TW201114973A - Heat pump clothes dryer and controlling method for heat pump clothes dryer - Google Patents

Heat pump clothes dryer and controlling method for heat pump clothes dryer Download PDF

Info

Publication number
TW201114973A
TW201114973A TW98135829A TW98135829A TW201114973A TW 201114973 A TW201114973 A TW 201114973A TW 98135829 A TW98135829 A TW 98135829A TW 98135829 A TW98135829 A TW 98135829A TW 201114973 A TW201114973 A TW 201114973A
Authority
TW
Taiwan
Prior art keywords
outlet
inlet
unit
heat pump
refrigerant
Prior art date
Application number
TW98135829A
Other languages
Chinese (zh)
Other versions
TWI381077B (en
Inventor
Kuei-Tien Lin
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98135829A priority Critical patent/TWI381077B/en
Publication of TW201114973A publication Critical patent/TW201114973A/en
Application granted granted Critical
Publication of TWI381077B publication Critical patent/TWI381077B/en

Links

Landscapes

  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A heat pump clothes dryer and a controlling method for a heat pump clothes dryer are provided. The controlling method for a heat pump clothes dryer includes the following steps. A dryer chamber is provided. An air which flows out the heat pump clothes dryer from the dry chamber is controlled. The fact that whether the operation of the dryer chamber satisfies a predetermined condition is evaluated. If the operation of the dryer chamber satisfies the predetermined condition, then the air flows out from the dryer chamber is reflowed to the dryer chamber.

Description

201114973 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種乾衣機及乾衣機之控制方法,且 特別是有關於一種熱泵乾衣機及熱泵乾衣機之控制方法。 【先前技術】 人們在洗滌衣物後,可以透過陽光及風力來晾乾衣 物。然而,在下雨天時,往往無法順利晾乾衣物,造成人 I 們生活上的困擾。 乾衣機的問世,使得人們在下雨天也能烘乾衣物,帶 給人們相當大得便利性。然而傳統排熱式乾衣機直接將高 溫南濕空氣直接排放至大氣中,不但能源使用效率偏低, 而且造成環境濕度的增加。熱泵乾衣機不但以優異的性能 表現係數(Coefficient of performance)達到節能的目 的,而且有效捕捉空氣中的水分,使環境的濕度不致受到 嚴重的影響。以曰本公開號第2006-212265號專利為例, • 熱泵乾衣機的運作原理係透過氣體通道及冷媒通道的熱 交換,來烘乾衣物。 ,一般而言,熱泵乾衣機根據架構區分,可分為開放式 與封閉式。從PRASERTSM等人所發表的文獻結果顯示, 當乾燥效率(Dryer efficiency)較高時,開放式熱果乾 衣機的能源效率比封閉式熱乾衣機好;當乾燥效率較低 時,封閉式熱杲乾衣機的能源效率比開放式熱乾衣機好。 然而’對批次式裝載衣物的乾衣機而言,乾衣機的乾燥效 率並不會保持-定’而是隨著乾燥程序的進行而逐漸下201114973 VI. Description of the Invention: [Technical Field] The present invention relates to a method of controlling a dryer and a dryer, and more particularly to a method of controlling a heat pump dryer and a heat pump dryer. [Prior Art] After washing clothes, people can dry clothes through sunlight and wind. However, when it is raining, it is often impossible to dry the clothes smoothly, causing troubles in people's lives. The advent of dryers has enabled people to dry their clothes on rainy days, giving people considerable convenience. However, the traditional exhaust dryer directly discharges the high temperature and humid air directly into the atmosphere, which not only reduces the energy efficiency, but also increases the ambient humidity. The heat pump dryer not only achieves energy-saving performance with excellent coefficient of performance, but also effectively captures moisture in the air so that the humidity of the environment is not seriously affected. Taking the patent of the publication No. 2006-212265 as an example, the operation principle of the heat pump dryer is to dry the clothes through heat exchange between the gas passage and the refrigerant passage. In general, heat pump dryers are classified into open and closed types according to the structure. The results of the literature published by PRASERTSM et al. show that when the Dryer efficiency is high, the energy efficiency of the open-type hot-drying machine is better than that of the closed-type hot-drying machine; when the drying efficiency is low, the closed type Heat dryers are more energy efficient than open heat dryers. However, for dryers that load clothes in batches, the drying efficiency of the dryer does not remain constant, but gradually decreases as the drying process progresses.

201114973 TW5620PA 降。換言之’不管採用哪—個形式的熱系乾衣機架構,都 會有乾衣機效能較差的情形出現1此,如何在乾^ 增加熱隸衣機的能源使賴率,實為目前重要發展方向 之一。 问 【發明内容】 本發明係有關於-種錢乾衣機及_泵乾衣機之控 制方法’其顧·錢道與封風道的切換,大幅辦 進熱泵乾衣機的能源使用效率。 曰 根據本發明之-方面,提出—種熱系乾衣機之控制方 法。熱泵乾衣機之控制方法包括以下步驟。提供一乾燥腔 體。乾燥腔體具有-入口及一出口。入口具有一入口絕對 濕度(inlet humidity rati0)。出口具有一出口絕對濕度 (outlet humidity ratio)及一出口飽和絕對濕度 (outlet saturation humidity ratio)。控制由乾燥腔 體離開之一氣體排出熱栗乾衣機之外。依據入口絕對濕 度、出口絕對濕度及出口飽和絕對濕度,判斷乾燥腔體之 運作是否符合一預定條件。若乾燥腔體之運作符合預定條 件’則控制由乾燥腔體離開之氣體回流至乾燥腔體。 根據本發明之另一方面,提出一種熱泵乾衣機。熱泵 乾衣機包括一乾燥腔體、一切換單元及一控制單元。乾燥 腔體具有一入口及一出口。入口具有一入口絕對濕度 (inlet humidity ratio)。出口具有一出口絕對濕度 (outlet humidity ratio)及一出口飽和絕對濕度 (outlet saturation humidity ratio)。第一切換單元 201114973201114973 TW5620PA drop. In other words, no matter which form of thermal dryer structure is used, there will be a situation where the dryer is inferior. How to increase the energy of the thermal machine is the important development direction. one. [Disclosure] The present invention relates to a method of controlling a money dryer and a pump dryer, and the switching between the Gu Qiandao and the Fengfengdao, and greatly improving the energy efficiency of the heat pump dryer. According to an aspect of the invention, a method of controlling a thermal dryer is proposed. The control method of the heat pump dryer includes the following steps. A dry cavity is provided. The drying chamber has an inlet and an outlet. The inlet has an inlet humidity rati0. The outlet has an outlet humidity ratio and an outlet saturation humidity ratio. Control is removed from the drying chamber by a gas exiting the hot chest dryer. According to the absolute humidity of the inlet, the absolute humidity of the outlet and the absolute humidity of the outlet, it is judged whether the operation of the drying chamber conforms to a predetermined condition. If the operation of the drying chamber conforms to the predetermined condition, then the gas leaving the drying chamber is controlled to flow back to the drying chamber. According to another aspect of the invention, a heat pump dryer is proposed. Heat Pump The dryer includes a drying chamber, a switching unit and a control unit. The drying chamber has an inlet and an outlet. The inlet has an inlet humidity ratio. The outlet has an outlet humidity ratio and an outlet saturation humidity ratio. First switching unit 201114973

