TW201118042A - Method for separating and recycling metal ions - Google Patents

Method for separating and recycling metal ions Download PDF

Info

Publication number
TW201118042A
TW201118042A TW98139498A TW98139498A TW201118042A TW 201118042 A TW201118042 A TW 201118042A TW 98139498 A TW98139498 A TW 98139498A TW 98139498 A TW98139498 A TW 98139498A TW 201118042 A TW201118042 A TW 201118042A
Authority
TW
Taiwan
Prior art keywords
metal
ions
dendrimer
separating
metal ions
Prior art date
Application number
TW98139498A
Other languages
Chinese (zh)
Other versions
TWI401215B (en
Inventor
Xing-Long Lian
Original Assignee
Nat Univ Kaohsiung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Kaohsiung filed Critical Nat Univ Kaohsiung
Priority to TW98139498A priority Critical patent/TWI401215B/en
Publication of TW201118042A publication Critical patent/TW201118042A/en
Application granted granted Critical
Publication of TWI401215B publication Critical patent/TWI401215B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A method for separating and recycling metal ions, including the following steps: (a) providing a tree-shaped polymer composite magnetic metal particle, which includes a core composed of a magnetic metal oxide and a tree-shaped polymer binding to metal oxide on the surface of the core, (b) putting the tree-shaped polymer composite metal particle in a source to be processed which includes at least one type of metal ion, so that the metal ion couples to the tree-shaped polymer composite metal particle to obtain a tree-shaped polymer composite metal particle coupled with a metal ion, and (c) magnetically selecting the metal ion coupled tree-shaped polymer composite metal particle from the source to be processed.

Description

201118042 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種分離及回收金屬離子的方法,特 別是指一種利用磁選原理分離及回收金屬離子的方法,本 發明方法可以應用於處理污染源中的重金屬,或是自待處 理源中回收責金屬。 ^ 【先前技術】201118042 VI. Description of the Invention: [Technical Field] The present invention relates to a method for separating and recovering metal ions, and more particularly to a method for separating and recovering metal ions by magnetic separation principle, and the method of the present invention can be applied to a pollution source Heavy metals in the process, or recycling metals from the source to be treated. ^ [Prior Art]

