the present invention. ^. A solar battery feeding method. The first preferred embodiment is a schematic view of the film 2A. According to the present invention, the first preferred embodiment of the production process of the female solar cell is a schematic diagram of Haotai 2B. 'Based on this hair.. Yang battery battery production process. The first embodiment of the present invention is a second preferred embodiment of the present invention, which is a method for fabricating a film. Fig. 4 is a schematic view showing the production process of a thin film solar cell according to a second comparative example proposed by the present invention. [Description of main component symbols] 116, 117 '118, 211, 212, 213, 214, steps 111, 112, 113, 114, 115 215, 216, 218, 218 substrate 11, 21 diffusion barrier layers 12, 22 back electrode layer 13, 23 precursor layer 14 alkali metal layer 15 light absorbing layer 16, 24, 26 Cu(In,Ga)Se2 structure 161, 241 Cu(In,Ga)S2 structure 162, 242 buffer layer 17, 27 front electrode layer 18, 28 alkali metal sulfide 25

Claims (1)

201119074 七、申請專利範圍: 1. 一種薄膜太陽能電池之製造方法,包括: 提供一.基板; 形成一擴散阻礙層於該基板上; 形成一背電極層於該擴散阻礙層上; 形成一别趨物層於該背電極層上,其中該前趨物層至少包含銅、銦與 鎵等元素; 提供一鹼金屬層(alkali layer)於該前趨物層的表面; 提供一硒化反應製程,使得該前趨物層因硒化作用而形成一 Cu(In,Ga)Se2結構之光吸收層; 形成至少一缓衝層於該光吸收層上;以及 形成至少一前電極層於該緩衝層上; 其中 該光吸收層之驗金屬原子百分濃度介於〇 〇1%至丨〇%之間;且 該光吸收層靠近該背電極層之鹼金屬原子百分濃度小於該光吸收層靠 近該緩衝層之驗金屬原子百分濃度。 2. 依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該硒化反 應製程可使硒從該前趨物層的上表面擴散至該前趨物層的内部。 3. 依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該前趨物 層可進一步包括硒元素。 4. 依據申請專利範圍第1項之薄臈太陽能電池之製造方法,其中該驗金屬 層係為鐘、鈉、鉀、錄》、絶或其化合物。 5. 依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該鹼金屬 層係為一硫化物,該硫化物係選自於由硫化鋰、硫化鈉、硫化鉀、硫化 铷與硫化铯等所構成之群組。 6. 依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該砸化反 應製程係使用一硒前驅物,該硒前驅物係選自於由硒化氫、硒、硒蒸氣、 11 201119074 二乙基硒等所構成之群組。 7·依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該光吸收 層之表面具有Cu(In,Ga)S2結構。 8·依據申請專利範圍第1項之薄臈太陽能電池之製造方法,其中該硒化反 應製程使用一硒前驅物,該硒前驅物係選自於由硒化氫、硒、砸蒸氣、 二乙基硒等所構成之群組。 9.依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該前趨物 層進一步包含銀與鋁等元素。 1〇.依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該背電極 層的材料係選自於鉬、銀、鋁、鉻、鈦 '鎳及金等所構成之群組。 U.依據申請專利範圍第1項之薄膜太陽能電池之製造方法,其中該背電極 層的材料係選自於二氧化錫、氧化銦錫、氧化鋅、氧化鋅鋁、氧化鋅鎵、 氧化鋅硼及氧化辞銦等所構成之群組。 I2·依據申請專利細第i項之薄膜太陽能電池之製造方法,其中該緩衝層 層的材料係選自於硫化鎘、硫化鋅、硫化銦、硒化編、砸化鋅、栖化錮、 氧化鈦、氧化錫、氧化鋅及氧化辞鎂等所構成之群組。 13. 依據申請專利範圍第i項之薄膜太陽能電池之 續 層的麵選自於由二氧化錫、氧化銦錫、氧化辞、氧化辞== 鎵、氧化鋅侧及氧化鋅銦等所組成之族群。 14. 一種薄膜太陽能電池之製造方法,包括: 提供一基板; 形成一擴散阻礙層於該基板上; 形成一背電極層於該擴散阻礙層上; 提供-共蒸鍵製程以形成-具有黃銅礦結構Cu(In,Ga)Se2之光吸收層 於該背電極層; 曰 提供一鹼金屬硫化物以形成於該光吸收層上,使得該光吸收層之表面 12 201119074 形成一 Cu(In,Ga)S2 結構; 形成至少一緩衝層於該光吸收層上;以及 开>成至少一前電極層於該缓衝層上。 15. 依據申請專利範圍第14項之薄膜太陽能電池之製造方法,其中該鹼金 屬硫化物選自於由硫化鋰、硫化鈉、硫化鉀、硫化铷與硫化鉋等所構成 之群組。 16. 依據申請專利範圍第14項之薄膜太陽能電池之製造方法,其中該背電 極層的材料係選自於鉬'銀、鋁、鉻、鈦、鎳及金等所構成之群組。 17. 依據申請專利範圍第14項之薄膜太陽能電池之製造方法,其中該背電 極層的材料係選自於二氧化錫、氧化銦錫、氧化鋅、氧化鋅鋁、氧化辞 鎵、氧化鋅硼及氧化辞銦等所構成之群組。 18. 依據申請專利範圍帛14項之薄膜太陽能電池之製造方法,其中該緩衝 層層的材料係選自於硫化鎘、硫化辞、硫化銦、硒化鎘、硒化鋅、硒化 姻、氧化鈦、氧化錫、氧化辞及氧化鋅鎮等所構成之群組。 19. 依據申請專利範圍帛M項之薄膜太陽能電池之製造方法,其中該前電 極層的材料麵自於&二氧倾、氧化觸、氧化辞、氧化_、氧化 鋅鎵、氧化辞硼及氧化鋅銦等所構成之族群。 20. 依據申請專利範圍第M項之薄膜太陽能電池之製造方法,其中該光吸 收層f有驗金顧子百分濃度介於〇舰至祕之間;·光吸收層靠 近“者電極層之鹼金屬原子百分濃度小於該光吸收層靠近該緩衝層之 鹼金屬原子百分濃度。 21. 種賴太H也,其巾該薄膜太陽能電池係根據前述巾請專利範圍 第1項至第I3項的其中之一步驟而製作形成者。 22 池’其巾1太陽麟祕根據前述巾請專利範圍 第、至第20項的其中之一步驟而製作形成者。 