, ( rwDozurA 用以切換由乾燥腔體離開之一氣體排出熱泵乾衣機之外 或回流至乾燥腔體。控制單元依據入口絕對濕度、出口絕 對濕度及出口飽和絕對濕度判斷乾燥腔體之運作是否符 合一預定條件。其中,若乾燥腔體之運作未符合預定條 件,則控制單元控制第一切換單元,使得由乾燥腔體離開 之氣體排出熱泵乾衣機之外。若乾燥腔體之運作符合預定 條件,則控制單元控制第一切換單元,使得由乾燥腔體離 開之氣體回流至乾燥腔體。 Φ 為讓本發明之上述内容能更明顯易懂,下文特舉實施 例,並配合所附圖式,作詳細說明如下: 【實施方式】 以下係提出實施例進行詳細說明,實施例僅用以作為 範例說明,並不會限縮本發明欲保護之範圍。此外,實施 例中之圖式係省略不必要之元件,以清楚顯示本發明之技 術特點。 第一實施例 請參照第1圖,其繪示第一實施例之熱泵乾衣機1000 之示意圖。本實施例之熱泵乾衣機1000包括一供氣單元 110、一排氣單元150、一乾燥腔體120、一循環風扇130、 一切換單元140、一控制單元210、一壓縮單元310、一冷 凝單元320、一膨脹單元330、一蒸發單元340、一第一量 測單元410、一第二量測單元420及一第三量測單元430。 一氣體通道ΡΓ連接供氣單元110、第一量測單元410、乾 201114973 TW5620PA ί - 燥腔體120、第二量測單元420、循環風扇130、切換單元 140及排氣單元150。一冷媒通道Ρ2連接壓縮單元310、 冷凝單元320、第三量測單元430、膨脹單元330及蒸發 單元340。 供氣單元110用以提供一氣體進入熱泵乾衣機 1000。排氣單元150用以將氣體排出於熱泵乾衣機1000 之外。乾燥腔體120用以容置衣物,以進行乾燥。乾燥腔 體120例如是水平滾筒式腔體、斜取滾筒式腔體或直立式 腔體。切換單元140係為一三通風門,用以切換氣體在氣 體通道Ρ1内的流向。循環風扇130用以增進氣體於氣體 通道Ρ1内的流通性。控制單元210用以進行各種運算程 序及判斷程序,並用以控制熱泵乾衣機1000之各項元件 的運作。 壓縮單元310用以壓縮一冷媒。冷凝單元320用以冷 凝已壓縮之冷媒。膨脹單元330用以減壓已冷凝之冷媒。 蒸發單元340用以蒸發已減壓之冷媒。 第一量測單元410設置於乾燥腔體120之一入口 120a 處,第二量測單元420設置於乾燥腔體120之一出口 120b 處。第三量測單元430則設置於冷凝單元320及膨脹單元 330之間。第一〜第三量測單元410〜430用以針對氣體或 冷媒進行各種數值之量測。 就熱泵乾衣機10G0之乾燥方式而言,外界之乾燥氣 體進入氣體通道P1後,在冷凝單元320進行熱交換,而 形成高溫乾燥氣體。此高溫乾燥氣體由入口 120a進入乾 燥腔體120後,可帶走衣物的水氣,並由出口 120b輸出 201114973( rwDozurA is used to switch the gas leaving the drying chamber out of the heat pump dryer or back to the drying chamber. The control unit determines whether the operation of the drying chamber is based on the absolute humidity of the inlet, the absolute humidity of the outlet and the absolute humidity of the outlet. A predetermined condition is met, wherein if the operation of the drying chamber does not meet the predetermined condition, the control unit controls the first switching unit such that the gas leaving the drying chamber exits the heat pump dryer. If the operation of the drying chamber is met Under predetermined conditions, the control unit controls the first switching unit such that the gas exiting the drying chamber is returned to the drying chamber. Φ In order to make the above-described contents of the present invention more apparent, the following specific embodiments are accompanied by the accompanying The drawings are described in detail below. [Embodiment] The following is a detailed description of the embodiments, which are intended to be illustrative only and not to limit the scope of the present invention. The unnecessary features are omitted to clearly show the technical features of the present invention. For the first embodiment, please refer to FIG. The heat pump dryer 1000 of the embodiment includes a gas supply unit 110, an exhaust unit 150, a drying chamber 120, a circulation fan 130, a switching unit 140, A control unit 210, a compression unit 310, a condensation unit 320, an expansion unit 330, an evaporation unit 340, a first measurement unit 410, a second measurement unit 420, and a third measurement unit 430. The gas passage ΡΓ is connected to the gas supply unit 110, the first measuring unit 410, the dry 201114973 TW5620PA ί - the drying chamber 120, the second measuring unit 420, the circulation fan 130, the switching unit 140 and the exhaust unit 150. A refrigerant passage Ρ 2 The compression unit 310, the condensation unit 320, the third measurement unit 430, the expansion unit 330, and the evaporation unit 340 are connected. The air supply unit 110 is configured to provide a gas into the heat pump dryer 1000. The exhaust unit 150 is used to discharge the gas. The heat pump dryer 1000 is used for accommodating clothes for drying. The drying chamber 120 is, for example, a horizontal drum chamber, a slanting drum chamber or an upright chamber. for A ventilating door for switching the flow of gas in the gas passage Ρ 1. The circulation fan 130 is used to improve the flow of the gas in the gas passage Ρ 1. The control unit 210 is configured to perform various calculation procedures and judgment procedures, and is used to control the heat pump. The operation of the components of the dryer 1000. The compression unit 310 is for compressing a refrigerant. The condensing unit 320 is for condensing the compressed refrigerant. The expansion unit 330 is for decompressing the condensed refrigerant. The evaporation unit 340 is used for evaporating The refrigerant is decompressed. The first measuring unit 410 is disposed at one of the inlets 120a of the drying chamber 120, and the second measuring unit 420 is disposed at one of the outlets 120b of the drying chamber 120. The third measuring unit 430 is disposed between the condensing unit 320 and the expansion unit 330. The first to third measuring units 410 to 430 are used to measure various values for the gas or the refrigerant. In the drying mode of the heat pump dryer 10G0, after the outside dry gas enters the gas passage P1, heat exchange is performed at the condensing unit 320 to form a high-temperature drying gas. After the high temperature drying gas enters the drying chamber 120 from the inlet 120a, the moisture of the laundry can be taken away and outputted by the outlet 120b.