土壞及地下水中之金屬污染,以及卫廠排放之金屬廢 液是台灣常見^易處理之環境問題,因為金屬不像有機 類物質可以降解轉換成較簡單物質,以有效降低其濃度, 因,,如何有效將金屬固定或是從污染區域移除是很=要 的環保議題之-。傳統的金屬污染處理技術包括淋洗法及 酸洗法等方法,雖然該等方法可以使㈣定處理劑有效地 將金屬從污染區域中移除’達到法規標帛,但是後續回收 處理時,不容易將金屬離子和處理劑分離,故無法有效地 回收金屬離子,而處理劑也無法再利用。 另一方面,心台灣是工業高度發達而能資源卻極度 匿乏的國家,ϋ此若能有效地從卫業製程或資源回收的產 品t回收再利用其中的高價值的貴金 。例如,U業在其製程中所產生之廢液中,就含 可回收,物質,再者,冑電子零件、廢積體電路、廢印刷 電路板等令亦含有如金、銀、鈀及鉑等的貴金屬。張家源 务κ价嘉南學報第二十九期第236〜撕頁(民國%年、職 文獻即扣出「1C製程中常使用氰化金鉀做為電鍍金浴的 201118042 原料,使用後之電鍍老化液與清洗液中含金量達數十至數 仟PPm」’此外,該文獻中亦提及利用離子交換樹脂之方式 來做廢液中的貴金屬之回收仍存在下列問題:(1)雖然電鍍 廢液已先經薄膜過濾,但是因其中含有檸檬酸,易滋生微 生物,並造成樹脂槽極易阻塞,嚴重影響離子交換樹脂之 效能;(2)以樹脂回收貴金屬後,經後續之提煉過程發現貴 金屬之回收率不高。因此,近年來,人們仍不斷地研發新 的分離及回收金屬的技術。 磁性奈米顆粒(Magnetic Nano-Particle ;簡稱為MNP) 是去除水中污染物的新興材料之一,因為當磁性物質轉化 成奈米顆粒時,不但有體積小(約可達1〇 nm以下)、高比 表面積(可達97 m2/g)及具有磁性等優點,還可以扮演核種 的角色,並加速懸浮固體物的沈降,而且,磁性奈米顆粒 的製備方式簡易,以最常見的四氧化三鐵奈米顆粒為例, 製作者僅需使用二價鐵金屬及三價鐵金屬混合溶液,調整 PH於鹼性環境下,便可以製備出該磁性奈米顆粒。因此, 國内已有學者使用磁性奈米顆粒吸附化學機械研磨廢水中 之懸浮顆粒,但是無法再利用該磁性奈米顆粒,或可再利 用之能力較差’不符合經濟效益。國外亦有相關研究指出 ,奈米磁性顆粒可用於吸附重金屬,但吸附後之脫附效果 不佳,無法重複再利用。 本案發明人的研究團隊曾於第一屆土壤與地下水處理 技術研討會(2003年)時所發表的論文『奈米複合金屬之催化 特性探討』中揭示-種利用自製之奈米零價鐵金屬(ζνι)進 201118042 行去除水中金屬之測試’結果發現吸附量為非奈米級鐵金 屬之30~60倍,且在此去除研究中還發現,零價鐵金屬除 了可以有效地還原降解含氯有機物(即四氣化碳)外,亦可去 除如五價砷、·六價鉻 '二價鉛及二價銅等金屬,但是金屬 吸附於零價鐵金屬上後不容易脫附’故還是會有再利用性 差的缺點。 另’樹狀高分子(Dendrimer)具有低黏度、低毒性、高 分散性、高反應性及高乘載量等優點,且國外已有人將其 應用於吸附水及土壌中的金屬’例如:學者Xu and Zhao 於 麵enia/ iSdence Vol. 39,ρρ·2369_ 2375中就曾使用不同世代及末端官能基之樹狀高分子進行 吸附金屬鋼的實驗,並發現樹狀高分子能快速且有效地吸 附金屬外’在酸性溶液下,還具有極佳之脫附能力。不過 ’由於目前回收樹狀高分子的技術是要利用單價昂貴的超 微過濾膜(ultrafiltration membrane),導致在經濟效益的考量 下,將其應用於處理大量的金屬廢液是不可行的。 因此’仍有需要發展出一種成本低、金屬回收率高及 處理劑的再利用性佳的分離及回收金屬離子的方法。 【發明内容】 有鑑於現有利用磁性奈米顆粒分離及回收金屬離子的 方法,會有不容易將已經吸附於其上的金屬離子脫附的缺 點,本案發明人思及可以藉由改變該磁性奈米顆粒的表面 結構來解決此問題,於是想到在現有的磁性奈米顆粒的表 面上鍵結具有良好吸附及脫附能力的樹狀高分子,藉此來 r λ] 5 201118042 提昇金屬回收率。 因此,本發明之目的,即在提供—種成本低、金屬回 收率高及處理劑的再利用性佳的分離及回收金屬離子的方 法。 本發明分離及回收金屬離子的方法係包含以下步驟: (a)提供一樹狀高分子複合磁性金屬顆粒,其係包括一由一 磁性金屬氧化物構成的核心’及至少一與該核心表面上的 金屬氧化物鍵結的樹狀高分子;(b)將該步驟(a)之樹狀高分 子複合磁性金屬顆粒置於一含有至少一金屬離子的待處理 源中,使钂金屬離子與該樹狀高分子複合磁性金屬顆粒結 合’以得到—結合有金屬離子的樹狀高分子複合磁性金屬 顆粒’·及⑷利用磁選方式將該結合有金屬離子的樹狀高分 子複合磁性金屬顆粒自該待處理源中分離出來。 本發明之功效.本案藉由結合磁性奈米顆粒及樹狀高 刀子所形成的處理劑來分離及回收金屬離子時,不但利用 樹狀高分子良好的吸附及脫附能力,解決了單獨使用磁性 奈米顆粒時會有本身再利用性差的問題,同時,也因為磁 性奈米顆粒的磁性而解決了單獨使用樹狀高分子會有回收 成本過高而不符經濟效益的缺點,因此,以處理待處理源 的角度來看,本案方法具有良好的金屬離子的去除效率, 適用於處理污染源中的重金屬;以回收金屬離子的角度來 看,本案方法具有良好的金屬回收率,適用於金屬之回收 ,特別是貴金屬,故確實能達到本發明之目的。 【實施方式】 201118042 本案發明人在思及要將磁性奈米顆粒及樹狀高分子做 結合後’便朝此概念做搜尋,並查到pan等人於人 /nier/ace ki·· 2私,户.7-5上所發表的論文揭示了一種表面鍵 結有樹狀高分子的磁性奈米顆粒(以下表示成MNp_Gn),並 藉由此MNP-Gn來固定蛋白質,以進一步純化蛋白質,其 係利用蛋白質可與樹狀高分子的末端官能基鍵結使蛋白質 固定於其表面上,並進一步藉由磁選分離原理,將MNP_Gn 與雜質分離來達成其功效的,但是此一應用是屬於生醫領 域,且其所純化的蛋白質與本案要分離及回收的金屬的性 質也極為不同。 本發明分離及回收金屬離子的方法係包含以下步驟: (a)提供一樹狀高分子複合磁性金屬顆粒,其係包括一由一 磁性金屬氡化物構成的核心,及至少一與該核心表面的金 屬氧化物鍵結的樹狀高分子;(b)將該步驟(a)之樹狀高分子 複合磁性金屬顆粒置於一含有至少一金屬離子的待處理源 中,使該金屬離子與該樹狀高分子複合磁性金屬顆粒結合 ,以得到一結合有金屬離子的樹狀高分子複合磁性金屬顆 粒,及⑷利用磁選方式將該結合有金屬離子的樹狀高分子 複合磁性金屬顆粒自該待處理源中分離出來。 較佳地,該步驟(a)還進一步對該樹狀高分子複合磁性 金屬顆粒施予一酸洗處理。 較佳地’該步驟⑻是藉由將該樹狀高分子複合磁性金 屬顆粒與-酸性溶劑接觸來進行酸洗處理,該酸性溶劑是 選自於濃鹽KHC1)、濃硫酸(H2S〇4)、濃琐酸(hn〇j或濃 201118042 填酸(H3p〇4)。但不應以上述酸性溶#1為限 可應用來清除顆粒表面雜質者皆可。 在本案之具體實施例中,酸洗處理的步驟是先將該樹 狀高分子複合磁性金屬顆粒加人10 mL的水中搜摔,並緩 緩滴入濃鹽酸數滴,使水中的pH值達3 〇後,攪拌$分鐘 並進行固液分離,再以去離子水清洗該樹狀高分子複= 性金屬顆粒,進而得到一經酸洗處理的樹狀高分子複合磁 性金屬顆粒。 ㈣說明’上述酸洗處理主要是要將先前製備樹狀高 分子複合磁性金屬顆粒時所殘留的甲醇等溶劑清除。 較佳地,該步驟⑷中的磁性金屬氧化物是選自於氧化 鐵、氧化銘或氧化錄。更佳地,該步驟⑷中的磁性金屬氧 化物為氧化鐵。 幸又佳地,5亥步驟⑷中的樹狀高分子的末端基團能與該 步驟(b)之金屬離子形成錯合結構。 較佳地,該步驟⑷中的樹狀高分子能藉由靜電作用力 與該步驟(b)之金屬離子結合。 杈佳地,該步驟⑷中的樹狀高分子具有能將該步驟(b) 之金屬離子截留於其t的孔隙。 該步驟(b)中所提到的該金屬離子與該樹狀高分子複合 磁性,屬顆粒的「結合」可以是藉由化學鍵結而結合,也 可以疋藉著该二者之間的作用力而結合,或是因金屬離子 被截留於該樹狀高分子中的孔隙而結合。 本案主要是參考Enzel et al·,/. C&m.五心c. 76, 201118042 pp.943( 1999)Mehta et al·, Biotechnol. Tech. 77, pp.493-49(5(7997)中所述的製法來製備四氧化三鐵磁性奈米顆粒, 首先配製一 Fe3+和Fe2+莫爾比為2:1的水溶液,再加入強 鹼水溶液(NaOH或是NH4OH)調整其pH值約為10,並於 定溫80°C下混合攪拌30分鐘後冷卻,即可得到一四氧化 三鐵膠體材料,接著,以去離子水和乙醇沖洗該膠體材料 數次,並將該膠體材料在厭氧環境下風乾即可得到一四氧 化三鐵磁性奈米顆粒。 • 較佳地,該樹狀高分子複合磁性金屬顆粒是藉由先將 至少一含有矽氧鍵的化合物與該磁性奈米顆粒表面的磁性 金屬氧化物鍵結,再依據化學劑量,依序加入適當量的丙 烯酸曱脂及乙二胺,以收斂法在該磁性奈米顆粒之表面上 形成至少一個樹狀高分子而製得的。 在本案之具體實施例中,該含有矽氧鍵的化合物是3-胺基丙基三曱氧基石夕烧(3-aminopropyl-trimethoxysiliane ; 簡稱ATPS),該磁性金屬氧化物是氧化鐵,且該含有矽氧鍵 ® 的化合物與該磁性金屬氧化物鍵結的原子是氧,其鍵結情 形如下式(I)所示:Metal pollution in the soil and groundwater, as well as metal waste liquid discharged from the factory is a common environmental problem in Taiwan, because metals cannot be degraded into simpler substances like organic substances, so as to effectively reduce their concentration. How to effectively fix or remove the metal from the contaminated area is very important. Conventional metal pollution treatment technologies include methods such as leaching and pickling, although these methods can (4) treat agents effectively remove metals from contaminated areas' to meet regulatory standards, but not for subsequent recycling. Since the metal ions and the treating agent are easily separated, the metal ions cannot be efficiently recovered, and the treating agent cannot be reused. On the other hand, Taiwan is a country with highly developed industrial resources and extremely limited resources. If it can effectively recover the high-value gold from the products of the industrial process or resource recovery. For example, in the waste liquid produced by the U industry in its process, it contains recyclable materials, and further, electronic components, waste integrated circuits, waste printed circuit boards, etc., such as gold, silver, palladium and platinum. Precious metals. Zhang Jiayuan κ 价 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉 嘉The amount of gold in the liquid and the cleaning solution is several tens to several 仟 PPm". In addition, the literature also mentions that the use of ion exchange resins for the recovery of precious metals in the waste liquid still has the following problems: (1) Although the electroplating waste liquid It has been filtered by membrane, but it contains citric acid, which is easy to breed microorganisms, and causes the resin tank to be easily blocked, which seriously affects the performance of the ion exchange resin. (2) After recovering the precious metal with resin, the precious metal is found through the subsequent refining process. The recovery rate is not high. Therefore, in recent years, new technologies for separating and recovering metals have been continuously developed. Magnetic Nano-Particle (MNP) is one of the emerging materials for removing pollutants from water because When the magnetic substance is converted into nano particles, it has the advantages of small volume (about 1 〇 nm or less), high specific surface area (up to 97 m2/g), and magnetic properties. It can also play the role of a nuclear species and accelerate the sedimentation of suspended solids. Moreover, the preparation of magnetic nanoparticles is simple. Taking the most common particles of ferroferric oxide nanoparticles as an example, the author only needs to use divalent iron metal and The ferric metal mixed solution can be prepared by adjusting the pH in an alkaline environment. Therefore, domestic scholars have used magnetic nanoparticles to adsorb chemically mechanically ground suspended particles in wastewater, but can no longer The use of the magnetic nano particles, or the ability to be reused is poor, 'not economical. Foreign studies have also pointed out that nano magnetic particles can be used to adsorb heavy metals, but the desorption effect after adsorption is not good, can not repeat The research team of the inventor of this case disclosed in the paper "Discussion on the Catalytic Properties of Nanocomposite Metals" in the first seminar on soil and groundwater treatment technology (2003) - the use of self-made nanometer zero price Iron metal (ζνι) into 201118042 to remove the test of metal in water' results found that the adsorption amount is 30 to 60 times that of non-nano grade iron metal, and In this removal study, it was also found that in addition to the effective reduction and degradation of chlorine-containing organic compounds (ie, four-gasified carbon), zero-valent iron metal can also remove such as pentavalent arsenic, hexavalent chromium, divalent lead and divalent copper. Metal, but the metal is not easily desorbed after being adsorbed on zero-valent iron metal. Therefore, there is still a disadvantage of poor reusability. Another 'dendrimer' has low viscosity, low toxicity, high dispersion, and high reactivity. And the advantages of high load capacity, and it has been applied to waters that adsorb water and soil in foreign countries. For example, scholar Xu and Zhao used different generations in enia/iSdence Vol. 39, ρρ·2369_ 2375. The dendrimer of the terminal functional group is used for the adsorption of metal steel, and it is found that the dendrimer can adsorb the metal quickly and effectively 'in the acidic solution, and has excellent desorption ability. However, because the current technology for recovering dendrimers is to use ultra-high filtration membranes with high unit prices, it is not feasible to apply them to the treatment of large amounts of metal waste liquids in consideration of economic efficiency. Therefore, there is still a need to develop a method for separating and recovering metal ions which is low in cost, high in metal recovery rate, and excellent in recyclability of a treating agent. SUMMARY OF THE INVENTION In view of the conventional method for separating and recovering metal ions by using magnetic nanoparticles, there is a disadvantage that it is not easy to desorb metal ions that have been adsorbed thereon, and the inventors of the present invention can change the magnetic nano The surface structure of the rice particles solves this problem, and it is thought that a tree-like polymer having good adsorption and desorption ability is bonded to the surface of the existing magnetic nanoparticle, thereby increasing the metal recovery rate by r λ] 5 201118042. Accordingly, it is an object of the present invention to provide a method for separating and recovering metal ions which is low in cost, high in metal recovery, and excellent in recyclability of a treating agent. The method for separating and recovering metal ions of the present invention comprises the following steps: (a) providing a dendrimer-like composite magnetic metal particle comprising a core composed of a magnetic metal oxide and at least one on the surface of the core a metal oxide-bonded dendrimer; (b) placing the dendrimer-like composite magnetic metal particles of the step (a) in a source to be treated containing at least one metal ion to cause the ruthenium metal ion and the tree The polymer-like composite magnetic metal particles are combined with 'to obtain - a dendrimer-like composite magnetic metal particle combined with a metal ion' and (4) the dendrimer-type composite magnetic metal particle to which the metal ion is bonded is used by magnetic separation Separated from the processing source. The effect of the present invention. In the present case, when a metal ion is separated and recovered by combining a magnetic nanoparticle and a treatment agent formed by a tree-shaped high knife, not only the good adsorption and desorption ability of the dendritic polymer but also the magnetic property alone is solved. Nanoparticles have the problem of poor recyclability. At the same time, because of the magnetic properties of magnetic nanoparticles, the use of dendrimers alone can have the disadvantage of excessive recycling costs and economic benefits. From the perspective of the treatment source, the method has good metal ion removal efficiency and is suitable for treating heavy metals in pollution sources. From the viewpoint of recovering metal ions, the method has good metal recovery rate and is suitable for metal recovery. In particular, precious metals are indeed capable of achieving the objects of the present invention. [Embodiment] 201118042 The inventor of this case thought about the combination of magnetic nanoparticle and dendrimer, and then searched for this concept, and found that Pan et al. / nier/ace ki·· 2 private The paper published in No. 7-5 reveals a magnetic nanoparticle with a dendrimer bonded to the surface (hereinafter referred to as MNp_Gn), and the protein is immobilized by MNP-Gn to further purify the protein. The protein can be bound to the terminal functional group of the dendrimer to immobilize the protein on the surface, and further the magnetic separation principle is used to separate the MNP_Gn from the impurities to achieve the effect, but the application belongs to the living. In the medical field, the properties of the purified protein are also very different from those of the metal to be separated and recovered in the present case. The method for separating and recovering metal ions of the present invention comprises the following steps: (a) providing a dendrimer-like composite magnetic metal particle comprising a core composed of a magnetic metal telluride and at least one metal with the core surface An oxide-bonded dendrimer; (b) placing the dendrimer-like composite magnetic metal particles of the step (a) in a source to be treated containing at least one metal ion, and causing the metal ion to form the tree The polymer composite magnetic metal particles are combined to obtain a dendrimer composite magnetic metal particle combined with metal ions, and (4) the dendrimer polymer magnetic metal particles combined with the metal ion are magnetically selected from the source to be treated Separated in the middle. Preferably, the step (a) further applies a pickling treatment to the dendrimer composite magnetic metal particles. Preferably, the step (8) is a pickling treatment by contacting the dendrimer-composite magnetic metal particles with an acidic solvent selected from the group consisting of concentrated salt KHC1) and concentrated sulfuric acid (H2S〇4). , rich acid (hn〇j or concentrated 201118042 filled with acid (H3p〇4). However, it should not be used to remove the surface impurities of the particles in the above-mentioned acidic solution #1. In the specific embodiment of the present invention, the acid The washing step is to first collect the dendrimer composite magnetic metal particles in 10 mL of water, and slowly drop a few drops of concentrated hydrochloric acid to make the pH of the water reach 3 Torr, stir for $ minutes and carry out Separating the solid and liquid, and then washing the dendrimer complex metal particles with deionized water to obtain a acid-treated dendritic polymer composite magnetic metal particle. (4) Description 'The above pickling treatment is mainly to prepare the previous preparation. Preferably, the magnetic metal oxide in the step (4) is selected from the group consisting of iron oxide, oxidized or oxidized. More preferably, the step (4) is carried out by removing the solvent such as methanol remaining in the dendritic polymer composite magnetic metal particles. Magnetic metal oxide Iron oxide. Fortunately, the terminal group of the dendrimer in step 5 (4) can form a mismatch structure with the metal ion of step (b). Preferably, the dendrimer in step (4) It can be combined with the metal ion of the step (b) by electrostatic force. Preferably, the dendrimer in the step (4) has pores capable of trapping the metal ion of the step (b) at its t. The metal ion mentioned in (b) is magnetically combined with the dendrimer, and the "combination" of the particles may be combined by chemical bonding or may be combined by the force between the two. Or because the metal ions are trapped in the pores of the dendrimer. The case is mainly referred to Enzel et al., /. C&m. five hearts c. 76, 201118042 pp. 943 (1999) Mehta et Al., Biotechnol. Tech. 77, pp. 493-49 (5 (7997)) to prepare ferroferric oxide magnetic nanoparticles, first preparing an aqueous solution of Fe3+ and Fe2+ molar ratio of 2:1. Then add a strong aqueous alkali solution (NaOH or NH4OH) to adjust the pH to about 10, and mix at a constant temperature of 80 ° C After stirring for 30 minutes and then cooling, a triiron tetroxide colloidal material is obtained, and then the colloidal material is washed several times with deionized water and ethanol, and the colloidal material is air-dried under an anaerobic environment to obtain a tetraoxide three. Ferromagnetic nanoparticle granules. Preferably, the dendrimer-composite magnetic metal particles are bonded to the magnetic metal oxide on the surface of the magnetic nanoparticle by first bonding at least one compound containing a ruthenium oxygen bond. The chemical dose is prepared by sequentially adding an appropriate amount of acrylate resin and ethylenediamine to form at least one dendrimer on the surface of the magnetic nanoparticle by a convergence method. In a specific embodiment of the present invention, the oxime bond-containing compound is 3-aminopropyl-trimethoxysiliane (ATPS), and the magnetic metal oxide is iron oxide. The atom bound to the magnetic metal oxide containing the oxime bond ® is oxygen, and the bonding condition is as shown in the following formula (I):

