TW201117267A - Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same - Google Patents

Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same Download PDF

Info

Publication number
TW201117267A
TW201117267A TW099128569A TW99128569A TW201117267A TW 201117267 A TW201117267 A TW 201117267A TW 099128569 A TW099128569 A TW 099128569A TW 99128569 A TW99128569 A TW 99128569A TW 201117267 A TW201117267 A TW 201117267A
Authority
TW
Taiwan
Prior art keywords
deposition
reaction chamber
thin film
substrate
source
Prior art date
Application number
TW099128569A
Other languages
Chinese (zh)
Other versions
TWI427681B (en
Inventor
Chang-Mog Jo
Jong-Heon Kim
Yong-Sup Choi
Sang-Soo Kim
Hee-Cheol Kang
Young-Mook Choi
Original Assignee
Samsung Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Mobile Display Co Ltd filed Critical Samsung Mobile Display Co Ltd
Publication of TW201117267A publication Critical patent/TW201117267A/en
Application granted granted Critical
Publication of TWI427681B publication Critical patent/TWI427681B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A thin film deposition apparatus used to manufacture large substrates on a mass scale and that allows high-definition patterning, and a method of manufacturing an organic light-emitting display apparatus using the same, the apparatus includes a loading unit fixing a substrate onto an electrostatic chuck; a deposition unit including a chamber maintained in a vacuum state and a thin film deposition assembly disposed in the chamber, separated from the substrate by a predetermined distance, to deposit a thin film on the substrate fixed on the electrostatic chuck; an unloading unit separating the substrate on which a deposition process is completed, from the electrostatic chuck; a first circulation unit sequentially moving the electrostatic chuck on which the substrate is fixed, to the loading unit, the deposition unit, and the unloading unit; and a second circulation unit returning the electrostatic chuck separated from the substrate to the loading unit from the unloading unit, wherein the first circulation unit passes through the chamber when passing through the deposition unit.

Description

201117267 六、發明說明: 【發明所屬之技術領域】 本發明的一態樣關於一種薄膜沉積設備及一種使用其 製造有機發光顯示設備的方法,且更明確地說,本發明係 關於一種能夠輕易地用來大規模製造大型基板並改善製造 產量的薄膜沉積設備,以及一種使用該薄膜沉積設備來製 造有機發光顯示設備的方法。 【先前技術】 相較於其它顯示設備,有機發光顯示設備具有較大的 視角、較佳的對比特徵、以及更快的反應速率,因此,受 到矚目會成為下一代顯示設備。 一有機發光顯示設備包含多個中間層,該等中間層包 含一被設置在彼此反向排列的第一電極與第二電極之間的 發光層。該等電極及該等中間層可以利用各種方法來形 成其中一種方便是沉積法。當利用沉積法來製造一有機 ,光顯示設備_ ’―具有和要被形成之薄膜相同圖樣的精 、、-田金屬遮罩(Flne Metal Mask,FMM)會被設置在$密接觸一 板的地方並且,一薄膜材料會被沉積在該fmM之上, 以便形成具有該所希圖樣的薄膜。 '、、、而s使用FMM日夺,要在一大型基板(例如大尺寸 去玻璃母板)上形成一有機薄膜圖樣並不容易。換言之,當 ㈣ 遮罩時’该遮罩可能會因為自我重力的關係而 而 ’有機薄膜圖樣則可能會因為該彎折遮罩的關係 扭曲。對於近來使用越來越多的高畫質圖樣化作業來 201117267 說’ il並不樂見。 【發明内容】 本發明的一項態樣提供一種容易製造、可輕易地用來 大規模製造大尺寸顯示設備、並且允許進行高畫質圖樣化 作業的薄膜沉積設備,以及一種使用該薄膜沉積設備來製 造有機發光顯示設備的方法。 根據本發明的一項態樣,本發明提供一種薄膜沉積設 備’其包含:一裝載單元,用以將一基板固定在一靜電失 盤上,該基板係一沉積目標;一沉積單元,其包含—保持 在真空狀態中的反應室及一被設置在該反應室中的薄膜沉 積組件’该沉積單元會與該基板分離既定的距離,以便將 一薄膜沉積在被固定於該靜電夾盤上的基板上;一卸載單 一用以刀離已於其上完成一沉積製程的基板和該靜電夾 盤,一第一循環單元,用以將其上固定著該基板的靜電夾 潼依序移動到該裝載單元、該沉積單元、以及該卸載單元; 、 第循J衣單元,用以將與該基板分離的靜電夾盤從 ^載單元處移回該裝載單元,纟中,該第—循環單元會 破6又置成用以在通過該沉積單元時通過該反應室。 X據本發明的另_項態冑,可能會在該反應室中設置 複數個薄膜沉積組件。 根據本發明的另一項態樣,該反應室可能包含一 反應室盘一莖_ 也 件,而日j 每-者皆包含複數個薄膜沉積組 反應室與第二反應室可以彼此連接。 發明的另一項態樣’該第一循環單元或該第二 201117267 循環單元可能包八—、 # 3 —栽具,以允許移動該靜電夾盤。 很據本發明的 ^ Lsi 體,其會被安裝用、 該載具可能包含:一支撐 與一第二古从通過該反應室並且包含一第一支撐體 0 芽,該第一支撐體與第二支撐體每一者皆會 沿著該第一抵擇-_ ^ ^ ^ 石白霄 ^ _ 、早兀或該第二循環單元延伸;一被設置在 二、#體上的移動棒,用以支撐該靜電炎盤的邊緣; η…破插叹在該第—支撐體與該移動棒之間的第一驅動 早…便讓該移動棒沿著該第_支撐體移動。 人.康本發月的另一項態樣,該薄膜沉積組件可能包 、"L積源,其會釋出一沉積材料;一沉積源噴嘴單元, Υ曰被°又置在该沉積源的某一側並且包含被排列在第一方 :中的複數個沉積源噴嘴;以及一圖樣化狹縫板,其會被 置在與4 >儿積源喷嘴單元反向的地方並且包含被排列在 一方向中的複數個圖樣化狹縫,該第二方向垂直於該第 白且其中’會在該基板於該第一方向中相對於該薄 膜况積組件移動時實施一沉積製程,而且該沉積源、該沉 積源、嗔噍單元、以及該圖樣化狹縫板會被整合形成單一主 體。 根據本發明的另一項態樣,談沉積源與該沉積源喷嘴 ΌΌ 一 早&以及該圖樣化狹縫板可以藉由一引導該沉積材料流動 Μ連接部件被整合連接成單一主體。 根據本發明的另一項態樣,該連接部件可能會密封該 ’儿積源與該沉積源喷嘴單元以及該圖樣化狹縫板之間的空 間。 7 201117267 根據本發明的另一項態樣’該等複數個沉積源喷嘴可 能會傾斜一既定角度。 根據本發明的另一項態樣’該等複數個沉積源噴嘴可 月&包含被排列在形成於該第一方向中的兩列之中的多個沉 積源喷嘴’而且該等兩列之中的沉積源喷嘴會傾斜而彼此 相向。 根據本發明的另一項態樣’該等複數個沉積源噴嘴可 能包含被排列在形成於該第一方向中的兩列之中的多個沉 積源喷嘴,位於該圖樣化狹縫板第一側的一列中的沉積源 噴嘴會被排列成面向該圖樣化狹縫板的第二側,而位於該 圖樣化狹縫板第二側的另一列中的沉積源喷嘴會被排列成 面向該圖樣化狹縫板的第一側。 根據本發明的另一項態樣’該薄膜沉積組件可能包 含:一沉積源,其會釋出一沉積材料;一沉積源噴嘴單元, 其會被設置在該沉積源的某一側並且包含被排列在第一方 向中的複數個沉積源喷嘴;一圖樣化狹縫板,其會被設置 在與該沉積源喷嘴單元反向的地方並且包含被排列在該第 一方向中的複數個圖樣化狹縫;以及一屏障壁組件,其合 於該第一方向中被設置在該沉積源喷嘴單元與該圖樣化狹 縫板之間’並且包含複數個屏障壁,該等複數個屏障壁會 將該沉積源喷嘴單元與該圖樣化狹縫板之間的空間分割成 複數個子沉積空間,且其中,該薄膜沉積組件會被設置成 與該基板分離,而且該薄膜沉積組件或該基板會相對於另 一者移動。 8 201117267 根據本發明的另一項態樣,每一個該等複數個屏障壁 可能會延伸在實質上垂直於該第一方向的第二方向中。 根據本發明的另—項態樣,該屏障壁組件可能包含: 一第一屏障壁組件,.其包含複數個第一屏障壁;以及一第 一屏障壁組件,其包含複數個第二屏障壁。 根據本發明的另一項態樣,每一個該等第一屏障壁及 母一個該等第二屏障壁可能會延伸在實質上垂直於該第— 方向的第二方向中。 根據本發明的另一項態樣,該等第一屏障壁可能會被 排列成分別對應於該等第二屏障壁。 根據本發明的另一項態樣,該沉積源與該屏障壁組件 可能會彼此分離。 根據本發明的另一項態樣,該屏障壁組件與該圖樣化 狹縫板可能會彼此分離。 加熱器,其會被設 該圖樣化狹縫板可能包含—第一標記,而該基板可能 包含一第二標記,而且該薄臈沉積組件可能包含一用以捕 捉δ玄第一標記及該第二標記的對齊程度的相機組件,且其 中,忒相機組件包含:一遮蓋,於該遮蓋的其中一端會形 成一開口;一相機,其會被安襞在該遮蓋中;—光學系統, 其會被設置在該相機與該開口之間;一保護窗,其會被設 置在該光學糸統與該開口之間;以及 置在該保護窗.上。 該圖樣化狹縫板可能包含一第一掸— 弟 h 5己,而該基板可能 包含一第二標記,而且該薄膜沉積組件可能進一步包含一 201117267 用以捕捉該第-標記及該第二標記的對齊程度的相機組 件’以及-用以驅動該薄膜沉積組件的第二驅動單元以 便藉由使用由該相機組件所取得之和該第一標記及該第二 標記的對齊程度有關的資訊來對齊該第—標記及該第二標 記。 5玄薄膜沉積設備可能進 會被連接至該反應室並於其 源;一閥門,用以打開或閉 室之間的空間;以及一擋板 一步包含:一來源反應室,其 中容納該薄膜沉積組件的沉積 合介於該反應室及該來源反應 ’用以在該沉積源位於該反應 室處時閉合介於該反應室及該來源反應室之間的空間。 該圖樣化狹缝板可能進一步包含一第一標記,而該基 板可能包含一第二標記,而且該薄膜沉積組件可能包含一 用以捕捉D玄第一 in s己及s亥第二標記的對齊程度的相機組 件’且其中’該相機組件包含:_遮蓋,於該遮蓋的其中 一端會形成一開口;一相機,其會被安裝在該遮蓋中;一 光干糸統,其會被a又置在該相機與該開口之間;一保護窗, 其會被設置在該光學系統與該開口之間;以及一加熱器, 其會被設置在該保護窗上。 該圖樣化狹縫板可能包含一第一標記,而該基板可能 包含一第二標記’而且該4膜沉積組件可能進一步包含一 用以捕捉6玄第一 4示a己及S亥第一標記的對齊程度的相機组 件,以及一用以驅動該薄膜沉積組件的第二驅動單元,以 便藉由使用由該相機組件所取得之和該第一標記及該第二 標記的對齊程度有關的資訊來對齊該第一標記及該第二掉 10 201117267 該薄膜沉積設備可能進一步包含:一來源反應室,其 會被連接至.該反應室並於其中容納該薄膜沉積組件的沉積 源;一閥門,用以打開或閉合介於該反應室及該來源反應 室之間的空間;以及一擋板,用以在該沉積源位於該反應 室處時閉合介於該反應室及該來源反應室之間的空間。 根據本發明的另一項態樣,本發明提供一種製造有機 發光顯示設備的方法,該方法包含:將一基板固定在一靜 電夹盤上,該基板係一沉積目標;使用一被安裝成用以通 過一反應室的第一循環單元將其上固定著該基板的靜電夾 盤運送至保持在真空狀態的反應室之中;使用一被設置在 該反應室中的薄膜沉積組件並且藉由相對於彼此來移動該 基板或該薄膜沉積組件而於該基板上沉積一有機層;藉由 使用該第 循環單元從該反應室處移開已於其上完成沉積 裝私的基板,刀離已於其上完成沉積製程的基板和該靜電 央盤’以及藉由使用—被安裝在反應室外面的第二循環單201117267 VI. Description of the Invention: [Technical Field] The present invention relates to a thin film deposition apparatus and a method of manufacturing an organic light emitting display apparatus therewith, and more particularly, the present invention relates to an easily A thin film deposition apparatus for mass-producing a large substrate and improving manufacturing yield, and a method of manufacturing an organic light-emitting display device using the thin film deposition apparatus. [Prior Art] Compared with other display devices, organic light-emitting display devices have a larger viewing angle, better contrast characteristics, and a faster reaction rate, and thus, attention has become a next-generation display device. An organic light emitting display device comprises a plurality of intermediate layers including a light emitting layer disposed between a first electrode and a second electrode which are arranged opposite each other. The electrodes and the intermediate layers can be formed by various methods. One of the conveniences is deposition. When a method of depositing is used to fabricate an organic, optical display device _ '--Flne Metal Mask (FMM) having the same pattern as the film to be formed will be placed on a close-contact plate. Also, a film material will be deposited over the fmM to form a film having the desired pattern. ',, and s use FMM, it is not easy to form an organic film pattern on a large substrate (such as a large size to remove the glass mother board). In other words, when (iv) the mask, the mask may be due to self-gravity and the organic film pattern may be distorted by the relationship of the bend mask. For the recent use of more and more high-quality graphics work to 201117267 said 'il is not happy. SUMMARY OF THE INVENTION An aspect of the present invention provides a thin film deposition apparatus which is easy to manufacture, can be easily used for mass production of a large-sized display device, and allows a high-quality patterning operation, and a film deposition apparatus using the same A method of manufacturing an organic light emitting display device. According to an aspect of the present invention, a thin film deposition apparatus includes: a loading unit for fixing a substrate to a static loss disc, the substrate is a deposition target; and a deposition unit including a reaction chamber maintained in a vacuum state and a thin film deposition assembly disposed in the reaction chamber. The deposition unit is separated from the substrate by a predetermined distance to deposit a film on the electrostatic chuck. On the substrate; a single unloading substrate for cutting a substrate on which the deposition process has been completed, and a first chucking unit for sequentially moving the electrostatic chuck on which the substrate is fixed to the substrate a loading unit, the deposition unit, and the unloading unit; and a J-coating unit for moving the electrostatic chuck separated from the substrate from the loading unit to the loading unit, wherein the first-cycle unit Break 6 is again placed to pass through the reaction chamber as it passes through the deposition unit. According to another aspect of the invention, a plurality of thin film deposition assemblies may be provided in the reaction chamber. According to another aspect of the invention, the reaction chamber may comprise a reaction chamber disk, and the plurality of thin film deposition groups and the second reaction chamber may be connected to each other. Another aspect of the invention 'the first cycle unit or the second 201117267 cycle unit may include eight-, #3-plants to allow the electrostatic chuck to be moved. According to the LSi body of the present invention, which may be installed, the carrier may include: a support and a second pass from the reaction chamber and including a first support 0 bud, the first support and the first support Each of the two supports will extend along the first resistance - _ ^ ^ ^ 石白霄 ^ _ , early 兀 or the second circulation unit; a moving rod placed on the second body, for supporting The edge of the electrostatic smear; η...the first drive between the first support and the moving rod is moved early to move the moving rod along the first support. In another aspect of the human Kangben, the thin film deposition assembly may include a "L accumulation source, which will release a deposition material; a deposition source nozzle unit, which is placed at the deposition source again One side and including a plurality of deposition source nozzles arranged in the first side; and a patterned slit plate which is placed in opposition to the 4 > source source nozzle unit and including a plurality of patterning slits in a direction, the second direction being perpendicular to the white color and wherein 'a deposition process is performed when the substrate moves relative to the film conditional assembly in the first direction, and the depositing The source, the deposition source, the germanium unit, and the patterned slit plate are integrated to form a single body. In accordance with another aspect of the invention, the deposition source is coupled to the deposition source nozzle & early & and the patterned slit plate can be integrally joined into a single body by directing the deposition material flow Μ connection member. According to another aspect of the invention, the connecting member may seal the space between the source and the deposition source nozzle unit and the patterning slit plate. 7 201117267 According to another aspect of the invention, the plurality of deposition source nozzles may be tilted by a predetermined angle. According to another aspect of the present invention, the plurality of deposition source nozzles may include a plurality of deposition source nozzles arranged in two columns formed in the first direction and the two columns The deposition source nozzles in the process are inclined to face each other. According to another aspect of the present invention, the plurality of deposition source nozzles may include a plurality of deposition source nozzles arranged in two columns formed in the first direction, the first being located on the patterning slit plate The deposition source nozzles in one column of the side are arranged to face the second side of the patterned slit plate, and the deposition source nozzles in the other column on the second side of the patterned slit plate are arranged to face the pattern The first side of the slit plate. According to another aspect of the present invention, the thin film deposition assembly may include: a deposition source that releases a deposition material; and a deposition source nozzle unit that is disposed on a side of the deposition source and contains a plurality of deposition source nozzles arranged in the first direction; a patterned slit plate disposed at a position opposite to the deposition source nozzle unit and including a plurality of patternings arranged in the first direction a slit; and a barrier wall assembly disposed in the first direction between the deposition source nozzle unit and the patterned slit plate and comprising a plurality of barrier walls, the plurality of barrier walls The space between the deposition source nozzle unit and the patterned slit plate is divided into a plurality of sub-deposition spaces, and wherein the thin film deposition assembly is disposed to be separated from the substrate, and the thin film deposition assembly or the substrate is opposite to the substrate The other moves. 8 201117267 In accordance with another aspect of the invention, each of the plurality of barrier walls may extend in a second direction that is substantially perpendicular to the first direction. According to another aspect of the present invention, the barrier wall assembly may include: a first barrier wall assembly including a plurality of first barrier walls; and a first barrier wall assembly including a plurality of second barrier walls . In accordance with another aspect of the invention, each of the first barrier walls and the one of the second barrier walls may extend in a second direction that is substantially perpendicular to the first direction. According to another aspect of the invention, the first barrier walls may be arranged to correspond to the second barrier walls, respectively. According to another aspect of the invention, the deposition source and the barrier wall assembly may be separated from one another. According to another aspect of the invention, the barrier wall assembly and the patterned slit plate may be separated from each other. a heater, which may be provided with the patterning slit plate, may include a first mark, and the substrate may include a second mark, and the thin tantalum deposition assembly may include a first mark for capturing the δ Xuan and the first a two-marked alignment camera assembly, and wherein the camera assembly includes: a cover, an opening is formed at one end of the cover; a camera that is mounted in the cover; - an optical system, And disposed between the camera and the opening; a protective window disposed between the optical system and the opening; and disposed on the protective window. The patterned slit plate may include a first electrode, and the substrate may include a second mark, and the thin film deposition assembly may further include a 201117267 for capturing the first mark and the second mark a camera assembly of the degree of alignment and a second drive unit for driving the thin film deposition assembly for alignment by using information relating to the degree of alignment of the first mark and the second mark obtained by the camera assembly The first mark and the second mark. 5 a thin film deposition apparatus may be connected to the reaction chamber and at its source; a valve for opening or closing the space between the chambers; and a baffle step comprising: a source reaction chamber containing the thin film deposition assembly The deposition is between the reaction chamber and the source reaction 'to close the space between the reaction chamber and the source reaction chamber when the deposition source is located at the reaction chamber. The patterned slit plate may further include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may include an alignment for capturing the first mark of the D and the second mark of the first mark. a camera assembly 'and wherein the camera assembly includes: a cover, an opening is formed at one end of the cover; a camera that is mounted in the cover; a light-drying system that is Positioned between the camera and the opening; a protective window disposed between the optical system and the opening; and a heater disposed on the protective window. The patterned slit plate may include a first mark, and the substrate may include a second mark 'and the 4 film deposition assembly may further include a first mark for capturing the first and second marks a camera assembly of a degree of alignment, and a second driving unit for driving the thin film deposition assembly to obtain information relating to the degree of alignment of the first mark and the second mark obtained by the camera assembly Aligning the first mark and the second drop 10 201117267 The thin film deposition apparatus may further comprise: a source reaction chamber that is connected to the reaction chamber and houses a deposition source of the thin film deposition assembly therein; a valve Opening or closing a space between the reaction chamber and the source reaction chamber; and a baffle for closing between the reaction chamber and the source reaction chamber when the deposition source is located at the reaction chamber space. According to another aspect of the present invention, the present invention provides a method of fabricating an organic light emitting display device, the method comprising: fixing a substrate to an electrostatic chuck, the substrate being a deposition target; and using one mounted for use The electrostatic chuck on which the substrate is fixed is transported to the reaction chamber held in a vacuum state by a first circulation unit passing through a reaction chamber; a thin film deposition assembly disposed in the reaction chamber is used and by relative Depositing an organic layer on the substrate by moving the substrate or the thin film deposition assembly with each other; removing the substrate on which the deposition has been completed by using the first circulation unit from the reaction chamber, the knife is separated from the substrate a substrate on which the deposition process is completed and the electrostatic central disk' and a second circulation sheet installed by using the outside of the reaction chamber