13201119074 VII. Patent application scope: 1. A method for manufacturing a thin film solar cell, comprising: providing a substrate; forming a diffusion barrier layer on the substrate; forming a back electrode layer on the diffusion barrier layer; forming a different trend a layer of the material on the back electrode layer, wherein the precursor layer comprises at least elements such as copper, indium and gallium; providing an alkali layer on the surface of the precursor layer; providing a selenization reaction process, Forming a light absorbing layer of a Cu(In,Ga)Se2 structure by selenization; forming at least one buffer layer on the light absorbing layer; and forming at least one front electrode layer on the buffer layer Wherein the light absorbing layer has a metal atomic concentration of between 〇〇1% and 丨〇%; and the light absorbing layer is closer to the back electrode layer than the light absorbing layer is closer to the light absorbing layer. The buffer layer is tested for the atomic concentration of the metal. 2. The method of fabricating a thin film solar cell according to claim 1, wherein the selenization reaction process causes selenium to diffuse from the upper surface of the precursor layer to the inside of the precursor layer. 3. The method of manufacturing a thin film solar cell according to claim 1, wherein the precursor layer further comprises a selenium element. 4. The method for manufacturing a thin tantalum solar cell according to claim 1, wherein the metal layer is a clock, sodium, potassium, or a compound thereof. 5. The method of manufacturing a thin film solar cell according to claim 1, wherein the alkali metal layer is a sulfide selected from the group consisting of lithium sulfide, sodium sulfide, potassium sulfide, barium sulfide and barium sulfide. The group formed by the group. 6. The method for manufacturing a thin film solar cell according to claim 1, wherein the deuteration reaction process uses a selenium precursor selected from the group consisting of hydrogen selenide, selenium, and selenium vapor, 11 201119074 A group consisting of diethyl selenium and the like. The method of producing a thin film solar cell according to the first aspect of the invention, wherein the surface of the light absorbing layer has a Cu(In,Ga)S2 structure. 8. The method for manufacturing a thin tantalum solar cell according to claim 1, wherein the selenization reaction process uses a selenium precursor selected from the group consisting of hydrogen selenide, selenium, tellurium vapor, and diethyl ether. A group consisting of selenium and the like. 9. The method of producing a thin film solar cell according to claim 1, wherein the precursor layer further comprises an element such as silver and aluminum. The method for producing a thin film solar cell according to the first aspect of the invention, wherein the material of the back electrode layer is selected from the group consisting of molybdenum, silver, aluminum, chromium, titanium 'nickel and gold. U. The method for manufacturing a thin film solar cell according to claim 1, wherein the material of the back electrode layer is selected from the group consisting of tin dioxide, indium tin oxide, zinc oxide, zinc aluminum oxide, zinc gallium oxide, and zinc oxide boron. And a group consisting of indium oxide and the like. I2. The method for manufacturing a thin film solar cell according to the application of the patent item i, wherein the material of the buffer layer is selected from the group consisting of cadmium sulfide, zinc sulfide, indium sulfide, selenium, zinc telluride, bismuth oxide, oxidation A group consisting of titanium, tin oxide, zinc oxide, and magnesium oxide. 