其中,D 1 較佳地,該步驟(a)中的樹狀高分子複合磁性金屬顆粒 201118042 的粒徑是介於10 nm至5000 nm之間。更佳地,該步驟 中的樹狀高分子複合磁性金屬顆粒的粒徑是介於1〇 nm至 100 nm之間。 較佳地,該步驟(b)中的待處理源是一溶液或一 土壤。 特別說明的是,基於本案之分離及回收金屬離子的方法可 以是用來處理廢水或是受污染的土壤,但也可以是用來回 收或疋濃縮金屬,特別是高單價的貴金屬,故上述的待處 理源不僅限於金屬污染源。 因此,該步驟(b)中的金屬離子是一重金屬離子或一貴 · 金屬離子。 較佳地,該重金屬離子是選自於銅離子、鋅離子、鎳 離子、錳離子、鎘離子、汞離子、鉛離子、鉻離子、砷離 子,或此等之一組合。 較佳地,該貴金屬離子是選自於銀離子、金離子、鈀 離子、翻離子’或此等之一組合。 該步驟(c)_的磁選方式是利用磁鐵的磁力吸引磁性金 屬的原理,即使用磁鐵將結合有金屬離子的樹狀高分子複鲁 合磁性金屬顆粒自該待處理源中分離出來。 本案是將一磁鐵靠近或接觸—裝有上述含有多數個結 合有金屬離子的樹狀高分子複合磁性金屬顆粒的待處理溶 液的容器之外壁,以使該待處理源中的樹狀高分子複合磁 性金屬會被磁鐵吸住,此時,將待處理源中的溶液排出, 直到該容器中不再有液體時’移開磁鐵’則存留在該容器 中的物質就是結合有金屬離子的樹狀高分子複合磁性金屬 10 201118042 顆粒。 上列做法主要是便於實驗室小型試驗,實務應用時, 可使用電磁鐵控制磁性,並直接於反應槽體内施作,不需 於容器外壁進行。 較佳地,該方法還包含一在該步驟(C)後的步驟(d),其 係將該結合有金屬離子的樹狀高分子複合磁性金屬顆粒與 一脫附劑接觸,以分離該金屬離子及該樹狀高分子複合磁 性金屬顆粒。 當該結合有金屬離子的樹狀高分子複合磁性金屬顆粒 與該脫附劑接觸後,該金屬離子會從該樹狀高分子複合磁 性金屬顆粒脫附下來,並溶於該脫附劑中,進而達到與該 樹狀高分子複合磁性金屬顆粒分離的效果。 較佳地,該脫附劑是酸性溶劑。更佳地,該酸性溶劑 是鹽酸。 較佳地,該酸性溶劑的濃度是介於00〇5 Μ至0.1 Μ 之間。 較佳地,該步驟(d)還進一步利用磁選方式將該樹狀高 分子複合磁性金屬顆粒自脫附劑中分離出來。此步驟中的 磁選方式與上述步驟(C)中的磁選方式是相同,只是此處是 將樹狀高分子複合磁性金屬顆粒與溶有金屬離子的脫附劑 分離。 實施例 本發明將就以下實施例來作進一步說明,但應瞭解的 是,言亥等實施例僅為例示說明之用,而不應被解釋為本發 11 201118042 明實施之限制。 η匕學品來源] 1. 氯化鋅(zinc chloride) ’ 化學式:Z11CI2 ’ Mw : 136.3, 純度·· 98% ’廠牌:Riedel-dehaen。 2. 硫酸銅(Copper (II) Sulfate) ’ 化學式:C11SO4,MW : 159.61,純度:97.5% ,廠牌:SHOWA。 3. 氯化神(Sodium Arsenate) ’ 化學式:Na2HA2〇4,MW :Wherein D 1 preferably, the particle size of the dendrimer composite magnetic metal particles 201118042 in the step (a) is between 10 nm and 5000 nm. More preferably, the particle size of the dendrimer-composite magnetic metal particles in this step is between 1 〇 nm and 100 nm. Preferably, the source to be treated in the step (b) is a solution or a soil. In particular, the method for separating and recovering metal ions based on the present invention may be used to treat wastewater or contaminated soil, but may also be used to recover or concentrate metal, especially high-priced precious metals, so the above The source to be treated is not limited to metal contamination sources. Therefore, the metal ion in the step (b) is a heavy metal ion or a noble metal ion. Preferably, the heavy metal ion is selected from the group consisting of copper ions, zinc ions, nickel ions, manganese ions, cadmium ions, mercury ions, lead ions, chromium ions, arsenic ions, or a combination thereof. Preferably, the noble metal ion is selected from the group consisting of silver ions, gold ions, palladium ions, turning ions, or a combination thereof. The magnetic separation mode of the step (c)_ is a principle of attracting the magnetic metal by the magnetic force of the magnet, that is, the dendritic polymer-bonded magnetic metal particles to which the metal ions are bound are separated from the source to be treated by using a magnet. In the present case, a magnet is brought close to or in contact with the outer wall of the container containing the above-mentioned solution of a plurality of dendrimer-containing composite magnetic metal particles combined with metal ions, so that the dendrimer complex in the source to be treated is compounded. The magnetic metal is attracted by the magnet. At this time, the solution in the source to be treated is discharged until the liquid is no longer present in the container. When the magnet is removed, the substance remaining in the container is a tree-like metal ion. Polymer composite magnetic metal 10 201118042 particles. The above method is mainly for the small-scale experiment in the laboratory. In practice, the electromagnet can be used to control the magnetism and directly applied to the reaction tank without the outer wall of the container. Preferably, the method further comprises a step (d) after the step (C), wherein the metal ion-bound dendrimer composite magnetic metal particles are contacted with a desorbent to separate the metal. Ions and the dendrimer-like composite magnetic metal particles. When the dendrimer-containing composite magnetic metal particles combined with the metal ions are in contact with the desorbing agent, the metal ions are desorbed from the dendrimer-composite magnetic metal particles and dissolved in the desorbing agent. Further, the effect of separating from the dendrimer-composite magnetic metal particles is achieved. Preferably, the desorbent is an acidic solvent. More preferably, the acidic solvent is hydrochloric acid. Preferably, the concentration of the acidic solvent is between 00 〇 5 Μ and 0.1 Μ. Preferably, the step (d) further separates the dendrimer-based composite magnetic metal particles from the desorbent by magnetic separation. The magnetic separation method in this step is the same as the magnetic separation method in the above step (C) except that the dendrimer-composite magnetic metal particles are separated from the desorbing agent in which the metal ions are dissolved. The present invention will be further illustrated by the following examples, but it should be understood that the embodiments of the invention are merely illustrative and should not be construed as limiting the implementation of the invention. Source of η匕学] 1. Zinc chloride ’ Chemical formula: Z11CI2 ’ Mw : 136.3, purity · · 98% ‘label: Riedel-dehaen. 2. Copper (II) Sulfate ’ Chemical formula: C11SO4, MW: 159.61, purity: 97.5%, label: SHOWA. 3. Sodium Arsenate ’ Chemical formula: Na2HA2〇4, MW:

312.01,純度:99.0% ,廠牌:J_T. Baker 。 4. 氣化亞轱(Cobalt(II) chloride hexahydrate),化學式: CoCl2,MW : 237.93,純度:99 % ,廠牌: SCHARLAU 。 5. 硫酸錦(Nickel(II) sulfate hexahydrate),化學式: NiS04 · 6H20,MW : 262.85,純度:99% ,廠牌: SHOWA。 6.312.01, purity: 99.0%, label: J_T. Baker. 4. Cobalt(II) chloride hexahydrate, chemical formula: CoCl2, MW: 237.93, purity: 99%, label: SCHARLAU. 5. Nickel (II) sulfate hexahydrate, chemical formula: NiS04 · 6H20, MW: 262.85, purity: 99%, label: SHOWA. 6.

氣化經(Lithium chloride),化學式·· LiCl,MW : 42.39 ,純度:99% ,廠牌:Alfa Aesar。 氯化銀(Silver chloride),化學式:AgCl,MW :Lithium chloride, chemical formula · LiCl, MW: 42.39, purity: 99%, label: Alfa Aesar. Silver chloride, chemical formula: AgCl, MW:

143.32,純度:99% ,廠牌:Alfa Aesar ° [儀器] 1.界面穿透式電子顯微鏡(Transmission Electron Microscope :簡稱TEM):本案使用型號為Hitachi Model HF-2000 之界面放射型(Field Emission)穿透電子顯微鏡觀察檢測 樣品之表面形貌,並搭配能量分散光譜儀(EDX)進行化學 元素之定性及半定量分析。檢測樣品會利用氮氣吹乾磨 12 201118042 成粉末狀,再置入一水溶液中並利用鍍碳銅網取樣,以 備後續儀器觀測。 2. X光粉末繞射儀(X-ray Diffraction;簡稱XRD):本案使 用型號為Hitachi Model HF-2000之X-ray粉末繞射儀對 磁性奈米顆粒及樹狀高分子複合磁性金屬膠體進行成份 組成分析。試驗前,會將檢測樣品以氮氣吹乾並利用 • 200號篩過濾,試驗時,設定掃描角度(20)為20至80 度,並以每分鐘兩度掃描之,測定完之圖譜再與JCPDS • 標準圖譜資料庫進行比對,以確認檢測樣品之組成。 3. 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer ;簡稱FT-IR):本案是利用型號為Perkin Elmer Spestrum GX之FT-IR來檢測樹狀高分子複合磁性 金屬顆粒中的磁性奈米顆粒與樹狀高分子是否確實有鍵 結在一起。試驗前會先使用氮氣將製得之奈米樹狀高分 子複合磁性金屬顆粒吹乾並與溴化鉀(KBr)—同置於100 °C的烘箱中烘乾,之後,以KBr :樹狀高分子複合磁性 ® 金屬顆粒= 100 : 1之比例混合後,再以瑪瑙磨缽研磨成細 微粉末並壓成透明錠片以進行測定。 4. 感應粞合電衆光譜儀(Optical Emission Spectrometer;簡 稱ICP):本案是利用型號為 Perkin Elmer, Optima 2000DV之ICP,並要參考環保署 「水中金屬及微量元 素檢測方法-感應耦合電漿質譜法」之操作步驟,將稀釋 後的待測物以0.2 # m之滤紙過遽後進行量測,並依稀 釋倍數換算出待測物中的金屬實際濃度。 13 201118042 <製備流程> [製備金屬儲備溶液] 發明人先分別將適量的 AgCl、KC1、LiCl、ZnCl2、 CuS04、CoCl2、NiS04 · 6H2〇、MnS04、Na2HAs04 及 A12(S04)3置入不同的165 mL之血清瓶中,並以去離子水定 量至100 mL,以得到十種依序分別含有Ag+、K+、Li+、 Zn2+、Cu2+、Co2+、Ni2+、Mn2+、As5+及 Al3 +之金屬儲備溶 液(stock solution),且其中的金屬離子濃度為1000 mg/L, 並以含有鐵氟龍(Teflom)的墊片及鋁蓋密封該血清瓶且置於 恆溫4 °C之冰箱中儲存。 [製備四氧化三鐵(Fe304)磁性奈米顆粒(MNP)] 製備例1 本案製備四氧化三鐵磁性奈米顆粒的步驟如下: 1. 將 2.7 g FeS04 · 7H20 及 5.7 g FeCl3 · 6H20 的粉末分 別定量於100 ml的去離子水中,而後在將其混合攪拌 以得到一含有Fe3+和Fe2+的水溶液,經測量,此時的 水溶液的pH為1.6。 2. —邊攪拌步驟1之水溶液,一邊將適量氨水(NH4OH) 添加至該水溶液令,直到該水溶液的pH變為10。 3. 將步驟2製得的水溶液置於一加熱攪拌器上,並使其 溫度維持在80 °C下,攪拌30分鐘。 4. 將步驟3之經攪拌的水溶液靜置冷卻後,即可得到一 四氧化三鐵膠體材料,再以去離子水和乙醇沖洗該膠 體材料數次,使該其pH約為8.9。 201118042 5.最後,在厭氧環境下風乾該膠體材料,即可得到一四 氧化二鐵磁性奈米顆粒(以下簡稱Mnp)。 [製備樹狀高分子複合磁性金屬顆粒] 實施例1 本實施例製備第一代(Gi)樹狀高分子複合磁性金屬的步 驟如下: 1. 取2.5 g的製備例i之MNP,利用乙醇定量至姐143.32, purity: 99%, label: Alfa Aesar ° [instrument] 1. Interface Electron Microscope (TEM): In this case, the interface type is Hitachi Model HF-2000 interface Emission (Field Emission) The surface morphology of the samples was observed by electron microscopy and qualitative and semi-quantitative analysis of chemical elements was carried out with an energy dispersive spectrometer (EDX). The test sample is powdered by a dry blow of nitrogen 12 201118042, placed in an aqueous solution and sampled with a carbon coated copper mesh for subsequent instrumental observation. 2. X-ray Diffraction (XRD): In this case, X-ray powder diffractometer model Hitachi Model HF-2000 was used to perform magnetic nanoparticle and dendrimer composite magnetic metal colloid. Analysis of composition of ingredients. Before the test, the test sample will be dried with nitrogen and filtered with a No. 200 sieve. During the test, the scanning angle (20) is set to 20 to 80 degrees, and it is scanned at two degrees per minute. The measured spectrum is compared with the JCPDS. • The standard map library is aligned to confirm the composition of the test sample. 3. Fourier Transform Infrared Spectrometer (FT-IR): This method uses the FT-IR model Perkin Elmer Spestrum GX to detect magnetic nanoparticles and dendrimers in dendrimer composite magnetic metal particles. Whether the polymers do have bonds together. Before the test, the prepared nanometer-shaped polymer composite magnetic metal particles were blown dry with nitrogen and dried in an oven at 100 ° C with potassium bromide (KBr), and then KBr: tree The polymer composite magnetic metal particles = 100:1 were mixed, and then ground to a fine powder by an agate rub and pressed into a transparent tablet for measurement. 4. Induction spectroscopy (Optical Emission Spectrometer; ICP for short): This case is based on the ICP model Perkin Elmer, Optima 2000DV, and refer to the EPA "Amethyst for Determination of Metals and Trace Elements in Water - Inductively Coupled Plasma Mass Spectrometry In the operation step, the diluted test object is subjected to measurement by 0.2 μm filter paper, and the actual concentration of the metal in the sample to be tested is converted according to the dilution factor. 13 201118042 <Preparation flow> [Preparation of metal stock solution] The inventors first placed different amounts of AgCl, KC1, LiCl, ZnCl2, CuS04, CoCl2, NiS04 · 6H2〇, MnS04, Na2HAs04 and A12(S04)3 into different In a 165 mL serum bottle, quantify to 100 mL with deionized water to obtain ten metal stock solutions containing Ag+, K+, Li+, Zn2+, Cu2+, Co2+, Ni2+, Mn2+, As5+, and Al3+, respectively. (stock solution), and the metal ion concentration thereof was 1000 mg/L, and the serum bottle was sealed with a Teflom-containing gasket and an aluminum cap and stored in a refrigerator at a constant temperature of 4 °C. [Preparation of ferroferric oxide (Fe304) magnetic nanoparticles (MNP)] Preparation Example 1 The procedure for preparing ferroferric oxide magnetic nanoparticles was as follows: 1. Powder of 2.7 g of FeS04 · 7H20 and 5.7 g of FeCl3 · 6H20 They were each metered in 100 ml of deionized water, and then mixed and stirred to obtain an aqueous solution containing Fe3+ and Fe2+, and the pH of the aqueous solution at this time was measured to be 1.6. 2. While stirring the aqueous solution of step 1, an appropriate amount of aqueous ammonia (NH4OH) was added to the aqueous solution until the pH of the aqueous solution became 10. 3. Place the aqueous solution prepared in Step 2 on a heated stirrer and maintain the temperature at 80 °C for 30 minutes. 4. After the stirred aqueous solution of step 3 is allowed to stand for cooling, a triiron tetroxide colloidal material is obtained, and the colloidal material is washed several times with deionized water and ethanol to have a pH of about 8.9. 201118042 5. Finally, the colloidal material is air-dried under an anaerobic environment to obtain a ferric oxide magnetic nanoparticle (hereinafter referred to as Mnp). [Preparation of dendrimer-like composite magnetic metal particles] Example 1 The procedure for preparing the first-generation (Gi) dendrimer-composite magnetic metal in this example is as follows: 1. Take 2.5 g of the MNP of Preparation Example i, and quantify with ethanol. To sister