一反應室與第 組件,而且該反應室可能包含彼此連接的 一第二反應室’俾使得當該基板在該等第 反應室中相對於該薄膜沉積組件移動時會 201117267 在該基板上連續地實施一沉積製程。 該薄膜沉積組件可能包含:一沉積源,其會釋出一沉 積材料;一沉積源喷嘴單元,其會被設置在該沉積源的某 一側並且包含被排列在第一方向中的複數個沉積源喷嘴; 以及一圖樣化狹縫板,其會被設置在與該沉積源喷嘴單元 反向的地方並且包含被排列在第二方向中的複數個圖樣化 狹縫,該第二方向垂直於該第—方向,且其中,該沉積源、 該沉積源噴嘴單元、以及該圖樣化狹縫板會被整合形成單 一主體,而且該薄膜沉積組件會被設置成與該基板分離, 俾使得會在該基板於該第一方向中相對於該薄膜沉積組件 移動時在該基板上實施一沉積製程。 該薄膜沉積組件可能包含:一沉積源,其會釋出一沉 積材料;-沉積源喷嘴單元’其會被設置在該沉積源的某 一側並且包含被排列在第一方向中的複數個沉積源喷嘴; 一圖樣化狹縫板,其會被設置在與該沉積源喷嘴單元反向 的地方並且包含被排列在該第一方向中的複數個圖樣化狹 縫;以及-屏障壁組件,其會於該第一方向中被設置在該 沉積源噴嘴單元與該圖樣化狹縫板之間,並且包含複數個 屏障壁,該等複數個屏障壁會將該沉積源喷嘴單元與該圖 樣化狹縫板之間的空間分割成複數個子沉積空間,且其 中,該薄膜沉積組件會被設置成與該基板分離俾使得會在 該薄膜沉積組件或該基板相對於另一者移動時在該基板上 實施一沉積製程。 該圖樣化狹縫板可能包含一第一標記,而該基板可能 12 201117267 包含一第二標,己’而且該薄膜沉積組件可能包含一用以捕 捉該第-標記及該第二標記的對齊程度的相機組件,且立 中,該相機組件包含:―遮蓋,於該遮蓋的其中-端會形 成一開口; 一相機,其會被安農在該遮蓋中;-光學系統, 其會被設置在該相機與該開口之間;一保護窗,其會被設 置在該光學系統與該開口之間;…加熱器,其會被設 置在°亥保濩闽i,且其中,會在實施該沉積製程時偵測該 第一標記及該第二標記的對齊程度。 該圖樣化狹縫板可能包含一第一標記,而該基板可能 包含一第二標記,而且該薄骐沉積組件可能會在實施該沉 積製程時被驅動’俾使得該第—標記及該第二標記會相互 對齊。 根據本發明的另一項態樣’一薄膜沉積設備可能包 含· 一來源反應室,其會被連接至該反應室並於其中容納 忒4膜沉積組件的沉積源·’ —閥門,用以打開或閉合介於 肩反應至及§亥來源反應室之間的空間;以及一擋板,用以 在該沉積源位於該反應室處時閉合介於該反應室及該來源 反應室之間的空間,而且該方法進一步包含:於該基板上 完成沉積製程之後將該沉積源運送至該來源反應室;藉由 使用该閥門來閉合介於該反應室與該來源反應室之間的空 間;以及更換該沉積源。 該圖樣化狹縫板可能包含一第—標記,而該基板可能 包含一第二標記,而且該薄犋沉積組件可能包含—用以捕 捉§亥第一標記及該第二標記的對齊程度的相機組件,且其 201117267 二一二機組:包含:一遮蓋’於該遮蓋的其中-端會形 成一開口,-相機,其會被安裝在該遮蓋中; # ^ ^ -η. a 71:1 学系統’ 八會被5又置在該相機與該開口之間;一保護窗, ga sU m ^ ’、會被 5又 置在该先子系統與該開口之間;以及一加熱器, 外 置在該保護窗上,且其中,會# f 、《被。又 楚一τ冑在貫^,儿積製程時偵測該 第軚5己及s亥第二標記的對齊程度。 該圖樣化狹縫板可能包含一第一標記,而該基板可能 包含一第二標|£(,而且該薄膜沉積組件可能會在實施1 ” 積製程時被驅動’俾使得該第一標記及該第二;:: 對齊。 宵仰立 根據本發明的另一項態樣,一薄膜沉積設備可能包 含γ —來源反應室,其會被連接至該反應室並於其中容納 該薄膜沉積組件的沉積源;—閥門,用以打開或閉合介於 該反應室及該來源反應室之間的空間;以及—擋板,用以 在該沉積源位於該反應室處時閉合介於該反心及該來源 反應室之間的空間,而且該方法進一步包含:於該基板上 完成沉積製程之後將該沉積源運送至該來源反應室;藉由 使用該閥門來閉合介於該反應室與該來源反應室之間的空 間;以及更換該沉積源。 在下面的說明中會部分提出本發明的額外態樣及/或優 點’並且從說明中會明白其—部分’或者’藉由實行本發 明便可習得其一部分。 【實施方式】 現在將詳細參考本發明的實施例,它們的範例圖解在 14 201117267 隨附圖式中,#中,所有圖式中相同的元件符號表示相同a reaction chamber and a first component, and the reaction chamber may include a second reaction chamber 俾 connected to each other such that when the substrate moves relative to the thin film deposition assembly in the equal reaction chamber, 201117267 is continuously continuous on the substrate Implement a deposition process. The thin film deposition assembly may include: a deposition source that releases a deposition material; a deposition source nozzle unit that is disposed on a side of the deposition source and that includes a plurality of depositions arranged in the first direction a source nozzle; and a patterned slit plate disposed at a position opposite to the deposition source nozzle unit and including a plurality of patterning slits arranged in the second direction, the second direction being perpendicular to the a first direction, and wherein the deposition source, the deposition source nozzle unit, and the patterned slit plate are integrated to form a single body, and the thin film deposition assembly is disposed to be separated from the substrate, such that A deposition process is performed on the substrate while the substrate is moved relative to the thin film deposition assembly in the first direction. The thin film deposition assembly may include: a deposition source that releases a deposition material; a deposition source nozzle unit that is disposed on a side of the deposition source and that includes a plurality of depositions arranged in the first direction a source nozzle; a patterned slit plate disposed at a position opposite to the deposition source nozzle unit and including a plurality of patterning slits arranged in the first direction; and a barrier wall assembly And being disposed between the deposition source nozzle unit and the patterned slit plate in the first direction, and comprising a plurality of barrier walls, the plurality of barrier walls separating the deposition source nozzle unit and the pattern The space between the slit plates is divided into a plurality of sub-deposition spaces, and wherein the thin film deposition assembly is disposed to be separated from the substrate such that the thin film deposition assembly or the substrate is moved on the substrate relative to the other Implement a deposition process. The patterned slit plate may include a first mark, and the substrate may 12 201117267 includes a second mark, and the film deposition assembly may include a degree of alignment for capturing the first mark and the second mark Camera assembly, and the camera assembly comprises: "covering, an opening is formed at the end of the cover; a camera, which will be placed in the cover; - an optical system, which will be placed in the Between the camera and the opening; a protective window that is disposed between the optical system and the opening; a heater that is disposed at °H, and wherein the deposition is performed The degree of alignment of the first mark and the second mark is detected during the process. The patterned slit plate may include a first mark, and the substrate may include a second mark, and the thin tantalum deposition assembly may be driven to perform the first process and the second The markers will align with each other. According to another aspect of the present invention, a thin film deposition apparatus may include a source reaction chamber that is connected to the reaction chamber and houses therein a deposition source of a membrane deposition assembly, a valve for opening Or closing a space between the shoulder reaction and the source chamber of the source; and a baffle for closing the space between the reaction chamber and the source reaction chamber when the deposition source is located at the reaction chamber And the method further comprises: transporting the deposition source to the source reaction chamber after the deposition process is completed on the substrate; closing the space between the reaction chamber and the source reaction chamber by using the valve; and replacing The deposition source. The patterned slit plate may include a first mark, and the substrate may include a second mark, and the thin tantalum deposition assembly may include a camera for capturing the degree of alignment of the first mark and the second mark The assembly, and its 201117267 222 unit: includes: a cover 'at the end of the cover will form an opening, a camera, which will be installed in the cover; # ^ ^ -η. a 71:1 The system 'eight will be placed between the camera and the opening; a protective window, ga sU m ^ ', will be placed between the first subsystem and the opening; and a heater, external On the protection window, and among them, will be #f, "is. In addition, Chu Yi is in the process of detecting the alignment of the second mark and the second mark of the shai. The patterned slit plate may include a first mark, and the substrate may include a second mark (and the film deposition assembly may be driven during the implementation of the 1" process to make the first mark and The second;:: alignment. According to another aspect of the invention, a thin film deposition apparatus may include a gamma-source reaction chamber that is connected to the reaction chamber and houses the thin film deposition assembly therein. a deposition source; a valve for opening or closing a space between the reaction chamber and the source reaction chamber; and a baffle for closing the anti-center when the deposition source is located at the reaction chamber a space between the source reaction chambers, and the method further comprises: transporting the deposition source to the source reaction chamber after the deposition process is completed on the substrate; and closing the reaction chamber to react with the source by using the valve The space between the chambers; and the replacement of the deposition source. Additional aspects and/or advantages of the invention will be set forth in part in the following description and will be understood from the description Acquisition of the present invention can be a part thereof. [Embodiment Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings 14201117267, #, all the drawings the same reference numerals denote the same

的几件。該等實施例會在下文作說明,以便藉由參考該等 圖式來解釋本發明。 X 現在將參考隨附圖式來更完整說明本發明,在該等隨 附圖式中會顯示本發明的示範性實施例。 此處,當說明到一第一元件被耦接至一第二元件時, 該第一元件可能不僅直接被耦接至該第二元件,其亦可能 透過第三凡件被間接耦接至該第二元件。再者,應該瞭 解的係,當本文中敘述到一膜或層「被形成在」或「被設 置在」一第二層或膜之上時,該第一層或膜可能會直接被 形成在或被設置在該第二層或膜之上,或者,在該第一層 或膜以及該第二層或膜之間可能會有中間層或膜。進一步 言之,如本文中的用法,「被形成在…之上」一詞和「位於… 上」或「被设置在…之上」有相同的意義,而且沒有限制 任何特殊製程的意義。 圖1所不的係根據本發明一實施例的薄膜沉積設備的 概略視圖’而圖2所示的係圖!的薄膜沉積設備的修正範 】圖3所示的係根據本發明一實施例的靜電夹盤600的 概略視圖。 ^參考圖1,根據本發明一實施例的薄膜沉積設備包含一 凌栽單70 710、一沉積單元730、一卸载單元72〇、一第一 循環單元6 10、以及一第二循環單元62〇。 °亥裝載單元710可能包含一第一置物架712、一運輸機 驶 要 Π 14、一運輸反應室716、以及一第一倒置反應室718。 15 201117267 未在其上實施沉積的複數個基板500會被堆疊在該第 一置物架712上,而運輸機器裝置714會從該第一置物架 712處拾起該等基板5〇〇,將該等基板5〇〇放置在運送自該 第二循環單元620的靜電夾盤600上並且接著將其上已放 置著該等基板500的靜電夾盤6〇〇運送至運輸反應室716。 第一倒置反應室718會被設置在該運輸反應室71 6附 近,而且一位於該第一倒置反應室718處的第一倒置機器 裝置719會倒置該靜電夾盤6〇〇,以便在該沉積單元73〇的 第一循%單元610上阻擋該靜電夾盤6〇〇。 如圖3中所示,該靜電夾盤6〇〇包含一被埋置在由介 電材料構成的主體601之中的電極602 ,其中,該電極6〇2 會被供應電力。當高電壓被施加至該電極6〇2時,此靜電 失盤可以將該等基板500固定在主體6〇丨的表面上。 參考圖卜運輸機器裝置714會將該等基板5〇〇放置在 靜電夾盤600的頂端表面上。於此狀態中,該靜電夾盤6〇〇 會被運送至該運輸反應室716。當該第一倒置機器裝置719 倒置該靜電夾盤600時,該等基板5〇〇在該沉積單元73〇 中會朝向下方。 卸載單7G 720會被建構成以和上述裝載單元71〇相反 的方式來操作》換言之,通過該沉積單元73〇的該等基板 5〇〇和該靜電夾盤600會在第二倒置反應室728中被第二倒 置機器裝置729倒置並且會被運送至一射出反應室726,而 一射出機器裝置724會將該等基板5〇〇和該靜電夾盤6〇〇 取至s亥射出反應室726的外面並且接著將該等基板5〇〇和 16 201117267 該靜電夾盤600分離,以便將該等基板5〇〇放置或堆疊在 一第二置物架722上。已經和該等基板5〇〇分離的靜電夾 盤600會透過第二循環單元620被送回到裝載單元71〇。 不過,本發明的態樣並不受限於此。從該等基板5〇〇 一開始被固定在該靜電夾盤600上時,該等基板5〇〇亦可 被固疋至s玄靜電夾盤600的頂端表面,而且該靜電夾盤6〇〇 可以被運送至該沉積單元730。就此來說,未必需要用到該 第一倒置反應室718、該第一倒置機器裝置719、該第二倒 置反應至728、以及該第二倒置機器裝置729。 沉積單元730包含至少一沉積反應室。根據圖}的實 拖例,該沉積單元730可能包含一第一反應室731以及被 設置在該第一反應室731中的複數個薄臈沉積組件1〇〇、 200、300、以及400。根據圖】的實施例,在該第一反應室 73 1中雖然安裝四個薄膜沉積組件,它們包含一第一薄膜沉 積組件⑽、—第二薄臈沉積組件200、-第三薄膜沉積組 件300、以及一第四薄膜沉積組件4〇〇 ;不過,要被安裝在 S亥第一反應室731中的薄膜沉積組件的數量仍可能會依照 沉積材料和沉積條件而改變。當實施沉積時,該第一反應 室731中會保持合宜程度的真空。 另外,根據本發明的另一實施例,如圖2中所示,該 沉積單元730包含相互連接的第一反應室731及第二反應 至732,而第一薄膜沉積組件1〇〇與第二薄膜沉積組件 可被叹置在第一反應室73丨之中,而第三薄膜沉積組件3⑼ 與第四薄膜沉積組件4〇〇可被設置在第二反應室732之 17 201117267A few pieces. The embodiments are described below in order to explain the present invention by referring to the drawings. The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which FIG. Here, when it is stated that a first component is coupled to a second component, the first component may not only be directly coupled to the second component, but may also be indirectly coupled to the third component through the third component. The second component. Furthermore, it should be understood that when a film or layer is "formed" or "disposed on" a second layer or film, the first layer or film may be formed directly upon Or disposed on the second layer or film, or there may be an intermediate layer or film between the first layer or film and the second layer or film. Further, as used herein, the word "formed on" has the same meaning as "on" or "set on" and does not limit the meaning of any particular process. Fig. 1 is a schematic view of a thin film deposition apparatus according to an embodiment of the present invention, and Fig. 2 is a diagram! A modified version of the thin film deposition apparatus is shown in Fig. 3 as a schematic view of an electrostatic chuck 600 according to an embodiment of the present invention. Referring to FIG. 1, a thin film deposition apparatus according to an embodiment of the present invention includes a seeding unit 70 710, a deposition unit 730, an unloading unit 72, a first circulation unit 6 10, and a second circulation unit 62. . The °H loading unit 710 may include a first rack 712, a transporter drive 14, a transport reaction chamber 716, and a first inverted reaction chamber 718. 15 201117267 A plurality of substrates 500 on which deposition is not performed may be stacked on the first rack 712, and the transport device 714 picks up the substrates 5 from the first rack 712, The substrate 5 is placed on the electrostatic chuck 600 transported from the second circulation unit 620 and then the electrostatic chuck 6 on which the substrates 500 have been placed is transported to the transport reaction chamber 716. The first inverted reaction chamber 718 is disposed adjacent to the transport reaction chamber 716, and a first inverted machine 719 located at the first inverted reaction chamber 718 inverts the electrostatic chuck 6〇〇 for deposition The first chuck unit 610 of the unit 73 阻挡 blocks the electrostatic chuck 6 〇〇. As shown in Fig. 3, the electrostatic chuck 6A includes an electrode 602 embedded in a body 601 made of a dielectric material, wherein the electrode 6〇2 is supplied with electric power. When a high voltage is applied to the electrode 6〇2, the electrostatic chuck can fix the substrates 500 on the surface of the body 6〇丨. Referring to the drawing transport apparatus 714, the substrates 5 are placed on the top end surface of the electrostatic chuck 600. In this state, the electrostatic chuck 6〇〇 is transported to the transport reaction chamber 716. When the first inverted machine 719 inverts the electrostatic chuck 600, the substrates 5 are oriented downward in the deposition unit 73A. The unloading single 7G 720 will be constructed to operate in the opposite manner to the loading unit 71A described above. In other words, the substrate 5A through the deposition unit 73 and the electrostatic chuck 600 will be in the second inverted reaction chamber 728. The second inverted machine device 729 is inverted and transported to an injection reaction chamber 726, and an injection device 724 draws the substrate 5 and the electrostatic chuck 6 to the sigma reaction chamber 726. The electrostatic chucks 600 are separated from the substrate 5 and 16 201117267 to place or stack the substrates 5 on a second shelf 722. The electrostatic chuck 600, which has been separated from the substrates 5, is sent back to the loading unit 71 through the second circulation unit 620. However, the aspect of the invention is not limited thereto. When the substrates 5 are fixed on the electrostatic chuck 600, the substrates 5 can also be fixed to the top surface of the snubber chuck 600, and the electrostatic chuck 6〇〇 It can be transported to the deposition unit 730. In this regard, the first inverted reaction chamber 718, the first inverted machine device 719, the second inverted reaction to 728, and the second inverted machine device 729 are not necessarily required. The deposition unit 730 includes at least one deposition reaction chamber. According to the actual example of Fig. 1, the deposition unit 730 may include a first reaction chamber 731 and a plurality of thin tantalum deposition assemblies 1〇〇, 200, 300, and 400 disposed in the first reaction chamber 731. According to the embodiment of the figure, although four thin film deposition assemblies are mounted in the first reaction chamber 73 1 , they comprise a first thin film deposition assembly ( 10 ), a second thin tantalum deposition assembly 200 , and a third thin film deposition assembly 300 . And a fourth thin film deposition assembly 4; however, the number of thin film deposition assemblies to be mounted in the first reaction chamber 731 of Shai may still vary depending on the deposition material and deposition conditions. When deposition is performed, a suitable degree of vacuum is maintained in the first reaction chamber 731. In addition, according to another embodiment of the present invention, as shown in FIG. 2, the deposition unit 730 includes a first reaction chamber 731 and a second reaction to 732 connected to each other, and the first thin film deposition assembly 1 and 2 The thin film deposition assembly can be slid in the first reaction chamber 73, and the third thin film deposition assembly 3 (9) and the fourth thin film deposition assembly 4 can be disposed in the second reaction chamber 732 17 201117267