13. The surface of the continuation layer of the thin film solar cell according to the scope of claim 1 is selected from the group consisting of tin dioxide, indium tin oxide, oxidized words, oxidized words == gallium, zinc oxide side and zinc indium oxide. Ethnic group. A method of fabricating a thin film solar cell, comprising: providing a substrate; forming a diffusion barrier layer on the substrate; forming a back electrode layer on the diffusion barrier layer; providing a co-steaming process to form - having a brass a light absorbing layer of Cu(In,Ga)Se2 is deposited on the back electrode layer; an alkali metal sulfide is provided on the light absorbing layer such that the surface 12 201119074 of the light absorbing layer forms a Cu (In, Ga) an S2 structure; forming at least one buffer layer on the light absorbing layer; and opening > forming at least one front electrode layer on the buffer layer. 15. The method of producing a thin film solar cell according to claim 14, wherein the alkali metal sulfide is selected from the group consisting of lithium sulfide, sodium sulfide, potassium sulfide, barium sulfide, and a vulcanized planer. 16. The method of fabricating a thin film solar cell according to claim 14, wherein the material of the back electrode layer is selected from the group consisting of molybdenum 'silver, aluminum, chromium, titanium, nickel and gold. 17. The method of manufacturing a thin film solar cell according to claim 14, wherein the material of the back electrode layer is selected from the group consisting of tin dioxide, indium tin oxide, zinc oxide, zinc aluminum oxide, gallium oxide, and zinc oxide boron. And a group consisting of indium oxide and the like. 18. The method for manufacturing a thin film solar cell according to claim 14, wherein the material of the buffer layer is selected from the group consisting of cadmium sulfide, sulfuric acid, indium sulfide, cadmium selenide, zinc selenide, selenium, oxidation A group consisting of titanium, tin oxide, oxidized words, and zinc oxide towns. 19. The method for manufacturing a thin film solar cell according to the scope of the patent application, wherein the material surface of the front electrode layer is from & dioxic, oxidized, oxidized, oxidized, zinc gallium oxide, boron oxide and A group consisting of zinc indium oxide and the like. 20. The method for manufacturing a thin film solar cell according to claim M, wherein the light absorbing layer f has a concentration of a gold tester between the ship and the secret; the light absorbing layer is adjacent to the “electrode layer” The atomic concentration of the alkali metal is less than the atomic concentration of the alkali metal atom of the light absorbing layer close to the buffer layer. 21. The type of the solar cell of the light absorbing layer is also the same, and the thin film solar cell of the film is according to the first to the third of the patent scope. One of the steps of the item is to form the creator. 22 The pool 'the towel 1 sun lining secret is made according to one of the steps of the patent scope, to the 20th item.