’並加入10 ml @ 3 —氨基丙基三甲氧基石夕烧,以得到 一第一混合液。 2. 利用磁石攪拌器搭配冷凝管將步驟丨之第一 溫於6〇°C下授拌7小時,使其完全分散於乙醇中,完 成後以甲醇沖洗數次即得零世代⑹)複合磁性金屬顆粒 (、下簡稱MNP-G〇) ’隨即將此利用氮氣吹乾以利後續 定量使用。 3.將步驟2製得的零世代(G。)複合磁性金屬顆粒定量至 50 ml甲醇中並加入2〇 ml丙烯酸曱酯,利用超音波 震藍7小時’使其完全混合及反應均勾,完成後以甲 醇沖洗數次,即可得到半世代(Gy樹狀高分子複合磁 性金屬顆粒(以下簡稱MNP-G0.5)。 4.將乂驟3製得的半世代(G〇5n)樹狀高分子複合磁性金屬 顆粒定量至20 ml甲醇並加入1〇⑹乙二胺,利用超 音波震i 3小時,完成後以曱醇沖洗數次,即可得到 第一代樹狀高分子複合磁性金屬顆粒(以下簡稱 MNP-G!)。' And add 10 ml @ 3 - aminopropyltrimethoxy sinter to obtain a first mixture. 2. Use a magnet stirrer with a condenser to mix the first temperature at 6 °C for 7 hours to completely disperse it in ethanol. After completion, rinse with methanol several times to obtain zero generation (6) composite magnetic Metal particles (hereinafter referred to as MNP-G〇) 'This is then blown dry with nitrogen for subsequent quantitative use. 3. Quantify the zero-generation (G.) composite magnetic metal particles prepared in step 2 into 50 ml of methanol and add 2 〇ml of decyl acrylate, and use ultrasonic wave blue for 7 hours to make it completely mixed and react. After completion, it can be washed several times with methanol to obtain half-generation (Gy dendrimer composite magnetic metal particles (hereinafter referred to as MNP-G0.5). 4. Half-generation (G〇5n) tree prepared in step 3. The polymer-like magnetic metal particles are quantified to 20 ml of methanol and 1 〇(6) ethylenediamine is added, and the ultrasonic wave is used for 3 hours. After completion, the first generation dendrimer composite magnetic is obtained by rinsing several times with decyl alcohol. Metal particles (hereinafter referred to as MNP-G!).

15 201118042 實施例2至s 二----- 實施例2至5分別是以與實施例1相似的步驟製備第 二代至第五代(G2至G5)的樹狀高分子複合磁性金屬顆粒(以 下分別簡稱為 MNP-G2、MNP-G3、MNP-G4 及 MNP-G5),其 不同之處在於:實施例2至5重複該步驟3及4的次數不 同。 < TEM觀測及EDX分析結果> 本案發明人分別將製備例1之MNP、實施例1 iMNP-G〇、MNP-G〇.5、MNP-G!以及實施例2至5之樹狀高分子複修 合磁性金屬顆粒製成TEM的檢測樣品,並以TEM對該等 檢測樣品進行表面型態之觀察,發現單純的四氧化三鐵磁 性奈米顆粒因本身具有弱磁性,故雖然可以看出呈現圓球 顆粒狀,但是會有團聚現象。至於,零世代、半世代及第 一代以上的樹狀高分子複合磁性金屬顆粒,因為高分子材 料本身具有分散性的效果’有效地降低了彼此間的團聚現 象。此外’由TEM圖還可測量出自行合成之樹狀高分子複 合磁性金屬膠體的平均粒徑約為1〇 nm,這和單純四氧化 · 三鐵磁性奈米顆粒的平均粒徑大小相近。 另’磁性奈米顆粒(MNP)的EDX分析結果中出現〇、15 201118042 Example 2 to s II-----Examples 2 to 5 are respectively prepared in the same manner as in Example 1 to prepare the second-generation (G2 to G5) dendrimer-like composite magnetic metal particles. (hereinafter referred to as MNP-G2, MNP-G3, MNP-G4, and MNP-G5, respectively), except that the number of times of steps 3 and 4 is repeated in Examples 2 to 5. <TEM observation and EDX analysis results> The inventors of the present invention respectively prepared the MNP of Preparation Example 1, Example 1 iMNP-G〇, MNP-G〇.5, MNP-G! and Examples 2 to 5 Molecular repair and magnetic metal particles were used to make TEM samples, and the surface morphology of these samples was observed by TEM. It was found that the simple ferroferric oxide magnetic nanoparticles have weak magnetic properties, so they can be seen. The ball is granulated, but there is agglomeration. As for the dendritic polymer composite magnetic metal particles of the zeroth generation, the half generation and the first generation, since the polymer material itself has a dispersing effect, the agglomeration phenomenon between the two is effectively reduced. In addition, the average particle size of the self-synthesized dendrimer-complexed magnetic metal colloid can be measured by the TEM image to be about 1 〇 nm, which is similar to the average particle size of the simple oxidized-triple ferromagnetic nano-particles. Another 'Electronic Nanoparticle (MNP) EDX analysis results in 〇,

Cu及Fe之特徵波峰’其中成分Cu應為鍍碳銅網所造成 ,而〇和Fe即是四氡化三鐵的特徵波峰;而零世代複合磁 性金屬膠體的EDX分析結果中除了出現Fe及〇的特徵波 峰外,還多了 si的特徵波峰,此正是ATPS的成分之一。 < XRD分析結果> 16 201118042 本案發明人亦將製備例1之MNP、實施例1 iMNP-G〇、MNP-G0.5、MNP-G!以及實施例2至5之樹狀高分子複 合磁性金屬顆粒製成XRD的檢測樣品,並以XRD分析, 且從本案之檢測樣品的XRD分析圖譜可以發現,在對應 Fe304之標準圖譜的特徵波峰處都會有出現特徵波峰,且其 訊號強度也都趨近於Fe304之標準圖譜,由此可知,在合成 不同世代的過程中,並不會造成磁性奈米顆粒改質。The characteristic peaks of Cu and Fe' are composed of carbon-coated copper mesh, while bismuth and Fe are the characteristic peaks of tetra-n-iron tri-iron; and the EDX analysis results of zero-generation composite magnetic metal colloids except Fe and In addition to the characteristic peaks of 〇, there are more characteristic peaks of si, which is one of the components of ATPS. <XRD analysis result> 16 201118042 The inventors of the present invention also synthesized the MNP of Preparation Example 1, Example 1 iMNP-G〇, MNP-G0.5, MNP-G! and the dendrimers of Examples 2 to 5. Magnetic metal particles were used to make XRD samples and analyzed by XRD. From the XRD analysis of the test samples in this case, it can be found that characteristic peaks appear at the characteristic peaks of the standard map corresponding to Fe304, and the signal intensity is also Approaching the standard map of Fe304, it can be seen that in the process of synthesizing different generations, the magnetic nanoparticles are not modified.