中。當然,及施-A 祸壚園W量並不受限於此而且可以增加。 根據圖1的音 夾盤600會被第一 % '、上設置著該等基板500的靜電 並 、循%早元610移到至少該沉積單元730, 及W P序被移到該裝載單元71G、該沉積單元730、以 元72°。於卸載單元720中和該等基板5。〇分離 600會被第二循環單元620送回到裝載單元 710 〇 4第環單元61G會被設置成在通過該沉積單元730 時通過該第—及廄它7Q1 ^ 及應至731,而第二循環單元62〇則會讓該靜 電夾盤600被運送到該裝載單元71〇。 圖4所不的係® 1的薄膜沉積設備的第一循環單元610 的剖視圖。 · 該第一循環單元610包含一第一載具611,以允許移動 其上设置著該等基板500的靜電夾盤600。 泫第一載具611包含—第一支撐體613、一第二支撐體 614、一移動棒615、以及—第一驅動單元616。 s玄第一支撐體613與該第二支撐體614會被安裝成用 以通過該沉積單元730的一反應室,舉例來說,在圖i的 實施例中’通過該第一反應室73 1,而在圖2的實施例中, 通過該第一反應室731與該第二反應室732。 第一支撐體613會被垂直設置在該第一反應室73 j 中,而第二支撐體614會於該第一反應室73丨中被水平設 置在該第一支撑體613的下方。如圖4中所示,該第一支 樓體613與該第二支撐體614會被設置成彼此垂直,從而 18 201117267 形成一彎折結構。不過’本發明的態樣並不受限於此。 、1¾。该 第一支擇體613可以被設置在該第二支撐體614的上方以 及該第二支撐體614可以被設置在該第一支撐體613的下 方。 移動棒61 5可沿著該第一支撐體61 3移動。移動棒6 i 5 的至少—端會受到該第一支撐體613的支撐,而且該移動 棒615的另一端會被形成受到該靜電夾盤6〇〇之邊緣的支 撐。該靜電夾盤600可能會被固定支撐在該移動棒615上 並且可以因為該移動棒6丨5的關係而沿著該第一支撐體6 1 3 移動。該移動棒615中支撐該靜電夾盤6〇〇的一部分可能 會朝一薄臈沉積組件1〇〇彎折並且可以讓該 近該薄膜沉積組件100。 # 該第一驅動單元616會***設在該移動棒615及咳第 —支擇體613之間。該第一驅動單元616可能包含一滾筒 617 ’其可以沿著該第-支撐體613滾動。該第一驅動單元 616可以讓該移動棒615沿著該第-支撐體613移動並且提 =一驅動功率給該移動# 615或者可以將一額外驅動源所 “生的驅動功率傳輸給該移動棒615。該第一驅動單元616 ° 、可讓4移動棒615被移動的任何驅動裝置,滾筒 圖5所示的係圖 的剖視圖。 的薄膜沉積設備的第二循環單元620 該第二循環單元 和該等基板5〇〇分離 620包含一第二載具62卜 的靜電夾盤600。 以允許移動 19 201117267 3亥第二載具621包含—第三支樓體623、移動棒615 ' 以及第一驅動單元616。 第—支撐體623會延伸至和第一載具611的第一支撐 體613之延伸長度相同的長度處。其上設置著該第一驅動 單兀616的移動棒615會受到該第三支撐體623的支撐, 而與该等基板500分離的靜電夾盤6〇〇會被安置在該移動 棒6 1 5上。移動棒6丨5和第一驅動單元6丨6的結構已經說 明如上。 接著說明被設置在該第一反應室73丨中的薄膜沉積組 件100。圖6所示的係根據本發明一實施例的薄膜沉積組件 100的透視圖;圖7所示的係根據本發明一實施例,圖6的. 薄膜沉積組件1〇〇的概略剖面側視圖;而圖8所示的係根 據本發明一實施例’圖6的薄膜沉積組件丨〇〇的概略平面 視-圖。 參考圖6至8,該薄膜沉積組件丨〇〇包含一沉積源丨丨〇、 一沉積源噴嘴單元120、以及一圖樣化狹縫板15〇。 明確地說’為將從沉積源丨丨〇處發出且經由沉積源喷 嘴單元120和圖樣化狹縫板15〇釋出的沉積材料115以所 希的圖樣沉積在一基板500上,該第一反應室73丨應該如 使用精細金屬遮罩(FMM)的沉積方法中保持在高真空狀態 中。此外’該圖樣化狹缝板15 〇的溫度應該充分低於該沉 積源110的溫度。就此方面來說’該圖樣化狹縫板丨5 〇的 溫度可能為約1 〇〇°C或更低。該圖樣化狹缝板丨5〇的溫度應 s亥夠低’以便減少該圖樣化狹縫板丨5 〇的熱膨脹。 20 201117267 基板500會被設置在該第一反應室731中,該基板500 構成一要將該沉積材料11 5沉積於其上的沉積目標物。基 板500可能係一用於平面顯示器的基板。一用於製造複數 個平面顯示器的大型基板,例如玻璃母板,亦可作為該基 板5 00。本發明亦可以使用其它基板。 當該基板500或該薄膜沉積組件1 〇〇彼此相對地移動 時,便可以實施沉積。 明確地說,在習知的FMM沉積法中,FMM的尺寸必 須等於基板的尺寸。因此’當基板變大時,FMM的尺寸便 必須增加。但是,製造大型FMM既不容易且無法延展一 FMM使其精確對齊一圖樣。 為克服此問題,在根據本發明一實施例的薄膜沉積組 件丨〇〇中,當該薄膜沉積組件1〇〇或該基板5〇0彼此相對 地移動時,便可以實施沉積。換言之,當被設置成面對該 薄膜沉積組件1〇〇的基板500在Y軸方向中移動時,可以 連續地實施沉積。換言之,當基板5〇〇在圖6中箭頭A的 方向中移動時’會以掃描的方式來實施沉積。 在薄膜沉積組件100中,該圖樣化狹縫板15〇可能明 顯小於習知沉積方法中所使用的FMM。換言之,在薄膜沉 積’.且件1 〇〇中,當基板500在γ轴方向中移動時,會連續 地(也就是,以掃描的方式)實施沉積。因此,該圖樣化狹縫 板150在X軸方向及γ軸方向中的長度可能會明顯小於該 基板500在X軸方向及Y軸方向中的長度。如上面所述, 因為該圖樣化狹縫15G可被形成明顯小於f知沉積方法 21 201117267 中所使用的FMM,所以,比較容易製造本發明態樣中所使 用的圖樣化狹縫板15〇。換言之,相較於使用較大型f_ 的習知沉積方法,使用小於習知沉積方法中所使用之fmm 的圖樣化狹縫板150在所有製程(其包含蝕刻及其它後續製 程’例如精確延展製程、熔接製程、移動製程、以及清洗 製程)中會更為方便。這更有利於比較大型的顯示設備。 s有並且會加熱该沉積材料丨丨5的沉積源丨1 〇會被設 置在該第-反應室731中該基板5⑼之被設置側的相反 側。當沉積源110中所含的沉積材料115被蒸發時,該沉 積材料1 1 5便會被沉積在該基板5〇〇上。 明確地說,該沉積源110包含:一坩鍋112,其充滿沉 積材料115;以及一冷卻區塊m,其包含一加熱該掛鍋ιι2 的加熱器(圖中並未顯示)’用以將該坩鍋112中所含的沉積 才料1 1 5蒸發至S玄坩鍋π 2的其中—側,且明確地說,將 ^蒸發至該沉積源噴嘴單元120。該冷卻區塊ln會防止熱 從坤鍋112處輕射到外面,也就是,_射到該第一反應室 沉積源喷嘴單元120會被設置在沉積源11〇中的某一 側處,且明確地說,其會被設置在沉積源11〇中面向該基 板500側。該沉積源喷嘴單元12〇包含以相等間隔被排列 在Y輛方向(也就是,基板500的掃描方向)中的複數個沉積 源噴嘴121。於該沉積源丨1〇中被蒸發的沉積材料115會通 $該沉積源噴嘴單元120朝基板500移動。如上面所述, 當該沉積源喷嘴單元120包含被排列在γ軸方向(也就是, 22 201117267 基板500的掃描方向)中的複數個沉積源喷嘴⑵時,由該 圖樣化狹縫板150中的圖樣化狹、縫151#出的沉積材料二 所形成的圖樣的尺寸會受到每-個沉積源噴嘴⑵的尺寸 的影響(因為在X轴方向中僅有一行沉積噴嘴),且因而不會 有任何陰影區形成在基500上。此外,因為該等複數個 沉積源噴冑121被排列在基板的掃描方向中,所以, 即使該等沉積源喷冑121之間的流出量有差異,該差異仍 可獲得補償而且可以保持恆定的沉積均勻性。 圖樣化狹縫板15〇及其中包覆著該圖樣化狹縫板15〇 的框架155會被設置在該沉積源u〇與該基板5〇〇之間。 該框架155可能會形成格柵形狀,與窗框雷同。該圖樣化 狹縫板150會被包覆在框架155裡面。該圖樣化狹縫板15〇 包含被排列在X軸方向中的複數個圖樣化狹縫丨5丨。在該沉 積源110中被蒸發的沉積材料115會通過該沉積源噴嘴單 元120與該圖樣化狹縫板15〇,朝基板5〇〇移動。該圖樣化 狹縫板150可藉由蝕刻來製造,該方法和製造fmm(明確地 說’有條紋的FMM)的習知方法中所使用的方法相同。就此 方面來說’圖樣化狹縫15 1的總數量可能會大於沉積源喷 嘴12 1的總數量。 此外’該沉積源1 10及被耦接至該沉積源1 10的沉積 源喷嘴單元120還可能會被設置成與該圖樣化狹缝板15〇 分離既定的距離。或者,該沉積源Π 0及被耦接至該沉積 源110的沉積源噴嘴單元120可能會藉由一第一連接部件 1 3 5被連接至該圖樣化狹縫板15 0。也就是,該沉積源110、 23 201117267 / ’儿積源喷I單it 120、以及該圖樣化狹縫板i 5〇可以透過 該第一連接部件135來相互連接而整合形成單一主體。該 第一連接部件135會引導經由該等沉積源噴嘴12丨釋出的 沉積材料115’用以在―實質筆直的直線中移動經過該薄膜 沉積組件100,並且不要在χ軸方向中流動。在圖6中,該 等第一連接部件1 35雖然係被形成在該沉積源〖丨〇、該沉積 源喷嘴單兀120、以及該圖樣化狹縫板丨5〇的左側與右側, 用以引導該沉積材料115不要在χ軸方向中流動;不過, 本發明的態樣並不受限於此。也就是,該第一連接部件135 亦可能會形成一密封盒,用以引導該沉積材料丨15在χ軸 及Υ轴兩個方向中流動。 如上面所述’該薄膜沉積組件100會在相對於基板5〇〇 移動時實施沉積。為相對於基板500來移動該薄膜沉積組 件100,圖樣化狹縫板150會與該基板500分離既定的距離。 明確地說,在使用FMM的習知沉積方法中雖然利用與 一基板緊密接觸的FMM來實施沉積,用以防止在該基板上 形成一陰影區,不過’當緊密接觸該基板來使用fmm時, 该接觸可能會造成缺陷。此外,在習知的沉積方法中,因 為遮罩無法相對於基板移動,所以,遮罩的尺寸必須和基 板的尺寸相同。因此,當顯示設備變大時,遮罩的尺寸便 必須增加。然而,要製造如此大的遮罩並不容易。 為克服此問題,在薄膜沉積組件1 〇〇中,該圖樣化狹 縫板1 50會被設置成與該基板500分離既定的距離。 如上面所述,一遮罩會被形成小於一基板,並且當該 24 201117267 遮罩相對於該基板移動 製造該遮罩。此外,亦 時會實施沉積。因此,能夠輕易地 可防止習知的沉積方法中因一基板 與一 FMM之間的接觸所、生二、u 、 斤k成的缺陷。再者,因為在沉積製 程期間不必將該FMM兮S'罢〇*、A _ °置成緊後接觸該基板’所以,可以 縮短製造時間。 圖9所示的係根據本發明另一實施例的薄膜沉積組件 100的透視圖。參考圖9,該薄膜沉積組件_包含一沉積 源no、一沉積源喷嘴單元120、以及一圖樣化狹縫板15〇。 明確地說,該沉積源110包含:一坩鍋112,其充滿沉積材 料115 ;以及一冷卻區塊lu,其包含一加熱該坩鍋ιΐ2的 加熱器(圖中並未顯示),用以蒸發該沉積材料i 15,以便將 έ亥已洛發的》L積材料1 1 5移動至該沉積源喷嘴單元丨2〇。該 冷卻區塊11 1内含在該坩鍋丨丨2中。該沉積源喷嘴單元i 2〇 具有平面形狀,其會被設置在該沉積源110的其中一側。 該沉積源喷嘴單元120包含被排列在γ軸方向中的複數個 沉積源噴嘴1 21。該圖樣化狹縫板丨5 〇與一框架丨5 5會進一 步被設置在該沉積源Π〇與該基板5〇0之間。該圖樣化狹 縫板1 5 0包含被排列在χ軸方向中的複數個圖樣化狹縫 1 5 1。此外’該沉積源i丨〇與該沉積源喷嘴單元1 2〇可藉由 一第二連接部件133(顯示在圖11中)被連接至該圖樣化狹 縫板1 5 0。 被形成在該沉積源噴嘴單元1 2〇之上的複數個沉積源 噴嘴1 2 1會傾斜既定的角度,和參考圖6所述的薄膜沉積 組件100不同。明確地說,該等沉積源喷嘴丨2 i可能包含 25 201117267 被排列在個別列之中沉積源噴嘴1 2 1 a與12 1 b。該等沉積源 噴嘴1 2 1 a與1 2 1 b可能會被排列在個別列之中,以便交替排 列在Z字形圖樣中。該等沉積源喷嘴12 1 a與12 1 b可能會 在XZ平面中傾斜既定的角度。 該等沉積源噴嘴1 2 1 a與1 2 1 b會被排列成彼此傾斜既定 的角度。第一列中的沉積源喷嘴12 1 a與第二列中的沉積源 喷嘴121 b可能會傾斜而彼此相向。也就是,該沉積源噴嘴 單元1 20左邊部分中第一列的沉積源喷嘴121 a可能會傾斜 面向圖樣化狹縫板150的右側部分,而該沉積源喷嘴單元 1 20右邊部分中第二列的沉積源喷嘴121 b則可能會傾斜面 向圖樣化狹縫板15 〇的左側部分。 由於根據本實施例的薄膜沉積組件1 〇〇的結構的關 係’沉積材料11 5的沉積可以被調整以減少基板500的中 心部分與末端部分之間的厚度變異並且改善該沉積膜的厚 度均勻性。再者’還可以改善沉積材料丨丨5的利用效率。 圖1 0所示的係根據本發明另一實施例的薄膜沉積組件 的透視圖。參考圖10 ’該薄膜沉積設備包含複數個薄膜沉 積組件,每一者皆具有圖6至8中所示之薄膜沉積設備ι〇〇 的結構。換§之,圖10中所示的薄膜沉積設備可能包含一 多重沉積源’其會同時釋出多種沉積材料,用以形成一紅 色(R)發光層、一綠色發光層、以及一藍色(B)發光層。 月確地°兒δ亥溥膜沉積設備包含一第一薄膜沉積組件 100、一第二薄膜沉積組件2〇〇、以及一第三薄膜沉積組件 300。該第一薄膜沉積組件100、該第二薄膜沉積組件200、 26 201117267 以及該第三薄膜沉積組件300中的每一者皆具有 巧不口芬考圖6 至8所述之薄膜沉積組件1〇〇相同的結構,因 ^ 此處不 會對其多加詳述。 該第一薄膜沉積組件100、該第二薄臈沉積組件2〇〇、 以及該第三薄膜沉積組件300中的沉積源丨1()可能分別含 有不同的沉積材料。該第一薄膜沉積組件100可能含有用 以形成R發光層的沉積材料,該第二薄膜沉積組件2〇〇可 能含有用以形成G發光層的沉積材料,而該第三薄膜沉積 組件300可能含有用以形成b發光層的沉積材料。 換s之,在製造一有機發光顯示設備的習知方法中, 會使用一分離的反應室與遮罩來形成每—種顏色的發光 層。不過,當使用根據本發明一實施例的薄膜沉積設備時, 可以利用單一多重沉積源來同時形成該R發光層、該G發 光層、以及該B發光層。因此,製造該有機發光顯示設備 的時間會大幅地縮短。此外,還可以利用較少的數量的反 應室來製造該有機發光顯示設備,俾使得儀器成本同樣會 明顯地下降。 圖中雖然並未顯不,不過,該第一薄膜沉積組件i 〇〇 的一圖樣化狹縫板、邊第二薄膜沉積組件2〇〇的一圖樣化 狹縫板、以及s玄第二薄膜沉積組件3〇()的一圖樣化狹縫板 可旎會被排列成彼此偏離一恆定的距離,以便使得對應於 該等圖樣化狹縫板的沉積區不會在該基板5〇〇上重疊。換 言之,當使用該第一薄膜沉積組件1〇〇、該第二薄膜沉積組 件200、以及該第三薄膜沉積組件3〇〇來分別沉積一 R發光 27 201117267 層、一 G發光層、以及一 B發光層時,該第一薄膜沉積組 件100的圖樣化狹縫、該第二薄膜沉積組件2〇〇的圖樣化 狹縫、以及該第三薄膜沉積組件3〇〇的圖樣化狹縫會被排 列成不會互相對齊,以便在該基板5〇〇的不同區域中形成 §亥R發光層、該G發光層、以及該b發光層。 此外’用以形成該r發光層、該G發光層、以及該b 發光層的沉積材料可能會有不同的沉積溫度。所以,該等 個別第一薄膜沉積組件1〇〇、第二薄膜沉積組件2〇〇、以及 第三薄膜沉積組件300的沉積源的溫度可被設為不同。 雖然根據本發明一實施例圖解在圖丨〇中的薄膜沉積設 備包含二個薄膜沉積組件;不過,本發明並不受限於此。 換5之,根據本發明另一實施例的薄膜沉積設備可能包含 複數個薄膜沉積組件,每—者皆含有—不同的沉積材料。 舉例來*兒,根據本發明另一實施例的薄膜沉積設備可能包 含五個薄膜沉積組件,它們分別含有R發光層的材料、G 發光層的材料' B發光層的材料、R發光層的輔助層(R,)的 材料、G發光層的輔助層(G,)的材料。 如上面所述,利用複數個薄膜沉積組件可以同時形成 複數個薄層,且因此,製造產量及沉積效率會獲得改善。in. Of course, the amount of W-A-Worries is not limited to this and can be increased. The sound chuck 600 according to FIG. 1 is moved by the first %', the static electricity of the substrates 500, and the % early element 610 is moved to at least the deposition unit 730, and the WP sequence is moved to the loading unit 71G, The deposition unit 730 is at 72°. The substrate 5 is in the unloading unit 720. The 〇 separation 600 is sent back to the loading unit 710 by the second circulation unit 620. The fourth ring unit 61G is arranged to pass the first and the 7 7Q1 ^ and 731 when passing through the deposition unit 730, and the second The circulation unit 62 will cause the electrostatic chuck 600 to be transported to the loading unit 71. Figure 4 is a cross-sectional view of the first circulation unit 610 of the thin film deposition apparatus of the system 1 of Fig. 4. The first circulation unit 610 includes a first carrier 611 to allow movement of the electrostatic chuck 600 on which the substrates 500 are disposed. The first carrier 611 includes a first support body 613, a second support body 614, a moving rod 615, and a first drive unit 616. The first support 613 and the second support 614 are mounted to pass through a reaction chamber of the deposition unit 730, for example, in the embodiment of FIG. 1 'through the first reaction chamber 73 1 In the embodiment of FIG. 2, the first reaction chamber 731 and the second reaction chamber 732 are passed through. The first support body 613 is vertically disposed in the first reaction chamber 73j, and the second support body 614 is horizontally disposed below the first support body 613 in the first reaction chamber 73A. As shown in Fig. 4, the first building body 613 and the second supporting body 614 are disposed to be perpendicular to each other, so that 18 201117267 forms a bent structure. However, the aspect of the invention is not limited thereto. , 13⁄4. The first body 613 may be disposed above the second support 614 and the second support 614 may be disposed below the first support 613. The moving rod 61 5 is movable along the first support body 61 3 . At least the end of the moving rod 6 i 5 is supported by the first supporting body 613, and the other end of the moving rod 615 is formed to be supported by the edge of the electrostatic chuck 6〇〇. The electrostatic chuck 600 may be fixedly supported on the moving rod 615 and may move along the first supporting body 6 1 3 due to the relationship of the moving rods 6丨5. A portion of the moving rod 615 that supports the electrostatic chuck 6〇〇 may be bent toward a thin tantalum deposition assembly 1 and may be placed adjacent to the thin film deposition assembly 100. # The first driving unit 616 is interposed between the moving rod 615 and the cough-selecting body 613. The first drive unit 616 may include a roller 617' that can roll along the first support 613. The first driving unit 616 can move the moving rod 615 along the first supporting body 613 and raise a driving power to the moving # 615 or can transmit the driving power generated by an additional driving source to the moving rod. 615. The first driving unit 616 °, any driving device that allows the moving rod 615 to be moved, the cross-sectional view of the drawing shown in FIG. 5. The second circulating unit 620 of the thin film deposition apparatus, the second circulating unit and The substrate 5 〇〇 separation 620 includes an electrostatic chuck 600 of a second carrier 62. To allow movement 19 201117267 3 HM second carrier 621 includes - a third building body 623, a moving rod 615 ' and the first The driving unit 616. The first support body 623 extends to the same length as the extension length of the first support body 613 of the first carrier 611. The moving rod 615 on which the first driving unit 616 is disposed is subjected to the The support of the third support body 623, and the electrostatic chuck 6〇〇 separated from the substrates 500 are placed on the moving rod 61. The structure of the moving rod 6丨5 and the first driving unit 6丨6 has been The description is as above. The following description is set in the A thin film deposition assembly 100 in a reaction chamber 73. Figure 6 is a perspective view of a thin film deposition assembly 100 in accordance with an embodiment of the present invention; Figure 7 is an embodiment of the present invention, Figure 6. A schematic cross-sectional side view of a thin film deposition assembly 1A; and a schematic plan view of a thin film deposition assembly of FIG. 6 according to an embodiment of the present invention. FIG. 6 to FIG. The deposition assembly 丨〇〇 includes a deposition source 丨丨〇, a deposition source nozzle unit 120, and a patterned slit plate 15〇. Specifically, 'is to be emitted from the deposition source 且 and via the deposition source nozzle unit The deposition material 115 released by the 120 and the patterned slit plate 15 is deposited on a substrate 500 in the desired pattern, and the first reaction chamber 73 should be maintained in a deposition method using a fine metal mask (FMM). In the high vacuum state, the temperature of the patterned slit plate 15 应该 should be sufficiently lower than the temperature of the deposition source 110. In this respect, the temperature of the patterned slit plate 丨5 可能 may be about 1 〇〇. °C or lower. The patterning slit plate 丨5 The temperature should be low enough to reduce the thermal expansion of the patterned slit plate 。 5 。. 20 201117267 The substrate 500 will be disposed in the first reaction chamber 731, which constitutes a deposition material 11 5 a deposition target deposited thereon. The substrate 500 may be a substrate for a flat panel display. A large substrate for fabricating a plurality of flat panel displays, such as a glass mother board, may also be used as the substrate 500. The invention may also Other substrates are used. When the substrate 500 or the thin film deposition assembly 1 is moved relative to each other, deposition can be performed. Specifically, in the conventional FMM deposition method, the size of the FMM must be equal to the size of the substrate. Therefore, when the substrate becomes large, the size of the FMM must be increased. However, making a large FMM is neither easy nor impossible to extend an FMM to precisely align a pattern. To overcome this problem, in the thin film deposition assembly according to an embodiment of the present invention, deposition can be performed when the thin film deposition assembly 1 or the substrate 5 〇 0 moves relative to each other. In other words, when the substrate 500 disposed to face the thin film deposition assembly 1 is moved in the Y-axis direction, deposition can be continuously performed. In other words, when the substrate 5 is moved in the direction of the arrow A in Fig. 6, the deposition is performed in a scanning manner. In the thin film deposition assembly 100, the patterned slit sheet 15 may be significantly smaller than the FMM used in the conventional deposition method. In other words, in the film deposition' and the member 1 ,, when the substrate 500 is moved in the γ-axis direction, deposition is performed continuously (i.e., in a scanning manner). Therefore, the length of the patterning slit plate 150 in the X-axis direction and the γ-axis direction may be significantly smaller than the length of the substrate 500 in the X-axis direction and the Y-axis direction. As described above, since the patterning slit 15G can be formed to be significantly smaller than the FMM used in the deposition method 21 201117267, it is easier to manufacture the patterning slit sheet 15 used in the aspect of the invention. In other words, a patterned slit plate 150 that is smaller than the fmm used in the conventional deposition method is used in all processes (which include etching and other subsequent processes, such as precise extension processes, compared to conventional deposition methods using larger f_, It is more convenient in the welding process, the moving process, and the cleaning process. This is more conducive to larger display devices. The deposition source 丨1 有 which has and will heat the deposition material 丨丨5 is disposed on the opposite side of the set side of the substrate 5 (9) in the first reaction chamber 731. When the deposition material 115 contained in the deposition source 110 is evaporated, the deposition material 115 is deposited on the substrate 5?. Specifically, the deposition source 110 includes: a crucible 112 filled with the deposition material 115; and a cooling block m including a heater (not shown) for heating the hanging pot ι The deposition contained in the crucible 112 is discharged to the side of the S-simmering pot π 2 and, in particular, is evaporated to the deposition source nozzle unit 120. The cooling block ln prevents heat from being lighted from the kun pot 112 to the outside, that is, the first reaction chamber deposition source nozzle unit 120 is disposed at one side of the deposition source 11〇, and Specifically, it is disposed in the deposition source 11A facing the substrate 500 side. The deposition source nozzle unit 12A includes a plurality of deposition source nozzles 121 arranged at equal intervals in the Y direction (i.e., the scanning direction of the substrate 500). The deposition material 115 evaporated in the deposition source 会 is moved toward the substrate 500 by the deposition source nozzle unit 120. As described above, when the deposition source nozzle unit 120 includes a plurality of deposition source nozzles (2) arranged in the γ-axis direction (that is, the scanning direction of the 22 201117267 substrate 500), the slit plate 150 is patterned by the patterning The size of the pattern formed by the narrowing of the pattern and the deposition material 2 of the slit 151# is affected by the size of each deposition source nozzle (2) (because there is only one row of deposition nozzles in the X-axis direction), and thus Any shaded areas are formed on the base 500. Further, since the plurality of deposition source squirts 121 are arranged in the scanning direction of the substrate, even if there is a difference in the outflow amount between the deposition source squirts 121, the difference can be compensated and can be kept constant. Uniformity of deposition. A patterned slit plate 15 and a frame 155 in which the patterned slit plate 15 is covered may be disposed between the deposition source u and the substrate 5A. The frame 155 may form a grid shape that is identical to the window frame. The patterned slit plate 150 is wrapped inside the frame 155. The patterning slit plate 15A includes a plurality of patterning slits 丨5丨 arranged in the X-axis direction. The deposition material 115 evaporated in the deposition source 110 passes through the deposition source nozzle unit 120 and the patterning slit plate 15 to move toward the substrate 5?. The patterning slit plate 150 can be manufactured by etching in the same manner as in the conventional method of manufacturing fmm (specifically, 'striped FMM'). In this regard, the total number of patterning slits 15 1 may be greater than the total number of deposition source nozzles 12 1 . Further, the deposition source 110 and the deposition source nozzle unit 120 coupled to the deposition source 110 may be disposed to be separated from the patterning slit plate 15A by a predetermined distance. Alternatively, the deposition source Π 0 and the deposition source nozzle unit 120 coupled to the deposition source 110 may be connected to the patterning slit plate 150 by a first connecting member 135. That is, the deposition source 110, 23 201117267 / ''''''''''''' The first connecting member 135 guides the deposited material 115' released through the deposition source nozzles 12 to move through the thin film deposition assembly 100 in a substantially straight straight line and does not flow in the x-axis direction. In FIG. 6, the first connecting members 135 are formed on the left and right sides of the deposition source 丨〇, the deposition source nozzle unit 120, and the patterning slit plate 丨5〇. The deposition material 115 is guided so as not to flow in the z-axis direction; however, the aspect of the invention is not limited thereto. That is, the first connecting member 135 may also form a sealed casing for guiding the deposition material crucible 15 to flow in both the x-axis and the x-axis. As described above, the thin film deposition assembly 100 performs deposition while moving relative to the substrate 5?. To move the thin film deposition assembly 100 relative to the substrate 500, the patterned slit plate 150 is separated from the substrate 500 by a predetermined distance. Specifically, in the conventional deposition method using the FMM, although deposition is performed using an FMM in close contact with a substrate to prevent a shadow region from being formed on the substrate, 'when the substrate is used in close contact with the fmm, This contact may cause a defect. Further, in the conventional deposition method, since the mask cannot move relative to the substrate, the size of the mask must be the same as the size of the substrate. Therefore, when the display device becomes large, the size of the mask must be increased. However, it is not easy to make such a large mask. To overcome this problem, in the thin film deposition assembly 1 该, the patterned slit plate 150 is disposed to be separated from the substrate 500 by a predetermined distance. As described above, a mask will be formed smaller than a substrate, and the mask will be fabricated when the 24 201117267 mask is moved relative to the substrate. In addition, deposition will also be carried out. Therefore, it is possible to easily prevent the defects in the conventional deposition method due to the contact between a substrate and an FMM, and the formation of the second, u, and k. Furthermore, since it is not necessary to place the FMM兮S' 〇*, A _ ° close to the substrate during the deposition process, the manufacturing time can be shortened. Figure 9 is a perspective view of a thin film deposition assembly 100 in accordance with another embodiment of the present invention. Referring to Fig. 9, the thin film deposition assembly _ includes a deposition source no, a deposition source nozzle unit 120, and a patterned slit plate 15A. Specifically, the deposition source 110 includes: a crucible 112 filled with the deposition material 115; and a cooling block lu including a heater (not shown) for heating the crucible 2 to evaporate The deposition material i15 is moved to move the "L" material 1 1 5 to the deposition source nozzle unit 丨2〇. The cooling block 11 1 is contained in the crucible 2 . The deposition source nozzle unit i 2 〇 has a planar shape which is disposed on one side of the deposition source 110. The deposition source nozzle unit 120 includes a plurality of deposition source nozzles 121 arranged in the γ-axis direction. The patterning slit plate 丨5 〇 and a frame 丨5 5 are further disposed between the deposition source Π〇 and the substrate 〇0. The patterned slit plate 150 includes a plurality of patterning slits 151 arranged in the z-axis direction. Further, the deposition source i and the deposition source nozzle unit 1 2 can be connected to the patterned slit plate 150 by a second connecting member 133 (shown in Fig. 11). The plurality of deposition source nozzles 1 2 1 formed on the deposition source nozzle unit 1 2 会 are inclined at a predetermined angle, which is different from the thin film deposition assembly 100 described with reference to FIG. In particular, the deposition source nozzles 丨2 i may contain 25 201117267 arranged in separate columns to deposit source nozzles 1 2 1 a and 12 1 b. The deposition source nozzles 1 2 1 a and 1 2 1 b may be arranged in individual columns so as to be alternately arranged in a zigzag pattern. The deposition source nozzles 12 1 a and 12 1 b may be inclined at a predetermined angle in the XZ plane. The deposition source nozzles 1 2 1 a and 1 2 1 b are arranged to be inclined at a predetermined angle to each other. The deposition source nozzles 12 1 a in the first column and the deposition source nozzles 121 b in the second column may be inclined to face each other. That is, the deposition source nozzle 121a of the first column in the left portion of the deposition source nozzle unit 120 may be inclined to face the right side portion of the patterning slit plate 150, and the second column in the right portion of the deposition source nozzle unit 120 The deposition source nozzle 121b may be inclined to face the left side portion of the patterning slit plate 15'. Due to the relationship of the structure of the thin film deposition assembly 1 according to the present embodiment, the deposition of the deposition material 11 5 can be adjusted to reduce the thickness variation between the central portion and the end portion of the substrate 500 and improve the thickness uniformity of the deposited film. . Furthermore, the utilization efficiency of the deposited material 丨丨5 can be improved. Figure 10 is a perspective view of a thin film deposition assembly in accordance with another embodiment of the present invention. Referring to Fig. 10', the thin film deposition apparatus comprises a plurality of thin film deposition assemblies, each having the structure of the thin film deposition apparatus ι shown in Figs. In other words, the thin film deposition apparatus shown in FIG. 10 may include a multiple deposition source that simultaneously releases a plurality of deposition materials to form a red (R) light-emitting layer, a green light-emitting layer, and a blue color. (B) A light-emitting layer. The δ 溥 溥 film deposition apparatus comprises a first thin film deposition assembly 100, a second thin film deposition assembly 2, and a third thin film deposition assembly 300. Each of the first thin film deposition assembly 100, the second thin film deposition assembly 200, 26 201117267, and the third thin film deposition assembly 300 has a thin film deposition assembly as described in FIGS. 6 to 8 〇The same structure, because ^ will not be more detailed here. The first thin film deposition assembly 100, the second thin tantalum deposition assembly 2, and the deposition source 丨1() in the third thin film deposition assembly 300 may each contain different deposition materials. The first thin film deposition assembly 100 may contain a deposition material for forming an R light-emitting layer, the second thin film deposition assembly 2 may contain a deposition material for forming a G light-emitting layer, and the third thin film deposition assembly 300 may contain a deposition material used to form the b luminescent layer. Alternatively, in a conventional method of fabricating an organic light-emitting display device, a separate reaction chamber and mask are used to form a light-emitting layer of each color. However, when a thin film deposition apparatus according to an embodiment of the present invention is used, the R light-emitting layer, the G light-emitting layer, and the B light-emitting layer can be simultaneously formed using a single multiple deposition source. Therefore, the time for manufacturing the organic light-emitting display device is drastically shortened. In addition, it is also possible to manufacture the organic light-emitting display device with a smaller number of reaction chambers, so that the instrument cost is also significantly reduced. Although not shown in the drawings, a patterned slit plate of the first thin film deposition assembly i, a patterned slit plate of the second thin film deposition assembly 2, and a second thin film A patterned slit plate of the deposition assembly 3 can be arranged to be offset from each other by a constant distance so that deposition regions corresponding to the patterned slit plates do not overlap on the substrate 5 . In other words, when the first thin film deposition assembly 1 , the second thin film deposition assembly 200 , and the third thin film deposition assembly 3 are used to respectively deposit an R light 27 201117267 layer, a G light layer, and a B When the light-emitting layer is formed, the patterning slit of the first thin film deposition assembly 100, the patterning slit of the second thin film deposition assembly 2, and the patterning slit of the third thin film deposition assembly 3〇〇 are arranged The layers are not aligned with each other so as to form a light-emitting layer, a light-emitting layer, and a light-emitting layer in different regions of the substrate. Further, the deposition material used to form the r light-emitting layer, the G light-emitting layer, and the b light-emitting layer may have different deposition temperatures. Therefore, the temperatures of the deposition sources of the individual first thin film deposition assembly 1A, the second thin film deposition assembly 2, and the third thin film deposition assembly 300 can be set to be different. Although the thin film deposition apparatus illustrated in the drawing according to an embodiment of the present invention includes two thin film deposition assemblies; however, the present invention is not limited thereto. In other words, a thin film deposition apparatus according to another embodiment of the present invention may comprise a plurality of thin film deposition assemblies each containing a different deposition material. For example, a thin film deposition apparatus according to another embodiment of the present invention may include five thin film deposition assemblies each containing a material of the R light emitting layer, a material of the G light emitting layer, a material of the B light emitting layer, and an auxiliary of the R light emitting layer. The material of the layer (R,), the material of the auxiliary layer (G,) of the G light-emitting layer. As described above, a plurality of thin layers can be simultaneously formed by using a plurality of thin film deposition assemblies, and therefore, manufacturing yield and deposition efficiency can be improved.