, rw^o^urA 南溫;朝濕氣體。 f為以溫潮減•成外界賴污染,由乾燥腔 體120排出之南溫潮濕氣體可以在蒸發單元34〇進行熱交 換,而吸收部份熱量及冷凝部份水氣。 當切換草元140將氣體通道P1切換成流向叫時氣 體通道pi形成-開放式風道。當切換單元14〇將氣體通 道P1切換成流向D2時,氣體通道P1开)成一封閉式風道。 在熱泵乾衣機1〇〇〇剛開始運作時,乾燥腔體12〇内 籲外潮濕程度差異大,水氣濃度梯度較大,此時可以採用開 放式風道,以利用外界較乾燥的氣體來帶走乾燥腔體120 内的水氣。 在熱泵乾衣機1000運作一段時間後,乾燥腔體120 内外潮濕程度差異不大,此時可以採用封閉式風道,以使 内部已增溫之氣體回流至乾燥腔體120,不直接排放至外 界環境之中’以減少能源的浪費。 控制單元210所進行之控制程序及判斷程序與「絕對 Φ 濕度(humidity ratio)」、「飽和絕對濕度(saturati〇n humidity ratio)」或「相對濕度(reiative humidity)」 有關°絕對濕度係為含水氣體之水質量與氣體質量的比 值。飽和絕對濕度為含水氣體在飽和狀態之絕對濕度。相 對濕度則為絕對濕度與飽和絕對濕度之比值。絕對濕度及 相對濕度隨著含水程度不同而改變。飽和濕度在某一溫度 及某一壓力下,則為固定值。 控制單元210依據絕對濕度、飽和濕度或相對濕度等 資訊可以判斷出何時最適合由開放式風道切換為封閉式 201114973 TW5620PA ^ , 風道。請參照第2圖,其繪示乾燥效率;與乾燥速率MER 之關係圖。乾燥效率等於出口絕對濕度t減去入口絕 對濕度%之差值除以出口飽和絕對濕度減去入口絕對 濕度%之差值,即以下第(1)式 簡單來說,相同條件下,出口絕對濕度t與入口絕對 濕度%差距越大時,乾燥效率7_越大。反之,相同條件下, 出口絕對濕度^與入口絕對濕度%差距越小時,乾燥效率 越小。熱泵乾衣機1〇〇〇剛開始運轉時,出口絕對濕度 與入口絕對濕度%差距通常較大。隨著乾燥腔體120内的 衣物越來越乾燥時,出口絕對濕度t與入口絕對濕度%差 距也會越來越小。所以,隨著熱泵乾衣機1000的運轉, 乾燥效率將會逐漸降低。 乾燥速率MER係為乾燥腔體120係為每小時所提出之 水質量。承上所述,隨著熱杲乾衣機1000的運轉,乾燥 效率7dryCT將會逐漸降低。如第2圖所示,乾燥效率7dry«逐漸 降低時,乾燥速率MER也隨之降低。 從第2圖可以得知,預定效率值/7·是個分界線。當乾 燥效率〃_高於預定效率值7·時,熱泵乾衣機1000的乾燥 速率MER以較為平缓之方式遞減;當乾燥效率;7_低於預定 效率值;/時,熱泵乾衣機1000之乾燥速率MER以較為急遽 之方式遞減。 換言之,當乾燥效率高於預定效率值7·時,採用開 放式風道,讓内部氣體排出於熱泵乾衣機1000外,可充 201114973, rw^o^urA South temperature; toward wet gas. f is the temperature fluctuation and the external pollution, the south temperature humid gas discharged from the drying chamber 120 can be heat exchanged in the evaporation unit 34, and absorb part of the heat and condense part of the water gas. When the switching grass 140 switches the gas passage P1 to flow, the gas passage pi forms an open air passage. When the switching unit 14 switches the gas passage P1 to the flow direction D2, the gas passage P1 opens into a closed air passage. At the beginning of the operation of the heat pump dryer, the difference in the degree of moisture in the drying chamber 12 is large, and the gradient of water and gas concentration is large. At this time, an open air passage can be used to utilize the dry air outside. To remove the moisture in the drying chamber 120. After the heat pump dryer 1000 is operated for a period of time, the degree of moisture inside and outside the drying chamber 120 is not much different. At this time, a closed air passage can be used to return the internally heated gas to the drying chamber 120, and not directly discharged to In the external environment to reduce energy waste. The control program and the determination program performed by the control unit 210 are related to "absolute Φ humidity", "saturated absolute humidity" or "reiative humidity". The absolute humidity is water. The ratio of the water quality of the gas to the mass of the gas. The saturated absolute humidity is the absolute humidity of the aqueous gas in saturation. The relative humidity is the ratio of absolute humidity to saturated absolute humidity. Absolute humidity and relative humidity change with varying degrees of water. The saturated humidity is a fixed value at a certain temperature and a certain pressure. Based on information such as absolute humidity, saturated humidity or relative humidity, the control unit 210 can determine when it is most suitable to switch from an open air duct to a closed type 201114973 TW5620PA ^ , air duct. Please refer to Fig. 2, which shows the drying efficiency; the relationship with the drying rate MER. The drying efficiency is equal to the difference between the absolute humidity of the outlet minus the absolute humidity of the inlet divided by the difference between the absolute saturation of the outlet minus the absolute humidity of the inlet, that is, the following formula (1) is simply, under the same conditions, the absolute humidity of the outlet The larger the difference between t and the absolute humidity of the inlet, the larger the drying efficiency 7_. On the contrary, under the same conditions, the smaller the difference between the absolute humidity of the outlet and the absolute humidity of the inlet, the smaller the drying efficiency. When the heat pump dryer starts operating, the difference between the absolute humidity of the outlet and the absolute humidity of the inlet is usually large. As the laundry in the drying chamber 120 becomes more and more dry, the difference between the outlet absolute humidity t and the inlet absolute humidity % will become smaller and smaller. Therefore, as the heat pump dryer 1000 operates, the drying efficiency will gradually decrease. The drying rate MER is the water quality of the drying chamber 120 which is proposed per hour. As described above, as the hot dryer 1000 is operated, the drying efficiency 7dryCT will gradually decrease. As shown in Fig. 2, when the drying efficiency 7dry« is gradually lowered, the drying rate MER is also lowered. As can be seen from Fig. 2, the predetermined efficiency value /7· is a dividing line. When the drying efficiency 〃 _ is higher than the predetermined efficiency value 7 ·, the drying rate MER of the heat pump dryer 1000 is decreased in a relatively gentle manner; when the drying efficiency; 7 _ is lower than the predetermined efficiency value; /, the heat pump dryer 1000 The drying rate MER is decremented in a more impulsive manner. In other words, when the drying efficiency is higher than the predetermined efficiency value of 7·, the open air duct is used to allow the internal gas to be discharged outside the heat pump dryer 1000, which can be charged 201114973