另,在零世代及半世代的樹狀高分子複合磁性金屬顆 粒的檢測樣品的XRD分析圖譜中,在波長995-1300 cm-1 處還會出現一代表Si-O的特徵波峰,證明磁性奈米顆粒表 面確實有附著上前驅物(ATPS)。此外,在實施例1至5之 第一代至第五代的樹狀高分子複合磁性金屬顆(即MNP-G! 、MNP-G2、MNP-G3、MNP-G4 及 MNP-G5)的檢測樣品的 XRD分析圖譜中,另於波長1200 cm—1處有三級胺伸縮震 動波峰、2943 cm—1處有-CH2-特徵吸收波峰、1645 cm-1處 有-C0NH-特徵譜帶、1558 cm·1及3412 cm·1處有-NH2官能 基波峰。 &lt;比表面積及孔隙體積分析&gt; 本案利用COULTER SA3100比表面積分析儀分別測定 製備例1之MNP、實施例1之步驟2製得的MNP-G〇,以 及實施例5之MNP-G5的比表面積及孔隙體積,其中儀器設 定參數為脫氣時間為60 min、脫氣溫度為120 °C,並於每 次稱重0.2 g測驗之,其結果為:(1)比表面積:MNP為 97.41 m2/g、MNP-G〇 為 68.89 m2/g、MNP-G5 為 56.96 m2/g 17 201118042 ;(2)孔隙體積:MNP 為 0.24 ml/g、MNP-G〇 為 0.21 ml/g、 MNP-G5 為 0.16 ml/g。 由此測試可知,當樹狀高分子的代數較高時,比表面 積較低,但相較與未與樹狀高分子複合的磁性金屬顆粒(即 MNP)的比表面積而言,樹狀高分子的代數對比表面積的影 響並不大。 〈界達電位(Zeta Potential)之測定&gt; 本案使用界達電位分析儀(Zeta Potential Analyzer ;簡 稱 ZPC ;購自於 Brookhaven Instruments Corporation)測定製 備例1之MNP、實施例3之MNP-G3及實施例5之MNP-G5 的表面電性,其係先將0.03 g之待測物定量至100 ml的去 離子水中(0.3 mg/ml),並經超音波震盈30 min,使其完全 混合均勻後,再利用HC1及NaOH調整測試樣品之pH值 ,以得到不同pH值的測試樣品,並以儀器分析之,其結果 如圖1所示。 由圖1可知MNP、MNP-G。及MNP-G5於不同pH值環 境下的界達電位,並得知其等電位點分別為:MNP為7.0 mV ; MNP-G。為 6.9 mV ; MNP-G5 為 6.7 mV,而製備例 1 之MNP之結果是以圓形標記表示之;實施例3之MNP-G3 之結果是以三角形標記表示之;及實施例5之MNP-G5之結 果是以菱形標記表示之。 &lt;模擬Zn2+及Ag+之飽和吸附量及吸附容量指標&gt;In addition, in the XRD analysis of the samples of the zero-generation and half-generation dendrimer-composite magnetic metal particles, a characteristic peak representing Si-O appears at a wavelength of 995-1300 cm-1, which proves that the magnetic nai The surface of the rice grain does have an attached precursor (ATPS). In addition, the detection of the dendrimer composite magnetic metal particles (ie, MNP-G!, MNP-G2, MNP-G3, MNP-G4, and MNP-G5) of the first to fifth generations of Examples 1 to 5 In the XRD analysis of the sample, there is a tertiary amine stretching vibration peak at a wavelength of 1200 cm-1, a -CH2- characteristic absorption peak at 2943 cm-1, a -C0NH- characteristic band at 1645 cm-1, and 1558. There are -NH2 functional peaks at cm·1 and 3412 cm·1. &lt;Specific surface area and pore volume analysis&gt; The ratio of MNP of Preparation Example 1, MNP-G〇 obtained in Step 2 of Example 1, and MNP-G5 of Example 5 was measured by COULTER SA3100 specific surface area analyzer, respectively. Surface area and pore volume, the instrument setting parameters are degassing time of 60 min, degassing temperature of 120 °C, and weighing 0.2 g each time. The results are as follows: (1) specific surface area: MNP is 97.41 m2 /g, MNP-G〇 is 68.89 m2/g, MNP-G5 is 56.96 m2/g 17 201118042; (2) Pore volume: MNP is 0.24 ml/g, MNP-G〇 is 0.21 ml/g, MNP-G5 It is 0.16 ml/g. From this test, it is known that when the algebra of the dendrimer is high, the specific surface area is low, but the dendrimer is compared with the specific surface area of the magnetic metal particles (ie, MNP) which are not combined with the dendrimer. The effect of algebraic contrast surface area is not large. <Measurement of Zeta Potential> In this case, the MNP of Preparation Example 1, the MNP-G3 of Example 3, and the implementation were measured using a Zeta Potential Analyzer (ZPC; commercially available from Brookhaven Instruments Corporation). The surface electrical property of MNP-G5 of Example 5 is that the 0.03 g sample is first quantified into 100 ml of deionized water (0.3 mg/ml) and subjected to ultrasonic shock for 30 min to make it completely mixed. Then, the pH value of the test sample is adjusted by using HC1 and NaOH to obtain test samples of different pH values, and analyzed by an instrument, and the results are shown in FIG. 1 . Figure 1 shows MNP and MNP-G. And the boundary potential of MNP-G5 in different pH environments, and the equipotential points were found to be: MNP was 7.0 mV; MNP-G. 6.9 mV; MNP-G5 is 6.7 mV, and the results of the MNP of Preparation Example 1 are indicated by circular marks; the results of MNP-G3 of Example 3 are indicated by triangular marks; and the MNP of Example 5 The result of G5 is indicated by a diamond mark. &lt;Simulated Zn2+ and Ag+ saturated adsorption capacity and adsorption capacity index&gt;

發明人將含有Zn2+的儲備溶液配製成Zn2+含量分別為 30 mg/L及50 mg/L的多組pH為7的試驗溶液,於25 °C 201118042 下’分別添加不同劑量的MNP-G3(〇.〇25 g〜0.5 g),並定時 以ICP測量其中的zn2+含量,再利用兩種吸附方程式,即 Langmuir吸附方程式及Freundlich吸附方程式進行等溫吸 附曲線之模擬。利用Langmuir吸附方程式模擬可以推得 MNP-G3對Zn2+的最大飽和吸附量(qmax)約為24,30 mg/g,b 值為0.09 ’ R2值為0.96 ;以Freundlich吸附方程式模擬並 經計算後得到MNP-G3對Zn2+的吸附容量指標(Kf)為3.49, 1/n值為0.47,R2為0.95。因此,由上述方程式來看, MNP-G3對Zn2+具有良好的吸附效果。 發明人以同樣的方式進行Ag+之飽和吸附量及吸附容量 指標的測試,經Langmuir吸附方程式模擬結果為:MNP-G3 對Ag+的最大飽和吸附量(qmax)約為58 8 mg/g,b值為0.249 ,R2值為0.99 ;經Freundlich吸附方程式模擬結果為: MNP-G3對Ag +的吸附容量指標(Kf)為2 44, 1/n值為〇 39 ,R2為0.79 ’故MNP-G3對Ag+也有良好的吸附效果。 &lt;去除金屬離子之試驗&gt; [試驗1 :使用不同處理劑去除Zn2+之比較] 發明人先將含有Zn2+的儲備溶液調配成Zn2+含量為5〇 mg/L且pH值為7的試驗溶液3份,並在25t下,分別取 製備例1之MNP、實施例3之MNP-G3及實施例5之MNP-Gs各0.5 g,放置於不同的上述試驗溶液中,並定時以icp 測量其中的Zn2+含量,進而得到一試驗溶液中的Zn2+剩餘 百分比隨時間改變的曲線圖,其結果如圖2所示,其中的 縱座標為Zn於試驗溶液中的剩餘百分比,即以2+於試驗 201118042 /谷液中的剩餘量與Zn2+於試驗溶液中的初始量的比值,而 製備例1之MNP之結果是以圓形標記表示之;實施例3之 MNP-G3之結果是以菱形標記表示之;及實施例5之MNp_ A之結果是以方形標記表示之。 由圖2可知,當Zn2+濃度為5〇 mg/L·時,實施例3之 MNP-G3及實施例5之MNP-G5的去除效率都可達8〇% , 而且反應皆在短時間(約1 hr)就有極佳效果,雖然純製備例 1之MNP也可以在短時間内就有去除效果,但是其去除效 率約只有30% ,去除能力明顯不如MNp_G3及mnp_G5。 隹 [試驗2 :不同pH值對Zn2+去除效率之影響] 發明人先將含有Zn2+的儲備溶液分別調配成Zn2+含量 皆為10 mg/L ,但pH值分別為4、5、6及7的四種不同 的試驗溶液,並在25t下,分別於上述四種試驗溶液中添 加〇,1 g的實施例3之MNP-G3,並定時以ICP測量其中的The inventors formulated a Zn2+-containing stock solution into a plurality of test solutions with a Zn2+ content of 30 mg/L and 50 mg/L, respectively, and added different doses of MNP-G3 at 25 °C 201118042 ( 〇.〇25 g~0.5 g), and periodically measure the zn2+ content by ICP, and then use two adsorption equations, namely Langmuir adsorption equation and Freundlich adsorption equation to simulate the isotherm adsorption curve. Using Langmuir adsorption equation simulation, the maximum saturated adsorption amount (qmax) of MNP-G3 to Zn2+ is about 24,30 mg/g, and the b value is 0.09' R2 value is 0.96. It is simulated by Freundlich adsorption equation and calculated. The adsorption capacity index (Kf) of MNP-G3 for Zn2+ was 3.49, the 1/n value was 0.47, and the R2 was 0.95. Therefore, from the above equations, MNP-G3 has a good adsorption effect on Zn2+. The inventors tested the saturated adsorption capacity and adsorption capacity of Ag+ in the same way. The simulation results of Langmuir adsorption equation showed that the maximum saturated adsorption amount (qmax) of MNP-G3 to Ag+ was about 58 8 mg/g, b value. The value is 0.249 and the R2 value is 0.99. The simulation results of Freundlich adsorption equation are as follows: The adsorption capacity index (Kf) of MNP-G3 for Ag + is 2 44, the 1/n value is 〇39, and the R2 is 0.79'. Therefore, MNP-G3 pair Ag+ also has a good adsorption effect. &lt;Test for removing metal ions&gt; [Test 1: Comparison of removal of Zn2+ using different treatment agents] The inventors first formulated a stock solution containing Zn2+ to a test solution having a Zn2+ content of 5 〇mg/L and a pH of 7 And at 25t, the MNP of Preparation Example 1, the MNP-G3 of Example 3, and the MNP-Gs of Example 5 were each 0.5 g, placed in different test solutions, and the time was measured by icp. The Zn2+ content, and then the curve of the remaining percentage of Zn2+ in a test solution as a function of time, the results are shown in Figure 2, wherein the ordinate is the remaining percentage of Zn in the test solution, that is, 2+ in the test 201118042 / The ratio of the remaining amount in the trough liquid to the initial amount of Zn2+ in the test solution, and the result of the MNP of Preparation Example 1 is represented by a circular mark; the result of MNP-G3 of Example 3 is represented by a diamond mark; The result of MNp_A of Example 5 is indicated by a square mark. 2, when the concentration of Zn2+ is 5〇mg/L·, the removal efficiency of MNP-G3 of Example 3 and MNP-G5 of Example 5 can reach 8〇%, and the reaction is all in a short time (about 1 hr) has an excellent effect, although the MNP of the pure preparation example 1 can also have a removal effect in a short time, but the removal efficiency is only about 30%, and the removal ability is obviously not as good as MNp_G3 and mnp_G5.隹 [Test 2: Effect of different pH values on Zn2+ removal efficiency] The inventors first prepared a Zn2+-containing stock solution to a total of 10 mg/L of Zn2+, but the pH values were 4, 5, 6 and 7 respectively. Different test solutions, and at 25t, add 〇, 1 g of MNP-G3 of Example 3 to the above four test solutions, and measure the ICP by timing.

Zn含董,進而得到一試驗溶液中的Zn2+剩餘百分比隨時間 改變的曲線圖’其結果如圖3所示,其中的縱座標為Μ 於試驗溶液中的剩餘百分比,而pH值為4之結果是以圓形φ 標記表示之;pH值為5之結果是以三角形標記表示之; 值為6之結果是以方形標記表示之;及阳值為7之結果是 以菱形標記表示之。 由圖3可知,當PH值為4時,去除效率約為1〇% ; 當pH值為5時,去除效率提升到2〇 % ,且隨pH不斷升 南,去除效率也隨之提升(1〇%提升到8〇% )。由本測試除了 可知隨環境的PH值越高,Zn2+的去除效率也相對提升外, 20 201118042 也可推知藉由調整pH值應可調控的Zn2+的吸脫附。 [試驗3 : MNP-G3對不同金屬離子的去除效率(pH=4)之比 較]Zn contains Dong, which in turn gives a graph of the remaining percentage of Zn2+ in a test solution as a function of time. The results are shown in Figure 3, wherein the ordinate is the remaining percentage of Μ in the test solution, and the pH is 4 It is represented by a circular φ mark; the result of a pH of 5 is represented by a triangular mark; the result of a value of 6 is represented by a square mark; and the result of a positive value of 7 is represented by a diamond mark. It can be seen from Fig. 3 that when the pH value is 4, the removal efficiency is about 1%; when the pH value is 5, the removal efficiency is increased to 2%, and as the pH continues to rise, the removal efficiency is also increased (1) 〇% increased to 8〇%). In addition to the fact that the higher the pH value of the environment, the removal efficiency of Zn2+ is relatively improved, 20 201118042 can also be inferred that the adsorption and desorption of Zn2+ should be regulated by adjusting the pH. [Experiment 3: Comparison of the removal efficiency of different metal ions by MNP-G3 (pH=4)]