據本發明一實施例 的概略剖面側視圖;圖13所示的係根 圖1 1的薄膜沉積組件100的概略平面 28 201117267 視圖。 包含一沉積源 1 3 0、以及多 參考圖11至13,該薄膜沉積組件ι〇〇 110、一沉積源喷嘴單元120、一屏障壁組件 個圖樣化狹縫1 5 1。 …為方便解釋起見,圖n至13中雖然、並未顯示一反應 室;不過,薄臈沉積組件100中的所有構件皆可被設置在 -其中保持著合宜真空程度的反應室裡面。該反應室中保 持著合宜的真s ’以便讓沉積材料會在―實質筆直的直線 中移動經過該薄膜沉積組件1 00。 基板500會藉由使用靜電夾盤6〇〇而被運送至該反應 至之中,該基板500構成一要將沉積材料丨丨5沉積於其上 的目標物。基板500可能係一用於平面顯示器的基板。一 用於製造複數個平面顯示器的大型基板,例如玻璃母板, 亦可作為該基板500。 當該基板500或該薄膜沉積組件丨〇〇彼此相對地移動 時,便可以實施沉積。該基板500可以在方向a中相對於 該薄膜沉積組件1 00移動。 和上面所述之圖6的實施例中相同,在根據本發明此 實施例的薄臈沉積組件1 〇〇中’圖樣化狹縫板i 50可能遠 小於在習知沉積方法中所使用的FMM。換言之,在該薄膜 沉積組件100中’當基板500在Y軸方向中移動時會連續 性地(也就是,以掃描的方式)實施沉積。因此,倘若該圖樣 化狹縫板150在X軸方向中的寬度實質上和該基板5〇〇在X 軸方向中的寬度相同的話,該圖樣化狹縫板1 5 0在γ軸方 29 201117267 向中的長度便可能會遠小於該基板500在γ軸方向中的長 度。當然,即使該圖樣化狹縫板丨5〇在Χ軸方向中的寬度 小於該基板500在X軸方向中的寬度,由於該基板5〇〇與 該薄膜沉積組件1〇〇的相對移動的關係,仍可以掃描的方 式在該基板500的整個表面上充份地實施沉積。 如上面所述’因為該圖樣化狹縫板丨5〇可以被形成遠 小於在習知沉積方法中所使用的FMM,所以,會比較容易 製造在本發明的一項態樣中所使用的圖樣化狹縫板丨5〇。換 言之’相較於使用較大型FMM的習知沉積方法,使用小於 習知沉積方法中所使用之FMM的圖樣化狹縫板丨5〇在所有 製程(其包含蝕刻及後續的其它製程,例如精確延展製程、 熔接製程、移動製程、以及清洗製程)中會更為方便。這更 有利於比較大型的顯示設備。 含有並且會加熱該沉積材料U 5的沉積源丨1 〇會被設 置在該反應室中該基板500之被設置側的相反側。 該沉積源110包含:一坩鍋112,其充滿沉積材料115; 以及一冷卻區塊111,其會包圍該坩鍋112。該冷卻區塊i U 會防止熱從时鋼11 2處輻射到外面,也就是,輻射到該反 應室中。該冷卻區塊1Π可能包含—加熱器(圖中並未顯 示),其會加熱該坩鍋1 1 2。 積源喷嘴單元1 2 0會被設置在沉積源11 〇中的某一 側處,且明確地說,其會被設置在沉積源丨丨〇中面向該基 板500側。該沉積源喷嘴單元120包含被排列在χ軸方向 中的複數個沉積源喷嘴121。於該沉積源n〇中被蒸發的沉 30 201117267 積材料115會通過該沉積源喷嘴單元12〇中的該等複數個 沉積源噴嘴121,朝基板500移動。 屏障壁組件1 3 0會被设置在該沉積源喷嘴單元丨2〇的 某一側處。該屏障壁組件130包含:複數個屏障壁131 ;以 及一屏障壁框架132,其會構成該等屏障壁]31的外壁。該 等複數個屏障壁1 3 1可能會以彼此平行、相等間隔的方式 被排列在X軸方向中。此外,該等屏障壁丨3丨中的每一者 皆可被形成延伸在圖Η中的YZ平面中,也就是,垂直於 該X軸方向。被排列成如上面所述的該等複數個屏障壁i 31 會將該沉積源噴嘴單元120與該圖樣化狹縫板15〇之間的 二間为割成複數個子沉積空間S (顯示在圖丨3中)。在該薄 膜沉積組件1〇〇中,沉積空間會被該等屏障壁131分割成 刀別對應於藉以釋出該沉積材料〖丨5之沉積源喷嘴丨2 1的 s亥·#子沉積空間s,如圖1 3中所示。 該等屏障壁13丨可能會分別被設置在相鄰的沉積源喷 嘴1 2 1之間。換言之,該等沉積源喷嘴丨2 1中的每一者皆 可能會被設置在兩個相鄰的屏障壁丨3丨之間。該等沉積源 喷嘴121可能會分別位於兩個相鄰屏障壁1 3 1之間的中點 處。然而,本發明的態樣並不受限於此,該等沉積源喷嘴 121亦可以其它方式來設置。該等複數個沉積源喷嘴121可 忐會被没置在兩個相鄰的屏障壁丨3丨之間。即使於此情況 中’該等沉積源喷嘴121亦可能會分別位於兩個相鄰屏障 壁1 3 1之間的中點處。 如上面所述,因為該等屏障壁1 3丨會將該沉積源喷嘴 31 201117267 單元1 2 0與該圖樣化狹縫板1 5 0之間的空間分割成該等複 數個子沉積空間s,所以,經由該等沉積源喷嘴丨21中每— 者釋出的沉積材料115並不會與經由該等沉積源喷嘴ΐ2ι 中另一者釋出的沉積材料115混合’並且會通過該等圖樣 化狹縫15 1,俾使得會被沉積在基板5〇〇之上。換言之,該 等屏障壁1 3 1會引導經由該等沉積源喷嘴丨2丨釋出的沉積 材料Η5’用以在-實質筆直的直線中移動經過該薄膜沉積 組件100,並且不要在ζ軸方向中流動。 如上面所述,該沉積材料115會因安裝該等屏障壁131 而被迫在一實質筆直的直線中移動經過該薄膜沉積组件 100 ’因A ’相較於沒有m壬何屏障壁的情;兄,在該基板 500上可能會形成一較小型的陰影區。因此’該薄膜沉積組 件100與該基板500可能會彼此分離既定的距離。這會在 稍候作詳細說明。 曰 構成該等屏障壁131之上側與下側的屏障壁框架「 會保持該等屏障壁⑶的位置,並且引導經由該等沉積;A schematic cross-sectional side view of an embodiment of the present invention; FIG. 13 is a schematic plan view of the thin film deposition assembly 100 of FIG. A deposition source 130, and a plurality of reference drawings 11 to 13, a thin film deposition assembly ι 110, a deposition source nozzle unit 120, and a barrier wall assembly patterning slit 151 are included. For ease of explanation, although a reaction chamber is not shown in Figures n to 13; however, all of the components in the thin tantalum deposition assembly 100 can be disposed in a reaction chamber in which a suitable degree of vacuum is maintained. A suitable true s ' is maintained in the reaction chamber to allow the deposited material to move through the thin film deposition assembly 100 in a substantially straight straight line. The substrate 500 is transported to the reaction by using an electrostatic chuck 6 which constitutes a target on which the deposition material 丨丨5 is to be deposited. The substrate 500 may be a substrate for a flat panel display. A large substrate for fabricating a plurality of flat panel displays, such as a glass mother board, can also be used as the substrate 500. When the substrate 500 or the thin film deposition assembly is moved relative to each other, deposition can be performed. The substrate 500 can be moved in the direction a relative to the thin film deposition assembly 100. As in the embodiment of Fig. 6 described above, the 'patterning slit plate i 50' in the thin tantalum deposition assembly 1 according to this embodiment of the present invention may be much smaller than the FMM used in the conventional deposition method. . In other words, in the thin film deposition assembly 100, deposition is performed continuously (i.e., in a scanning manner) when the substrate 500 is moved in the Y-axis direction. Therefore, if the width of the patterning slit plate 150 in the X-axis direction is substantially the same as the width of the substrate 5〇〇 in the X-axis direction, the patterning slit plate 150 is at the γ-axis side 29 201117267 The length in the middle may be much smaller than the length of the substrate 500 in the γ-axis direction. Of course, even if the width of the patterned slit plate 丨5〇 in the z-axis direction is smaller than the width of the substrate 500 in the X-axis direction, due to the relative movement of the substrate 5〇〇 and the thin film deposition assembly 1〇〇 The deposition can be sufficiently performed on the entire surface of the substrate 500 in a manner that can still be scanned. As described above, 'because the patterning slit plate 丨5〇 can be formed much smaller than the FMM used in the conventional deposition method, it is relatively easy to manufacture the pattern used in one aspect of the present invention. The slit plate is 丨5〇. In other words, a patterning slit plate that is smaller than the FMM used in the conventional deposition method is used in all processes (which includes etching and subsequent processes, such as precision, compared to conventional deposition methods using larger FMMs). It is more convenient to extend the process, the welding process, the moving process, and the cleaning process. This is more conducive to larger display devices. A deposition source 含有1 含有 containing and heating the deposition material U 5 is disposed on the opposite side of the disposed side of the substrate 500 in the reaction chamber. The deposition source 110 includes a crucible 112 filled with a deposition material 115, and a cooling block 111 that surrounds the crucible 112. This cooling block i U prevents heat from being radiated from the steel 11 2 to the outside, i.e., into the reaction chamber. The cooling block 1Π may contain a heater (not shown) which heats the crucible 1 12 . The accumulated source nozzle unit 120 will be disposed at one side of the deposition source 11 , and, in particular, it will be disposed in the deposition source 面向 facing the substrate 500 side. The deposition source nozzle unit 120 includes a plurality of deposition source nozzles 121 arranged in the z-axis direction. The sinking material 31, which is evaporated in the deposition source n〇, is moved toward the substrate 500 through the plurality of deposition source nozzles 121 in the deposition source nozzle unit 12A. The barrier wall assembly 130 will be disposed at a side of the deposition source nozzle unit 丨2〇. The barrier wall assembly 130 includes a plurality of barrier walls 131 and a barrier wall frame 132 that will form the outer walls of the barrier walls 31. The plurality of barrier walls 133 may be arranged in the X-axis direction in parallel and equally spaced apart from each other. Furthermore, each of the barrier walls 3丨 can be formed to extend in the YZ plane in the figure, that is, perpendicular to the X-axis direction. The plurality of barrier walls i 31 arranged as described above cut the two spaces between the deposition source nozzle unit 120 and the patterned slit plate 15〇 into a plurality of sub-deposition spaces S (shown in the figure)丨3)). In the thin film deposition assembly 1 , the deposition space is divided by the barrier walls 131 into a sigma-# deposition space s corresponding to the deposition source nozzle 丨 2 1 from which the deposition material 丨 5 is released. , as shown in Figure 13. The barrier walls 13 may be disposed between adjacent deposition source nozzles 1 21, respectively. In other words, each of the deposition source nozzles 12 1 may be disposed between two adjacent barrier walls 3丨. The deposition source nozzles 121 may be located at the midpoint between two adjacent barrier walls 133, respectively. However, the aspect of the present invention is not limited thereto, and the deposition source nozzles 121 may be provided in other manners. The plurality of deposition source nozzles 121 may be disposed between two adjacent barrier walls 丨3丨. Even in this case, the deposition source nozzles 121 may be located at the midpoint between the two adjacent barrier walls 133, respectively. As described above, since the barrier walls 13 3 divide the space between the deposition source nozzle 31 201117267 unit 1 2 0 and the patterned slit plate 150 into the plurality of sub-deposition spaces s, The deposition material 115 discharged through each of the deposition source nozzles 21 is not mixed with the deposition material 115 discharged through the other of the deposition source nozzles ι2, and will pass through the patterns. The slit 15 is so as to be deposited on the substrate 5〇〇. In other words, the barrier walls 133 will direct the deposition material Η 5' released through the deposition source nozzles 丨 2 用以 to move through the thin film deposition assembly 100 in a substantially straight straight line, and not in the y-axis direction Flowing in. As described above, the deposition material 115 is forced to move through a substantially straight straight line through the thin film deposition assembly 100 'Because A' is compared to no barrier wall due to the installation of the barrier walls 131; Brother, a smaller shaded area may be formed on the substrate 500. Therefore, the thin film deposition assembly 100 and the substrate 500 may be separated from each other by a predetermined distance. This will be explained in detail later.屏障 The barrier wall frames constituting the upper and lower sides of the barrier walls 131 "will maintain the position of the barrier walls (3) and guide the deposition therethrough;