, , r w^ozurA 分利用開放式風道高乾燥能力的好處。當乾燥效率;低於 預定效率值;7’時,採用封閉式風道,讓内部之高溫氣體回 流,可保有較佳之能源利用率。 此外,預定效率值7’會隨著不同季節與不同環境等因 素的影響而變化。熱泵乾衣機1000可以在出廠前依據使 用需求來調整預定效率值Y,使得熱泵乾衣機1〇〇〇不僅能 夠獲得高乾燥能力,也能保有較佳之能源利用率。 以下更以數張流程圖詳細說明本實施例之熱泵乾衣 Φ 機1000之運作方式,然而本發明所述技術領域中具有通 常知識者均可瞭解,本實施例之熱泵乾衣機1000之運作 方式並不侷限於以下流程圖之說明。 請參照第3圖,其繪示第一實施例之氣體通道P1之 控制方法的流程圖。首先,在步驟S301中,提供乾燥腔 體 120。 接著,在步驟S303中,控制單元210控制切換單元 140將氣體通道P1調整為流向D1,使得由乾燥腔體120 • 離開之氣體排出熱泵乾衣機1000之外,而形成開放式風 道。 然後,在步驟S305中,以第一量測單元410量測入 口 120a處之一入口溫度及一入口相對濕度(inlet re 1 at i ve humi d i ty)。目前常用的濕度計所量測之數值為 相對濕度,而透過溫度及相對濕度的換算,即可以獲得絕 對濕度。 接著,在步驟S307中,以第二量測單元420量測出 口 120b處之一出口溫度及一出口相對濕度(outlet 201114973 TW5620PA f relative humidity)。 然後,在步驟S309中,控制單元210依據入口溫度 及入口相對濕度計算入口絕對濕度%,並依據出口溫度及 出口相對濕度計算出口絕對濕度t,並依據出口溫度計算 出口飽和絕對濕度。 接著,在步驟S311中,控制單元210依據入口絕對 濕度%、出口絕對濕度七及出口飽和絕對濕度〜計算乾 燥效率7dr^。 然後,在步驟S313中,控制單元210判斷乾燥腔體 120之運作是否符合一預定條件。在此步驟中,控制單元 210係依據入口絕對濕度%、出口絕對濕度%,及出口飽和 絕對濕度%_所計算出之乾燥效率來進行判斷。在本實 施例中,若乾燥效率7_低於預定效率值〃·,則乾燥腔體120 之運作符合此預定條件。若乾燥效率不低於預定效率值 /7’,則乾燥腔體120之運作不符合此預定條件。 若乾燥腔體120之運作符合於預定條件,則進入步驟 S315 ;若乾燥腔體120之運作不符合預定條件,則回至步 驟 S305。 接著,在步驟S315中,控制單元210控制切換單元 140將氣體通道P1調整為流向D2,使得由乾燥腔體120 離開之氣體回流至乾燥腔體120,而形成封閉式風道。 其中,步驟S305〜S313係間隔一預定時間(例如是 30秒鐘)執行一次。 在熱泵乾衣機1000採用封閉式風道時,冷媒可能過 熱,導致系統不穩定。本實施例更透過第三量測單元430 201114973, , r w^ozurA The benefits of utilizing the open air duct high drying capacity. When the drying efficiency is lower than the predetermined efficiency value; 7', the closed air duct is used to allow the internal high-temperature gas to return, which can maintain better energy utilization. Further, the predetermined efficiency value 7' varies depending on factors such as different seasons and different environments. The heat pump dryer 1000 can adjust the predetermined efficiency value Y according to the use requirement before leaving the factory, so that the heat pump dryer 1 can not only obtain high drying capacity, but also maintain better energy utilization. In the following, the operation mode of the heat pump drying machine Φ machine 1000 of the present embodiment will be described in detail in several flowcharts. However, those skilled in the art of the present invention can understand the operation of the heat pump dryer 1000 of the present embodiment. The method is not limited to the description of the flowchart below. Referring to Fig. 3, there is shown a flow chart of the control method of the gas passage P1 of the first embodiment. First, in step S301, a drying chamber 120 is provided. Next, in step S303, the control unit 210 controls the switching unit 140 to adjust the gas passage P1 to flow toward D1, so that the gas exiting from the drying chamber 120 is discharged outside the heat pump dryer 1000 to form an open duct. Then, in step S305, an inlet temperature and an inlet relative humidity (inlet re 1 at i ve humi d ty) at the inlet 120a are measured by the first measuring unit 410. At present, the commonly used hygrometer measures the relative humidity, and the temperature and relative humidity are converted to obtain absolute humidity. Next, in step S307, an outlet temperature and an outlet relative humidity at the outlet 120b are measured by the second measuring unit 420 (outlet 201114973 TW5620PA f relative humidity). Then, in step S309, the control unit 210 calculates the inlet absolute humidity % based on the inlet temperature and the inlet relative humidity, and calculates the outlet absolute humidity t based on the outlet temperature and the outlet relative humidity, and calculates the outlet saturated absolute humidity based on the outlet temperature. Next, in step S311, the control unit 210 calculates the drying efficiency 7dr^ based on the inlet absolute humidity %, the outlet absolute humidity VII, and the outlet saturation absolute humidity 〜. Then, in step S313, the control unit 210 determines whether the operation of the drying chamber 120 conforms to a predetermined condition. In this step, the control unit 210 makes a determination based on the absolute efficiency of the inlet absolute humidity %, the outlet absolute humidity %, and the outlet saturation absolute humidity %_. In the present embodiment, if the drying efficiency 7_ is lower than the predetermined efficiency value ,·, the operation of the drying chamber 120 conforms to the predetermined condition. If the drying efficiency is not lower than the predetermined efficiency value /7', the operation of the drying chamber 120 does not conform to the predetermined condition. If the operation of the drying chamber 120 conforms to the predetermined condition, the process proceeds to step S315; if the operation of the drying chamber 120 does not meet the predetermined condition, then the process returns to step S305. Next, in step S315, the control unit 210 controls the switching unit 140 to adjust the gas passage P1 to flow to D2, so that the gas exiting from the drying chamber 120 is returned to the drying chamber 120 to form a closed duct. The steps S305 to S313 are performed once every predetermined time interval (for example, 30 seconds). When the heat pump dryer 1000 uses a closed air duct, the refrigerant may be overheated, resulting in system instability. This embodiment is further transmitted through the third measurement unit 430 201114973