發明人先將分別含有K+、Li+、Cu2+' Zn2+、a13+及 As3 +的六種儲備溶液調配成含量皆為1〇 mg/L且pH值為4 的六種不同的試驗溶液,並纟说下,分別於上述六種試 驗溶液中添加0.1 g的實施例3之MNP_G3,並定時以icp 測量其中的金屬離子含量而得到__試驗溶液中的金屬 離子剩餘百分比隨時間改變的曲線圖,其結果如圖4所示 ’其中的縱座標為各金屬離子於試驗溶液中的剩餘百分比 ’而K+之結果是以倒三角形標記表示之;Li+之結果是以圓 形標記表示之;Cf之結果是以六角形標記表示之;Μ之 結果是以菱形標記表示之;a13.之結果是以方形標記表示之 ,及As +之結果是以正三角形標記表示之。 由圖4可以知,在pH值為4的環境下,匪PA對不 同金屬離子的去除效率依序為:As5+&gt;Al3+&gt;K+&gt;Zn2+&gt;Cu2+&gt;Li + 。在酸性條件下,As5 + ;5 A13+aa 4. , 及A1的去除效率明顯較高’ AS5+的 去除效率較高的制是料—種特殊金屬,它於環境中常 會、2AS〇4 HAs〇4或As043.等帶有負電狀態存在,故 在酸性條件下會與表面帶正電之mnp_g3互相韻。至於 A13+’由於其於水巾是”正電狀態存在,故在酸性條件下 ’應不會有電荷相吸的及施 W㈣反應發生,其去除效率高可能是因 為易和丽叫發生錯合。此外,跡^ Li+不具去除 效果的原因π U不具低能量軌域可供錯合反應進行,而同The inventors first formulated six kinds of stock solutions containing K+, Li+, Cu2+' Zn2+, a13+ and As3+ into six different test solutions each with a content of 1〇mg/L and a pH of 4, and then said 0.1 g of the MNP_G3 of Example 3 was added to the above six test solutions, and the metal ion content of the sample was measured by icp at regular intervals to obtain a graph of the remaining percentage of the metal ions in the test solution as a function of time. As shown in Figure 4, 'the ordinate is the remaining percentage of each metal ion in the test solution' and the result of K+ is represented by an inverted triangle; the result of Li+ is represented by a circular mark; the result of Cf is The hexagonal mark indicates that the result is represented by a diamond mark; the result of a13. is represented by a square mark, and the result of As + is represented by an equilateral triangle mark. As can be seen from Fig. 4, in the environment of pH 4, the removal efficiency of 匪PA for different metal ions is: As5+&gt;Al3+&gt;K+&gt;Zn2+&gt;Cu2+&gt;Li + . Under acidic conditions, As5 + ; 5 A13 + aa 4. , and A1 removal efficiency is significantly higher ' AS5 + removal efficiency is higher than the material - a special metal, it is often in the environment, 2AS 〇 4 HAs 〇 4 or As043. and so on exist in a negatively charged state, so under acidic conditions will be rhythm with the surface positively charged mnp_g3. As for A13+' because it is in a positively charged state, under acidic conditions, there should be no charge attraction and W(4) reaction. The high removal efficiency may be due to the mismatch between Yi and Li. In addition, the trace ^ Li+ has no removal effect, π U does not have a low energy orbital domain for the mismatch reaction, and the same

21 201118042 屬於鹼金族的K+仍有20%的去除效率的原因是當以卸原子 型態存在時’其電子組態為,而當卸為 離子態時,其電子組態為形成混成 軌域,能與MNP-G3發生錯合’進而有去除效果。zn2+與 Cu2+之去除效率約為20% 。 附s主說明,本測試測得的去除效率普遍不高,主要是 顯示是因為在低pH值的條件下,樹狀高分子本身不利於錯 合反應之進行,因其-NH2官能基在酸性條件下易被質子化 成-NH3 +之官能基。此一官能基質子化作用正是樹狀高分子 · 於低pH條件下’可脫附金屬之主要原理。 [試驗4:不同金屬離子的吸附競爭(pII=7)試驗] 發明人先將分別含有K+、Li+、Cu2+及Ζη2+的四種儲備 溶液混合調配出一含有mg/L之κ+、10 mg/L之Li+、1〇 mg/L之Cu&gt;及1〇 mg/L之Zn2+,且pH值為7的一種試驗 '、、、 並在25 C下,於§亥试驗溶液中添加〇. 1 g的實施例3 之MNP-G3,並定時以lcp測量其中的金屬離子含量,進而 付到一試驗溶液中的金屬離子剩餘百分比隨時間改變的曲鲁 線圖’其結果如圖5所示’其中的縱座標為各金屬離子於 »式驗岭液中的剩餘百分比,而κ+之結果是以圓形標記表示 之,Ll之結果是以正三角形標記表示之;Ζη2+之結果是以 倒二角形標記表示之;及Cu2+之結果是以方形標記表示之 〇 2+將圖5和圖3之結果進行比較,可以發現,單獨進行 &amp;去除時,去除效率可以達到80% ,但是當進行競爭試 22 201118042 驗時’去除效果只剩下70% ’而Cu2+也是有去除效率下降 之障況發生’故推測金屬的去除效率和mnp-g3的使用量 有密切關係,推測每一單位樹狀高分子複合磁性金屬顆粒 疋具有固定作用位置’另在本測試中也發現,二價金屬之 去除效率及競爭能力會高於一價金屬。 [試驗S :酸洗處理對去除效率的影響] 本試驗疋先將0.5 g的實施例3之MNP-G3加入1〇 mL % 的水中攪拌,並緩緩滴入濃鹽酸數滴,使水中pH值達3 〇 後攪拌5分鐘並進行固液分離,再以去離子水清洗MNp_ g3。 另外,將含有Cu2+的儲備溶液配製成Cu2+含量皆為1〇 mg/L但pH值分別為4、5、6及7的四種試驗溶液,並 在25C下,於該試驗溶液中添加〇1 g之經上述酸洗處過的 _P-G3,並定時以ICP測量其中的金屬離子含量,進而得 到一試驗溶液中W Cu2+剩餘百分比隨時間改變的曲線圖, • 其結果如圖6所示,其中的縱座標為Cu、試驗溶液中的21 201118042 The reason why K+ belonging to the alkali gold family still has 20% removal efficiency is that when it is in the unloading atomic form, its electronic configuration is, and when it is discharged into the ionic state, its electronic configuration is to form a mixed orbital domain. It can be misaligned with MNP-G3' and has a removal effect. The removal efficiency of zn2+ and Cu2+ is about 20%. With the s main instructions, the removal efficiency measured in this test is generally not high, mainly because the dendrimer itself is not conducive to the mismatch reaction at low pH, because its -NH2 functional group is acidic. Under conditions, it is easy to be protonated into a functional group of -NH3 + . This monofunctional protonation is the main principle of dendrimers at the low pH conditions. [Experiment 4: Adsorption competition of different metal ions (pII=7) test] The inventors first mixed four kinds of stock solutions containing K+, Li+, Cu2+ and Ζη2+ to prepare a κ+, 10 mg/mg containing mg/L. L of Li+, 1〇mg/L of Cu&gt; and 1〇mg/L of Zn2+, and a pH of 7 test ',, and at 25 C, add 〇. g of MNP-G3 of Example 3, and periodically measuring the metal ion content thereof by lcp, and then adding the residual percentage of metal ions in a test solution to change with time. The result is shown in FIG. The ordinate is the remaining percentage of each metal ion in the calculus, and the result of κ+ is represented by a circular mark, and the result of L1 is represented by an equilateral triangle; the result of Ζ 2+ is the second The result of Cu2+ is indicated by the angle mark; and the result of Cu2+ is represented by a square mark. Comparing the results of Fig. 5 and Fig. 3, it can be found that the removal efficiency can be 80% when performing &amp; removal separately, but when competing Test 22 201118042 The inspection time 'only 70% of the removal effect' and Cu2+ is also removed The rate of decline occurs. Therefore, it is speculated that the removal efficiency of metal is closely related to the amount of mnp-g3 used. It is speculated that each unit of dendrimer-like composite magnetic metal particles has a fixed action position. In addition, this test also found that The removal efficiency and competitiveness of divalent metals will be higher than that of monovalent metals. [Test S: Effect of pickling treatment on removal efficiency] In this test, 0.5 g of MNP-G3 of Example 3 was added to 1 mL of water and stirred, and a few drops of concentrated hydrochloric acid were slowly added to make the pH of the water. After the value reached 3 Torr, the mixture was stirred for 5 minutes and subjected to solid-liquid separation, and then MNp_g3 was washed with deionized water. In addition, the Cu2+-containing stock solution was formulated into four test solutions with Cu2+ content of 1〇mg/L but pH values of 4, 5, 6 and 7, respectively, and 〇 was added to the test solution at 25C. 1 g of _P-G3 which has been subjected to the above pickling, and the metal ion content thereof is measured by ICP at regular intervals, thereby obtaining a graph of the remaining percentage of W Cu2+ in a test solution as a function of time, and the result is shown in Fig. 6. Show that the ordinate is Cu, in the test solution

剩餘百分比,而pH值為4之結果是以圓形標記表示之;pH f為5之結果是間三角形標記表示之;pH值為6之結果 疋以正三㈣標記表示之;及pH值為7之結果是以方形標 記表示之。 由圖6可知,經酸洗處理後之MNp_G3在pH值為* 時’對於以2+之去除效率約有5〇 %,而隨pH值提高, 其去除能力也隨之上升(由5〇 %上升之約娜)。此外 ,在PH值為4的操作環境下,相較於未經酸洗的測試3, 23 201118042 本測試經酸洗處理後之ΜΝΡ-G3對Cu2+之去除效率明顯較 高(由20% 提升至50% ),因此,操作者可以進一步藉由 此酸洗處理步驟,去除附著於ΜΝΡ-G3表面之雜質,以提昇 去除效率。 [試驗6 : MNP-G5對Ag+的吸附能力]The remaining percentage, and the result of pH 4 is indicated by a circular mark; the result of pH f of 5 is indicated by a triangular mark; the result of pH 6 is represented by a positive three (four) mark; and the pH is 7 The result is indicated by a square mark. It can be seen from Fig. 6 that the MNp_G3 after pickling treatment has a removal efficiency of about 5% for 2+ at a pH of *, and the removal ability increases as the pH increases (by 5%). Rising Yona). In addition, in the operating environment with a pH of 4, compared with the test without acid pickling 3, 23 201118042 After the pickling treatment, the ΜΝΡ-G3 removal efficiency of Cu2+ is significantly higher (from 20% to 50%), therefore, the operator can further remove the impurities attached to the surface of the ΜΝΡ-G3 by the pickling treatment step to improve the removal efficiency. [Experiment 6: Adsorption capacity of MNP-G5 for Ag+]