喷嘴⑵釋出的沉積材肖115,用以在—實f筆直的直線I 移動經過該薄膜沉積組件⑽,並且不要在Y軸方向中; 動。 該沉積源嗔嘴單元120及該屏障壁组件130可能會, 此分離既定的距離— ’可以防止從該沉積源丨丨〇處意 1熱被傳導至該屏_組们30。不過,本發明的態樣孟 不又限於此。換言之,當一合宜的絕緣單元被設置在該沉 積源嗔嘴單元120及該屏障壁組請之間,該沉積源喷 32 201117267 嘴早凡120及該屏障壁址件13〇便可以彼此結合並且可以 彼此接觸。 此外,該屏障壁組件13〇可能會被建構成可以脫離該 薄膜沉積組件100。為克服該些問題,在該薄膜沉積組件 1 00中,會藉由使用該屏障壁組件【3〇來封閉該沉積空間, :使得仍未被沉積的沉積材# 115大部分會被沉積在該屏 障壁組件130裡面。因此’因為該屏障壁組件130被建構 ^可以脫離5亥薄臈沉積組件i⑼,所以,當經過冗長的沉積 製程之後大量的沉積材料115落在該屏障壁組件13〇中 時,該屏障壁組件13〇便可以脫離該薄膜沉積組件1〇〇並 且皆著被放在一分離的沉積材料回收設備中,以便回復該 沉積材料115。由於根據本實施例的薄膜沉積組件1〇〇的結 構的關係,沉積材料丨丨5的重新使用率會提高,俾使得沉 積效率會獲得改善,且因而會降低製造成本。 圖樣化狹縫板15〇及其中包覆著該圖樣化狹縫板ι5〇 的框架155會被設置在該沉積源丨丨〇與該基板5〇〇之間。 δ玄框条1 5 5可能會形成格柵形狀,與窗框雷同。該圖樣化 狹縫板150會被包覆在框架155裡面。該圖樣化狹缝板15〇 包含被排列在X軸方向令的複數個圖樣化狹縫丨5丨。該圖樣 化狹縫板150會延伸在γ軸方向中。在該沉積源η〇中被 蒸發並且通過該等沉積源噴嘴12丨的沉積材料丨丨5會通過 該等圖樣化狹縫1 5 1,朝基板5〇〇移動。 該圖樣化狹縫板150係由一金屬板所構成並且會以延 展狀態中被包覆在框架1 5 5上。該等圖樣化狹縫1 5 1會以 33 201117267 有條紋狹縫的形式被形成在藉由蝕刻所製成的圖樣化狹縫 板150之中。 在s玄薄膜沉積組件1 〇 〇中,圖樣化狹縫1 $ 1的總數量 可能會大於沉積源喷嘴121的總數量。此外,圖樣化狹縫 15 1的數量還可能會大於被設置在兩個相鄰屏障壁13 1之間 的沉積源喷嘴12 b圖樣化狹縫15 1的數量可能會對應於要 被形成在基板500上的沉積圖樣的數量。 此外,該屏障壁組件130及該圖樣化狹縫板丨5〇亦可 能會被形成彼此分離既定的距離。或者,該屏障壁組件i 3〇 及該圖樣化狹縫板1 50可藉由一分離的第二連接部件(33 來連接。5亥屏障壁組件1 3 0的溫度可能會因為溫度报高的 沉積源110的關係而提高至1〇〇。(:甚至更高。因此,為防止 該屏障壁組件130的熱傳導至該圖樣化狹縫板ι5〇,該屏障 壁組件1 30及該圖樣化狹縫板丨50彼此會分離既定的距離。 如上面所述,該薄膜沉積組件丨00會在相對於該基板 5〇〇移動時實施沉積。為相對於該基板5〇〇來移動該薄膜沉 積組件100 ’圖樣化狹縫板15〇會與該基板500分離既定的 距離。此外,為防止在圖樣化狹縫板丨5〇與該基板5〇〇彼 此分離既定距離時會在該基板500上形成一比較大型的陰 影區’該等屏障壁1 3 1會被排列在該沉積源喷嘴單元i 2〇 及該圖樣化狹縫板1 50之間,以便強制該沉積材料丨丨5在 筆直的方向中移動。因此’形成在該基板5〇〇上的陰影區 的尺寸會大幅縮小。 明確地說,在使用FMM的習知沉積方法中雖然利用與 34 201117267 一基板緊密接觸的FMM來實施沉積,用以防止在該基板上 形成一陰影區;不過’當緊密接觸該基板來使用FMM時, 可旎會因為基板與FMM之間的接觸的關係而出現缺陷,例 如形成在该基板上之有刮痕的圖樣。此外,在習知的沉積 方法中,因為遮罩無法相對於基板移動,所以,遮罩的尺 寸必須和基板的尺寸相同。因此,當顯示設備變大時,遮 罩的尺寸便必須增加。然而,要製造如此大的遮罩並不容 易。 為克服此問題’在根據本發明一項態樣的薄膜沉積組 件100中,該圖樣化狹縫板15〇會被設置成與該基板5〇〇 分離既定的距離。這可借助於安裝該等屏障壁13丨來達成, 以便縮小被形成在基板500上的陰影區的尺寸。 當一圖樣化狹缝板要被形成小於根據本發明一項態樣 的基板且接著該圖樣化狹縫板要相對於該基板移動時,並 不需要製造如使用FMM的習知沉積方法中的大型遮罩。此 外’因為該基板與該圖樣化狹縫板會彼此分離既定的距 離’所以’還可以防止因該基板及該圖樣化狹縫板之間的 接觸所造成的缺陷。此外,因為在沉積製程期間不必使用 與該基板緊密接觸的圖樣化狹縫板,所以,製造速度可以 獲得改善。The deposit material (115) released by the nozzle (2) is used to move through the thin film deposition assembly (10) in a straight line I, and not in the Y-axis direction; The deposition source nozzle unit 120 and the barrier wall assembly 130 may, for example, separate a predetermined distance -' to prevent heat from being conducted to the screen 30 from the deposition source. However, the aspect of the present invention is not limited to this. In other words, when a suitable insulating unit is disposed between the deposition source nozzle unit 120 and the barrier wall group, the deposition source spray 32 201117267 mouth 120 and the barrier wall member 13 can be combined with each other and Can be in contact with each other. Additionally, the barrier wall assembly 13 may be constructed to be detachable from the thin film deposition assembly 100. In order to overcome such problems, in the thin film deposition assembly 100, the deposition space is closed by using the barrier wall assembly, so that most of the deposition material #115 still undeposited is deposited thereon. Inside the barrier wall assembly 130. Therefore, because the barrier wall assembly 130 can be constructed to be detached from the 5th thin layer deposition assembly i(9), the barrier wall assembly is dropped when a large amount of deposition material 115 falls in the barrier wall assembly 13A after a lengthy deposition process. The film deposition assembly 1 can be removed from the film deposition assembly and placed in a separate deposition material recovery device to recover the deposition material 115. Due to the relationship of the structure of the thin film deposition assembly 1 of the present embodiment, the reuse rate of the deposited material 丨丨5 is improved, so that the deposition efficiency is improved, and thus the manufacturing cost is lowered. A patterning slit plate 15A and a frame 155 in which the patterning slit plate ι5 is coated are disposed between the deposition source and the substrate 5A. The δ box frame 1 5 5 may form a grid shape, which is similar to the window frame. The patterned slit plate 150 is wrapped inside the frame 155. The patterning slit plate 15A includes a plurality of patterning slits 丨5丨 arranged in the X-axis direction. The patterning slit plate 150 is extended in the γ-axis direction. The deposition material 丨丨5, which is evaporated in the deposition source η and passes through the deposition source nozzles 12, moves toward the substrate 5 through the patterning slits 151. The patterning slit plate 150 is composed of a metal plate and is coated on the frame 155 in an extended state. The patterning slits 151 are formed in the patterning slit sheet 150 formed by etching in the form of a 33 201117267 striped slit. In the sth thin film deposition assembly 1 , , the total number of patterning slits 1 $ 1 may be larger than the total number of deposition source nozzles 121. Furthermore, the number of patterning slits 15 1 may also be larger than the deposition source nozzles 12 b disposed between two adjacent barrier walls 13 1 . The number of patterning slits 15 1 may correspond to being formed on the substrate. The number of deposition patterns on 500. In addition, the barrier wall assembly 130 and the patterned slit plate 丨5〇 may also be formed to be separated from each other by a predetermined distance. Alternatively, the barrier wall assembly i 3 and the patterned slit plate 150 may be connected by a separate second connecting member (33). The temperature of the 5 barrier wall assembly 130 may be due to temperature rise. The relationship of the deposition source 110 is increased to 1 〇〇. (: even higher. Therefore, in order to prevent heat conduction from the barrier wall assembly 130 to the patterned slit plate ι5, the barrier wall assembly 130 and the patterning narrow The spacers 50 are separated from each other by a predetermined distance. As described above, the thin film deposition assembly 丨00 is deposited while moving relative to the substrate 5. The thin film deposition assembly is moved relative to the substrate 5 The 100' patterning slit plate 15 is separated from the substrate 500 by a predetermined distance. Further, in order to prevent the patterning slit plate 5 and the substrate 5 from being separated from each other by a predetermined distance, the substrate 500 is formed. a relatively large shaded area 'the barrier walls 131 are arranged between the deposition source nozzle unit i 2〇 and the patterned slit plate 150 to force the deposition material 丨丨5 in a straight direction Move in. So 'formed on the substrate 5〇 The size of the upper shadow area is greatly reduced. Specifically, in the conventional deposition method using the FMM, deposition is performed using an FMM in close contact with a substrate of 34 201117267 to prevent a shadow region from being formed on the substrate; However, when the FMM is used in close contact with the substrate, defects may occur due to the contact between the substrate and the FMM, such as a pattern of scratches formed on the substrate. Further, in a conventional deposition method Because the mask cannot move relative to the substrate, the size of the mask must be the same as the size of the substrate. Therefore, when the display device becomes large, the size of the mask must be increased. However, to make such a large mask In order to overcome this problem, in the thin film deposition assembly 100 according to an aspect of the present invention, the patterning slit plate 15 is disposed to be separated from the substrate 5 by a predetermined distance. The barrier walls 13 are mounted to reduce the size of the shadow regions formed on the substrate 500. When a patterned slit plate is to be formed less than one according to the present invention When the substrate of the aspect and then the patterning slit plate is to be moved relative to the substrate, it is not necessary to manufacture a large mask as in the conventional deposition method using the FMM. Further, 'because the substrate and the patterning slit plate Separating from each other by a predetermined distance 'so' can also prevent defects caused by contact between the substrate and the patterned slit plate. Furthermore, since it is not necessary to use a patterning slit in close contact with the substrate during the deposition process Board, so the manufacturing speed can be improved.

在該薄膜沉積組件1 0 0中,沉積源1 1 〇可能會被容納 在一來源反應室1 13之中,該來源反應室11 3會被連接至 一要於其中實施沉積的第一反應室731,如圖μα與14B 中所示。 35 201117267 換言$ ,分 、 分離的來源反應室11 3會被連接至要於其 中實施沉積的第— 乐反應至731 ’而且該來源反應室113與該 第反應至73 i之間的空間會藉由一高真空闊門1 1 8來打 開或閉合。 為在疋成沉積製程之後回填沉積源1 1 〇中的沉積材 料,該第一反應室731應該維持在大氣壓力下。不過,當 °玄第反應至731應該維持在大氣壓力下用以回填該沉積 原〇並且接著保持在真空狀態下用以實施一新的沉積製 程時’此過程會花費冗長的時間而且生產時間會增加。 為達此目的,在本發明的一實施例中,會在該來源反 應室113中設置一支撐該沉積源11〇的平台114,而該平台 114會被連接至氣囊ns。當氣囊lb受到驅動時,平台114 便會文到驅動。因此,沉積源i 1〇便能夠在該來源反應室 Π 3與該第一反應室7 3 1之間移動。 擋板11 7會被設置在該沉積源1丨〇附近,並且當該 沉積源11〇抬升至該第一反應室731之中時,該擋板117 便會阻隔通往該來源反應室丨13的連接開口,以便防止該 來源反應至1 13因§玄沉積材料的關係而受到污染,如圖14 a 中所示。在沉積製程完成之後’該沉積源丨丨〇便會在擔板 117打開時下降至該來源反應室113之中,而且該來源反應 室113會相對於該第一反應室731被處於氣密狀態中的高 真空閥門118閉合’如圖14B中所示。於此狀態中,該來 源反應室113的狀態會改變成處於大氣壓力下,而且一被 設置在該來源反應室113中之分離的門(圖中並未顯示)會 36 201117267 被打開,俾使得可以從該來源反應室113中取出該沉積源 1 1 0,以便回填罈沉積源11 0中的沉積材料。根據該結構, 不必排空該第一反應室73 1便可輕易地將該沉積材料填充 在該沉積源11 0中。 此外’該薄膜沉積組件100還可能會被安置在第二支 撐體614上’如圖4中所示。就此方面來說,—第二驅動 單元618其會被設置在該第二支撐體614之上,而且該第 二驅動單元618會被連接至該薄膜沉積組件ι〇〇的框架155 並且精細地調整該薄膜沉積組件In the thin film deposition assembly 100, the deposition source 1 1 〇 may be housed in a source reaction chamber 1 13 which is connected to a first reaction chamber in which deposition is to be performed. 731, as shown in Figures μα and 14B. 35 201117267 In other words, the source, reaction chamber 113, which is separated, separated, will be connected to the first reaction to be deposited in the 731' and the space between the source reaction chamber 113 and the first reaction to 73 i will be borrowed. Opened or closed by a high vacuum wide door 1 1 8 . In order to backfill the deposition material in the deposition source 1 1 之后 after the deposition process, the first reaction chamber 731 should be maintained at atmospheric pressure. However, when the ° Xuanten reaction to 731 should be maintained at atmospheric pressure to backfill the deposition precursor and then remain under vacuum for a new deposition process, the process takes a long time and the production time will increase. To this end, in an embodiment of the invention, a platform 114 supporting the deposition source 11 is disposed in the source reaction chamber 113, and the platform 114 is coupled to the air bag ns. When the air bag lb is driven, the platform 114 will drive to the drive. Therefore, the deposition source i 1 can move between the source reaction chamber Π 3 and the first reaction chamber 713. The baffle 11 7 is disposed adjacent to the deposition source 1丨〇, and when the deposition source 11 is lifted into the first reaction chamber 731, the baffle 117 blocks the source reaction chamber 丨13 The opening is connected to prevent contamination of the source to 13 13 due to the relationship of the material, as shown in Figure 14a. After the deposition process is completed, the deposition source will fall into the source reaction chamber 113 when the support plate 117 is opened, and the source reaction chamber 113 will be in an airtight state with respect to the first reaction chamber 731. The high vacuum valve 118 in the middle is closed as shown in Figure 14B. In this state, the state of the source reaction chamber 113 is changed to be at atmospheric pressure, and a separate gate (not shown) disposed in the source reaction chamber 113 is opened 36 201117267, so that The deposition source 110 can be taken out of the source reaction chamber 113 to backfill the deposition material in the altar deposition source 110. According to this configuration, the deposition material can be easily filled in the deposition source 110 without evacuating the first reaction chamber 73 1 . Further, the thin film deposition assembly 100 may also be disposed on the second support 614 as shown in FIG. In this regard, the second driving unit 618 will be disposed above the second support 614, and the second driving unit 618 will be coupled to the frame 155 of the thin film deposition assembly and finely adjusted Thin film deposition assembly