t I'woo^/^nA 里測已冷凝之冷媒之一冷媒溫度。控制單元21〇更用以判 斷冷媒溫度是否大於一預定溫度值。若冷媒溫度不大於預 定溫度值,則控制單元21〇維持壓縮單元31〇之運作。若 冷媒溫度大於預定溫度值,則控制單元21〇停止壓縮單元 310之運作。如此一來,可以避免熱泵乾衣機1〇〇〇採用封 閉式風道時,冷媒溫度可能過高導致系統跳機之現象。 第二實施例 • 請參照第4圖,其繪示第二實施例之熱泵乾衣機2000 之示意圖。本實施例之熱泵乾衣機2000與第一實施例之 熱泵乾衣機1000不同之處在於本實施例之熱泵乾衣機 2000係以散熱單元350及切換單元360來改善冷媒過熱之 情況。 散熱單元350用以散熱已冷凝之冷媒。本實施例之散 熱單元350可以採用自然對流為散熱機制之被動式散熱 器,例如是加大散熱鰭片的散熱器。或者,本實施例之散 • 熱單元350亦可採用加裝對流風扇,以強制對流為散熱機 制之主動式散熱器。 切換單元360用以切換已冷凝之冷媒先流經散熱單 元350再流向膨脹單元330,或直接流向膨脹單元330。 切換單元360例如是一三通閥。 若冷媒溫度不大於預定溫度值,則控制單元210控制 切換單元360將冷媒通道P2切換成流向D3 ’使得已冷凝 之冷媒直接流向膨脹單元330。 若冷媒溫度大於預定溫度值,則控制單元21〇控制切 [ 11 201114973 TW5620PA 春 , 換單元360將冷媒通道P2切換成流向D4,使得已冷凝之 冷媒先流經散熱單元350再流向膨脹單元330。如此一來, 可以避免熱泵乾衣機2000採用封閉式風道時,冷媒溫度 可能過南之現象。 綜上所述,雖然本發明已以諸項實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1圖繪示第一實施例之熱泵乾衣機之示意圖; 第2圖繪示乾燥效率與乾燥速率之關係圖; 第3圖繪示第一實施例之氣體通道之控制方法的流 程圖;以及 第4圖繪示第二實施例之熱泵乾衣機之示意圖。 【主要元件符號說明】 1000、2000 :熱泵乾衣機 110 :供氣單元 120 :乾燥腔體 120a :入口 120b :出口 13 0 :循環風扇 201114973t I'woo^/^nA measures the temperature of one of the condensed refrigerants. The control unit 21 is further configured to determine whether the temperature of the refrigerant is greater than a predetermined temperature value. If the refrigerant temperature is not greater than the predetermined temperature value, the control unit 21 maintains the operation of the compression unit 31. If the refrigerant temperature is greater than the predetermined temperature value, the control unit 21 stops the operation of the compression unit 310. In this way, it can be avoided that when the heat pump dryer adopts a closed air duct, the temperature of the refrigerant may be too high, causing the system to trip. Second Embodiment Referring to Figure 4, there is shown a schematic view of a heat pump dryer 2000 of a second embodiment. The heat pump dryer 2000 of the present embodiment is different from the heat pump dryer 1000 of the first embodiment in that the heat pump dryer 2000 of the present embodiment uses the heat dissipation unit 350 and the switching unit 360 to improve the overheating of the refrigerant. The heat dissipation unit 350 is configured to dissipate the condensed refrigerant. The heat dissipation unit 350 of this embodiment can adopt a passive heat sink with natural convection as a heat dissipation mechanism, for example, a heat sink that increases the heat dissipation fins. Alternatively, the heat dissipation unit 350 of the present embodiment may also be equipped with a convection fan to force the convection to be an active heat sink of the heat dissipation mechanism. The switching unit 360 is configured to switch the condensed refrigerant to flow through the heat dissipation unit 350 to the expansion unit 330 or directly to the expansion unit 330. The switching unit 360 is, for example, a three-way valve. If the refrigerant temperature is not greater than the predetermined temperature value, the control unit 210 controls the switching unit 360 to switch the refrigerant passage P2 to flow toward D3' so that the condensed refrigerant flows directly to the expansion unit 330. If the refrigerant temperature is greater than the predetermined temperature value, the control unit 21 switches the control unit to switch the refrigerant passage P2 to the flow direction D4, so that the condensed refrigerant first flows through the heat dissipation unit 350 and then flows to the expansion unit 330. In this way, it is possible to avoid the phenomenon that the temperature of the refrigerant may exceed the south when the heat pump dryer 2000 adopts a closed air duct. In view of the above, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a heat pump dryer according to a first embodiment; FIG. 2 is a diagram showing a relationship between drying efficiency and drying rate; and FIG. 3 is a view showing a gas passage of the first embodiment. A flowchart of the control method; and FIG. 4 is a schematic view of the heat pump dryer of the second embodiment. [Description of main component symbols] 1000, 2000: Heat pump dryer 110: Air supply unit 120: Drying chamber 120a: Entrance 120b: Outlet 13 0 : Circulating fan 201114973