發明人先將含有Ag+的儲備溶液調配成Ag+含量為50 mg/L且pH值為7的試驗溶液,並在25°c下,將〇 5 g之 實施例5之ΜΝΡ-G5置於上述試驗溶液中,並定時以jcp測 量其中的Ag+含量,進而得到一試驗溶液中的Ag+剩餘量隨 H 時間改變的曲線圖,其結果如圖7所示,其中的縱座標代 表Ag+於試驗溶液中的剩餘量。 &lt;處理劑之再利用試驗 測試例 本測試例是先對ΜΝΡ-G3施予一如試驗5所述的酸洗處 理,亦即將0.1 g的實施例3之mnp_G3加入1〇 mL的水中 攪拌,並緩缓滴入濃鹽酸數滴,使水中pH值達3 〇後,攪 拌5分鐘並進行固液分離,再以去離子水清洗MNp_G” 2 後,在25°C下,將MNP-G3與一 1〇〇 ml且其中Cu2+含量為 1〇mg/L、PH值為7的試驗溶液置於一燒杯中,歷時以小 時後’利用磁選方式將結合有以2+的MNp_G3與水分離, 使燒杯中不再有水,再將1〇1111的〇1以的Ηα溶液倒入燒 杯中’使MNP-G3上的Cu2+溶至HCW容液中,此時,再: 利用磁選方式將含有Cu2+的ΗΓΜ、〜、六, &quot;&quot; 的HC1谷液(以下稱為Α1部分)與 MNP-G3(以下稱為B1部分)分離。 、 24 201118042 接著’發明人將B1部分再與一 1〇〇 ml且其中Cu2+含 量為10 mg/L、pH值為7的試驗溶液置於一燒杯中,歷時 1小時後,重複如上所述的二次磁選步驟,進而又得到經分 離的3有Cu的HC1溶液(以下稱為A2部分)與MNP-G3( 以下稱為B2部分)。發明人藉由重複此段落前段所述的步 驟5次,依序可以得到另外四組含有Cu2+的Ηα溶液(以下 分別稱為 A3、A4、A5、A6、A7、A8、A9 及 A10 部分), 並發現重複使用10次後的MNP-G3仍有很好的結合金屬離 子的能力,去除效率依然是趨近1〇〇% 。 另’針對收集到的A1至A10部分,發明人分別以Icp 測量其中的金屬離子含量,並乘上i 溶液之體積) 以得到回收之金屬離子總重量,再將此數值除以最初加入 之金屬離子總重量(10 mg/Lxl〇〇 ml),即可得到各階段(即 A1至A10部分)的金屬離子回收率(rec〇very raU〇),如圖8 所示,縱座標為金屬離子之回收率(% ),橫座標為再利用次 數(recycle times) ’其10次的平均金屬離子回收率約為9外 測試例2至5及測試比較例ι| 測試例2至5及測試比較例丨分別是以與測試例!相 同的步驟進行處理劑之再利用試驗,其不同之處在於:該 處理劑的種類及用量、該試驗溶液中的金屬離子的種類及 含量、HC1之濃度,以及再利用試驗的次數,其操作參數如 下表1所示。此外,測得的去除效率及平均金屬離子回收 率亦如下表1所示。The inventors first formulated a stock solution containing Ag+ to a test solution having an Ag+ content of 50 mg/L and a pH of 7, and placed 5 g of the ruthenium-G5 of Example 5 at 25 ° C in the above test. In the solution, and periodically measure the Ag+ content in jcp, and then obtain a graph of the residual amount of Ag+ in the test solution as a function of H time. The result is shown in Fig. 7, wherein the ordinate represents Ag+ in the test solution. remaining. &lt;Recycling Agent Recycling Test Test Example In this test example, the pickling treatment as described in Test 5 was first applied to ΜΝΡ-G3, that is, 0.1 g of the mnp_G3 of Example 3 was added to 1 mL of water and stirred. And slowly add a few drops of concentrated hydrochloric acid to make the pH of the water reach 3 〇, stir for 5 minutes and carry out solid-liquid separation, then wash MNp_G” 2 with deionized water, then MNP-G3 at 25 °C A test solution of 1 〇〇ml and having a Cu 2+ content of 1 〇 mg/L and a pH of 7 was placed in a beaker, and after lapse of hours, the Mn-bound MNp_G3 was separated from the water by magnetic separation. There is no more water in the beaker, then pour the Ηα solution of 〇1111 into the beaker to dissolve the Cu 2+ on the MNP-G3 into the HCW liquid. At this time, again: use the magnetic separation method to contain Cu 2+ HC, ~, 六, &quot;&quot; The HC1 gluten solution (hereinafter referred to as Α1 part) is separated from the MNP-G3 (hereinafter referred to as the B1 part). 24 201118042 Then the 'inventor will re-part the B1 part with one 〇〇 The test solution in which ml has a Cu2+ content of 10 mg/L and a pH of 7 is placed in a beaker, and after 1 hour, the above is repeated. The secondary magnetic separation step further obtains the separated 3 Cu-containing HC1 solution (hereinafter referred to as A2 portion) and MNP-G3 (hereinafter referred to as B2 portion). The inventors repeat the steps described in the preceding paragraph of this paragraph 5 times, In addition, four other groups of Cu2+-containing Ηα solutions (hereinafter referred to as A3, A4, A5, A6, A7, A8, A9, and A10, respectively) were obtained, and it was found that MNP-G3 was still good after repeated use for 10 times. The ability to combine metal ions, the removal efficiency is still close to 1%. In addition, for the collected parts A1 to A10, the inventors measured the metal ion content in Icp and multiplied the volume of the i solution. The total weight of the recovered metal ions is obtained, and this value is divided by the total weight of the initially added metal ions (10 mg/Lxl〇〇ml) to obtain the metal ion recovery rate of each stage (ie, part A1 to A10) (rec 〇very raU〇), as shown in Figure 8, the ordinate is the recovery rate of metal ions (%), and the abscissa is the recycling times. The average metal ion recovery rate of 10 times is about 9 test cases. 2 to 5 and test comparison example ι| test cases 2 to 5 In the test comparison example, the treatment agent reuse test was carried out in the same manner as the test example!, the difference is: the type and amount of the treatment agent, the type and content of the metal ion in the test solution, and HC1 The concentration and the number of reuse tests are shown in Table 1. The measured removal efficiency and average metal ion recovery are also shown in Table 1 below.

25 201118042 表 處理劑 種類 金屬離子 脫附劑 測試 例1 測試 例2 測試 例3 測試 例4 測試 例5 測試 比較 例1 MNP-G, MNP-G, MNP-G3 MNP-G, MNP-G. 用量 (g) 0.1 0.1 0.1 種類25 201118042 Table treatment agent type metal ion desorbent test example 1 test case 2 test case 3 test case 4 test case 5 test comparison example 1 MNP-G, MNP-G, MNP-G3 MNP-G, MNP-G. (g) 0.1 0.1 0.1 species

Cu2' Cu2Cu2' Cu2

Cu 2 + 含量 (mg/L) 10 10 10 HC1之濃 度(M) 再利 用試 驗之 次數 測試結果 除率&gt; 去效(% 平均金 屬回收 率 0.5 0.5 0.1 10 趨近 100 95 0 01 5 90 80 0.005 6 90 50Cu 2 + content (mg/L) 10 10 10 Concentration of HC1 (M) Number of times of re-testing test result removal rate &gt; De-acting (% average metal recovery rate 0.5 0.5 0.1 10 approaching 100 95 0 01 5 90 80 0.005 6 90 50

Zn2HZn2H

Zn2H 20 20 0.1 0.1 12 10 90 90 95 90 注1.含有金屬離子的試驗溶液之用量皆為i〇〇 。 註2: HC1溶液之用量皆為1〇ml。 由表1可以看出’相較於MNP ’本案之MNP-G3及 MNP-G5的金絲子去除效率及回收㈣大大的提昇了,且 使用0.1M # HC1作為脫附劑時的效果最佳。由此可見,本 案之結合有金屬離子的樹狀高分子複合磁性金屬顆粒不但參 具有製法簡單且可利用簡單的磁鐵做分離的優點外,其所 呈現的金屬離子去除效率及回收率也是相當不錯的,這是 热知此項技術領域者所未曾想到的方法,更別說是會預期 到有如此佳的功效。 本案藉由結合磁性奈米顆粒及樹狀高分子所形成的處 理劑來分離及/或回收金屬離子時,一方面可以發揮樹狀高 分子的優點-具有良好的吸附及脫附能力,一方面可以利用 26 201118042 磁性奈㈣粒之磁性’及使用簡單的磁選方式將結合有金 屬離子的處理劑自待處理源中分離出來’進而達到出人意 外的良好的金屬離子回收率,適用於回收貴金屬,而當應 用於廢水等污染源之處料,也^說是具有良好的金屬 離子去除故率,再者,所使用的處理劑可以被再利用且仍 有不錯的效果,故確實能達成本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 忐以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1疋一界達電位隨pH值改變的曲線圖,用以說明不 同處理劑於不同pH值環境下的界達電位,其中,製備例i 之MNP之結果是以圓形標記表示之;實施例3之MNp_G3 之結果是以三角形標記表示之;及實施例5之MNp_G5之結 果疋以菱形標記表示之; 圖2是一 Zn2+剩餘百分比隨時間改變的曲線圖,用以 顯示使用不同處理劑去除Zn2+之差異,其中,製備例1之 MNP之結果是以圓形標記表示之;實施例3之mNP-G3之 結果是以菱形標記表示之;及實施例5之MNP-G5之結果是 以方形標記表示之; 圖3是一 Ζιι2+剩餘百分比隨時間改變的曲線圖,用以 顯示不同pH值對Zn2+去除效率之影響,其中,PH值為4 之結果是以圓形標記表示之;pH值為5之結果是以三角形 27 201118042 標記表示之;pH值為6之結果是以方形標記表示之;及 pH值為7之結果是以菱形標記表示之; 圖4是一各金屬離子之剩餘百分比隨時間改變的曲線 圖’用以顯示MNP-G3對不同重金屬離子的去除效率(於 PH=4) ’其中,κ+之結果是以倒三角形標記表示之;Li+之結 果疋以圓形標記表示之;Cu2+之結果是以六角形標記表示之 Zn之結果是以菱形標記表示之;Al3+之結果是以方形標 S己表不之;及As3+之結果是以正三角形標記表示之; 圖5是一各金屬離子之剩餘百分比隨時間改變的曲線 φ 圖,用以顯示不同金屬於pH=7下的吸附競爭,其中,κ+^ 、、’σ果疋以圓形標記表示之;Li+之結果是以正三角形標記表 不之,Zn2+之結果是以倒三角形標記表示之;及Cu2+之結果 是以方形標記表示之; 圖6是一 Cu2+剩餘百分比隨時間改變的曲線圖,用以 顯示酸洗處過的MNP-G3在不同pH值環境下對Cu2+去除欵 率之衫響’其中’ pH值為4之結果是以圓形標記表示之; PH值為5之結果是以倒三角形標記表示之;pH值為^之結_ 杲是以正三角形標記表示之;及pH值為7之結果是以 標記表示之; 〃 圖7是一 Ag+剩餘量隨時間改變的曲線圖,用以顯厂、 MNP-G5對Ag+的吸附效果; 不 圖8為一金屬離子之回你专料 口收率對再利用次數作圖,用 顯示重複利用mnp-g3時,Μνρ Γ唞r 2+ h 人 MJNP-G3對Cu2+的吸附效果。 【主要元件符號說明】 28 201118042Zn2H 20 20 0.1 0.1 12 10 90 90 95 90 Note 1. The test solution containing metal ions is used in the amount of i〇〇. Note 2: The amount of HC1 solution is 1 〇ml. It can be seen from Table 1 that the gold removal efficiency and recovery (4) of MNP-G3 and MNP-G5 in this case are greatly improved compared with MNP, and the best effect when using 0.1M #HC1 as a desorbent is obtained. . It can be seen that the dendrimer composite magnetic metal particles combined with metal ions in this case not only have the advantages of simple preparation method and separation by simple magnets, but also the metal ion removal efficiency and recovery rate are quite good. This is a method that is not known to anyone in this technology field, let alone expects such a good effect. In the present case, when a metal ion is separated and/or recovered by a treatment agent formed by combining magnetic nanoparticles and a dendrimer, the advantage of the dendrimer can be exerted on the one hand - having good adsorption and desorption ability, on the one hand It can be used to separate the metal ion-containing treatment agent from the source to be treated by using the magnetic property of 26 201118042 magnetic neat (four) particles and using a simple magnetic separation method to achieve an unexpectedly good metal ion recovery rate, which is suitable for recycling precious metals. However, when applied to a source of pollution such as wastewater, it is said that it has a good metal ion removal rate, and further, the treatment agent used can be reused and still has a good effect, so the invention can be achieved. The purpose. However, the above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention. All remain within the scope of the invention patent. [Simple description of the diagram] Figure 1 is a graph showing the change of potential with pH value to illustrate the boundary potential of different treatment agents in different pH environments. The result of MNP of preparation example i is round. The shape of the MNp_G3 of Example 3 is indicated by a triangular mark; and the result of MNp_G5 of Example 5 is indicated by a diamond mark; FIG. 2 is a graph of the remaining percentage of Zn2+ as a function of time for The difference in the removal of Zn2+ using different treatment agents is shown, wherein the results of the MNP of Preparation Example 1 are indicated by circular marks; the results of mNP-G3 of Example 3 are indicated by diamond marks; and the MNP of Example 5 The result of G5 is represented by a square mark; Figure 3 is a graph of the remaining percentage of Ζι2+ as a function of time to show the effect of different pH values on the removal efficiency of Zn2+, wherein the result of pH 4 is a circular mark Indicated; the result of pH 5 is represented by triangle 27 201118042; the result of pH 6 is indicated by a square mark; and the result of pH 7 is indicated by a diamond mark; metal The graph of the residual percentage of ions as a function of time is used to show the removal efficiency of MNP-G3 for different heavy metal ions (at pH=4). [The result of κ+ is represented by an inverted triangle; the result of Li+ is The result of Cu2+ is the result of Cu2+, which is represented by a hexagonal mark, which is represented by a diamond mark; the result of Al3+ is represented by a square mark; and the result of As3+ is represented by an equilateral triangle mark. Figure 5 is a plot φ of the residual percentage of each metal ion as a function of time to show the adsorption competition of different metals at pH=7, where κ+^ and 'σ果疋 are represented by circular marks. The result of Li+ is represented by an equilateral triangle, the result of Zn2+ is represented by an inverted triangle mark; and the result of Cu2+ is represented by a square mark; Fig. 6 is a graph of the remaining percentage of Cu2+ as a function of time, In order to show that the MNP-G3 at the pickling point has a different pH value for the Cu2+ removal rate, the result of the pH value of 4 is indicated by a circular mark; the result of a PH value of 5 is Triangle mark The pH value of the junction _ 杲 is represented by an equilateral triangle; and the result of pH 7 is indicated by a mark; 〃 Figure 7 is a graph of Ag+ residual amount with time, used to display the factory , MNP-G5 adsorption effect on Ag+; Figure 8 is a metal ion back to your specific material yield to the number of reuse times, with the display of reuse mnp-g3, Μνρ Γ唞r 2+ h human MJNP -G3 adsorption effect on Cu2+. [Main component symbol description] 28 201118042