,…一丘 .丨干1之侍孩I 板500及該薄膜沉積組件1〇〇可以彼此對齊。該對齊的精 細調整可以在實施該沉積製程期間以即時的方式來實施。 該薄膜沉積組件100可能進一步包含一相機組件 用以相互對齊該基^反500及該薄膜沉積組件ι〇〇,如圖η 與13中所示。該相機組件17〇係被用來以即時的方式相互 =被形成在框架155之上的第一標$ 159以及被:成在 土板500之上的第二標記5〇1。 則目機粗件m可以取得會於其中實施沉積製 Γ5反中:室裡面的寬廣視區’如圖10中所示。換言之,如圖 中所不’―相機172會被設置在一圓柱形遮冑171之中, 及該戚:含—透鏡的光學系·統173會被設置在該相機172 以”、盍171的—開口丨76之 盆 175的一佯1, ,、上形成夕個加熱圖樣 保濩固174會被設置在該光學系統 176之間。當利用該等加埶圖樣 …1 口 有機材料並不會被…來貫施沉積製程時,-个會被-積在該保護窗174的表面上。因此, 37 201117267 相機1 72仍能夠透過該真空反 即使在實施該沉積製程時 應室裡面的保護窗174來判斷對齊結果。 圖16所不的係根據本發明另一實施例的薄膜沉積組件 10 0的透視圖。 乡考圖16 5亥薄膜沉積組件⑽包含一沉積源"〇、 -沉積源喷嘴單元m、—第—屏障壁組件nG、—第二屏 障壁組件140、以及一圖樣化狹縫板15〇。 為方便解釋起見’圖16中雖然並未顯示一反應室;不 過,薄膜沉積組彳100巾的所有構件皆可被設置在一其中 保持著合宜真空程度的反應室裡面。該反應室中保持著合 宜的真空,以便讓沉積材料會在一實質筆直的直線中移動 經過該薄膜沉積組件1〇〇。 基板500會被設置在該反應室之中,該基板5〇〇構成 一要將沉積材料115沉積於其上的目標物。含有並且會加 熱該沉積材料115的沉積源丨丨〇會被設置在該反應室中該 基板500之被設置側的相反側。 沉積源11 0和圖樣化狹縫板丨5〇的詳細結構皆和圖j j 的詳細結構相同’因此,此處不會提供其詳細說明。該第 一屏障壁組件1 30和參考圖1 1之實施例所述的屏障壁組件 1 30相同,因此’此處不會提供其詳細說明。 第二屏障壁組件140會被設置在該第一屏障壁組件13〇 的某一側處。該第二屏障壁組件140包含複數個第二屏障 壁141;以及一第二屏障壁框架142,其會構成該等第二屏 障壁14 1的外壁。 38 201117267 可此會以彼此平行、相等 。此外’該等第二屏障壁 圖16中的γζ平面中, 該4複數個第二屏障壁14 1 間隔的方式被排列在X軸方向中 141中的每一者皆可被形成延伸在 也就是’垂直於該X軸方向。 如上面所述排列的該等複數個第一屏障壁HI及第二 屏障壁141會分割該沉積源喷嘴單元Do及該圖樣化㈣ 板150之間的空間。在圖16中所示的薄膜沉積組件100中, 該沉積空間會被該等複數個第—屏障i ΐ3ι及第二屏障壁 141分割成分別對應於藉以釋出該沉積材料ιΐ5之沉積 嘴1 2 1的多個子沉積空間。 、 ★該等第二屏障壁141可能會被設置成分別對應於該等 苐'一屏障壁131。換古之,·ί·女楚楚―网作立 谀σ之,忒荨第一屏障壁141可能會分別 被設置成平行於該等第—屏障壁ΐ3ι並且位於和該等第一 屏障壁131相同的平面上。每一對該等對應的第一屏障壁 131及第二屏障壁141可能位於相同的平面上。圖中分別顯 示的該等第-屏_ 131及該等第二屏障壁ΐ4ι雖然在χ 軸方向中具有相同的厚《;不過,本發明的態樣並不受限 2此。換吕之’必須準確對齊該圖樣化狹縫板】的該等 第二屏障I 141可能會被形成比較薄;而不需要精確對齊 該圖樣化狹縫板150的該等第一屏障壁131則可能會 成比較厚。這會使其比較容易製造該薄膜沉積組件⑽。 如上面所述的複數個薄膜沉積組件1〇〇可以 繼第-反應室73丨之中,如…所示。就此二 說,該等第一至第四薄膜沉積組件100、200、300、以及 39 201117267 400(參見圖1)可能會沉積不同的沉積材料。就此方面來說, 該等第一至第四薄膜沉積組件1〇〇、200、3〇〇、以及4〇〇的 圖樣化狹縫的圖樣彼此不會相同,俾使得可以實施一層形 成製程’其包含同時沉積紅色像素、綠色像素、以及藍色 像素的製程。 圖1 7所示的係根據本發明一實施例,藉由使用一薄膜 /儿積a又備所製造的主動矩陣(Active Matrix,AM)有機發光 顯示設備的剖視圖。 參考圖1 7,該AM有機發光顯示設備會被設置在一基 板30上》該基板3〇可能係由透明材料(舉例來說,玻璃) 所構成並且亦可能由塑膠或金屬所構成。一絕緣層31(例 如’緩衝層)會被形成在該基板3〇之上。 一薄膜電晶體(Thin Fiim Transist〇r,TFT)4〇、一電容 以及一有機發光裝置60會被形成在該絕緣層3 1之 上,如圖17中所示。 -牛導體主動層41會以既定的圖樣被形成在該絕緣層 31的上方表面上。一閘極絕緣層32會被形成用以覆蓋該半 车:主動層41。該半導體主動層41可能包含- P型或η型 +導體材料。 TFT 40的一閘極電極42會被形成在對應於該半導體主 動層41的閘極絕緣層32的上 扪上方表面上。一層間絕緣層33 被形成用以覆蓋該閘極電極 在形成該層間絕緣層33 <後,舉例來說,便會藉由 ^ Μ 10 » ^ a 貫&乾式蝕刻來蝕刻該閘極絕 緣層32及该層間絕緣層33, 用以形成一接觸孔洞,以便露 40 201117267 出該半導體主動層41的一部分。 接著,一源極/汲極電極43會被形成在該層間絕緣層 3 3之上,以便經由該接觸孔洞來接觸該半導體主動層4 1。 一鈍化層34會被形成用以覆蓋該源極/汲極電極43,並且 會被姓刻以露出該源極/汲極電極43的一部分。一分離的絕 緣層(圖中並未顯示)可能會進一步被形成在該鈍化層34之 上’以便平坦化該鈍化層34。 此外,當電流流動時,該有機發光裝置6〇還會藉由發 出紅光、綠光、或藍光來顯示既定的影像資訊。該有機發 光裝置60包含一被形成在該鈍化層34之上的第一電極 6 1。該第一電極6丨會被電連接至TFT 4〇的汲極電極杓。 一像素定義層35會被形成用以覆蓋該第一電極6卜在 -開口 64被形成在該像素定義層35令之後,一有機發光 層63便會被形成在一由該開口 64所定義的區域之中。一 第二電極62會被形成在該有機發光層63之上。 用以定義個別像素的像素定義層35係由一有機材料所 成雷該像素定義層35還會平坦化該基板3Q中會形成該 化層34的表: 表面,且明確地說,會平坦化鈍 该第-電極61與該第二電極62會彼此絕緣,並 1施加相反極性的電壓給該有機發光 機發光層63中誘發發光。 Μ在㈣ 該有機發光層63 合物有機材料所構成 可能係由一低分子重量有機材料或 。當使用一低分子重量有機材料時 聚 41 201117267 該有機發光層63可能會具有單層結構或多層結構,其包含 選擇自由下面所組成之群中的至少其中一層:電洞射出層 (Hole Injection Layer,HIL);電洞傳輸層(Hole Transp〇rt Layer,HTL);發光層(Emission Layer,EML);電子傳輸層 (Electron Transport Layer,ETL);電子射出層(Electron Injection Layer,EIL);等。可用之有機材料的範例可能 包含.銅献花青(〇〇卩卩6!卩11111&1〇。5^1^116,(1!11?〇);]^,1^,-二(1-茶 基 )-N,N’- 二苯基 聯苯胺 (N,Nt.di(naphthalene-l-yl)-N,N'.diphenyl-benzidine)(NPB) :三(8_ 羥基喹啉)化鋁(tris-8-hydroxyquinoline aluminum)(Alq3);…等。此低分子重量有機材料可以使用 上面參考圖1至16所述的薄膜沉積設備或沉積源11〇中其 中一者藉由真空沉積來沉積。 首先,於開口 64被形成在該像素定義層35中之後, 基板30便會被運送至—反應室73卜如圖i中所示。一目 標有機材料會藉由該等第—至第四薄膜沉積組件剛、 2〇〇、300、以及4〇〇來沉積。 一在形成該有機發光層63之後,可以藉由實施和形成該 第-電極61所需要的沉積製程相同的沉積製程來形成該第 該第二電極62具 具有陰極的功能, 。該第一電極61 而該第二電極62, ... a hill. The hair dryer 1 I plate 500 and the film deposition assembly 1 can be aligned with each other. Fine adjustment of the alignment can be performed in an instant manner during the implementation of the deposition process. The thin film deposition assembly 100 may further include a camera assembly for aligning the substrate 500 and the thin film deposition assembly ι as shown in Figures η and 13. The camera assembly 17 is used to instantaneously define the first target $ 159 formed on the frame 155 and the second mark 5 〇 1 above the earth plate 500. Then, the eyepiece m can be obtained in which the deposition process is carried out: the wide viewing zone inside the chamber is as shown in Fig. 10. In other words, as shown in the figure, the camera 172 will be disposed in a cylindrical concealer 171, and the 戚: lens-containing optical system 173 will be disposed at the camera 172, 盍 171 - a 佯1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , When it is applied to the deposition process, one will be accumulated on the surface of the protection window 174. Therefore, the 37 201117267 camera 1 72 can still pass through the vacuum to reverse the protective window inside the chamber even when the deposition process is implemented. 174 is used to judge the alignment result. Fig. 16 is a perspective view of a thin film deposition assembly 100 according to another embodiment of the present invention. The township map 16 (5) contains a deposition source "〇, - deposition source The nozzle unit m, the first barrier wall assembly nG, the second barrier wall assembly 140, and a patterned slit plate 15A. For convenience of explanation, although a reaction chamber is not shown in FIG. 16; however, the film All components of the deposition group 彳100 can be set A reaction chamber in which a suitable degree of vacuum is maintained. A suitable vacuum is maintained in the reaction chamber to allow the deposited material to move through the thin film deposition assembly 1 in a substantially straight line. The substrate 500 will be placed in In the reaction chamber, the substrate 5A constitutes a target on which the deposition material 115 is to be deposited. A deposition source containing and heating the deposition material 115 is disposed in the reaction chamber. The opposite side of the set side of the 500. The detailed structure of the deposition source 110 and the patterned slit plate 丨5〇 are the same as those of the figure jj. Therefore, detailed description thereof will not be provided here. The assembly 1 30 is identical to the barrier wall assembly 1 30 described with reference to the embodiment of Fig. 11. Thus, 'details are not provided herein. The second barrier wall assembly 140 will be disposed in the first barrier wall assembly 13〇 At one side, the second barrier wall assembly 140 includes a plurality of second barrier walls 141; and a second barrier wall frame 142 that will form the outer walls of the second barrier walls 14 1. 38 201117267 To the other Parallel, equal. Further, in the γζ plane in the second barrier wall FIG. 16, each of the plurality of second barrier walls 14 1 spaced apart in the X-axis direction 141 may be formed. Extending in, that is, perpendicular to the X-axis direction. The plurality of first barrier walls HI and second barrier walls 141 arranged as described above divide the deposition source nozzle unit Do and the patterned (four) plate 150 In the thin film deposition assembly 100 shown in FIG. 16, the deposition space is divided by the plurality of first barriers ΐ3 ι and the second barrier wall 141 to respectively correspond to the deposition by which the deposition material ι 5 is released. A plurality of sub-deposition spaces of the mouth 1 2 1 . The second barrier walls 141 may be arranged to correspond to the barrier walls 131, respectively. In the past, the first barrier wall 141 may be disposed parallel to the first barrier wall ΐ3ι and located in the same manner as the first barrier walls 131, respectively. On the plane. Each of the corresponding first barrier walls 131 and second barrier walls 141 may be located on the same plane. The first-screen _131 and the second barrier wall ΐ4ι, respectively shown in the figures, have the same thickness in the y-axis direction; however, the aspect of the invention is not limited thereto. The second barriers I 141 of the 'should be accurately aligned with the patterned slit plate' may be formed relatively thin; without the need to precisely align the first barrier walls 131 of the patterned slit plate 150 May be thicker. This makes it easier to manufacture the thin film deposition assembly (10). A plurality of thin film deposition assemblies 1 as described above may be carried in the first reaction chamber 73, as shown. In this connection, the first to fourth thin film deposition assemblies 100, 200, 300, and 39 201117267 400 (see Fig. 1) may deposit different deposition materials. In this regard, the patterns of the patterning slits of the first to fourth thin film deposition assemblies 1〇〇, 200, 3〇〇, and 4〇〇 are not identical to each other, so that a layer forming process can be implemented. Contains a process that simultaneously deposits red, green, and blue pixels. Figure 17 is a cross-sectional view showing an active matrix (AM) organic light-emitting display device manufactured by using a film/integration a according to an embodiment of the present invention. Referring to Fig. 17, the AM organic light-emitting display device will be disposed on a substrate 30. The substrate 3 may be composed of a transparent material (for example, glass) and may also be composed of plastic or metal. An insulating layer 31 (e.g., a 'buffer layer) is formed over the substrate 3''. A thin film transistor (TFT), a capacitor, and an organic light-emitting device 60 are formed over the insulating layer 31 as shown in FIG. The bobbin active layer 41 is formed on the upper surface of the insulating layer 31 in a predetermined pattern. A gate insulating layer 32 is formed to cover the semiconductor: active layer 41. The semiconductor active layer 41 may comprise a -P-type or an n-type + conductor material. A gate electrode 42 of the TFT 40 is formed on the upper surface of the upper surface of the gate insulating layer 32 corresponding to the semiconductor active layer 41. An interlayer insulating layer 33 is formed to cover the gate electrode. After the interlayer insulating layer 33 is formed, the gate insulating layer is etched by, for example, dry etching. The layer 32 and the interlayer insulating layer 33 are used to form a contact hole to expose a portion of the semiconductor active layer 41. Next, a source/drain electrode 43 is formed over the interlayer insulating layer 3 3 to contact the semiconductor active layer 41 via the contact hole. A passivation layer 34 is formed to cover the source/drain electrodes 43 and will be surnamed to expose a portion of the source/drain electrodes 43. A separate insulating layer (not shown) may be further formed over the passivation layer 34 to planarize the passivation layer 34. In addition, when the current flows, the organic light-emitting device 6 also displays a predetermined image information by emitting red light, green light, or blue light. The organic light-emitting device 60 includes a first electrode 61 formed over the passivation layer 34. The first electrode 6 is electrically connected to the drain electrode TFT of the TFT 4 . A pixel defining layer 35 is formed to cover the first electrode 6. After the opening 64 is formed in the pixel defining layer 35, an organic light emitting layer 63 is formed in a window 64 defined by the opening 64. In the area. A second electrode 62 is formed over the organic light-emitting layer 63. The pixel defining layer 35 for defining individual pixels is formed by an organic material. The pixel defining layer 35 also planarizes the surface of the substrate 3Q where the layer 34 is formed: the surface, and specifically, planarizes The blunt first electrode 61 and the second electrode 62 are insulated from each other, and a voltage of opposite polarity is applied to the organic light-emitting device luminescent layer 63 to induce luminescence. The organic material of the organic light-emitting layer 63 may be composed of a low molecular weight organic material or. When a low molecular weight organic material is used, poly 41 201117267 The organic light emitting layer 63 may have a single layer structure or a multi-layer structure including at least one of the groups selected from the following: Hole Injection Layer , HIL); Hole Transp〇rt Layer (HTL); Emission Layer (EML); Electro Transport Layer (ETL); Electron Injection Layer (EIL); . Examples of organic materials that may be used may include copper. (〇〇卩卩6!卩11111&1〇.5^1^116, (1!11?〇);]^,1^,-二(1- N,N'-naphenylene-l-yl-N,N'.diphenyl-benzidine (NPB): tris(8-hydroxyquinoline)aluminum (tris-8-hydroxyquinoline aluminum) (Alq3); etc. This low molecular weight organic material can be deposited by vacuum deposition using one of the thin film deposition apparatus or deposition source 11 described above with reference to Figs. First, after the opening 64 is formed in the pixel defining layer 35, the substrate 30 is transported to the reaction chamber 73 as shown in Figure i. A target organic material will be by the first to fourth The thin film deposition assembly is deposited just after 2, 300, and 4 Å. After the organic light-emitting layer 63 is formed, it can be formed by performing the same deposition process as that required to form the first electrode 61. The second electrode 62 has a function of a cathode, the first electrode 61 and the second electrode 62

該第一電極61具有陽極的功能,而 有陰極的功能。或者,該第__6lU 而該第二電極62 Μ可能具有陽極的功能 可能會被圖樣化用以對應各自的像素區, 42 201117267 則可能會被形成用以覆蓋所有該等像素。 該第一電極61可能會形成一透明電極或一反射電極。 此透明電極可能係由選擇自由下面所組成之群中的至少其 中一種材料所構成:氧化銦錫(Indium Tin Oxide,ITO),氧 化銦鋅(Indium Zinc Oxide ’ IZO),氧化鋅(Zinc 〇xide,The first electrode 61 has a function as an anode and a function as a cathode. Alternatively, the __6lU and the second electrode 62 Μ may have an anode function that may be patterned to correspond to the respective pixel regions, 42 201117267 may be formed to cover all of the pixels. The first electrode 61 may form a transparent electrode or a reflective electrode. The transparent electrode may be composed of at least one selected from the group consisting of: Indium Tin Oxide (ITO), Indium Zinc Oxide 'IZO, Zinc Oxide (Zinc 〇xide) ,

ZnO) ’以及三氧化二銦(in2〇3)。可以藉由使用選擇自由銀 (Ag)、鎂(Mg)、鋁(A1)、鉑(Pt)、鈀(Pa)、金(Au)、鎳(Ni)、 鈥(Nd)、銥(1〇、鉻(Cr)、及其合金所組成之群中的至少其 中一種材料形成一反射層並且藉由使用選擇自由該反射層 上的ITO ' IZO、ZnO、以及ΐιΐ2〇3所組成之群中的至少其中 一種材料形成一層來構成此反射電極。舉例來說,藉由錢 鍍先形成一層,並且舉例來說,接著,藉由微影術來圖樣 化該層便可以形成該第一電極6 1。 s亥第二電極62亦可能會形成一透明電極或一反射電 極。當該第二電極62形成一透明電極時,該第二電極62 具有陰極的功能。為達此目的’可以藉由在該有機發光層 63的一表面上沉積—低功函數的金屬(例如,鋰、鈣 (Ca)、氟化鋰/鈣(LiF/Ca)、氟化鋰/鋁(LiF/Ai)、鋁(μ)、銀 (Ag)、鎂(Mg)、或是其合金)並且從IT〇、IZ〇、Zn〇、化2〇3、 或是類似物中於其上形成一輔助電極層或匯流排電極來構 士此透明電極。當該第二電極62形成一反射電極時,可以 藉由在έ亥有機發光層63的整個表面上沉積選擇自由U、ZnO) ' and indium trioxide (in2〇3). It can be selected by using free silver (Ag), magnesium (Mg), aluminum (A1), platinum (Pt), palladium (Pa), gold (Au), nickel (Ni), niobium (Nd), niobium (1〇). At least one of the group consisting of chromium (Cr), and alloys thereof forms a reflective layer and is selected from the group consisting of ITO 'IZO, ZnO, and ΐιΐ2〇3 on the reflective layer. At least one of the materials forms a layer to form the reflective electrode. For example, a layer is formed by money plating, and, for example, the first electrode 6 1 can be formed by patterning the layer by lithography. The second electrode 62 may also form a transparent electrode or a reflective electrode. When the second electrode 62 forms a transparent electrode, the second electrode 62 has the function of a cathode. For this purpose, A surface of the organic light-emitting layer 63 is deposited with a low work function metal (for example, lithium, calcium (Ca), lithium fluoride/calcium (LiF/Ca), lithium fluoride/aluminum (LiF/Ai), aluminum ( μ), silver (Ag), magnesium (Mg), or an alloy thereof) and from IT〇, IZ〇, Zn〇, 〇2〇3, or the like Forming thereon an auxiliary electrode layer or a bus bar electrode to the transparent electrode configuration persons. When the second electrode is a reflective electrode 62 is formed, may be deposited on the entire surface by Hai έ organic light emitting layer 63 consisting of selected U,