t , rwoozui^A 140、360 :切換單元 150 :排氣單元 210 :控制單元 310 :壓縮單元 320 :冷凝單元 330 :膨脹單元 340 :蒸發單元 350 :散熱單元 φ 410 :第一量測單元 420 :第二量測單元 430 :第三量測單元 Dl、D2 :氣體通道之流向 D3、D4 :冷媒通道之流向 P1 :氣體通道 P2 :冷媒通道 S301〜S315 :流程步驟 13t, rwoozui^A 140, 360: switching unit 150: exhaust unit 210: control unit 310: compression unit 320: condensing unit 330: expansion unit 340: evaporation unit 350: heat dissipation unit φ 410: first measurement unit 420: Second measuring unit 430: third measuring unit D1, D2: flow direction of gas passage D3, D4: flow direction of refrigerant passage P1: gas passage P2: refrigerant passage S301~S315: flow step 13

Claims (1)

201114973 TW5620PA , , 七、申請專利範圍: 1. 一種熱泵乾衣機之控制方法,包括: 提供一乾燥腔體,該乾燥腔體具有一入口及一出口, 5亥入口具有—入口絕對濕度(inlet humidity ratio),該 出口具有出口絕對濕度(〇utlet humidity ratio)及 出 口飽和絕對濕度(outlet saturation humidity ratio); 控制由該乾燥腔體離開之一氣體排出該熱泵乾衣機 之外; 依據該入口絕對濕度、該出口絕對濕度及該出口飽和 絕對濕度’判斷該乾燥腔體之運作是否符合一預定條件; 以及 若該乾燥腔體之運作符合該預定條件,則控制由該乾 燥腔體離開之該氣體回流至該乾燥腔體。 2·如申請專利範圍第1項所述之熱泵乾衣機之控制 方法,更包括: 量測該入口處之一入口溫度及一入口相對濕度 (inlet relative humidity); 量測該出口處之一出口溫度及一出口相對濕度 (outlet relative humidity);以及 依據該入口溫度及該入口相對濕度計算該入口絕對 濕度,並依據該出口溫度及該出口相對濕度計算該出口絕 對濕度,並依據該出口溫度計算該出口飽和絕對濕度。 3.如申請專利範圍第1項所述之熱泵乾衣機,其中 一乾燥效率等於該出口絕對濕度減去該入口絕對濕度之 201114973 . . rw^ozurA 差值除以該出口飽和絕對濕度減去該入口絕對濕度之差 值,該判斷之步驟係依據該乾燥效率判斷該乾燥腔體之運 作是否符合該預定條件。 4. 如申請專利範圍第3項所述之熱泵乾衣機之控制 方法,其中在該判斷之步驟中,若該乾燥效率低於一預定 效率值,則該乾燥腔體之運作符合該預定條件。 5. 如申請專利範圍第3項所述之熱泵乾衣機之控制 方法,其中該判斷之步驟係間隔一預定時間執行一次。 • 6. —種熱泵乾衣機,包括: 一乾燥腔體,具有一入口及一出口,該入口具有一入 口絕對濕度(inlet humidity ratio),該出口具有一出口 絕對濕度(outlet humidity ratio)及一出口飽和絕對 濕度(outlet saturation humidity ratio); 一第一切換單元,用以切換由該乾燥腔體離開之一氣 體排出該熱泵乾衣機之外或回流至該乾燥腔體;以及 一控制單元,依據該入口絕對濕度、該出口絕對濕度 φ 及該出口飽和絕對濕度判斷該乾燥腔體之運作是否符合 一預定條件; 其中,若該乾燥腔體之運作未符合該預定條件,則該 控制單元控制該第一切換單元,使得由該乾燥腔體離開之 該氣體排出該熱泵乾衣機之外; 若該乾燥腔體之運作符合該預定條件,則該控制單元 控制該第一切換單元,使得由該乾燥腔體離開之該氣體回 流至該乾燥腔體。 7.如申請專利範圍第6項所述之熱泵乾衣機,更包 201114973 TW5620PA f , 括: 一第一量測單元,用以量測該入口處之該入口溫度及 一入口相對濕度(inlet relative humidity);以及 一第二量測單元,用以量測該出口處之該出口溫度及 一出口相對濕度(outlet relative humidity); 其中該控制單元係依據該入口溫度及該入口相對濕 度計算該入口絕對濕度,並依據該出口溫度及該出口相對 濕度計算該出口絕對濕度,並依據該出口溫度計算出該出 口飽和絕對濕度。 8. 如申請專利範圍第6項所述之熱泵乾衣機,其中 該控制單元係依據該入口絕對濕度、該出口絕對濕度及該 出口飽和絕對濕度計算一乾燥效率,該乾燥效率等於該出 口絕對濕度減去該入口絕對濕度之差值除以該出口飽和 絕對濕度減去該入口絕對濕度之差值,該控制單元係依據 該乾燥效率判斷該乾燥腔體之運作是否符合該預定條件。 9. 如申請專利範圍第8項所述之熱泵乾衣機,其中 該控制單元係判斷該乾燥效率是否低於一預定效率值,若 該乾燥效率低於該預定效率值,則該乾燥腔體之運作符合 該預定條件。 10. 如申請專利範圍第6項所述之熱泵乾衣機,其中 該控制單元係間隔一預定時間執行一次。 11. 如申請專利範圍第6項所述之熱泵乾衣機,更包 括: 一壓縮單元,用以壓縮一冷媒; 一冷凝單元,用以冷凝已壓縮之該冷媒; 201114973 . l»WD02UrA 一膨脹單元,用以減壓已冷凝之該冷媒; 一蒸發單元,用以蒸發已減壓之該冷媒;以及 一第三量測單元,用以量測已冷凝之該冷媒之一冷媒 溫度; 其中,該控制單元更用以判斷該冷媒溫度是否大於一 預定溫度值; 若該冷媒溫度不大於該預定溫度值,則該控制單元維 持該壓縮單元之運作; Φ 若該冷媒溫度大於該預定溫度值,則該控制單元停止 該壓縮單元之運作。 12.如ΐ請專利範圍第6項所述之熱泵乾衣機,更包 括: 一壓縮單元,用以壓縮一冷媒; 一冷凝單元,用以冷凝已壓縮之該冷媒; 一膨脹單元,用以減壓已冷凝之該冷媒; 一蒸發單元,用以蒸發已減壓之該冷媒; • 一散熱單元,用以散熱已冷凝之該冷媒; 一第三量測單元,用以量測已冷凝之該冷媒之一冷媒 溫度;以及 一第二切換單元,用以切換已冷凝之該冷媒先流經該 散熱單元再流向該膨脹單元,或直接流向該膨脹單元;以 及 其中,該控制單元更用以判斷該冷媒溫度是否大於一 預定溫度值; 若該冷媒溫度不大於該預定溫度值,則該控制單元控 17 201114973 TW5620PA - * 制該第二切換單元,使得已冷凝之該冷媒直接流向該膨脹 單元; 若該冷媒溫度大於該預定溫度值,則該控制單元控制 該第二切換單元,使得已冷凝之該冷媒先流經該散熱單元 再流向該膨脹單元。201114973 TW5620PA, , VII, the scope of application for patents: 1. A method of controlling a heat pump dryer, comprising: providing a drying chamber having an inlet and an outlet, the inlet of the 5 Hai has an inlet absolute humidity (inlet Humidity ratio), the outlet has an outlet humidity ratio and an outlet saturation humidity ratio; controlling a gas leaving the drying chamber to exit the heat pump dryer; Absolute humidity, the absolute humidity of the outlet, and the absolute saturation of the outlet 'determining whether the operation of the drying chamber meets a predetermined condition; and if the operation of the drying chamber meets the predetermined condition, controlling the leaving of the drying chamber The gas is returned to the drying chamber. 2. The control method of the heat pump dryer according to claim 1, further comprising: measuring an inlet temperature of the inlet and an inlet relative humidity; measuring one of the outlets An outlet temperature and an outlet relative humidity; and calculating the inlet absolute humidity according to the inlet temperature and the inlet relative humidity, and calculating the outlet absolute humidity according to the outlet temperature and the outlet relative humidity, and according to the outlet temperature Calculate the absolute saturation of the outlet. 3. The heat pump dryer according to claim 1, wherein a drying efficiency is equal to the absolute humidity of the outlet minus the absolute humidity of the inlet 201114973. rw^ozurA difference divided by the outlet saturated absolute humidity minus The difference between the absolute humidity of the inlet, the determining step determines whether the operation of the drying chamber conforms to the predetermined condition according to the drying efficiency. 4. The method of controlling a heat pump dryer according to claim 3, wherein in the determining step, if the drying efficiency is lower than a predetermined efficiency value, the operation of the drying chamber conforms to the predetermined condition . 