TW098139185A 2009-11-18 2009-11-18 Thin film solar cell and manufacturing method thereof TW201119074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098139185A TW201119074A (en) 2009-11-18 2009-11-18 Thin film solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098139185A TW201119074A (en) 2009-11-18 2009-11-18 Thin film solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201119074A true TW201119074A (en) 2011-06-01

Family

ID=44935959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098139185A TW201119074A (en) 2009-11-18 2009-11-18 Thin film solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201119074A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463684B (en) * 2011-12-01 2014-12-01 Giga Solar Materials Corp Compound thin film solar cell manufacturing method and its preparation of solar cell
US9240521B2 (en) 2013-11-11 2016-01-19 Lextar Electronics Corporation Electrode structure and light emitting diode using the same
TWI596785B (en) * 2015-10-07 2017-08-21 財團法人工業技術研究院 Solar cell structure and method for manufacturing the same
TWI600176B (en) * 2016-12-30 2017-09-21 財團法人工業技術研究院 Compound-based solar cell and manufacturing method of light absorption layer
CN112002780A (en) * 2020-07-21 2020-11-27 重庆神华薄膜太阳能科技有限公司 Thin film solar cell and method for manufacturing same
CN112703610A (en) * 2018-09-22 2021-04-23 中建材蚌埠玻璃工业设计研究院有限公司 Method for post-treating an absorber layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463684B (en) * 2011-12-01 2014-12-01 Giga Solar Materials Corp Compound thin film solar cell manufacturing method and its preparation of solar cell
US9240521B2 (en) 2013-11-11 2016-01-19 Lextar Electronics Corporation Electrode structure and light emitting diode using the same
TWI596785B (en) * 2015-10-07 2017-08-21 財團法人工業技術研究院 Solar cell structure and method for manufacturing the same
TWI600176B (en) * 2016-12-30 2017-09-21 財團法人工業技術研究院 Compound-based solar cell and manufacturing method of light absorption layer
CN112703610A (en) * 2018-09-22 2021-04-23 中建材蚌埠玻璃工业设计研究院有限公司 Method for post-treating an absorber layer
CN112002780A (en) * 2020-07-21 2020-11-27 重庆神华薄膜太阳能科技有限公司 Thin film solar cell and method for manufacturing same

Similar Documents

Publication Publication Date Title
WO2019144565A1 (en) Thin film solar cell
US20120132281A1 (en) Thin-film solar cell and manufacturing method thereof
CN103915516B (en) A kind of sodium doping method of CIGS base film photovoltaic material
TW201108425A (en) Solar cell and fabrication method thereof
TW201119074A (en) Thin film solar cell and manufacturing method thereof
TWI382545B (en) A stacked-layered thin film solar cell with a photoconductive layer having band gradient and a manufacturing method thereof
JP2015508239A (en) Compound semiconductor solar cell
JP2011129631A (en) Method of manufacturing cis thin film solar cell
US20110129957A1 (en) Method of manufacturing solar cell
US20140370646A1 (en) Absorber layer for a thin film photovoltaic device with a double-graded band gap
CN105261660B (en) A kind of CIGS based thin film solar cells
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
TWI373851B (en) Stacked-layered thin film solar cell and manufacturing method thereof
CN111223758A (en) Copper indium gallium selenide thin-film solar cell and preparation method thereof
CN103620792B (en) Solar cell and method of preparing the same
CN105355681B (en) A kind of sputtering target material and the CIGS based thin film solar cells made of the sputtering target material
US20120118384A1 (en) Cis-based thin film solar cell
JP2017059656A (en) Photoelectric conversion element and solar battery
JPWO2012086703A1 (en) Photoelectric conversion device
TWI377691B (en) Thin film solar cell and manufacturing method thereof
JP2014503128A (en) Solar cell and manufacturing method thereof
US20130074933A1 (en) Photovoltaic device and method for making the same
US20140041721A1 (en) Solar cell and manufacturing method thereof
TWI462319B (en) Laminated cu2znsn(se,s)4 thin-film solar cell and the method of producing the same
JP6104576B2 (en) Compound thin film solar cell