Ca、UF/Ca、LiF/Ah八卜Ag、Mg、及其合金所組成之 中的至v其中一種材料來構成該反射層。該第二電極Μ 群 可 43 201117267 以利用和用以形成上面所述之有機發光層6 3相同的沉積方 法來形成。 上面所述之根據本發明實施例的薄膜沉積組件可以被 套用用以形成一有機TFT的有機層或無機層,並且用以形 成各種材料層。 如上面所述’在根據本發明態樣的薄膜沉積設備及藉 由使用該薄膜沉積設備來製造根據本發明態樣的有機發光 顯示設備的方法中,可以輕易地使用該薄膜沉積設備來大 規模製造大型基板。此外,該薄膜沉積設備及該有機發光 顯不設備亦很容易製造,可以改善製造產量及沉積效率, 而且可以重複使用沉積材料。 雖然本文已經明確地顯示本發明的態樣並且參考它們 的示範性實施例說明過該些態樣;不過,熟習本技術的人 士便會瞭解,可以對其形式與細節作各種改變,其並不會 脫離下面申請專利範圍所定義之本發明的精神與範疇。 【圖式簡單說明】 從前面實施例的說明中,配合隨附的圖式,便會明白 且更容易明瞭本發明的前述及/或其它態樣與優點,其中: 圖1所示的係根據本發明一實施例的薄膜沉積設備的 概略視圖; 圖2所示的係圖1的薄膜沉積設備的修正範例; 圖3所示的係根據本發明—實施例的靜電失盤的概略 視圖; 圖4所示的係圖1的薄膜沉積設備的第—循環單元的 44 201117267 剖視圖; 圖5所示的係圖1的薄膜沉積設備的第二循環單元的 剖視圖; 圖ό所示的係根據本發明一實施例的薄膜沉積組件的 透視圖; 圖7所示的係根據本發明一實施例,圖6的薄膜沉積 組件的概略剖面側視圖; 圖8所示的係根據本發明一實施例,圖6的薄膜沉積 組件的概略平面視圖; 圖9所示的係根據本發明另一實施例的薄臈沉積组件 的透視圖; 圖10所示的係根據本發明另一實施例的薄膜沉積纽件 的透視圖; 圖11所示的係根據本發明另一實施例的薄膜沉積組件 的透視圖; 圖1 2所示的係根據本發明一實施例’圖π的薄膜沉 積組件的概略剖面側視圖; 圖13所示的係根據本發明一實施例,圖11的薄膜沉 積組件的概略平面視圖; 圓1 4Α與14Β所示的係根據本發明一實施例的來源反 應室的剖視圖; ra-i • 所示的係根據本發明一實施例的相機組件的剖視 圖; m 所不的係根據本發明另一實施例的薄膜沉積組件 45 201117267 的透視圖;以及 圖1 7所示的係根據本發明一實施例,藉由使用一薄膜 沉積設備所製造的有機發光顯示設備的剖視圖。 【主要元件符號說明】 30 基板 31 絕緣層 32 閘極絕緣層 33 層間絕緣層 34 純化層 35 像素定義層 40 薄膜電晶體 41 半導體主動層 42 閘極電極 43 源極/汲極電極 50 電容器 60 有機發光裝置 61 第一電極 62 第二電極 63 有機發光層 64 開口 100 第一薄膜沉積組件 110 沉積源 111 冷卻區塊 112 掛鋼 46 201117267 1 13 來源反應室 1 14 平台 115 沉積材料 116 氣囊 1 17 擋板 118 高真空閥門 120 沉積源喷嘴單元 121 沉積源喷嘴 121a-b 沉積源喷嘴 130 屏障壁組件 13 1 屏障壁 132 屏障壁框架 133 第二連接部件 135 第一連接部件 140 第二屏障壁組件 141 第二屏障壁 142 第二屏障壁框架 150 圖樣化狹縫板 151 圖樣化狹縫 155 框架 159 第一標記 170 相機組件 171 圓柱形遮蓋 172 相機 47 201117267 173 光學系統 174 保護窗 175 加熱圖樣 176 開口 200 第二薄膜沉積組件 300 第三薄膜沉積組件 400 第四薄膜沉積組件 500 基板 501 第二標記 600 靜電夾盤 601 主體 602 電極 610 第一循環單元 611 第一載具 613 第一支撐體 614 第二支撐體 615 移動棒 616 第一驅動單元 617 滾筒 618 第二驅動單元 620 第二循環單元 621 第二載具 623 第三支撐體 710 裝載單元 48 201117267 712 第 一 置 物 架 714 運 m 機 器 裝 置 716 運 輸 反 應 室 718 第 一 倒 置 反 應 室 719 第 一 倒 置 機 器 裝 置 720 卸 載單 元 722 第 二 置 物 架 724 射 出 機 器 裝 置 726 射 出 反 應 室 728 第 二 倒 置 反 應 室 729 第 二 倒 置 機 器 裝 置 730 沉 積 單 元 731 第 一 反 應 室 732 第 反 應 室 A 方 向 S 子 沉 積 空 間 49One of the materials consisting of Ca, UF/Ca, LiF/Ah, Ba, Ag, Mg, and alloys thereof constitutes the reflective layer. The second electrode group 43 201117267 is formed by the same deposition method as used to form the organic light-emitting layer 63 described above. The thin film deposition assembly according to the embodiment of the present invention described above may be applied to form an organic layer or an inorganic layer of an organic TFT, and to form various material layers. As described above, in the thin film deposition apparatus according to the aspect of the invention and the method of manufacturing the organic light-emitting display device according to the aspect of the invention by using the thin film deposition apparatus, the thin film deposition apparatus can be easily used for large-scale Manufacturing large substrates. Further, the thin film deposition apparatus and the organic light-emitting display apparatus are also easy to manufacture, can improve manufacturing yield and deposition efficiency, and can reuse a deposition material. Although the present invention has been explicitly shown and described with reference to the exemplary embodiments thereof, those skilled in the art will understand that various changes in form and detail may be made. The spirit and scope of the invention as defined by the scope of the claims below will be apparent. BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and/or other aspects and advantages of the present invention will be apparent from the A schematic view of a thin film deposition apparatus according to an embodiment of the present invention; a modified example of the thin film deposition apparatus of FIG. 1 shown in FIG. 2; and a schematic view of an electrostatic loss type according to the present invention - an embodiment; 4 is a cross-sectional view of a second cycle unit of the film deposition apparatus of FIG. 1 shown in FIG. 5; FIG. 5 is a cross-sectional view of the second cycle unit of the thin film deposition apparatus of FIG. A perspective view of a thin film deposition assembly of an embodiment; FIG. 7 is a schematic cross-sectional side view of the thin film deposition assembly of FIG. 6 in accordance with an embodiment of the present invention; and FIG. 8 is a diagram of an embodiment of the present invention. Figure 7 is a perspective view of a thin film deposition assembly according to another embodiment of the present invention; Figure 10 is a thin film deposition member according to another embodiment of the present invention; of Figure 11 is a perspective view of a thin film deposition assembly according to another embodiment of the present invention; Figure 1 is a schematic cross-sectional side view of a thin film deposition assembly of Figure π according to an embodiment of the present invention; Figure 13 is a schematic plan view of the thin film deposition assembly of Figure 11 in accordance with an embodiment of the present invention; a cross-sectional view of a source reaction chamber in accordance with an embodiment of the present invention shown in circles 1 4 Α and 14 ;; ra-i • Shown is a cross-sectional view of a camera assembly in accordance with an embodiment of the present invention; m is a perspective view of a thin film deposition assembly 45 201117267 in accordance with another embodiment of the present invention; and FIG. Embodiments are cross-sectional views of an organic light emitting display device manufactured by using a thin film deposition apparatus. [Main component symbol description] 30 substrate 31 insulating layer 32 gate insulating layer 33 interlayer insulating layer 34 purification layer 35 pixel defining layer 40 thin film transistor 41 semiconductor active layer 42 gate electrode 43 source/drain electrode 50 capacitor 60 organic Light-emitting device 61 First electrode 62 Second electrode 63 Organic light-emitting layer 64 Opening 100 First thin film deposition assembly 110 Deposition source 111 Cooling block 112 Hanging steel 46 201117267 1 13 Source reaction chamber 1 14 Platform 115 Depositing material 116 Airbag 1 17 Block Plate 118 High Vacuum Valve 120 Deposition Source Nozzle Unit 121 Deposition Source Nozzle 121a-b Deposition Source Nozzle 130 Barrier Wall Assembly 13 1 Barrier Wall 132 Barrier Wall Frame 133 Second Connection Member 135 First Connection Member 140 Second Barrier Wall Assembly 141 Second barrier wall 142 Second barrier wall frame 150 Patterned slit plate 151 Patterned slit 155 Frame 159 First mark 170 Camera assembly 171 Cylindrical cover 172 Camera 47 201117267 173 Optical system 174 Protection window 175 Heating pattern 176 Opening 200 Two thin film deposition assembly 300 third thin Deposition component 400 fourth thin film deposition assembly 500 substrate 501 second mark 600 electrostatic chuck 601 body 602 electrode 610 first cycle unit 611 first carrier 613 first support body 614 second support body 615 moving bar 616 first drive unit 617 drum 618 second drive unit 620 second circulation unit 621 second carrier 623 third support 710 loading unit 48 201117267 712 first rack 714 transport m machine device 716 transport reaction chamber 718 first inverted reaction chamber 719 first Inverted machine unit 720 Unloading unit 722 Second rack 724 Injection machine unit 726 Injection reaction chamber 728 Second inverted reaction chamber 729 Second inverted machine unit 730 Deposition unit 731 First reaction chamber 732 Reaction chamber A Direction S Sub-deposition space 49

Claims (1)

201117267 七、申請專利範圍: 1 · 一種薄膜沉積設備,其包括: :裝載單元1以將—基板固定在一靜電夾盤上,該 基板係一沉積目標; 一沉積單元,其包括— 保持在真空狀態中的反應室及 一被設置在該反應室中的 、溥膜沉積組件,該沉積單元會與 違基板为離既定的距離, φ . 乂便將一溥膜沉積在被固定於該 靜電夾盤上的基板上; 一卸載單元,用以分 ^ ^ + , 離已於其上完成一沉積製程的基 板和S玄靜電夾盤; 一第一循環單元,用U Μ # 1 ^ ^, 將其上固定著該基板的靜電夾 盤依序移動到該裝載單元、 居,儿積早兀、以及該卸載單元; Μ及 一第二循環里开,m 今知恭„ ^ 用以將與該基板分離的靜電夾盤從 8玄卸载早7L處移回該裝載單元, 其中,該第一循ί,昼;1 ^ ,a 衣早兀會被設置成用以在通過該沉積 早疋時通過該反應室。 2 _如申請專利範圍第 個兮η⑽ 圍第1項的4膜沉積設備,其中,複數 4薄膜沉積組件會被設置在該反應室之中。 3.如巾請專利範圍第t項的相沉積設備,其中,該反 =括-第-反應室與一第二反應冑,每一者皆包括複 彼此連接。 …專第-反應室與弟二反應室會 士申仴專利範圍第1項的薄膜沉積設備’其中,該第 50 201117267 一循環單元或該第__ α #〜循環垔一—> 靜電夾盤。 匕 载具’以> 允許移動該 5.如申請專利範圍第 具包括: 員的溥膜沉積設備,其中,該載 -支撐體’其會被安 ▲ 第一支撐體與一第_ ^ 、過該反應室並且包括一 每一者皆會沿著該 / ,该第一支撐體與第二支撐體 循環單元或該第-循 一被設置在該坌 罘一循%單元延伸, 弟—支撐體上的蒋叙扶 電夹盤的邊緣;以及 上扪移動棒,用以支撐該靜 ***设在該第—支撐體與該移動棒 以便讓該移動棒沿著該第-支揮體移動 6.如申請專利範圍第〗項的薄臈沉積設備 膜沉積組件包括: v、T 卑 一沉積源’其會釋出-沉積材料; 、一沉積源噴嘴單元,其會被設置在該沉積源的某-側 並且包括被排列在第_方向中的複數個沉積源喷嘴;以及 一圖樣化狹縫板,其會被設置在與該沉積源喷嘴單元 反向的地方並且包括被排列在第二方向中的複數個圖樣化 狹縫,該第二方向垂直於該第一方向, 其中’會在該基板於該第一方向中相對於該薄膜沉積 組件移動時實施該沉積製程,而且 該沉積源、該沉積源喷嘴單元、以及該圖樣化狹縫板 會被整合形成單一主體。 7.如申請專利範圍第6項的薄骐沉積設備,其中,該沉 51 201117267 積源與該沉積源喷嘴單元以及該圖樣化狭縫板會藉由一引 導該沉積材料流動的連接部件被整合連接成單一主體。 8. 如申請專利範圍第7項的薄膜沉積設備,其中,該連 接部件會密封該沉積源與該沉積源喷嘴單元以及該圖樣化 狹縫板之間的空間。 9. 如申請專利範圍第6項的薄膜沉積設備,其中,該等 複數個沉積源喷嘴會傾斜一既定角度。 I 〇 ·如申請專利範圍第9項的薄膜沉積設備,其中,該 等複數個沉積源喷嘴包括被排列在形成於該第一方向中的 兩列之中的多個沉積源喷嘴,而且該等兩列之中的沉積源 喷嘴會傾斜而彼此相向。 II ·如申請專利範圍第9項的薄膜沉積設備,其中’該 等複數個沉積源噴嘴包括被排列在形成於該第一方向中的 兩列之中的多個沉積源喷嘴, 位於該圖樣化狹縫板第一側的一列中的沉積源喷嘴會 被排列成面向該圖樣化狹縫板的第二側,以及 位於該圖樣化狭縫板第二側的另一列中的沉積源喷嘴 會被排列成面向該圖樣化狹縫板的第一側。 12 ·如申請專利範圍第1項的薄膜沉積設備,其中’該 薄膜沉積組件包括: 一沉積源,其會釋出一沉積材料; 一沉積源喷嘴單元,其會被設置在該沉積源的某一側 並且包括被排列在第一方向中的複數個沉積源喷嘴; 一圖樣化狹縫板,其會被設置在與該沉積源噴嘴單元 52 201117267 反向的地方並且包括被排列在該第一方向中的複數個圖樣 化狹縫;以及 屏p早壁組件,其會於該第一方向中被設置在該沉積 源喷嘴單元與該圖樣化狹縫板之間,並且包括複數個屏障 壁’該等複數個屏障壁會將該沉積源嗔嘴單元與該圖樣化 狹縫板之間的空間分割成複數個子沉積空間, 其中,該薄膜沉積組件會被設置成與該基板分離,以 及 該薄臈沉積組件或該基板會相對於另一者移動。 13.如申睛專利範圍第12項的薄膜沉積設備其中,每 個《亥等複數個屏障壁皆會延伸在實質上垂直於該第一方 向的第二方向中。 九14·如中請專利範圍第12項的薄膜沉積設備,其中,該 屏=』組件包括:一第一屏障壁組件,其包括複數個第一 屏障壁;以及一第二屏障壁組件,其包括複數個第二 壁。 如申請專利範圍帛14項的薄膜沉積設備,其中 =個該等第—屏障壁及每—個該等第二 實質上垂直於該第一方向的第二方向中。 會I伸在 ^ 16’如申凊專利範圍第15項的薄膜沉積設備,其中,該 μ第屏障羞會被排列成分別對應於該等第二屏障壁。 1 7’如申凊專利範圍帛i 2項的薄膜沉積設備, 沉積源與該屏障壁組件會彼此分離。 ^ " 18.如申請專利範圍第12項的薄膜沉额備,其中,該 53 201117267 屏障壁組件與該圖樣化狹縫板會彼此分離。 19. 如申明專利範圍第6項的薄膜沉積設備其中,該 圖樣化狹縫板包括一第一標記’而該基板包括一第二標 °己而且°亥薄膜沉積組件包括一用以捕捉該第一標記及該 第二標記的對齊程度的相機組件, 其中’該相機組件包括: 一遮蓋,於該遮蓋的其中一端會形成一開口; 一相機,其會被安裝在該遮蓋中; 光學系殊’其會被設置在該相機與該開口之間; 保護!a,其會被設置在該光學系統與該開口之間; 以及 一加熱益,其會被設置在該保護窗上。 20. 如申請專利範圍第6項的薄膜沉積設備,其中,該 圖樣化狹縫板包括一第一標記,而該基板包括一第二標 °己而且。亥薄臈沉積組件進一步包括一用以決定該第一標 記及該第二標M t α Α ,, 的對齊私度的相機組件,以及—用以驅動 。玄4膜儿積組件的驅動單元,以便藉由使用由該相機組件 所取侍之和β亥第—標記及該第二標記的對齊程度有關的資 訊來對齊該第—標記及該第二標記。 21 ·如申明專利範圍第6項的薄膜沉積設備,其進一步 包括: 來’原反應至’其會被連接至該反應室並於其中容納 該薄膜沉積組件的沉積源; 闊門’用以打開或閉合介於該反應室及該來源反應 54 201117267 室之間的空間;以及 一擋板,用以在該沉積源位於該反應室處時閉合介於 該反應室及該來源反應室之間的空間。 22. 如申請專利範圍第12項的薄膜沉積設備,其中,該 圖樣化狹縫板包括一第一標記,而該基板包括一第二標 記’而且該薄膜沉積組件包括一用以決定該第一標記及該 第一標s己的對齊程度的相機組件, 其中,該相機組件包括: 一遮蓋,於該遮蓋的其中一端會形成一開口; 一相機’其會被安裝在該遮蓋中; 一光學系統’其會被設置在該相機與該開口之間; 一保護窗’其會被設置在該光學系統與該開口之間; 以及 一加熱器’其會被設置在該保護窗上。 23. 如申請專利範圍第I]項的薄膜沉積設備,其中,該 圖樣化狹縫板包括—第一標記,而該基板包括一第二標 5己,而且遠薄膜沉積組件進一步包括一用以捕捉該第—標 β己及4第一軚s己的對齊程度的相機組件,以及一用以驅動 吕玄薄臈沉積組件的驅動單元,以便藉由使用由該相機 所取付之和該第—標記及該第二標記的對齊程度有 訊來對齊該第—標記及該第二標記。 24. 如申晴專利範圍第1 2項的薄膜沉積設備,其 包括: # 來源反應至,其會被連接至該反應室並於其中容納 55 201117267 該薄膜沉積組件的沉積源; 一閥門,用以打開或閉合介於該反應室及該來源反應 室之間的空間;以及 一擋板’用以在該沉積源位於該反應室處時閉合介於 該反應室及該來源反應室之間的空間。 2 5.如申請專利範圍第21項的薄膜沉積設備’其中,該 來源反應室包括一平台及氣囊,其會在該來源反應室與該 反應至之間移動該沉積源。 26.如申請專利範圍第24項的薄膜沉積設備,其中,該 來源反應室包括一平台及氣囊,其會在該來源反應室與該 反應室之間移動該沉積源。 2 7 · —種製造有機發光顯示設備的方法,該方法包括: 將一基板固定在一靜電夾盤上’該基板係一沉積目標; 使用一被安裝成用以通過一反應室的第一循環單元將 其上固定著該基板的靜電夾盤運送至保持在真空狀態的反 應室之中; 使用一被設置在該反應室中的薄膜沉積組件並且藉由 相對於彼此來移動該基板或該薄膜沉積組件而於該基板上 沉積一有機層; 藉由使用該第一循環單元從該反應室處移開已於其上 完成沉積製程的基板; 分離已於其上元成沉積製程的基板和該靜電爽盤.以 及 藉由使用一被安裝在反應室外面的第二循環單元將與 56 201117267 該基板分離的靜電夾盤送回一裝載單元。 2 8 ·如申凊專利範圍第2 5項的方法’其中,會在該反應 室中設置複數個薄膜沉積組件,俾使得藉由使用每一個該 等薄膜 >儿積組件而在該基板上連續地實施該沉積製程。 2 9 如申凊專利範圍第2 5項的方法,其中,會在該反應 室中設置複數個薄膜沉積組件,而且該反應室包括彼此連 接的一第一反應室與一第二反應室,俾使得當該基板在該 4第反應至與第一反應室中相對於該薄膜沉積組件移動 時會在該基板上連續地實施該沉積製程。 30.如申請專利範圍第25項的方法,其中,該薄膜沉積 組件包括: 一沉積源,其會釋出一沉積材料; 一沉積源喷嘴單元,其會被設置在該沉積源的某一側 並且包括被排列在第一方向中的複數個沉積源噴嘴;以及 -圖樣化狹縫板,其會被設置在與該沉積源噴嘴單元 反向的地方並且包括被排列方笛― 饭徘夕j在第一方向中的複數個圖樣化 狹縫’該第二方向垂直於該第一方向, 以及該圖樣化 其中,該沉積源、該沉積源喷嘴單元 狹縫板會被整合形成單一主體,而且 該薄膜沉積組件會被設置成與該基板分離,俾使得合 在該基板於該第-方向中相對於該薄膜沉積組件移動時: s亥基板上貫施該沉積製程。 25項的方法,其中,該薄膜沉積 3 1.如申請專利範圍第 組件包括: 57 201117267 一沉積源’其會釋出一沉積材料; 一沉積源喷嘴單元’其會被設置在該沉積源的某一側 並且包括被排列在第一方向中的複數個沉積源喷嘴; 一圖樣化狹縫板’其會被設置在與該沉積源喷嘴單元 反向的地方並且包括被排列在該第—方向中的複數個圖樣 化狹縫;以及 一屏障壁組件,其會於該第一方向中被設置在該沉積 源喷嘴單元與該圖樣化狹縫板之間,並且包括複數個屏障 壁,該等複數個屏障壁會將該沉積源噴嘴單元與該圖樣化 狹縫板之間的空間分割成複數個子沉積空間, 其中’該薄膜沉積組件會被設置成與該基板分離俾使 得會在該薄膜沉積組件或該基板相對於另一者移動時在該 基板上實施該沉積製程。 28項的方法’其中,該圖樣化狹 32.如申請專利範圍第 縫板包括-第-標記,而該基板包括—第二標言己,而且該 薄膜沉積組件包括一用以捕捉該第 對齊程度的相機組件, ~標記及該第二標記的 其中,該相機組件包括: 一遮蓋,於該遮蓋的其中一端會形成一開口; 一相機,其會被安裝在該遮蓋中; -光學系統’其會被設置在該相機與該開口之間; -保護窗,其會被設置在該光學系統與該開口之間 -加熱器,其會被設置在該保護窗上,以及 58 201117267 其中,會纟實施1亥沉積製程 時偵測該第一標記及該第 二標記的對齊程度。201117267 VII. Patent application scope: 1 . A thin film deposition apparatus comprising: a loading unit 1 for fixing a substrate to an electrostatic chuck, the substrate being a deposition target; and a deposition unit comprising: - maintaining a vacuum a reaction chamber in a state and a ruthenium deposition assembly disposed in the reaction chamber, the deposition unit being separated from the substrate by a predetermined distance, φ. A ruthenium film is deposited on the electrostatic chuck On the substrate on the disk; an unloading unit for dividing the ^ ^ + from the substrate on which the deposition process has been completed and the S-electrostatic chuck; a first circulating unit, using U Μ # 1 ^ ^, The electrostatic chuck on which the substrate is fixed is sequentially moved to the loading unit, the housing, the early storage, and the unloading unit; and the second cycle is opened, and the present is used to The electrostatic chuck of the substrate separation is moved back to the loading unit 7L from the 8th unloading, wherein the first cycle is set to be used to pass through the deposition The reaction chamber. 2 _If you apply for The fourth film deposition apparatus of the first aspect (10) of the first item, wherein a plurality of 4 film deposition assemblies are disposed in the reaction chamber. 3. A phase deposition apparatus according to item t of the patent application, wherein The anti-cavity-first-reaction chamber and a second reaction enthalpy, each of which includes a plurality of membranes connected to each other. ...Special-reaction chamber and the second chamber of the reaction chamber , the 50th 201117267 a cycle unit or the __α #〜环垔一-> electrostatic chuck. 匕 Vehicle 'to> allows to move the 5. If the scope of the patent application includes: a deposition apparatus, wherein the carrier-support body is to be erected by the first support body and a first _^, passing through the reaction chamber and including each one along the /, the first support body and the first a second support circulation unit or the first step is disposed on the edge of the 叙 循 单元 unit, the edge of the Jiang XI electric chuck on the buddy support body; and the upper 扪 moving rod for supporting the static insertion Provided in the first support body and the moving rod to allow the shift The moving rod moves along the first-branch. 6. The thin-film deposition equipment film deposition assembly according to the scope of the patent application includes: v, T-deposition source 'which will release-deposit material; a nozzle unit that is disposed on a side of the deposition source and includes a plurality of deposition source nozzles arranged in the _ direction; and a patterned slit plate that is disposed at the deposition source nozzle unit In the opposite direction and including a plurality of patterning slits arranged in the second direction, the second direction being perpendicular to the first direction, wherein 'the substrate may be deposited relative to the thin film in the first direction The deposition process is performed while moving, and the deposition source, the deposition source nozzle unit, and the patterned slit plate are integrated to form a single body. 7. The thin tantalum deposition apparatus of claim 6, wherein the sink 51 201117267 source and the deposition source nozzle unit and the patterned slit sheet are integrated by a connecting member that guides the flow of the deposition material. Connected into a single body. 8. The thin film deposition apparatus of claim 7, wherein the connection member seals a space between the deposition source and the deposition source nozzle unit and the patterning slit plate. 9. The thin film deposition apparatus of claim 6, wherein the plurality of deposition source nozzles are tilted by a predetermined angle. The thin film deposition apparatus of claim 9, wherein the plurality of deposition source nozzles comprise a plurality of deposition source nozzles arranged in two columns formed in the first direction, and the same The deposition source nozzles in the two columns are inclined to face each other. The thin film deposition apparatus of claim 9, wherein the plurality of deposition source nozzles comprise a plurality of deposition source nozzles arranged in two columns formed in the first direction, the patterning The deposition source nozzles in one column of the first side of the slit plate are arranged to face the second side of the patterned slit plate, and the deposition source nozzles in another column on the second side of the patterned slit plate are Arranged to face the first side of the patterned slit plate. 12. The thin film deposition apparatus of claim 1, wherein the thin film deposition assembly comprises: a deposition source that releases a deposition material; and a deposition source nozzle unit that is disposed at the deposition source One side and including a plurality of deposition source nozzles arranged in the first direction; a patterned slit plate which is disposed opposite to the deposition source nozzle unit 52 201117267 and includes being arranged at the first a plurality of patterning slits in the direction; and a screen p early wall assembly disposed between the deposition source nozzle unit and the patterned slit plate in the first direction and including a plurality of barrier walls The plurality of barrier walls divide the space between the deposition source nozzle unit and the patterned slit plate into a plurality of sub-deposition spaces, wherein the thin film deposition assembly is disposed to be separated from the substrate, and the thin The germanium deposition assembly or the substrate will move relative to the other. 13. The thin film deposition apparatus of claim 12, wherein each of the plurality of barrier walls extends in a second direction substantially perpendicular to the first direction. The thin film deposition apparatus of claim 12, wherein the screen includes: a first barrier wall assembly including a plurality of first barrier walls; and a second barrier wall assembly Includes a plurality of second walls. A thin film deposition apparatus as claimed in claim 14, wherein = one of said barrier walls and each of said second second directions substantially perpendicular to said first direction. The film deposition apparatus of the invention of claim 15 wherein the μ barrier barrier is arranged to correspond to the second barrier walls, respectively. 1 7' The thin film deposition apparatus of claim 2, the deposition source and the barrier wall assembly are separated from each other. ^ " 18. The film sinking device of claim 12, wherein the 53 201117267 barrier wall assembly and the patterned slit plate are separated from each other. 19. The thin film deposition apparatus of claim 6, wherein the patterned slit plate comprises a first mark 'and the substrate comprises a second mark and the film deposition assembly comprises a first to capture the first a camera assembly that marks the alignment of the second mark, wherein the camera assembly includes: a cover that forms an opening at one end of the cover; a camera that is mounted in the cover; 'It will be set between the camera and the opening; protection! a, which will be disposed between the optical system and the opening; and a heating benefit that will be placed on the protective window. 20. The thin film deposition apparatus of claim 6, wherein the patterning slit plate comprises a first mark and the substrate comprises a second mark. The slab deposition assembly further includes a camera assembly for determining the alignment of the first mark and the second mark M t α Α , , and - for driving. a driving unit of the sinusoidal membrane assembly for aligning the first marker and the second marker by using information relating to the degree of alignment of the hexagram-mark and the second marker taken by the camera component . [21] The thin film deposition apparatus of claim 6, further comprising: 'originally reacting to' a deposition source that is connected to the reaction chamber and containing the thin film deposition assembly therein; Or closing a space between the reaction chamber and the source reaction 54 201117267 chamber; and a baffle for closing between the reaction chamber and the source reaction chamber when the deposition source is located at the reaction chamber space. 22. The thin film deposition apparatus of claim 12, wherein the patterned slit plate comprises a first mark, and the substrate comprises a second mark 'and the thin film deposition assembly includes a first to determine the first Marking the camera assembly with the degree of alignment of the first target, wherein the camera assembly comprises: a cover, an opening is formed at one end of the cover; a camera 'which will be installed in the cover; an optical The system 'will be placed between the camera and the opening; a protective window 'which will be placed between the optical system and the opening; and a heater 'which will be placed on the protective window. 23. The thin film deposition apparatus of claim 1, wherein the patterned slit plate comprises a first mark, and the substrate comprises a second mark, and the far film deposition assembly further comprises a a camera assembly for capturing the alignment degree of the first label and the first one, and a driving unit for driving the Lu Xuan thin layer deposition assembly, so as to use the sum taken by the camera The degree of alignment of the mark and the second mark is responsive to the first mark and the second mark. 24. A thin film deposition apparatus according to item 12 of the Shenqing patent scope, comprising: #源反应到, which will be connected to the reaction chamber and accommodate therein 55 201117267 deposition source of the thin film deposition assembly; Opening or closing a space between the reaction chamber and the source reaction chamber; and a baffle' for closing between the reaction chamber and the source reaction chamber when the deposition source is located at the reaction chamber space. 2. The thin film deposition apparatus of claim 21, wherein the source reaction chamber comprises a platform and a balloon that moves the deposition source between the source reaction chamber and the reaction. 26. The thin film deposition apparatus of claim 24, wherein the source reaction chamber comprises a platform and a balloon that moves the deposition source between the source reaction chamber and the reaction chamber. 2 7 - A method of manufacturing an organic light emitting display device, the method comprising: fixing a substrate on an electrostatic chuck - the substrate is a deposition target; using a first cycle installed to pass through a reaction chamber The unit transports the electrostatic chuck on which the substrate is fixed to the reaction chamber held in a vacuum state; using a thin film deposition assembly disposed in the reaction chamber and moving the substrate or the film relative to each other Depositing an assembly to deposit an organic layer on the substrate; removing the substrate on which the deposition process has been completed from the reaction chamber by using the first recycling unit; separating the substrate on which the deposition process has been performed and An electrostatic chuck that separates the substrate from 56 201117267 is returned to a loading unit by using a second circulation unit mounted outside the reaction chamber. 2 8 The method of claim 25, wherein a plurality of thin film deposition assemblies are disposed in the reaction chamber, such that the substrate is assembled on each of the substrates by using each of the films The deposition process is continuously performed. The method of claim 25, wherein a plurality of thin film deposition assemblies are disposed in the reaction chamber, and the reaction chamber includes a first reaction chamber and a second reaction chamber connected to each other. The deposition process is continuously performed on the substrate as the substrate moves in the first reaction chamber relative to the thin film deposition assembly. 30. The method of claim 25, wherein the thin film deposition assembly comprises: a deposition source that releases a deposition material; and a deposition source nozzle unit that is disposed on a side of the deposition source And including a plurality of deposition source nozzles arranged in the first direction; and - a patterned slit plate which is disposed in a direction opposite to the deposition source nozzle unit and includes the arranged square flute - 饭徘夕j a plurality of patterning slits in the first direction 'the second direction is perpendicular to the first direction, and the patterning, wherein the deposition source, the deposition source nozzle unit slit plate are integrated to form a single body, and The thin film deposition assembly is disposed to be separated from the substrate such that when the substrate is moved relative to the thin film deposition assembly in the first direction: the deposition process is performed on the substrate. The method of claim 25, wherein the film deposition 3 1. The component of the patent scope includes: 57 201117267 a deposition source 'which will release a deposition material; a deposition source nozzle unit' which will be disposed at the deposition source a side and including a plurality of deposition source nozzles arranged in the first direction; a patterned slit plate 'which is disposed opposite to the deposition source nozzle unit and includes being arranged in the first direction a plurality of patterning slits; and a barrier wall assembly disposed between the deposition source nozzle unit and the patterning slit plate in the first direction and including a plurality of barrier walls, A plurality of barrier walls divide the space between the deposition source nozzle unit and the patterned slit plate into a plurality of sub-deposition spaces, wherein 'the thin film deposition assembly is disposed to be separated from the substrate so that deposition is performed on the thin film The deposition process is performed on the substrate as the component or the substrate moves relative to the other. The method of item 28, wherein the patterning is narrow. 32. The patent panel includes a -th mark, and the substrate includes a second label, and the thin film deposition assembly includes a first alignment The camera assembly, the ~ mark and the second mark, the camera assembly includes: a cover, an opening is formed at one end of the cover; a camera that is installed in the cover; - an optical system It will be placed between the camera and the opening; a protective window that will be placed between the optical system and the opening - a heater that will be placed on the protective window, and 58 201117267 where侦测 Detecting the alignment degree of the first mark and the second mark when performing the 1 hai deposition process. 记及該第二標記會相互對齊c 34·如申請專利範圍第28項的 28項的方法’其中,該圖樣化狹 而該基板包括一第二標記,而且該 該〉儿積製程時被驅動,俾使得該第 設備包括: 2 8項的方法,其中,一薄膜沉積 Λ原反應至,其會被連接至該反應室並於其中容納 邊薄膜沉積組件的沉積源; 閥門,用以打開或閉合介於該反應室及該來源反應 至之間的空間;以及 一擔板’用以在該沉積源位於該反應室處時閉合介於 5亥反應室及該來源反應室之間的空間,而且 該方法進一步包括: 於該基板上完成沉積製程之後將該沉積源運送至該來 源反應室; 藉由使用該閥門來閉合介於該反應室與該來源反應室 之間的空間;以及 更換該沉積源。 35.如申請專利範圍第29項的方法,其中,該圖樣化狹 縫板包括一第一標記,而該基板包括一第二標記,而且該 薄膜沉積組件包括一用以捕捉該第一標記及該第二標記的 對齊程度的相機組件,且 59 201117267 其中’該相機組件包括: 一於該遮蓋的其中·'端會形成一開口; 相機,其會被安裝在該遮蓋中; 一:t系統,其會被設置在該相機與該開口之間; 以及-保4窗’其會被設置在該光學系統與該開口之間; :。…、器,其會被設置在該保護窗上,以及 二庐;:會在實施該沉積製程時偵測該第-標記及該第 —^ 5己的對齊程度。 36·:申請專利範圍第29項的方法其令,該圖樣化狹 、^括-第-標記’而該基板包括一第二標言己,而且該 '膜沉積組件會在實施該沉積製程時被驅動,俾使得該第 一標記及該第二標記會相互對齊。 37.請專利範圍第29項的方法,其中,—薄臈沉積設備 包括: ^ 一來源反應室,其會被連接至該反應室並於其中容納 該薄膜沉積組件的沉積源; 閥門,用以打開或閉合介於該反應室及該來源反應 至之間的空間;以及 擔板,用以在該沉積源位於該反應室處時閉合介於 該反應室及該來源反應室之間的空間,而且 該方法進一步包括: 於該基板上完成沉積製程之後將該沉積源運送至該來 源反應室; 60 201117267 藉由使用該閥門來閉合介於該反應室與該來源反應室 之間的空間;以及 更換該沉積源。 八、圖式: (如.次頁) 61It is noted that the second mark is aligned with each other. c. The method of claim 28, wherein the pattern is narrow and the substrate includes a second mark, and the process is driven during the process. The apparatus of the present invention includes: the method of claim 28, wherein a thin film deposition reaction is carried out until it is connected to the reaction chamber and accommodates a deposition source of the edge thin film deposition assembly therein; a valve for opening or Closing a space between the reaction chamber and the source to which the source reacts; and a support plate for closing a space between the 5th reaction chamber and the source reaction chamber when the deposition source is located at the reaction chamber, The method further includes: transporting the deposition source to the source reaction chamber after the deposition process is completed on the substrate; closing the space between the reaction chamber and the source reaction chamber by using the valve; and replacing the Deposition source. 35. The method of claim 29, wherein the patterned slit plate comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly includes a first mark and The camera assembly of the second mark is aligned, and 59 201117267 wherein 'the camera assembly includes: an opening formed at the end of the cover; a camera that is to be mounted in the cover; a: t system , which will be placed between the camera and the opening; and - a window 4 that will be placed between the optical system and the opening; a device, which is disposed on the protection window, and a second layer; the degree of alignment of the first mark and the first layer is detected when the deposition process is performed. 36: The method of claim 29, wherein the pattern is narrow, the - mark - and the substrate comprises a second mark, and the 'membrane deposition assembly is in the process of performing the deposition process Being driven, the first mark and the second mark are aligned with each other. 37. The method of claim 29, wherein the thin tantalum deposition apparatus comprises: a source reaction chamber that is connected to the reaction chamber and houses a deposition source of the thin film deposition assembly therein; Opening or closing a space between the reaction chamber and the reaction between the source; and a support plate for closing a space between the reaction chamber and the source reaction chamber when the deposition source is located at the reaction chamber, Moreover, the method further includes: transporting the deposition source to the source reaction chamber after the deposition process is completed on the substrate; 60 201117267 by using the valve to close a space between the reaction chamber and the source reaction chamber; Replace the deposition source. Eight, the pattern: (such as the next page) 61
TW099128569A 2009-08-27 2010-08-26 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same TWI427681B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090079765 2009-08-27
KR1020100011480A KR101174877B1 (en) 2009-08-27 2010-02-08 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same

Publications (2)

Publication Number Publication Date
TW201117267A true TW201117267A (en) 2011-05-16
TWI427681B TWI427681B (en) 2014-02-21

Family

ID=43930916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128569A TWI427681B (en) 2009-08-27 2010-08-26 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same

Country Status (2)

Country Link
KR (1) KR101174877B1 (en)
TW (1) TWI427681B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583806B (en) * 2013-06-17 2017-05-21 三星顯示器有限公司 Method of manufacturing organic light-emitting display device by using organic layer deposition apparatus
TWI640641B (en) * 2012-11-09 2018-11-11 三星顯示器有限公司 Deposition apparatus, method of manufacturing organic light-emitting display device by using the same, and organic light-emitting display device manufactured by the method

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5677785B2 (en) 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101146982B1 (en) 2009-11-20 2012-05-22 삼성모바일디스플레이주식회사 Aapparatus for thin layer deposition and method of manufacturing organic light emitting display apparatus
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
KR101923174B1 (en) * 2011-05-11 2018-11-29 삼성디스플레이 주식회사 ESC, apparatus for thin layer deposition therewith, and method for manufacturing of organic light emitting display apparatus using the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
KR20130015144A (en) 2011-08-02 2013-02-13 삼성디스플레이 주식회사 Deposition source, apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101297381B1 (en) * 2012-01-02 2013-08-19 주식회사 에스에프에이 Source assembly and thin layers deposition apparatus for flat panel display having the same
KR102015872B1 (en) * 2012-06-22 2019-10-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101958344B1 (en) * 2012-07-10 2019-03-18 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
KR102013315B1 (en) 2012-07-10 2019-08-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus and organic light emitting display apparatus manufactured by the method
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
KR101632298B1 (en) 2012-07-16 2016-06-22 삼성디스플레이 주식회사 Flat panel display device and manufacturing method thereof
KR101994838B1 (en) 2012-09-24 2019-10-01 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140050994A (en) 2012-10-22 2014-04-30 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing the same
KR102009726B1 (en) * 2012-11-08 2019-10-22 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing the same
KR101403424B1 (en) * 2012-11-09 2014-06-03 주식회사 선익시스템 A Sub-Chamber for Preventing Overpressure and Deposition Apparatus Having the Same
KR101436901B1 (en) * 2012-12-28 2014-09-02 주식회사 에스에프에이 Thin layers deposition apparatus for manufacturing oled
KR102154706B1 (en) * 2013-03-20 2020-09-11 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the same
KR102075527B1 (en) 2013-05-16 2020-02-11 삼성디스플레이 주식회사 Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
KR102075528B1 (en) * 2013-05-16 2020-03-03 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus, and organic light emitting display apparatus
KR102081282B1 (en) * 2013-05-27 2020-02-26 삼성디스플레이 주식회사 Substrate transfer unit for deposition, deposition apparatus comprising the same, method for manufacturing organic light emitting display apparatus using the same, organic light emitting display apparatus manufacture by the method
KR102162797B1 (en) * 2013-12-23 2020-10-08 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus
KR102114321B1 (en) * 2020-02-03 2020-05-25 삼성디스플레이 주식회사 Apparatus for organic layer deposition
KR102152952B1 (en) * 2020-05-18 2020-09-08 삼성디스플레이 주식회사 Apparatus for organic layer deposition
KR102300030B1 (en) * 2020-05-18 2021-09-09 삼성디스플레이 주식회사 Apparatus for organic layer deposition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918940B2 (en) * 2005-02-07 2011-04-05 Semes Co., Ltd. Apparatus for processing substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640641B (en) * 2012-11-09 2018-11-11 三星顯示器有限公司 Deposition apparatus, method of manufacturing organic light-emitting display device by using the same, and organic light-emitting display device manufactured by the method
TWI583806B (en) * 2013-06-17 2017-05-21 三星顯示器有限公司 Method of manufacturing organic light-emitting display device by using organic layer deposition apparatus

Also Published As

Publication number Publication date
TWI427681B (en) 2014-02-21
KR20110022512A (en) 2011-03-07
KR101174877B1 (en) 2012-08-17

Similar Documents

Publication Publication Date Title
TW201117267A (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9450140B2 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
JP5676175B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8852687B2 (en) Organic layer deposition apparatus
US9249493B2 (en) Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US9246135B2 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US8956697B2 (en) Method of manufacturing organic light-emitting display apparatus and organic light-emitting display apparatus manufactured by using the method
US9018647B2 (en) Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9279177B2 (en) Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8921831B2 (en) Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US20110053301A1 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8882922B2 (en) Organic layer deposition apparatus
US8883259B2 (en) Thin film deposition apparatus
US20140131667A1 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US20150217319A1 (en) Organic Layer Deposition Apparatus, Frame Sheet Assembly For The Organic Layer Deposition Apparatus, And Method Of Manufacturing Organic Light Emitting Display Device Using The Frame Sheet Assembly
KR101174883B1 (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US20140014921A1 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US20120299016A1 (en) Organic layer deposition apparatus and method of manufacturing organic light emitting display device using the organic layer deposition apparatus
US20120009328A1 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US20120009332A1 (en) Method of manufacturing organic light-emitting display device
TW201304135A (en) Organic layer deposition apparatus
US20120028390A1 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device with the same
TW201132774A (en) Thin film deposition apparatus
TW201213588A (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
TW201114927A (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same