5. The method of controlling a heat pump dryer according to claim 3, wherein the determining step is performed once every predetermined time interval. • 6. A heat pump dryer comprising: a drying chamber having an inlet and an outlet, the inlet having an inlet humidity ratio, the outlet having an outlet humidity ratio and An outlet saturation humidity ratio; a first switching unit for switching a gas leaving the drying chamber out of the heat pump dryer or back to the drying chamber; and a control unit Determining, according to the absolute humidity of the inlet, the absolute humidity of the outlet φ, and the absolute humidity of the outlet, whether the operation of the drying chamber meets a predetermined condition; wherein, if the operation of the drying chamber does not meet the predetermined condition, the control unit Controlling the first switching unit such that the gas exiting the drying chamber is discharged outside the heat pump dryer; if the operation of the drying chamber meets the predetermined condition, the control unit controls the first switching unit such that The gas exiting the drying chamber is returned to the drying chamber. 7. The heat pump dryer according to claim 6, further comprising 201114973 TW5620PA f, comprising: a first measuring unit for measuring the inlet temperature and an inlet relative humidity at the inlet (inlet And a second measuring unit for measuring the outlet temperature and an outlet relative humidity at the outlet; wherein the control unit calculates the inlet temperature according to the inlet temperature and the inlet relative humidity The inlet absolute humidity is calculated, and the outlet absolute humidity is calculated according to the outlet temperature and the outlet relative humidity, and the outlet saturated absolute humidity is calculated according to the outlet thermometer. 8. The heat pump dryer according to claim 6, wherein the control unit calculates a drying efficiency based on the inlet absolute humidity, the outlet absolute humidity, and the outlet saturated absolute humidity, the drying efficiency being equal to the outlet absolute The difference between the humidity minus the absolute humidity of the inlet is divided by the difference between the absolute saturation of the outlet and the absolute humidity of the inlet, and the control unit determines whether the operation of the drying chamber meets the predetermined condition according to the drying efficiency. 9. The heat pump dryer according to claim 8, wherein the control unit determines whether the drying efficiency is lower than a predetermined efficiency value, and if the drying efficiency is lower than the predetermined efficiency value, the drying chamber The operation is in accordance with the predetermined conditions. 10. The heat pump dryer of claim 6, wherein the control unit is executed once every predetermined time interval. 11. The heat pump dryer according to claim 6, further comprising: a compression unit for compressing a refrigerant; and a condensation unit for condensing the compressed refrigerant; 201114973 . l»WD02UrA an expansion a unit for decompressing the condensed refrigerant; an evaporation unit for evaporating the decompressed refrigerant; and a third measuring unit for measuring a refrigerant temperature of the condensed refrigerant; wherein The control unit is further configured to determine whether the refrigerant temperature is greater than a predetermined temperature value; if the refrigerant temperature is not greater than the predetermined temperature value, the control unit maintains operation of the compression unit; Φ if the refrigerant temperature is greater than the predetermined temperature value, Then the control unit stops the operation of the compression unit. 12. The heat pump dryer of claim 6, further comprising: a compression unit for compressing a refrigerant; a condensing unit for condensing the compressed refrigerant; and an expansion unit for a refrigerant that has been condensed under reduced pressure; an evaporation unit for evaporating the decompressed refrigerant; a heat dissipating unit for dissipating the condensed refrigerant; and a third measuring unit for measuring the condensed a refrigerant temperature of the refrigerant; and a second switching unit for switching the condensed refrigerant to flow through the heat dissipation unit to the expansion unit or directly to the expansion unit; and wherein the control unit is further used Determining whether the temperature of the refrigerant is greater than a predetermined temperature value; if the temperature of the refrigerant is not greater than the predetermined temperature value, the control unit controls 17 201114973 TW5620PA - * to make the second switching unit, so that the condensed refrigerant flows directly to the expansion unit And if the refrigerant temperature is greater than the predetermined temperature value, the control unit controls the second switching unit, so that the condensed refrigerant first flows through the heat dissipation Then flows to the expansion unit element. 1818
TW98135829A 2009-10-22 2009-10-22 Heat pump clothes dryer and controlling method for heat pump clothes dryer TWI381077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98135829A TWI381077B (en) 2009-10-22 2009-10-22 Heat pump clothes dryer and controlling method for heat pump clothes dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98135829A TWI381077B (en) 2009-10-22 2009-10-22 Heat pump clothes dryer and controlling method for heat pump clothes dryer

Publications (2)

Publication Number Publication Date
TW201114973A true TW201114973A (en) 2011-05-01
TWI381077B TWI381077B (en) 2013-01-01

Family

ID=44934239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135829A TWI381077B (en) 2009-10-22 2009-10-22 Heat pump clothes dryer and controlling method for heat pump clothes dryer

Country Status (1)

Country Link
TW (1) TWI381077B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI265991B (en) * 2004-03-02 2006-11-11 Jing-Liang Huang Energy-saving, automatic machine shut-off method for a cloth dryer or an electric dryer
JP4286712B2 (en) * 2004-05-06 2009-07-01 パナソニック株式会社 Clothes dryer
ES2626050T3 (en) * 2004-12-06 2017-07-21 Lg Electronics Inc. Clothes dryer
JP4783125B2 (en) * 2005-11-17 2011-09-28 株式会社東芝 Clothes dryer

Also Published As

Publication number Publication date
TWI381077B (en) 2013-01-01

Similar Documents

Publication Publication Date Title
CN102206916B (en) A kind of heat pump drying system for cylinder drying and control method
CN102677441B (en) A kind of heat pump clothes dryer control method and heat pump clothes dryer
US9487910B2 (en) Clothes dryer and control method thereof
EP2990525B1 (en) Control method for laundry dryer
CN102105631B (en) Clothes dryer
RU2564601C2 (en) Device for ventilated laundry drying with additional heater and heat exchanger module
WO2005031231A1 (en) Heat pump type drying apparatus drying apparatus and drying method
JP6605040B2 (en) Clothing condensation dryer and clothing condensation drying method
US20140033745A1 (en) Method of operating a heat pump dryer and heat pump dryer
JP2004236965A (en) Clothes drying apparatus
CN102051796B (en) Heat pump clothes dryer and control method thereof
CN102677439B (en) A kind of control method removing heat pump clothes dryer evaporimeter frosting and heat pump clothes dryer
US9389018B2 (en) Dryer or washer dryer and method for this operation
US9816756B2 (en) Dryer or washer dryer and method for this operation
JP2004239549A (en) Clothes drier
CN105316920B (en) Dryer and dryer heat pump system and its control method
CN110195341A (en) A kind of condensing drying equipment and its control method and control device
JP2004135752A (en) Clothes dryer apparatus
Ahn et al. Experimental study on drying time and energy consumption of a vented dryer
Shen et al. Heat pump clothes dryer model development
JP2004089413A (en) Clothes dryer
CN108224915A (en) A kind of superhigh temperature single system dual temperature area heat pump dryer system and application method
CN106521905A (en) Heat pump type clothes drying wardrobe
TW201114973A (en) Heat pump clothes dryer and controlling method for heat pump clothes dryer
KR20050118484A (en) Drying machine and method for controlling drying process of drying machine