Claims (1)

201118042 七、申請專利範圍: L 一種分離及回收金屬離子的方法,係包含以下步驟: ⑻提供一樹狀高分子複合磁性金屬顆粒,其係包括一 由一磁性金屬氧化物構成的核心,及至少—與該核 〜表面的金屬氧化物鍵結的樹狀高分子; ⑻將忒步驟(a)之樹狀高分子複合磁性金屬顆粒置於一 含有至少一金屬離子的待處理源中,使該金屬離子 與該樹狀高分子複合磁性金屬顆粒結合以得到一 結合有金屬離子的樹狀高分子複合磁性金屬顆粒; 麵 及 (C)利用磁選方式將該結合有金屬離子的樹狀高分子複 合磁性金屬顆粒自該待處理源中分離出來。 2. 依據申喷專利範圍帛1項所述之分離及回收金屬離子的 方法,其中,該步驟⑷還進一步對該樹狀高分子複合磁 性金屬顆粒施予一酸洗處理。 3. 依據申明專利範圍第2項所述之分離及回收金屬離子的 方法,其中,該步驟⑷是藉由將該樹狀高分子複合磁性 · 金屬顆粒與一酸性溶劑接觸來進行酸洗處理,該酸性溶 劑是選自於濃鹽酸、濃硫酸、濃硝酸或濃磷酸。 4·依據申請專利範圍第丨項所述之分離及回收金屬離子的 方法’其中’該步驟⑷中的磁性金屬氧化物是選自於氧 化鐵、氧化鈷或氧化鎳。 5.依據申請專利範圍第4項所述之分離及回收金屬離子的 方法’其中,該步驟⑷中的磁性金屬氧化物是氧化鐵。 30 201118042 6.依據申請專利範圍第〗項所述之分離及回收金屬離子的 方法,其中,該步驟(a)中的樹狀高分子的末端基團能與 &quot;玄步驟(b)之金屬離子形成錯合結構。 7·依據申請專利範圍第1項所述之分離及回收金屬離子的 方法,其中,該步驟(a)中的樹狀高分子能藉由靜電作用 力與該步騾(b)之金屬離子結合。201118042 VII. Patent Application Range: L A method for separating and recovering metal ions comprises the following steps: (8) providing a dendrimer-like composite magnetic metal particle comprising a core composed of a magnetic metal oxide, and at least - a dendrimer bonded to the metal oxide of the core to the surface; (8) placing the dendrimer-like composite magnetic metal particles of the step (a) in a source to be treated containing at least one metal ion to make the metal Ions are combined with the dendrimer-composite magnetic metal particles to obtain a dendrimer-like composite magnetic metal particle combined with metal ions; and (C) magnetically-selected dendrimer-like composite magnetic material combined with metal ions Metal particles are separated from the source to be treated. 2. The method for separating and recovering metal ions according to claim 1, wherein the step (4) further applies a pickling treatment to the dendrimer composite magnetic metal particles. 3. The method for separating and recovering metal ions according to claim 2, wherein the step (4) is a pickling treatment by contacting the dendrimer-composite magnetic metal particles with an acidic solvent. The acidic solvent is selected from the group consisting of concentrated hydrochloric acid, concentrated sulfuric acid, concentrated nitric acid or concentrated phosphoric acid. 4. The method of separating and recovering metal ions according to the scope of the application of the patent application wherein the magnetic metal oxide in the step (4) is selected from the group consisting of iron oxide, cobalt oxide or nickel oxide. 5. A method of separating and recovering metal ions according to claim 4, wherein the magnetic metal oxide in the step (4) is iron oxide. 30 201118042 6. The method for separating and recovering metal ions according to the scope of the patent application, wherein the terminal group of the dendrimer in the step (a) can be combined with the metal of the step (b) The ions form a staggered structure. 7. The method for separating and recovering metal ions according to claim 1, wherein the dendrimer in the step (a) is capable of binding to the metal ion of the step (b) by electrostatic force . 8.依據申叫專利範圍帛丨項所述之分離及回收金屬離子 方法’其中’該步驟(a)中的樹狀高分子具有能將該步 (b)之金屬離子截留於其中的孔隙。 9. 依據巾請專利範圍第1項所述之分離及回收金屬離子 方法,其中,該步驟(a)中的樹狀高分子複合磁性金屬 粒的粒徑是介於10 nm至5〇〇〇 nm之間。 10. 依據申明專利範圍第9項所述之分離及回收金屬離子 方法’其中,該步驟⑷中的樹狀高分子複合磁性金屬 粒的粒徑是介於1011111至100nm之間。 η·依據巾料㈣圍第1項所述之分離及回收金屬離子 方法,其中,該步驟(b)中的待處理源是一溶液或一土 的8. The method of separating and recovering metal ions according to the scope of the patent application, wherein the dendrimer in the step (a) has pores capable of trapping the metal ions of the step (b) therein. 9. The method for separating and recovering metal ions according to the scope of the patent application, wherein the particle size of the dendrimer composite magnetic metal particles in the step (a) is between 10 nm and 5 Å. Between nm. 10. The method for separating and recovering metal ions according to claim 9 wherein the particle size of the dendrimer-composite magnetic metal particles in the step (4) is between 1011111 and 100 nm. η· According to the method of separating and recovering metal ions according to Item 1 of the material (4), wherein the source to be treated in the step (b) is a solution or a soil 的 顆 的 顆 的 壤 12.依據申請專利 方法,其中, 一貴金屬離子 範圍第1項所述之分離及回收金屬離子的 該步驟(b)中的金屬離子是一重金屬離子或 13.依據申請專利範圍第12項所述之分離及回收金屬離」 /、中忒重金屬離子是選自於銅離子、鋅離J 鎳離子、錳離子、鎘離子、汞離子、鉛離子、鉻離- 31 201118042 坤離子,或此等之一組合。 14. 依據申請專利範圍楚 固弟12項所述之分離及回收金屬離子的 方法,其中,贫香人β + w貝金屬離子是選自於銀離子、金離子、 鈀離子、鉑離子,或此等之一組合。 15. 依據申請專利範圍笛 鞄園第1項所述之分離及回收金屬離子的 去還匕3在該步驟(c)後的步驟(d),其係將該結合 有金屬離子的樹狀高分子複合磁性金屬顆粒與一脫附劑 接觸,以分離該金屬離子及該樹狀高分子複合磁性金屬 顆粒。 16. 依據中請專利範圍第15項所述之分離及回收金屬離子的 方法,其中,該步驟⑷之脫附劑為一酸性溶劑。 17. 依據申請專㈣圍第16項所述之分離及回收金屬離子的 方法,其中,該步驟(d)之脫附劑為鹽酸。 18. 依據申請專利範圍第丨5項所述之分離及回收金屬離子的 方法,其中,該步驟(d)還進一步利用磁選方式將該樹狀 高分子複合磁性金屬顆粒自脫附劑中分離出來。 32According to the patent application method, wherein the metal ion in the step (b) of separating and recovering metal ions according to the first metal range of the noble metal ion range is a heavy metal ion or 13. According to the patent application The separation and recovery of metal as described in the scope of item 12 / /, the heavy metal ions in the middle is selected from copper ions, zinc ions, nickel ions, manganese ions, cadmium ions, mercury ions, lead ions, chromium ions - 31 201118042 Kun Ions, or a combination of these. 14. The method for separating and recovering metal ions according to claim 12, wherein the poor-smelling β + w shell metal ion is selected from the group consisting of silver ions, gold ions, palladium ions, platinum ions, or One of these combinations. 15. According to the patent application scope, the deionization and separation of metal ions described in item 1 of the flute garden, in step (d) after the step (c), the tree-like high combined with the metal ions The molecular composite magnetic metal particles are contacted with a desorbing agent to separate the metal ions and the dendrimer-composite magnetic metal particles. 16. The method for separating and recovering metal ions according to claim 15, wherein the desorbing agent of the step (4) is an acidic solvent. 17. The method for separating and recovering metal ions according to Item 16 of the application (4), wherein the desorbing agent of the step (d) is hydrochloric acid. 18. The method for separating and recovering metal ions according to claim 5, wherein the step (d) further separates the dendrimer composite magnetic metal particles from the desorbent by magnetic separation. . 32
TW98139498A 2009-11-20 2009-11-20 Separation and recovery of metal ions TWI401215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98139498A TWI401215B (en) 2009-11-20 2009-11-20 Separation and recovery of metal ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98139498A TWI401215B (en) 2009-11-20 2009-11-20 Separation and recovery of metal ions

Publications (2)

Publication Number Publication Date
TW201118042A true TW201118042A (en) 2011-06-01
TWI401215B TWI401215B (en) 2013-07-11

Family

ID=44935484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98139498A TWI401215B (en) 2009-11-20 2009-11-20 Separation and recovery of metal ions

Country Status (1)

Country Link
TW (1) TWI401215B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570063B (en) * 2016-01-22 2017-02-11 裕山環境工程股份有限公司 Composite particle and method for treating heavy metal contaminants by using the same
CN107008231B (en) * 2016-01-28 2020-04-24 裕山环境工程股份有限公司 Composite particles for remediating heavy metal pollutants and method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379248B1 (en) * 2000-12-04 2003-04-08 한국과학기술연구원 Inorganic-organic hybrid polymers composed of nano-particles on the surface using dendrimers and Fabrication Method Thereof
TWI384032B (en) * 2005-12-21 2013-02-01 Dendritic Nanotechnologies Inc Dendritic polymers with enhanced amplification and interior functionality

Also Published As

Publication number Publication date
TWI401215B (en) 2013-07-11

Similar Documents

Publication Publication Date Title
Zhang et al. Distinguished Cr (VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism
Hasanzadeh et al. Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@ Fe3O4 nanoparticles
Shi et al. Use of carboxyl functional magnetite nanoparticles as potential sorbents for the removal of heavy metal ions from aqueous solution
Zhou et al. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid
Zhang et al. Thiol modified Fe3O4@ SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal
Tang et al. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review
Azad et al. Preparation and characterization of an AC–Fe 3 O 4–Au hybrid for the simultaneous removal of Cd 2+, Pb 2+, Cr 3+ and Ni 2+ ions from aqueous solution via complexation with 2-((2, 4-dichloro-benzylidene)-amino)-benzenethiol: Taguchi optimization
AU2009320152B2 (en) Liquid purification using magnetic nanoparticles
Liu et al. Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere
US9469555B2 (en) Magnetic nanostructures and device implementing same
Liu et al. Synthesis of mesoporous magnetic MnFe2O4@ CS-SiO2 microsphere and its adsorption performance of Zn2+ and MB studies
CN106076261B (en) A kind of adsorbent for heavy metal and preparation method and application
Huang et al. Graphene oxide-based Fe–Mg (Hydr) oxide nanocomposite as heavy metals adsorbent
Guo et al. Mechanism of Cd (II) and Cu (II) adsorption onto few-layered magnetic graphene oxide as an efficient adsorbent
US20170266670A1 (en) Liquid purification using magnetic nanoparticles
Liu et al. Removal of cadmium and copper from water by a magnetic adsorbent of PFM: Adsorption performance and micro-structural morphology
Mosleh et al. Titanium lanthanum three oxides decorated magnetic graphene oxide for adsorption of lead ions from aqueous media
CN105645392B (en) A kind of preparation method and application of amination graphene
Poguberović et al. Removal of Ni (II) and Cu (II) from aqueous solutions using ‘green’zero-valent iron nanoparticles produced by oak and mulberry leaf extracts
CN102417214A (en) Method for adsorbing heavy metals by using three-dimensional compound consisting of graphene sheet and magnetotactic bacteria
US20190193088A1 (en) Liquid purification using magnetic nanoparticles
Dutta et al. Sustainable magnetically retrievable nanoadsorbents for selective removal of heavy metal ions from different charged wastewaters
Shan et al. Efficient removal of free and nitrilotriacetic acid complexed Cd (II) from water by poly (1-vinylimidazole)-grafted Fe3O4@ SiO2 magnetic nanoparticles
KR20190134335A (en) Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof
Bukhari et al. Highly rapid and efficient removal of heavy metals, heavy rare earth elements, and phenolic compounds using EDTA-cross-linked MXene polymer composite: Adsorption characteristics and mechanisms

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees